WO2016163263A1 - 窒化珪素焼結体およびそれを用いた高温耐久性部材 - Google Patents

窒化珪素焼結体およびそれを用いた高温耐久性部材 Download PDF

Info

Publication number
WO2016163263A1
WO2016163263A1 PCT/JP2016/059948 JP2016059948W WO2016163263A1 WO 2016163263 A1 WO2016163263 A1 WO 2016163263A1 JP 2016059948 W JP2016059948 W JP 2016059948W WO 2016163263 A1 WO2016163263 A1 WO 2016163263A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
grain boundary
boundary phase
sintered body
nitride sintered
Prior art date
Application number
PCT/JP2016/059948
Other languages
English (en)
French (fr)
Inventor
池田 功
開 船木
阿部 豊
Original Assignee
株式会社東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝マテリアル株式会社 filed Critical 株式会社東芝
Priority to CN201680019713.XA priority Critical patent/CN107531579B/zh
Priority to JP2017510938A priority patent/JP6677714B2/ja
Priority to US15/564,320 priority patent/US10787393B2/en
Priority to EP16776431.5A priority patent/EP3281927B1/en
Publication of WO2016163263A1 publication Critical patent/WO2016163263A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/20Thermal properties

Definitions

  • Embodiment described later relates to a silicon nitride sintered body and a high temperature durability member using the same.
  • Silicon nitride sintered bodies are used in various applications such as bearing balls, rolling rolls, friction stir welding tools, hot tools, heater substrates, semiconductor substrates, and cutting tools.
  • Japanese Patent No. 5268750 discloses a silicon nitride sintered body in which the number of silicon nitride crystal particles having a major axis of 3 ⁇ m or more per unit area of 10 ⁇ m ⁇ 10 ⁇ m is controlled. In Patent Document 1, Vickers hardness and wear resistance are improved by performing such control.
  • Patent Laying-Open No. 2010-194591 Patent Document 2 discloses a silicon nitride sintered body constituting a friction stir welding tool.
  • a coating layer is provided on the tool surface in order to improve the durability of the joining tool.
  • Friction stir welding is a method in which a welding tool (joining tool) is pressed against a member to be joined while rotating at high speed, and the members to be joined are joined using frictional heat. Since the frictional heat is used, the joining tool becomes a high temperature of 300 ° C. or higher.
  • a coating layer is provided in order to provide durability at high temperatures.
  • the silicon nitride sintered body is used for various applications as described above. For example, the sliding surface of the bearing ball becomes hot as the rotational speed increases. Similarly, with friction stir welding tools, the sliding surface becomes hot due to frictional heat.
  • the use environment of a rolling roll, a hot tool, and a cutting tool may become under high temperature.
  • the present invention has been made to cope with such a problem, and an object of the present invention is to provide a silicon nitride sintered body exhibiting excellent durability even in a high temperature environment.
  • the silicon nitride sintered body according to the embodiment is a silicon nitride sintered body having silicon nitride crystal particles and a grain boundary phase.
  • the silicon nitride crystal particles are covered with the grain boundary phase, and the width of the grain boundary phase is 0. .2 nm or more.
  • the silicon nitride sintered body according to the embodiment is a silicon nitride sintered body having silicon nitride crystal particles and a grain boundary phase.
  • the silicon nitride crystal particles are covered with the grain boundary phase, and the width of the grain boundary phase is 0. .2 nm or more.
  • the width of the grain boundary phase is preferably 0.2 nm or more and 5 nm or less.
  • the silicon nitride sintered body is manufactured by mixing silicon nitride powder and sintering aid powder, forming and then sintering. By carrying out the sintering step, the sintering aid powder becomes a grain boundary phase.
  • the silicon nitride sintered body according to the embodiment is characterized in that the width of the grain boundary phase is 0.2 nm or more.
  • the width of the grain boundary phase is the thickness of the grain boundary phase formed at the two-grain interface of the silicon nitride crystal grains.
  • the presence of a grain boundary phase having a predetermined thickness at the interface between two silicon nitride crystal grains indicates that the surface of each silicon nitride crystal grain is covered with the grain boundary phase.
  • the nearest distance between adjacent silicon nitride crystal grains is preferably 0.2 nm or more, and more preferably in the range of 0.2 to 5 nm.
  • silicon nitride crystal particles present on the surface of the silicon nitride sintered body may not be covered with the grain boundary phase.
  • all silicon nitride crystal particles are covered with the grain boundary phase.
  • the durability of the silicon nitride sintered body in a high temperature environment is improved.
  • the fact that the silicon nitride crystal particles are not covered with the grain boundary phase indicates a state where the silicon nitride crystal particles are in direct contact with each other and a state where the grain boundary phase is missing and becomes a pore.
  • the width of the grain boundary phase is set to 0.2 nm or more, the silicon nitride crystal particles can be firmly bonded via the grain boundary phase. If the width of the grain boundary phase is less than 0.2 nm, a strong joint structure cannot be obtained.
  • the width of the grain boundary phase is preferably in the range of 0.2 to 5 nm, more preferably 0.5 to 2 nm.
  • the width of the grain boundary phase is measured by a method using a scanning transmission electron microscope (STEM). Specifically, an arbitrary cross section of the silicon nitride sintered body is observed by STEM (enlarged photograph is taken). Next, the intensity profile of the grain boundary portion at the closest location between the two silicon nitride crystal grains is obtained by an enlarged photograph. Thereby, the width of the grain boundary phase can be measured.
  • STEM scanning transmission electron microscope
  • the width of the grain boundary phase between two silicon nitride crystal particles is 0.2 nm or more.
  • the shortest distance between two silicon nitride crystal particles is 0.2 nm or more.
  • the fact that the width of the grain boundary phase is 0.2 to 5 nm indicates that the shortest distance between two silicon nitride crystal grains is in the range of 0.2 to 5 nm.
  • the silicon nitride sintered body according to the embodiment preferably has a Vickers hardness Hv of 1450 or more at room temperature (25 ° C.). Moreover, it is preferable that Vickers hardness Hv in 300 degreeC is 1350 or more. Moreover, it is preferable that Vickers hardness Hv in 1000 degreeC is 850 or more. Since the silicon nitride sintered body according to the embodiment controls the width of the grain boundary phase, high hardness can be maintained even if the usage environment is a high temperature condition of 300 ° C. or higher. The measurement of Vickers hardness is performed based on JIS-R-1610. The test force is assumed to be 9.807N.
  • the silicon nitride sintered body preferably contains 15% by mass or less of a grain boundary phase as an additive component.
  • the additive component refers to a component other than silicon nitride.
  • additive components other than silicon nitride indicate a sintering aid component.
  • the sintering aid component constitutes the grain boundary phase. When there are many additional components exceeding 15 mass%, a grain boundary phase will increase too much. When the grain boundary phase is excessive, it becomes difficult to control the width of the grain boundary phase within the range of 0.2 to 5 nm.
  • the silicon nitride sintered body of the present embodiment has a structure in which elongated ⁇ -silicon nitride crystal particles are entangled in a complicated manner.
  • the sintering aid component is a chemical, it is not desirable because the silicon nitride crystal particles may have a part that cannot take a complicated structure.
  • the additive component is preferably 3% by mass or more and 12.5% by mass or less. Furthermore, 5 mass% or more and 12.5 mass% or less of an additional component are preferable. If the additive component is less than 3% by mass, the grain boundary phase becomes too small and the density of the silicon nitride sintered body may be lowered.
  • the additive component includes three or more elements selected from Y, Al, Mg, Si, Ti, Hf, Mo, and C.
  • the additive components include Y (yttrium), Al (aluminum), Mg (magnesium), Si (silicon), Ti (titanium), Hf (hafnium), Mo (molybdenum), and C (carbon) as constituent elements.
