WO2020001183A1 - 一种上行信号的传输方法及终端设备、网络设备 - Google Patents

一种上行信号的传输方法及终端设备、网络设备 Download PDF

Info

Publication number
WO2020001183A1
WO2020001183A1 PCT/CN2019/086827 CN2019086827W WO2020001183A1 WO 2020001183 A1 WO2020001183 A1 WO 2020001183A1 CN 2019086827 W CN2019086827 W CN 2019086827W WO 2020001183 A1 WO2020001183 A1 WO 2020001183A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
demodulated signal
time unit
occupied
terminal device
Prior art date
Application number
PCT/CN2019/086827
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980040597.3A priority Critical patent/CN112335309A/zh
Priority to EP19827473.0A priority patent/EP3817482B1/en
Priority to AU2019296665A priority patent/AU2019296665A1/en
Priority to JP2020571457A priority patent/JP2021529456A/ja
Priority to KR1020217001566A priority patent/KR20210022672A/ko
Publication of WO2020001183A1 publication Critical patent/WO2020001183A1/zh
Priority to US17/129,639 priority patent/US11510067B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio

Definitions

  • Embodiments of the present application relate to the field of communications technologies, and in particular, to a method for transmitting an uplink signal, a terminal device, and a network device.
  • unlicensed spectrum can be used, that is, NR technology is used to communicate on channels of unlicensed spectrum.
  • LBT listen-before-talk
  • the time domain resources used by the terminal device for uplink transmission are configured in advance by the network device.
  • the terminal device can transmit uplink data and a demodulation signal for demodulating the uplink data on the pre-configured time domain resource.
  • the terminal device cannot be part of the time domain resources pre-configured by the network device For transmission.
  • the embodiments of the present application provide an uplink signal transmission method, a terminal device, and a network device, so as to implement correct transmission of a demodulated signal for demodulating uplink data on an unlicensed spectrum.
  • a method for transmitting an uplink signal including:
  • the terminal device sends uplink data obtained by matching the first demodulated signal and the first transmission block rate to the network device on the first time unit on the unlicensed spectrum, where the first demodulated signal is used to demodulate the uplink. Data, the symbol occupied by the first demodulated signal does not include the first symbol;
  • the first symbol includes at least one of a first symbol in the first time unit and a last symbol in the first time unit.
  • another uplink signal transmission method including:
  • the network device receives uplink data obtained by matching the first demodulated signal and the first transmission block rate sent by the terminal device on the first time unit on the unlicensed spectrum, where the first demodulated signal is used to demodulate the Uplink data, the symbols occupied by the first demodulated signal do not include the first symbol;
  • the first symbol includes at least one of a first symbol in the first time unit and a last symbol in the first time unit.
  • a terminal device is provided to execute the method in the first aspect or the implementations thereof.
  • the terminal device includes a functional module for executing the method in the above-mentioned first aspect or each implementation manner thereof.
  • a network device for executing the method in the second aspect or the implementation manners thereof.
  • the network device includes a functional module for executing the method in the second aspect or the implementation manners thereof.
  • a communication device including a processor and a memory.
  • the memory is configured to store a computer program
  • the processor is configured to call and run the computer program stored in the memory, and execute any one of the foregoing first aspect to the foregoing second aspect or a method in each implementation manner thereof.
  • a chip is provided for implementing the above-mentioned first aspect or a method in each implementation manner thereof.
  • the chip includes a processor for invoking and running a computer program from the memory, so that the device installed with the chip executes any one of the first aspect to the second aspect or an implementation thereof.
  • a computer-readable storage medium for storing a computer program that causes a computer to execute any one of the foregoing first aspect to the foregoing second aspect or a method in each implementation thereof.
  • a computer program product including computer program instructions that cause a computer to execute any one of the foregoing first aspect to the foregoing second aspect or a method in each implementation thereof.
  • a computer program that, when run on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or a method in each implementation thereof.
  • the terminal device sends uplink data obtained by matching the first demodulated signal and the first transmission block rate to the network device on the first time unit on the unlicensed spectrum, where the first demodulated signal is used For demodulating the uplink data, the symbols occupied by the first demodulated signal do not include a first symbol, where the first symbol includes a first symbol in the first time unit and the first time At least one of the last symbols in the unit can avoid that the demodulated signal used to demodulate uplink data does not occupy part of the resources that the terminal device may not be able to transmit in the time domain resources pre-configured by the network device, thereby realizing Correct transmission of demodulated signals for demodulating uplink data on the unlicensed spectrum.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2A is a schematic diagram of an uplink signal transmission method according to an embodiment of the present application.
  • 2B is a schematic diagram of mapping of a first demodulated signal, a second demodulated signal, and uplink data in the embodiment corresponding to FIG. 2A;
  • 2C is a schematic diagram of mapping of a first demodulated signal, a second demodulated signal, and uplink data in the embodiment corresponding to FIG. 2A;
  • 2D is a schematic diagram of mapping of a first demodulated signal, a second demodulated signal, and uplink data in the embodiment corresponding to FIG. 2A;
  • 2E is a schematic diagram of mapping of a first demodulated signal, a second demodulated signal, and uplink data in the embodiment corresponding to FIG. 2A;
  • 2F is a schematic diagram of mapping of a first demodulated signal, a second demodulated signal, and uplink data in the embodiment corresponding to FIG. 2A;
  • 2G is a schematic diagram of mapping of a first demodulated signal, a second demodulated signal, and uplink data in the embodiment corresponding to FIG. 2A;
  • 2H is a schematic diagram of mapping of a first demodulated signal, a second demodulated signal, and uplink data in the embodiment corresponding to FIG. 2A;
  • FIG. 3 is a schematic diagram of another uplink signal transmission method according to an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a chip according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the technical solutions in the embodiments of the present application can be applied to licensed spectrum or unlicensed spectrum, which is not particularly limited in the embodiments of the present application.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with the terminal device 120 (or referred to as a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located within the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • the network device may be a mobile switching center, relay station, access point, vehicle equipment, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in public land mobile networks (PLMN) that will evolve in the future.
  • PLMN public land mobile networks
  • the communication system 100 further includes at least one terminal device 120 located within a coverage area of the network device 110.
  • terminal equipment used herein includes, but is not limited to, connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connection ; And / or another data connection / network; and / or via a wireless interface, such as for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and / or another terminal device configured to receive / transmit communication signals; and / or Internet of Things (IoT) devices.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • DVB-H Digital Video Broadband
  • satellite networks satellite networks
  • AM- FM broadcast transmitter AM- FM broadcast transmitter
  • IoT Internet of Things
  • a terminal device configured to communicate through a wireless interface may be referred to as a “wireless communication terminal”, a “wireless terminal”, or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; personal communications systems (PCS) terminals that can combine cellular radiotelephones with data processing, facsimile, and data communications capabilities; can include radiotelephones, pagers, Internet / internal PDA with network access, Web browser, notepad, calendar, and / or Global Positioning System (GPS) receiver; and conventional laptop and / or palm-type receivers or others including radiotelephone transceivers Electronic device.
  • PCS personal communications systems
  • GPS Global Positioning System
  • a terminal device can refer to an access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Processing Assistant (PDA), and wireless communication.
  • the terminal devices 120 may perform terminal direct connection (Device to Device, D2D) communication.
  • D2D Terminal to Device
  • the 5G system or the 5G network may also be referred to as a New Radio (New Radio) system or an NR network.
  • New Radio New Radio
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • the device having a communication function in the network / system in the embodiments of the present application may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 having a communication function, and the network device 110 and the terminal device 120 may be specific devices described above, and will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobile management entity, and the like, which is not limited in the embodiments of the present application.
  • FIG. 2A is a schematic flowchart of an uplink signal transmission method 200 according to an embodiment of the present application, as shown in FIG. 2A.
  • the terminal device sends the uplink data obtained by matching the first demodulated signal and the first transmission block rate to the network device on the first time unit on the unlicensed spectrum, where the first demodulated signal is used to demodulate In the uplink data, the symbols occupied by the first demodulated signal do not include the first symbol.
  • the first time unit may be a time slot, for example, the first time unit may include 14 symbols; or may be a sub-timeslot (where a sub-timeslot includes N symbols, N Is an integer greater than or equal to 2 and less than 14), for example, the first time unit may include 7 symbols; or may be a set of multiple time slots, for example, the first time unit may include a set of 12 time slots; or It may also be a set of multiple subslots.
  • the first time unit may include a set of 2 subslots, where one subslot includes 4 symbols, the other subslot includes 7 symbols, and so on. This embodiment does not specifically limit this.
  • the first symbol may include, but is not limited to, at least one of a first symbol in the first time unit and a last symbol in the first time unit. This embodiment does not specifically address this. limited.
  • a time slot includes symbol 0, symbol 1, ..., symbol 13, and the first symbol may include symbol 0. And at least one of the symbols 13.
  • the terminal device may further send a second demodulation signal to the network device on the first time unit, where the second demodulated signal is further The demodulated signal is used to demodulate the uplink data, and the symbols occupied by the second demodulated signal do not include the first symbol.
  • the first demodulated signal may include a demodulation reference signal (Demodulation Reference Signal, DMRS), and the second demodulated signal may include uplink control information (Uplink Control Information, UCI), or
  • DMRS demodulation Reference Signal
  • UCI Uplink Control Information
  • the first demodulated signal may include UCI
  • the second demodulated signal may include DMRS, which is not particularly limited in this embodiment.
  • the symbols occupied by the second demodulated signal may further not include the symbols occupied by the first demodulated signal.
  • the demodulated signal occupies a symbol, which may mean that the demodulated signal is transmitted through all or part of the resources on the symbol, which is not particularly limited in this embodiment.
  • the symbols occupied by the second demodulated signal may further include the symbols occupied by the first demodulated signal, that is, the first demodulated signal is transmitted through some resources on the symbol.
  • the second demodulated signal is also transmitted through some resources on the symbol.
  • the symbol occupied by the second demodulated signal may be specifically determined according to the symbol occupied by the first demodulated signal.
  • the symbol occupied by the second demodulated signal may include a first symbol following the symbol occupied by the first demodulated signal.
  • the first time unit as a time slot including 14 symbols, for example, symbols are numbered from 0, that is, a time slot includes symbol 0, symbol 1, ..., symbol 13, if the first symbol is symbol 0,
  • the symbol occupied by the first demodulated signal is symbol 1
  • the symbol occupied by the second demodulated signal may include symbol 2, as shown in FIG. 2B.
  • the symbol occupied by the second demodulated signal may include a last symbol before the symbol occupied by the first demodulated signal.
  • symbols are numbered from 0, that is, a time slot includes symbol 0, symbol 1, ..., symbol 13, if the first symbol is symbol 0,
  • the symbol occupied by the first demodulated signal is symbol 3
  • the symbol occupied by the second demodulated signal may include symbol 2, as shown in FIG. 2C.
  • the second demodulated signal occupies multiple symbols, and the first symbol among the symbols occupied by the second demodulated signal is the first symbol following the symbol occupied by the first demodulated signal .
  • the first time unit as a time slot including 14 symbols, for example, symbols are numbered from 0, that is, a time slot includes symbol 0, symbol 1, ..., symbol 13, if the first symbol is symbol 0,
  • the symbol occupied by the first demodulated signal is symbol 1, and the first symbol among the symbols occupied by the second demodulated signal may be symbol 2.
  • the first demodulated signal occupies multiple symbols, and the symbols occupied by the second demodulated signal include a first symbol following the first symbol occupied by the first demodulated signal.
  • the first time unit as a time slot including 14 symbols, for example, symbols are numbered from 0, that is, a time slot includes symbol 0, symbol 1, ..., symbol 13, if the first symbol is symbol 0,
  • the symbols occupied by the first demodulated signal are symbol 1 and symbol 8, and the symbols occupied by the second demodulated signal may include symbol 2.
  • the terminal device in order to leave an LBT detection gap so that the terminal device and other communication devices perform multiplexed transmission on the unlicensed spectrum, the terminal device cannot be on some of the time domain resources pre-configured by the network device.
  • the first symbol of a time slot is symbol 0, and the last symbol is symbol 13, such as special position symbols.
  • the mapping configuration of the second demodulated signal and the uplink data can avoid that the demodulated signal used to demodulate the uplink data does not occupy part of the resources that the terminal device may not be able to transmit in the time domain resources pre-configured by the network device, thereby realizing the use of Correct transmission of demodulated signals for demodulating uplink data on the unlicensed spectrum.
  • the resources occupied by uplink data include a slot that is not Other resources occupied by UCI.
  • the mapping of the physical uplink shared channel (PUSCH) of Configure, Grant, and Uplink for three consecutive time slot transmissions, and each slot transmits a complete time slot can be mapped as shown in FIG. 2D.
  • PUSCH physical uplink shared channel
  • the PUSCH transmission of Configure Grant Grant Uplink can be performed for 3 consecutive time slots, and some symbols may not be transmitted in the 3 consecutive time slots (for example, the first time slot does not transmit the symbol 0, and the second time
  • the mapping manner of the slot non-transmission symbol 0 and symbol 13) can be shown in FIG. 2E, and X in the figure indicates no transmission.
  • a symbol occupied by the first demodulated signal may be prescribed by a standard specification.
  • the symbol occupied by the first demodulated signal may specifically include a second symbol in the first time unit.
  • the symbol occupied by the first demodulated signal may be sent by the network device to the terminal device through instruction information.
  • the indication information may be physical layer signaling, or may also be Media Access Control (MAC) Control Element (CE) signaling, or may also be radio resource control radio resource control (Radio Resource Control (RRC) signaling, which is not particularly limited in this embodiment.
