WO2016163753A1 - 단백질 또는 펩타이드 전달용 용해성 마이크로니들 - Google Patents

단백질 또는 펩타이드 전달용 용해성 마이크로니들 Download PDF

Info

Publication number
WO2016163753A1
WO2016163753A1 PCT/KR2016/003600 KR2016003600W WO2016163753A1 WO 2016163753 A1 WO2016163753 A1 WO 2016163753A1 KR 2016003600 W KR2016003600 W KR 2016003600W WO 2016163753 A1 WO2016163753 A1 WO 2016163753A1
Authority
WO
WIPO (PCT)
Prior art keywords
microneedle
peptide
skin
poly
growth factor
Prior art date
Application number
PCT/KR2016/003600
Other languages
English (en)
French (fr)
Inventor
심우선
이선화
황영민
강내규
Original Assignee
주식회사 엘지생활건강
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150144873A external-priority patent/KR20160119674A/ko
Priority claimed from KR1020150159966A external-priority patent/KR20160119679A/ko
Application filed by 주식회사 엘지생활건강 filed Critical 주식회사 엘지생활건강
Priority to KR1020177026563A priority Critical patent/KR102264298B1/ko
Priority to US15/565,114 priority patent/US20180116938A1/en
Priority to CN202210187289.7A priority patent/CN114515269A/zh
Priority to EP16776856.3A priority patent/EP3281627A4/en
Priority to JP2017552135A priority patent/JP6816015B2/ja
Priority to CN201680019260.0A priority patent/CN107438432B/zh
Publication of WO2016163753A1 publication Critical patent/WO2016163753A1/ko
Priority to HK18107322.4A priority patent/HK1247831A1/zh
Priority to US16/809,748 priority patent/US20200197286A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin

