WO2016165121A1 - 一类新型恒力恒扭矩均匀磁场感应伺服电机 - Google Patents

一类新型恒力恒扭矩均匀磁场感应伺服电机 Download PDF

Info

Publication number
WO2016165121A1
WO2016165121A1 PCT/CN2015/076863 CN2015076863W WO2016165121A1 WO 2016165121 A1 WO2016165121 A1 WO 2016165121A1 CN 2015076863 W CN2015076863 W CN 2015076863W WO 2016165121 A1 WO2016165121 A1 WO 2016165121A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon steel
rotor
winding coil
magnetic
stator
Prior art date
Application number
PCT/CN2015/076863
Other languages
English (en)
French (fr)
Inventor
王晓明
王元秀
梅玉林
Original Assignee
王晓明
王元秀
梅玉林
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王晓明, 王元秀, 梅玉林 filed Critical 王晓明
Priority to US15/564,925 priority Critical patent/US10756604B2/en
Priority to PCT/CN2015/076863 priority patent/WO2016165121A1/zh
Publication of WO2016165121A1 publication Critical patent/WO2016165121A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/04Asynchronous induction motors for single phase current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/30Structural association of asynchronous induction motors with auxiliary electric devices influencing the characteristics of the motor or controlling the motor, e.g. with impedances or switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/025Asynchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the invention belongs to the technical field of induction motors and relates to an AC induction servo motor, in particular to a new type of constant force constant torque uniform magnetic field induction servo motor based on a new design principle, including a rotary type constant output torque uniform magnetic field induction.
  • Servo motor and new constant output force uniform magnetic field induction linear servo motor are used to control the servo motor's control the servo motor's control the control circuitry.
  • the servo motor is an electromechanical energy conversion electromagnetic mechanical device whose main feature is that the output torque or speed of such a motor can be quickly and accurately controlled. According to the use requirements and power supply, it can be divided into DC servo motor, AC synchronous servo motor and AC induction servo motor.
  • the DC servo motor has the advantages of good speed regulation, large starting torque and simple control system, but the structure is complicated, the manufacturing cost is high, the maintenance cost is high, and the reliability is poor.
  • AC synchronous servo motor There are two types of AC synchronous servo motor: one is AC permanent magnet synchronous servo motor, the rotor uses permanent magnet material to produce high density permanent magnetic field, but needs rare earth resources; the other is AC winding rotor synchronous servo motor, the rotor passes excitation The magnetic field is generated, but an external excitation power source is required, and the current is introduced through the slip ring, so the structure is complicated, the manufacturing cost is high, and the maintenance cost is high.
  • AC induction servo motor is also called AC asynchronous servo motor. It has simple structure, convenient manufacture and reliable operation. The biggest drawback is the complicated controller, low torque characteristics and low control precision.
  • the invention discloses A new type of constant-force constant-torque uniform magnetic field induction servo motor based on a new design principle, including rotary new constant output torque uniform magnetic field induction servo Motor and new constant output force uniform magnetic field induction linear servo motor.
  • the constant output force uniform magnetic field induction linear servo motor is a rotary constant output torque uniform magnetic field induction servo
  • the deformation type of the motor This type of new motor does not use the principle of rotating magnetic field or traveling wave magnetic field of general AC servo motor.
  • a new type of constant-force constant-torque uniform magnetic field induction servo motor based on a new design principle includes a rotary new constant output torque uniform magnetic field induction servo motor and a new constant output force uniform magnetic field induction linear servo motor.
  • the motor and the new constant output force uniform magnetic field induction linear servo motor are based on the same principle.
  • the constant output force uniform magnetic field induction linear servo motor is a rotary constant output torque uniform magnetic field
  • the evolution of induction servo motors The following is a detailed description of the new technical solution for a constant output torque uniform magnetic field induction servo motor.
  • the novel constant output torque uniform magnetic field induction servo motor disclosed by the invention belongs to a rotary motor and is characterized by:
  • the motor consists of N independent motor units, shafts, bearings, end caps and cooling system.
  • Each of the independent motor units is powered by a single-phase alternating current.
  • the supply voltages of these units are equal, but the voltage phases are in a series of equalities with a tolerance of 360 degrees/N or 180 degrees/N.
  • the present invention discloses New constant output torque uniform magnetic field induction Servo motor The case of two or more independent motor units on the structure type.
  • Each individual motor unit has the same structure and mainly includes two parts, a stator and a rotor.
  • the stator is composed of a stator casing, a stator magnetic silicon steel, and a stator excitation winding coil.
  • the stator magnetically permeable silicon steel is formed by laminating silicon steel sheets and has the shape of a circular ring with a ring groove.
  • the stator field winding coil is similar to a multi-layer solenoid type and is mounted in the ring groove of the stator magnetic silicon steel.
  • the stator shell and the stator are magnetically bonded to the silicon steel, and the motor remains stationary during operation.
  • the independent motor unit structure can be divided into two types: axial arrangement and radial arrangement. Further, the axially arranged and radially arranged independent motor units can in turn be subdivided into two structural forms, a single-sided arrangement and a symmetric arrangement, respectively.
  • stator-guided silicon steel in the direction of the motor axis, the stator-guided silicon steel is arranged on the left or right side with respect to the rotor-guided silicon steel.
  • stator magnetic silicon steel is arranged on the left side, the ring groove on the stator magnetic silicon steel is on the right side; when the stator magnetic silicon steel is arranged on the right side, the ring groove on the stator magnetic silicon steel is on the left side.
  • the stator field winding coil is mounted in a ring groove of the stator magnetic silicon steel.
  • stator magnetic silicon steel is arranged on both sides of the rotor magnetic silicon steel, which are respectively called stator left magnetic silicon steel and stator right magnetic silicon steel.
  • the ring groove on the left magnetic silicon steel of the stator is on the right side, and the ring groove on the right magnetic silicon steel of the stator is on the left side, which is the combination of the above two axial single-sided arrangement type stators.
  • there are two sets of stator excitation winding coils which are respectively installed in the ring grooves of the left and right magnetic conductive silicon steel of the stator.
  • stator-guided silicon steel is arranged inside or outside the rotor-guided silicon steel with respect to the rotor axis.
  • stator magnetically conductive silicon steel is arranged on the outer side
  • annular groove on the stator magnetic conductive silicon steel is on the inner side
  • stator magnetic conductive silicon steel is arranged on the inner side
  • stator magnetically conductive silicon steel is on the outer side.
  • This arrangement is similar in structure to the inner and outer rotor types of ordinary AC motors, but they have essential differences. The difference is that the single-phase windings are mounted on the stator-guided silicon steel of the motor unit.
  • the winding method is similar. Simple winding type for solenoids.
  • stator magnetically permeable silicon steels are respectively arranged on the inner and outer sides of the rotor-guided silicon steel relative to the rotor axis, respectively referred to as stator inner magnetic conductive silicon steel and stator outer magnetic conductive silicon steel.
  • the ring groove on the magnetically conductive silicon steel in the stator is on the outer side
  • the ring groove on the outer magnetic conductive silicon steel on the stator is on the inner side, which is the combination of the above two kinds of radial one-side arrangement type stators.
  • there are two sets of stator excitation winding coils which are respectively installed in the ring grooves of the outer and outer magnetic conductive silicon steels of the stator.
  • the overall structure of the rotor of the motor should be designed in a cup shape for output motion.
  • the rotor is composed of a rotor hub, a rotor magnetically conductive silicon steel, a rotor induction excitation winding coil, and a rotor torque winding coil.
  • the rotor-guided silicon steel is composed of M silicon steel pieces arranged uniformly along the circumference. Each silicon steel piece has the same shape, and there is a gap between adjacent silicon steel pieces, and the overall shape is similar to a ring column having a plurality of slits.
  • Each of the silicon steel members is grooved in the circumferential direction so that the rotor magnetically conductive silicon steel integrally forms a ring groove, and the position of the ring groove corresponds to the ring groove of the stator magnetically conductive silicon steel on which the stator field winding coil is mounted.
  • each silicon steel piece is also designed with a through groove in the middle, the direction is perpendicular to the ring groove and different according to the arrangement of the motor unit structure, or designed in the radial direction or in the axial direction, for mounting the rotor torque winding coil;
  • the rotor induction field winding coil is in the form of a simple winding similar to a solenoid and is mounted in the ring groove of the rotor-guided silicon steel.
  • the rotor torque winding coil is wound around the rotor magnetically conductive silicon steel through a through slot on the rotor magnetically conductive silicon steel.
  • the rotor-guided silicon steel is fixedly attached to the rotor hub, and the rotor-guided silicon steel, the rotor hub and the shaft rotate together when the motor is in operation.
  • each silicon steel piece in the rotor-guided silicon steel geometrically described as being formed by a plurality of rectangular-section fan-ring columns of the same fan-shaped angle being radially connected, and two adjacent rectangular sections
  • the connecting portion in the middle of the fan ring column is one or more, and each connecting body having a connecting shape is a fan ring column or a general column body and has a small size.
  • each silicon steel member Relative to the rotor axis, the inner and outer sides of each silicon steel member are rectangular cross-section fan ring columns, and the silicon steel members are alternately arranged in the middle of the connecting body and the rectangular cross-section fan ring column; since each intermediate connecting body is small in size, its axis The thickness and the fan angle formed with respect to the rotor axis are both small, and a plurality of axial grooves and long grooves in the circumferential direction are formed on each of the silicon steel members.
  • the multi-layer rectangular section fan ring column forms a multi-layer rectangular section circular column with M air gaps along the circumference, and a plurality of axes are formed by the connecting body between the adjacent two layers of the ring columns.
  • To the through slot and form a ring groove on the left or right side.
  • the rotor induced field winding coil is mounted in the ring groove.
  • the rotor torque winding coil passes through the through groove between the multi-layer annular columns on the rotor-guided silicon steel, and is respectively wound on the multi-layer circular column of the rotor-guided silicon steel to form a plurality of sets of torque winding coils inside and outside the rotor.
  • rotor-guided silicon steel is equivalent to combining two axially unidirectionally arranged rotor-guided silicon steels, which are mounted together on a rotor hub, mirrored by a plane of symmetry of the rotor hub perpendicular to the rotor axis.
  • the relationship is referred to as rotor left magnetic silicon steel and rotor right magnetic silicon steel, respectively.
  • the ring groove of the left inductive excitation winding of the rotor is mounted on the left magnetic silicon steel of the rotor on the left side, corresponding to the ring groove on the left magnetically conductive silicon steel of the stator on which the left excitation winding of the stator is mounted.
  • the ring groove of the rotor right-inductive field winding coil is mounted on the rotor right-side magnetic silicon steel on the right side, and corresponds to the ring groove on the right-side magnetic silicon steel of the stator on which the stator right-excending winding coil is mounted.
  • the rotor torque winding coil passes through the through groove between the multi-layer annular columns, and is respectively wound on the multi-layer circular column of the left and right magnetic conductive silicon steel of the rotor to form a plurality of sets of torque winding coils inside and outside the rotor.
  • the plurality of sets of torque winding coils inside and outside the rotor are equivalent to the result of combining the two sets of torque winding coils inside and outside the rotor arranged in two axial directions.
  • each silicon steel piece in the rotor-guided silicon steel geometrically described as a rectangular cross-section fan-ring column with the same fan-shaped corners connected in the axial direction, the intermediate connection part is one place or In many places, each connecting body that is connected is in the shape of a fan ring column or a general column, and has a small size.
  • each silicon steel piece are rectangular cross-section fan ring columns, and the connecting members of the silicon steel pieces are connected in a row and the rectangular cross-section fan ring columns are alternately arranged; since each intermediate connecting body has a small size, its diameter
  • each intermediate connecting body has a small size, its diameter
  • the thickness and the fan angle formed with respect to the rotor axis are small, and a plurality of radial through grooves are formed between adjacent rectangular sectional fan ring columns constituting the silicon steel member, and one or more are formed on the outer side or the inner side along the circumference. Long slot.
  • the multi-layer rectangular section fan ring column of the silicon steel piece forms a multi-layer rectangular section circular column with M air gaps along the circumference, and the connecting body is in the multi-layer annular column.
  • a plurality of radial through grooves are formed therebetween, and a ring groove is formed on the outer side or the inner side.
  • the rotor induced field winding coil is mounted in the ring groove.
  • the rotor torque winding coil passes through a through groove between the multi-layer annular columns on the rotor-guided silicon steel, and is respectively wound on the multi-layer circular column of the rotor magnetic silicon steel to form a rotor left middle right torque winding coil.
  • Radially symmetrically arranged type of rotor a motor with a radially symmetrically arranged type of independent motor unit, the structural design belongs to the internal and external double stator motor, and the overall structure of the motor rotor needs to be designed into a cup type.
  • the rotor-guided silicon steel can be seen as two rotor-side magnetically-distributed silicon steels arranged on one side of the rotor, respectively, which are respectively arranged on the inner and outer sides of the rotor cup, and are respectively referred to as rotor inner magnetized silicon steel and rotor outer magnetic conductive silicon steel.
  • the number of silicon steels in the inner and outer magnetized silicon steel of the rotor is the same, and the radial symmetry plane is the same.
  • the ring groove of the outer magnetizing coil of the rotor is mounted on the outer side of the rotor, and the ring groove of the inductive field winding coil is mounted on the inner side of the rotor.
  • the ring grooves on the inner and outer magnetic conductive silicon steels of the rotor respectively correspond to the ring grooves on the inner and outer conductive magnetic silicon steels in the stator.