  • the compound form is not limited.
  • oxide (including composite oxide), nitride (including composite nitride), oxynitride (including composite oxynitride), carbide (including composite carbide), and the like can be given.
  • oxide including composite oxide
  • nitride including composite nitride
  • carbide including composite carbide
  • oxide including composite oxide
  • Y element yttrium oxide
  • Al element aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), and MgO ⁇ Al 2 O 3 spinel are preferable.
  • Mg element magnesium oxide (MgO) and MgO.Al 2 O 3 spinel are preferable.
  • Si element silicon oxide (SiO 2 ) and silicon carbide (SiC) are preferable.
  • Ti element titanium oxide (TiO 2 ) and titanium nitride (TiN) are preferable.
  • Hf element hafnium oxide (HfO 2 ) is preferable.
  • Mo element molybdenum oxide (MoO 2 ) and molybdenum carbide (Mo 2 C) are preferable.
  • C element it is preferable to add as silicon carbide (SiC), titanium carbide (TiC), and titanium carbonitride (TiCN).
  • SiC silicon carbide
  • TiC titanium carbide
  • TiCN titanium carbonitride
  • the additive component preferably includes four or more elements selected from Y, Al, Mg, Si, Ti, Hf, Mo, and C.
  • the sinterability is improved and silicon nitride is improved.
  • the coarsening of the crystal grains can be prevented, and a crystal structure in which the ⁇ -silicon nitride crystal grains are entangled in a complicated manner can be formed.
  • a solid solution or a crystalline compound can be formed in the grain boundary phase.
  • the presence or absence of a crystalline compound can be analyzed by XRD (X-ray diffraction method).
  • XRD X-ray diffraction method
  • the XRD analysis conditions are a Cu target (CuK ⁇ ), a tube voltage of 40 kV, a tube current of 40 mA, and a slit diameter of 0.2 mm.
  • the scanning range (2 ⁇ ) is 20 to 60 °. If a peak other than the peak based on silicon nitride appears in this range, it can be confirmed that a crystalline compound is present in the grain boundary phase.
  • the width of the grain boundary phase between two particles is 0.2 nm or more, and further 0.2 to 5 nm, a fine crystalline compound can be interposed at the interface between the two particles. Thereby, durability at the high temperature of a sintered compact can further be improved. Further, as a combination of sintering aids added in the production process, the following combinations are preferable.
  • MgO is 0.1 to 1.7% by mass
  • Al 2 O 3 is 0.1 to 4.3% by mass
  • SiC is 0.1 to 10% by mass
  • SiO 2 is 0%. 1 to 2% by mass is added.
  • four elements of Mg, Al, Si, and C are contained as additives.
  • MgO ⁇ Al 2 O 3 may be added 0.2-6% by weight as a spinel.
  • TiO 2 may be added to the first combination.
  • Y 2 O 3 is 0.2 to 3% by mass
  • MgO ⁇ Al 2 O 3 spinel is 0.5 to 5% by mass
  • AlN is 2 to 6% by mass
  • HfO 2 to 0.5 to 3% by mass
  • Mo 2 C to 0.1 to 3% by mass
  • the additive component elements are three types, Y, Al, and Hf.
  • the upper limit of the content of the sintering aid component is 15% by mass or less in total. None of the first to third combinations uses a combination in which Y 2 O 3 and Al 2 O 3 are added. The first combination does not use Y 2 O 3 . The second combination is added as MgO ⁇ Al 2 O 3 spinel. The third combination does not use Al 2 O 3 .
  • yttrium aluminum oxides such as YAG (Al 5 Y 3 O 12 ), YAM (Al 2 Y 4 O 9 ), and YAL (AlYO 3 ) are formed. It is easy to be done.
  • the first to third combinations are easy to form a crystalline compound. In addition, crystalline compounds other than YAG, YAM, and YAL can be formed. In other words, when a crystalline compound other than YAG, YAM, and YAL is contained, durability at a high temperature can be improved.
  • the additive component also has an excellent role as a sintering aid. Therefore, the ratio of ⁇ -type silicon nitride crystal particles having an aspect ratio of 2 or more can be increased to 60% or more.
  • the ratio of the aspect ratio of 2 or more is that the SEM observation of an arbitrary cross section of the silicon nitride sintered body is taken to take an enlarged photograph (3000 times or more), and the major axis and minor axis of the silicon nitride crystal particles appearing in the enlarged photograph are determined. Measure and determine the aspect ratio.
  • the area ratio (%) of silicon nitride crystal grains having an aspect ratio of 2 or more per unit area of 50 ⁇ m ⁇ 50 ⁇ m is obtained.
  • the number ratio of silicon nitride particles having a particle diameter of 2 ⁇ m or more to the entire silicon nitride particles is set to a high value of 35% or more. I can do it.
  • the upper limit of the number ratio is preferably 55% or less. If the particles are excessively large, it is difficult to control the width of the grain boundary phase.
  • the silicon nitride sintered body as described above not only the aforementioned Vickers hardness but also the fracture toughness value and the three-point bending strength can be improved.
  • the fracture toughness value is 6.0 MPa ⁇ m 1/2 or more, and the three-point bending strength can be 900 MPa or more.
  • the fracture toughness value is a value obtained by Niihara's formula based on the IF method of JIS-R-1607.
  • the three-point bending strength is a value based on JIS-R1601.
  • the silicon nitride sintered body as described above is suitable as a constituent material of the high temperature durability member. Since the silicon nitride sintered body according to the embodiment has a high Vickers hardness under a high temperature environment, the silicon nitride sintered body is suitable as a constituent material of a high temperature durability member whose use environment is 300 ° C. or higher. Examples of such fields of use include any one of bearing balls, rolling rolls, friction stir welding tools, hot tools, and heaters.
  • Figure 1 shows an example of a bearing ball.
  • reference numeral 1 is a bearing ball
  • 2 is a friction surface. Since the bearing ball 1 is a sphere, the entire sphere surface functions as the friction surface 2.
  • the constituent material of the bearing ball 1 is a silicon nitride sintered body. Since durability at high temperatures is improved, it can be applied to bearings used in high temperature environments. Further, even when the frictional heat becomes high with high-speed rotation, excellent durability can be obtained.
  • FIG. 2 shows an example of the rolling roll comprised with the silicon nitride sintered compact of this embodiment.
  • reference numeral 3 is a rolling roll
  • 2 is a friction surface (rolling surface).
  • the rolling roll has a cylindrical shape.
  • the cylindrical roll surface is the friction surface 2.
  • the rolling roll is applied to various usage environments such as room temperature processing and hot processing.
  • the friction surface 2 is comprised from a silicon nitride sintered compact. Since the durability of the silicon nitride sintered body at a high temperature is improved, it can be applied to a hot-rolling roll at 300 ° C. or higher.
  • FIG. 3 shows an example of a friction stir welding tool composed of the silicon nitride sintered body of the present embodiment.
  • reference numeral 4 is a friction stir welding tool
  • 2 is a friction surface.
  • the friction surface 2 of the friction stir welding tool 4 is composed of a silicon nitride sintered body.
  • FIG. 3 illustrates a cylindrical joining tool, it can also be applied to a joining tool such as a sphere or a convex shape.
  • the friction stir welding apparatus is preferably used with the rotational speed of the welding tool member set to 500 rpm or more and the indentation load set to 5 kN or more in order to shorten the joining time of the materials to be joined and increase the production efficiency. It is.
  • the friction surface may be in a high temperature environment where the temperature of the friction surface is 800 ° C. or higher. Even in that case, since the durability of the silicon nitride sintered body at a high temperature is improved, the durability as a bonding tool is improved. In addition to the above-mentioned fields of use, it is also suitable as a constituent material for high-temperature durable members whose operating environment is 300 ° C. or higher, such as hot tools and heater substrates.
  • the surface roughness Ra of the friction surface 2 is preferably 5 ⁇ m or less. By reducing the surface roughness Ra of the friction surface, it is possible to improve the wear resistance and sliding characteristics of the sliding member such as a bearing ball and a friction stir welding tool.