  • MAC Media Access Control
  • CE Control Element
  • RRC Radio Resource Control
  • the indication information may be displayed or implicitly indicated by physical layer signaling.
  • the network device indicates the symbol occupied by the first demodulated signal (or the first symbol occupied by the first demodulated signal) by the terminal device through downlink control information (DCI), or Indicating the last symbol occupied by the first demodulated signal).
  • DCI downlink control information
  • the DCI further includes information that the network device indicates that the terminal device can use or prohibit the use of the first time unit.
  • DCI format 1 corresponds to a type of symbol occupied by a first demodulated signal (for example, first demodulated signal occupies symbol 3)
  • DCI format 2 corresponds to another type of symbol occupied by a first demodulated signal (for example, a first The demodulated signal occupies symbol 5).
  • the terminal device receives the DCI format 1
  • it can be determined that the symbols occupied by the first demodulated signal include symbol 3.
  • the terminal device receives the DCI format 2
  • the indication information may also be a combination of RRC signaling and physical layer signaling.
  • the network device configures at least two configurations of symbols occupied by the first demodulated signal, and instructs the terminal device which of the at least two configurations should be used in one uplink transmission through DCI.
  • the UCI may include control information for demodulating the uplink data. Therefore, the UCI may also be considered as a demodulation signal necessary for demodulating the uplink data.
  • the UCI may include, but is not limited to, at least one of the following information:
  • Hybrid Automatic Repeat Request (HARQ) identification corresponding to the first transmission block identification of the terminal device, start symbol of the first time unit, end symbol of the first time unit And a Code Block Group (CBG) indication included in the first transmission block.
  • HARQ Hybrid Automatic Repeat Request
  • CBG Code Block Group
  • the starting position where the uplink data is mapped on the first time unit may include a first symbol in the first time unit.
  • the first time unit is a time slot with 14 symbols as For example, symbols are numbered from 0, that is, a slot includes symbol 0, symbol 1, ..., symbol 13, if the first symbol is symbol 0, and the symbol occupied by the first demodulated signal is symbol 1, and the second The symbols occupied by the demodulated signal can include symbol 2.
  • symbols 0, 3 to 13 the uplink data can be mapped from symbol 0 to the end of symbol 13, as shown in Figure 2F.
  • the mapping is simple.
  • the starting position where the uplink data is mapped on the first time unit may include a symbol other than the first symbol in the first time unit, where the first time unit The first symbol does not map upstream data.
  • the first data unit includes 14 symbols.
  • symbols are numbered starting from 0, that is, a slot includes symbols 0, 1, 1, ..., symbol 13, if the first symbol is symbol 0 and the symbol occupied by the first demodulated signal is a symbol 1.
  • the symbols occupied by the second demodulated signal may include symbol 2.
  • the uplink data can be mapped from symbol 3 to the end of symbol 13, where the symbol 0 does not map uplink data, as shown in Figure 2G.
  • the end position where the uplink data is mapped on the first time unit may include a first symbol in the first time unit.
  • uplink data is mapped from other symbols in the first time unit, and returns to the first symbol after the last symbol.
  • the first time unit is a time slot with 14 symbols as an example. , Symbols are numbered from 0, that is, a slot includes symbol 0, symbol 1, ..., symbol 13, if the first symbol is symbol 0, and the symbol occupied by the first demodulated signal is symbol 1, the second solution
  • the symbols occupied by the modulation signal can include symbol 2.
  • the uplink data can be mapped from symbol 3, and then returned to symbol 0 after the symbol 13 to end the mapping, as shown in the figure.
  • the mapping method is more complicated, but it can ensure the transmission of system information of uplink data.
  • the terminal device sends uplink data obtained by matching the first demodulated signal and the first transmission block rate to the network device on the first time unit on the unlicensed spectrum.
  • the first demodulated signal is For demodulating the uplink data, the symbols occupied by the first demodulated signal do not include a first symbol, where the first symbol includes a first symbol in the first time unit and the first time At least one of the last symbols in the unit can avoid that the demodulated signal used to demodulate uplink data does not occupy part of the resources that the terminal device may not be able to transmit in the time domain resources pre-configured by the network device, thereby realizing the use of Correct transmission of demodulated signals for demodulating uplink data on the unlicensed spectrum.
  • FIG. 3 is a schematic flowchart of another uplink signal transmission method 300 according to an embodiment of the present application, as shown in FIG. 3.
  • the network device receives uplink data obtained by matching the first demodulated signal sent by the terminal device on the first time unit on the unlicensed spectrum with the first transmission block rate, where the first demodulated signal is used for demodulation.
  • the symbol occupied by the first demodulated signal does not include the first symbol.
  • the first time unit may be a time slot, for example, the first time unit may include 14 symbols; or may be a sub-timeslot (where a sub-timeslot includes N symbols, N Is an integer greater than or equal to 2 and less than 14), for example, the first time unit may include 7 symbols; or may be a set of multiple time slots, for example, the first time unit may include a set of 12 time slots; or It may also be a set of multiple subslots.
  • the first time unit may include a set of 2 subslots, where one subslot includes 4 symbols, the other subslot includes 7 symbols, and so on. This embodiment does not specifically limit this.
  • the first symbol may include, but is not limited to, at least one of a first symbol in the first time unit and a last symbol in the first time unit. This embodiment does not specifically address this. limited.
  • a time slot includes symbol 0, symbol 1, ..., symbol 13, and the first symbol may include symbol 0. And at least one of the symbols 13.
  • the network device may further receive a second demodulated signal sent by the terminal device on the first time unit, where the second demodulated signal is The demodulated signal is used to demodulate the uplink data, and the symbols occupied by the second demodulated signal do not include the first symbol.
  • the first demodulated signal may include a demodulation reference signal (Demodulation Reference Signal, DMRS), and the second demodulated signal may include uplink control information (Uplink Control Information, UCI), or
  • DMRS demodulation Reference Signal
  • UCI Uplink Control Information
  • the first demodulated signal may include UCI
  • the second demodulated signal may include DMRS, which is not particularly limited in this embodiment.
  • the symbols occupied by the second demodulated signal may further not include the symbols occupied by the first demodulated signal.
  • the demodulated signal occupies a symbol, which may mean that the demodulated signal is transmitted through all or part of the resources on the symbol, which is not particularly limited in this embodiment.
  • the symbols occupied by the second demodulated signal may further include the symbols occupied by the first demodulated signal, that is, the first demodulated signal is transmitted through some resources on the symbol.
  • the second demodulated signal is also transmitted through some resources on the symbol.
  • the symbol occupied by the second demodulated signal may be specifically determined according to the symbol occupied by the first demodulated signal.
  • the symbol occupied by the second demodulated signal may include a first symbol following the symbol occupied by the first demodulated signal.
  • the first time unit as a time slot including 14 symbols, for example, symbols are numbered from 0, that is, a time slot includes symbol 0, symbol 1, ..., symbol 13, if the first symbol is symbol 0,
  • the symbol occupied by the first demodulated signal is symbol 1
  • the symbol occupied by the second demodulated signal may include symbol 2, as shown in FIG. 2B.
  • the symbol occupied by the second demodulated signal may include a last symbol before the symbol occupied by the first demodulated signal.
  • symbols are numbered from 0, that is, a time slot includes symbol 0, symbol 1, ..., symbol 13, if the first symbol is symbol 0,
  • the symbol occupied by the first demodulated signal is symbol 3
  • the symbol occupied by the second demodulated signal may include symbol 2, as shown in FIG. 2C.
  • the second demodulated signal occupies multiple symbols, and the first symbol among the symbols occupied by the second demodulated signal is the first symbol following the symbol occupied by the first demodulated signal .
  • the first time unit as a time slot including 14 symbols, for example, symbols are numbered from 0, that is, a time slot includes symbol 0, symbol 1, ..., symbol 13, if the first symbol is symbol 0,
  • the symbol occupied by the first demodulated signal is symbol 1, and the first symbol among the symbols occupied by the second demodulated signal may be symbol 2.
  • the first demodulated signal occupies multiple symbols, and the symbols occupied by the second demodulated signal include a first symbol following the first symbol occupied by the first demodulated signal.
  • the first time unit as a time slot including 14 symbols, for example, symbols are numbered from 0, that is, a time slot includes symbol 0, symbol 1, ..., symbol 13, if the first symbol is symbol 0,
  • the symbols occupied by the first demodulated signal are symbol 1 and symbol 8, and the symbols occupied by the second demodulated signal may include symbol 2.
  • the terminal device in order to leave an LBT detection gap so that the terminal device and other communication devices perform multiplexed transmission on the unlicensed spectrum, the terminal device cannot be on some of the time domain resources pre-configured by the network device.
  • the first symbol of a time slot is symbol 0, and the last symbol is symbol 13, such as special position symbols.
  • the mapping configuration of the second demodulated signal and the uplink data can avoid that the demodulated signal used to demodulate the uplink data does not occupy part of the resources that the terminal device may not be able to transmit in the time domain resources pre-configured by the network device, thereby achieving Correct transmission of demodulated signals for demodulating uplink data on the unlicensed spectrum.
  • the resources occupied by uplink data include a slot that is not occupied by DMRS and Other resources occupied by UCI.
  • the mapping of the physical uplink shared channel (PUSCH) of Configure, Grant, and Uplink for three consecutive time slot transmissions, and each slot transmits a complete time slot can be mapped as shown in FIG. 2D.
  • PUSCH physical uplink shared channel
  • the PUSCH transmission of Configure Grant Grant Uplink can be performed for 3 consecutive time slots, and some symbols may not be transmitted in the 3 consecutive time slots (for example, the first time slot does not transmit the symbol 0, and the second time
  • the mapping manner of the slot non-transmission symbol 0 and symbol 13) can be shown in FIG. 2E, and X in the figure indicates no transmission.
  • a symbol occupied by the first demodulated signal may be prescribed by a standard specification.
  • the symbol occupied by the first demodulated signal may specifically include a second symbol in the first time unit.
  • the symbol occupied by the first demodulated signal may be sent by the network device to the terminal device through instruction information.
  • the indication information may be physical layer signaling, or may also be Media Access Control (MAC) Control Element (CE) signaling, or may also be radio resource control radio resource control (Radio Resource Control (RRC) signaling, which is not particularly limited in this embodiment.
  • MAC Media Access Control
  • CE Control Element
  • RRC Radio Resource Control
  • the indication information may be displayed or implicitly indicated by physical layer signaling.
  • the network device indicates the symbol occupied by the first demodulated signal (or the first symbol occupied by the first demodulated signal) by the terminal device through downlink control information (DCI), or Indicating the last symbol occupied by the first demodulated signal).
  • DCI downlink control information
  • the DCI further includes information that the network device indicates that the terminal device can use or prohibit the use of the first time unit.
  • DCI format 1 corresponds to a symbol occupied by a first demodulated signal (for example, first demodulated signal takes symbol 3), and DCI format 2 corresponds to another symbol occupied by a first demodulated signal (for example, first The demodulated signal occupies symbol 5).
  • DCI format 1 corresponds to a symbol occupied by a first demodulated signal
  • DCI format 2 corresponds to another symbol occupied by a first demodulated signal (for example, first The demodulated signal occupies symbol 5).
  • the terminal device receives the DCI format 1
  • DCI format 2 it can be determined that the symbols occupied by the first demodulated signal include symbol 5.
  • the indication information may also be a combination of RRC signaling and physical layer signaling.
  • the network device configures at least two configurations of symbols occupied by the first demodulated signal, and instructs the terminal device which of the at least two configurations should be used in one uplink transmission through DCI.
  • the UCI may include control information for demodulating the uplink data. Therefore, the UCI may also be considered as a demodulation signal necessary for demodulating the uplink data.
  • the UCI may include, but is not limited to, at least one of the following information:
  • Hybrid Automatic Repeat Request (HARQ) identification corresponding to the first transmission block identification of the terminal device, start symbol of the first time unit, end symbol of the first time unit And a Code Block Group (CBG) indication included in the first transmission block.
  • HARQ Hybrid Automatic Repeat Request
  • CBG Code Block Group
  • the starting position where the uplink data is mapped on the first time unit may include a first symbol in the first time unit.
  • the first time unit is a time slot with 14 symbols as For example, symbols are numbered from 0, that is, a slot includes symbol 0, symbol 1, ..., symbol 13, if the first symbol is symbol 0, and the symbol occupied by the first demodulated signal is symbol 1, and the second The symbols occupied by the demodulated signal can include symbol 2.
  • symbols 0, 3 to 13 the uplink data can be mapped from symbol 0 to the end of symbol 13, as shown in Figure 2F.
  • the mapping is simple.
  • the starting position where the uplink data is mapped on the first time unit may include a symbol other than the first symbol in the first time unit, where the first time unit The first symbol does not map upstream data.
  • the first data unit includes 14 symbols.
  • symbols are numbered starting from 0, that is, a slot includes symbols 0, 1, 1, ..., symbol 13, if the first symbol is symbol 0 and the symbol occupied by the first demodulated signal is a symbol 1.
  • the symbols occupied by the second demodulated signal may include symbol 2.
  • the uplink data can be mapped from symbol 3 to the end of symbol 13, where the symbol 0 does not map uplink data, as shown in Figure 2G.
  • the end position where the uplink data is mapped on the first time unit may include a first symbol in the first time unit.
  • uplink data is mapped from other symbols in the first time unit, and returns to the first symbol after the last symbol.
  • the first time unit is a time slot with 14 symbols as an example. , Symbols are numbered from 0, that is, a slot includes symbol 0, symbol 1, ..., symbol 13, if the first symbol is symbol 0, and the symbol occupied by the first demodulated signal is symbol 1, the second solution
  • the symbols occupied by the modulation signal can include symbol 2.
  • the uplink data can be mapped from symbol 3, and then returned to symbol 0 after the symbol 13 to end the mapping, as shown in the figure.
  • the mapping method is more complicated, but it can ensure the transmission of system information of uplink data.
  • uplink data obtained by matching a first demodulated signal sent by a terminal device on a first time unit on an unlicensed spectrum with a first transmission block rate is received through a network device, where the first demodulated signal And for demodulating the uplink data, the symbols occupied by the first demodulated signal do not include a first symbol, wherein the first symbol includes a first symbol in the first time unit and the first symbol At least one of the last symbols in the time unit can avoid that the demodulated signal used to demodulate uplink data does not occupy part of the resources that the terminal device may not be able to transmit in the time domain resources pre-configured by the network device, thereby achieving Correct transmission of demodulated signals used to demodulate uplink data on the unlicensed spectrum.