Definitions

  • the present invention relates to a soluble microneedle, relates to a skin administration system capable of stably delivering a protein or peptide to the skin, and to a skin administration system that improves the stability of an unstable protein or peptide.
  • Recent growth factors EGF
  • human growth hormone hGH
  • Fibroblast growth to improve skin condition (eg wrinkles, elasticity, etc.)
  • FGF-1, -2 Keratinocyte growth factor
  • KGF Keratinocyte growth factor
  • HGF Hepatocyte growth factor
  • PDGF Platelet derived growth factor
  • EGF is a wound healing substance in the body that boosts slaughter (granulation tissue) and regenerates blood vessels in the body's natural wound healing process. This is being done.
  • epidermal growth factor EGF
  • human growth hormone etc.
  • the activity is more important than the content, even if the content is increased, even if the activity is not the desired effect is difficult to obtain.
  • beneficial and useful substances for the skin must be penetrated from the epidermal layer to the dermis layer through the stratum corneum when using the product in order to show efficacy as a real product, and there is a need for a method that can be evenly distributed throughout the skin.
  • Conventionally there is a method of improving the permeability using Surfactant and the like, but the effect of improving the permeability is insignificant, and there is a disadvantage of softening the skin barrier.
  • the stratum corneum of the skin is a brick structure consisting of keratin-rich keratinocytes, and a mortar filled with lipids such as ceramide, fatty acids, or waxes between the keratinocytes. It consists of a structure. This structure acts as a barrier and has a very low material permeability. Only low molecular structure components of 500 Da or less can be delivered into the skin by diffusion, and only substances with good lipid affinity can pass through the skin.
  • peptides with low lipid affinity are trying to increase absorption into the skin by introducing an alkyl chain of a certain length to increase the lipid affinity of the peptide.
  • the inventors of the present invention have been able to deliver various peptides and protein components that may exhibit skin improvement effects to the skin, and have been researched on ways to increase the effects.
  • the problem to be solved by the present invention is a protein administration system capable of reliably delivering various protein components, especially growth factors into the skin for improving the skin condition, and a method of manufacturing such a system, using such a system And a growth factor).
  • the present invention provides a peptide administration system capable of delivering various peptides into the skin for improving skin condition, and a method of manufacturing such a system, and a method of administering a peptide having low lipid affinity into the skin using the system.
  • the present invention provides a microneedle containing a protein or peptide, more preferably, the material forming the microneedle is dissolved in the skin so that the microneedle dissolves or disintegrates upon skin application of the microneedle As a result, the peptide can be stably delivered to the skin.
  • the inventors have studied a variety of dosage systems, and as mentioned above, any system can improve the lipid affinity of a low lipid affinity peptide, while devising a peptide delivery system that can stably penetrate the skin even at high molecular weight. It was not easy.
  • the inventors have made the surprising invention that after several efforts, the peptides or peptide derivatives having alkyl chains at the N-terminus in the soluble microneedles in the skin can be effectively delivered into the skin.
  • a polypeptide is a linkage of many amino acids, meaning that different amino acids are long linked by chemical bonds called peptide bonds, and the polypeptide is also referred to as a peptide.
  • microneedles must be soluble in the skin, and hyaluronic acid, sodium carboxymethyl cellulose (Na-CMC, Sodium carboxymethyl cellulose) and vinyl blood to form soluble microneedles.
  • Water-soluble polymers such as a rollidone-vinylacetate copolymer, poly vinyl alcohol, and poly vinyl pyrrolidone; Sugars such as xylose, sucrose, maltose, lactose, trehalose and the like; Or mixtures thereof may be used.
  • the microneedle according to the present invention may further include a plasticizer, a surfactant, a preservative, an anti-inflammatory agent and the like in addition to the above-mentioned components forming the microneedle.
  • plasticizer for example, polyols such as ethylene glycol, propylene glycol, dipropylene glycol, dipropylene glycol, butylene glycol, glycerin, etc. may be used alone. Or may be used in admixture.
  • polyols such as ethylene glycol, propylene glycol, dipropylene glycol, dipropylene glycol, butylene glycol, glycerin, etc. may be used alone. Or may be used in admixture.
  • the microneedle of the present invention contains 0.01 to 20% by weight, more preferably 0.1 to 5% by weight relative to the total weight of the microneedle preparation solution.
  • the peptide that can be used in the present invention may be a peptide consisting of 3 to 10 amino acids, preferably a peptide having an alkyl group having 10 to 20 carbon atoms at the N-terminus of the amino acid.
  • the peptide may have a molecular weight of 200 to 3,000 Da as measured by Gel Permeation Chromatography.
  • the peptide is tripeptide, tetrapeptide, pentapeptide, hexapeptide, heptapeptide, palmitoyl tripeptide, myristoyl tetrapeptide, caproyl tetrapeptide, Myristoyl pentapeptide, palmitoyl pentapeptide, myristoyl hexapeptide, palmitoyl hexapeptide, palmitoyl heptapeptide, or theirs It may be any one selected from the group consisting of a mixture.
  • the palmitoyl tripeptide may preferably be Palmitoyl tripeptide-5 (Pal-Lys-Val-Lys-OH), and the myristoyl tetrapeptide may be myristoyl tetrapeptide-12 (Myr-Lys).
  • caproloyl tetrapeptide is Cap-Lys-Gly-His-Lys
  • myristoyl pentapeptide is myristoyl pentapeptide -17 (Myr-Lys-Leu-Ala-Lys-Lys-NH 2 ) and palmitoyl pentapeptide can be Palmitoyl pentapeptide-4 (Pal-Lys-Thr-Thr-Lys-Ser-OH)
  • Myristoyl hexapeptide may be Myristoyl hexapeptide-16 (Myr-Ala-Asp-Leu-Lys-Pro-Thr), and palmitoyl hexapeptide may be palmitoyl hexapeptide-12 (Pal-Val-).
  • the palmitoyl heptapeptide may be palmitoyl heptapeptide-18 (
  • the present invention provides a microneedle patch system for peptide administration (for delivery) to which the microneedle is attached.
  • the invention also (S1) preparing a solution comprising the peptide and the soluble substance in the skin; (S2) injecting the solution into the microneedle mold; And (S3) drying and separating the microneedle from the mold, providing a method of producing a microneedle containing a peptide or peptide derivative.
  • the microneedle may comprise a peptide or peptide derivative having 200 to 3000 Da.
  • the present invention also provides a method for administering peptide skin, wherein the skin penetration efficiency of the peptide is improved by using the microneedle according to the present invention.
  • the present invention also provides the use of wrinkle improvement of the microneedle containing a peptide having a large molecular weight.
  • microneedle comprising microparticles containing a protein or peptide, more preferably, the microneedle dissolves when the material forming the microneedle is dissolved in the skin and the microneedle is applied to the skin.
  • the microparticles contained in the microneedle may be rapidly released into the skin by decay.
  • microparticles contained therein contain a hydrophobic core-forming polymer, which can stably deliver proteins or peptides to the skin.
  • the term 'protein or peptide' is not necessarily used separately, and is widely used to encompass amino acid polymers.
  • a protein refers to an amino acid polymer having a higher molecular weight than a peptide, and a polymer having up to 50 amino acids is known as a peptide. However, in this specification, it is not necessarily limited to the polymerization number of an amino acid.
  • the inventors have studied a variety of dosage systems and have made the surprising invention that after several efforts, the protein or peptide can be effectively delivered into the skin by impregnating the microparticles containing the protein in the soluble microneedle.
  • the protein penetrates into the skin without pain by the microneedle, and the microparticles with the protein component encapsulated as the microneedles are dissolved by moisture in the skin. Delivered into the skin.
  • protein-enclosed microparticles refers to a state in which a protein is located inside a microparticle, and refers to a state in which a protein is completely surrounded by microparticles.
  • the cross-section of the protein-enclosed microparticles may have a shape as shown in FIG. 6 of the present specification, but this is only an example.
  • the term 'impregnation' means an included state and may include a state in which a part of the microparticles is exposed on the surface of the microneedle, as well as a state inside the microneedle and completely blocked from the external environment. Inclusion and impregnation may be used together in the same sense herein.
  • the term 'impregnated with microneedles' refers to all forms of microneedles in which microneedles and microparticles can be administered together when the microneedles are applied to the skin, as well as completely contained within the microneedles. It can be understood as a concept encompassing.
  • growth factors Protein components, particularly growth factors, are released from the microparticles delivered into the skin to effectively deliver them into the skin.
  • growth factors may include growth hormone.
  • microneedles must be soluble in the skin, and hyaluronic acid, sodium carboxymethyl cellulose (Na-CMC, Sodium carboxymethyl cellulose) and vinyl blood to form soluble microneedles.
  • Water-soluble polymers such as a rollidone-vinylacetate copolymer, poly vinyl alcohol, and poly vinyl pyrrolidone; Sugars such as xylose, sucrose, maltose, lactose, trehalose and the like; Or mixtures thereof may be used.
  • the microneedle according to the invention may further comprise plasticizers, surfactants, preservatives, anti-inflammatory agents and the like, in addition to the above-mentioned components which form proteins, especially microparticles containing growth factors and microneedles.
  • plasticizers, surfactants, preservatives, anti-inflammatory agents and the like can be used including all components commonly used in the art, as well as the components mentioned herein.
  • the material forming the microparticles with the protein should be a material that can be stably included without causing structural modification of the protein in the manufacturing process of the microneedle.
  • the material that forms the microparticles should be able to form a hydrophobic core to provide stability without structural modification of the protein.
  • a polymer capable of forming a hydrophobic core may be used.
  • a sustained release polymer poly (lactide), poly (glycolide), poly (lactide-co-glycolide), Polyanhydrides, polyorthoesters, polyetheresters, polycaprolactones, mono-methoxy polyethyleneglycol-polycaprolactones (MPEG-PCL), polyesteramides, poly (butyric acids), poly (valeric acids ), Biodegradable polymers such as polyurethanes, or copolymers thereof; And polyacrylates, ethylene-vinylacetate polymers, acrylic substituted cellulose acetates, non-degradable polyurethanes, polystyrenes, polyvinyl chlorides, polyvinyl fluorides, poly (vinyl imidazoles), chlorosulphonate polyolefins, Non-biodegradable polymers such as polyethylene oxide or copolymers thereof may be used.
  • polyanhydrides polyorth
  • the hydrophobic core forming polymers are poly (lactide), poly (glycolide), and poly (lactide-co-glycolide). Mixtures of any one or more of these with mono-methoxy polyethyleneglycol-polycaprolactone (MPEG-PCL) can be preferably used.
  • MPEG-PCL mono-methoxy polyethyleneglycol-polycaprolactone
  • microparticles may be of the matrix type or the reservoir type as long as the object of the present invention can be achieved.
  • Microparticles that can be used in the present invention can be prepared by various methods well known in the art.
  • the microparticles that can be used in the present invention using a solvent exchange method, a solvent evaporation method, a membrane dialysis method, a spray drying method, etc. may be used. It can manufacture.
  • the methods described in the Journal of Controlled Release 70 (2001) 1-20 and International Journal of PharmTech Research, 3 (2011) 1242-1254 can be used.
  • it may be prepared by a general emulsification and solvent evaporation method.
  • the diameter of the microparticles according to the invention is from 0.01 to 10 ⁇ m. If the particle size is more than 10 ⁇ m, the strength of the needle becomes weak when the microneedle is impregnated, making skin penetration difficult.