  • the silicon nitride sintered body according to the embodiment has the above-described configuration, its manufacturing method is not particularly limited, but the following method can be given as a method for obtaining it efficiently.
  • preparation of the raw material powder is important.
  • the silicon nitride powder one having an average particle size of 2 ⁇ m or less, an alpha conversion rate of 90% or more, and an impurity oxygen content of 2 wt% or less is prepared.
  • the sintering aid powder As a first method, it is preferable to make the sintering aid powder to be added finer with an average particle diameter of 1 ⁇ m or less, and further 0.5 ⁇ m or less.
  • the standard deviation of the average particle size of the sintering aid powder is preferably 0.2 ⁇ m or less.
  • a method such as miniaturization or sieving by a ball mill or a jet mill.
  • Such a sintering aid powder and silicon nitride powder are mixed to prepare a raw material powder.
  • the sintering aid becomes a grain boundary phase in the sintering process.
  • a thin grain boundary phase can be formed by using a small sintering aid powder having a uniform particle size.
  • the relationship of 0.8A ⁇ B is preferably satisfied.
  • a sintering aid powder having a particle size smaller than that of silicon nitride powder By mixing a sintering aid powder having a particle size smaller than that of silicon nitride powder, a thin grain boundary phase can be easily formed. Therefore, it is more preferable that 0.7A ⁇ B.
  • the lower limit of the ratio of the average particle diameter is not particularly limited, but is preferably in the range of 0.8A ⁇ B ⁇ 0.2A. If the average particle size B ⁇ m of the sintering aid powder is too small than the average particle size A ⁇ m of the silicon nitride powder, it becomes difficult to adjust.
  • a granulated powder is obtained by granulating a mixed powder obtained by adding an organic binder to the raw material powder prepared by the first method (a mixture of silicon nitride powder and sintering aid powder). It is to carry out the manufacturing process.
  • a mixed powder obtained by adding an organic binder to the raw material powder prepared by the first method (a mixture of silicon nitride powder and sintering aid powder). It is to carry out the manufacturing process.
  • the granulated powder in advance, it is possible to realize a state in which the sintering aid powder is uniformly present around the silicon nitride powder. Thereby, a predetermined thin grain boundary phase can be formed.
  • a step of filling the mold with granulated powder and molding it is performed.
  • the molding process it is preferable to use a mold having a target probe shape.
  • mold molding, CIP (cold isostatic pressing method), or the like may be used.
  • the molded body obtained in the molding process is degreased.
  • the degreasing step is preferably performed at a temperature of 400 to 800 ° C. in nitrogen.
  • a heat treatment is performed on the degreased body produced by the second method.
  • the particle surface can be activated.
  • the heat treatment temperature is preferably in the range of 300 to 900 ° C.
  • the heat treatment is preferably performed in vacuum, in an inert atmosphere, or in the air.
  • the heat treatment temperature exceeds 900 ° C., it becomes difficult to obtain a dense sintered body in the sintering step.
  • the heat treatment time is preferably in the range of 2 to 10 hours.
  • the heat-treated body obtained by the third method is sintered.
  • the sintering process is performed at a temperature of 1600 ° C. or higher.
  • the sintering step is preferably performed in an inert atmosphere or in a vacuum. Examples of the inert atmosphere include a nitrogen atmosphere and an argon atmosphere. Examples of the sintering step include atmospheric pressure sintering, pressure sintering, hot isostatic pressing (HIP), and discharge plasma sintering (SPS).
  • a plurality of types of sintering methods may be combined.
  • a portion corresponding to the friction surface is polished on the obtained sintered body.
  • the polishing process is preferably a polishing process using a diamond grindstone.
  • Example 2 As the silicon nitride powder, an ⁇ -type silicon nitride powder having an average particle diameter of 1 ⁇ m ( ⁇ conversion rate: 98%) was prepared. Next, samples 1 to 6 shown in Table 1 were prepared as sintering aid powders. While the sintering aid powder was pulverized by a ball mill, its average particle size and standard deviation were measured using a wet particle size distribution measuring machine.
  • a granulated powder was prepared by mixing a silicon nitride powder and 2% by mass of an organic binder with the sintering aid powders of Samples 1 to 6, and molding was performed.
  • the obtained molded body was subjected to a degreasing treatment, and the heat treatment shown in Table 2 was performed on the obtained degreased body.
  • the heat-treated body and the degreased body manufactured in the steps of Table 2 were subjected to normal pressure sintering at a temperature of 1800-1900 ° C. for 5-10 hours. Further, the sintered bodies of Examples 1 to 6 and Comparative Examples 1 and 2 were subjected to HIP treatment at a temperature of 1700 to 1900 ° C. By this sintering / HIP treatment step, a silicon nitride sintered body having a length of 50 mm, a width of 50 mm and a thickness of 6 mm was produced. The surface roughness Ra was adjusted to 1 ⁇ m. With respect to the obtained sintered body, three-point bending strength, fracture toughness value and Vickers hardness were measured.
  • the Vickers hardness Hv was measured with a test force of 9.807 N (Newton) based on JIS-R-1610. Further, the fracture toughness value is a value obtained by Niihara's formula in accordance with the IF method of JIS-R-1607. The three-point bending strength was measured in accordance with JIS-R-1601. All were measured at room temperature (25 ° C.). The measurement results are shown in Table 3 below.
  • the average particle diameter and the width of the grain boundary phase of the silicon nitride crystal particles of the silicon nitride sintered bodies according to the respective examples and comparative examples were measured by the following procedure. Moreover, the presence or absence of formation of a solid solution or a crystalline compound in the grain boundary phase was observed.
  • the width of the grain boundary phase was measured by STEM (scanning transmission electron microscope). Specifically, first, an arbitrary cross section of the silicon nitride sintered body is observed by STEM (enlarged photograph is taken). Next, in the obtained enlarged photograph, the intensity profile of the grain boundary part at the closest point between the two silicon nitride crystal grains was obtained, and the width of the grain boundary phase was measured. The presence or absence of a solid solution or a crystalline compound in the grain boundary phase was confirmed by XRD (X-ray diffraction method). The results are shown in Table 4 below.
  • the average particle size of the silicon nitride crystal particles of the sintered bodies according to the respective examples was in the range of 1.4 to 2.1 ⁇ m, and no significant difference was observed.
  • the width of the grain boundary phase was 70 to 100 nm in the comparative example, whereas the width of the grain boundary phase of the sintered body according to each example was in the range of 0.2 to 5 nm.
  • crystalline compounds other than YAG, YAM, and YAL were detected in the grain boundary phases of the sintered bodies according to the respective examples.
  • Vickers hardness under high temperature conditions was measured for the silicon nitride sintered bodies according to the examples and comparative examples. Vickers hardness Hv was measured by changing the measurement environment to 300 ° C, 800 ° C, 1000 ° C, and 1200 ° C. Measurement was carried out by holding at each temperature for 1 hour. The results are shown in Table 5 below.
  • the silicon nitride sintered body according to each example had a high Vickers hardness under a high temperature environment. This is because since a thin grain boundary phase is formed, the grain boundary phase hardly deteriorates in a high temperature environment. As described above, the silicon nitride sintered body according to each example exhibits excellent hardness even in a high temperature environment, and thus it has been found that the silicon nitride sintered body is suitable as a constituent material of a high temperature durability member having an operating environment of 300 ° C. or higher.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