  • FIG. 4 is a schematic block diagram of a terminal device 400 according to an embodiment of the present application, as shown in FIG. 4. This embodiment provides a terminal device 400 for executing the method in the embodiment corresponding to FIG. 2A.
  • the terminal device 400 includes a functional module for executing a method in the embodiment corresponding to FIG. 2A.
  • the terminal device 400 may include a sending unit 410, configured to send uplink data obtained by matching a first demodulated signal and a first transmission block rate to a network device on a first time unit on an unlicensed spectrum, where the first solution
  • the modulation signal is used to demodulate the uplink data, and the symbols occupied by the first demodulated signal do not include the first symbol;
  • the first symbol may include, but is not limited to, at least one of a first symbol in the first time unit and a last symbol in the first time unit. This embodiment does not specifically address this. limited.
  • the sending unit 410 may be further configured to send a second demodulation signal to the network device on the first time unit, where: The second demodulated signal is used to demodulate the uplink data, and the symbols occupied by the second demodulated signal do not include the first symbol.
  • the symbols occupied by the second demodulated signal may further not include the symbols occupied by the first demodulated signal.
  • the symbols occupied by the second demodulated signal may further include the symbols occupied by the first demodulated signal, that is, the first demodulated signal is transmitted through some resources on the symbol.
  • the second demodulated signal is also transmitted through some resources on the symbol.
  • the symbol occupied by the second demodulated signal may be specifically determined according to the symbol occupied by the first demodulated signal.
  • a symbol occupied by the first demodulated signal may be prescribed by a standard specification.
  • the symbol occupied by the first demodulated signal may specifically include a second symbol in the first time unit.
  • the symbol occupied by the first demodulated signal may be sent by the network device to the terminal device through instruction information.
  • the indication information may be physical layer signaling, or may also be Media Access Control (MAC) Control Element (CE) signaling, or may also be radio resource control radio resource control (Radio Resource Control (RRC) signaling, which is not particularly limited in this embodiment.
  • MAC Media Access Control
  • CE Control Element
  • RRC Radio Resource Control
  • the indication information may also be a combination of RRC signaling and physical layer signaling.
  • the network device configures at least two configurations of symbols occupied by the first demodulated signal, and instructs the terminal device which of the at least two configurations should be used in one uplink transmission through DCI.
  • the first demodulated signal may include a demodulation reference signal (Demodulation Reference Signal, DMRS), and the second demodulated signal may include uplink control information (Uplink Control Information, UCI), Or the first demodulated signal may include UCI, and the second demodulated signal may include DMRS, which is not particularly limited in this embodiment.
  • DMRS Demodulation Reference Signal
  • UCI Uplink Control Information
  • the UCI may include control information for demodulating the uplink data. Therefore, the UCI may also be considered as a demodulation signal necessary for demodulating the uplink data.
  • the UCI may include, but is not limited to, at least one of the following information:
  • Hybrid Automatic Repeat Request (HARQ) identification corresponding to the first transmission block identification of the terminal device, start symbol of the first time unit, end symbol of the first time unit And a Code Block Group (CBG) indication included in the first transmission block.
  • HARQ Hybrid Automatic Repeat Request
  • CBG Code Block Group
  • the starting position where the uplink data is mapped on the first time unit may include a first symbol in the first time unit.
  • the first time unit is a time slot with 14 symbols as For example, symbols are numbered from 0, that is, a slot includes symbol 0, symbol 1, ..., symbol 13, if the first symbol is symbol 0, and the symbol occupied by the first demodulated signal is symbol 1, and the second The symbols occupied by the demodulated signal may include symbol 2. Then, on symbols 0, 3 to 13, the uplink data can be mapped from symbol 0 to the end of symbol 13.
  • the mapping method is simple.
  • the starting position where the uplink data is mapped on the first time unit may include a symbol other than the first symbol in the first time unit, where the first time unit The first symbol does not map upstream data.
  • the first data unit includes 14 symbols.
  • symbols are numbered starting from 0, that is, a slot includes symbols 0, 1, 1, ..., symbol 13, if the first symbol is symbol 0 and the symbol occupied by the first demodulated signal is a symbol 1.
  • the symbols occupied by the second demodulated signal may include symbol 2. Then, on symbols 0, 3 to 13, the uplink data can be mapped from symbol 3 to the end of symbol 13, where the symbol 0 does not map uplink data.
  • the end position where the uplink data is mapped on the first time unit may include a first symbol in the first time unit.
  • uplink data is mapped from other symbols in the first time unit, and returns to the first symbol after the last symbol.
  • the first time unit is a time slot with 14 symbols as an example. , Symbols are numbered from 0, that is, a slot includes symbol 0, symbol 1, ..., symbol 13, if the first symbol is symbol 0, and the symbol occupied by the first demodulated signal is symbol 1, the second solution
  • the symbols occupied by the modulation signal can include symbol 2.
  • the uplink data can be mapped from symbol 3, and then returned to symbol 0 after symbol 13, and the mapping is completed.
  • the method is more complicated, but it can ensure the transmission of system information of uplink data.
  • FIG. 5 is a schematic block diagram of a network device 500 according to an embodiment of the present application, as shown in FIG. 5. This embodiment provides a network device for performing the method in the embodiment corresponding to FIG. 3.
  • the network device 500 includes functional modules for executing the method in the embodiment corresponding to FIG. 3.
  • the network device 500 may include a receiving unit 510, configured to receive uplink data obtained by matching a first demodulated signal sent by a terminal device on a first time unit on an unlicensed spectrum with a first transmission block rate, where the first The demodulated signal is used to demodulate the uplink data, and the symbols occupied by the first demodulated signal do not include the first symbol;
  • the first symbol may include, but is not limited to, at least one of a first symbol in the first time unit and a last symbol in the first time unit. This embodiment does not specifically address this. limited.
  • the receiving unit 510 may be further configured to receive a second demodulated signal sent by the terminal device on the first time unit, where: The second demodulated signal is used to demodulate the uplink data, and the symbols occupied by the second demodulated signal do not include the first symbol.
  • the symbols occupied by the second demodulated signal may further not include the symbols occupied by the first demodulated signal.
  • the symbols occupied by the second demodulated signal may further include the symbols occupied by the first demodulated signal, that is, the first demodulated signal is transmitted through some resources on the symbol.
  • the second demodulated signal is also transmitted through some resources on the symbol.
  • the symbol occupied by the second demodulated signal may be specifically determined according to the symbol occupied by the first demodulated signal.
  • a symbol occupied by the first demodulated signal may be prescribed by a standard specification.
  • the symbol occupied by the first demodulated signal may specifically include a second symbol in the first time unit.
  • the symbol occupied by the first demodulated signal may be sent by the network device to the terminal device through instruction information.
  • the indication information may be physical layer signaling, or may also be Media Access Control (MAC) Control Element (CE) signaling, or may also be radio resource control radio resource control (Radio Resource Control (RRC) signaling, which is not particularly limited in this embodiment.
  • MAC Media Access Control
  • CE Control Element
  • RRC Radio Resource Control
  • the indication information may also be a combination of RRC signaling and physical layer signaling.
  • the network device configures at least two configurations of symbols occupied by the first demodulated signal, and instructs the terminal device which of the at least two configurations should be used in one uplink transmission through DCI.
  • the first demodulated signal may include a demodulation reference signal (Demodulation Reference Signal, DMRS), and the second demodulated signal may include uplink control information (Uplink Control Information, UCI), Or the first demodulated signal may include UCI, and the second demodulated signal may include DMRS, which is not particularly limited in this embodiment.
  • DMRS Demodulation Reference Signal
  • UCI Uplink Control Information
  • the UCI may include control information for demodulating the uplink data. Therefore, the UCI may also be considered as a demodulation signal necessary for demodulating the uplink data.
  • the UCI may include, but is not limited to, at least one of the following information:
  • Hybrid Automatic Repeat Request (HARQ) identification corresponding to the first transmission block identification of the terminal device, start symbol of the first time unit, end symbol of the first time unit And a Code Block Group (CBG) indication included in the first transmission block.
  • HARQ Hybrid Automatic Repeat Request
  • CBG Code Block Group
  • the starting position where the uplink data is mapped on the first time unit may include a first symbol in the first time unit.
  • the first time unit is a time slot with 14 symbols as For example, symbols are numbered from 0, that is, a slot includes symbol 0, symbol 1, ..., symbol 13, if the first symbol is symbol 0, and the symbol occupied by the first demodulated signal is symbol 1, and the second The symbols occupied by the demodulated signal may include symbol 2. Then, on symbols 0, 3 to 13, the uplink data can be mapped from symbol 0 to the end of symbol 13.
  • the mapping method is simple.
  • the starting position where the uplink data is mapped on the first time unit may include a symbol other than the first symbol in the first time unit, where the first time unit The first symbol does not map upstream data.
  • the first data unit includes 14 symbols.
  • symbols are numbered starting from 0, that is, a slot includes symbols 0, 1, 1, ..., symbol 13, if the first symbol is symbol 0 and the symbol occupied by the first demodulated signal is a symbol 1.
  • the symbols occupied by the second demodulated signal may include symbol 2. Then, on symbols 0, 3 to 13, the uplink data can be mapped from symbol 3 to the end of symbol 13, where the symbol 0 does not map uplink data.
  • the end position where the uplink data is mapped on the first time unit may include a first symbol in the first time unit.
  • uplink data is mapped from other symbols in the first time unit, and returns to the first symbol after the last symbol.
  • the first time unit is a time slot with 14 symbols as an example. , Symbols are numbered from 0, that is, a slot includes symbol 0, symbol 1, ..., symbol 13, if the first symbol is symbol 0, and the symbol occupied by the first demodulated signal is symbol 1, the second solution
  • the symbols occupied by the modulation signal can include symbol 2.
  • the uplink data can be mapped from symbol 3, and then returned to symbol 0 after symbol 13, and the mapping is completed.
  • the method is more complicated, but it can ensure the transmission of system information of uplink data.
  • FIG. 6 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 shown in FIG. 6 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the processor 610 may control the transceiver 630 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a network device according to the embodiment of the present application, and the communication device 600 may implement a corresponding process implemented by the network device in each method of the embodiment of the present application. For brevity, details are not described herein again. .
  • the communication device 600 may specifically be a terminal device in the embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the terminal device in each method in the embodiments of the present application. For brevity, details are not described herein again. .
  • FIG. 7 is a schematic structural diagram of a chip 700 according to an embodiment of the present application.
  • the chip 700 shown in FIG. 7 includes a processor 710, and the processor 710 may call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 may control the input interface 730 to communicate with other devices or chips. Specifically, the processor 710 may obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 may control the output interface 740 to communicate with other devices or chips. Specifically, the processor 710 may output information or data to the other devices or chips.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-level chip, a system chip, a chip system or a system-on-chip.
  • FIG. 8 is a schematic block diagram of a communication system 800 according to an embodiment of the present application. As shown in FIG. 8, the communication system 800 includes a terminal device 810 and a network device 820.
  • the terminal device 810 may be used to implement the corresponding functions implemented by the terminal device in the foregoing method
  • the network device 820 may be used to implement the corresponding functions implemented by the network device in the foregoing method.
  • details are not described herein again. .
  • the processor in the embodiment of the present application may be an integrated circuit chip and has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA), or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • a software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchronous DRAM Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Synchrobus RAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (SDRAM), double data rate Synchronous dynamic random access memory (Double SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM), direct memory bus random access memory (Direct RAMbus RAM, DR RAM) and so on. That is, the memories in the embodiments of the present application are intended to include, but not limited to, these and any other suitable types of memories.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. For simplicity, here No longer.
  • the computer-readable storage medium may be applied to the terminal device in the embodiments of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the terminal device in each method in the embodiments of the present application. For simplicity, here No longer.
  • An embodiment of the present application further provides a computer program product, including computer program instructions.
  • the computer program product can be applied to a network device in the embodiment of the present application, and the computer program instruction causes a computer to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. More details.
  • the computer program product may be applied to a terminal device in the embodiment of the present application, and the computer program instruction causes a computer to execute a corresponding process implemented by the terminal device in each method in the embodiment of the present application. More details.
  • the embodiment of the present application also provides a computer program.
  • the computer program may be applied to a network device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer is caused to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. , Will not repeat them here.
  • the computer program may be applied to the terminal device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer is caused to execute the corresponding processes implemented by the terminal device in each method in the embodiment of the present application. , Will not repeat them here.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the foregoing storage media include: U disks, mobile hard disks, read-only memories (ROMs), random access memories (RAMs), magnetic disks or compact discs and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种上行信号的传输方法及终端设备、网络设备,可以实现用于解调上行信道的上行解调信号在免授权频谱上的正确传输。该方法包括:终端设备在免授权频谱上的第一时间单元上发送第一解调信号和第一传输块速率匹配得到的上行数据,其中,所述第一解调信号用于解调所述上行数据,所述第一解调信号占用的符号不包括第一符号;其中,所述第一符号包括所述第一时间单元内的第一个符号和所述第一时间单元内的最后一个符号中的至少一个符号。

