WO2016165114A1 - 旋转式压缩机 - Google Patents

旋转式压缩机 Download PDF

Info

Publication number
WO2016165114A1
WO2016165114A1 PCT/CN2015/076789 CN2015076789W WO2016165114A1 WO 2016165114 A1 WO2016165114 A1 WO 2016165114A1 CN 2015076789 W CN2015076789 W CN 2015076789W WO 2016165114 A1 WO2016165114 A1 WO 2016165114A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
sub
bearing
rotary compressor
main
Prior art date
Application number
PCT/CN2015/076789
Other languages
English (en)
French (fr)
Inventor
冯瑞金
廖健生
解少轩
陈达龙
Original Assignee
广东美芝制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美芝制冷设备有限公司 filed Critical 广东美芝制冷设备有限公司
Priority to PCT/CN2015/076789 priority Critical patent/WO2016165114A1/zh
Publication of WO2016165114A1 publication Critical patent/WO2016165114A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing

Definitions

  • the present invention relates to the field of compressors, and more particularly to a rotary compressor.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent. To this end, the present invention needs to provide a rotary compressor that is low in noise and reliable in operation.
  • a rotary compressor includes: a housing; a compression mechanism, the compression mechanism is disposed in the housing, the compression mechanism includes a cylinder, a main bearing, and a sub-bearing, and the main bearing is disposed at the a top portion of the cylinder, the sub-bearing is disposed at a bottom of the cylinder, a compression chamber is defined between the main bearing, the sub-bearing and the cylinder, and at least one of the main bearing and the sub-bearing Forming an exhaust port communicating with the compression chamber, the exhaust port communicating with the interior of the housing through an exhaust structure; a main muffler and a sub muffler, the main muffler being disposed on the main bearing a main muffling chamber is defined between the top portion and the main bearing, the sub muffler is disposed at a bottom of the sub-bearing and defines a sub-muff chamber between the sub-bearing; wherein the compression mechanism is provided There is a communication passage that communicate
  • the rotary compressor of the embodiment of the present invention by providing a communication passage that simultaneously communicates the exhaust port and the exhaust structure, and providing a muffling structure in the communication passage, the muffling structure in the communication passage can be utilized to effectively reduce the refrigerant gas.
  • the flow energy reduces the noise of the rotary compressor.
  • the influence of the refrigerant gas directly discharging the rotary compressor on the operational reliability thereof that is, the reliability of the operation of the rotary compressor according to the embodiment of the present invention is high.
  • rotary compressor according to the present invention may have the following additional technical features:
  • the communication passage includes first to third passages that are sequentially connected, the first passage is formed on the main bearing and penetrates the main bearing, and the third passage is formed at The sub-bearing is passed through the sub-bearing, and the second passage is formed on the cylinder and penetrates the cylinder.
  • the exhaust structure is a venting hole formed in the main muffler, an upper end of the first passage is in communication with the main muffling chamber, and a lower end of the third passage is The sub-anechoic chamber is connected.
  • the exhaust structure is a vent hole formed in the main muffler, an upper end of the first passage communicates with an interior of the housing, and a lower end of the third passage The sub-anechoic chamber is connected.
  • the exhaust structure is an exhaust passage formed on the compression mechanism, an upper end of the exhaust passage is in communication with an interior of the housing, and a lower end of the exhaust passage is The sub-muffler is in communication, the upper end of the first passage is in communication with the main muffler chamber, and the lower end of the third passage is in communication with the sub-anechoic chamber.
  • the sound absorbing structure is formed on an inner wall of the exhaust passage.
  • the sound absorbing structure is provided on an inner wall of at least one of the first passage, the second passage, and the third passage.
  • the cross-sectional area of the second passage is larger than the cross-sectional area of the first passage and the third passage.
  • the inner wall roughness of the communication passage ranges from 0.2 mm ⁇ Rz ⁇ 5 mm.
  • the sound absorbing structure is a thread, an annular rib or a projection.
  • Figure 1 is a schematic view of a rotary compressor in accordance with a first embodiment of the present invention
  • Figure 2 is a schematic view of a rotary compressor in accordance with a second embodiment of the present invention.
  • Figure 3 is a schematic view of a rotary compressor in accordance with a third embodiment of the present invention.
  • Figure 4 is a schematic view of a rotary compressor in accordance with a fourth embodiment of the present invention.
  • Figure 5 is a schematic view of a rotary compressor in accordance with a fifth embodiment of the present invention.
  • Figure 6 is a schematic view of a rotary compressor in accordance with a sixth embodiment of the present invention.
  • Figure 7 is a schematic view of a rotary compressor in accordance with a seventh embodiment of the present invention.
  • Figure 8 is a schematic view of a rotary compressor in accordance with an eighth embodiment of the present invention.
  • 24 communication channel; 241: first channel; 242: second channel; 243: third channel;
  • 25 receiving groove; 251: first receiving hole; 252: second receiving hole
  • main muffler 311: main muffler cavity; 312: venting hole;
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; may be mechanically connected or electrically connected; may be directly connected, or may be indirectly connected through an intermediate medium, may be internal communication of two elements or an interaction relationship of two elements. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • a rotary compressor 100 according to an embodiment of the present invention will be described below with reference to Figs.
  • the rotary compressor 100 can be a single cylinder compressor.
  • the rotary compressor 100 will be described as an example of a single-cylinder compressor.
  • the rotary compressor 100 may also be a multi-cylinder compressor such as a two-cylinder compressor or the like.
  • a rotary compressor 100 includes a housing (not shown), a compression mechanism, a main silencer 31, and a sub-muffler 32.
  • the compression mechanism is disposed in the housing, and the compression mechanism includes a cylinder 21, a main bearing 22 and a sub-bearing 23, the main bearing 22 is disposed at the top of the cylinder 21, the sub-bearing 23 is disposed at the bottom of the cylinder 21, and the main bearing 22, the sub-bearing 23 and the cylinder
  • a compression chamber 211 is defined between 21, and at least one of the main bearing 22 and the sub-bearing 23 is formed with a compression chamber 211
  • the exhaust port 221, the exhaust port 221 communicates with the inside of the casing through the exhaust structure, and the exhaust structure functions to communicate the exhaust port 221 and the inside of the casing, so that the compressed refrigerant gas is discharged from the compression chamber 211.
  • the exhaust port 221 and the exhaust structure are sequentially discharged to the inside of the casing, and then discharged to the outside of the rotary compressor 100 through an exhaust pipe (not shown) on the casing to participate in the circulation of the refrigerant.