  • the rotor torque winding coil passes through a radial through groove between the multi-layer annular columns on the rotor-guided silicon steel, and is respectively wound on the multi-layer annular column of the outer and outer magnetic silicon steel of the rotor to form a rotor left middle right torque winding coil.
  • the rotor left and right torque winding coils are equivalent to the result of combining the left, right, and right torque winding coils of the two radially one-sided rotors.
  • the basic structure and composition of the independent motor unit include four-sided axial arrangement, axially symmetric arrangement, radial one-sided arrangement and radial symmetric arrangement. These four basic structural versions can also be combined, including axial and axial combinations, radial and radial combinations, axial and radial combinations, and the like.
  • axial and axial combination in order to increase the torque, for independent motor units arranged axially in one side or axially symmetrically, the diameter of the rotor and the stator is increased, and a plurality of sets of stators and rotors are arranged along the radial direction of the rotor and the stator.
  • a magnetically permeable silicon steel and a corresponding winding coil for example, an axial and radial combination, a single-sided radial rotor-guided silicon steel can be mounted in the radial direction of the rotor in an axially single-sided or axially symmetric independent motor unit Corresponding winding coils and one-sided radial stator-guided silicon steel and winding coils are mounted at the corresponding stator positions.
  • a plurality of independent motor units in one axial section, similar to a disc motor, in which case the radial dimensions of each individual motor unit will be different, in order to obtain a constant torque output, the structure should be The size is adjusted accordingly.
  • stator field winding coil and the rotor induction field winding coil employ a multi-layer solenoid type large toroidal coil with the motor axis as the axis.
  • these coils can also be replaced by a combination of multiple sets of small coils.
  • the small coils are made into multiple sets of solenoids and are evenly distributed along the circumference of the stator and rotor.
  • the new constant output torque uniform magnetic field Another feature of the induction servo motor is that the stator excitation field of each individual motor unit is generated by a multi-layer solenoid type ring winding coil, which is surrounded by a motor stator magnetized silicon steel and a rotor-guided silicon steel.
  • the winding of the field winding coil is installed, the alternating magnetic field in the stator magnetic silicon steel and the air gap, the direction of the magnetic field line is unchanged, and the magnetic field at each point becomes larger and smaller at the same time, and does not generate a rotating excitation magnetic field or a traveling wave excitation magnetic field.
  • the rotor inductive field winding coil is similar to the stator field winding coil in that it generates a torque current in the torque winding coil by mutual inductance with the stator field winding coil.
  • the winding direction of the rotor torque winding coil is spatially perpendicular to the winding direction of the rotor induction winding winding, and the direction of the magnetic line generated by the rotor torque winding coil is along a direction of a large circle with the axis as the rotor axis.
  • the torque direction generated by the independent motor unit is related to the wiring of the rotor induction coil winding and the rotor torque winding coil.
  • the wiring can change the torque direction. Therefore, in order to drive the motor in the forward and reverse directions, the following three methods can be used: (1) Two independent motor units are used in the motor, one for forward drive and the other for reverse drive, which is equivalent to the series connection of two motors; (2) adding electromagnetic switches to the independent motor unit to exchange windings in the rotor The way the coil is wired.
  • the induction rotor control device needs to be added in the rotor of the motor to realize the control of the electromagnetic switch; (3) for the symmetrically arranged independent motor unit, the two sets of induction excitation winding coils in the rotor are connected in series in reverse, together with the rotor The rotor torque winding coil is powered, and the current phase of the rotor torque winding coil is changed by adjusting the relative magnitude of the applied voltage of the field winding coil in the stator to drive the motor in the forward and reverse directions.
  • Constant output force uniform magnetic field induction linear servo motor is the above-mentioned rotary type constant output torque uniform magnetic field
  • Rotary new constant output torque uniform magnetic field The independent motor unit of the induction servo motor is circumferentially developed, and its stator and rotor are respectively evolved into linear servo motors.
  • the primary and secondary of the independent motor unit can obtain a constant output force uniform magnetic field induction linear servo motor Independent motor unit.
  • the structural form of such an independent motor unit includes a one-sided arrangement, a symmetric arrangement, and a multi-sided arrangement.
  • Constant output force uniform magnetic field induction linear servo motor each independent motor unit, mainly consists of primary and secondary parts.
  • the primary of the independent motor unit consists of a base, primary magnetically conductive silicon steel and primary field winding windings.
  • the primary magnetic conductive silicon steel is a linear structure with a ring groove; a single-phase primary excitation winding coil is installed in the ring groove, and the winding method adopts a simple winding form similar to a solenoid; the primary magnetic conductive silicon steel is fixedly attached to the base. The motor remains stationary while it is working.
  • the independent motor unit comprises one or more primary magnetically conductive silicon steel, and the ring groove of each primary magnetically conductive silicon steel is opened on the side close to the secondary; the corresponding primary
  • the field winding coil also includes one or more sets that are respectively mounted in the ring grooves of the primary magnetically conductive silicon steel.
  • the secondary of the independent motor unit consists of a moving part, a secondary magnetically conductive silicon steel, a secondary inductive field winding coil, a secondary output force winding coil and a secondary end yoke.
  • the secondary magnetic silicon steel is formed by arranging M pieces of the same shape of silicon steel in a straight line, and a gap is left between the adjacent silicon steel members, and a linear structure having a plurality of sectional slits is formed as a whole.
  • each silicon steel member is designed with a groove so that the linear secondary magnetic conductive silicon steel integrally forms a ring groove on the side, and after the motor is assembled, the position of the annular groove is mounted on the primary magnetic conductive silicon steel.
  • the ring groove of the field winding coil corresponds to couple the primary field winding coil and the secondary inductive field winding coil.
  • each silicon steel piece is also designed with a through groove for mounting the output force winding coil.
  • the through groove and the side ring groove are perpendicular to each other, and the direction thereof is horizontal or vertical, and the arrangement of the primary magnetic conductive silicon steel and the secondary magnetic conductive silicon steel is arranged. Decide.
  • the secondary inductive field winding coil is mounted in the side ring groove of the secondary magnetically permeable silicon steel in the form of a simple winding similar to a solenoid.
  • the secondary output force winding coil is wound around each of the silicon steel members of the secondary magnetically conductive silicon steel through a through slot in the secondary magnetically conductive silicon steel member.
  • the winding direction of the secondary output force winding coil and the winding direction of the secondary inductive field winding coil are spatially perpendicular to each other.
  • the secondary magnetically permeable silicon steel is fixedly attached to the moving member, and the secondary end yoke is mounted on both ends of the secondary magnetically conductive silicon steel and is also fixed to the moving member.
  • the independent motor unit comprises one or more secondary magnetically conductive silicon steels, and the annular groove of each secondary magnetically conductive silicon steel is opened on the side close to the primary; corresponding
  • the secondary inductive field winding coil also includes one or more sets, respectively, which are mounted in the annular groove of the secondary magnetically conductive silicon steel; of course, the output force winding coil also includes one or more sets, which pass through the secondary magnetically conductive silicon steel.
  • the grooves are wound around M silicon steel members constituting the secondary magnetic conductive silicon steel.
  • constant output force uniform magnetic field induction linear servo motor There is a gap between the primary and secondary of the independent motor unit.
  • the primary magnetic silicon steel, the secondary magnetic silicon steel and the secondary end yoke are all formed by stacking silicon steel sheets.
  • the secondary inductive field winding coil is coupled to the secondary output force winding coil. Due to Constant output force uniform magnetic field induction linear servo motor
  • the independent motor unit is easy to supply power. It can adjust the primary and secondary structure of the independent motor unit and design the primary, short or short primary and long secondary structures.
  • the novel constant output torque uniform magnetic field induction servo motor proposed by the present invention The structure is simple, especially in the stator silicon steel and stator winding structure, does not use permanent magnet material, and has low manufacturing cost; no slip ring wearing parts, low maintenance cost; although the rotor winding is powered by induction, it has constant torque characteristics, similar to DC motor; the output torque control of the motor can be realized by adjusting the magnitude or frequency of the supply voltage, but the actual design of the motor can be operated by a fixed frequency power supply to select the appropriate or optimal motor operating frequency to reduce energy loss; When the magnetic induction strength of the magnetic silicon steel is not saturated and the winding resistance is neglected, the output torque of the motor is proportional to the excitation voltage of the stator, which is independent of the rotor speed, which simplifies the design of the servo controller, has high control precision and reliable operation; Axial symmetrical arrangement, easy to achieve low speed, high torque design. At the same time, the novel constant output torque uniform magnetic field induction servo motor of the present invention can
  • Figure 1 is a three-unit constant output torque uniform magnetic field induction servo motor (axially symmetrically arranged independent motor unit)
  • Figure 2 is a partial enlarged view of the three-unit constant output torque uniform magnetic field induction servo motor (axially symmetrically arranged independent motor unit)
  • Figure 3 is a three-unit constant output torque uniform magnetic field induction servo motor (axially symmetrically arranged independent motor unit) A-A cross-sectional view
  • Figure 4 is a three-unit constant output torque uniform magnetic field induction servo motor (axially symmetrically arranged independent motor unit) B-B sectional view
  • Figure 5 is a three-cell constant output torque uniform magnetic field induction Partial enlargement of the B-B section of the servo motor (axially symmetrically arranged independent motor unit)
  • Figure 6 is a three-unit constant output torque uniform magnetic field induction servo motor (axially symmetrically arranged independent motor unit) C-C cross-sectional view
  • Figure 7 is a three-unit constant output torque uniform magnetic field induction servo motor (axially symmetrically arranged independent motor unit) rotor hub and rotor silicon steel
  • Figure 8 is a three-unit constant output torque uniform magnetic field induction Servo motor (axially symmetrically arranged independent motor unit) rotor hub and rotor silicon steel D-D sectional view
  • Figure 9 is a three-cell constant output torque uniform magnetic field induction Servo motor (axially symmetrically arranged independent motor unit) stator housing and stator right magnetic silicon steel
  • Figure 10 is a three-cell constant output torque uniform magnetic field induction Servo motor (axially symmetrically arranged independent motor unit) profile view of stator shell and stator right magnetized silicon steel
  • Figure 11 is a constant output torque uniform magnetic field induction servo motor axial single-sided arrangement independent motor unit
  • Figure 12 is a partial enlarged view of the constant output torque uniform magnetic field induction servo motor axial single-sided arrangement independent motor unit
  • Figure 13 is a constant output torque uniform magnetic field induction servo motor radial single-sided arrangement independent motor unit
  • Figure 14 is a constant output torque uniform magnetic field induction servo motor radial single-sided arrangement of independent motor unit partial enlarged view
  • Figure 15 is a three-unit constant output force uniform magnetic field induction linear servo motor (symmetrically arranged independent motor unit)
  • Figure 16 is a three-unit constant output force uniform magnetic field induction linear servo motor (symmetrically arranged independent motor unit) E-E cross-sectional view
  • Figure 17 is a three-cell constant output force uniform magnetic field Sectional view of secondary output force winding coil and moving part of induction linear servo motor (symmetrically arranged independent motor unit)
  • Figure 18 is a three-cell constant output force uniform magnetic field Cross-sectional view of secondary magnetically conductive silicon steel and moving parts for induction linear servo motor (symmetrically arranged independent motor unit)
  • the rotary type constant output torque uniform magnetic field induction servo of the present invention is different due to the application place and requirements
  • the specific form and structure of the motor and its evolutionary constant output force uniform magnetic field induction linear servo motor will vary.
  • Embodiment 1 Three-unit constant output torque uniform magnetic field induction Servo motor (axially symmetrically arranged independent motor unit)
  • the constant output torque uniform magnetic field induction servo motor as shown in Figure 1, by the shaft 4, bearing 5. End cap 6 and three independent motor units.
  • the motor is powered by a fixed-frequency three-phase AC power supply. Each phase of AC power is supplied to an independent motor unit.
  • the voltage phases are 0 degrees, 120 degrees, and 240 degrees, respectively.
  • the power supply voltage frequency does not change during operation.
  • the motor output torque is controlled by adjusting the power supply voltage.
  • Each independent motor unit adopts an axially symmetric arrangement. See the stator and rotor structure. Partially enlarged Figure 2.
  • the stator of the independent motor unit is composed of the stator housing 7,
  • the stator left magnetic silicon steel 8, the stator left excitation winding coil 9, the stator right excitation winding coil 14 and the stator right magnetic silicon steel 15 are composed.
  • the stator right magnetic silicon steel 15 is the middle of the left side
  • a rectangular cross-section circular ring having a ring groove is fixedly attached to the stator casing 7, as shown in Figs. 9 and 10; the left-side magnetic silicon steel 8 of the stator and the right-side magnetic silicon steel 15 of the stator are basically the same, and the difference is that the ring groove is open. Right side.
  • stator right field winding coil 14 and the stator left field winding coil 9 are respectively mounted on the ring groove of the stator right magnetic silicon steel 15 and the stator left magnetic silicon steel 8 As shown in FIG. 6, and coupled to the rotor right inductive field winding coil 13 and the rotor left inductive field winding coil 10, respectively, see FIG.