  • the diameter of the microparticles according to the invention is measured by a laser light scattering (LLS) method, for example using a Zetasizer 2000 TM from Malvern.
  • the microparticles of the present invention contain 0.01 to 20% by weight, more preferably 0.1 to 5% by weight of the protein or peptide relative to the total weight of the microparticles.
  • the microneedle of the present invention preferably contains 0.05 to 10% by weight, more preferably 0.1 to 5% by weight of the microparticles relative to the total weight of the microneedle.
  • the protein that can be used in the present invention is particularly preferably a growth factor or growth hormone.
  • the growth factor or growth hormone is a protein involved in the growth, proliferation and differentiation of cells, and in particular, it is difficult to prepare a suitable carrier or delivery method due to the suitability of selective tissues or organs and the degeneration of protein structure during delivery. Needed. Numerous studies have confirmed that the present invention is effective for the growth factor and growth hormone delivery by applying microparticles to the microneedle, particularly in the growth factor and / or human growth hormone delivery of proteins. .
  • the growth factors are bone morphogenetic protein (BMP), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), nerve growth factor (NGF) , Epidermal growth factor (EGF), insulin growth factor insulinlike growth factor (IGF), trans-forming growth factor- ⁇ and - ⁇ , TGF- ⁇ , - ⁇ , brain-derived neurotrophic Brain-derived neutrophic factor (BDNF), plateletderived growth factor (PDGF), placental growth factor (PlGF), hepatocyte growth factor (HGF), fibroblast growth factor ( Fibroblast growth factor 1 and 2, FGF-1, -2), keratinocyte growth factor (Keratinocyte growth factor, KGF) may be any one or more selected from the group consisting of.
  • BMP bone morphogenetic protein
  • FGF fibroblast growth factor
  • VEGF vascular endothelial growth factor
  • NGF nerve growth factor
  • EGF Epidermal growth factor
  • IGF insulin growth factor insulinlike growth factor
  • Analogs used herein can include cases having 80% sequence homology with the proteins, preferably protein analogs with 85% sequence homology, more preferably 90% sequence homology. It may include.
  • the present invention also provides a microneedle patch system for administration (delivery) of a protein to which the microneedle is attached.
  • a microneedle patch system for administration (delivery) of a protein to which the microneedle is attached.
  • one embodiment of the present invention provides a method of cosmetic skin administration of the protein or peptide.
  • the present invention (S1) the peptide or protein; And (S2) injecting the solution into the microneedle mold, and (S3) drying and separating the microneedle from the mold.
  • the step (S1) further comprises the step of encapsulating the peptide or protein in the microparticles, the step of encapsulating the peptide or protein in the microparticles is a peptide or a hydrophobic core-forming polymer
  • Provided is a method for preparing protein-containing microneedles with improved protein instability or protein aggregation, incorporating the protein within the microparticles.
  • the present invention also provides a protein skin administration method having high skin permeability and excellent stability, characterized by using the microneedle according to the present invention.
  • microneedle wrinkle improvement comprising microparticles containing proteins, preferably growth factors or growth hormones, more preferably EGF, TGF- ⁇ or hGH.
  • One embodiment of the present invention provides a method for administering the peptide to the skin by attaching a microneedle containing a peptide having a molecular weight of 200 to 3000 Da to the skin.
  • One embodiment of the present invention provides a skin wrinkle improvement of the microneedle containing a peptide having a molecular weight of 200 to 3000 Da.
  • One embodiment of the present invention provides a method for administering the growth factor to the skin by attaching the microneedle containing the microparticles containing the growth factor to the skin.
  • One embodiment of the present invention provides a skin wrinkle improvement use of the microneedle containing the growth-enclosed microparticles.
  • the present invention provides microneedles which increase the skin permeation efficiency of high molecular weight peptides.
  • the present invention also provides microneedles for skin administration containing peptides with increased skin penetration efficiency.
  • the present invention also provides a method for skin administration of a peptide characterized by using such microneedles.
  • the present invention provides a microneedle for protein skin administration, which ensures the stability of proteins, especially growth factors, and improves skin penetration.
  • the present invention also provides a microneedle for skin administration that can be stably delivered to the skin without causing structural modification of the protein.
  • the present invention provides a skin delivery system of proteins that can stably deliver proteins into the skin without aggregation between proteins, which can be caused when included in a general cosmetic formulation.
  • the present invention also provides a method for skin administration of growth factors characterized in using such microneedles.
  • the soluble microneedle may be prepared by a solution casting method, and the solution may be cast into a mold to fill a fine mold with a vacuum and / or centrifuge, followed by drying.
  • the material forming the microneedle structure general synthetic and natural water-soluble polymers may be used.
  • Figure 2 shows a Franz diffusion cell for evaluating the drug release behavior of the microneedle according to the present invention.
  • FIG. 3 is a graph showing the results of evaluation of the release of EGF from the microneedle, evaluated using a Franz diffusion cell equipped with pig skin.
  • FIG 4 is an experimental result showing the degree of wrinkle improvement after the long-term use of the EGF solution-impregnated microneedle (EGF Microneedle) and EGF Microparticle-impregnated Microneeedle (EGF-MP Microneedle) for the wrinkles around the eyes.
  • EGF solution-impregnated microneedle EGF Microparticle-impregnated Microneeedle
  • EGF-MP Microneedle EGF Microparticle-impregnated Microneeedle
  • FIG. 5 is a graph showing the results of the EGF stability analysis (SEC, Size Exclusion Chromatography).
  • 5A shows SEC data of EGF standards and
  • 5B shows SEC data of EGF released from microneedle.
  • FIG. 6 is a schematic view schematically showing a microparticle.
  • FIG. 7 is a graph showing the results of evaluating the peptide release from the microneedle, evaluated using a Franz diffusion cell equipped with pig skin.
  • PLGA poly (lactic-co-glycolic acid)
  • Methylene Chloride Methylene Chloride
  • a primary W / O emulsion was prepared by slowly adding an aqueous solution of 200 mg of Polypeptide (epidermal growth factor, EGF) in 2 mL of purified water to the PLGA solution.
  • EGF epidermal growth factor
  • To the 0.2% poly vinyl alcohol aqueous solution (100 mL) was added the first prepared W / O emulsion solution with stirring.
  • the prepared W / O / W double emulsion was stirred at room temperature for 24 hours to evaporate Methylene chloride, an organic solvent, and to prepare EGF-loaded microparticles.
  • EGF (added in the form of a solution) or EGF-impregnated soluble microneedle was prepared.
  • the content of Table 1 is expressed in weight percent.
  • EGF MN (% by weight) EGF-MP MN (wt%) oligo-HA 6 6 Na-CMC 6 6 Trehalose 10 10 Glycerin 5 5 HCO-40 0.2 0.2 EGF 0.05 - EGF microparticle (0.2%) - 25 water To 100 To 100
  • soluble microneedles impregnated with EGF were prepared as follows. After dissolving oligo-HA (Hyaluronic acid), Na-CMC (Sodium carboxymethyl cellulose) and Trehalos in purified water, Glycerin, HCO-40 and EGF were added to prepare an EGF solution. The prepared EGF solution was cast into a silicone microneedle mold, and then centrifuged at 3000 rpm for 10 minutes to fill the micro mold solution. After the solution was filled and dried for 3 hours in a drying oven (70 °C), the microneedle was separated from the silicone mold using an adhesive film.
  • oligo-HA Hyaluronic acid
  • Na-CMC Sodium carboxymethyl cellulose
  • the prepared EGF solution was cast into a silicone microneedle mold, and then centrifuged at 3000 rpm for 10 minutes to fill the micro mold solution. After the solution was filled and
  • soluble microneedle impregnated with EGF microparticles was prepared as follows. Solution was prepared by dissolving Oligo-HA (Hyaluronic acid), Na-CMC (Sodium carboxymethyl cellulose) and Trehalos in purified water and then adding Glycerin, HCO-40 and EGF microparticles (EGF 0.2%). The prepared solution was cast into a silicone microneedle mold, and then centrifuged at 3000 rpm for 10 minutes to fill the micro mold with liquid. After the solution was filled and dried for 3 hours in a drying oven (70 °C), the microneedle was separated from the silicone mold by using an adhesive film.
  • Oligo-HA Hyaluronic acid
  • Na-CMC Sodium carboxymethyl cellulose
  • EGF was impregnated into a general oil-in-oil type cream as a comparative example.
  • the following contents are expressed in weight percent.
  • EGF release from the microneedle prepared above was evaluated using a Franz diffusion cell equipped with pig skin (see FIG. 2).
  • aqueous solution acceptor solution
  • PBS solution containing 30% by weight of DPG.
  • EGF cream was applied to porcine skin, or microneedle impregnated with EGF or EGF-MP was used to compare the skin penetration of peptides over time.
  • attach time 2 hours, temperature: 32 ° C.
  • the microneedle was removed.
  • the pig skin absorbed by EGF by the microneedle was placed in a franz diffusion cell, and the behavior of EGF was released into the acceptor solution from the pig skin over time. The results are shown in FIG.
  • EGF and EGF-MP impregnated in the microneedle were directly penetrated into the skin by the needle, and the permeation amount was 1 ug or more, which was about 500 times higher than the cream.
  • SEC Size Exclusion Chromatography
  • the EGF itself is impregnated in the microneedle and delivered to the skin, as the structure of the EGF is aggregated and denatured, the aggregation peak is relatively increased.
  • the structure showed similar results as the standard material.
  • microneedle was impregnated with microneedle and delivered to the skin.
  • Peptide MN (wt%) oligo-HA 6 Na-CMC 6 Trehalose 10 Glycerin 5 HCO-40 0.2 Genistein - Peptide (Myristoyl Tetrapeptide-6) -DPG solution (10%) 1.0 water To 100
  • soluble microneedles impregnated with Peptide (Myristoyl Tetrapeptide-6) were prepared as follows.
  • peptides were compared to a common oil-in-water emulsion as a comparative example.
  • the following contents are expressed in weight percent.
  • the skin permeation rate of peptide with time was compared from the microneedle prepared above using a Franz diffusion cell equipped with porcine skin (see FIG. 2).
  • aqueous solution acceptor solution
  • PBS solution containing 30% by weight of DPG.
  • Peptide cream was applied to pig skin or microneedle impregnated with peptide was used to compare the skin penetration of peptides over time. After the microneedle penetrated into the pig skin and melted (attach time: 2 hours, temperature: 32 ° C.), the microneedle was removed. Porcine skin absorbed by the microneedle was inserted into the franz diffusion cell, and the peptide was released from the pig skin into the acceptor solution over time. The results are shown in FIG.
  • the cream containing Peptide had a slight amount of permeated through the skin of about 0.1 ⁇ g, but the amount of peptide impregnated in the microneedle penetrated directly into the skin by the needle, and the permeation amount was 15 ⁇ g or more. It exhibited a higher skin penetration than the cream of about 100 times or more.
  • Peptide-impregnated Microneeedle showed more than 5 times better improvement than Peptide cream. Peptide was effectively penetrated into the skin by microneedle and showed a high wrinkle improvement effect.
  • the present invention can be used for cosmetics, pharmaceuticals for skin wrinkle improvement.
  • the microneedle of the present invention can expect excellent skin wrinkle reduction effect.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Birds (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Anesthesiology (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Dermatology (AREA)
  • Hematology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 펩타이드 또는 단백질의 안정성이 확보되고, 상기 펩타이드 또는 단백질의 피부 전달율을 향상시킬 수 있는, 피부 투여 시스템에 관한 것이며, 특히 펩타이드 또는 단백질을 포함하는 마이크로니들에 관한 것이다.