Description

一种上行信号的传输方法及终端设备、网络设备 技术领域
本申请实施例涉及通信技术领域,具体涉及一种上行信号的传输方法及终端设备、网络设备。
背景技术
在新无线(New Radio,NR)系统例如5G应用中,可以采用免授权(unlicensed)频谱,即在免授权频谱的信道上使用NR技术进行通信。为了让使用免授权频谱进行无线通信的各个无线通信系统在该频谱上能够友好共存,一些国家或地区规定了使用免授权频谱必须满足的法规要求。例如,在欧洲地区,通信设备遵循“先听后说”(listen-before-talk,LBT)原则,即通信设备在免授权频谱的信道上进行信号发送之前,需要先在免授权频谱的信道上进行信道侦听,只有当信道侦听结果为信道空闲时,该通信设备才能进行信号发送;如果信道侦听结果为信道繁忙,该通信设备则不能进行信号发送。
然而,在NR-U(New Radio-Unlicensed)系统中,当终端设备进行配置上行授权(Configure Grant Uplink)的数据传输时,终端设备用于进行上行传输的时域资源是网络设备提前配置的,其中,终端设备在该提前配置的时域资源上可以传输上行数据和用于解调该上行数据的解调信号。但在一些情况下,例如,为了留出LBT的检测间隙以便该终端设备与其他通信设备在免授权频谱上进行复用传输,该终端设备不能在网络设备预先配置的时域资源中的部分资源上进行传输。
因此,亟需提供一种免授权频谱上的上行信号传输方法,用以实现用于解调上行数据的解调信号在免授权频谱上的正确传输。
发明内容
本申请实施例提供一种上行信号的传输方法及终端设备、网络设备,用以实现用于解调上行数据的解调信号在免授权频谱上的正确传输。
第一方面,提供了一种上行信号的传输方法,包括:
终端设备在免授权频谱上的第一时间单元上向网络设备发送第一解调信号和第一传输块速率匹配得到的上行数据,其中,所述第一解调信号用于解调所述上行数据,所述第一解调信号占用的符号不包括第一符号;
其中,所述第一符号包括所述第一时间单元内的第一个符号和所述第一时间单元内的最后一个符号中的至少一个符号。
第二方面,提供了另一种上行信号的传输方法,包括:
网络设备接收终端设备在免授权频谱上的第一时间单元上发送的第一解调信号和第一传输块速率匹配得到的上行数据,其中,所述第一解调信号用于解调所述上行数据,所述第一解调信号占用的符号不包括第一符号;
其中,所述第一符号包括所述第一时间单元内的第一个符号和所述第一时间单元内的最后一个符号中的至少一个符号。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面至上述第二方面中的任一方面或其各实现方式中的方法。
第六方面,提供了一种芯片,用于实现上述第一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至上述第二方面中的任一方面或其各实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至上述第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至上述第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至上述第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,通过终端设备在免授权频谱上的第一时间单元上向网络设备发送第一解调信号和第一传输块速率匹配得到的上行数据,其中,所述第一解调信号用于解调所述上行数据,所述第一解调信号占用的符号不包括第一符号,其中,所述第一符号包括所述第一时间单元内的第一个符号和所述第一时间单元内的最后一个符号中的至少一个符号,能够避免用于解调上行数据的解调信号不占用终端设备在网络设备预先配置的时域资源中可能不能进行传输的部分资源,从而实现了用于解调上行数据的解调信号在免授权频谱上的正确传输。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2A是本申请实施例提供的一种上行信号的传输方法的示意性图。
图2B是图2A对应的实施例中的第一解调信号、第二解调信号和上行数据的映射示意性图;
图2C是图2A对应的实施例中的第一解调信号、第二解调信号和上行数据的映射示意性图;
图2D是图2A对应的实施例中的第一解调信号、第二解调信号和上行数据的映射示意性图;
图2E是图2A对应的实施例中的第一解调信号、第二解调信号和上行数据的映射示意性图;
图2F是图2A对应的实施例中的第一解调信号、第二解调信号和上行数据的映射示意性图;
图2G是图2A对应的实施例中的第一解调信号、第二解调信号和上行数据的映射示意性图;
图2H是图2A对应的实施例中的第一解调信号、第二解调信号和上行数据的映射示意性图;
图3是本申请实施例提供的另一种上行信号的传输方法的示意性图。
图4是本申请实施例提供的一种终端设备的示意性框图。
图5是本申请实施例提供的一种网络设备的示意性框图。
图6是本申请实施例提供的一种通信设备的示意性框图。
图7是本申请实施例提供的一种芯片的示意性框图。
图8是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
本申请实施例的技术方案可以应用于授权频谱,也可以应用于免授权频谱,本申请实施例对此不进行特别限定。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联 网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图2A为本申请实施例提供的一种上行信号的传输方法200的示意性流程图,如图2A所示。
210、终端设备在免授权频谱上的第一时间单元上向网络设备发送第一解调信号和第一传输块速率匹配得到的上行数据,其中,所述第一解调信号用于解调所述上行数据,所述第一解调信号占用的符号不包括第一符号。
可以理解的是,所述第一时间单元,可以为一个时隙,例如,第一时间单元可以包括14个符号;或者还可以为子时隙(其中,一个子时隙包括N个符号,N为大于等于2且小于14的整数),例如,第一时间单元可以包括7个符号;或者还可以为多个时隙的集合,例如,第一时间单元可以包括12个时隙的集合;或者还可以为多个子时隙的集合,例如,第一时间单元可以包括2个子时隙的集合,其中一个子时隙包括4个符号,另一个子时隙包括7个符号,等等。本实施例对此不进行特别限定。
其中,所述第一符号可以包括但不限于所述第一时间单元内的第一个符号和所述第一时间单元内的最后一个符号中的至少一个符号,本实施例对此不进行特别限定。
以第一时间单元为一个包括14个符号的时隙为例,符号从0开始编号,即一个时隙包括符号0、符号1,……,符号13,所述第一符号则可以包括符号0和符号13中的至少一个符号。
可选地,在本实施例的一个可能的实现方式中,所述终端设备还可以进一步在所述第一时间单元上向所述网络设备还发送第二解调信号,其中,所述第二解调信号用于解调所述上行数据,所述第二解调信号占用的符号不包括所述第一符号。
在一个具体的实现过程中,所述第一解调信号可以包括解调参考信号(Demodulation Reference Signal,DMRS),所述第二解调信号可以包括上行控制信息(Uplink Control Information,UCI),或者所述第一解调信号可以包括UCI,所述第二解调信号可以包括DMRS,本实施例对此不进行特别限定。
在另一个具体的实现过程中,所述第二解调信号占用的符号还可以进一步不包括所述第一解调信号占用的符号。
应理解,在本申请实施例中,解调信号占用某符号,可以指该解调信号通过该符号上的全部资源或部分资源进行传输,本实施例对此不进行特别限定。
在另一个具体的实现过程中,所述第二解调信号占用的符号还可以进一步包括所述第一解调信号占用的符号,即,第一解调信号通过该符号上的部分资源进行传输,第二解调信号也通过该符号上的部分资源进行传输。
在另一个具体的实现过程中,所述第二解调信号占用的符号具体可以是根据所述第一解调信号占用的符号确定的。
例如,所述第二解调信号占用的符号可以包括所述第一解调信号占用的符号后面的第一个符号。以第一时间单元为一个包括14个符号的时隙为例,符号从0开始编号,即一个时隙包括符号0、符号1,……,符号13,若所述第一符号为符号0,且第一解调信号占用的符号为符号1,第二解调信号占用的符号则可以包括符号2,如图2B所示。
或者,再例如,所述第二解调信号占用的符号可以包括所述第一解调信号占用的符号前面的最后一个符号。以第一时间单元为一个包括14个符号的时隙为例,符号从0开始编号,即一个时隙包括符号0、符号1,……,符号13,若所述第一符号为符号0,且第一解调信号占用的符号为符号3,第二解调信号占用的符号则可以包括符号2,如图2C所示。
或者,再例如,所述第二解调信号占用多个符号,所述第二解调信号占用的符号中的第一个符号为所述第一解调信号占用的符号后面的第一个符号。以第一时间单元为一个包括14个符号的时隙为例,符号从0开始编号,即一个时隙包括符号0、符号1,……,符号13,若所述第一符号为符号0,且第一解调信号占用的符号为符号1,第二解调信号占用的符号中的第一个符号则可以为符号2。
或者,再例如,所述第一解调信号占用多个符号,所述第二解调信号占用的符号包括所述第一解调信号占用的第一个符号后面的第一个符号。以第一时间单元为一个包括14个符号的时隙为例,符号从0开始编号,即一个时隙包括符号0、符号1,……,符号13,若所述第一符号为符号0,且第一解调信号占用的符号为符号1和符号8,第二解调信号占用的符号则可以包括符号2。
在一些情况下,例如,为了留出LBT的检测间隙以便该终端设备与其他通信设备在免授权频谱上进行复用传输,该终端设备不能在网络设备预先配置的时域资源中的部分资源上进行传输,例如,一个 时隙的第一个符号即符号0、最后一个符号即符号13等特殊位置符号,因此,在免授权频谱上,采用本实施例中所提供的第一解调信号、第二解调信号和上行数据的映射配置,能够避免用于解调上行数据的解调信号不占用终端设备在网络设备预先配置的时域资源中可能不能进行传输的部分资源,从而实现了用于解调上行数据的解调信号在免授权频谱上的正确传输。
以第一解调信号为DMRS,第二解调信号为UCI为例,假设DMRS占用的符号为符号1,UCI占用的符号为符号2,上行数据占用的资源包括一个时隙中没有被DMRS和UCI占用的其他资源。
可以根据上述原则,连续3个时隙传输进行Configure Grant Uplink的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输且每个时隙都传输一个完整时隙的映射方式可以如图2D所示。
还可以根据上述原则,连续3个时隙传输进行Configure Grant Uplink的PUSCH传输且该连续3个时隙中可能有部分符号不传输(例如,第一个时隙不传输符号0、第二个时隙不传输符号0和符号13)的映射方式可以如图2E所示,图中的X表示不传输。
如图2D和2E所示,在上述两种上行传输的过程中,DMRS和UCI的位置都位于不能被丢弃的符号上,从而保证了用于解调上行数据的解调信号在免授权频谱上的正确传输。
在另一个具体的实现过程中,所述第一解调信号占用的符号可以是标准规范规定的。
例如,所述第一解调信号占用的符号具体可以包括所述第一时间单元内的第二个符号。
在另一个具体的实现过程中,所述第一解调信号占用的符号可以是所述网络设备通过指示信息发送给所述终端设备的。
其中,所述指示信息可以为物理层信令,或者还可以为媒体访问控制(Media Access Control,MAC)控制元素(Control Element,CE)信令,或者还可以为无线资源控制无线资源控制(Radio Resource Control,RRC)信令,本实施例对此不进行特别限定。
当指示信息为物理层信令时,所述指示信息可以通过物理层信令显示指示或隐式指示。
例如,所述网络设备通过下行控制信息(Downlink control information,DCI)指示所述终端设备所述第一解调信号占用的符号(或指示所述第一解调信号占用的第一个符号,或指示所述第一解调信号占用的最后一个符号)。其中,所述DCI还包括所述网络设备指示所述终端设备可以使用或禁止使用所述第一时间单元的信息。
或者,再例如,DCI格式1对应一种第一解调信号占用的符号(例如第一解调信号占用符号3),DCI格式2对应另一种第一解调信号占用的符号(例如第一解调信号占用符号5)。当终端设备收到DCI格式1时,可以确定第一解调信号占用的符号包括符号3;当终端设备收到DCI格式2时,可以确定第一解调信号占用的符号包括符号5。