  • the rotor of the independent motor unit is composed of the rotor hub 3, Rotor left magnetic silicon steel 11, rotor right magnetic silicon steel 12, rotor left inductive winding coil 10, rotor right inductive winding coil 13, rotor outer torque winding coil 1 and rotor inner torque winding coil 2 composition, see Figure 1 and Figure 2.
  • the rotor is integrally mounted on the motor shaft 4 via the rotor hub 3.
  • the rotor left magnetic silicon steel 11 and the rotor right magnetic silicon steel 12 are respectively composed of eight silicon steel members, and eight silicon steel members are along the rotor hub 3
  • the circumference is evenly distributed and fixed to the rotor hub 3, leaving a gap between adjacent silicon steel members, see Figures 7 and 8.
  • Each silicon steel piece Geometrically, it can be seen that two rectangular cross-section fan-ring columns are connected in a radial direction.
  • the connecting portion between the inner and outer fan-ring columns is also a rectangular-section fan-ring column with a fan-shaped angle and an axis with respect to the rotor axis. The thickness is small.
  • the outer and inner fan ring columns will form a rectangular cross-section circular column with eight air gaps along the circumference, because the circumferential dimension is smaller than the circumference of the circumference.
  • the eight fan-ring columns are also evenly arranged, connecting the two rectangular cross-section circular columns inside and outside. Due to the small fan angle of the intermediate fan ring column, eight axial fan-shaped through grooves are formed between the inner and outer annular posts, and because of the small axial thickness, The right side of the rotor left magnetized silicon steel 11 forms a ring groove, and a ring groove is formed on the left side of the rotor right magnetized silicon steel 12.
  • the structural characteristics of the left and right magnetically permeable silicon steels of the rotor are that there are ring grooves in the middle of the left and right sides of the left side, respectively, and they are The gap is a symmetrical line with eight identical fan-shaped axial through-grooves. Eight fan-shaped axial through-grooves and two inner and outer rectangular-section fan-ring columns are formed on the left and right magnetically conductive silicon steels of the rotor. See Figures 7 and 8.
  • the rotor left inductive field winding coil 10 and the rotor right inductive field winding coil 13 are respectively mounted in the ring grooves of the rotor left magnetizing silicon steel 11 and the rotor right magnetizing silicon steel 12, as shown in Figs. 2 and 3.
  • Rotor outer torque winding coil 1 And the inner rotor torque winding coil 2 respectively comprises eight sets of coils, which pass through the rotor to the left and right magnetized silicon steel as a whole Eight fan-shaped axial axial grooves are respectively wound around the outer inner rectangular section fan ring of the rotor-guided silicon steel, see Figures 2, 3, 4, and 5.
  • 4, 5 are the rotor outer torque winding coil 1 and the rotor inner torque winding coil 2 sectional view showing the relationship between them and the outer inner rectangular section of the rotor-guided silicon steel, the winding direction and The winding directions of the left and right induction field winding coils 10, 13 of the rotor are spatially perpendicular to each other, see Figs. 2 and 3.
  • the rotor left inductive winding coil 10 and the rotor right inductive winding coil 13 are connected in series, and are connected to the rotor outer torque winding coil 1 and the in-torque torque winding coil 2.
  • Embodiment 2 Four-unit constant output torque uniform magnetic field induction Servo motor (axial single-sided independent motor unit)
  • the servo motor is similar to the first embodiment.
  • the main difference is that the structure of the independent motor unit and the number of units are different. Therefore, the structure of the independent motor unit adopted in this embodiment will be mainly described below.
  • the constant output torque uniform magnetic field induction servo motor is made up of shaft 4, bearing 5. End cap 6 and four independent motor units.
  • the motor is powered by a fixed-frequency four-phase AC. Each phase of AC power is supplied to an independent motor unit.
  • the voltage phases are 0, 90, 180, and 270 degrees.
  • the voltage of the power supply voltage is constant during operation.
  • the motor is controlled by adjusting the power supply voltage. Output torque.
  • the four independent motor units have the same structure and adopt an axial one-side arrangement type, as shown in Fig. 11, and Fig. 12 is a partial enlarged view thereof.
  • the stator of the independent motor unit is composed of a stator housing 7, a stator left-directed magnetic silicon steel 8, and a stator left-excending winding coil 9.
  • the stator left magnetic silicon steel 8 is fixed at On the stator casing 7, the stator left field winding coil 9 is mounted in the right ring groove of the stator left magnetized silicon steel 8, which corresponds to the stator of the independent motor unit in the first embodiment.
  • the rotor of the independent motor unit is composed of a rotor hub 3, a rotor left magnetic silicon steel 11, a rotor left induction coil winding 10, and a rotor outer torque winding coil 1 And the torque winding coil 2 in the rotor.
  • the rotor left magnetic silicon steel 11 is fixed at
  • the rotor hub 3 is also composed of eight pieces of silicon steel, and there is a gap between adjacent silicon steel members after installation, which is the same as that of the implementation 1.
  • the rotor in this embodiment is different from the embodiment 1 in that the rotor-guided silicon steel is composed only of the left-side magnetic silicon steel of the rotor. There is no rotor right magnetized silicon steel part.
  • Rotor left induction field winding coil 10, rotor outer torque winding coil 1 and rotor inner torque winding coil 2 in rotor The mounting method on the magnetic silicon steel is the same as in the first embodiment.
  • the rotor is connected to the motor shaft 4 through the rotor hub 3 to output torque.
  • Embodiment 3 Two-unit constant output torque uniform magnetic field induction Servo motor (axially symmetrically arranged independent motor unit)
  • the present constant output torque uniform magnetic field induction servo motor is a synthesis and simplification of Embodiment 1 and Embodiment 2.
  • the constant output torque uniform magnetic field induction servo motor is composed of shaft 4, bearing 5, end cover 6 and two independent motor units.
  • the motor is powered by four independent motor units with fixed frequency four-phase alternating current, and the alternating current voltage phases are 0 degrees, 90 degrees, 180 degrees, and 270 degrees, respectively, and the power supply voltage frequency does not change during operation.
  • the output torque characteristics of the 0 degree and 180 degree independent motor units are the same, the output torque characteristics of the independent motor units of 90 degrees and 270 degrees are the same, so this embodiment is simplified to the two unit constant torque using two independent motor units. Induction servo motor with a power supply difference of 90 degrees.
  • the independent motor unit adopts an axially symmetric arrangement type, and the specific structure of the unit is shown in Embodiment 1.
  • Embodiment 4 Three-unit constant output torque uniform magnetic field induction Servo motor (radial one-side independent motor unit)
  • the servo motor is similar to that of Embodiment 2.
  • the main difference is that the structure of the independent motor unit and the number of units are different. Therefore, the structure of the independent motor unit adopted in this embodiment will be mainly described below.
  • the constant output torque uniform magnetic field induction servo motor is made up of shaft 4, bearing 5. End cap 6 and three independent motor units.
  • the motor is powered by a fixed-frequency three-phase AC power supply. Each phase of AC power is supplied to an independent motor unit.
  • the voltage phases are 0 degrees, 120 degrees, and 240 degrees, respectively.
  • the power supply voltage frequency does not change during operation.
  • the motor output torque is controlled by adjusting the power supply voltage.
  • the three independent motor units have the same structure and adopt a radial one-side arrangement type, as shown in Fig. 13, which is a partial enlarged view thereof.
  • the stator of the independent motor unit is composed of a stator housing 7, a stator magnetizing silicon steel 16, and a stator field winding coil 17.
  • Stator magnetically permeable silicon steel 16 is fixed at On the stator casing 7, the stator-guided silicon steel 16 is a rectangular-section circular ring with a ring groove in the middle of the stator, and the stator field winding coil 17 is mounted in the inner ring groove of the stator-guided silicon steel 16, as shown in Figs.
  • the rotor of the independent motor unit is composed of the rotor hub 3,
  • the rotor magnetically conductive silicon steel 20, the rotor induced excitation winding coil 19, the rotor left torque winding coil 18 and the rotor right torque winding coil 21 are composed.
  • the rotor-guided silicon steel 20 is fixed at
  • the rotor hub 3 is also composed of eight pieces of silicon steel, and there is a gap between adjacent silicon steel members after installation, similar to that of the second embodiment.
  • the rotor in this embodiment differs from the second embodiment in that the ring groove of the rotor-guided silicon steel 20 formed after the rotor-guided silicon steel member is installed is in the middle of the radial outer side, and the intermediate groove is also in the radial direction and has a rectangular cross section. Fan-shaped hole, which is guided by the rotor
  • the two sets of rectangular section fan ring columns formed on the magnetic silicon steel 20 are respectively located on the left and right sides of the rotor magnetic conductive silicon steel 20, and the structural type can be regarded as the structure in which the rotor magnetic silicon steel shaft section of the second embodiment is rotated by 90 degrees.
  • the rotor induced field winding coil 19 is mounted in the intermediate outer annular groove of the rotor magnetized silicon steel 20 as shown in Figs.
  • the rotor left torque winding coil 18 and the rotor right torque winding coil 21 respectively comprise eight sets of coils which are passed through the rotor to the magnetized silicon steel 20
  • Eight fan-shaped radial through grooves are respectively wound around the left and right rectangular cross section fan ring of the rotor magnetic silicon steel.
  • Embodiment 5 Three-unit constant output force uniform magnetic field induction linear servo motor (symmetrically arranged independent motor unit)
  • the constant output force uniform magnetic field induction linear servo motor is shown in Figure 15, mainly by the guide rail 35 It consists of three independent motor units.
  • the motor is powered by a fixed frequency three-phase alternating current. Each phase of alternating current is supplied to an independent motor unit.
  • the voltage phases are 0 degrees, 120 degrees and 240 degrees respectively.
  • the power supply voltage frequency is constant during operation.
  • the output power is controlled by adjusting the power supply voltage. .
  • the three independent motor units have the same structure, as shown in Figures 15, 16, 17, and 18, each of which has a symmetric arrangement.
  • the susceptor 34, the primary left-lead magnetic silicon steel 23, the primary right-guided magnetic silicon steel 26, the primary left-excending winding coil 27, and the primary right-exciting winding coil 30 are as shown in FIG. .
  • the primary left-lead magnetic silicon steel 23 and the primary right-directing magnetic silicon steel 26 are fixed to the base 34.
  • the primary left-lead magnetic silicon steel 23 and the primary right-guided magnetic silicon steel 26 are long columns of rectangular cross section, and a ring groove of a rectangular cross section is opened on one side to mount the corresponding field winding coil.
  • the ring groove of the primary left-lead magnetic silicon steel 23 is open On the right side, the ring groove of the primary right-lead magnetic silicon steel 26 is opened on the left side.
  • the primary left field winding coil 27 and the primary right field winding coil 30 are mounted in the ring grooves of the primary left-side magnetized silicon steel 23 and the primary right-guided magnetized silicon steel 26, respectively, as shown in Figs.
  • the secondary of the independent motor unit including the moving parts 22, Secondary left-lead magnetic silicon steel 24, secondary right-directed magnetic silicon steel 25, secondary left-inductive field winding coil 28, secondary right-inductive field winding coil 29, secondary lower output force winding coil 31, secondary medium-output force winding coil 32 and the secondary upper output force winding coil 33 and the secondary end yoke 36, etc.
  • the secondary left-guide magnetized silicon steel 24 and the secondary right-guided magnetized silicon steel 25 are fixed to the moving member 22.
  • the secondary left-lead magnetic silicon steel 24 and the secondary right-directed magnetic silicon steel 25 are similar in structure, and are composed of ten silicon steel members. The main difference is that the ring grooves on which the inductive field winding coils are mounted are on different sides, as shown in FIG.
  • Each silicon steel piece can be regarded as a vertical stack of five cuboids, wherein the outermost two cuboids are the same size; the middle one cuboid is thicker, the other dimensions are the same as the outermost two cuboids; the other two A narrow rectangular parallelepiped connects the outermost and middle three cuboids, similar to the 'king' shape, but due to the smaller length of the connecting two cuboids in the middle, four through grooves are formed in the silicon steel member, such as Figure 18 shows. These four slots for installation The upper, middle and lower sets of output power winding coils.
  • the secondary left inductive field winding coil 28 and the secondary right inductive field winding coil 29 are mounted on the secondary left magnetized silicon steel 24 and the secondary right magnetized silicon steel 25, respectively. In the ring groove, it is coupled to the primary left field winding coil 27 and the primary right field winding coil 30, respectively, as shown in FIG.
  • Secondary upper output force winding coil 33, secondary medium output force winding coil 32 and The secondary lower output force winding coils 31 respectively comprise ten sets of coils which are wound around the outermost and middle portions of each of the silicon steel members of the secondary magnetically conductive silicon steel through the through slots on the secondary left and right magnetically conductive silicon steel.
  • FIG. 17 is a secondary upper output force winding coil 33, a secondary intermediate output force winding coil 32, and a secondary lower output force winding coil.
  • 31 and the arrangement of the moving member 22, and Fig. 18 is a layout view of the secondary magnetic silicon steel 24 and the moving member 22 and the secondary end yoke 36.
  • Figure 17 and Figure 18 show the secondary output force winding coil The relationship between the five cuboids of each silicon steel piece of the secondary left-lead magnetic silicon steel, the winding direction of the secondary output force winding coils 31, 32, 33 and The winding directions of the secondary left and right induction field winding coils 28, 29 are spatially perpendicular to each other.
  • the left inductive field winding coil 28 and the secondary right inductive field winding coil 29 are connected in series, and are connected to the secondary upper output force winding coil 33, the secondary intermediate output force winding coil 32, and the secondary lower output force winding coil 31.
  • the primary magnetic silicon steel, the secondary magnetic silicon steel and the secondary end yoke are all formed by stacking silicon steel sheets.
  • Embodiment 6 Three-unit constant output force uniform magnetic field induction linear servo motor (symmetrically arranged independent motor unit)
  • Example 5 The primary and secondary exchanges in Example 5 were exchanged while maintaining a long primary, short secondary structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Induction Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种恒力恒扭矩均匀磁场感应伺服电机,属于交流感应伺服电机技术领域,特别涉及到恒输出扭矩均匀磁场感应伺服电机和恒输出力均匀磁场感应直线伺服电机,主要特征是:由N个独立电机单元组成;每个独立单元结构相同或相似,通过单相交变电流供电;N个单元的供电电压大小相等但相位成等差数列。回转电机独立单元的定子导磁硅钢结构简单;励磁绕组类似螺线管,绕线方式简单;转子绕组通过感应供电,没有滑环易损件;电机可工作在固定供电电压频率下,输出扭矩与供电电压成正比,通过调节电压幅值来控制。这种恒输出扭矩均匀磁场感应伺服电机不采用永磁材料,结构简单,扭矩特性好,控制器设计简单,控制精度高,而且可设计成基于相同原理的恒输出力均匀磁场感应直线伺服电机型式。