Description

단백질 또는 펩타이드 전달용 용해성 마이크로니들
본 출원은 2015년 4월 6일에 출원된 한국특허출원 제10-2015-0048462호, 2015년 11월 13일에 출원된 한국특허출원 제10-2015-0159966호, 2015년 4월 6일에 출원된 한국특허출원 제10-2015-0048471호, 및 2015년 10월 16일에 출원된 한국특허출원 제10-2015-0144873호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
본 발명은 용해성 마이크로니들에 관한 것으로, 단백질 또는 펩타이드를 안정적으로 피부에 전달할 수 있는, 피부 투여 시스템에 관한 것으로, 불안정한 단백질 또는 펩타이드의 안정성을 개선한 피부 투여 시스템에 관한 것이다.
최근 피부 상태(예를 들어, 주름, 탄력 등) 개선을 위해 성장 인자(epidermal growth factor(EGF), human growth hormone(hGH), transforming gowth factor α and β(TGF-α, -β), Fibroblast growth factor 1 and 2 (FGF-1, -2), Keratinocyte growth factor(KGF), Hepatocyte growth factor(HGF), Platelet derived growth factor(PDGF) 등) 등을 포함한 다양한 단백질 및 펩타이드가 개발되고 있으며, 이러한 단백질 및 펩타이드를 포함한 다양한 화장품이 개발되어 출시되고 있다.
예를 들어, EGF는 인체의 자연적인 상처치유 과정에서 새살(육아조직)을 돋게 하고 혈관을 재생시키는 몸 안의 상처치유 물질로, 노화 현상에 효과를 발휘할 수 있어, 최근 EGF 성분을 함유하는 화장품 개발이 이루어지고 있다.
그러나, 특히 이들 성장 인자들은 짧은 생물학적인 반감기와 지속적인 안정성의 부족으로 인해 일반 화장품 제형에 포함될 때 변성되어 그 효과를 발휘하기 곤란한 경우가 종종 보고되고 있다. 이러한 불안정한 단백질의 안정성을 개선하기 위하여 마이크로파티클(microparticle) 또는 리포좀(liposome) 등과 같은, encapsulation 방법을 이용하는 경우가 있다. 그러나 이러한 방법들은 파티클과 리포좀의 크기가 커서(수십~수백 nm, 혹은 수 ㎛ 이상) 피부 도포만으로 피부 내로 직접 흡수되기 어려운 점이 있다.
다음으로, 이러한 피부 상태 개선을 위한 단백질들은 함유량의 증가만으로 목적하는 효과를 증대시키기 어려운 경우가 대부분이다. 즉, epidermal growth factor(EGF), human growth hormone 등은 활성단백질 성분의 일종으로 함유량보다는 활성도가 더욱 중요하며, 아무리 함유량을 증가시킨다고 하더라도 활성도가 없는 경우에는 목적으로 하는 효과를 얻기 어렵다.
또한, 피부에 대한 유익하고 유용한 물질은 실제 제품으로 효능을 나타내기 위하여 제품 사용 시에 각질층을 통과하여 표피층에서 진피층까지 침투해야만 그 효과를 나타낼 수 있으며, 피부 전체에 고르게 전달될 수 있는 방법이 필요하다. 기존에 Surfactant 등을 이용하여 투과성을 향상 시키는 방법이 존재 하지만 투과 향상 효과가 미미하고, 피부장벽을 연화시키는 단점이 있었다.
피부를 통하여 약물을 전달하는 것은 이의 사용 편리성으로 인하여, 다양한 분야 및 형태로 사용되고 있다. 이러한 피부를 통과하는 약물은, 주로 피부를 통하여 체순환계(systemic circulation)로 전달시키기 위한 것이나, 이외에도 아토피 치료제, 미백 또는 주름 개선용 화장품 등의 약물은 피부 자체의 기관에 전달시키려는 목적으로 사용되기도 한다. 이런 편리성 및 기능성에도 불구하고, 피부의 구조상 약물을 피부를 통과하여 전달하는 것에는 많은 어려움이 존재하여, 피부를 통과하는 약물을 개발하는 것이 쉽지 않다. 피부의 각질층은, 케라틴이 풍부한 각질세포로 이루어져 있는 브릭(brick) 구조와, 이러한 각질세포 사이를 세라마이드(ceramide), 지방산(fatty acid), 또는 왁스(wax) 등과 같은 지질이 채운 모르타르(mortar) 구조로 이루어져 있다. 이러한 구조는 장벽으로 역할하여 물질 투과성이 아주 낮은 특성을 가지게 된다. 500Da 이하의 저분자 구조 성분들만이 확산 방식에 의해서 피부 내로 전달될 수 있으며, 지질 친화성이 우수한 물질만이 피부를 통과할 수 있다.
이러한 피부 구조의 특성으로 인하여 지질 친화성이 낮은 펩타이드는 펩타이드의 지질 친화성을 높이기 위하여 일정 길이의 alkyl chain을 도입하여 피부내로 흡수를 증가시키고자 노력 하고 있다.
그러나, 이 경우 펩타이드 분자량이 커져 피부내로 흡수가 실질적으로 향상되기 어려운 문제점이 발생한다.
이에 본 발명의 발명자들은 피부 개선 효과를 나타낼 수 있는 다양한 펩타이드, 단백질 성분들을 피부에 전달할 수 있고, 효과를 증대시킬 수 있는 방안에 대해 연구하기에 이르렀다.
따라서 본 발명이 해결하고자 하는 과제는 피부 상태 개선을 위한 여러가지 단백질 성분, 특히 성장 인자들을 안정적으로 피부 내로 전달할 수 있는 단백질 투여 시스템 및 이러한 시스템을 제조하는 방법, 이러한 시스템을 이용하여 피부 내로 단백질(특히, 성장인자)를 투여하는 방법을 제공하는 것이다.
또한, 펩타이드의 지질 친화도를 향상시키면서도, 분자량이 커서 피부 투과가 어려웠던, 펩타이드의 피부 전달 문제점을 해소하고자 한다.
피부 상태 개선을 위한 여러 가지 펩타이드들을 피부 내로 전달할 수 있는 펩타이드 투여 시스템 및 이러한 시스템을 제조하는 방법, 이러한 시스템을 이용하여 피부 내로 지질 친화도가 낮은 펩타이드를 투여하는 방법을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 단백질 또는 펩타이드를 함유하는 마이크로니들을 제공하며, 보다 바람직하게, 상기 마이크로니들을 형성하는 물질은 피부 내에서 용해되어 마이크로니들의 피부 적용 시 마이크로니들이 용해 또는 붕괴됨으로써 펩타이드를 안정적으로 피부로 전달할 수 있게 된다.
본 발명자들은 다양한 투여 시스템을 연구하였으며 어떠한 시스템도 상기 언급한 바와 같이, 지질 친화도가 낮은 펩타이드의 지질 친화도를 향상시키면서, 분자량이 커지더라도 안정적으로 피부를 투과할 수 있는 펩타이드 전달 시스템을 구상하는 것이 쉽지 않았다. 본 발명자들은 여러 노력 끝에 피부 내 용해성(soluble) 마이크로니들 내에 N-말단에 알킬 체인을 갖는 펩타이드 또는 펩타이드 유도체를 함유함으로써 효과적으로 피부내로 전달할 수 있다는 놀라운 발명을 하였다.
폴리펩타이드는 수많은 아미노산의 연결체로 서로 다른 아미노산들이 펩타이드 결합이라고 하는 화학 결합으로 길게 연결된 것을 의미하며, 상기 폴리펩타이드는 펩타이드로 줄여서 불리기도 한다.
위와 같은 과제를 달성하기 위해, 마이크로니들은 피부 내에서 용해성이어야 하며, 용해성 마이크로니들을 형성하기 위해서 히얄루로닉산 (Hyaluronic acid), 소디움-카르복시메틸 셀룰로오스 (Na-CMC, Sodium carboxymethyl cellulose), 비닐피롤리돈-비닐아세테이트 공중합체, 폴리비닐알코올(Poly vinyl alcohol), 및 폴리비닐피릴리돈(Poly vinyl pyrrolidone) 등의 수용성 고분자; 자일로즈(Xylose), 수크로스(Sucrose), 말토오스(Maltose), 락토오스(Lactose), 트레할로스(Trehalose) 등의 당류; 또는 이들의 혼합물이 사용될 수 있다. 특히, 마이크로니들의 피부 투과 강도, 피부 내에서의 용해속도 등을 종합적으로 고려하면 히얄루로닉산 (Oligo-Hyaluronic acid), 소디움-카르복시메틸 셀룰로오스 (Na-CMC, Sodium carboxymethyl cellulose), 및 당류 (saccharide) (더욱 바람직하게는, 트레할로스(Trehalose))의 혼합물이 더욱 바람직하며, 후술하는 글리세린(Glycerine)까지 혼합된 것이 더욱더 바람직하다. 바람직하게, 본 발명에 따른 마이크로니들은 마이크로니들을 형성하는 상기 언급된 성분들 이외에 가소제, 계면활성제, 보존제, 항염제 등을 추가적으로 포함할 수 있다.
상기 가소제(plasticizer)로는, 예를 들어, 에틸렌 글리콜(Ethylene glycol), 프로필렌 글리콜(Propylene glycol), 디프로필렌 글리콜(Dipropylene glycole), 뷰틸렌 글리콜(Butylene glycol), 글리세린(Glycerine) 등의 폴리올이 단독으로 또는 혼합하여 사용될 수 있다.
바람직하게, 본 발명의 마이크로니들은 펩타이드를 마이크로니들 제조 용액 총 중량 대비 0.01 내지 20 중량% 함유하며, 더욱 바람직하게는 0.1 내지 5 중량% 함유한다.
본 발명에서 사용할 수 있는 펩타이드는 아미노산이 3개 내지 10개로 구성된 펩타이드일 수 있으며, 바람직하게 상기 아미노산의 N-말단에 탄소수 10 내지 20의 알킬기를 가진 펩타이드일 수 있다. 상기 펩타이드는 Gel Permeation Chromatography로 측정한 분자량이 200 내지 3,000 Da일 수 있다.
바람직하게, 상기 펩타이드는 트리펩타이드, 테트라펩타이드, 펜타펩타이드, 헥사펩타이드, 헵타펩타이드, 팔미토일 트리펩타이드 (Palmitoyl tripeptide), 미리스토일 테트라펩타이드(myristoyl tetrapeptide), 카프로로일 테트라펩타이드(Caprooyl tetrapeptide), 미리스토일 펜타펩타이드(myristoyl pentapeptide), 팔미토일 펜타펩타이드 (Palmitoyl pentapeptide), 미리스토일 헥사펩타이드(myristoyl hexapeptide), 팔미토일 헥사펩타이드 (Palmitoyl hexapeptide), 팔미토일 헵타펩타이드 (Palmitoyl heptapeptide), 또는 이들의 혼합물로 이루어진 군에서 선택된 어느 하나일 수 있다.
예를 들어, 상기 팔미토일 트리펩타이드는 바람직하게 팔미토일 트리펩타이드-5(Pal-Lys-Val-Lys-OH)일 수 있으며, 미리스토일 테트라펩타이드는 미리스토일 테트라펩타이드-12(Myr-Lys-Ala-Lys-Ala-NH2)일 수 있으며, 카프로로일 테트라펩타이드는 카프로로일 테트라펩타이드-3(Cap-Lys-Gly-His-Lys), 미리스토일 펜타펩타이드는 미리스토일 펜타펩타이드-17(Myr-Lys-Leu-Ala-Lys-Lys-NH2)일 수 있으며, 팔미토일 펜타펩타이드는 팔미토일 펜타펩타이드-4(Pal-Lys-Thr-Thr-Lys-Ser-OH)일 수 있으며, 미리스토일 헥사펩타이드는 미리스토일 헥사펩타이드-16(Myr-Ala-Asp-Leu-Lys-Pro-Thr)일 수 있으며, 팔미토일 헥사펩타이드는 팔미토일 헥사펩타이드-12(Pal-Val-Gly-Val-Ala-Pro-Gly)일 수 있으며, 팔미토일 헵타펩타이드는 팔미토일 헵타펩타이드-18(Pal-Tyr-Pro-Trp-Gln-Arg-Phe)일 수 있다.
또한, 본 발명은 위와 같은 마이크로니들이 부착되어 있는 펩타이드 투여용(전달용) 마이크로니들 패치(patch) 시스템을 제공한다.
본 발명은 또한 (S1) 상기 펩타이드 및 피부 내 용해성 물질을 포함하는 용액을 제조하는 단계; (S2) 상기 용액을 마이크로니들 몰드에 주입하는 단계; 및 (S3) 건조 및 상기 몰드로부터 마이크로니들을 분리하는 단계를 포함하는, 펩타이드 또는 펩타이드 유도체를 함유하는 마이크로니들의 제조 방법을 제공한다.
바람직하게 상기 마이크로니들은 200 내지 3000 Da을 가진 펩타이드 또는 펩타이드 유도체를 포함할 수 있다. 본 발명은 또한 본 발명에 따른 마이크로니들을 이용하는 것을 특징으로 하는 펩타이드의 피부 투과 효율이 향상된 펩타이드 피부 투여 방법을 제공한다.
또한 본 발명은 분자량이 큰 펩타이드를 함유하는 마이크로니들의 주름 개선 용도를 제공한다.
본 발명의 또 다른 실시예는 단백질 또는 펩타이드가 함유된 마이크로파티클을 포함하는 마이크로니들을 제공하며, 보다 바람직하게, 마이크로니들을 형성하는 물질이 피부 내에서 용해되어 마이크로니들를 피부에 적용 시 마이크로니들이 용해 또는 붕괴됨으로써 마이크로니들의 내부에 포함된 마이크로파티클이 신속이 피부 내로 나올 수 있다.
내부에 포함된 마이크로파티클은 소수성 코어 형성 고분자를 포함하고 있어 단백질 또는 펩타이드를 안정적으로 피부로 전달할 수 있다.
본 명세서에서 사용된 '단백질 또는 펩타이드'는 반드시 구분해서 사용하지 않으며, 아미노산 중합체를 포괄하는 의미로 넓게 사용되었다.
통상적으로 단백질은 펩타이드보다 분자량이 더 큰 아미노산 중합체를 일컫고, 아미노산이 50개 이하로 중합된 것을 펩타이드라고 하는 것으로 알려져 있다. 그러나, 본 명세서에서는 반드시 아미노산의 중합수로 한정하여 해석하지 않는다.