  • the exhaust port 221 may be formed only on the main bearing 22, and the exhaust port 221 may be formed only on the sub-bearing 23, and of course, the exhaust port 221 may be simultaneously formed on the main bearing 22 and the sub-bearing 23.
  • the main muffler 31 is disposed at the top of the main bearing 22 and defines a main muffling chamber 311 between the main bearing 22, and the sub muffler 32 is disposed at the bottom of the sub-bearing 23 and defines a sub-anechoic cavity 321 between the sub-bearing 23.
  • the compression mechanism is provided with a communication passage 24 that communicates with the exhaust port 221 and the exhaust structure at the same time.
  • a part of the high-pressure refrigerant gas discharged through the exhaust port 221 may first be discharged to the inside of the casing through the communication passage 24 and then through the exhaust structure.
  • a part of the high-pressure refrigerant gas discharged through the exhaust port 221 may first pass through the exhaust structure.
  • the inner wall of the communication passage 24 is provided with a sound absorbing structure 27, and the sound absorbing structure 27 may be a rough structure formed on the inner wall of the communication passage 24, for example, when the inner wall of the communication passage 24 is machined, the roughness is intentionally increased, and the machining is increased.
  • the grooves are grooved to form the sound absorbing structure 27.
  • the sound absorbing structure 27 may be a thread, an annular rib or a protrusion formed on the inner wall of the communication passage 24.
  • the sound absorbing structure 27 may be disposed on the entire inner wall of the communication passage 24, or the sound absorbing structure 27 may be disposed on a portion of the communication passage 24, so that the energy of the refrigerant gas can be reduced.
  • the shape and structure of the thread, the annular rib or the protrusion may be arbitrary as long as the refrigerant gas can rub against the above structure to reduce the gas flow energy.
  • the shape of the thread may be triangular, trapezoidal, zigzag, rectangular, etc.
  • the cross-sectional shape of the annular rib may also be arbitrary, such as triangular, trapezoidal, zigzag, rectangular, curved, etc.
  • the shape of the protrusion may be Tapered, hemispherical, cubic, etc.
  • the inner wall roughness of the communication passage 24 ranges from 0.2 mm ⁇ Rz ⁇ 5 mm.
  • Rz refers to the ten-point height of the microscopic unevenness, that is, the sum of the average of the five largest contour peak heights and the average of the five largest contour valley depths within the sampling length.
  • the rotary compressor 100 of the embodiment of the present invention by providing the communication passage 24 that simultaneously communicates the exhaust port 221 and the exhaust structure, and the muffling structure 27 is provided in the communication passage 24, the muffling structure in the communication passage 24 can be utilized. 27 effectively reducing the flow energy of the refrigerant gas, thereby reducing the noise of the rotary compressor 100 sound. Moreover, by reducing the flow energy of the refrigerant gas and avoiding the influence of the refrigerant gas directly discharging the rotary compressor 100 on the operational reliability thereof, the range of the fluctuation of the input force of the rotary compressor 100 can be effectively reduced, that is, according to an embodiment of the present invention. The reliability of the operation of the rotary compressor 100 is high.
  • the rotary compressor 100 can effectively reduce the energy of gas flowing through the communication passage 24, thereby effectively reducing the noise value of the exhaust band.
  • the range of the fluctuation of the input force of the rotary compressor 100 can be effectively reduced, thereby making the operation of the rotary compressor 100 more reliable.
  • a rotary compressor 100 according to various embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
  • the communication passage 24 includes first to third passages 241 to 243 which are sequentially connected, the first passage 241 is formed on the main bearing 22 and penetrates the main bearing 22, and the third passage 243 is formed on the sub-bearing 23 and Through the sub-bearing 23, the second passage 242 is formed on the cylinder 21 and penetrates the cylinder 21.
  • the first passage 241 penetrates the main bearing 22 in the thickness direction of the main bearing 22 in the vertical direction
  • the second passage 242 penetrates the cylinder 21 in the thickness direction of the cylinder 21 in the vertical direction
  • the thickness of the third passage 243 along the sub-bearing 23 The direction penetrates the sub-bearing 23, and the first passage 241, the second passage 242, and the third passage 243 are vertically opposed, so that the refrigerant gas in the main muffler chamber 311 and the sub-anechoic chamber 321 can smoothly pass through the communication passage 24 at the main silencing
  • the cavity 311 and the sub-anechoic chamber 321 are relatively free flowing, and are easy to process, thereby reducing the cost.
  • the sound absorbing structure 27 may be disposed on an inner wall of at least one of the first passage 241, the second passage 242, and the third passage 243. That is, the muffling structure 27 may be disposed on one of the first channel 241, the second channel 242, and the third channel 243, or the muffling structure 27 may be disposed on two of them, or may be provided in three channels. The muffling structure 27 is set.
  • the exhaust structure may be a venting hole 312 formed in the main muffler 31.
  • the exhaust port 221 is only disposed on the main bearing 22, and the upper end of the first passage 241 is in communication with the main muffler chamber 311, and the third The lower end of the passage 243 communicates with the sub-anechoic chamber 321 .
  • the refrigerant gas compressed in the compression chamber 211 enters the main muffler chamber 311 through the exhaust port 221 of the main bearing 22, and a part of the refrigerant in the main muffler chamber 311 directly enters the inside of the casing through the vent hole 312.
  • Another portion of the refrigerant gas in the muffler chamber 311 enters the sub-anechoic chamber 321 through the communication passage 24, and after the exhaust port 221 is closed, the pressure in the main muffler chamber 311 is small, and the refrigerant in the sub-anechoic chamber 321 can pass.
  • the communication passage 24 enters the main muffler chamber 311 again and is discharged through the vent hole 312, so that the flow energy of the refrigerant gas can be effectively reduced, thereby effectively reducing the noise of the rotary compressor 100 and improving the operational reliability of the rotary compressor 100.
  • the exhaust port 221 is simultaneously provided on the main bearing 22 and the sub-bearing 23, whereby the compression chamber 211 is compressed.
  • the subsequent refrigerant gas enters the main muffler chamber 311 through the exhaust port 221 of the main bearing 22, enters the sub-anechoic chamber 321 through the exhaust port 221 on the sub-bearing 23, and the refrigerant in the main muffler chamber 311 passes through the vent hole.
  • the secondary silencer cavity 321 The refrigerant gas inside enters the main muffler chamber 311 through the communication passage 24, and the two refrigerant gases are discharged through the vent holes 312 of the main muffler 31.
  • the present invention is not limited thereto, and the exhaust port 221 may be provided only on the sub-bearing 23 (not shown), and the compressed refrigerant gas in the compression chamber 211 enters the sub-exhaust port 221 through the exhaust port 221 on the sub-bearing 23
  • the refrigerant in the sub-anechoic chamber 321 enters the main muffler chamber 311 through the communication passage 24, and is discharged through the vent hole 312 of the main muffler 31.