Description

一类新型恒力恒扭矩均匀磁场感应伺服电机
技术领域
本发明属于感应电机技术领域,涉及到交流感应伺服电机,特别涉及到一类基于全新设计原理的、新型恒力恒扭矩均匀磁场感应伺服电机,包括回转式新型恒输出扭矩均匀磁场感应 伺服 电机和新型恒输出力均匀磁场感应直线伺服电机。
背景技术
伺服电机是机电能量转换的电磁机械装置,其主要特征是这种电机的输出扭矩或速度可以被快速精确地控制。根据使用要求和电源的不同,可分为直流伺服电机、交流同步伺服电机和交流感应伺服电机等。
直流伺服电机具有调速性好、启动转矩大和控制系统简单的优点,但结构复杂、制造成本高、维护费用高、可靠性差。
交流同步伺服电机结构型式有两种:一是交流永磁同步伺服电机,转子采用永磁材料产生高密度永磁场,但需要短缺的稀土资源;二是交流绕线转子同步伺服电机,转子通过励磁产生磁场,但需要外加励磁电源,通过滑环引入电流,所以结构复杂,制造成本高、维护费用高。
交流感应伺服电机也被称为交流异步伺服电机,结构简单,制造方便,运行可靠,最大的缺陷是控制器复杂、低速扭矩特性差、控制精度低。
本发明公开了 一类基于全新设计原理的、新型恒力恒扭矩均匀磁场感应伺服电机,包括回转式新型恒输出扭矩均匀磁场感应 伺服 电机和新型恒输出力均匀磁场感应直线伺服电机。其中恒输出力均匀磁场感应直线伺服电机是回转式恒输出扭矩均匀磁场感应 伺服 电机的变形型式。这一类新型电机不采用一般交流伺服电机的旋转磁场或行波磁场原理,其主要优点是:没有滑环等易损件,维护费用低;定子(初级)绕线和结构简单,转子(次级)不采用永磁材料,因此不需要稀土等高昂短缺资源,制造成本低;采用交流电源供电,电源可工作在固定频率上,仅通过调节电源电压,就能实现电机要求的精确扭矩输出或力输出;控制系统不采用现在交流感应伺服电机的矢量控制原理,且由于电机工作时采用固定频率电源供电,电机控制系统类似于直流伺服电机控制系统,设计简单。
本发明公开的回转式新型恒输出扭矩均匀磁场感应 伺服 电机和恒输出力均匀磁场感应直线伺服电机,至今国内外未见任何相关报道、文献和专利发表。
发明内容
为了 解决目前伺服 电机或结构复杂、维护费用高、可靠性差;或需要稀土等短缺资源、制造成本高;或调速性能差、控制系统复杂等问题 ,本发明公开了 一类基于全新设计原理的、新型恒力恒扭矩均匀磁场感应伺服电机,包括回转式新型恒输出扭矩均匀磁场感应 伺服 电机和新型恒输出力均匀磁场感应直线伺服电机。
本发明解决技术问题采用的技术方案如下:
本发明公开的 一类基于全新设计原理的、新型恒力恒扭矩均匀磁场感应伺服电机,包括回转式新型恒输出扭矩均匀磁场感应 伺服 电机和新型恒输出力均匀磁场感应直线伺服电机,它们基于相同的原理。其中恒输出力均匀磁场感应直线伺服电机 是回转式 恒输出扭矩均匀磁场 感应伺服电机的演变形式。下面首先详细阐述 新型恒输出扭矩均匀磁场感应 伺服 电机的 技术方案 。
本发明公开的 新型 恒输出 扭矩 均匀磁场 感应伺服电机 ,属于 回转式电机, 其特征是: 电机由N个独立的电机单元、轴、轴承、端盖及冷却系统组成。其中每个独立电机单元通过单相交变电流供电,这些单元的供电电压大小相等,但电压相位成等差数列,公差为360度/N或180度/N。理论上实现恒扭矩输出要求N大于等于3,例如令公差为360度/N,则当N=3时,3个独立电机单元的交流供电电压相位分别为0度、120度和240度,与目前三相交流供电的电压相位一致。然而,当N=4时,4个独立电机单元交流供电电压相位分别为0度、90度、180度和270度,但其中电压相位为0度和180度的两个独立电机单元输出特性相同,90度和270度的两个独立电机单元输出特性相同,所以输出特性相同的两个独立电机单元供电电源可简单地通过交换接线来实现,这样N=4时的电机也可退化为采用两个独立电机单元的结构型式。因此,本发明公开的 新型恒输出扭矩均匀磁场感应 伺服 电机 结构型式上包括两个以上独立电机单元的情况。
每个独立电机单元结构相同,主要包括定子和转子两部分。
其中,定子由定子外壳、定子导磁硅钢、定子励磁绕组线圈组成。定子导磁硅钢由硅钢片叠合而成,形状是开有环槽的圆环柱。定子励磁绕组线圈类似多层螺线管型式,安装在定子导磁硅钢的环槽中。定子外壳和定子导磁硅钢固连,电机工作时保持固定不动。
当定子励磁绕组线圈通过单相交变电流时,在定子导磁硅钢中围绕定子励磁绕组线圈将产生单相交变磁通,单相交变磁通通过定子和转子之间的气隙和转子导磁硅钢闭合。按照定子导磁硅钢和转子导磁硅钢间气隙与转子回转轴的相互位置关系,独立电机单元结构型式可分为轴向布置和径向布置两大类。进一步地,轴向布置和径向布置的独立电机单元又分别可细分为单侧布置和对称布置两种结构型式。
轴向单侧布置型式的定子:沿电机轴方向,相对于转子导磁硅钢,定子导磁硅钢布置在左侧或右侧。当定子导磁硅钢布置在左侧时,定子导磁硅钢上的环槽在右侧;当定子导磁硅钢布置在右侧时,定子导磁硅钢上的环槽在左侧。定子励磁绕组线圈安装在定子导磁硅钢的环槽中。
轴向对称布置型式的定子:是在转子导磁硅钢的两侧分别布置定子导磁硅钢,分别被称为定子左导磁硅钢和定子右导磁硅钢。定子左导磁硅钢上的环槽在右侧,定子右导磁硅钢上的环槽在左侧,是上述两种轴向单侧布置型式定子的结合。这时,定子励磁绕组线圈有两组,分别安装在定子左右导磁硅钢的环槽中。
径向单侧布置型式的定子:相对于转子轴线,定子导磁硅钢布置在转子导磁硅钢的内侧或外侧。当定子导磁硅钢布置在外侧时,定子导磁硅钢上的环槽在内侧;当定子导磁硅钢布置在内侧时,定子导磁硅钢上的环槽在外侧。这种布置,结构上类似于普通交流电机的内、外转子型式,但它们有本质的区别,不同之处表现在,本电机单元的定子导磁硅钢上安装单相绕组,绕线方式是类似于螺线管的简单绕线型式。
径向对称布置型式的定子:相对于转子轴线,是在转子导磁硅钢的内外侧分别布置定子导磁硅钢,分别被称为定子内导磁硅钢和定子外导磁硅钢。定子内导磁硅钢上的环槽在外侧,定子外导磁硅钢上的环槽在内侧,是上述两种径向单侧布置型式定子的结合。这时,定子励磁绕组线圈有两组,分别安装在定子内外导磁硅钢的环槽中。但这种情况下电机转子整体结构应设计成杯型,以便输出运动。
其中,转子由转子轮毂、转子导磁硅钢、转子感应励磁绕组线圈、转子扭矩绕组线圈组成。其中转子导磁硅钢是由M个硅钢件沿圆周均匀布置构成,每个硅钢件形状相同,相邻硅钢件之间有间隙,整体形状类似有多个缝隙的圆环柱。每个硅钢件在圆周方向上都开有槽,以使转子导磁硅钢整体上形成环槽,环槽的位置与定子导磁硅钢上安装定子励磁绕组线圈的环槽相对应。根据独立电机单元结构布置方式不同,每个硅钢件在圆周方向上的槽位置也不同,或开在径向内外的圆柱面上,或开在轴向两侧的端平面上。同时,每个硅钢件在中部还设计有通槽,其方向与环槽垂直且根据电机单元结构布置方式不同,或设计在径向方向或设计在轴向方向,用于安装转子扭矩绕组线圈;转子感应励磁绕组线圈采用类似于螺线管的简单绕线形式,安装在转子导磁硅钢的环槽中。转子扭矩绕组线圈通过转子导磁硅钢上的通槽绕在转子导磁硅钢上。转子导磁硅钢固连在转子轮毂上,电机工作时转子导磁硅钢、转子轮毂和轴一起转动。
轴向单侧布置型式的转子:转子导磁硅钢中的每个硅钢件,几何上可描述为由多层扇形角相同的矩形截面扇环柱沿径向连接而成,相邻两层矩形截面扇环柱中间的连接部分为一处或多处,每个起连接作用的连接体形状为扇环柱或一般柱体,尺寸较小。相对于转子轴线,每个硅钢件内外两侧为矩形截面扇环柱,硅钢件中间为起连接作用的连接体和矩形截面扇环柱交替排列;由于每个中间连接体尺寸较小,其轴向厚度和相对于转子轴线形成的扇形角都较小,会在每个硅钢件上形成多个轴向通槽和沿圆周方向的长槽。M个硅钢件沿圆周均匀布置,多层矩形截面扇环柱形成沿圆周有M个气隙的多层矩形截面圆环柱,在相邻两层圆环柱之间由连接体形成多个轴向通槽,并在左侧或右侧形成环槽。转子感应励磁绕组线圈安装在环槽中。转子扭矩绕组线圈通过转子导磁硅钢上多层圆环柱之间的通槽,分别绕在转子导磁硅钢的多层圆环柱上,形成转子内外多组扭矩绕组线圈。
轴向对称布置型式的转子:转子导磁硅钢相当于是将两个轴向单侧布置的转子导磁硅钢合并、共同安装在一个转子轮毂上,它们相对垂直于转子轴线的转子轮毂对称面成镜像关系,分别被称作转子左导磁硅钢和转子右导磁硅钢。转子左导磁硅钢上安装转子左感应励磁绕组线圈的环槽在左侧,与安装定子左励磁绕组线圈的定子左导磁硅钢上的环槽相对应。转子右导磁硅钢上安装转子右感应励磁绕组线圈的环槽在右侧,与安装定子右励磁绕组线圈的定子右导磁硅钢上的环槽相对应。转子感应励磁绕组线圈有两组,分别安装在转子左右导磁硅钢的环槽中。转子扭矩绕组线圈通过多层圆环柱之间的通槽,分别绕在转子左右导磁硅钢的多层圆环柱上,形成转子内外多组扭矩绕组线圈。这种情况下,转子内外多组扭矩绕组线圈,相当于是两个轴向单侧布置的转子内外多组扭矩绕组线圈分别合并的结果。
径向单侧布置型式的转子:转子导磁硅钢中的每个硅钢件,几何上可描述为多层扇形角相同的矩形截面扇环柱沿轴向连接而成,中间连接部分为一处或多处,每个起连接作用的连接体其形状为扇环柱或一般柱体,尺寸较小。沿转子轴线,每个硅钢件的左右两侧为矩形截面扇环柱,硅钢件中间为起连接作用的连接体和矩形截面扇环柱交替排列;由于每个中间连接体尺寸较小,其径向厚度和相对于转子轴线形成的扇形角都较小,会在组成硅钢件的相邻矩形截面扇环柱之间形成多个径向通槽,并在外侧或内侧沿圆周形成一个或多个长槽。M个硅钢件沿圆周均匀布置在轮毂上后,硅钢件的多层矩形截面扇环柱形成沿圆周有M个气隙的多层矩形截面圆环柱,同时连接体在多层圆环柱之间形成多个径向通槽,并在外侧或内侧形成环槽。转子感应励磁绕组线圈安装在环槽中。转子扭矩绕组线圈通过转子导磁硅钢上多层圆环柱之间的通槽,分别绕在转子导磁硅钢的多层圆环柱上,形成转子左中右扭矩绕组线圈。
径向对称布置型式的转子:采用径向对称布置型式独立电机单元的电机,结构设计上属于内外双定子电机,电机转子整体结构需设计成杯型。转子导磁硅钢,可以看做是将两个径向单侧布置的转子导磁硅钢分别安装在转子杯的内外侧,分别被称作转子内导磁硅钢和转子外导磁硅钢。转子内外导磁硅钢的硅钢件数相同,径向对称面相同。转子外导磁硅钢上安装转子外感应励磁绕组线圈的环槽在外侧,转子内导磁硅钢上安装转子内感应励磁绕组线圈的环槽在内侧。转子内外导磁硅钢上的环槽分别与定子内外导磁硅钢上的环槽对应。转子感应励磁绕组线圈有两组,分别安装在转子内外导磁硅钢的环槽中。转子扭矩绕组线圈通过转子导磁硅钢上多层圆环柱之间的径向通槽,分别绕在转子内外导磁硅钢的多层圆环柱上,形成转子左中右扭矩绕组线圈。这种情况下,转子左中右扭矩绕组线圈,相当于是两个径向单侧布置的转子左中右扭矩绕组线圈分别合并的结果。
至此,已阐述了回转式 新型恒输出扭矩均匀磁场感应 伺服 电机 独立电机单元的基本结构型式和组成,包括轴向单侧布置、轴向对称布置、径向单侧布置和径向对称布置等四种。这四种基本结构型式也可以进行组合,包括轴向和轴向组合、径向和径向组合、轴向和径向组合等。例如轴向和轴向组合,为增加扭矩,对于轴向单侧布置或轴向对称布置的独立电机单元,加大转子和定子的直径,并沿转子和定子的径向布置多组定子、转子导磁硅钢和相应的绕组线圈;例如轴向和径向组合,可在轴向单侧布置或轴向对称布置的独立电机单元的转子径向方向上,安装单侧径向转子导磁硅钢和相应的绕组线圈,并在对应的定子位置安装单侧径向定子导磁硅钢和绕组线圈。另外,为了减小轴向尺寸,也可以将多个独立电机单元布置在一个轴截面内,类似盘式电机,这时每个独立电机单元径向尺寸将不同,为了获得恒扭矩输出,应对结构尺寸作相应调整。
在独立电机单元的基本结构型式中,定子励磁绕组线圈和转子感应励磁绕组线圈采用以电机轴线为轴线的多层螺线管型式的大环形线圈。当然,这些线圈也可以采用多组小线圈组合的结构型式来代替,将小线圈制成多组螺线管型式,并沿定子和转子导磁硅钢圆周均匀分布安装。
本新型恒输出扭矩 均匀磁场 感应伺服电机的另一特征是,在单相交流电源供电下,每个独立电机单元的定子励磁磁场是由多层螺线管式环形绕组线圈产生,电机定子导磁硅钢和转子导磁硅钢围绕励磁绕组线圈的绕组安装,定子导磁硅钢和气隙中的交变磁场,磁力线方向不变,各点的磁场同时变大同时变小,不产生旋转励磁磁场或行波励磁磁场。转子导磁硅钢上缠有两类线圈,一类是转子感应励磁绕组线圈,另一类是转子扭矩绕组线圈。转子感应励磁绕组线圈与定子励磁绕组线圈类似,它通过和定子励磁绕组线圈互感在扭矩绕组线圈内产生扭矩电流。转子扭矩绕组线圈绕线方向空间上与转子感应励磁绕组线圈绕线方向相垂直,转子扭矩绕组线圈产生的磁力线方向是沿以轴线为转子轴线的大圆方向。
独立电机单元产生的扭矩方向与转子感应励磁绕组线圈和转子扭矩绕组线圈的接线有关,交换接线即可改变扭矩方向,因此为了实现电机的正反方向驱动,可采用如下三种方法,(1)电机中采用两组独立电机单元,一组实现正转驱动,另一组实现反转驱动,这相当于两个电机的串联;(2)在独立电机单元中增加电磁开关,以交换转子中绕组线圈的接线方式。这时电机转子中需要增加感应控制装置,以实现对电磁开关的控制;(3)对于对称布置的独立电机单元,将转子中的两组感应励磁绕组线圈串联反向连接,一起为转子中的转子扭矩绕组线圈供电,同时通过调整定子中的励磁绕组线圈施加电压的相对大小,来改变转子扭矩绕组线圈的电流相位,实现电机正反方向驱动。
基于前已述及的回转式新型恒输出扭矩 均匀磁场 感应伺服电机,下面阐述 恒输出力均匀磁场感应直线伺服电机的 技术方案 。
恒输出力均匀磁场感应直线伺服电机 是上述回转式新型恒输出扭矩 均匀磁场 感应伺服电机的演变型式。将回转式新型恒输出扭矩 均匀磁场 感应伺服电机的独立电机单元沿圆周展开,将其定子和转子分别演变为 直线伺服电机 独立电机单元的初级和次级,便可得到 恒输出力均匀磁场感应直线伺服电机的 独立电机单元。根据初级和次级的相对位置关系,这种独立电机单元的结构型式包括单侧布置、对称布置和多侧布置等。
恒输出力均匀磁场感应直线伺服电机 的每个独立电机单元,主要包括初级和次级两部分。
独立电机单元的初级,由基座、初级导磁硅钢和初级励磁绕组线圈组成。初级导磁硅钢是开有环槽的直线型结构;环槽中安装单相初级励磁绕组线圈,绕线方式采用类似于螺线管的简单绕线形式;初级导磁硅钢固连在基座上,电机工作时保持固定不动。根据单侧布置、对称布置或多侧布置的单元结构类型,独立电机单元包括一个或多个初级导磁硅钢,每个初级导磁硅钢的环槽开在靠近次级的一侧;相应的初级励磁绕组线圈也包括一组或多组,分别安装在初级导磁硅钢的环槽中。
独立电机单元的次级,由移动件、次级导磁硅钢、次级感应励磁绕组线圈、次级输出力绕组线圈和次级端部磁轭组成。次级导磁硅钢是由M个形状相同的硅钢件排列在一条直线上构成的,且相邻硅钢件之间留有间隙,整体上形成具有多个截面缝隙的直线型结构。在直线型结构侧面上,每个硅钢件上设计有槽,以使直线型次级导磁硅钢整体上在侧面形成环槽,在电机装配后,该环槽的位置与初级导磁硅钢上安装励磁绕组线圈的环槽相对应,以便使初级励磁绕组线圈和次级感应励磁绕组线圈相耦合。同时,每个硅钢件上还设计有用于安装输出力绕组线圈的通槽,通槽和侧面环槽相互垂直,其方向或水平或垂直,由初级导磁硅钢和次级导磁硅钢的布置方式决定。次级感应励磁绕组线圈安装在次级导磁硅钢的侧面环槽中,采用类似于螺线管的简单绕线形式。次级输出力绕组线圈通过次级导磁硅钢件上的通槽,缠绕在次级导磁硅钢的每个硅钢件上。次级输出力绕组线圈的缠绕方向和次级感应励磁绕组线圈的绕线方向在空间上相互垂直。次级导磁硅钢固连在移动件上,次级端部磁轭安装在次级导磁硅钢的两端,也固连在移动件上。根据单侧布置、对称布置或多侧布置的单元结构类型,独立电机单元包括一个或多个次级导磁硅钢,每个次级导磁硅钢的环槽开在靠近初级的一侧;相应的次级感应励磁绕组线圈也包括一组或多组,分别安装在次级导磁硅钢的环槽中;当然,输出力绕组线圈也包括一组或多组,通过次级导磁硅钢上的通槽缠绕在构成次级导磁硅钢的M个硅钢件上。