 窒化珪素結晶粒子と粒界相とを有する窒化珪素焼結体において、上記窒化珪素結晶粒子は粒界相で覆われており、上記粒界相の幅が0.2nm以上であることを特徴とする窒化珪素焼結体である。また、粒界相の幅が0.2nm以上5nm以下であることが好ましい。また、粒界相は15質量%以下であることが好ましい。上記構成により、高温度環境下での粒界相の劣化を抑制でき、高温での耐久性が高い窒化珪素焼結体を提供できる。この窒化珪素焼結体は、使用環境が300 ℃以上である高温耐久性部材の構成材として好適である。

Description

窒化珪素焼結体およびそれを用いた高温耐久性部材
 後述する実施形態は、窒化珪素焼結体およびそれを用いた高温耐久性部材に関する。
 窒化珪素焼結体は、ベアリングボール、圧延ロール、摩擦攪拌接合用ツール、熱間工具、ヒータ用基板、半導体用基板、切削工具など様々な用途に用いられている。
 特許第5268750号公報(特許文献1)では、単位面積10μm×10μmあたりの長径3μm以上の窒化珪素結晶粒子の個数を制御した窒化珪素焼結体を開示している。特許文献1では、このような制御を実施することにより、ビッカース硬度や耐磨耗性を向上させている。
 また、特開2010-194591号公報(特許文献2)では、摩擦攪拌接合用ツールを構成する窒化珪素焼結体が開示されている。この特許文献2では、接合用ツールの耐久性を向上させるためにツール表面に被覆層を設けている。摩擦攪拌接合は接合ツール(接合工具)を高速回転させながら被接合部材に押し付け、摩擦熱を利用して被接合部材同士を接合する方法である。摩擦熱を利用するため、接合ツールは300℃以上の高温度になる。特許文献2では高温度下での耐久性を付与するために被覆層を設けている。
 窒化珪素焼結体は前述のように様々な用途に用いられている。例えば、ベアリングボールは回転速度の高速化に伴い摺動面が高温となる。同様に摩擦攪拌接合用ツールに関しても、摩擦熱で 摺動面が高温となる。また、圧延ロール、熱間工具や切削工具は、その使用環境が高温下になる場合がある。
特許第5268750号公報 特開2010-194591号公報
 従来の窒化珪素焼結体は、常温下での耐磨耗性は優れているものの、高温度環境下での耐久性は必ずしも満足するものではなかった。本発明は、このような課題に対応するために成されたものであり、高温度環境下であっても優れた耐久性を示す窒化珪素焼結体を提供することを目的とする。
 実施形態に係る窒化珪素焼結体は、窒化珪素結晶粒子と粒界相とを有する窒化珪素焼結体において、窒化珪素結晶粒子は粒界相で覆われており、粒界相の幅が0.2nm以上であることを特徴とするものである。粒界相の幅を制御することにより、高温度環境下での耐久性を向上させることができる。
 そのため、実施形態に係る窒化珪素焼結体を使用して構成された高温耐久性部材は、高温度環境下での耐久性を大幅に向上させることができる。
実施形態に係る窒化珪素焼結体を使用して構成されたベアリングボールの一例を示す斜視図である。 実施形態に係る窒化珪素焼結体を使用して構成された圧延ロールの一例を示す斜視図である。 実施形態に係る窒化珪素焼結体を使用して構成された摩擦攪拌接合用ツールの一例を示す斜視図である。
 実施形態に係る窒化珪素焼結体は、窒化珪素結晶粒子と粒界相とを有する窒化珪素焼結体において、窒化珪素結晶粒子は粒界相で覆われており、粒界相の幅が0.2nm以上であることを特徴とするものである。また、粒界相の幅が0.2nm以上5nm以下であることが好ましい。
 窒化珪素焼結体は、窒化珪素粉と焼結助剤粉とを混合して成形後、焼結して製造される。焼結工程を実施することにより、焼結助剤粉は粒界相となる。実施形態に係る窒化珪素焼結体は、粒界相の幅が0.2nm以上となっていることを特徴とする。粒界相の幅とは窒化珪素結晶粒子の2粒子界面に形成される粒界相の厚さのことである。窒化珪素結晶粒子の2粒子界面に所定厚さの粒界相が存在するということは、個々の窒化珪素結晶粒子の表面が粒界相で覆われた状態となっていることを示す。また、隣り合う窒化珪素結晶粒子の中で最も近い距離が0.2nm以上、さらには0.2~5nmの範囲であることが好ましい。
 なお、例えば研磨後の焼結体表面のように、窒化珪素焼結体の表面に存在する窒化珪素結晶粒子においては、粒界相で覆われていなくてもよい。言い換えれば、窒化珪素焼結体の任意の断面においては、全ての窒化珪素結晶粒子は粒界相で覆われていることを特徴とするものである。
 窒化珪素結晶粒子を粒界相で覆うことにより、窒化珪素焼結体の高温度環境下での耐久性が向上する。窒化珪素結晶粒子が粒界相で覆われていないということは、窒化珪素結晶粒子同士が直接接している状態、粒界相が欠落してポアとなっている状態を示す。実施形態のように、粒界相の幅を0.2nm以上とすることにより、粒界相を介して窒化珪素結晶粒子を強固に接合できる。粒界相の幅が0.2nm未満では強固な接合構造が得られない。
 一方、あまり粒界相の幅が厚いと、厚い粒界相が破壊起点となり、窒化珪素焼結体の強度が低下するおそれがある。そのため、粒界相の幅は0.2~5nm、さらには0.5~2nmの範囲であることが好ましい。窒化珪素結晶粒子の2粒子間を0.2~5nmと薄い粒界相で結合することにより、粒界相が破壊起点とならずに強度を向上させることができる。特に、高温でのビッカース硬度を高くすることができる。
 なお、粒界相の幅の測定は、走査透過型電子顕微鏡(STEM)を使用した方法により行うものとする。具体的には、窒化珪素焼結体の任意の断面をSTEM観察(拡大写真を撮影)する。次に拡大写真にて窒化珪素結晶粒子の2粒子間で最も接近している箇所の粒界部分のインテンシティプロファイルを求める。これにより粒界相の幅を測定することができる。
 実施形態に係る窒化珪素焼結体は、窒化珪素結晶粒子の2粒子間の粒界相の幅が0.2nm以上となっている。言い換えると、窒化珪素結晶粒子の2粒子間の最短距離が0.2nm以上になっていることを示している。また、粒界相の幅が0.2~5nmとなっているということは、窒化珪素結晶粒子の2粒子間の最短距離が0.2~5nmの範囲になっていることを示す。