  • the cross-sectional area of the second passage 242 is larger than the cross-sectional areas of the first passage 241 and the third passage 243.
  • the cross-sectional areas of the first passage 241, the second passage 242, and the third passage 243 are respectively equal along the axial direction thereof, and the cross-sectional areas of the second passage 242 are respectively larger than the cross-sectional area of the first passage 241 and the first The cross-sectional area of the three passages 243, whereby the noise of the rotary compressor 100 can be further reduced, and the reliability of the rotary compressor 100 is further improved.
  • the cross-sectional area of the second passage 242 can also be gradually changed.
  • the cross-sectional area of the end of the second passage 242 communicating with the first passage 241 may be substantially equal to the cross-sectional area of the end of the first passage 241 communicating with the second passage 242, and the third passage 242 and the third passage 243
  • the cross-sectional area of one end of the communication may be substantially equal to the cross-sectional area of the end of the third passage 243 communicating with the second passage 242, and the second passage 242 may be configured to be axially connected from the end thereof to the first passage 241.
  • the direction cross-sectional area toward the end where it communicates with the second passage 242 is gradually increased first and then gradually decreased.
  • the present invention is not limited thereto, and the cross-sectional area between the first passage 241, the second passage 242, and the third passage 243 may be in any proportional relationship.
  • the cross-sectional area of the first passage 241 may be greater than the cross-sectional area of the second passage 242 and the third passage 243
  • the cross-sectional area of the third passage 243 is larger than the cross-sectional area of the first passage 241 and the second passage 242.
  • the cross-sectional area between the first channel 241, the second channel 242, and the third channel 243 may be equal to each other, or the first channel 241, the second channel 242, and the The three channels 243 three channels have equal cross-sectional areas.
  • the upper end of the first passage 241 communicates with the inside of the casing, and the lower end of the third passage 243 communicates with the sub-anechoic chamber 321, and the exhaust structure is formed in The vent hole 312 on the main muffler 31, the exhaust port 221 is formed on the main bearing 22, so that the refrigerant entering the main muffler chamber 311 from the exhaust port 221 of the main bearing 22 is entirely vented from the vent hole 312 of the main muffler 31.
  • a part of the refrigerant that has entered the inside of the casing is discharged from the exhaust pipe on the casing, and a part of the refrigerant enters the sub-anechoic cavity 321 through the communication passage 24, and after the exhaust port 221 is closed, the pressure inside the casing is relatively high. Small, at this time, the refrigerant in the sub-anechoic chamber 321 can enter the casing through the communication passage 24 and be discharged from the exhaust pipe on the casing.
  • the exhaust structure is an exhaust passage 26 formed on the compression mechanism, and the exhaust passage 26 penetrates the main bearing 22, the cylinder 21, and the vice-stage from top to bottom.
  • Bearing 23, exhaust passage 26 The upper end communicates with the inside of the casing, and the lower end of the exhaust passage 26 communicates with the sub-muffler 32.
  • the upper end of the first passage 241 communicates with the main muffler chamber 311, and the lower end of the third passage 243 communicates with the sub-anechoic chamber 321 .
  • the exhaust port 221 is provided only on the main bearing 22, whereby the compressed refrigerant gas in the compression chamber 211 enters the main muffler chamber 311 via the exhaust port 221 on the main bearing 22, and the main muffler is silenced. All of the refrigerant gas in the chamber 311 enters the sub-anechoic chamber 321 through the communication passage 24, and the refrigerant in the sub-anechoic chamber 321 is further discharged to the inside of the casing through the exhaust passage 26, so that the flow energy of the refrigerant gas can be effectively reduced.
  • the exhaust port 221 is provided only on the sub-bearing 23, whereby the compressed refrigerant gas in the compression chamber 211 passes through the row on the sub-bearing 23.
  • the gas port 221 enters the sub-anechoic chamber 321 , and a part of the refrigerant gas in the sub-anechoic chamber 321 directly enters the inside of the casing through the communication passage 24 , and another portion of the refrigerant gas in the sub-anechoic chamber 321 can enter the main muffler through the communication passage 24 .
  • the pressure in the sub-anechoic chamber 321 is small, and at this time, the refrigerant in the main muffler chamber 311 can enter the sub-anechoic chamber 321 again through the communication passage 24 and pass through the exhaust passage 26. discharge.
  • the sound absorbing structure 27 may be formed on the inner wall of the exhaust passage 26, thereby further reducing the flow energy of the refrigerant gas.
  • the communication passages 24 may be plural, and the plurality of communication passages 24 are spaced apart from each other to further reduce the flow energy of the refrigerant.
  • the communication passages 24 are preferably one or two. It can be understood that the number of the communication channels 24 and the arrangement on the compression mechanism can be adapted to the actual requirements, which is not specifically limited in the present invention.
  • the compression mechanism is formed with at least one receiving groove 25, and the receiving groove 25 may communicate with the main muffling chamber 311 corresponding to the main bearing 22, or the receiving groove 25 may be coupled with the auxiliary bearing.
  • the sub-anechoic chamber 321 corresponding to 23 is connected.
  • the cylinder 21 is formed with a first receiving hole 251 penetrating therethrough, and the auxiliary bearing hole 252 is formed in the sub-bearing 23 , and the second receiving hole 252 is opposed to the first receiving hole 251 .
  • the receiving groove 25 is defined between the first receiving hole 251 and the second receiving hole 252 and the main bearing 22, and the receiving groove 25 communicates with the sub-anechoic cavity 321, so that the volume of the sub-anechoic chamber 321 is increased, and the airflow can also be reduced.
  • the role of noise It can be understood that the number of the accommodating slots 25 can be adaptively changed according to actual requirements, which is not specifically limited in the present invention.
  • the sound absorbing structure 27 may be provided on the inner wall of the accommodating groove 25, whereby the flow energy of the refrigerant gas can be further reduced.
  • one of the main bearing 22 and the sub-bearing 23 is formed with a muffling groove recessed toward the direction of the cylinder 21, and a muffler cavity is defined between the muffler groove and the corresponding muffler.
  • the muffler groove is formed by a part of the lower surface of the sub-bearing 23, and the muffler groove is substantially annular.
  • the sub-muffler 32 is a flat plate structure, and the flat sub-muffler 32 is disposed at The bottom of the sub-bearing 23 and common with the muffler The sub-anechoic chamber 321 is defined.
  • the muffler groove may also be formed by a concave portion of the upper surface of the main bearing 22, and the muffler groove is substantially annular.
  • the main muffler 31 is a flat plate structure, and the flat main muffler 31 is disposed at the main The bottom of the bearing 22 and the muffling groove together define the main muffling chamber 311 (not shown).