其中, 恒输出力均匀磁场感应直线伺服电机 独立电机单元的初级和次级之间留有间隙。初级导磁硅钢、次级导磁硅钢和次级端部磁轭都由硅钢片叠加而成。次级感应励磁绕组线圈与次级输出力绕组线圈连接。由于 恒输出力均匀磁场感应直线伺服电机 独立电机单元供电方便,可以将独立电机单元的初级和次级结构对调,并设计成长初级、短次级或短初级、长次级结构。
至此,本发明的回转式 新型恒输出扭矩均匀磁场感应 伺服 电机及其演变的恒输出力均匀磁场感应直线伺服电机 的技术方案已阐述完毕。
总之, 本发明 提出的 新型恒输出扭矩均匀磁场感应 伺服 电机 , 结构简单,特别表现在定子硅钢和定子绕组结构上,不采用永磁材料,制造成本低;没有滑环易损件,维护费用低;转子绕组虽通过感应供电,但具有恒扭矩特性,类似于直流电机;通过调节供电电压大小或频率都能实现电机输出扭矩控制,但实际设计电机可采用固定频率电源供电的工作方式,以便选择合适或最佳的电机工作频率,降低能量损耗;在定子转子导磁硅钢磁感应强度不饱和及忽略绕线电阻的情况下,电机输出扭矩与定子励磁电压成正比,与转子转速无关,简化了伺服控制器设计,控制精度高,工作可靠;电机的 轴向对称布置型式, 易实现低速、大扭矩设计。同时,本发明的新型恒输出扭矩均匀磁场感应 伺服 电机,也可演变为基于相同原理的恒输出力均匀磁场感应直线伺服电机 。
附图说明
图 1是 三单元恒输出扭矩 均匀磁场感应 伺服电机(轴向对称布置独立电机单元)
图2 是 三单元恒输出扭矩 均匀磁场感应 伺服电机(轴向对称布置独立电机单元)局部放大图
图 3 是 三单元恒输出扭矩 均匀磁场感应 伺服电机(轴向对称布置独立电机单元)A-A剖视图
图4 是 三单元恒输出扭矩 均匀磁场感应 伺服电机(轴向对称布置独立电机单元)B-B剖面图
图 5 是 三单元恒输出扭矩 均匀磁场感应 伺服电机(轴向对称布置独立电机单元)B-B剖面局部放大图
图 6 是 三单元恒输出扭矩 均匀磁场感应 伺服电机(轴向对称布置独立电机单元)C-C剖视图
图7 是 三单元恒输出扭矩 均匀磁场感应 伺服电机(轴向对称布置独立电机单元)转子轮毂和转子硅钢
图8 是 三单元恒输出扭矩 均匀磁场感应 伺服电机(轴向对称布置独立电机单元)转子轮毂和转子硅钢D-D剖视图
图9 是 三单元恒输出扭矩 均匀磁场感应 伺服电机(轴向对称布置独立电机单元)定子外壳和定子右导磁硅钢
图10 是 三单元恒输出扭矩 均匀磁场感应 伺服电机(轴向对称布置独立电机单元)定子外壳和定子右导磁硅钢剖面图
图11 是 恒输出扭矩 均匀磁场感应 伺服电机轴向单侧布置独立电机单元
图12 是 恒输出扭矩 均匀磁场感应 伺服电机轴向单侧布置独立电机单元局部放大图
图13 是 恒输出扭矩 均匀磁场感应 伺服电机径向单侧布置独立电机单元
图14是恒输出扭矩 均匀磁场感应 伺服电机径向单侧布置独立电机单元局部放大图
图15是三单元恒输出力 均匀磁场 感应直线伺服电机(对称布置独立电机单元)
图16是三单元恒输出力 均匀磁场 感应直线伺服电机(对称布置独立电机单元)E-E剖视图
图17是三单元恒输出力 均匀磁场 感应直线伺服电机(对称布置独立电机单元)次级输出力绕组线圈和移动件剖视图
图18是三单元恒输出力 均匀磁场 感应直线伺服电机(对称布置独立电机单元)次级导磁硅钢和移动件剖视图
图中:1转子外扭矩绕组线圈;2转子内扭矩绕组线圈;3转子轮毂;4轴;5轴承;6端盖;7定子外壳;8定子左导磁硅钢;9定子左励磁绕组线圈;10转子左感应励磁绕组线圈;11转子左导磁硅钢;12转子右导磁硅钢;13转子右感应励磁绕组线圈;14定子右励磁绕组线圈;15定子右导磁硅钢;16定子导磁硅钢;17定子励磁绕组线圈;18转子左扭矩绕组线圈;19转子感应励磁绕组线圈;20转子导磁硅钢;21转子右扭矩绕组线圈;22移动件;23初级左导磁硅钢;24次级左导磁硅钢;25次级右导磁硅钢;26初级右导磁硅钢;27初级左励磁绕组线圈;28次级左感应励磁绕组线圈;29次级右感应励磁绕组线圈;30初级右励磁绕组线圈;31次级下输出力绕组线圈;32次级中输出力绕组线圈;33次级上输出力绕组线圈;34基座;35导轨;36次级端部磁轭。
具体实施方式
由于应用的场所和要求不同, 本发明的回转式新型恒输出扭矩均匀磁场感应 伺服 电机及其演变的恒输出力均匀磁场感应直线伺服电机的 具体型式和结构 将有所变化。
下面针对实例,结合技术方案和附图进行详细叙述。
实施例1: 三单元恒 输出 扭矩 均匀磁场感应 伺服电机(轴向对称布置独立电机单元)
本恒 输出 扭矩 均匀磁场感应 伺服电机如图1所示,由轴4、 轴承 5、端盖6和三个独立电机单元组成。电机采用固定频率三相交流电供电,每相交流电为一个独立电机单元供电,电压相位分别为0度、120度和240度,工作时供电电压频率不变,通过调节供电电压大小控制电机输出扭矩。
三个独立电机单元结构相同如图1所示,每个独立电机单元都采用轴向对称布置型式, 定子和转子结构参见 局部放大图2。
独立电机单元的定子由定子外壳7、 定子左导磁硅钢8、定子左励磁绕组线圈9、定子右励磁绕组线圈14和定子右导磁硅钢15组成。定子右导磁硅钢15为左侧面中间 开有环槽的矩形截面圆环柱,固连在定子外壳7上,如图9、10所示; 定子左导磁硅钢8与定子右导磁硅钢15结构基本相同,区别是 环槽开在右侧面。 定子右励磁绕组线圈14和定子左励磁绕组线圈9分别安装在定子右导磁硅钢15和定子左导磁硅钢8的 环槽 中,如图6所示,并分别与转子右感应励磁绕组线圈13和转子左感应励磁绕组线圈10相耦合,参见图2。
独立电机单元的转子由转子轮毂3、 转子左导磁硅钢11、转子右导磁硅钢12、转子左感应励磁绕组线圈10、转子右感应励磁绕组线圈13、转子外扭矩绕组线圈 1 和 转子内扭矩绕组线圈 2组成,参见图1和图2。其中转子整体通过转子轮毂3安装在电机轴4上。
转子左导磁硅钢11和转子右导磁硅钢12分别由八个硅钢件构成,八个硅钢件沿 转子轮毂3 圆周均匀分布并固连在 转子轮毂3上, 相邻硅钢件之间留有间隙, 参见图7、8。每个 硅钢件 几何上可看作是由两个矩形截面扇环柱沿径向连接而成,相对于转子轴线,内外两侧扇环柱之间的连接部分也是一个矩形截面扇环柱,其扇形角和轴向厚度都较小。八个形状相同的硅钢件沿圆周均匀布置后,由于其周向尺寸小于其所在圆周的周长,外侧和内侧扇环柱将组成沿圆周有八个气隙的矩形截面圆环柱,中间的八个扇环柱也均匀布置,将内外的两个矩形截面圆环柱连接起来。由于中间扇环柱扇形角较小,在内外圆环柱之间会形成八个轴向扇形通槽,同时因为其轴向厚度较小,在 转子左导磁硅钢11的 右侧形成环槽,在 转子右导磁硅钢12的 左侧形成环槽。
转子左右导磁硅钢的结构特点是,分别在它们的左侧中间和右侧中间 有环槽,同时 它们 以八个 间 隙为对称线有八个相同的扇环形轴向通槽 ,在转子左右导磁硅钢整体上形成了 八个扇环形轴向通槽和内外两组矩形截面扇环柱,参见图7、8。 转子左感应励磁绕组线圈10和转子右感应励磁绕组线圈13分别安装在转子左导磁硅钢11和转子右导磁硅钢12的 环槽中,如图2和图3所示。 转子外扭矩绕组线圈 1 和 转子内扭矩绕组线圈 2 分别包括八组线圈,它们通过转子左右导磁硅钢整体上的 八个扇环形轴向通槽,分别缠绕在转子导磁硅钢的外内矩形截面扇环柱上,参见图2、3、4、5。其中,图4、5是 转子外扭矩绕组线圈1和转子内扭矩绕组线圈 2的剖面图,表示它们和转子导磁硅钢的外内矩形截面扇环柱的关系,其缠绕方向和 转子左右感应励磁绕组线圈10、13的绕线方向在空间上相互垂直,参见图2、3。
独立电机单元的定子和转子之间留有气隙。 转子左感应励磁绕组线圈10和转子右感应励磁绕组线圈13串联后,与转子外扭矩绕组线圈 1 和 转子内扭矩绕组线圈 2连接。
实施例2: 四单元恒 输出 扭矩 均匀磁场感应 伺服电机(轴向单侧布置独立电机单元)
本恒 输出 扭矩 均匀磁场感应 伺服电机与实施例1类似,主要区别是独立电机单元结构和单元个数不同,所以下面重点介绍本实施例采纳的独立电机单元结构。
本恒 输出 扭矩 均匀磁场感应 伺服电机,是由轴4、 轴承 5、端盖6和四个独立电机单元组成。电机采用固定频率四相交流电供电,每相交流电为一个独立电机单元供电,电压相位分别为0度、90度、180度和270度,工作时供电电压频率不变,通过调节供电电压大小控制电机输出扭矩。
四个独立电机单元结构相同,都采用轴向单侧布置型式,如图11所示,图12是它的局部放大图。
独立电机单元的定子由定子外壳7、 定子左导磁硅钢8和定子左励磁绕组线圈9组成。定子左导磁硅钢8固定在 定子外壳7上, 定子左励磁绕组线圈9安装在定子左导磁硅钢8的右侧环槽中,相当于实施例1中 独立电机单元的定子去掉右侧部分。
独立电机单元的转子由转子轮毂3、 转子左导磁硅钢11、转子左感应励磁绕组线圈10、转子外扭矩绕组线圈 1 和 转子内扭矩绕组线圈 2组成 。转子左导磁硅钢11固定在 转子轮毂3上,也是由八件硅钢件组成,安装后相邻硅钢件之间有间隙,与实施1相同。但本实施例中的转子与实施1不同的是,转子导磁硅钢仅由转子左 导磁硅钢组成, 没有转子右 导磁硅钢 部分。 转子左感应励磁绕组线圈10、转子外扭矩绕组线圈 1 和 转子内扭矩绕组线圈 2在转子 导磁硅钢上的安装方式与实施例1相同。转子通过 转子轮毂3与电机轴4相连,输出扭矩。
其它与实施例1同。
实施例3: 两单元恒 输出 扭矩 均匀磁场感应 伺服电机(轴向对称布置独立电机单元)
本恒 输出 扭矩 均匀磁场感应 伺服电机是实施例1和实施例2的综合和简化。
本恒 输出 扭矩 均匀磁场感应 伺服电机,是由轴4、 轴承 5、端盖6和两个独立电机单元组成。
实施例2中,电机采用固定频率四相交流电分别为四个独立电机单元供电,交流电电压相位分别为0度、90度、180度和270度,工作时供电电压频率不变。但由于0度和180度独立电机单元输出扭矩特性相同,90度和270度的独立电机单元输出扭矩特性相同,因此本实施例简化为采用两个独立电机单元的两单元恒扭矩 感应 伺服电机,其供电相差为90度。
独立电机单元采用轴向对称布置型式,单元具体结构参见实施例1。
实施例4: 三单元恒 输出 扭矩 均匀磁场感应 伺服电机(径向单侧布置独立电机单元)
本恒 输出 扭矩 均匀磁场感应 伺服电机与实施例2类似,主要区别是独立电机单元结构和单元数量不同,所以下面重点介绍本实施例采纳的独立电机单元结构。
本恒 输出 扭矩 均匀磁场感应 伺服电机,是由轴4、 轴承 5、端盖6和三个独立电机单元组成。电机采用固定频率三相交流电供电,每相交流电为一个独立电机单元供电,电压相位分别为0度、120度和240度,工作时供电电压频率不变,通过调节供电电压大小控制电机输出扭矩。
三个独立电机单元结构相同,都采用径向单侧布置型式,如图13所示,图14是它的局部放大图。
独立电机单元的定子由定子外壳7、 定子导磁硅钢16和定子励磁绕组线圈17组成。定子导磁硅钢16固定在 定子外壳7上, 定子导磁硅钢16为矩形截面圆环柱,其内侧中间有环槽,定子励磁绕组线圈17安装在定子导磁硅钢16的内侧环槽中,如图13、14所示 。
独立电机单元的转子由转子轮毂3、 转子导磁硅钢20、转子感应励磁绕组线圈19、转子左扭矩绕组线圈18和转子右扭矩绕组线圈21 组成 。转子导磁硅钢20固定在 转子轮毂3上,也是由八件硅钢件组成,安装后相邻硅钢件之间有间隙,与实施例2类似。但本实施例中的转子与实施2不同的是,转子导磁硅钢件安装后形成的转子导磁硅钢20的环槽在径向外侧中间,同时中间的通槽也沿半径方向,为矩形截面的扇形孔,它在转子导 磁硅钢20上形成的 两组矩形截面扇环柱分别位于 转子导磁硅钢20左右两侧, 结构型式上近似可以看做是实施例2中转子导磁硅钢轴截面旋转90度的结构。
转子感应励磁绕组线圈19安装在转子导磁硅钢20的中间外侧 环槽中,如图13和图14所示。 转子左扭矩绕组线圈18和转子右扭矩绕组线圈21分别包括八组线圈,它们通过转子导磁硅钢20上的 八个扇形径向通槽,分别缠绕在转子导磁硅钢的左右矩形截面扇环柱上。
其它与实施例2同。
实施例5: 三单元恒 输出 力 均匀磁场感应 直线伺服电机(对称布置独立电机单元)
本恒 输出 力 均匀磁场感应 直线伺服电机如图15所示,主要由 导轨35 和三个独立电机单元组成。电机采用固定频率三相交流电供电,每相交流电为一个独立电机单元供电,电压相位分别为0度、120度和240度,工作时供电电压频率不变,通过调节供电电压大小控制电机输出力大小。
三个独立电机单元结构相同,如图15、16、17和18所示,每个独立电机单元都采用对称布置型式。
独立电机单元的 初级, 包括 基座34、初级左导磁硅钢23、初级右导磁硅钢26、初级左励磁绕组线圈27和初级右励磁绕组线圈30, 如图15所示 。其中,初级左导磁硅钢23和初级右导磁硅钢26都 固连在 基座34 上。
初级左导磁硅钢23和初级右导磁硅钢26都是矩形截面的长柱,在一侧开有一个矩形截面的环槽,以便安装相应的励磁绕组线圈。初级左导磁硅钢23的环槽 开在 右侧,初级右导磁硅钢26的环槽 开在 左侧 。 初级左励磁绕组线圈27和初级右励磁绕组线圈30分别安装在初级左导磁硅钢23和初级右导磁硅钢26的环槽中,如图15、16所示。
独立电机单元的 次级, 包括 移动件 22、 次级左导磁硅钢24、次级右导磁硅钢25、次级左感应励磁绕组线圈28、次级右感应励磁绕组线圈29、次级下输出力绕组线圈31、次级中输出力绕组线圈32和次级上输出力绕组线圈33和次级端部磁轭36等, 如图15所示 。 其中, 次级左导磁硅钢24和次级右导磁硅钢25 固连在 移动件 22上。
次级左导磁硅钢24和次级右导磁硅钢25结构类似,都是由十个硅钢件构成,主要区别是安装感应励磁绕组线圈的环槽在不同侧,如图15所示。每个硅钢件几何上可看作是由五个长方体垂直叠加而成,其中最外侧的上下两个长方体尺寸相同;中间一个长方体厚度较大,其它尺寸和最外侧的两个长方体相同;其余两个宽度较窄的长方体将最外侧和中间的三个长方体连接起来,类似'王'字型,但由于中间两个起连接作用的长方体长度较小,在硅钢件上形成四个通槽,如图18所示。这四个通槽,用于安装 上中下三组 输出力绕组线圈。同时,由于每个硅钢件上中间两个起连接作用的长方体宽度较窄,会在硅钢件一侧形成两个槽,当将十个硅钢件排成一条直线,安装在移动件 22上时 ,这些槽便整体上形成了可安装感应励磁绕组线圈的环槽,如图17所示。次级左导磁硅钢24和次级右导磁硅钢25上相邻硅钢件之间留有间隙,如图17、18所示。
次级左感应励磁绕组线圈28和次级右感应励磁绕组线圈29分别安装在次级左导磁硅钢24和次级右导磁硅钢25的 环槽中,分别 与初级左励磁绕组线圈27和初级右励磁绕组线圈30相耦合, 如图15所示 。次级上输出力绕组线圈 33、 次级中输出力绕组线圈 32和 次级下输出力绕组线圈 31 分别包括十组线圈,它们通过次级左右导磁硅钢上的通槽 ,分别缠绕在 次级 导磁硅钢每个硅钢件上的 最外侧和中间的 三个矩形截面柱上,参见图15、17和18。其中,图17是 次级上输出力绕组线圈 33、 次级中输出力绕组线圈 32、 次级下输出力绕组线圈 31和移动件22的布置图,图18是次级导磁硅钢24和移动件22以及次级端部磁轭36的布置图。图17和图18表明了 次级输出力绕组线圈 与次级左导磁硅钢每个硅钢件的 五个长方体 之间的关系, 次级输出力绕组线圈31、32、33的 缠绕方向和 次级左右感应励磁绕组线圈28、29的绕线方向在空间上相互垂直。
独立电机单元的初级和次级之间留有气隙。次级 左感应励磁绕组线圈28和次级右感应励磁绕组线圈29串联后,与次级上输出力绕组线圈 33、 次级中输出力绕组线圈32 和 次级下输出力绕组线圈31 连接。 初级导磁硅钢、次级导磁硅钢和次级端部磁轭都是由硅钢片叠加而成。
实施例6: 三单元恒 输出 力 均匀磁场感应 直线伺服电机(对称布置独立电机单元)
将实施例5中的初级、次级互换,且保持长初级、短次级结构。