본 발명자들은 다양한 투여 시스템을 연구하였으며 여러 노력 끝에 용해성(soluble) 마이크로니들 내에 단백질을 포함하는 마이크로파티클을 함침시킴으로써 단백질 또는 펩타이드를 효과적으로 피부내로 전달할 수 있다는 놀라운 발명을 하였다. 단백질이 봉입된 마이크로파티클을 용해성 마이크로니들에 함침시켜 피부에 적용하게 되면, 미세바늘에 의해 통증 없이 피부 내로 단백질이 투과되고, 미세바늘이 피부 내 수분에 의해 용해되면서 단백질 성분이 봉입된 마이크로파티클이 피부 내로 전달된다.
본 명세서에서 사용된 '단백질이 봉입된 마이크로파티클'이라 함은 마이크로파티클 내부에 단백질이 위치하고 있는 상태를 의미하며, 단백질이 마이크로파티클에 의해 완전히 둘러싸진 상태를 의미한다. 예를 들어 단백질이 봉입된 마이크로파티클의 단면은 본 명세서 도 6과 같은 형태를 가질 수 있으나, 이는 단지 예시에 불과하다.
'함침'이라 함은 포함된 상태를 의미를 가지며, 마이크로니들 내부에 위치하여 외부 환경과 완전히 차단된 상태뿐만 아니라, 마이크로파티클의 일부가 마이크로니들의 표면에 노출된 상태도 포함할 수 있다. 포접과 함침은 본 명세서에서 동일한 의미로 함께 사용될 수 있다. '마이크로니들에 함침'이라는 의미는, 마이크로니들의 내부에 완전히 포함되는 경우뿐만 아니라, 마이크로니들을 피부에 처리할 때 마이크로니들과 마이크로파티클이 함께 투여될 수 있는 상태로 마이크로니들에 포함되는 모든 형태를 아우르는 개념으로 이해될 수 있다.
피부 내로 전달된 마이크로파티클로부터 단백질성분, 특히 성장인자가 방출됨으로써 효과적으로 피부내로 전달 할 수 있다. 본 명세서에 사용된 성장인자는 성장 호르몬을 포함할 수 있다.
위와 같은 과제를 달성하기 위해, 마이크로니들은 피부 내에서 용해성이어야 하며, 용해성 마이크로니들을 형성하기 위해서 히얄루로닉산 (Hyaluronic acid), 소디움-카르복시메틸 셀룰로오스 (Na-CMC, Sodium carboxymethyl cellulose), 비닐피롤리돈-비닐아세테이트 공중합체, 폴리비닐알코올(Poly vinyl alcohol), 및 폴리비닐피릴리돈(Poly vinyl pyrrolidone) 등의 수용성 고분자; 자일로즈(Xylose), 수크로스(Sucrose), 말토오스(Maltose), 락토오스(Lactose), 트레할로스(Trehalose) 등의 당류; 또는 이들의 혼합물이 사용될 수 있다. 특히, 마이크로니들의 피부 투과 강도, 피부 내에서의 용해속도 등을 종합적으로 고려하면 히얄루로닉산 (Oligo-Hyaluronic acid), 소디움-카르복시메틸 셀룰로오스 (Na-CMC, Sodium carboxymethyl cellulose), 및 당류 (saccharide) (더욱 바람직하게는, 트레할로스(Trehalose))의 혼합물이 더욱 바람직하며, 후술하는 글리세린(Glycerine)까지 혼합된 것이 더욱더 바람직하다. 바람직하게, 본 발명에 따른 마이크로니들은 단백질, 특히 성장인자를 함유하는 마이크로파티클 및 마이크로니들을 형성하는 상기 언급된 성분들 이외에 가소제, 계면활성제, 보존제, 항염제 등을 추가적으로 포함할 수 있다. 상기 가소제, 계면활성제, 보존제, 항염제 등은 본 명세서에서 언급된 성분들 뿐만 아니라 업계에서 통상적으로 사용되는 성분들을 모두 포함해서 사용할 수 있다.
본 발명에 있어, 상기 단백질과 함께 마이크로파티클을 형성하는 물질은 마이크로니들의 제조 과정에서 단백질의 구조 변형을 유발하지 않고 안정하게 포접할 수 있는 물질이어야 한다. 특히, 상기 마이크로파티클을 형성하는 물질은 소수성 코어를 형성할 수 있어 단백질의 구조 변형없이 안정성을 제공할 수 있어야 한다.
이러한 마이크로파티클을 형성하는 물질로는 소수성 코어를 형성할 수 있는 고분자가 사용될 수 있으며, 서방성 고분자로는 폴리(락타이드), 폴리(글리코라이드), 폴리(락타이드-코-글리코라이드), 폴리안하이드라이드, 폴리오르쏘에스테르, 폴리에테르에스테르, 폴리카프로락톤, 모노-메톡시 폴리에틸렌글리콜-폴리카프로락톤 (MPEG-PCL), 폴리에스테르아마이드, 폴리(뷰티릭 산), 폴리(발레릭 산), 폴리우레탄, 또는 이들의 공중합체와 같은 생분해성 고분자; 및 폴리아크릴레이트, 에틸렌-비닐아세테이트 중합체, 아크릴 치환 셀룰로오스 아세테이트, 비-분해성 폴리우레탄, 폴리스티렌, 폴리비닐 클로라이드, 폴리비닐 풀루오라이드, 폴리(비닐 이미다졸), 클로로설포네이트 폴리올레핀 (chlorosulphonate polyolefins), 폴리에틸렌 옥사이드 또는 이들의 공중합체와 같은 비-생분해성 고분자가 단독으로 또는 혼합하여 사용될 수 있으나, 본 발명은 이에 한정되는 것은 아니다.
단백질, 특히 성장인자의 안정화 및 피부 내에서의 방출성 등을 종합적으로 고려할 때, 상기 소수성 코어 형성 고분자는 폴리(락타이드), 폴리(글리코라이드), 및 폴리(락타이드-코-글리코라이드) 중 어느 하나 이상과 모노-메톡시 폴리에틸렌글리콜-폴리카프로락톤 (MPEG-PCL)의 혼합물이 바람직하게 사용될 수 있다.
이러한 마이크로파티클은 본 발명의 목적을 달성할 수 있는 한 매트릭스(matrix) 타입일 수도 있으며, 레저보어(reservoir) 타입일 수도 있다.
본 발명에서 사용할 수 있는 마이크로파티클은 본 발명이 속한 분야에서 잘 알려진 다양한 방법들로 제조될 수 있다. 예를 들어, 용매 교환법(Solvent exchange method), 용매 증발법(Solvent evaporation method), 멤브레인 투과법 (Membrane dialysis method), 분무 건조법(Spray drying method) 등을 이용하여 본 발명에서 이용할 수 있는 마이크로파티클을 제조할 수 있다. 예를 들어, 문헌 Journal of Controlled Release 70 (2001) 1-20 및 International Journal of PharmTech Research, 3(2011) 1242-1254에 기재된 방법들이 이용될 수 있다. 바람직하게는 일반적인 emulsification and solvent evaporation 방법에 의해 제조될 수 있다.
바람직하게, 본 발명에 따른 마이크로파티클의 직경은 0.01 내지 10 ㎛이다. 파티클 크기가 10 ㎛ 초과이면 마이크로니들에 함침 시 needle의 강도가 약해져 피부투과가 어려워진다. 본 발명에 따른 마이크로파티클의 직경은 레이저광산란(LLS) 방법에 의해 측정되며, 예를 들어, Malvern사의 Zetasizer 2000 TM을 이용해 측정된다.
바람직하게, 본 발명의 마이크로파티클은 단백질 또는 펩타이드를 마이크로파티클 총 중량 대비 0.01 내지 20 중량% 함유하며, 더욱 바람직하게는 0.1 내지 5 중량% 함유할 수 있다. 또한, 본 발명의 마이크로니들은 이러한 마이크로파티클을 마이크로니들 총 중량 대비 0.05 내지 10 중량% 함유하는 것이 바람직하며, 더욱 바람직하게는 0.1 내지 5중량% 함유할 수 있다.
본 발명에서 사용할 수 있는 단백질은 특히, 성장인자(growth factor) 또는 성장 호르몬이 바람직하다. 상기 성장인자 또는 성장 호르몬은 세포의 성장, 증식 및 분화에 관여하는 단백질로, 특히 선택적인 조직 또는 장기의 적합성과, 전달과정에서 단백질 구조의 변성 유발 등으로 인해 적절한 전달체 또는 전달방법에 대한 마련이 필요하였다. 본 발명은 단백질 중에서 특히 성장인자(growth factor) 및/또는 성장 호르몬 (human growth hormone) 전달에 마이크로파티클을 마이크로니들에 적용함으로써 성장인자 및 성장 호르몬 전달에 효과적이라는 사실을 수 많은 연구 결과 확인하게 되었다.
상기 성장인자는 뼈 형성 단백질(bone morphogenetic protein, BMP), 섬유아세포 성장 인자(fibroblast growth factor, FGF), 혈관 내피 성장 인자(vascular endothelial growth factor, VEGF), 신경 성장 인자(nerve growth factor, NGF), 표피 성장 인자 (epidermal growth factor, EGF), 인슐린 성장 인자 insulinlike growth factor, IGF), 형질 전환 성장 인자(trans-forming growth factor-α and -β, TGF-α, -β), 뇌 유래 신경 영양 인자(brain-derived neutrophic factor, BDNF), 혈소판 유래 성장 인자(plateletderived growth factor, PDGF), 태반 성장 인자(placental growth factor, PlGF), 간세포 성장 인자(hepatocyte growth factor, HGF), 섬유아세포 성장 인자 (Fibroblast growth factor 1 and 2, FGF-1, -2), 케라틴세포 성장 인자(Keratinocyte growth factor, KGF) 및 이들의 유사체로 이루어진 군에서 선택된 어느 하나 이상일 수 있다.
본 명세서에서 사용된 유사체는 상기 단백질들과 80%의 서열 상동성을 갖는 경우를 포함할 수 있으며, 바람직하게는 85%의 서열 상동성, 더욱 바람직하게는 90% 의 서열 상동성을 갖는 단백질 유사체를 포함할 수 있다.
또한, 본 발명은 위와 같은 마이크로니들이 부착되어 있는 단백질의 투여용 (전달용) 마이크로니들 패치(patch) 시스템을 제공한다. 바람직하게 본 발명의 일 실시예는 단백질 또는 펩타이드의 화장학적 피부 투여 방법을 제공한다.
본 발명은 (S1) 상기 펩타이드 또는 단백질; 및 피부 내 용해성 물질을 포함하는 용액을 제조하는 단계, (S2) 상기 용액을 마이크로니들 몰드에 주입하는 단계, 및 (S3) 건조 및 상기 몰드로부터 마이크로니들을 분리하는 단계를 포함하는, 펩타이드 또는 단백질 함유 마이크로니들의 제조 방법에서, 상기 (S1) 단계에서 펩타이드 또는 단백질을 마이크로파티클 내에 봉입하는 단계를 더 포함하며, 상기 펩타이드 또는 단백질을 마이크로파티클 내에 봉입하는 단계는 소수성 코어 형성 고분자를 이용하여 펩타이드 또는 단백질을 마이크로파티클의 내부에 포함시키는, 단백질의 구조의 불안정성 또는 단백질의 aggregation이 개선된 단백질 함유 마이크로니들의 제조 방법을 제공한다.
본 발명은 또한 본 발명에 따른 마이크로니들을 이용하는 것을 특징으로 하는 피부 투과량이 높고, 안정성이 우수한 단백질 피부 투여 방법을 제공한다.
또한 본 발명은 단백질, 바람직하게는 성장인자 혹은 성장 호르몬, 더욱 바람직하게는 EGF, TGF-β 혹은 hGH 를 함유하는 마이크로파티클을 포함하는, 마이크로니들의 주름 개선 용도를 제공한다.
본 발명의 일 실시예는 분자량 200 내지 3000Da의 펩타이드가 포함된 마이크로니들을 피부에 부착시켜 상기 펩타이드를 피부에 투여하는 방법을 제공한다.
본 발명의 일 실시예는 분자량 200 내지 3000Da의 펩타이드가 포함된 마이크로니들의 피부 주름 개선 용도를 제공한다.
본 발명의 일 실시예는 성장인자가 봉입된 마이크로파티클이 포함된 마이크로니들을 피부에 부착시켜 상기 성장인자를 피부에 투여하는 방법을 제공한다.
본 발명의 일 실시예는 성장인자가 봉입된 마이크로파티클이 포함된 마이크로니들의 피부 주름 개선 용도를 제공한다.
본 발명은 분자량이 큰 펩타이드의 피부 투과 효율을 증가시킨 마이크로니들을 제공한다.
본 발명은 또한 피부 투과 효율이 증가된 펩타이드를 함유하는 피부 투여용 마이크로니들을 제공한다. 본 발명은 또한 이러한 마이크로니들을 이용하는 것을 특징으로 하는 펩타이드의 피부 투여 방법을 제공한다.
본 발명은 단백질, 특히 성장인자의 안정성이 확보되고, 피부 투과량이 향상된, 단백질 피부 투여용 마이크로니들을 제공한다. 본 발명은 또한 단백질의 구조 변형을 유발하지 않고, 안정적으로 피부에 전달될 수 있는 피부 투여용 마이크로니들을 제공한다.
본 발명은 일반 화장료 제형에 포함시킬 때 유발될 수 있는, 단백질들 간의 aggregation이 발생하지 않고, 안정적으로 피부 내로 단백질을 전달할 수 있는 단백질의 피부 전달 시스템을 제공한다.
본 발명은 또한 이러한 마이크로니들을 이용하는 것을 특징으로 하는 성장인자의 피부 투여 방법을 제공한다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명에 따른 마이크로니들을 제조하는 여러 방법 중 일 예를 보여주는 도면이다. 용해성 마이크로니들은 solution casting 방법으로 제조될 수 있으며, solution을 mold에 casting하여 진공 및/또는 centrifuge로 미세 mold에 액을 채운후 건조하여 제조할 수 있다. 마이크로니들 구조체를 형성하는 material은 일반적인 합성 및 천연 수용성 고분자가 사용될 수 있다.
도 2는 본 발명에 따른 마이크로니들의 약물 방출 거동을 평가하기 위한 Franz diffusion cell을 나타낸다.
도 3은 돼지 피부를 장착한 Franz diffusion cell을 이용하여 평가한, 마이크로니들로부터의 EGF의 방출 평가결과를 보여주는 그래프이다.
도 4는 본 발명에 따른 EGF solution이 함침된 Microneedle(EGF Microneedle)과 EGF Microparticle이 함침된 Microneeedle(EGF-MP Microneedle)을 눈가 주름에 장기간 사용한 후에 나타나는 주름 개선 정도를 보여주는 실험 결과이다.