Abstract

一种旋转式压缩机,包括:壳体;压缩机构,压缩机构包括气缸、主轴承和副轴承,主轴承设在气缸的顶部,副轴承设在气缸的底部,主轴承和副轴承中的至少一个上形成有排气口,排气口通过排气结构与壳体内部连通;主消音器和副消音器,主消音器设在主轴承的顶部,副消音器设在副轴承的底部;其中压缩机构上设有连通通道,连通通道与排气口和排气结构同时连通,连通通道内壁上设有消音结构。

Description

旋转式压缩机 技术领域
本发明涉及压缩机领域,尤其是涉及一种旋转式压缩机。
背景技术
相关技术中,旋转式压缩机的排气由于具有较大能量,从而即便高压冷媒气体经过消音器的消音后,其能量也不会得到有效地衰减,直接排出旋转式压缩机将不利于旋转式压缩机运行的可靠性,而且造成旋转式压缩机的噪音大。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明需要提出一种旋转式压缩机噪音低且运行可靠。
根据本发明实施例的旋转式压缩机,包括:壳体;压缩机构,所述压缩机构设在所述壳体内,所述压缩机构包括气缸、主轴承和副轴承,所述主轴承设在所述气缸的顶部,所述副轴承设在所述气缸的底部,所述主轴承、所述副轴承与所述气缸之间限定出压缩腔,所述主轴承和所述副轴承中的至少一个上形成有与所述压缩腔连通的排气口,所述排气口通过排气结构与所述壳体内部连通;主消音器和副消音器,所述主消音器设在所述主轴承的顶部且与所述主轴承之间限定出主消音腔,所述副消音器设在所述副轴承的底部且与所述副轴承之间限定出副消音腔;其中所述压缩机构上设有连通通道,所述连通通道与所述排气口和所述排气结构同时连通,所述连通通道内壁上设有消音结构。
根据本发明实施例的旋转式压缩机,通过设置同时连通排气口和排气结构的连通通道,并且在连通通道内设置消音结构,从而可以利用连通通道内的消音结构有效地降低冷媒气体的流动能量,进而可以降低旋转式压缩机的噪音。而且通过降低冷媒气体的流动能量,避免冷媒气体直接排出旋转式压缩机而对其运行可靠性造成的影响,即根据本发明实施例的旋转式压缩机的运行的可靠性高。
另外,根据本发明的旋转式压缩机还可具有如下附加技术特征:
根据本发明的一个实施例,所述连通通道包括依次连通的第一通道至第三通道,所述第一通道形成在所述主轴承上且贯穿所述主轴承,所述第三通道形成在所述副轴承上且贯穿所述副轴承,所述第二通道形成在所述气缸上且贯穿所述气缸。
根据本发明的一个实施例,所述排气结构为形成在所述主消音器上的透气孔,所述第一通道的上端与所述主消音腔连通,所述第三通道的下端与所述副消音腔连通。
根据本发明的一个实施例,所述排气结构为形成在所述主消音器上的透气孔,所述第一通道的上端与所述壳体内部连通,所述第三通道的下端与所述副消音腔连通。
根据本发明的一个实施例,所述排气结构为形成在所述压缩机构上的排气通道,所述排气通道的上端与所述壳体内部连通,所述排气通道的下端与所述副消音器连通,所述第一通道的上端与所述主消音腔连通,所述第三通道的下端与所述副消音腔连通。
根据本发明的一个实施例,所述排气通道内壁上形成有所述消音结构。
根据本发明的一个实施例,所述消音结构设在所述第一通道、所述第二通道和所述第三通道中的至少一个的内壁上。
根据本发明的一个实施例,所述第二通道的横截面积大于所述第一通道和所述第三通道的横截面积。
根据本发明的一个实施例,所述连通通道的内壁粗糙度范围为:0.2mm≤Rz≤5mm。
根据本发明的一个实施例,所述消音结构为螺纹、环形筋或者凸起。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明第一个实施例的旋转式压缩机的示意图;
图2是根据本发明第二个实施例的旋转式压缩机的示意图;
图3是根据本发明第三个实施例的旋转式压缩机的示意图;
图4是根据本发明第四个实施例的旋转式压缩机的示意图;
图5是根据本发明第五个实施例的旋转式压缩机的示意图;
图6是根据本发明第六个实施例的旋转式压缩机的示意图;
图7是根据本发明第七个实施例的旋转式压缩机的示意图;
图8是根据本发明第八个实施例的旋转式压缩机的示意图。
附图标记:
100:旋转式压缩机;
21:气缸;211:压缩腔;
22:主轴承;221:排气口;
23:副轴承;
24:连通通道;241:第一通道;242:第二通道;243:第三通道;
25:容纳槽;251:第一容纳孔;252:第二容纳孔
26:排气通道;27:消音结构;
31:主消音器;311:主消音腔;312:透气孔;
32:副消音器;321:副消音腔。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面参考图1-图8描述根据本发明实施例的旋转式压缩机100。旋转式压缩机100可以为单缸压缩机。在本申请下面的描述中,以旋转式压缩机100为单缸压缩机为例进行说明。当然,本领域内的技术人员可以理解,旋转式压缩机100还可以为多缸压缩机例如双缸压缩机等。