Claims (1)

1. 一类新型恒力恒扭矩均匀磁场感应伺服电机 , 包括回转式新型恒输出扭矩均匀磁场感应伺服电机和恒输出力均匀磁场感应直线伺服电机;其特征在于,
(一)回转式恒输出扭矩均匀磁场感应伺服电机
回转式恒输出扭矩均匀磁场感应伺服电机的结构上由 N 个独立电机单元组成;每个独立电机单元结构相同,但当 N 个独立电机单元布置在垂直于电机回转轴的同一个平面上时,其结构尺寸不同;电机采用 N 相交流电供电,相位差相等 , 为 360 度 /N 或 180 度 /N ,接线方式是每个独立电机单元仅连接 N 相交流电中的一相交流电,每个独立电机单元中定子励磁绕组线圈仅施加一相交流电压;定子导磁硅钢采用以电机回转轴线对称的结构型式,定子励磁绕组线圈在定子导磁硅钢上沿圆周均匀分布,以电机回转轴线呈中心对称,在定子导磁硅钢和转子导磁硅钢之间的气隙中产生沿电机转子圆周的均匀分布磁场;每个独立电机单元中转子导磁硅钢采用沿圆周有均匀分布多个径向轴截面缝隙的结构型式,且转子导磁硅钢上绕有两种类型绕组线圈,它们的绕线方式在空间上正交,分别称作转子感应励磁绕组线圈和转子扭矩绕组线圈;转子扭矩绕组线圈与转子感应励磁绕组线圈直接相连;定子励磁绕组线圈与转子感应励磁绕组线圈安装位置相对应,产生互感为转子扭矩绕组线圈提供扭矩电流;
新型恒输出扭矩均匀磁场感应伺服电机的独立电机单元,主要包括定子和转子两部分;
其中,定子由定子外壳、定子导磁硅钢、定子励磁绕组线圈组成;定子导磁硅钢是有环槽的圆环柱;单相定子励磁绕组线圈安装在环槽中,采用螺线管式的绕线方式;单相定子励磁绕组线圈采用线圈轴线与电机轴线重合的一组,或采用线圈轴线沿圆周均匀分布的多组;定子外壳和定子导磁硅钢固连,电机工作时保持固定不动;
其中,转子由转子轮毂、转子导磁硅钢、转子感应励磁绕组线圈、转子扭矩绕组线圈组成;其中转子导磁硅钢由 M 个硅钢件沿圆周均匀布置构成,每个硅钢件形状相同,相邻硅钢件之间有间隙,整体形状类似有多个缝隙的圆环柱;每个硅钢件在圆周方向上都有槽,以使转子导磁硅钢整体上形成环槽,环槽的位置与定子导磁硅钢上安装定子励磁绕组线圈的环槽相对应;根据独立电机单元结构布置方式不同,每个硅钢件在圆周方向上槽的位置也不同,开在径向内外的圆柱面上或开在轴向两侧的端平面上;同时,每个硅钢件在中部有通槽,其方向与环槽垂直且根据电机单元结构布置方式不同,在径向方向或在轴向方向,用于安装转子扭矩绕组线圈;转子感应励磁绕组线圈采用类似于螺线管的绕线形式,安装在转子导磁硅钢的环槽中;转子扭矩绕组线圈通过转子导磁硅钢上的通槽绕在转子导磁硅钢上;转子导磁硅钢固连在转子轮毂上,电机工作时转子导磁硅钢、转子轮毂和轴一起转动;
其中,在恒输出扭矩均匀磁场感应伺服电机的独立电机单元中:定子和转子之间有均匀气隙,形成磁阻;定子导磁硅钢和转子导磁硅钢都由硅钢片叠合而成;定子励磁绕组线圈安装在定子导磁硅钢上,它们相对电机轴线呈轴对称结构;当定子励磁绕组线圈采用一组螺线管式绕组线圈时,其轴线与定子转子轴线重合;当定子励磁绕组线圈采用多组螺线管式绕组线圈时,其轴线沿定子导磁硅钢圆周均匀分布;转子结构具有对称性,转子导磁硅钢上安装两组线圈,安装时要求转子扭矩绕组线圈和转子感应励磁绕组线圈绕线方向在空间上正交,使它们产生的磁场空间上方向基本正交;转子扭矩绕组线圈与转子感应励磁绕组线圈直接连接,转子感应励磁绕组线圈和定子励磁绕组线圈相对应,产生互感提供扭矩电流;每个独立电机单元工作时,对定子励磁绕组线圈施加单相交流电压,其结构型式决定了定子励磁磁场等价为多层螺线管型环形绕组线圈产生的磁场,在电机定子导磁硅钢和转子导磁硅钢之间的均匀气隙中,产生沿圆周均匀分布的磁场,磁力线方向不变,磁场大小随施加电压变化;定子导磁硅钢和气隙中的交变磁场不形成旋转磁场;
(二)恒输出力均匀磁场感应直线伺服电机
恒输出力均匀磁场感应直线伺服电机的结构上由 N 个独立电机单元组成;每个独立电机单元结构相同;电机采用 N 相交流电供电,相位差相等为 360 度 /N 或 180 度 /N ,接线方式是每个独立电机单元仅连接 N 相交流电中的一相交流电;每个独立电机单元中初级导磁硅钢采用直线结构型式;初级励磁绕组线圈安装在初级导磁硅钢的一侧,与次级导磁硅钢相邻近;初级励磁绕组线圈沿直线型初级导磁硅钢的直线方向均匀分布;电机工作时,对每个独立电机单元中的初级励磁绕组线圈施加一相交流电压,在初级导磁硅钢和次级导磁硅钢之间的均匀气隙中,产生沿初级导磁硅钢直线方向的均匀分布磁场;每个独立电机单元中次级导磁硅钢采用直线结构型式,沿次级导磁硅钢的直线方向均匀分布多个垂直于该直线方向的截面缝隙;次级导磁硅钢上绕有两种类型绕组线圈,它们的绕线方式在空间上正交,分别称作次级感应励磁绕组线圈和次级输出力绕组线圈;次级输出力绕组线圈与次级感应励磁绕组线圈直接相连;初级励磁绕组线圈与次级感应励磁绕组线圈安装位置相对应,产生互感为次级输出力绕组线圈提供输出力电流;上述独立电机单元中的初级次级结构型式可互换;
新型恒输出力均匀磁场感应直线伺服电机的独立电机单元,主要包括初级和次级两部分;
其中,初级由基座、初级导磁硅钢和初级励磁绕组线圈组成;初级导磁硅钢是有环槽的直线型结构;单相初级励磁绕组线圈安装在环槽中,采用螺线管式的绕线方式;当初级励磁绕组线圈采用一组线圈的结构型式时,励磁绕组线圈沿直线型初级导磁硅钢的全长环绕;当初级励磁绕组线圈采用多组线圈组合的结构型式时,安装时将直线型初级导磁硅钢沿长度方向分成若干部分,每部分环绕一组励磁绕组线圈;初级导磁硅钢固连在基座上,电机工作时保持固定不动;
其中,次级由移动件、次级导磁硅钢、次级感应励磁绕组线圈、次级输出力绕组线圈和次级端部磁轭组成;次级导磁硅钢由 M 个形状相同的硅钢件沿一条直线排列构成,相邻硅钢件之间有间隙,整体上形成沿这条直线有多个截面间隙的直线型结构;在次级导磁硅钢和初级导磁硅钢相邻的侧面上,每个组成次级导磁硅钢的硅钢件上都有槽,整体上在直线型次级导磁硅钢的一个侧面上形成环槽,在电机装配后,次级导磁硅钢侧面环槽的位置与初级导磁硅钢上安装励磁绕组线圈的环槽相对应;同时,每个组成次级导磁硅钢的硅钢件上还有用于安装输出力绕组线圈的通槽,要求通槽和侧面环槽相互垂直,通槽的方向或水平或垂直,取决于初级导磁硅钢和次级导磁硅钢的安装布置方式;次级感应励磁绕组线圈安装在次级导磁硅钢的侧面环槽中,采用螺线管式的绕线方式;当次级感应励磁绕组线圈采用一组线圈的结构型式时,感应励磁绕组线圈沿直线型次级导磁硅钢的全长环绕;当次级感应励磁绕组线圈采用多组线圈组合的结构型式时,安装时将直线型次级导磁硅钢沿长度方向分成若干部分,按构成次级导磁硅钢的硅钢件划分部分或将多个硅钢件作为一部分,每部分环绕一组感应励磁绕组线圈;次级输出力绕组线圈通过次级导磁硅钢上的通槽,缠绕在次级导磁硅钢的每个硅钢件上;次级导磁硅钢固连在移动件上,次级端部磁轭安装在次级导磁硅钢的两端,也固连在移动件上;
其中,恒输出力均匀磁场感应直线伺服电机的独立电机单元中:初级和次级之间有均匀气隙,形成磁阻;初级导磁硅钢、次级导磁硅钢和次级端部磁轭都由硅钢片叠加而成;初级励磁绕组线圈安装在初级导磁硅钢上,沿初级导磁硅钢长度方向均匀分布;次级导磁硅钢上安装两组线圈,安装时要求次级输出力绕组线圈的绕线方向和次级感应励磁绕组线圈的绕线方向在空间上相互垂直,使它们产生的磁场空间上方向基本正交;次级输出力绕组线圈与次级感应励磁绕组线圈连接,初级励磁绕组线圈和次级感应励磁绕组线圈相对应,产生互感提供输出力电流;每个独立电机单元工作时,对初级励磁绕组线圈施加单相交流电压,其结构型式决定了初级励磁绕组线圈在电机初级导磁硅钢和次级导磁硅钢之间的均匀气隙中,产生沿直线均匀分布的磁场,磁力线方向不变,磁场大小随施加电压变化;初级导磁硅钢和气隙中的交变磁场不形成行波磁场。
2. 根据权利要求 1 所述的一类新型恒力恒扭矩均匀磁场感应伺服电机 , 其特征是:所述回转式新型恒输出扭矩均匀磁场感应伺服电机,其每个独立电机单元的基本结构型式有轴向单侧布置、轴向对称布置、径向单侧布置和径向对称布置四种;每个独立电机单元的结构型式,包括四种基本结构型式及四种基本结构型式的组合,具体如下:
(一)轴向单侧布置型式的独立电机单元,( 1 )沿电机轴方向,定子导磁硅钢布置在转子导磁硅钢的左侧或右侧;当定子导磁硅钢在左侧时,其环槽在右侧;当定子导磁硅钢在右侧时,其环槽在左侧;( 2 )转子导磁硅钢中的每个硅钢件,几何上可描述为由多层扇形角相同的矩形截面扇环柱沿径向连接而成,相邻两层矩形截面扇环柱中间的连接部分为一处或多处,每个起连接作用的连接体形状为扇环柱或一般柱体,尺寸较小;相对于转子轴线,每个硅钢件内外两侧为矩形截面扇环柱,硅钢件中间为起连接作用的连接体和矩形截面扇环柱交替排列;由于每个中间连接体尺寸较小,其轴向厚度和相对于转子轴线形成的扇形角都较小,会在每个硅钢件上形成多个轴向通槽和沿圆周方向的长槽; M 个硅钢件沿圆周均匀布置,多层矩形截面扇环柱形成沿圆周有 M 个气隙的多层矩形截面圆环柱,在相邻两层圆环柱之间由连接体形成多个轴向通槽,并在左侧或右侧形成环槽;转子感应励磁绕组线圈安装在环槽中;转子扭矩绕组线圈通过转子导磁硅钢上多层圆环柱之间的通槽,分别绕在转子导磁硅钢的多层圆环柱上,形成转子内外多组扭矩绕组线圈;
(二)轴向对称布置型式的独立电机单元,( 1 )两个定子导磁硅钢分别布置在转子导磁硅钢的左侧和右侧,分别被称为定子左导磁硅钢和定子右导磁硅钢;定子左导磁硅钢上的环槽在右侧,定子右导磁硅钢上的环槽在左侧,是两种轴向单侧布置型式定子的结合;定子励磁绕组线圈有两组,分别安装在定子左右导磁硅钢的环槽中;( 2 )转子导磁硅钢相当于是将两个轴向单侧布置的转子导磁硅钢合并、共同安装在一个转子轮毂上,它们相对垂直于转子轴线的转子轮毂对称面成镜像关系,分别被称作转子左导磁硅钢和转子右导磁硅钢;转子左导磁硅钢上安装转子左感应励磁绕组线圈的环槽在左侧,与安装定子左励磁绕组线圈的定子左导磁硅钢上的环槽相对应;转子右导磁硅钢上安装转子右感应励磁绕组线圈的环槽在右侧,与安装定子右励磁绕组线圈的定子右导磁硅钢上的环槽相对应;转子感应励磁绕组线圈有两组,分别安装在转子左右导磁硅钢的环槽中;转子扭矩绕组线圈通过多层圆环柱之间的通槽,分别绕在转子左右导磁硅钢的多层圆环柱上,形成转子内外多组扭矩绕组线圈;这种情况下,转子内外多组扭矩绕组线圈,相当于是两个轴向单侧布置的转子内外多组扭矩绕组线圈分别合并的结果;
(三)径向单侧布置型式的独立电机单元,( 1 )相对于转子轴线,定子导磁硅钢布置在转子导磁硅钢的内侧或外侧;当定子导磁硅钢布置在外侧时,定子导磁硅钢上的环槽在内侧;当定子导磁硅钢布置在内侧时,定子导磁硅钢上的环槽在外侧;( 2 )转子导磁硅钢中的每个硅钢件,几何上可描述为多层扇形角相同的矩形截面扇环柱沿轴向连接而成,中间连接部分为一处或多处,每个起连接作用的连接体形状为扇环柱或一般柱体,尺寸较小;沿转子轴线,每个硅钢件的左右两侧为矩形截面扇环柱,硅钢件中间为起连接作用的连接体和矩形截面扇环柱交替排列;由于每个中间连接体尺寸较小,其径向厚度和相对于转子轴线形成的扇形角都较小,会在组成硅钢件的相邻矩形截面扇环柱之间形成多个径向通槽,并在外侧或内侧沿圆周形成一个或多个长槽; M 个硅钢件沿圆周均匀布置在轮毂上后,硅钢件的多层矩形截面扇环柱形成沿圆周有 M 个气隙的多层矩形截面圆环柱,同时连接体在多层圆环柱之间形成多个径向通槽,并在外侧或内侧形成环槽;转子感应励磁绕组线圈安装在环槽中;转子扭矩绕组线圈通过转子导磁硅钢上多层圆环柱之间的通槽,分别绕在转子导磁硅钢的多层圆环柱上,形成转子左中右扭矩绕组线圈;
(四)径向对称布置型式的独立电机单元,( 1 )相对于转子轴线,两个定子导磁硅钢分别布置在转子导磁硅钢的内外侧,分别被称为定子内导磁硅钢和定子外导磁硅钢;定子内导磁硅钢上的环槽在外侧,定子外导磁硅钢上的环槽在内侧,是两种径向单侧布置型式定子的结合;定子励磁绕组线圈有两组,分别安装在定子内外导磁硅钢的环槽中;( 2 )采用径向对称布置型式独立电机单元的电机,结构设计上属于内外双定子电机,电机转子整体结构需设计成杯型;转子导磁硅钢,是将两个径向单侧布置的转子导磁硅钢分别安装在转子杯的内外侧,分别被称为转子内导磁硅钢和转子外导磁硅钢;转子内外导磁硅钢的硅钢件数相同、径向对称面相同;转子外导磁硅钢上安装转子感应励磁绕组线圈的环槽在外侧,转子内导磁硅钢上安装转子感应励磁绕组线圈的环槽在内侧;转子内外导磁硅钢上的环槽分别与定子内外导磁硅钢上的环槽对应;转子感应励磁绕组线圈有两组,分别安装在转子内外导磁硅钢的环槽中;转子扭矩绕组线圈通过转子导磁硅钢上多层圆环柱之间的径向通槽,分别绕在转子内外导磁硅钢的多层圆环柱上,形成转子左中右扭矩绕组线圈;这种情况下,转子左中右扭矩绕组线圈,相当于是两个径向单侧布置的转子左中右扭矩绕组线圈分别合并的结果;
(五)组合布置型式的独立电机单元,具体包括:轴向单侧和轴向单侧布置型式的组合、轴向单侧和轴向对称布置型式的组合、轴向单侧和径向单侧布置型式的组合、轴向单侧和径向对称布置型式的组合、轴向对称和轴向对称布置型式的组合、轴向对称和径向单侧布置型式的组合、轴向对称和径向对称布置型式的组合、径向单侧和径向单侧布置型式的组合、径向单侧和径向对称布置型式的组合、径向对称和径向对称布置型式的组合。
3. 根据权利要求 1 所述的一类新型恒力恒扭矩均匀磁场感应伺服电机 , 其特征是:所述恒输出力均匀磁场感应直线伺服电机,其每个独立电机单元的基本结构型式有单侧布置和对称布置两种;每个独立电机单元的结构型式,包括两种基本结构型式及两种基本结构型式的组合,具体如下:
(一)单侧布置型式的独立电机单元,( 1 )初级导磁硅钢布置在次级导磁硅钢的一侧,初级导磁硅钢上的环槽在邻近次级导磁硅钢的一侧;( 2 )次级导磁硅钢的每个硅钢件,几何上可描述为由多层长方形柱体连接而成,中间连接部分为一处或多处;每个连接体为一般柱体,但尺寸较小,会在相邻两层长方形柱体之间形成多个通槽,并在一侧形成长槽;当将 M 个硅钢件排成一条直线安装在移动件上时,整体上会在次级导磁硅钢一侧形成长槽,相邻两个长槽可看作环槽,同时垂直于长槽在次级导磁硅钢上有很多通槽;感应励磁绕组线圈安装在次级导磁硅钢的环槽中;输出力绕组线圈通过通槽分别绕在每个硅钢件的长方形柱体上,形成多组输出力绕组线圈;
(二)对称布置型式的独立电机单元,( 1 )初级导磁硅钢分别布置在次级导磁硅钢的相对两侧,分别被称为初级左导磁硅钢和初级右导磁硅钢;初级左右导磁硅钢上的环槽分别在邻近次级导磁硅钢的一侧,是两种单侧布置型式初级的结合;( 2 )次级导磁硅钢相当于是将两个单侧布置的次级导磁硅钢合并、共同安装在一个移动件上,它们相对两个导磁硅钢的接合面几何上成镜像关系,分别被称作次级左导磁硅钢和次级右导磁硅钢;次级左导磁硅钢上安装次级左感应励磁绕组线圈的环槽在左侧,次级右导磁硅钢上安装次级右感应励磁绕组线圈的环槽在右侧,分别与安装初级左右励磁绕组线圈的环槽相对应;次级感应励磁绕组线圈分别安装在次级左右导磁硅钢的环槽中;次级左右导磁硅钢上的通槽相对应,输出力绕组线圈通过相对应的通槽分别绕在每个硅钢件的长方形柱体上,形成多组输出力绕组线圈;这时的次级多组输出力绕组线圈,相当于是两个单侧布置的次级多组输出力绕组线圈分别合并的结果;