 実施形態に係る窒化珪素焼結体は、室温(25℃)でのビッカース硬度Hvが1450以上であることが好ましい。また、300℃でのビッカース硬度Hvが1350以上であることが好ましい。また、1000℃でのビッカース硬度Hvが850以上であることが好ましい。実施形態に係る窒化珪素焼結体は、粒界相の幅を制御しているので使用環境が300℃以上の高温度条件下になったとしても高い硬度を維持することができる。
 また、ビッカース硬度の測定はJIS-R-1610に基づいて行うものとする。また、試験力は9.807Nで行うものとする。
 また、窒化珪素焼結体は添加成分としての粒界相を15質量%以下含有することが好ましい。添加成分とは、窒化珪素以外の成分を示す。窒化珪素焼結体では、窒化珪素以外の添加成分とは焼結助剤成分を示す。焼結助剤成分は粒界相を構成するものである。添加成分が15質量%を超えて多いと粒界相が多くなり過ぎる。粒界相が過多になると粒界相の幅を0.2~5nmの範囲に制御し難くなる。
 また、本実施形態の窒化珪素焼結体は、細長いβ-窒化珪素結晶粒子が複雑にからみあった構造をとっている。焼結助剤成分が科料になると窒化珪素結晶粒子が複雑にからみあった構造をとれない部分ができてしまうため望ましくない。
 また、添加成分は3質量%以上12.5質量%以下が好ましい。さらに添加成分は5質量%以上12.5質量%以下が好ましい。添加成分が3質量%未満では、粒界相が過少となり窒化珪素焼結体の密度が低下するおそれがある。添加成分量を3質量%以上に調整していれば、相対密度を95%以上に調整し易くなる。また、添加成分を5質量%以上にすることにより、相対密度を98%以上に制御し易くなる。
 また、添加成分としてはY、Al、Mg、Si、Ti、Hf、Mo、Cから選ばれる元素を3種以上具備することが好ましい。添加成分は、Y(イットリウム)、Al(アルミニウム)、Mg(マグネシウム)、Si(けい素)、Ti(チタン)、Hf(ハフニウム)、Mo(モリブデン)、C(炭素)を構成元素として含んでいれば、その化合物形態は限定されるものではない。例えば、酸化物(複合酸化物含む)、窒化物(複合窒化物含む)、酸窒化物(複合酸窒化物含む)、炭化物(複合炭化物含む)などが挙げられる。
 また、後述するように、焼結体の製造工程において焼結助剤として添加する場合は、酸化物(複合酸化物を含む)、窒化物(複合窒化物を含む)、炭化物(複合炭化物を含む)が好ましい。Y元素の場合、酸化イットリウム(Y)が好ましい。Al元素の場合、酸化アルミニウム(Al)、窒化アルミニウム(AlN)、MgO・Alスピネルが好ましい。Mg元素の場合、酸化マグネシウム(MgO)、MgO・Alスピネルが好ましい。Si元素の場合、酸化けい素(SiO)、炭化けい素(SiC)が好ましい。Ti元素の場合、酸化チタン(TiO)、窒化チタン(TiN)が好ましい。また、Hf元素の場合、酸化ハフニウム(HfO)が好ましい。Mo元素の場合、酸化モリブデン(MoO)炭化モリブデン(MoC)が好ましい。C元素に関しては、炭化けい素(SiC)、炭化チタン(TiC)、炭窒化チタン(TiCN)として添加することが好ましい。これら添加成分を、2種以上を組合せて添加することにより、Y、Al、Mg、Si、Ti、Hf、Mo、Cから選ばれる元素を3種以上具備した粒界相を構成することができる。また、添加成分はY、Al、Mg、Si、Ti、Hf、Mo、Cから選ばれる元素を4種以上具備することが好ましい。
 焼結助剤成分として、Y、Al、Mg、Si、Ti、Hf、Mo、Cから選ばれる元素を3種以上、さらには4種以上含有することにより、焼結性が向上し、窒化珪素結晶粒子の粗大化を防止し、 β-窒化珪素結晶粒子が複雑にからみあった結晶組織を形成することができる。
 また、これら焼結助剤の組合せによれば、粒界相に固溶体や結晶化合物を形成することができる。固溶体や結晶化合物を形成させることにより、高温度での焼結体の耐久性が向上する。また、結晶化合物の有無はXRD(X線回折法)にて分析できる。XRD分析したとき、窒化珪素に基づくピーク以外のピークが観察されれば結晶化合物が存在することを示す。なお、XRDの分析条件は、Cuターゲット(CuKα)を使用し、管電圧を40kV、管電流を40mA、スリット径を0.2mmとする。走査範囲(2θ)は20~60°にて実施する。この範囲で窒化珪素に基づくピーク以外のピークが出現すれば、粒界相に結晶化合物が存在することが確認できる。
 また、前述のように、2粒子間の粒界相の幅を0.2nm以上、さらには0.2~5nmと規定することにより、2粒子界面に微小な結晶化合物を介在させることができる。これにより、焼結体の高温度での耐久性をさらに向上させることができる。
 また、製造工程において添加する焼結助剤の組合せとしては、次に示す組合せが好ましい。
 まず、第一の組合せとしては、MgOを0.1~1.7質量%、Alを0.1~4.3質量%、SiCを0.1~10質量%、SiOを0.1~2質量%、添加するものである。これにより、Mg、Al、Si、Cの4種の元素を添加剤分として含有することになる。なお、MgOとAlを添加する場合、MgO・Alスピネルとして0.2~6質量%添加しても良い。
 また、第一の組合せに、TiOを0.1~2質量%追加してもよい。第一の組合せにTiOを添加することにより、Mg、Al、Si、C、Tiの5種の元素を添加剤分として含有することになる。
 また、第二の組合せとしては、Yを0.2~3質量%と、MgO・Alスピネルを0.5~5質量%と、AlNを2~6質量%と、HfOを0.5~3質量%と、MoCを0.1~3質量%とを添加するものである。第二の組合せは、添加成分として、Y、Mg、Al、Hf、Mo、Cの6種類の元素を添加するものである。
 また、第三の組合せとしては、Yを2~7質量%と、AlNを3~7質量%と、HfO2を0.5~4質量%とを添加するものである。これにより、添加成分元素をY、Al、Hfの3種とするものである。
 また、上記第一ないし第三の組合せにおいて、焼結助剤成分の含有量の上限は合計で15質量%以下とする。
 上記第一ないし第三の組合せは、いずれもYとAlとを添加する組合せを使用していないことである。第一の組合せはYを使用していない。また、第二の組合せは、MgO・Alスピネルとして添加している。また、第三の組合せはAlを使用していない。YとAlとの組合せは焼結すると、YAG(Al12)、YAM(Al)、YAL(AlYO)などのイットリウムアルミニウム酸化物が形成され易い。