如图1-图8所示,根据本发明实施例的旋转式压缩机100包括:壳体(图未示出)、压缩机构、主消音器31和副消音器32。
压缩机构设在壳体内,压缩机构包括气缸21、主轴承22和副轴承23,主轴承22设在气缸21的顶部,副轴承23设在气缸21的底部,主轴承22、副轴承23与气缸21之间限定出压缩腔211,主轴承22和副轴承23中的至少一个上形成有与压缩腔211连 通的排气口221,排气口221通过排气结构与壳体内部连通,排气结构起到连通排气口221和壳体内部的作用,从而经过压缩后的冷媒气体从压缩腔211排出,依次经过排气口221和排气结构排向壳体内部,再通过壳体上的排气管(图未示出)排出到旋转式压缩机100外部,以参与冷媒的循环。其中排气口221可以仅形成在主轴承22上,排气口221也可以仅形成在副轴承23上,当然排气口221还可以同时形成在主轴承22上和副轴承23上。
主消音器31设在主轴承22的顶部且与主轴承22之间限定出主消音腔311,副消音器32设在副轴承23的底部且与副轴承23之间限定出副消音腔321。
根据本发明实施例的旋转式压缩机100,压缩机构上设有连通通道24,连通通道24与排气口221和排气结构同时连通。其中经过排气口221排出的高压冷媒气体的一部分可以首先经过连通通道24再经过排气结构排到壳体内部,当然经过排气口221排出的高压冷媒气体的一部分也可以首先经过排气结构再经过连通通道24后再排到壳体内部,这里的具体结构将在下面的描述中进行详细描述。
连通通道24内壁上设有消音结构27,消音结构27可以是形成在连通通道24内壁上粗糙结构,例如可以是在对连通通道24内壁进行机加工时,故意增大其粗糙度,增加机加工刻槽从而形成消音结构27。可选地,消音结构27可以是形成在连通通道24内壁上的螺纹、环形筋或者凸起。通过设置消音结构27,从而当冷媒气体经过连通通道24时,气体与消音结构27接触,消音结构27与冷媒气体摩擦,可以有效地降低冷媒气体的流动能量,进而可以有效地降低气体噪音。具体地,连通通道24的整个内壁上都可以设置消音结构27,或者连通通道24的一部分上设置消音结构27,这样均可以起到降低冷媒气体能量的作用。
可选地,螺纹、环形筋或者凸起的形状、结构可以是任意的,只要冷媒气体可以与上述的结构进行摩擦从而降低气体流动能量即可。例如,螺纹的牙型可以是三角形、梯形、锯齿形、矩形等;环形筋的横截面形状也可以是任意的,例如三角形、梯形、锯齿形、矩形、弧形等;凸起的形状可以是锥形、半球形、立方体形等。
优选地,连通通道24的内壁粗糙度范围为:0.2mm≤Rz≤5mm。其中Rz是指微观不平度十点高度,即在取样长度内,五个最大的轮廓峰高的平均值与五个最大轮廓谷深的平均值之和。通过将内壁粗糙度设置在上述范围内,从而既可以起到增大摩擦、减小冷媒气体流动能量的作用,也不会过度影响冷媒气体在连通通道24内的通过性。
根据本发明实施例的旋转式压缩机100,通过设置同时连通排气口221和排气结构的连通通道24,并且在连通通道24内设置消音结构27,从而可以利用连通通道24内的消音结构27有效地降低冷媒气体的流动能量,进而可以降低旋转式压缩机100的噪 音。而且通过降低冷媒气体的流动能量,避免冷媒气体直接排出旋转式压缩机100而对其运行可靠性造成的影响,可有效减小旋转式压缩机100的入力波动范围,即根据本发明实施例的旋转式压缩机100的运行的可靠性高。
综上,根据本发明实施例的旋转式压缩机100可有效降低流通在连通通道24内的气体能量,从而有效降低排气频段噪音值。另外,可有效减小旋转式压缩机100的入力波动范围,从而使旋转式压缩机100运行更为可靠。
下面将参照附图详细描述根据本发明不同实施例的旋转式压缩机100。
如图1所示,连通通道24包括依次连通的第一通道241至第三通道243,第一通道241形成在主轴承22上且贯穿主轴承22,第三通道243形成在副轴承23上且贯穿副轴承23,第二通道242形成在气缸21上且贯穿气缸21。具体而言,第一通道241在竖向上沿主轴承22的厚度方向贯穿主轴承22,第二通道242在竖向上沿气缸21的厚度方向贯穿气缸21,第三通道243沿副轴承23的厚度方向贯穿副轴承23,第一通道241、第二通道242和第三通道243在竖向上相对,从而主消音腔311和副消音腔321中内的冷媒气体可以顺利地通过连通通道24在主消音腔311和副消音腔321内相对自由流动,且加工方便,从而降低了成本。
可选地,消音结构27可以设在第一通道241、第二通道242和第三通道243中的至少一个的内壁上。也就是说,第一通道241、第二通道242和第三通道243中内可以在其中一个上设置消音结构27,也可以在其中两个上设置消音结构27,还可以在三个通道内均设置消音结构27。