(三)多侧布置型式的独立电机单元,包括单侧和单侧布置型式组合、单侧和对称布置型式组合、对称和对称布置型式组合;
(四)将(一)、(二)和(三)所述的感应直线伺服电机独立电机单元中的初级和次级采用长初级、短次级或短初级、长次级的结构类型,初级和次级结构型式可以对调。
4. 根据权利要求 1 或 2 所述的一类回转式新型恒输出扭矩均匀磁场感应伺服电机,其特征是:多个独立电机单元的布置型式包括,( 1 )多个独立电机单元沿电机回转轴方向轴向布置,并通过电机回转轴连接起来;( 2 )按半径不同将多个独立电机单元布置在一个轴截面内形成圆盘型电机;( 3 )将多个独立电机单元分组,首先将每组的独立电机单元按半径不同布置在电机一个轴截面内,并通过圆盘连接起来;然后再将多组独立电机单元沿电机回转轴方向布置,并通过电机回转轴连接起来;多个独立电机单元的这种布置型式,是( 1 )和( 2 )两种布置型式的组合。
5. 根据权利要求 1 或 2 或 3 所述的一类新型恒力恒扭矩均匀磁场感应伺服电机,其特征是:对于恒输出扭矩均匀磁场感应伺服电机,实现对输出扭矩控制的措施包括:( 1 )采用施加的交流电压频率不变的工作方式,只通过调节施加电压的幅值控制输出扭矩的大小;( 2 )采用施加的交流电压幅值不变的工作方式,只通过调节施加电压的频率控制输出扭矩的大小;( 3 )是将( 1 )和( 2 )结合起来,通过调节施加电压的幅值或频率控制输出扭矩的大小;重要的特征是,当电机工作在施加的交流电压频率不变的工作方式时,在定子转子导磁硅钢磁感应强度不饱和并忽略绕线电阻的情况下,电机输出扭矩与施加电压大小成正比,与电机转速无关;
对于恒输出力均匀磁场感应直线伺服电机,实现对输出力控制的措施包括:( 1 )采用施加的交流电压频率不变的工作方式,只通过调节施加电压的幅值控制输出力的大小;( 2 )采用施加的交流电压幅值不变的工作方式,只通过调节施加电压的频率控制输出力的大小;( 3 )是将( 1 )和( 2 )结合起来,通过调节施加电压的幅值或频率控制输出力的大小;重要的特征是,当电机工作在施加的交流电压频率不变的工作方式时,在初级次级导磁硅钢磁感应强度不饱和并忽略绕线电阻的情况下,电机输出力与施加电压大小成正比,与电机移动速度无关。
6. 根据权利要求 4 所述的一类回转式新型恒输出扭矩均匀磁场感应伺服电机,其特征是:实现对输出扭矩控制的措施包括:( 1 )采用施加的交流电压频率不变的工作方式,只通过调节施加电压的幅值控制输出扭矩的大小;( 2 )采用施加的交流电压幅值不变的工作方式,只通过调节施加电压的频率控制输出扭矩的大小;( 3 )是将( 1 )和( 2 )结合起来,通过调节施加电压的幅值或频率控制输出扭矩的大小;重要的特征是,当电机工作在施加的交流电压频率不变的工作方式时,在定子转子导磁硅钢磁感应强度不饱和并忽略绕线电阻的情况下,电机输出扭矩与施加电压大小成正比,与电机转速无关。
7. 如权利要求 1 或 2 或 3 或 6 所述的一类新型恒力恒扭矩均匀磁场感应伺服电机,其特征是:回转式恒输出扭矩均匀磁场感应伺服电机实现正反方向驱动的措施有三种,( 1 )电机中采用两组独立电机单元,一组实现正向驱动,另一组实现反向驱动;( 2 )在独立电机单元中,增加电磁开关,以交换转子中绕组线圈的接线方式,同时增加感应控制装置,以实现对电磁开关的控制;( 3 )对于对称布置型式的独立电机单元,将转子上的两组感应励磁绕组线圈串联反向连接,一起为转子中的转子扭矩绕组线圈供电,同时通过调整两个定子导磁硅钢上的励磁绕组线圈施加电压的相对大小,来改变转子扭矩绕组线圈的电流相位,实现电机正反方向驱动;
恒输出力均匀磁场感应直线伺服电机实现正反方向驱动的措施有三种,( 1 )电机中采用两组独立电机单元,一组实现正向驱动,另一组实现反向驱动;( 2 )在独立电机单元中,增加电磁开关,以交换次级中绕组线圈的接线方式,同时增加感应控制装置,以实现对电磁开关的控制;( 3 )对于对称布置型式的独立电机单元,将次级上的两组感应励磁绕组线圈串联反向连接,一起为次级中的次级输出力绕组线圈供电,同时通过调整两个初级导磁硅钢上的励磁绕组线圈施加电压的相对大小,来改变次级输出力绕组线圈的电流相位,实现电机正反方向驱动。
8. 如权利要求 4 所述的一类回转式新型恒输出扭矩均匀磁场感应伺服电机,其特征是:实现电机正反方向驱动的措施有三种,( 1 )电机中采用两组独立电机单元,一组实现正向驱动,另一组实现反向驱动;( 2 )在独立电机单元中,增加电磁开关,以交换转子中绕组线圈的接线方式,同时增加感应控制装置,以实现对电磁开关的控制;( 3 )对于对称布置型式的独立电机单元,将转子上的两组感应励磁绕组线圈串联反向连接,一起为转子中的转子扭矩绕组线圈供电,同时通过调整两个定子导磁硅钢上的励磁绕组线圈施加电压的相对大小,来改变转子扭矩绕组线圈的电流相位,实现电机正反方向驱动。
9. 如权利要求 5 所述的一类新型恒力恒扭矩均匀磁场感应伺服电机,其特征是:回转式恒输出扭矩均匀磁场感应伺服电机实现正反方向驱动的措施有三种,( 1 )电机中采用两组独立电机单元,一组实现正向驱动,另一组实现反向驱动;( 2 )在独立电机单元中,增加电磁开关,以交换转子中绕组线圈的接线方式,同时增加感应控制装置,以实现对电磁开关的控制;( 3 )对于对称布置型式的独立电机单元,将转子上的两组感应励磁绕组线圈串联反向连接,一起为转子中的转子扭矩绕组线圈供电,同时通过调整两个定子导磁硅钢上的励磁绕组线圈施加电压的相对大小,来改变转子扭矩绕组线圈的电流相位,实现电机正反方向驱动;
恒输出力均匀磁场感应直线伺服电机实现正反方向驱动的措施有三种,( 1 )电机中采用两组独立电机单元,一组实现正向驱动,另一组实现反向驱动;( 2 )在独立电机单元中,增加电磁开关,以交换次级中绕组线圈的接线方式,同时增加感应控制装置,以实现对电磁开关的控制;( 3 )对于对称布置型式的独立电机单元,将次级上的两组感应励磁绕组线圈串联反向连接,一起为次级中的次级输出力绕组线圈供电,同时通过调整两个初级导磁硅钢上的励磁绕组线圈施加电压的相对大小,来改变次级输出力绕组线圈的电流相位,实现电机正反方向驱动。
10. 如权利要求 1 或 2 或 3 或 6 或 8 或 9 所述的一类新型恒力恒扭矩均匀磁场感应伺服电机,其特征是:回转式恒输出扭矩均匀磁场感应伺服电机中 , 定子励磁绕组线圈和转子感应励磁绕组线圈的结构型式包括三种,( 1 )将定子导磁硅钢或转子导磁硅钢作为整体,采用沿整体绕线方式,形成多层螺线管式的整体环形线圈;( 2 )将定子导磁硅钢或转子导磁硅钢分成若干部分,每一部分采用局部绕线方式,形成沿导磁硅钢分别独立安装的、多组螺线管式的局部环形线圈,以替代整体环形线圈;( 3 )定子励磁绕组线圈和转子感应励磁绕组线圈采用( 1 )和( 2 )的组合型式;
恒输出力均匀磁场感应直线伺服电机中 , 初级励磁绕组线圈和次级感应励磁绕组线圈的结构型式包括三种,( 1 )将初级导磁硅钢或次级导磁硅钢作为整体,采用沿整体绕线方式,形成多层螺线管式的整体环形线圈;( 2 )将初级导磁硅钢或次级导磁硅钢分成若干部分,每一部分采用局部绕线方式,形成沿导磁硅钢分别独立安装的、多组螺线管式的局部环形线圈,以替代整体环形线圈;( 3 )初级励磁绕组线圈和次级感应励磁绕组线圈采用( 1 )和( 2 )的组合型式。
11. 如权利要求 4 所述的一类回转式新型恒输出扭矩均匀磁场感应伺服电机,其特征是:定子励磁绕组线圈和转子感应励磁绕组线圈的结构型式包括三种,( 1 )将定子导磁硅钢或转子导磁硅钢作为整体,采用沿整体绕线方式,形成多层螺线管式的整体环形线圈;( 2 )将定子导磁硅钢或转子导磁硅钢分成若干部分,每一部分采用局部绕线方式,形成沿导磁硅钢分别独立安装的、多组螺线管式的局部环形线圈,以替代整体环形线圈;( 3 )定子励磁绕组线圈和转子感应励磁绕组线圈采用( 1 )和( 2 )的组合型式。
12. 如权利要求 5 所述的一类新型恒力恒扭矩均匀磁场感应伺服电机,其特征是:回转式恒输出扭矩均匀磁场感应伺服电机中 , 定子励磁绕组线圈和转子感应励磁绕组线圈的结构型式包括三种,( 1 )将定子导磁硅钢或转子导磁硅钢作为整体,采用沿整体绕线方式,形成多层螺线管式的整体环形线圈;( 2 )将定子导磁硅钢或转子导磁硅钢分成若干部分,每一部分采用局部绕线方式,形成沿导磁硅钢分别独立安装的、多组螺线管式的局部环形线圈,以替代整体环形线圈;( 3 )定子励磁绕组线圈和转子感应励磁绕组线圈采用( 1 )和( 2 )的组合型式;
恒输出力均匀磁场感应直线伺服电机中 , 初级励磁绕组线圈和次级感应励磁绕组线圈的结构型式包括三种,( 1 )将初级导磁硅钢或次级导磁硅钢作为整体,采用沿整体绕线方式,形成多层螺线管式的整体环形线圈;( 2 )将初级导磁硅钢或次级导磁硅钢分成若干部分,每一部分采用局部绕线方式,形成沿导磁硅钢分别独立安装的、多组螺线管式的局部环形线圈,以替代整体环形线圈;( 3 )初级励磁绕组线圈和次级感应励磁绕组线圈采用( 1 )和( 2 )的组合型式。
13. 如权利要求 7 所述的一类新型恒力恒扭矩均匀磁场感应伺服电机,其特征是:回转式恒输出扭矩均匀磁场感应伺服电机中 , 定子励磁绕组线圈和转子感应励磁绕组线圈的结构型式包括三种,( 1 )将定子导磁硅钢或转子导磁硅钢作为整体,采用沿整体绕线方式,形成多层螺线管式的整体环形线圈;( 2 )将定子导磁硅钢或转子导磁硅钢分成若干部分,每一部分采用局部绕线方式,形成沿导磁硅钢分别独立安装的、多组螺线管式的局部环形线圈,以替代整体环形线圈;( 3 )定子励磁绕组线圈和转子感应励磁绕组线圈采用( 1 )和( 2 )的组合型式;
恒输出力均匀磁场感应直线伺服电机中 , 初级励磁绕组线圈和次级感应励磁绕组线圈的结构型式包括三种,( 1 )将初级导磁硅钢或次级导磁硅钢作为整体,采用沿整体绕线方式,形成多层螺线管式的整体环形线圈;( 2 )将初级导磁硅钢或次级导磁硅钢分成若干部分,每一部分采用局部绕线方式,形成沿导磁硅钢分别独立安装的、多组螺线管式的局部环形线圈,以替代整体环形线圈;( 3 )初级励磁绕组线圈和次级感应励磁绕组线圈采用( 1 )和( 2 )的组合型式。
14. 根据权利要求 1 或 2 或 3 或 6 或 8 或 9 或 11 或 12 或 13 所述的一类新型恒力恒扭矩均匀磁场感应伺服电机,其特征是:对于恒输出扭矩均匀磁场感应伺服电机,实现对转子扭矩绕组线圈中扭矩电流大小控制的措施包括三种,( 1 )调节组成转子导磁硅钢的相邻硅钢件之间气隙的大小;( 2 )调节组成转子导磁硅钢的相邻硅钢件之间的磁阻;( 3 )调节转子感应励磁绕组线圈的匝数;
对于恒输出力均匀磁场感应伺服电机,实现对次级输出力绕组线圈中输出力电流大小控制的措施包括三种,( 1 )调节组成次级导磁硅钢的相邻硅钢件之间气隙的大小;( 2 )调节组成次级导磁硅钢的相邻硅钢件之间的磁阻;( 3 )调节次级感应励磁绕组线圈的匝数。
15. 根据权利要求 4 所述的一类回转式新型恒输出扭矩均匀磁场感应伺服电机,其特征是:实现对转子扭矩绕组线圈中扭矩电流大小控制的措施包括三种,( 1 )调节组成转子导磁硅钢的相邻硅钢件之间气隙的大小;( 2 )调节组成转子导磁硅钢的相邻硅钢件之间的磁阻;( 3 )调节转子感应励磁绕组线圈的匝数。
16. 根据权利要求 5 所述的一类新型恒力恒扭矩均匀磁场感应伺服电机,其特征是:对于恒输出扭矩均匀磁场感应伺服电机,实现对转子扭矩绕组线圈中扭矩电流大小控制的措施包括三种,( 1 )调节组成转子导磁硅钢的相邻硅钢件之间气隙的大小;( 2 )调节组成转子导磁硅钢的相邻硅钢件之间的磁阻;( 3 )调节转子感应励磁绕组线圈的匝数;
对于恒输出力均匀磁场感应伺服电机,实现对次级输出力绕组线圈中输出力电流大小控制的措施包括三种,( 1 )调节组成次级导磁硅钢的相邻硅钢件之间气隙的大小;( 2 )调节组成次级导磁硅钢的相邻硅钢件之间的磁阻;( 3 )调节次级感应励磁绕组线圈的匝数。
17. 根据权利要求 7 所述的一类新型恒力恒扭矩均匀磁场感应伺服电机,其特征是:对于恒输出扭矩均匀磁场感应伺服电机,实现对转子扭矩绕组线圈中扭矩电流大小控制的措施包括三种,( 1 )调节组成转子导磁硅钢的相邻硅钢件之间气隙的大小;( 2 )调节组成转子导磁硅钢的相邻硅钢件之间的磁阻;( 3 )调节转子感应励磁绕组线圈的匝数;
对于恒输出力均匀磁场感应伺服电机,实现对次级输出力绕组线圈中输出力电流大小控制的措施包括三种,( 1 )调节组成次级导磁硅钢的相邻硅钢件之间气隙的大小;( 2 )调节组成次级导磁硅钢的相邻硅钢件之间的磁阻;( 3 )调节次级感应励磁绕组线圈的匝数。
18. 根据权利要求 10 所述的一类新型恒力恒扭矩均匀磁场感应伺服电机,其特征是:对于恒输出扭矩均匀磁场感应伺服电机,实现对转子扭矩绕组线圈中扭矩电流大小控制的措施包括三种,( 1 )调节组成转子导磁硅钢的相邻硅钢件之间气隙的大小;( 2 )调节组成转子导磁硅钢的相邻硅钢件之间的磁阻;( 3 )调节转子感应励磁绕组线圈的匝数;
对于恒输出力均匀磁场感应伺服电机,实现对次级输出力绕组线圈中输出力电流大小控制的措施包括三种,( 1 )调节组成次级导磁硅钢的相邻硅钢件之间气隙的大小;( 2 )调节组成次级导磁硅钢的相邻硅钢件之间的磁阻;( 3 )调节次级感应励磁绕组线圈的匝数。
19. 如权利要求 1 或 2 或 3 或 6 或 8 或 9 或 11 或 12 或 13 或 15 或 16 或 17 或 18 所述的一类新型恒力恒扭矩均匀磁场感应伺服电机,其特征是:导磁硅钢和端部磁轭的材料是硅钢、硒钢、电工纯铁、铁镍合金、铁铝合金、铁钴合金。
20. 如权利要求 4 所述的一类回转式新型恒输出扭矩均匀磁场感应伺服电机,其特征是:定子和转子导磁硅钢的材料是硅钢、硒钢、电工纯铁、铁镍合金、铁铝合金、铁钴合金。
21. 如权利要求 10 所述的一类新型恒力恒扭矩均匀磁场感应伺服电机,其特征是:导磁硅钢和端部磁轭的材料是硅钢、硒钢、电工纯铁、铁镍合金、铁铝合金、铁钴合金。
PCT/CN2015/076863 2015-04-17 2015-04-17 一类新型恒力恒扭矩均匀磁场感应伺服电机 WO2016165121A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/564,925 US10756604B2 (en) 2015-04-17 2015-04-17 Induction servo motor with a constant-output-force or a constant-output-torque by using uniform magnetic fields
PCT/CN2015/076863 WO2016165121A1 (zh) 2015-04-17 2015-04-17 一类新型恒力恒扭矩均匀磁场感应伺服电机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/076863 WO2016165121A1 (zh) 2015-04-17 2015-04-17 一类新型恒力恒扭矩均匀磁场感应伺服电机