可以理解的是,所述指示信息还可以是RRC信令和物理层信令的结合。例如,网络设备配置至少两种第一解调信号占用的符号的配置,并通过DCI指示终端设备在一次上行传输中应该使用该至少两种配置中的哪一种。
可选地,在本申请实施例中,UCI可以包括用于解调所述上行数据的控制信息,因此,该UCI也可以认为是解调所述上行数据必需的解调信号。
其中,所述UCI可以包括但不限于以下信息中的至少一种:
所述第一传输块对应的混合自动请求重传(Hybrid Automatic Repeat reQuest,HARQ)标识、所述终端设备的标识、所述第一时间单元的起始符号、所述第一时间单元的结束符号以及所述第一传输块包括的码块组(Code Block Group,CBG)指示。
例如,所述上行数据在所述第一时间单元上映射的起始位置可以包括所述第一时间单元内的第一个符号。这种方式,上行数据从所述第一时间单元内的第一个符号开始映射,到第一时间单元内的最后一个符号结束映射,以第一时间单元为一个包括14个符号的时隙为例,符号从0开始编号,即一个时隙包括符号0、符号1,……,符号13,若所述第一符号为符号0,且第一解调信号占用的符号为符号1,第二解调信号占用的符号则可以包括符号2,那么,在符号0、符号3~符号13这些符号上,上行数据则可以从符号0开始映射,到符号13结束映射,如图2F所示,其映射方式简单。
或者,再例如,所述上行数据在所述第一时间单元上映射的起始位置可以包括所述第一时间单元内除第一个符号外的一个符号,其中,所述第一时间单元内的第一个符号不映射上行数据。这种方式,上行数据从所述第一时间单元内除第一个符号外的一个符号开始映射,到第一时间单元内的最后一个符号结束映射,以第一时间单元为一个包括14个符号的时隙为例,符号从0开始编号,即一个时隙包括符号0、符号1,……,符号13,若所述第一符号为符号0,且第一解调信号占用的符号为符号1,第二解调信号占用的符号则可以包括符号2,那么,在符号0、符号3~符号13这些符号上,上行数据则可以从符号3开始映射,到符号13结束映射,其中,符号0不映射上行数据,如图2G所示。
或者,再例如,所述上行数据在所述第一时间单元上映射的结束位置可以包括所述第一时间单元内的第一个符号。这种方式,上行数据从所述第一时间单元内其他符号开始映射,到最后一个符号之后再返回到第一个符号结束映射,以第一时间单元为一个包括14个符号的时隙为例,符号从0开始编号,即一个时隙包括符号0、符号1,……,符号13,若所述第一符号为符号0,且第一解调信号占用的符号为符号1,第二解调信号占用的符号则可以包括符号2,那么,在符号0、符号3~符号13这些符号上,上行数据则可以从符号3开始映射,到符号13之后再返回到符号0结束映射,如图2H所示,其映射方式较为复杂,但可以保证上行数据的系统信息的传输。
本实施例中,通过终端设备在免授权频谱上的第一时间单元上向网络设备发送第一解调信号和第一传输块速率匹配得到的上行数据,其中,所述第一解调信号用于解调所述上行数据,所述第一解调信号占用的符号不包括第一符号,其中,所述第一符号包括所述第一时间单元内的第一个符号和所述第一时间单元内的最后一个符号中的至少一个符号,能够避免用于解调上行数据的解调信号不占用终端设备在网络设备预先配置的时域资源中可能不能进行传输的部分资源,从而实现了用于解调上行数据的解调信号在免授权频谱上的正确传输。
图3为本申请实施例提供的另一种上行信号的传输方法300的示意性流程图,如图3所示。
310、网络设备接收终端设备在免授权频谱上的第一时间单元上发送的第一解调信号和第一传输块速率匹配得到的上行数据,其中,所述第一解调信号用于解调所述上行数据,所述第一解调信号占用的符号不包括第一符号。
可以理解的是,所述第一时间单元,可以为一个时隙,例如,第一时间单元可以包括14个符号;或者还可以为子时隙(其中,一个子时隙包括N个符号,N为大于等于2且小于14的整数),例如,第一时间单元可以包括7个符号;或者还可以为多个时隙的集合,例如,第一时间单元可以包括12个时隙的集合;或者还可以为多个子时隙的集合,例如,第一时间单元可以包括2个子时隙的集合,其中一个子时隙包括4个符号,另一个子时隙包括7个符号,等等。本实施例对此不进行特别限定。
其中,所述第一符号可以包括但不限于所述第一时间单元内的第一个符号和所述第一时间单元内的最后一个符号中的至少一个符号,本实施例对此不进行特别限定。
以第一时间单元为一个包括14个符号的时隙为例,符号从0开始编号,即一个时隙包括符号0、符号1,……,符号13,所述第一符号则可以包括符号0和符号13中的至少一个符号。
可选地,在本实施例的一个可能的实现方式中,所述网络设备还可以进一步接收所述终端设备在所述第一时间单元上发送的第二解调信号,其中,所述第二解调信号用于解调所述上行数据,所述第二解调信号占用的符号不包括所述第一符号。
在一个具体的实现过程中,所述第一解调信号可以包括解调参考信号(Demodulation Reference Signal,DMRS),所述第二解调信号可以包括上行控制信息(Uplink Control Information,UCI),或者所述第一解调信号可以包括UCI,所述第二解调信号可以包括DMRS,本实施例对此不进行特别限定。
在另一个具体的实现过程中,所述第二解调信号占用的符号还可以进一步不包括所述第一解调信号占用的符号。
应理解,在本申请实施例中,解调信号占用某符号,可以指该解调信号通过该符号上的全部资源或部分资源进行传输,本实施例对此不进行特别限定。
在另一个具体的实现过程中,所述第二解调信号占用的符号还可以进一步包括所述第一解调信号占用的符号,即,第一解调信号通过该符号上的部分资源进行传输,第二解调信号也通过该符号上的部分资源进行传输。
在另一个具体的实现过程中,所述第二解调信号占用的符号具体可以是根据所述第一解调信号占用的符号确定的。
例如,所述第二解调信号占用的符号可以包括所述第一解调信号占用的符号后面的第一个符号。以第一时间单元为一个包括14个符号的时隙为例,符号从0开始编号,即一个时隙包括符号0、符号1,……,符号13,若所述第一符号为符号0,且第一解调信号占用的符号为符号1,第二解调信号占用的符号则可以包括符号2,如图2B所示。
或者,再例如,所述第二解调信号占用的符号可以包括所述第一解调信号占用的符号前面的最后一个符号。以第一时间单元为一个包括14个符号的时隙为例,符号从0开始编号,即一个时隙包括符号0、符号1,……,符号13,若所述第一符号为符号0,且第一解调信号占用的符号为符号3,第二解调信号占用的符号则可以包括符号2,如图2C所示。
或者,再例如,所述第二解调信号占用多个符号,所述第二解调信号占用的符号中的第一个符号为 所述第一解调信号占用的符号后面的第一个符号。以第一时间单元为一个包括14个符号的时隙为例,符号从0开始编号,即一个时隙包括符号0、符号1,……,符号13,若所述第一符号为符号0,且第一解调信号占用的符号为符号1,第二解调信号占用的符号中的第一个符号则可以为符号2。
或者,再例如,所述第一解调信号占用多个符号,所述第二解调信号占用的符号包括所述第一解调信号占用的第一个符号后面的第一个符号。以第一时间单元为一个包括14个符号的时隙为例,符号从0开始编号,即一个时隙包括符号0、符号1,……,符号13,若所述第一符号为符号0,且第一解调信号占用的符号为符号1和符号8,第二解调信号占用的符号则可以包括符号2。
在一些情况下,例如,为了留出LBT的检测间隙以便该终端设备与其他通信设备在免授权频谱上进行复用传输,该终端设备不能在网络设备预先配置的时域资源中的部分资源上进行传输,例如,一个时隙的第一个符号即符号0、最后一个符号即符号13等特殊位置符号,因此,在免授权频谱上,采用本实施例中所提供的第一解调信号、第二解调信号和上行数据的映射配置,能够避免用于解调上行数据的解调信号不占用终端设备在网络设备预先配置的时域资源中可能不能进行传输的部分资源,从而实现了用于解调上行数据的解调信号在免授权频谱上的正确传输。
以第一解调信号为DMRS,第二解调信号为UCI为例,假设DMRS占用的符号为符号1,UCI占用的符号为符号2,上行数据占用的资源包括一个时隙中没有被DMRS和UCI占用的其他资源。
可以根据上述原则,连续3个时隙传输进行Configure Grant Uplink的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输且每个时隙都传输一个完整时隙的映射方式可以如图2D所示。
还可以根据上述原则,连续3个时隙传输进行Configure Grant Uplink的PUSCH传输且该连续3个时隙中可能有部分符号不传输(例如,第一个时隙不传输符号0、第二个时隙不传输符号0和符号13)的映射方式可以如图2E所示,图中的X表示不传输。
如图2D和2E所示,在上述两种上行传输的过程中,DMRS和UCI的位置都位于不能被丢弃的符号上,从而保证了用于解调上行数据的解调信号在免授权频谱上的正确传输。
在另一个具体的实现过程中,所述第一解调信号占用的符号可以是标准规范规定的。
例如,所述第一解调信号占用的符号具体可以包括所述第一时间单元内的第二个符号。
在另一个具体的实现过程中,所述第一解调信号占用的符号可以是所述网络设备通过指示信息发送给所述终端设备的。
其中,所述指示信息可以为物理层信令,或者还可以为媒体访问控制(Media Access Control,MAC)控制元素(Control Element,CE)信令,或者还可以为无线资源控制无线资源控制(Radio Resource Control,RRC)信令,本实施例对此不进行特别限定。
当指示信息为物理层信令时,所述指示信息可以通过物理层信令显示指示或隐式指示。
例如,所述网络设备通过下行控制信息(Downlink control information,DCI)指示所述终端设备所述第一解调信号占用的符号(或指示所述第一解调信号占用的第一个符号,或指示所述第一解调信号占用的最后一个符号)。其中,所述DCI还包括所述网络设备指示所述终端设备可以使用或禁止使用所述第一时间单元的信息。
或者,再例如,DCI格式1对应一种第一解调信号占用的符号(例如第一解调信号占用符号3),DCI格式2对应另一种第一解调信号占用的符号(例如第一解调信号占用符号5)。当终端设备收到DCI格式1时,可以确定第一解调信号占用的符号包括符号3;当终端设备收到DCI格式2时,可以确定第一解调信号占用的符号包括符号5。
可以理解的是,所述指示信息还可以是RRC信令和物理层信令的结合。例如,网络设备配置至少两种第一解调信号占用的符号的配置,并通过DCI指示终端设备在一次上行传输中应该使用该至少两种配置中的哪一种。
可选地,在本申请实施例中,UCI可以包括用于解调所述上行数据的控制信息,因此,该UCI也可以认为是解调所述上行数据必需的解调信号。
其中,所述UCI可以包括但不限于以下信息中的至少一种:
所述第一传输块对应的混合自动请求重传(Hybrid Automatic Repeat reQuest,HARQ)标识、所述终端设备的标识、所述第一时间单元的起始符号、所述第一时间单元的结束符号以及所述第一传输块包括的码块组(Code Block Group,CBG)指示。
例如,所述上行数据在所述第一时间单元上映射的起始位置可以包括所述第一时间单元内的第一个符号。这种方式,上行数据从所述第一时间单元内的第一个符号开始映射,到第一时间单元内的最后一个符号结束映射,以第一时间单元为一个包括14个符号的时隙为例,符号从0开始编号,即一个时隙包括符号0、符号1,……,符号13,若所述第一符号为符号0,且第一解调信号占用的符号为符号1,第二解调信号占用的符号则可以包括符号2,那么,在符号0、符号3~符号13这些符号上,上行数据则可以从符号0开始映射,到符号13结束映射,如图2F所示,其映射方式简单。
或者,再例如,所述上行数据在所述第一时间单元上映射的起始位置可以包括所述第一时间单元内除第一个符号外的一个符号,其中,所述第一时间单元内的第一个符号不映射上行数据。这种方式,上行数据从所述第一时间单元内除第一个符号外的一个符号开始映射,到第一时间单元内的最后一个符号结束映射,以第一时间单元为一个包括14个符号的时隙为例,符号从0开始编号,即一个时隙包括符号0、符号1,……,符号13,若所述第一符号为符号0,且第一解调信号占用的符号为符号1,第二解调信号占用的符号则可以包括符号2,那么,在符号0、符号3~符号13这些符号上,上行数据则可以从符号3开始映射,到符号13结束映射,其中,符号0不映射上行数据,如图2G所示。