 また、上記第一ないし第三の組合せは、結晶化合物を形成し易い。また、YAG、YAM、YAL以外の結晶化合物を形成することができる。言い換えると、YAG、YAM、YAL以外の結晶化合物を含有すると、高温度での耐久性を向上させることができる。
 また、上記添加成分は焼結助剤としての役目も優れている。そのため、 β型窒化珪素結晶粒子の、アスペクト比2以上の割合を60%以上と高くすることができる。なお、アスペクト比が2以上の割合は、窒化珪素焼結体の任意の断面をSEM観察して拡大写真(3000倍以上)を撮影し、拡大写真に写る窒化珪素結晶粒子の長径と短径を測定し、アスペクト比を求める。単位面積50μm×50μm当たりのアスペクト比2以上の窒化珪素結晶粒子の面積比(%)を求めるものとする。
 また、同様の断面において、長径と短径との平均を粒径と定義したとき、粒径が2μm以上の窒化珪素粒子が窒化珪素粒子全体に占める個数割合が35%以上と高い値にすることが出来る。なお、個数割合の上限は55%以下が好ましい。過度に大きな粒子ばかりであると粒界相の幅の制御が困難になる。
 以上のような窒化珪素焼結体では、前述のビッカース硬度のみならず、破壊靭性値および3点曲げ強度も向上させることができる。破壊靭性値は6.0MPa・m1/2以上であり、3点曲げ強度は900MPa以上とすることができる。なお、破壊靭性値はJIS-R-1607のIF法に基づき、新原の式により求めた値である。また、3点曲げ強度はJIS-R-1601に基づいた値である。
 以上のような窒化珪素焼結体は、高温耐久性部材の構成材として好適である。実施形態に係る窒化珪素焼結体は高温度環境下でのビッカース硬度が高いため、使用環境が300℃以上になる高温耐久性部材の構成材として好適である。このような利用分野として、ベアリングボール、圧延ロール、摩擦攪拌接合用ツール、熱間工具、ヒータのいずれか1種が挙げられる。
 図1にベアリングボールの一例を示した。図1中、符号1はベアリングボールであり、2は摩擦面である。ベアリングボール1は球体であるため、球体表面全体が摩擦面2として機能する。ベアリングボール1の構成材が窒化珪素焼結体となる。高温度での耐久性を向上させているので、高温度環境下で使用される軸受に適用できる。また、高速回転に伴い摩擦熱が高温になったとしても、優れた耐久性を得ることができる。
 また、図2は本実施形態の窒化珪素焼結体で構成した圧延ロールの一例を示す。図中、符号3は圧延ロールであり、2は摩擦面(転動面)である。圧延ロールは円柱形状である。円柱形状のロール表面が摩擦面2となる。圧延ロールは常温加工や熱間加工など様々な使用環境に適用される。実施形態に係る圧延ロール3は摩擦面2が窒化珪素焼結体から構成されるものである。窒化珪素焼結体の高温度での耐久性を向上させているので、300℃以上の熱間加工用圧延ロールに適用することができる。
 また、図3は、本実施形態の窒化珪素焼結体で構成した摩擦攪拌接合用ツールの一例を示す。図中、符号4は摩擦攪拌接合用ツールであり、2は摩擦面である。摩擦攪拌接合用ツール4の摩擦面2は窒化珪素焼結体から構成される。図3では円柱形状の接合ツールを例示しているが、球体、凸形状などの接合ツールにも適用できる。
 また、摩擦攪拌接合装置は、被接合材の接合時間を短縮し、かつ生産効率を上げるために接合ツール部材の回転速度を500rpm以上とし、押込荷重を5kN以上に設定して使用することが望まれる。また、摩擦熱により摩擦面の温度が800℃以上の高温度環境になる場合がある。その場合でも、窒化珪素焼結体の高温度での耐久性を向上させているので、接合ツールとしての耐久性が向上する。
 上記利用分野以外にも、熱間工具、ヒータ用基板など、使用環境が300℃以上の高温耐久性部材の構成材としても好適である。
 また、上記摩擦面2の表面粗さRaは5μm以下であることが好ましい。摩擦面の表面粗さRaを小さくすることにより、ベアリングボールや摩擦攪拌接合用ツールのように摺動させる部材の耐摩耗特性および摺動特性を向上させることができる。
 次に、上記窒化珪素焼結体の製造方法について説明する。実施形態に係る窒化珪素焼結体は上記構成を有する限り、その製造方法は特に限定されるものではないが、効率的に得るための方法として次の方法が挙げられる。
 窒化珪素焼結体の粒界相の幅を0.2nm以上、さらには0.2~5nmに制御するためには原料粉末の調製が重要である。
 まず、窒化珪素粉末としては、平均粒径が2μm以下であり、α化率が90%以上であり、不純物酸素含有量が2wt%以下のものを用意する。
 第一の方法としては、添加する焼結助剤粉末を、平均粒径が1μm以下、さらには0.5μm以下と微細にすることが好ましい。また、焼結助剤粉末の平均粒径の標準偏差を0.2μm以下とすることが好ましい。平均粒径や標準偏差の制御は、ボールミルやジェットミルによる微細化やふるい分けなどの方法を用いることが好ましい。このような焼結助剤粉末と窒化珪素粉末とを混合して原料粉末を調製する。焼結助剤は焼結工程にて粒界相になる。焼結助剤粉末が小さく、均一な粒径にしたものを使用することにより、薄い粒界相を形成することができる。
 また、窒化珪素粉末の平均粒径をAμmとし、焼結助剤粉末の平均粒径をBμmとしたとき、0.8A≧Bの関係を満たすことが好ましい。粒径が窒化珪素粉末よりも小さな焼結助剤粉末を混合することにより、薄い粒界相を形成し易くなる。そのため、0.7A≧Bであることがさらに好ましい。また、平均粒径の比の下限は特に限定されるものではないが、0.8A≧B≧0.2Aの範囲であることが好ましい。焼結助剤粉末の平均粒径Bμmが、窒化珪素粉末の平均粒径Aμmより小さすぎると、その調整が難しくなる。
 第二の方法としては、第一の方法で調製した原料粉末(窒化珪素粉末と焼結助剤粉末とを混合したもの)に有機バインダを添加した混合粉体を造粒して造粒粉を作製する工程を実施することである。予め造粒粉を形成することにより、窒化珪素粉末の周囲に焼結助剤粉末が均一に存在している状態を実現することができる。これにより、所定の薄い粒界相を形成することができる。