도 5는 EGF 안정성 분석(SEC, Size Exclusion Chromatography)을 실시한 결과를 나타내는 그래프이다. 도 5a는 EGF 표준물질의 SEC data를 나타내고, 도 5b는 마이크로니들로부터 방출된 EGF의 SEC data를 나타낸다.
도 6은 마이크로파티클을 예시적으로 개략적으로 나타낸 그림이다.
도 7은 돼지 피부를 장착한 Franz diffusion cell을 이용하여 평가한, 마이크로니들로부터의 peptide의 방출 평가결과를 보여주는 그래프이다.
도 8은 본 발명에 따른 peptide solution이 함침된 Microneedle(peptide Microneedle)과 peptide가 함침된 Microneeedle(peptide Microneedle)을 눈가 주름에 장기간 사용한 후에 나타나는 주름 개선 정도를 보여주는 실험 결과이다.
이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
<Protein-loaded Microparticle 제조>
Poly (lactic-co-glycolic acid) (PLGA) 1g을 10mL의 Methylene Chloride 녹였다. 2mL의 정제수에 200mg의 Polypeptide(epidermal growth factor, EGF)를 녹인 수용액을 PLGA 용액에 서서히 첨가하면서, 1차 W/O emulsion을 제조하였다. 0.2% Poly vinyl alcohol 수용액(100mL)에 교반과 함께 1차로 제조한 W/O emulsion 용액을 첨가하였다. 이렇게 제조된 W/O/W double emulsion은 24시간 실온에서 교반하면서, 유기용매인 Methylene chloride를 증발시키고, EGF가 loading된 microparticle을 제조하였다. Rotary evaporator를 이용하여 잔류하는 Methylene chloride를 완전히 제거하면서, EGF 함량이 전체 0.2%가 되도록 유기용매와 함께 물을 증발시켜 농축시켰다. ELISA Kit로 분석한 결과, EGF의 함량은 0.21%로 확인되었으며, Particle size analyzer로 분석한 결과 microparticle의 평균 크기는 350nm 이었다.
<EGF Microparticle-loaded Microneedle 제조>
하기 표 1과 같이, EGF(solution 형태로 첨가됨) 또는 EGF가 함침된 soluble microneedle을 제조하였다. 하기 표 1의 함량은 중량%로 나타냈다.
EGF MN (중량%) EGF-MP MN(중량%)
oligo-HA 6 6
Na-CMC 6 6
Trehalose 10 10
Glycerin 5 5
HCO-40 0.2 0.2
EGF 0.05 -
EGF microparticle (0.2%) - 25
water To 100 To 100
구체적으로 EGF가 함침된 용해성(soluble) 마이크로니들은 다음과 같이 제조하였다. oligo-HA(Hyaluronic acid), Na-CMC(Sodium carboxymethyl cellulose) 및 Trehalos를 정제수에 용해한 후 Glycerin, HCO-40 및 EGF 을 첨가하여, EGF 용액을 제조하였다. 제조한 EGF 용액을 silicone microneedle mold에 casting 한 후, 3000rpm 에서 10분간 centrifugation 하여 미세 mold에 액을 충진하였다. 용액 충진 후 건조 오븐(70℃)에서 3시간동안 건조하고, 접착 필름을 이용하여 microneedle을 silicone mold로부터 분리하였다.
구체적으로 EGF microparticle(EGF-MP)이 함침된 soluble microneedle은 다음과 같이 제조하였다. Oligo-HA(Hyaluronic acid), Na-CMC(Sodium carboxymethyl cellulose) 및 Trehalos를 정제수에 용해한 후 Glycerin, HCO-40 및 EGF microparticle(EGF 0.2%)을 첨가하여 용액을 제조하였다. 제조한 용액을 silicone microneedle mold에 casting 한 후, 3000rpm에서 10분간 centrifugation 하여 미세 mold에 액을 충진하였다. 용액 충진 후 건조 오븐(70℃)에서 3시간동안 건조하고, 접착 필름을 이용하여 microneedle을 silicone mold로부터 분리해 내었다.
<EGF 수중유화제형(Oil-in-Water) 크림>
Microneedle에 함침된 EGF의 피부 투과량을 비교하기 위하여, 비교예로 일반적인 수중유화제형의 크림에 EGF를 함침하여 비교하였다. 하기 함량은 중량%로 나타냈다.
성분 제형예 (중량%)
C14-22알코올, C12-20알킬글루코사이드(혼합물 C14-22알코올:C12-20알킬글루코사이드 = 80:20 중량비)글리세릴스테아레이트, 피이지-100스테아레이트(혼합물 50:50 중량비)글리세릴스테아레이트세테아릴알코올폴리글리세릴-3메칠글루코오스디스테아레이트하이드로제네이티드폴리데센사이클로헥사실록산카보머트로메타민글리세린디프로필렌글라이콜1,2-헥산디올EGF(Epidermal growth factor)정제수 1.51.20.91.51.54.53.50.20.23520.05잔여량 (To 100)
<약물 방출 거동>
돼지 피부를 장착한 Franz diffusion cell을 이용하여 위에서 제조한 마이크로니들로부터의 EGF 방출을 평가하였다 (도 2 참조). 수용액(acceptor solution)으로는 30 중량%의 DPG가 함유된 PBS 용액을 사용하였다. Franz diffusion cell을 이용하여, 시간에 따른 돼지피부 조직 및 acceptor solution의 EGF 함량을 ELISA kit를 이용하여 측정하였다. 돼지피부에 EGF 크림을 도포하거나, EGF 혹은 EGF-MP가 함침된 Microneedle을 부착하여 시간에 따른 peptide의 피부 투과량을 비교하였다. 마이크로니들이 돼지 피부 내에 침투하여 녹게 한 후 (부착 시간: 2시간, 온도: 32℃) 마이크로니들을 제거하였다. 마이크로니들에 의해 EGF가 흡수된 돼지 피부를 franz diffusion cell에 넣어, EGF가 시간에 따라 돼지 피부에서 Acceptor solution으로 방출되는 거동을 확인하였다. 그 결과를 도 3에 나타내었다.
도 3에 나타나는 바와 같이, Microneedle에 함침된 EGF 및 EGF-MP는 Needle에 의해 피부로 직접 투과하여 그 투과량이 1ug 이상으로 약 500배 이상 크림 대비 높은 피부 투과량을 나타내었다.
<주름 개선 효과>
EGF 크림과 EGF 및 EGF-MP가 함침된 Microneedle을 눈가 주름에 12주간 매일 처리하여, 주름 개선 정도를 실리콘 모사판(silicone replica) 및 주름 영상 분석 방법으로 통해 확인하였다. (N=20). 그 결과를 도 4에 나타내었다. EGF 크림에 비해 EGF가 함침된 Microneeedle에서 우수한 개선효과를 보였으며, 특히 EGF-MP가 함침된 Microneedle에서 뛰어난 주름 개선 효과를 나타내었다. 이것은 EGF-MP가 함침된 MN에 의해 EGF가 피부내로 효과적으로 전달한 결과이며, 또한 피부내로 전달된 EGF-MP로부터 EGF가 안정한 구조로 방출되어, 주름 개선 효과가 높게 나타난 것으로 판단된다.
<EGF 안정성 분석 (SEC)>
SEC (Size Exclusion Chromatography)를 이용하여, Microneedle에 함침된 EGF가 방출되었을때, EGF 구조가 변성되었는지 확인하였다.
EGF 자체를 Microneedle에 함침하여 피부에 전달할 경우, EGF의 구조가 aggregation 되어 변성됨에 따라, aggregation peak가 상대적으로 증가하였으나, Microparticle에 안정하게 봉입하여 Microneedle에 함침할 경우, 피부에 전달한 후에도 aggregation되지 않고, 그 구조가 표준물질과 유사한 결과를 나타내었다.
이로서, EGF와 같은 polypeptide나 protein의 경우 안정하게 봉입한 microparticle을 Microneedle 함침하여 피부에 전달함에 따라, 높은 피부 전달과 함께 안정한 구조로 피부에 전달할 수 있음을 확인하였다.
<peptide Microneedle 제조>
하기 표 3과 같이, peptide(solution 형태로 첨가됨) 또는 peptide가 함침된 soluble microneedle을 제조하였다. 하기 표 3의 함량은 중량%로 나타냈다.
Peptide MN (중량%)
oligo-HA 6
Na-CMC 6
Trehalose 10
Glycerin 5
HCO-40 0.2
Genistein -
Peptide(Myristoyl Tetrapeptide-6)-DPG solution (10%) 1.0
water To 100
구체적으로 Peptide(Myristoyl Tetrapeptide-6)가 함침된 용해성(soluble) 마이크로니들은 다음과 같이 제조하였다.
Oligo-HA(Hyaluronic acid), Na-CMC(Sodium carboxymethyl cellulose) 및 Trehalos를 정제수에 용해한 후 Glycerin, HCO-40 및 Peptide solution (Peptide 10%, DPG 90%)을 첨가하여, Peptide가 분산된 용액을 제조하였다(DPG: Dipropylene glycol). 제조한 Peptide 분산 용액을 silicone microneedle mold에 casting 한 후, 3000rpm 에서 10분간 centrifugation 하여 미세 mold에 액을 충진하였다. 용액 충진 후 건조 오븐(70℃)에서 3시간 동안 건조하고, 접착 필름을 이용하여 microneedle을 silicone mold로부터 분리해 내었다.
<Peptide 수중유화제형(Oil-in-Water) 크림>
Microneedle에 함침된 peptide의 피부 투과량을 비교하기 위하여, 비교예로 일반적인 수중유화제형의 크림에 peptide를 함침하여 비교하였다. 하기 함량은 중량%로 나타냈다.
성분 제형예 (중량%)
C14-22알코올, C12-20알킬글루코사이드(혼합물 C14-22알코올:C12-20알킬글루코사이드 = 80:20 중량비)글리세릴스테아레이트, 피이지-100스테아레이트(혼합물 50:50 중량비)글리세릴스테아레이트세테아릴알코올폴리글리세릴-3메칠글루코오스디스테아레이트하이드로제네이티드폴리데센사이클로헥사실록산카보머트로메타민글리세린디프로필렌글라이콜1,2-헥산디올Peptide(Myristoyl Tetrapeptide-6)정제수 1.51.20.91.51.54.53.50.20.23520.5잔여량 (To 100)
<약물 방출 거동>
돼지 피부를 장착한 Franz diffusion cell을 이용하여 위에서 제조한 마이크로니들로부터 시간에 따른 peptide의 피부 투과량을 비교하였다 (도 2 참조). 수용액(acceptor solution)으로는 30 중량%의 DPG가 함유된 PBS 용액을 사용하였다.
즉, Franz diffusion cell을 이용하여, 시간에 따른 돼지피부 조직 및 acceptor solution의 Peptide 함량을 Liquid Chromatography를 이용하여 측정하였다.
돼지피부에 Peptide 크림을 도포하거나, Peptide가 함침된 Microneedle을 부착하여 시간에 따른 peptide의 피부 투과량을 비교하였다. 마이크로니들이 돼지 피부 내에 침투하여 녹게 한 후 (부착 시간: 2시간, 온도: 32℃) 마이크로니들을 제거하였다. 마이크로니들에 의해 peptide가 흡수된 돼지 피부를 franz diffusion cell에 넣어, peptide가 시간에 따라 돼지 피부에서 Acceptor solution으로 방출되는 거동을 확인하였다. 그 결과를 도 7에 나타내었다.
도 7에 나타나는 바와 같이, Peptide를 포함한 크림은 피부를 통해 투과되는 양이 약 0.1㎍으로 그 양이 미미하였으나, Microneedle에 함침된 peptide는 Needle에 의해 피부로 직접 투과하여 그 투과량이 15㎍ 이상으로 약 100배 이상 크림 대비 높은 피부 투과량을 나타내었다.
<주름 개선 효과>
Peptide 크림과 Peptide가 함침된 Microneedle을 눈가 주름에 12주간 매일 처리하여, 주름 개선 정도를 실리콘 모사판(silicone replica) 및 주름 영상 분석 방법으로 통해 확인하였다. (N=20)
Peptide 크림에 비해 Peptide가 함침된 Microneeedle에서 5배 이상 우수한 개선효과를 보였으며, 이는 Peptide가 Microneedle에 의해 피부 내로 효과적으로 침투하여, 주름 개선 효과가 높게 나타난 것을 확인하였다.
본 발명은 피부 주름 개선을 위한 화장품, 약학 용도로 이용될 수 있다.
본 발명의 마이크로니들은 우수한 피부 주름 감소 효과를 기대할 수 있다.