或者,再例如,所述上行数据在所述第一时间单元上映射的结束位置可以包括所述第一时间单元内的第一个符号。这种方式,上行数据从所述第一时间单元内其他符号开始映射,到最后一个符号之后再返回到第一个符号结束映射,以第一时间单元为一个包括14个符号的时隙为例,符号从0开始编号,即一个时隙包括符号0、符号1,……,符号13,若所述第一符号为符号0,且第一解调信号占用的符号为符号1,第二解调信号占用的符号则可以包括符号2,那么,在符号0、符号3~符号13这些符号上,上行数据则可以从符号3开始映射,到符号13之后再返回到符号0结束映射,如图2H所示,其映射方式较为复杂,但可以保证上行数据的系统信息的传输。
本实施例中,通过网络设备接收终端设备在免授权频谱上的第一时间单元上发送的第一解调信号和 第一传输块速率匹配得到的上行数据,其中,所述第一解调信号用于解调所述上行数据,所述第一解调信号占用的符号不包括第一符号,其中,所述第一符号包括所述第一时间单元内的第一个符号和所述第一时间单元内的最后一个符号中的至少一个符号,能够避免用于解调上行数据的解调信号不占用终端设备在网络设备预先配置的时域资源中可能不能进行传输的部分资源,从而实现了用于解调上行数据的解调信号在免授权频谱上的正确传输。
图4是本申请实施例提供的一种终端设备400的示意性框图,如图4所示。本实施例提供了一种终端设备400,用于执行图2A对应的实施例中的方法。
具体地,该终端设备400包括用于执行图2A对应的实施例中的方法的功能模块。终端设备400可以包括发送单元410,用于在免授权频谱上的第一时间单元上向网络设备发送第一解调信号和第一传输块速率匹配得到的上行数据,其中,所述第一解调信号用于解调所述上行数据,所述第一解调信号占用的符号不包括第一符号;
其中,所述第一符号可以包括但不限于所述第一时间单元内的第一个符号和所述第一时间单元内的最后一个符号中的至少一个符号,本实施例对此不进行特别限定。
可选地,在本实施例的一个可能的实现方式中,所述发送单元410,还可以进一步用于在所述第一时间单元上向所述网络设备还发送第二解调信号,其中,所述第二解调信号用于解调所述上行数据,所述第二解调信号占用的符号不包括所述第一符号。
在一个具体的实现过程中,所述第二解调信号占用的符号还可以进一步不包括所述第一解调信号占用的符号。
在另一个具体的实现过程中,所述第二解调信号占用的符号还可以进一步包括所述第一解调信号占用的符号,即,第一解调信号通过该符号上的部分资源进行传输,第二解调信号也通过该符号上的部分资源进行传输。
在另一个具体的实现过程中,所述第二解调信号占用的符号具体可以是根据所述第一解调信号占用的符号确定的。
在另一个具体的实现过程中,所述第一解调信号占用的符号可以是标准规范规定的。
例如,所述第一解调信号占用的符号具体可以包括所述第一时间单元内的第二个符号。
在另一个具体的实现过程中,所述第一解调信号占用的符号可以是所述网络设备通过指示信息发送给所述终端设备的。
其中,所述指示信息可以为物理层信令,或者还可以为媒体访问控制(Media Access Control,MAC)控制元素(Control Element,CE)信令,或者还可以为无线资源控制无线资源控制(Radio Resource Control,RRC)信令,本实施例对此不进行特别限定。
可以理解的是,所述指示信息还可以是RRC信令和物理层信令的结合。例如,网络设备配置至少两种第一解调信号占用的符号的配置,并通过DCI指示终端设备在一次上行传输中应该使用该至少两种配置中的哪一种。
在另一个具体的实现过程中,所述第一解调信号可以包括解调参考信号(Demodulation Reference  Signal,DMRS),所述第二解调信号可以包括上行控制信息(Uplink Control Information,UCI),或者所述第一解调信号可以包括UCI,所述第二解调信号可以包括DMRS,本实施例对此不进行特别限定。
可选地,在本申请实施例中,UCI可以包括用于解调所述上行数据的控制信息,因此,该UCI也可以认为是解调所述上行数据必需的解调信号。
其中,所述UCI可以包括但不限于以下信息中的至少一种:
所述第一传输块对应的混合自动请求重传(Hybrid Automatic Repeat reQuest,HARQ)标识、所述终端设备的标识、所述第一时间单元的起始符号、所述第一时间单元的结束符号以及所述第一传输块包括的码块组(Code Block Group,CBG)指示。
例如,所述上行数据在所述第一时间单元上映射的起始位置可以包括所述第一时间单元内的第一个符号。这种方式,上行数据从所述第一时间单元内的第一个符号开始映射,到第一时间单元内的最后一个符号结束映射,以第一时间单元为一个包括14个符号的时隙为例,符号从0开始编号,即一个时隙包括符号0、符号1,……,符号13,若所述第一符号为符号0,且第一解调信号占用的符号为符号1,第二解调信号占用的符号则可以包括符号2,那么,在符号0、符号3~符号13这些符号上,上行数据则可以从符号0开始映射,到符号13结束映射,其映射方式简单。
或者,再例如,所述上行数据在所述第一时间单元上映射的起始位置可以包括所述第一时间单元内除第一个符号外的一个符号,其中,所述第一时间单元内的第一个符号不映射上行数据。这种方式,上行数据从所述第一时间单元内除第一个符号外的一个符号开始映射,到第一时间单元内的最后一个符号结束映射,以第一时间单元为一个包括14个符号的时隙为例,符号从0开始编号,即一个时隙包括符号0、符号1,……,符号13,若所述第一符号为符号0,且第一解调信号占用的符号为符号1,第二解调信号占用的符号则可以包括符号2,那么,在符号0、符号3~符号13这些符号上,上行数据则可以从符号3开始映射,到符号13结束映射,其中,符号0不映射上行数据。
或者,再例如,所述上行数据在所述第一时间单元上映射的结束位置可以包括所述第一时间单元内的第一个符号。这种方式,上行数据从所述第一时间单元内其他符号开始映射,到最后一个符号之后再返回到第一个符号结束映射,以第一时间单元为一个包括14个符号的时隙为例,符号从0开始编号,即一个时隙包括符号0、符号1,……,符号13,若所述第一符号为符号0,且第一解调信号占用的符号为符号1,第二解调信号占用的符号则可以包括符号2,那么,在符号0、符号3~符号13这些符号上,上行数据则可以从符号3开始映射,到符号13之后再返回到符号0结束映射,其映射方式较为复杂,但可以保证上行数据的系统信息的传输。
图5是本申请实施例提供的一种网络设备500的示意性框图,如图5所示。本实施例提供了一种网络设备,用于执行图3对应的实施例中的方法。
具体地,该网络设备500包括用于执行图3对应的实施例中的方法的功能模块。网络设备500可以包括接收单元510,用于接收终端设备在免授权频谱上的第一时间单元上发送的第一解调信号和第一传输块速率匹配得到的上行数据,其中,所述第一解调信号用于解调所述上行数据,所述第一解调信号 占用的符号不包括第一符号;
其中,所述第一符号可以包括但不限于所述第一时间单元内的第一个符号和所述第一时间单元内的最后一个符号中的至少一个符号,本实施例对此不进行特别限定。
可选地,在本实施例的一个可能的实现方式中,所述接收单元510,还可以进一步用于接收所述终端设备在所述第一时间单元上发送的第二解调信号,其中,所述第二解调信号用于解调所述上行数据,所述第二解调信号占用的符号不包括所述第一符号。
在一个具体的实现过程中,所述第二解调信号占用的符号还可以进一步不包括所述第一解调信号占用的符号。
在另一个具体的实现过程中,所述第二解调信号占用的符号还可以进一步包括所述第一解调信号占用的符号,即,第一解调信号通过该符号上的部分资源进行传输,第二解调信号也通过该符号上的部分资源进行传输。
在另一个具体的实现过程中,所述第二解调信号占用的符号具体可以是根据所述第一解调信号占用的符号确定的。
在另一个具体的实现过程中,所述第一解调信号占用的符号可以是标准规范规定的。
例如,所述第一解调信号占用的符号具体可以包括所述第一时间单元内的第二个符号。
在另一个具体的实现过程中,所述第一解调信号占用的符号可以是所述网络设备通过指示信息发送给所述终端设备的。
其中,所述指示信息可以为物理层信令,或者还可以为媒体访问控制(Media Access Control,MAC)控制元素(Control Element,CE)信令,或者还可以为无线资源控制无线资源控制(Radio Resource Control,RRC)信令,本实施例对此不进行特别限定。
可以理解的是,所述指示信息还可以是RRC信令和物理层信令的结合。例如,网络设备配置至少两种第一解调信号占用的符号的配置,并通过DCI指示终端设备在一次上行传输中应该使用该至少两种配置中的哪一种。
在另一个具体的实现过程中,所述第一解调信号可以包括解调参考信号(Demodulation Reference Signal,DMRS),所述第二解调信号可以包括上行控制信息(Uplink Control Information,UCI),或者所述第一解调信号可以包括UCI,所述第二解调信号可以包括DMRS,本实施例对此不进行特别限定。
可选地,在本申请实施例中,UCI可以包括用于解调所述上行数据的控制信息,因此,该UCI也可以认为是解调所述上行数据必需的解调信号。
其中,所述UCI可以包括但不限于以下信息中的至少一种:
所述第一传输块对应的混合自动请求重传(Hybrid Automatic Repeat reQuest,HARQ)标识、所述终端设备的标识、所述第一时间单元的起始符号、所述第一时间单元的结束符号以及所述第一传输块包括的码块组(Code Block Group,CBG)指示。
例如,所述上行数据在所述第一时间单元上映射的起始位置可以包括所述第一时间单元内的第一个 符号。这种方式,上行数据从所述第一时间单元内的第一个符号开始映射,到第一时间单元内的最后一个符号结束映射,以第一时间单元为一个包括14个符号的时隙为例,符号从0开始编号,即一个时隙包括符号0、符号1,……,符号13,若所述第一符号为符号0,且第一解调信号占用的符号为符号1,第二解调信号占用的符号则可以包括符号2,那么,在符号0、符号3~符号13这些符号上,上行数据则可以从符号0开始映射,到符号13结束映射,其映射方式简单。
或者,再例如,所述上行数据在所述第一时间单元上映射的起始位置可以包括所述第一时间单元内除第一个符号外的一个符号,其中,所述第一时间单元内的第一个符号不映射上行数据。这种方式,上行数据从所述第一时间单元内除第一个符号外的一个符号开始映射,到第一时间单元内的最后一个符号结束映射,以第一时间单元为一个包括14个符号的时隙为例,符号从0开始编号,即一个时隙包括符号0、符号1,……,符号13,若所述第一符号为符号0,且第一解调信号占用的符号为符号1,第二解调信号占用的符号则可以包括符号2,那么,在符号0、符号3~符号13这些符号上,上行数据则可以从符号3开始映射,到符号13结束映射,其中,符号0不映射上行数据。
或者,再例如,所述上行数据在所述第一时间单元上映射的结束位置可以包括所述第一时间单元内的第一个符号。这种方式,上行数据从所述第一时间单元内其他符号开始映射,到最后一个符号之后再返回到第一个符号结束映射,以第一时间单元为一个包括14个符号的时隙为例,符号从0开始编号,即一个时隙包括符号0、符号1,……,符号13,若所述第一符号为符号0,且第一解调信号占用的符号为符号1,第二解调信号占用的符号则可以包括符号2,那么,在符号0、符号3~符号13这些符号上,上行数据则可以从符号3开始映射,到符号13之后再返回到符号0结束映射,其映射方式较为复杂,但可以保证上行数据的系统信息的传输。
图6是本申请实施例提供的一种通信设备600示意性结构图。图6所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图6所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图7是本申请实施例的芯片700的示意性结构图。图7所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图8是本申请实施例提供的一种通信系统800的示意性框图。如图8所示,该通信系统800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器 (Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选地,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选地,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选地,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统, 或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (49)