如图1所示,排气结构可以是形成在主消音器31上的透气孔312,排气口221仅设置在主轴承22上,第一通道241的上端与主消音腔311连通,第三通道243的下端与副消音腔321连通。由此,压缩腔211内压缩后的冷媒气体经由主轴承22上的排气口221进入到主消音腔311内,主消音腔311内的一部分冷媒通过透气孔312直接进入到壳体内部,主消音腔311内的另一部分冷媒气体通过连通通道24进入到副消音腔321内,在排气口221关闭后,主消音腔311内的压力较小,此时副消音腔321内的冷媒可以通过连通通道24再次进入到主消音腔311内并通过透气孔312排出,从而可以有效降低冷媒气体的流动能量,从而可以有效降低旋转式压缩机100的噪音,提高旋转式压缩机100的运行可靠性。
如图2所示,与图1所示的示例不同的是,如图2所示的示例中,排气口221同时设置在主轴承22和副轴承23上,由此,压缩腔211内压缩后的冷媒气体经由主轴承22上的排气口221进入到主消音腔311内,经由副轴承23上的排气口221进入到副消音腔321内,主消音腔311内的冷媒通过透气孔312直接进入到壳体内部,副消音腔321 内的冷媒气体通过连通通道24进入到主消音腔311内,两股冷媒气体再通过主消音器31上的透气孔312排出。
当然本发明并不限于此,排气口221还可以仅设置在副轴承23上(图未示出),压缩腔211内压缩后的冷媒气体经由副轴承23上的排气口221进入到副消音腔321内,副消音腔321内的冷媒通过连通通道24进入到主消音腔311内,再通过主消音器31上的透气孔312排出。
如图3所示的示例,与图1所示的示例不同的是,第二通道242的横截面积大于第一通道241和第三通道243的横截面积。具体地,第一通道241、第二通道242和第三通道243的横截面积分别沿其轴向处处相等,且第二通道242的横截面积分别大于第一通道241的横截面积和第三通道243的横截面积,由此,可以进一步降低旋转式压缩机100的噪声,进一步提高旋转式压缩机100的可靠性。
当然,第二通道242的横截面积也可以是逐渐变化的。例如,第二通道242的与第一通道241连通的一端的横截面积与第一通道241的与第二通道242连通的一端横截面积可以大致相等,第二通道242的与第三通道243连通的一端的横截面积与第三通道243的与第二通道242连通的一端横截面积可以大致相等,第二通道242可以被构造成沿其轴向从其与第一通道241连通的一端朝向其与第二通道242连通的一端的方向横截面积先逐渐增大、后逐渐减小。
当然本发明并不限于此,第一通道241、第二通道242和第三通道243之间的横截面积可以是任意比例关系。例如第一通道241的横截面积可以大于第二通道242和第三通道243的横截面积,第三通道243的横截面积大于第一通道241和第二通道242的横截面积。当然,可选地,如图1所示,第一通道241、第二通道242和第三通道243之间的横截面积可以是两两相等,或者第一通道241、第二通道242和第三通道243三个通道的横截面积均相等。
如图4所示的示例,与图1所示的示例不同的是,第一通道241的上端与壳体内部连通,第三通道243的下端与副消音腔321连通,排气结构为形成在主消音器31上的透气孔312,排气口221形成在主轴承22上,这样从主轴承22的排气口221进入到主消音腔311内的冷媒全部从主消音器31的透气孔312排出,进入到壳体内部的冷媒中的一部分从壳体上的排气管排出,一部分通过连通通道24进入到副消音腔321内,且在排气口221关闭后,壳体内部的压力较小,此时副消音腔321内的冷媒可以通过连通通道24进入到壳体内并从壳体上的排气管排出。
如图5所示,与图1所示的示例不同的是,排气结构为形成在压缩机构上的排气通道26,排气通道26由上向下依次贯穿主轴承22、气缸21和副轴承23,排气通道26 的上端与壳体内部连通,排气通道26的下端与副消音器32连通,第一通道241的上端与主消音腔311连通,第三通道243的下端与副消音腔321连通。如图5所示,排气口221仅设置在主轴承22上,由此,压缩腔211内压缩后的冷媒气体经由主轴承22上的排气口221进入到主消音腔311内,主消音腔311内的全部冷媒气体通过连通通道24进入到副消音腔321内,副消音腔321内的冷媒进一步再通过排气通道26排出到壳体内部,从而可以有效降低冷媒气体的流动能量。
如图6所示的示例,与图5所示的示例不同的是,排气口221仅设置在副轴承23上,由此,压缩腔211内压缩后的冷媒气体经由副轴承23上的排气口221进入到副消音腔321内,副消音腔321内的一部分冷媒气体通过连通通道24直接进入到壳体内部,副消音腔321内的另一部分冷媒气体可以通过连通通道24进入到主消音腔311内,在排气口221关闭后,副消音腔321内的压力较小,此时主消音腔311内的冷媒可以通过连通通道24再次进入到副消音腔321内并通过排气通道26排出。
可选地,排气通道26内壁上也可以形成有消音结构27,由此可以进一步起到降低冷媒气体流动能量的作用。