 次に、金型に造粒粉を充填し成型する工程を実施する。成型工程は、目的とするプローブ形状を有する金型を用いることが好ましい。また、成型工程に関しては、金型成型、CIP(冷間等方圧加圧法)などを用いても良い。
 次に、成型工程で得られた成形体を脱脂する。脱脂工程は、窒素中で温度400~800℃で実施することが好ましい。
 第三の方法としては、第二の方法で作製した脱脂体に熱処理を行う方法である。脱脂体に熱処理を加えることにより、粒子表面を活性化させることができる。この活性化効果により、焼結時に薄い粒界相を形成した上で、粒界相に固溶体や結晶化合物を形成することができる。熱処理温度は300~900℃の範囲であることが好ましい。また、熱処理は、真空中、不活性雰囲気中、大気中で実施することが好ましい。また、熱処理温度が900℃を超えると、焼結工程で緻密な焼結体を得難くなる。また、熱処理時間は、2~10時間の範囲であることが好ましい。熱処理時間が2時間未満では熱処理を行う効果が不十分である。また、10時間を越えて長いと窒化珪素結晶粒子が酸化されてしまい薄い粒界相が形成され難くなるおそれがある。
 次に、第三の方法で得られた熱処理体を焼結する。焼結工程は、温度1600℃以上で実施する。焼結工程は、不活性雰囲気中または真空中で実施することが好ましい。不活性雰囲気としては、窒素雰囲気やアルゴン雰囲気が挙げられる。また、焼結工程は、常圧焼結、加圧焼結、熱間等方圧加圧法(HIP)、放電プラズマ焼結(SPS)が挙げられる。また、複数種類の焼結方法を組合せてもよい。
 得られた焼結体に対し、摩擦面に該当する箇所を研磨加工するものとする。研磨加工により、摩擦面の表面粗さRaを5μm以下、さらには1μm以下に調整する。研磨加工はダイヤモンド砥石を用いた研磨加工であることが好ましい。
(実施例)
(実施例1~6および比較例1~2)
 窒化珪素粉末として平均粒径が1μmであるα型窒化珪素粉末(α化率98%)を用意した。次に、焼結助剤粉末として表1に示す試料1~6を用意した。焼結助剤粉末はボールミルにより粉砕する一方、その平均粒径および標準偏差は湿式粒度分布測定機を用いて測定した。
Figure JPOXMLDOC01-appb-T000001
 試料1~6の焼結助剤粉末に、窒化珪素粉末と有機バインダ2質量%とを混合して造粒粉を作製し、金型成形を実施した。得られた成形体に脱脂処理を行い得られた脱脂体に表2に示す熱処理を実施した。
Figure JPOXMLDOC01-appb-T000002
 表2の工程で作製した熱処理体および脱脂体に温度1800~1900℃で5~10時間の常圧焼結を実施した。さらに、実施例1~6および比較例1、2の焼結体について、温度1700~1900℃のHIP処理を実施した。この焼結・HIP処理工程により、縦50mm×横50mm×厚さ6mmの窒化珪素焼結体を作製した。
また、表面粗さRaは1μmに調整した。
 得られた焼結体に関して、3点曲げ強度、破壊靭性値およびビッカース硬度を測定した。ビッカース硬度HvはJIS-R-1610に基づき試験力9.807N(ニュートン)で測定した。また、破壊靭性値はJIS-R-1607のIF法に準拠し、新原の式により求めた値である。また、3点曲げ強度はJIS-R-1601に準拠して測定した。いずれも室温(25 ℃)で測定した。その測定結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000003
 次に、各実施例および比較例に係る窒化珪素焼結体の窒化珪素結晶粒子の平均粒径および粒界相の幅を下記の手順で測定した。また、粒界相に固溶体または結晶化合物の形成の有無を観察した。
 窒化珪素結晶粒子の平均粒径の測定に際しては、まず任意の断面においてSEM写真を撮る。次にSEM写真に写る窒化珪素結晶粒子の長径と短径を求める。(長径+短径)/2=粒径にて粒径を求める。窒化珪素結晶粒子100粒の平均値を平均粒径とした。また、粒界相の幅はSTEM(走査透過型電子顕微鏡)により測定した。具体的には、まず窒化珪素焼結体の任意の断面をSTEM観察(拡大写真を撮影)する。次に得られた拡大写真において窒化珪素結晶粒子の2粒子間で最も接近している箇所の粒界部分のインテンシティプロファイルを求めて粒界相の幅を測定した。また、粒界相における固溶体または結晶化合物の有無はXRD(X線回折法)により確認した。その結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示す結果から明らかなように、各実施例に係る焼結体の窒化珪素結晶粒子の平均粒径は1.4~2.1μmの範囲であり、大きな差異は見られなかった。それに対し、粒界相の幅は比較例では70~100nmであるのに対し、各実施例に係る焼結体の粒界相の幅は0.2~5nmの範囲内であった。また、各実施例に係る焼結体の粒界相では、YAG、YAM、YAL以外の結晶化合物が検出された。
 次に実施例および比較例に係る窒化珪素焼結体に関して、高温度条件下でのビッカース硬度を測定した。ビッカース硬度Hvの測定は、測定環境を300℃、800℃、1000℃、1200℃に変えて測定した。それぞれの温度に1時間保持して測定した。その結果を下記表5に示す。
Figure JPOXMLDOC01-appb-T000005
 上記表5に示す結果から明らかなように、各実施例に係る窒化珪素焼結体は高温度環境下でのビッカース硬度が高かった。これは薄い粒界相を形成しているため、高温環境下での粒界相の劣化が起き難いためである。
 このように各実施例に係る窒化珪素焼結体は高温度環境下でも優れた硬度を示すため、使用環境が300℃以上になる高温耐久性部材の構成材料として好適であることが判明した。
 以上、本発明のいくつかの実施形態を例示したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更などを行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することもできる。
1 …ベアリングボール
2 …摩擦面
3 …圧延ロール
4 …摩擦攪拌接合用ツール