Publications (1)

Publication Number Publication Date
WO2016165121A1 true WO2016165121A1 (zh) 2016-10-20

Family

ID=57126380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076863 WO2016165121A1 (zh) 2015-04-17 2015-04-17 一类新型恒力恒扭矩均匀磁场感应伺服电机

Country Status (2)

Country Link
US (1) US10756604B2 (zh)
WO (1) WO2016165121A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023444A (zh) * 2018-01-20 2018-05-11 营口万意达智能装备科技有限公司 一种伺服电机
CN116526722A (zh) * 2023-03-10 2023-08-01 广东白云学院 一种陶瓷风冷结构的轴向磁通无磁轭轮毂电机

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105703582A (zh) * 2016-02-04 2016-06-22 精进电动科技(北京)有限公司 一种集成式电机
US20210252213A1 (en) * 2018-06-29 2021-08-19 Koninklijke Philips N.V. Ironless electric motor for mri compatibility
CN109756089B (zh) * 2019-03-12 2024-03-12 浙江工业大学 轴向分相混合式步进电动机
US11309783B2 (en) * 2019-09-26 2022-04-19 Honeywell Federal Manufacturing & Technologies, Llc Electromagnetic propulsion system
CN112787563B (zh) * 2021-01-28 2022-06-17 南京航空航天大学 基于转子磁极调制的有级分区自调磁无级调速系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2063716U (zh) * 1990-03-14 1990-10-10 杭州电机总厂 调速电机变极绕组
RU2461947C1 (ru) * 2011-07-06 2012-09-20 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ГОУВПО КубГТУ) Управляемый каскадный электрический привод с жидкостным токосъемом
CN102921971A (zh) * 2012-11-21 2013-02-13 江苏大学 一种五自由度数控机床高速磁悬浮电主轴

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HRP20220392T1 (hr) * 2011-06-10 2022-07-22 Axiflux Holdings Pty Ltd Električni motor/generator
CN104718689B (zh) * 2012-08-27 2018-09-18 阿尔巴斯技术有限公司 有效利用空间的平面定子
WO2014040112A1 (en) * 2012-09-17 2014-03-20 Guina Research & Development Pty Ltd Electromagnetic turbine
JP5647307B1 (ja) * 2013-06-04 2014-12-24 成田 憲治 直流励磁界磁型同期電動機
JP6331949B2 (ja) * 2014-10-14 2018-05-30 スズキ株式会社 モータ
US10063127B2 (en) * 2015-01-29 2018-08-28 Masayuki Nashiki Multiple-phase AC electric motor whose rotor is equipped with field winding and diode
US9800109B2 (en) * 2015-10-02 2017-10-24 E-Circuit Motors, Inc. Structures and methods for controlling losses in printed circuit boards

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2063716U (zh) * 1990-03-14 1990-10-10 杭州电机总厂 调速电机变极绕组
RU2461947C1 (ru) * 2011-07-06 2012-09-20 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ГОУВПО КубГТУ) Управляемый каскадный электрический привод с жидкостным токосъемом
CN102921971A (zh) * 2012-11-21 2013-02-13 江苏大学 一种五自由度数控机床高速磁悬浮电主轴

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023444A (zh) * 2018-01-20 2018-05-11 营口万意达智能装备科技有限公司 一种伺服电机
CN116526722A (zh) * 2023-03-10 2023-08-01 广东白云学院 一种陶瓷风冷结构的轴向磁通无磁轭轮毂电机
CN116526722B (zh) * 2023-03-10 2023-12-19 广东白云学院 一种陶瓷风冷结构的轴向磁通无磁轭轮毂电机

Also Published As

Publication number Publication date
US10756604B2 (en) 2020-08-25
US20180145570A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
WO2016165121A1 (zh) 一类新型恒力恒扭矩均匀磁场感应伺服电机
US6861779B2 (en) Slip ring brush assembly and method
CN106340368B (zh) 交变复合励磁组件及其在电机和变压器中应用
CN103141017B (zh) 线性马达
US8541922B2 (en) Magnetic transmission assembly
SU1419531A3 (ru) Вентильный электродвигатель с тахометрическим генератором
CN101855811B (zh) 具有提升能力和减少的齿槽特性的电机定子
MXPA04012138A (es) Motor electrico de iman permanente giratorio que tiene zapatas polares de estator de dimensiones variables.
WO2017003033A1 (ko) 외륜 회전자형 스위치드 릴럭턴스 모터
US20190156992A1 (en) Alternating hybrid excitation assembly and application thereof to motor and transformer
TWI425746B (zh) 線性馬達
US3433987A (en) Rotor without sticking moment
GB2456837A (en) Electromagnetic machines having air gap windings formed of laminated conductors
US4835431A (en) Transformer and synchronous machine with stationary field winding
KR100741230B1 (ko) 인터페이스되는 스테이터와 로터 요소 사이의 가변 에어갭을 갖는 로터리 영구자석 전기 모터
TW201735502A (zh) 同步線性馬達
KR20120102435A (ko) 선형 전동기
JP2020092484A (ja) 着磁装置
JP2019187047A (ja) モータ
JP2023103594A (ja) リニアモータ及びこれを備えた電動サスペンション装置、制振システム
JP2004056864A (ja) リニアモータ
JPH08163801A (ja) モータ
TWI441424B (zh) 磁性變速組合裝置及其分段相位驅動馬達
KR101865354B1 (ko) 전동기
JPH10174420A (ja) 平滑巻線形リニアモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888826

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015888826

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15564925

Country of ref document: US