可选地,连通通道24可以为多个,且多个连通通道24彼此间隔开设置,以进一步降低冷媒的流动能量。连通通道24优选为一个或两个。可以理解,连通通道24的个数以及在压缩机构上的布置方式等可以根据实际要求而适应性改变,本发明对此不作具体限定。
根据本发明的进一步实施例,如图7所示,压缩机构上形成有至少一个容纳槽25,容纳槽25可以与主轴承22所对应的主消音腔311连通,或者容纳槽25可以与副轴承23所对应的副消音腔321连通。如图7所示的示例中,气缸21上形成有贯通的第一容纳孔251,副轴承23上形成有贯通的第二容纳孔252,第二容纳孔252与第一容纳孔251上下相对,第一容纳孔251和第二容纳孔252与主轴承22之间限定出上述容纳槽25,容纳槽25与副消音腔321连通,从而增加了副消音腔321的容积,同样可以起到降低气流噪声的作用。可以理解,容纳槽25的个数可以根据实际要求而适应性改变,本发明对此不作具体限定。
优选地,容纳槽25的内壁上也可以设置消音结构27,由此可以进一步降低冷媒气体的流动能量。
根据本发明的一个可选实施例,主轴承22和副轴承23中的其中一个上形成有朝向气缸21的方向凹入的消音槽,消音槽与对应的消音器之间限定出消音腔。例如图8所示,消音槽由副轴承23的下表面的一部分向上凹入形成,消音槽大体为环状,可选地,副消音器32为平板结构,平板状的副消音器32设在副轴承23的底部且与消音槽共同 限定出上述副消音腔321。
当然,消音槽还可以由主轴承22的上表面的一部分向下凹入形成,消音槽大体为环状,可选地,主消音器31为平板结构,平板状的主消音器31设在主轴承22的底部且与消音槽共同限定出上述主消音腔311(图未示出)。
根据本发明实施例的旋转式压缩机100的其他构成例如电机等以及操作对于本领域技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种旋转式压缩机,其特征在于,包括:
    壳体;
    压缩机构,所述压缩机构设在所述壳体内,所述压缩机构包括气缸、主轴承和副轴承,所述主轴承设在所述气缸的顶部,所述副轴承设在所述气缸的底部,所述主轴承、所述副轴承与所述气缸之间限定出压缩腔,所述主轴承和所述副轴承中的至少一个上形成有与所述压缩腔连通的排气口,所述排气口通过排气结构与所述壳体内部连通;
    主消音器和副消音器,所述主消音器设在所述主轴承的顶部且与所述主轴承之间限定出主消音腔,所述副消音器设在所述副轴承的底部且与所述副轴承之间限定出副消音腔;
    其中所述压缩机构上设有连通通道,所述连通通道与所述排气口和所述排气结构同时连通,所述连通通道内壁上设有消音结构。
  2. 根据权利要求1所述的旋转式压缩机,其特征在于,所述连通通道包括依次连通的第一通道至第三通道,所述第一通道形成在所述主轴承上且贯穿所述主轴承,所述第三通道形成在所述副轴承上且贯穿所述副轴承,所述第二通道形成在所述气缸上且贯穿所述气缸。
  3. 根据权利要求2所述的旋转式压缩机,其特征在于,所述排气结构为形成在所述主消音器上的透气孔,所述第一通道的上端与所述主消音腔连通,所述第三通道的下端与所述副消音腔连通。
  4. 根据权利要求2所述的旋转式压缩机,其特征在于,所述排气结构为形成在所述主消音器上的透气孔,所述第一通道的上端与所述壳体内部连通,所述第三通道的下端与所述副消音腔连通。
  5. 根据权利要求2所述的旋转式压缩机,其特征在于,所述排气结构为形成在所述压缩机构上的排气通道,所述排气通道的上端与所述壳体内部连通,所述排气通道的下端与所述副消音器连通,所述第一通道的上端与所述主消音腔连通,所述第三通道的下端与所述副消音腔连通。
  6. 根据权利要求5所述的旋转式压缩机,其特征在于,所述排气通道内壁上形成有所述消音结构。
  7. 根据权利要求2所述的旋转式压缩机,其特征在于,所述消音结构设在所述第一通道、所述第二通道和所述第三通道中的至少一个的内壁上。
  8. 根据权利要求2所述的旋转式压缩机,其特征在于,所述第二通道的横截面积大于所述第一通道和所述第三通道的横截面积。
  9. 根据权利要求1所述的旋转式压缩机,其特征在于,所述连通通道的内壁粗糙度范 围为:0.2mm≤Rz≤5mm。
  10. 根据权利要求1-9中任一项所述的旋转式压缩机,其特征在于,所述消音结构为螺纹、环形筋或者凸起。
PCT/CN2015/076789 2015-04-16 2015-04-16 旋转式压缩机 WO2016165114A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/076789 WO2016165114A1 (zh) 2015-04-16 2015-04-16 旋转式压缩机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/076789 WO2016165114A1 (zh) 2015-04-16 2015-04-16 旋转式压缩机