  1. 一种上行信号的传输方法,其特征在于,包括:
    终端设备在免授权频谱上的第一时间单元上向网络设备发送第一解调信号和第一传输块速率匹配得到的上行数据,其中,所述第一解调信号用于解调所述上行数据,所述第一解调信号占用的符号不包括第一符号;
    其中,所述第一符号包括所述第一时间单元内的第一个符号和所述第一时间单元内的最后一个符号中的至少一个符号。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述第一时间单元上向所述网络设备还发送第二解调信号,其中,所述第二解调信号用于解调所述上行数据,所述第二解调信号占用的符号不包括所述第一符号。
  3. 根据权利要求2所述的方法,其特征在于,所述第二解调信号占用的符号不包括所述第一解调信号占用的符号。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第二解调信号占用的符号是根据所述第一解调信号占用的符号确定的。
  5. 根据权利要求1~4任一权利要求所述的方法,其特征在于,所述第一解调信号占用的符号是标准规范规定的。
  6. 根据权利要求1~5任一权利要求所述的方法,其特征在于,所述第一解调信号占用的符号包括所述第一时间单元内的第二个符号。
  7. 根据权利要求1~4任一权利要求所述的方法,其特征在于,所述第一解调信号占用的符号是所述网络设备通过指示信息发送给所述终端设备的,其中,所述指示信息为物理层信令或无线资源控制RRC信令。
  8. 根据权利要求1~7任一权利要求所述的方法,其特征在于,
    所述第一解调信号包括解调参考信号DMRS,所述第二解调信号包括上行控制信息UCI;或者,
    所述第一解调信号包括UCI,所述第二解调信号包括DMRS。
  9. 根据权利要求8所述的方法,其特征在于,所述UCI包括以下信息中的至少一种:
    所述第一传输块对应的混合自动请求重传HARQ标识、所述终端设备的标识、所述第一时间单元的起始符号、所述第一时间单元的结束符号以及所述第一传输块包括的码块组CBG指示。
  10. 根据权利要求1~9任一权利要求所述的方法,其特征在于:
    所述上行数据在所述第一时间单元上映射的起始位置包括所述第一时间单元内的第一个符号;或者,所述上行数据在所述第一时间单元上映射的结束位置包括所述第一时间单元内的第一个符号。
  11. 一种上行信号的传输方法,其特征在于,包括:
    网络设备接收终端设备在免授权频谱上的第一时间单元上发送的第一解调信号和第一传输块速率匹配得到的上行数据,其中,所述第一解调信号用于解调所述上行数据,所述第一解调信号占用的符号不包括第一符号;
    其中,所述第一符号包括所述第一时间单元内的第一个符号和所述第一时间单元内的最后一个符号中的至少一个符号。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述网络设备还接收所述终端设备在所述第一时间单元上发送的第二解调信号,其中,所述第二解调信号用于解调所述上行数据,所述第二解调信号占用的符号不包括所述第一符号。
  13. 根据权利要求12所述的方法,其特征在于,所述第二解调信号占用的符号不包括所述第一解调信号占用的符号。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第二解调信号占用的符号是根据所述第一解调信号占用的符号确定的。
  15. 根据权利要求11~14任一权利要求所述的方法,其特征在于,所述第一解调信号占用的符号是标准规范规定的。
  16. 根据权利要求11~15任一权利要求所述的方法,其特征在于,所述第一解调信号占用的符号包括所述第一时间单元内的第二个符号。
  17. 根据权利要求11~14任一权利要求所述的方法,其特征在于,所述第一解调信号占用的符号是所述网络设备通过指示信息发送给所述终端设备的,其中,所述指示信息为物理层信令或无线资源控制RRC信令。
  18. 根据权利要求11~17任一权利要求所述的方法,其特征在于,
    所述第一解调信号包括解调参考信号DMRS,所述第二解调信号包括上行控制信息UCI;或者,
    所述第一解调信号包括UCI,所述第二解调信号包括DMRS。
  19. 根据权利要求18所述的方法,其特征在于,所述UCI包括以下信息中的至少一种:
    所述第一传输块对应的混合自动请求重传HARQ标识、所述终端设备的标识、所述第一时间单元的起始符号、所述第一时间单元的结束符号以及所述第一传输块包括的码块组CBG指示。
  20. 根据权利要求11~19任一权利要求所述的方法,其特征在于:
    所述上行数据在所述第一时间单元上映射的起始位置包括所述第一时间单元内的第一个符号;或者,所述上行数据在所述第一时间单元上映射的结束位置包括所述第一时间单元内的第一个符号。
  21. 一种终端设备,其特征在于,包括:
    发送单元,用于在免授权频谱上的第一时间单元上向网络设备发送第一解调信号和第一传输块速率匹配得到的上行数据,其中,所述第一解调信号用于解调所述上行数据,所述第一解调信号占用的符号不包括第一符号;
    其中,所述第一符号包括所述第一时间单元内的第一个符号和所述第一时间单元内的最后一个符号中的至少一个符号。
  22. 根据权利要求21所述的终端设备,其特征在于,所述发送单元,还用于在所述第一时间单元上向所述网络设备还发送第二解调信号,其中,所述第二解调信号用于解调所述上行数据,所述第二解调信号占用的符号不包括所述第一符号。
  23. 根据权利要求22所述的终端设备,其特征在于,所述第二解调信号占用的符号不包括所述第一解调信号占用的符号。
  24. 根据权利要求22或23所述的终端设备,其特征在于,所述第二解调信号占用的符号是根据所述第一解调信号占用的符号确定的。
  25. 根据权利要求21~24任一权利要求所述的终端设备,其特征在于,所述第一解调信号占用的符号是标准规范规定的。
  26. 根据权利要求21~25任一权利要求所述的终端设备,其特征在于,所述第一解调信号占用的符号包括所述第一时间单元内的第二个符号。
  27. 根据权利要求21~24任一权利要求所述的终端设备,其特征在于,所述第一解调信号占用的符号是所述网络设备通过指示信息发送给所述终端设备的,其中,所述指示信息为物理层信令或无线资源控制RRC信令。
  28. 根据权利要求21~27任一权利要求所述的终端设备,其特征在于,
    所述第一解调信号包括解调参考信号DMRS,所述第二解调信号包括上行控制信息UCI;或者,
    所述第一解调信号包括UCI,所述第二解调信号包括DMRS。
  29. 根据权利要求28所述的终端设备,其特征在于,所述UCI包括以下信息中的至少一种:
    所述第一传输块对应的混合自动请求重传HARQ标识、所述终端设备的标识、所述第一时间单元的起始符号、所述第一时间单元的结束符号以及所述第一传输块包括的码块组CBG指示。
  30. 根据权利要求21~29任一权利要求所述的终端设备,其特征在于:
    所述上行数据在所述第一时间单元上映射的起始位置包括所述第一时间单元内的第一个符号;或者,所述上行数据在所述第一时间单元上映射的结束位置包括所述第一时间单元内的第一个符号。
  31. 一种网络设备,其特征在于,包括:
    接收单元,用于接收终端设备在免授权频谱上的第一时间单元上发送的第一解调信号和第一传输块速率匹配得到的上行数据,其中,所述第一解调信号用于解调所述上行数据,所述第一解调信号占用的符号不包括第一符号;
    其中,所述第一符号包括所述第一时间单元内的第一个符号和所述第一时间单元内的最后一个符号中的至少一个符号。
  32. 根据权利要求31所述的网络设备,其特征在于,所述接收单元,还用于还接收所述终端设备在所述第一时间单元上发送的第二解调信号,其中,所述第二解调信号用于解调所述上行数据,所述第二解调信号占用的符号不包括所述第一符号。
  33. 根据权利要求32所述的网络设备,其特征在于,所述第二解调信号占用的符号不包括所述第一解调信号占用的符号。
  34. 根据权利要求32或33所述的网络设备,其特征在于,所述第二解调信号占用的符号是根据所述第一解调信号占用的符号确定的。
  35. 根据权利要求31~34任一权利要求所述的网络设备,其特征在于,所述第一解调信号占用的 符号是标准规范规定的。
  36. 根据权利要求31~35任一权利要求所述的网络设备,其特征在于,所述第一解调信号占用的符号包括所述第一时间单元内的第二个符号。
  37. 根据权利要求31~34任一权利要求所述的网络设备,其特征在于,所述第一解调信号占用的符号是所述网络设备通过指示信息发送给所述终端设备的,其中,所述指示信息为物理层信令或无线资源控制RRC信令。
  38. 根据权利要求31~37任一权利要求所述的网络设备,其特征在于,
    所述第一解调信号包括解调参考信号DMRS,所述第二解调信号包括上行控制信息UCI;或者,
    所述第一解调信号包括UCI,所述第二解调信号包括DMRS。
  39. 根据权利要求38所述的网络设备,其特征在于,所述UCI包括以下信息中的至少一种:
    所述第一传输块对应的混合自动请求重传HARQ标识、所述终端设备的标识、所述第一时间单元的起始符号、所述第一时间单元的结束符号以及所述第一传输块包括的码块组CBG指示。
  40. 根据权利要求31~39任一权利要求所述的网络设备,其特征在于:
    所述上行数据在所述第一时间单元上映射的起始位置包括所述第一时间单元内的第一个符号;或者,
    所述上行数据在所述第一时间单元上映射的结束位置包括所述第一时间单元内的第一个符号。
  41. 一种通信设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1~20中任一项所述的方法。
  42. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1~10中任一项所述的方法。
  43. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求11~20中任一项所述的方法。
  44. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1~10中任一项所述的方法。
  45. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求11~20中任一项所述的方法。
  46. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1~10中任一项所述的方法。
  47. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求11~20中任一项所述的方法。
  48. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1~10中任一项所述的方法。
  49. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求11~20中任一项所述的方法。
PCT/CN2019/086827 2018-06-26 2019-05-14 一种上行信号的传输方法及终端设备、网络设备 WO2020001183A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201980040597.3A CN112335309A (zh) 2018-06-26 2019-05-14 一种上行信号的传输方法及终端设备、网络设备
EP19827473.0A EP3817482B1 (en) 2018-06-26 2019-05-14 Uplink signal transmission method, terminal device, and network device
AU2019296665A AU2019296665A1 (en) 2018-06-26 2019-05-14 Uplink signal transmission method, terminal device, and network device
JP2020571457A JP2021529456A (ja) 2018-06-26 2019-05-14 上り信号の伝送方法、端末デバイス及びネットワークデバイス
KR1020217001566A KR20210022672A (ko) 2018-06-26 2019-05-14 상향 신호의 전송 방법, 단말기 디바이스 및 네트워크 디바이스
US17/129,639 US11510067B2 (en) 2018-06-26 2020-12-21 Uplink signal transmission method, terminal device, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810671335.4 2018-06-26
CN201810671335 2018-06-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/129,639 Continuation US11510067B2 (en) 2018-06-26 2020-12-21 Uplink signal transmission method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2020001183A1 true WO2020001183A1 (zh) 2020-01-02