Claims (26)

  1. 펩타이드 또는 단백질을 함유하는 마이크로니들.
  2. 제1항에 있어서, 상기 펩타이드는 N-말단에 탄소수 10 내지 20의 알킬기를 가진 펩타이드인 것을 특징으로 하는 마이크로니들.
  3. 제1항에 있어서, 상기 펩타이드는 분자량 200 내지 3000 Da인 것을 특징으로 하는 마이크로니들.
  4. 제1항에 있어서, 상기 펩타이드는 트리펩타이드, 테트라펩타이드, 펜타펩타이드, 헥사펩타이드, 헵타펩이드, 팔미토일 트리펩타이드 (Palmitoyl tripeptide), 미리스토일 테트라펩타이드(myristoyl tetrapeptide), 카프로로일 테트라펩타이드(Caprooyl tetrapeptide), 미리스토일 펜타펩타이드(myristoyl pentapeptide), 팔미토일 펜타펩타이드 (Palmitoyl pentapeptide), 미리스토일 헥사펩타이드(myristoyl hexapeptide), 팔미토일 헥사펩타이드 (Palmitoyl hexapeptide), 팔미토일 헵타펩타이드 (Palmitoyl heptapeptide) 또는 이들의 혼합물로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 마이크로니들.
  5. 제1항에 있어서, 상기 마이크로니들을 형성하는 물질은 피부 내에서 용해되는 것을 특징으로 하는 마이크로니들.
  6. 제5항에 있어서, 상기 마이크로니들을 형성하는 물질은 히얄루로닉산 (Hyaluronic acid), 소디움-카르복시메틸 셀룰로오스, Na-CMC(Sodium carboxymethyl cellulose), 비닐피롤리돈-비닐아세테이트 공중합체, 폴리비닐알코올(Poly vinyl alcohol), 폴리비닐피릴리돈(Poly vinyl pyrrolidone), 당류 또는 이들의 혼합물인 것을 특징으로 하는 마이크로니들.
  7. 제5항에 있어서, 상기 마이크로니들은 마이크로니들을 형성하는 물질 이외에 가소제(plasticizer)를 추가로 포함하는 것을 특징으로 하는 마이크로니들.
  8. 제1항에 있어서, 상기 마이크로니들은 마이크로파티클을 포함하며, 상기 펩타이드 또는 단백질은 상기 마이크로파티클 내부에 봉입된 것을 특징으로 하는 마이크로니들.
  9. 제8항에 있어서, 상기 마이크로니들을 형성하는 물질은 피부 내에서 용해되며, 상기 마이크로파티클은 소수성 코어 형성 고분자를 포함하고 있는 것을 특징으로 하는 마이크로니들.
  10. 제9항에 있어서, 상기 마이크로니들을 형성하는 물질은 히얄루로닉산 (Hyaluronic acid), 소디움-카르복시메틸 셀룰로오스, Na-CMC(Sodium carboxymethyl cellulose), 비닐피롤리돈-비닐아세테이트 공중합체, 폴리비닐알코올(Poly vinyl alcohol), 폴리비닐피릴리돈(Poly vinyl pyrrolidone), 당류 또는 이들의 혼합물인 것을 특징으로 하는 마이크로니들.
  11. 제9항에 있어서, 상기 소수성 코어 형성 고분자는 폴리(락타이드), 폴리(글리코라이드), 폴리(락타이드-코-글리코라이드), 폴리안하이드라이드, 폴리오르쏘에스테르, 폴리에테르에스테르, 폴리카프로락톤, 모노-메톡시 폴리에틸렌글리콜-폴리카프로락톤 (MPEG-PCL), 폴리에스테르아마이드, 폴리(뷰티릭 산), 폴리(발레릭 산), 폴리우레탄, 또는 이들의 공중합체로 이루어진 군에서 선택된 어느 하나 이상의 생분해성 고분자; 및 폴리아크릴레이트, 에틸렌-비닐아세테이트 중합체, 아크릴 치환 셀룰로오스 아세테이트, 비-분해성 폴리우레탄, 폴리스티렌, 폴리비닐 클로라이드, 폴리비닐 풀루오라이드, 폴리(비닐 이미다졸), 클로로설포네이트 폴리올레핀 (chlorosulphonate polyolefins), 폴리에틸렌 옥사이드 또는 이들의 공중합체로 이루어진 군에서 선택된 어느 하나 이상의 비-생분해성 고분자로 이루어진 군에서 선택된 어느 하나가 단독으로 또는 혼합인 것을 특징으로 하는 마이크로니들.
  12. 제11항에 있어서, 상기 소수성 코어 형성 고분자는 폴리(락타이드), 폴리(글리코라이드), 및 폴리(락타이드-코-글리코라이드) 중 어느 하나 이상과 모노-메톡시 폴리에틸렌글리콜-폴리카프로락톤 (MPEG-PCL)의 혼합물인 것을 특징으로 하는 마이크로니들.
  13. 제8항에 있어서, 상기 마이크로파티클은 매트릭스 타입 또는 레저보어 타입인 것을 특징으로 하는 마이크로니들.
  14. 제8항에 있어서, 상기 마이크로파티클은 직경이 0.01 내지 10 ㎛인 것을 특징으로 하는 마이크로니들.
  15. 제8항에 있어서, 상기 마이크로파트클에 함유된 단백질은 성장인자인 것을 특징으로 하는 마이크로니들.
  16. 제15항에 있어서, 상기 성장인자는 뼈 형성 단백질(bone morphogenetic protein, BMP), 섬유아세포 성장 인자(fibroblast growth factor, FGF), 혈관 내피 성장 인자(vascular endothelial growth factor, VEGF), 신경 성장 인자(nerve growth factor, NGF), 표피 성장 인자 (epidermal growth factor, EGF), 인슐린 성장 인자 insulinlike growth factor, IGF), 형질 전환 성장 인자(trans-forming growth factor-α and -β, TGF-α, -β), 뇌 유래 신경 영양 인자(brain-derived neutrophic factor, BDNF), 혈소판 유래 성장 인자(plateletderived growth factor, PDGF), 태반 성장 인자(placental growth factor, PlGF), 간세포 성장 인자(hepatocyte growth factor, HGF), 섬유아세포 성장 인자 (Fibroblast growth factor 1 and 2, FGF-1, -2), 케라틴세포 성장 인자(Keratinocyte growth factor, KGF) 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 마이크로니들.
  17. 제16항에 있어서, 상기 성장인자는 표피 성장 인자(epidermal growth factor, EGF)인 것을 특징으로 하는 마이크로니들.
  18. (S1) 상기 펩타이드 또는 단백질; 및 피부 내 용해성 물질을 포함하는 용액을 제조하는 단계;
    (S2) 상기 용액을 마이크로니들 몰드에 주입하는 단계; 및
    (S3) 건조 및 상기 몰드로부터 마이크로니들을 분리하는 단계를 포함하는, 펩타이드 또는 단백질 함유 마이크로니들의 제조 방법.
  19. 제18항에 있어서, 상기 피부 내 용해성 물질은 히얄루로닉산 (Hyaluronic acid), 소디움-카르복시메틸 셀룰로오스, Na-CMC(Sodium carboxymethyl cellulose), 비닐피롤리돈-비닐아세테이트 공중합체, 폴리비닐알코올(Poly vinyl alcohol), 및 폴리비닐피릴리돈(Poly vinyl pyrrolidone), 당류 또는 이들의 혼합물인 것을 특징으로 하는 제조 방법.
  20. 제18항에 있어서, 상기 펩타이드는 트리펩타이드, 테트라펩타이드, 펜타펩타이드, 헥사펩타이드, 헵타펩이드, 팔미토일 트리펩타이드 (Palmitoyl tripeptide), 미리스토일 테트라펩타이드(myristoyl tetrapeptide), 카프로로일 테트라펩타이드(Caprooyl tetrapeptide), 미리스토일 펜타펩타이드(myristoyl pentapeptide), 팔미토일 펜타펩타이드 (Palmitoyl pentapeptide), 미리스토일 헥사펩타이드(myristoyl hexapeptide), 팔미토일 헥사펩타이드 (Palmitoyl hexapeptide), 팔미토일 헵타펩타이드 (Palmitoyl heptapeptide) 또는 이들의 혼합물로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 제조 방법.
  21. 제18항에 있어서, 상기 (S1) 단계는 펩타이드 또는 단백질을 마이크로파티클 내에 봉입하는 단계를 더 포함하며,
    상기 펩타이드 또는 단백질을 마이크로파티클 내에 봉입하는 단계는 소수성 코어 형성 고분자를 이용하여 펩타이드 또는 단백질을 마이크로파티클의 내부에 포함시키는 것을 특징으로 하는, 펩타이드 또는 단백질 함유 마이크로니들의 제조 방법.
  22. 제21항에 있어서, 상기 소수성 코어 형성 고분자는 폴리(락타이드), 폴리(글리코라이드), 폴리(락타이드-코-글리코라이드), 폴리안하이드라이드, 폴리오르쏘에스테르, 폴리에테르에스테르, 폴리카프로락톤, 모노-메톡시 폴리에틸렌글리콜-폴리카프로락톤 (MPEG-PCL), 폴리에스테르아마이드, 폴리(뷰티릭 산), 폴리(발레릭 산), 폴리우레탄, 또는 이들의 공중합체로 이루어진 군에서 선택된 어느 하나 이상의 생분해성 고분자; 및 폴리아크릴레이트, 에틸렌-비닐아세테이트 중합체, 아크릴 치환 셀룰로오스 아세테이트, 비-분해성 폴리우레탄, 폴리스티렌, 폴리비닐 클로라이드, 폴리비닐 풀루오라이드, 폴리(비닐 이미다졸), 클로로설포네이트 폴리올레핀 (chlorosulphonate polyolefins), 폴리에틸렌 옥사이드 또는 이들의 공중합체로 이루어진 군에서 선택된 어느 하나 이상의 비-생분해성 고분자로 이루어진 군에서 선택된 어느 하나가 단독으로 또는 혼합인 것을 특징으로 하는 제조 방법.
  23. 분자량 200 내지 3000Da의 펩타이드가 포함된 마이크로니들을 피부에 부착시켜 상기 펩타이드를 피부에 투여하는 방법.
  24. 분자량 200 내지 3000Da의 펩타이드가 포함된 마이크로니들의 피부 주름 개선 용도.
  25. 성장인자가 봉입된 마이크로파티클이 포함된 마이크로니들을 피부에 부착시켜 상기 성장인자를 피부에 투여하는 방법.
  26. 성장인자가 봉입된 마이크로파티클이 포함된 마이크로니들의 피부 주름 개선 용도.
PCT/KR2016/003600 2015-04-06 2016-04-06 단백질 또는 펩타이드 전달용 용해성 마이크로니들 WO2016163753A1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020177026563A KR102264298B1 (ko) 2015-04-06 2016-04-06 단백질 또는 펩타이드 전달용 용해성 마이크로니들
US15/565,114 US20180116938A1 (en) 2015-04-06 2016-04-06 Soluble microneedle for delivering proteins or peptides
CN202210187289.7A CN114515269A (zh) 2015-04-06 2016-04-06 微针及其制造方法
EP16776856.3A EP3281627A4 (en) 2015-04-06 2016-04-06 Soluble microneedle for delivering proteins or peptides
JP2017552135A JP6816015B2 (ja) 2015-04-06 2016-04-06 タンパク質またはペプチド伝達用の溶解性マイクロニドル
CN201680019260.0A CN107438432B (zh) 2015-04-06 2016-04-06 蛋白质或肽传递用的可溶性微针
HK18107322.4A HK1247831A1 (zh) 2015-04-06 2018-06-05 蛋白質或肽傳遞用的可溶性微針
US16/809,748 US20200197286A1 (en) 2015-04-06 2020-03-05 Soluble microneedle for delivering proteins or peptides