Publications (1)

Publication Number Publication Date
WO2016165114A1 true WO2016165114A1 (zh) 2016-10-20

Family

ID=57126333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076789 WO2016165114A1 (zh) 2015-04-16 2015-04-16 旋转式压缩机

Country Status (1)

Country Link
WO (1) WO2016165114A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112145418A (zh) * 2019-06-28 2020-12-29 广东美芝制冷设备有限公司 旋转式压缩机和冷冻循环装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201584157U (zh) * 2009-12-11 2010-09-15 安徽广德金鹏科技发展有限公司 一种中空螺旋消音管
CN203655385U (zh) * 2013-08-18 2014-06-18 三一重机有限公司 发动机排气系用消音器
CN104454548A (zh) * 2014-12-22 2015-03-25 广东美芝制冷设备有限公司 旋转式压缩机
CN104500402A (zh) * 2014-12-16 2015-04-08 广东美芝制冷设备有限公司 旋转式压缩机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201584157U (zh) * 2009-12-11 2010-09-15 安徽广德金鹏科技发展有限公司 一种中空螺旋消音管
CN203655385U (zh) * 2013-08-18 2014-06-18 三一重机有限公司 发动机排气系用消音器
CN104500402A (zh) * 2014-12-16 2015-04-08 广东美芝制冷设备有限公司 旋转式压缩机
CN104454548A (zh) * 2014-12-22 2015-03-25 广东美芝制冷设备有限公司 旋转式压缩机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112145418A (zh) * 2019-06-28 2020-12-29 广东美芝制冷设备有限公司 旋转式压缩机和冷冻循环装置

Similar Documents

Publication Publication Date Title
CN113357129B (zh) 一种排气降噪结构、压缩机及制冷设备
WO2017129080A1 (zh) 双缸压缩机及空调器
CN104454548A (zh) 旋转式压缩机
CN203655385U (zh) 发动机排气系用消音器
US20040050041A1 (en) Muffling structure for pneumatic tool
US7690479B2 (en) Silencer
WO2016165114A1 (zh) 旋转式压缩机
CN113638883A (zh) 泵体组件、压缩机和空调器
WO2024002116A1 (zh) 一种活塞压缩机和包括该活塞压缩机的移动冰箱
CN112177887A (zh) 排气消音结构及压缩机
KR20100063452A (ko) 소음기
CN110701054A (zh) 法兰、压缩机和空调器
WO2022110599A1 (zh) 吸气消音器
CN104533796A (zh) 旋转式压缩机
CN115163495A (zh) 消声单元和消声结构
CN210397120U (zh) 压缩机构和旋转式压缩机
CN112324642A (zh) 一种气缸座及具有其的压缩机
CN111946593A (zh) 一种吸气消音器及具有其的压缩机
CN215409203U (zh) 压缩机泵体组件、压缩机和空调系统
CN212774553U (zh) 一种静音式空滤器
CN211474433U (zh) 压缩机和制冷设备
CN112253461B (zh) 压缩机、空调器及热水器
CN212508826U (zh) 压缩机泵体及滚动转子式压缩机
CN215805199U (zh) 泵体消音组件、泵体组件和压缩机
CN216198989U (zh) 泵体组件、旋转式压缩机及制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888819

Country of ref document: EP

Kind code of ref document: A1