Family

ID=68985499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086827 WO2020001183A1 (zh) 2018-06-26 2019-05-14 一种上行信号的传输方法及终端设备、网络设备

Country Status (7)

Country Link
US (1) US11510067B2 (zh)
EP (1) EP3817482B1 (zh)
JP (1) JP2021529456A (zh)
KR (1) KR20210022672A (zh)
CN (1) CN112335309A (zh)
AU (1) AU2019296665A1 (zh)
WO (1) WO2020001183A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11510067B2 (en) 2018-06-26 2022-11-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink signal transmission method, terminal device, and network device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115515251A (zh) * 2021-06-23 2022-12-23 中兴通讯股份有限公司 网络接入方法、设备和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016048227A2 (en) * 2014-09-25 2016-03-31 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for enhanced uplink reference signal in listen-before-talk systems
WO2016122122A1 (en) * 2015-01-29 2016-08-04 Samsung Electronics Co., Ltd. Uplink control information transmitting method and apparatus
CN106211337A (zh) * 2016-06-21 2016-12-07 浙江大学 免授权频段基于有效帧号的资源定位方法
CN106304100A (zh) * 2015-06-28 2017-01-04 上海无线通信研究中心 一种共存于未授权频带的多通信系统分时传输方法
CN106452704A (zh) * 2015-08-13 2017-02-22 中国移动通信集团公司 一种发现参考信号的发送方法、基站及终端
WO2017120542A1 (en) * 2016-01-06 2017-07-13 Intel IP Corporation Method and apparatus for channel access for transmission of pusch and ul control
CN108023671A (zh) * 2016-11-04 2018-05-11 中兴通讯股份有限公司 一种数据传输方法、基站、用户设备及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140286255A1 (en) * 2013-03-25 2014-09-25 Samsung Electronics Co., Ltd. Uplink demodulation reference signals in advanced wireless communication systems
US11412534B2 (en) * 2016-11-04 2022-08-09 Qualcomm Incorporated System and method for mapping uplink control information
US10492184B2 (en) * 2016-12-09 2019-11-26 Samsung Electronics Co., Ltd. Multiplexing control information in a physical uplink data channel
US10880058B2 (en) * 2017-04-25 2020-12-29 Qualcomm Incorporated Transmitting uplink control information (UCI)
WO2020001183A1 (zh) 2018-06-26 2020-01-02 Oppo广东移动通信有限公司 一种上行信号的传输方法及终端设备、网络设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016048227A2 (en) * 2014-09-25 2016-03-31 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for enhanced uplink reference signal in listen-before-talk systems
WO2016122122A1 (en) * 2015-01-29 2016-08-04 Samsung Electronics Co., Ltd. Uplink control information transmitting method and apparatus
CN106304100A (zh) * 2015-06-28 2017-01-04 上海无线通信研究中心 一种共存于未授权频带的多通信系统分时传输方法
CN106452704A (zh) * 2015-08-13 2017-02-22 中国移动通信集团公司 一种发现参考信号的发送方法、基站及终端
WO2017120542A1 (en) * 2016-01-06 2017-07-13 Intel IP Corporation Method and apparatus for channel access for transmission of pusch and ul control
CN106211337A (zh) * 2016-06-21 2016-12-07 浙江大学 免授权频段基于有效帧号的资源定位方法
CN108023671A (zh) * 2016-11-04 2018-05-11 中兴通讯股份有限公司 一种数据传输方法、基站、用户设备及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3817482A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11510067B2 (en) 2018-06-26 2022-11-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink signal transmission method, terminal device, and network device

Also Published As

Publication number Publication date
EP3817482A4 (en) 2021-08-04
US20210112421A1 (en) 2021-04-15
CN112335309A (zh) 2021-02-05
AU2019296665A1 (en) 2021-02-04
KR20210022672A (ko) 2021-03-03
EP3817482B1 (en) 2024-01-24
JP2021529456A (ja) 2021-10-28
US11510067B2 (en) 2022-11-22
EP3817482A1 (en) 2021-05-05

Similar Documents

Publication Publication Date Title
WO2020051774A1 (zh) 通信方法、终端设备和网络设备
JP7162736B2 (ja) アップリンク信号の伝送方法及び端末装置、ネットワーク装置
US11246120B2 (en) Data transmission method and terminal device
US11483116B2 (en) Signal transmission method and device and terminal
WO2020029256A1 (zh) 一种数据传输方法、终端设备及网络设备
US11963206B2 (en) Wireless communication method, terminal device and network device
WO2019242452A1 (zh) 用于物理随机接入信道传输的信道接入方法、装置和程序
WO2020020332A1 (zh) 一种随机接入方法、终端设备及存储介质
JP7465289B2 (ja) 制御情報の伝送方法、端末装置及びネットワーク装置
WO2019237241A1 (zh) 一种下行信号的传输方法及终端设备
WO2020061850A1 (zh) 通信方法、终端设备和网络设备
WO2019174056A1 (zh) 通信方法和设备
US11510067B2 (en) Uplink signal transmission method, terminal device, and network device
WO2020220358A1 (zh) 一种用于非授权频谱的功率调整方法及装置
WO2020073203A1 (zh) 一种资源配置方法及装置、通信设备
WO2020037655A1 (zh) 一种反馈信息长度的确定方法及装置、通信设备
WO2020051919A1 (zh) 一种资源确定及配置方法、装置、终端、网络设备
WO2020061776A1 (zh) 一种反馈资源的复用方法、终端设备及网络设备
WO2020056777A1 (zh) 无线通信的方法、发送节点和接收节点
WO2020024250A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020034187A1 (zh) 通信方法、终端设备和网络设备
US12003450B2 (en) Signal transmission method and device and terminal
US11956666B2 (en) HARQ process determination method, network device and terminal
WO2022021085A1 (zh) 一种信息指示方法及装置、终端设备、网络设备
EP3823233B1 (en) Signal transmission method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827473

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571457

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217001566

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019827473

Country of ref document: EP

Effective date: 20210126

ENP Entry into the national phase

Ref document number: 2019296665

Country of ref document: AU

Date of ref document: 20190514

Kind code of ref document: A