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20150048462 2015-04-06
KR10-2015-0048471 2015-04-06
KR20150048471 2015-04-06
KR10-2015-0048462 2015-04-06
KR10-2015-0144873 2015-10-16
KR1020150144873A KR20160119674A (ko) 2015-04-06 2015-10-16 펩타이드 전달용 용해성 미세바늘
KR10-2015-0159966 2015-11-13
KR1020150159966A KR20160119679A (ko) 2015-04-06 2015-11-13 단백질 또는 펩타이드 전달용 용해성 마이크로니들

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/565,114 A-371-Of-International US20180116938A1 (en) 2015-04-06 2016-04-06 Soluble microneedle for delivering proteins or peptides
US16/809,748 Division US20200197286A1 (en) 2015-04-06 2020-03-05 Soluble microneedle for delivering proteins or peptides

Publications (1)

Publication Number Publication Date
WO2016163753A1 true WO2016163753A1 (ko) 2016-10-13

Family

ID=57072129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003600 WO2016163753A1 (ko) 2015-04-06 2016-04-06 단백질 또는 펩타이드 전달용 용해성 마이크로니들

Country Status (1)

Country Link
WO (1) WO2016163753A1 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107233296A (zh) * 2017-05-27 2017-10-10 中山大学 胸腺五肽可溶性微针及其制备方法
WO2018226160A1 (en) * 2017-06-06 2018-12-13 Pointed Biotech Pte Ltd Microneedle patch loaded with a fat browning agent and a method for preparing the same
KR20190051679A (ko) * 2017-11-07 2019-05-15 재단법인대구경북과학기술원 상처 치유 가속화 장치
JP2020527034A (ja) * 2017-06-28 2020-09-03 エルジー ハウスホールド アンド ヘルスケア リミテッド 皮膚透過促進用ペプチドが結合された融合タンパク質を含む皮膚改善用化粧料組成物
US20210196899A1 (en) * 2018-06-29 2021-07-01 Sr Biotek Inc. Microneedle coated with drug and manufacturing method for same
CN113521309A (zh) * 2020-04-16 2021-10-22 中国人民解放军军事科学院军事医学研究院 人肝细胞生长因子基因在湿疹治疗中的应用及微针药械
CN114010579A (zh) * 2021-11-19 2022-02-08 烟台魔技纳米科技有限公司 一种可溶性抗炎修护微针及其制备方法
US11524058B2 (en) 2008-09-29 2022-12-13 The Corporation Of Mercer University Oral dissolving films containing microencapsulated vaccines and methods of making same
US11628208B2 (en) 2015-10-05 2023-04-18 The Corporation Of Mercer University System and method for microneedle delivery of microencapsulated vaccine and bioactive proteins

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080050580A (ko) * 2005-09-06 2008-06-09 테라젝트, 인코포레이티드 약물 입자 및/또는 약물 흡착된 입자를 함유하는 고용체퍼포레이터
KR20100037389A (ko) * 2008-10-01 2010-04-09 연세대학교 산학협력단 다중 약물방출조절이 가능한 솔리드 마이크로구조체 및 이의 제조방법
KR20120138180A (ko) * 2011-06-14 2012-12-24 가천대학교 산학협력단 약물 전달을 위한 리포좀-마이크로 구조체 및 이의 제조방법
KR20140125364A (ko) * 2012-02-17 2014-10-28 코스메드 파마소티컬 씨오 쩜 엘티디 단시간 용해형 마이크로니들

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080050580A (ko) * 2005-09-06 2008-06-09 테라젝트, 인코포레이티드 약물 입자 및/또는 약물 흡착된 입자를 함유하는 고용체퍼포레이터
KR20100037389A (ko) * 2008-10-01 2010-04-09 연세대학교 산학협력단 다중 약물방출조절이 가능한 솔리드 마이크로구조체 및 이의 제조방법
KR20120138180A (ko) * 2011-06-14 2012-12-24 가천대학교 산학협력단 약물 전달을 위한 리포좀-마이크로 구조체 및 이의 제조방법
KR20140125364A (ko) * 2012-02-17 2014-10-28 코스메드 파마소티컬 씨오 쩜 엘티디 단시간 용해형 마이크로니들

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PARK, M.: "Quantitative Analysis of EGF (Epidermal Growth Factor) Encapsulated in Dissolving Microneedle Patch.", THE KOREAN SOCIETY FOR BIOTECHNOLOGY AND BIOENGINEERING, CONFERENCE JOURNAL, 2014, pages 522, XP055320045 *
See also references of EP3281627A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11524058B2 (en) 2008-09-29 2022-12-13 The Corporation Of Mercer University Oral dissolving films containing microencapsulated vaccines and methods of making same
US11628208B2 (en) 2015-10-05 2023-04-18 The Corporation Of Mercer University System and method for microneedle delivery of microencapsulated vaccine and bioactive proteins
CN107233296A (zh) * 2017-05-27 2017-10-10 中山大学 胸腺五肽可溶性微针及其制备方法
WO2018226160A1 (en) * 2017-06-06 2018-12-13 Pointed Biotech Pte Ltd Microneedle patch loaded with a fat browning agent and a method for preparing the same
JP2020527034A (ja) * 2017-06-28 2020-09-03 エルジー ハウスホールド アンド ヘルスケア リミテッド 皮膚透過促進用ペプチドが結合された融合タンパク質を含む皮膚改善用化粧料組成物
KR20190051679A (ko) * 2017-11-07 2019-05-15 재단법인대구경북과학기술원 상처 치유 가속화 장치
KR102081794B1 (ko) * 2017-11-07 2020-02-26 재단법인 대구경북과학기술원 상처 치유 가속화 장치
US20210196899A1 (en) * 2018-06-29 2021-07-01 Sr Biotek Inc. Microneedle coated with drug and manufacturing method for same
CN113521309A (zh) * 2020-04-16 2021-10-22 中国人民解放军军事科学院军事医学研究院 人肝细胞生长因子基因在湿疹治疗中的应用及微针药械
CN113521309B (zh) * 2020-04-16 2023-07-07 中国人民解放军军事科学院军事医学研究院 人肝细胞生长因子基因在湿疹治疗中的应用及微针药械
CN114010579A (zh) * 2021-11-19 2022-02-08 烟台魔技纳米科技有限公司 一种可溶性抗炎修护微针及其制备方法

Similar Documents

Publication Publication Date Title
WO2016163753A1 (ko) 단백질 또는 펩타이드 전달용 용해성 마이크로니들
US10646572B2 (en) Pharmaceutical compositions with enhanced stability
KR102264298B1 (ko) 단백질 또는 펩타이드 전달용 용해성 마이크로니들
WO2020043167A1 (zh) 一种可快速植入型缓释微针贴片及其制备方法
WO2016013755A1 (ko) 레티놀 또는 레티놀 유도체를 함유하는 마이크로니들
WO2014104784A1 (en) Sustained-release lipid pre-concentrate of cationic pharmacologically active substance and pharmaceutical composition comprising the same
KR101747411B1 (ko) 신경전달물질을 조절하는 펩타이드의 신경세포 전달용 용해성 미세바늘
WO2017186073A1 (zh) 缓释微粒的制备方法、制得的缓释微粒及其应用
JP5715326B2 (ja) 糖尿病による足切断を予防するための、上皮成長因子(egf)を含有する局所組成物の使用
EP1317254B1 (de) Retardpartikeldispersion
KR102313517B1 (ko) 난용성 약물 전달용 용해성 마이크로니들
TWI767886B (zh) 蛋白質或肽傳遞用的可溶性微針及其製造方法
WO2016163752A1 (ko) 난용성 약물 전달용 용해성 마이크로니들
KR102525628B1 (ko) 알파―리포산 전달용 용해성 미세바늘 패치
KR20170000753A (ko) 봉독 함유 마이크로니들 패치
KR20160119674A (ko) 펩타이드 전달용 용해성 미세바늘
Premchandani et al. Protransfersome: ultraflexible vesicular approach for transdermal drug delivery system
KR20170000740A (ko) 리그닌퍼옥시다아제 전달용 용해성 미세바늘 패치
KR20160119675A (ko) 난용성 약물 전달용 용해성 마이크로 니들

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776856

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177026563

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017552135

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15565114

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016776856

Country of ref document: EP