Claims (10)

  1. 窒化珪素結晶粒子と粒界相とを有する窒化珪素焼結体において、上記窒化珪素結晶粒子は粒界相で覆われており、上記粒界相の幅が0.2nm以上であることを特徴とする窒化珪素焼結体。
  2. 前記粒界相の幅が0.2nm以上5nm以下であることを特徴とする請求項1記載の窒化珪素焼結体。
  3. 前記窒化珪素焼結体は添加成分としての粒界相を15質量%以下含有することを特徴とする請求項1ないし請求項2のいずれか1項に記載の窒化珪素焼結体。
  4. Y、Al、Mg、Si、Ti、Hf、Mo、Cから選択される元素を3種以上含有することを特徴とする請求項1ないし請求項3のいずれか1項に記載の窒化珪素焼結体。
  5. 室温でのビッカース硬度Hvが1450以上であることを特徴とする請求項1ないし請求項4のいずれか1項に記載の窒化珪素焼結体。
  6. 温度300℃でのビッカース硬度Hvが1350以上であることを特徴とする請求項1ないし請求項5のいずれか1項に記載の窒化珪素焼結体。
  7. 温度1000℃でのビッカース硬度Hvが850以上であることを請求項1ないし請求項6のいずれか1項に記載の窒化珪素焼結体。
  8. 請求項1ないし請求項7のいずれか1項に記載の窒化珪素焼結体で構成されたことを特徴とする高温耐久性部材。
  9. 使用環境が300℃以上になることを特徴とする請求項8記載の高温耐久性部材。
  10. 高温耐久性部材が、ベアリングボール、圧延ロール、摩擦攪拌接合用ツール、熱間工具、ヒータのいずれか1種であることを特徴とする請求項8ないし請求項9のいずれか1項に記載の高温耐久性部材。
PCT/JP2016/059948 2015-04-07 2016-03-28 窒化珪素焼結体およびそれを用いた高温耐久性部材 WO2016163263A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680019713.XA CN107531579B (zh) 2015-04-07 2016-03-28 氮化硅烧结体及使用其的高温耐久性构件
JP2017510938A JP6677714B2 (ja) 2015-04-07 2016-03-28 窒化珪素焼結体およびそれを用いた高温耐久性部材
US15/564,320 US10787393B2 (en) 2015-04-07 2016-03-28 Silicon nitride sintered body and high-temperature-resistant member using the same
EP16776431.5A EP3281927B1 (en) 2015-04-07 2016-03-28 Silicon nitride sintered body and high-temperature-resistant member using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-078571 2015-04-07
JP2015078571 2015-04-07
JP2015124901 2015-06-22
JP2015-124901 2015-06-22

Publications (1)

Publication Number Publication Date
WO2016163263A1 true WO2016163263A1 (ja) 2016-10-13

Family

ID=57071868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059948 WO2016163263A1 (ja) 2015-04-07 2016-03-28 窒化珪素焼結体およびそれを用いた高温耐久性部材

Country Status (5)

Country Link
US (1) US10787393B2 (ja)
EP (1) EP3281927B1 (ja)
JP (1) JP6677714B2 (ja)
CN (1) CN107531579B (ja)
WO (1) WO2016163263A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111153700A (zh) * 2019-12-31 2020-05-15 欧钛鑫光电科技(苏州)有限公司 一种氮化物靶材的制备方法
WO2023171510A1 (ja) * 2022-03-10 2023-09-14 デンカ株式会社 セラミック焼結体及びその製造方法、並びに焼結助剤粉末
WO2023171511A1 (ja) * 2022-03-10 2023-09-14 デンカ株式会社 セラミック焼結体及びその製造方法、並びに焼結助剤粉末
WO2024111483A1 (ja) * 2022-11-25 2024-05-30 デンカ株式会社 セラミック焼結体及びその製造方法、接合体、並びにパワーモジュール
JP7528209B2 (ja) 2020-05-26 2024-08-05 株式会社東芝 窒化珪素焼結体、それを用いた耐摩耗性部材、および窒化珪素焼結体の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121752A1 (ja) * 2018-12-11 2020-06-18 株式会社 東芝 摺動部材、およびそれを用いた軸受、モータ、並びに駆動装置
CN111606717A (zh) * 2020-06-08 2020-09-01 浙江锐克特种陶瓷有限公司 一种高强高硬氮化硅耐磨片的制备方法
EP4174425A1 (en) * 2020-06-30 2023-05-03 Tokuyama Corporation Method for continuously producing silicon nitride sintered compact
CN117083256A (zh) * 2022-03-16 2023-11-17 株式会社东芝 氮化硅烧结体及使用了其的耐磨性构件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180738A (ja) * 1993-12-24 1995-07-18 Kyocera Corp セラミック弾性部材
WO2011102298A1 (ja) * 2010-02-16 2011-08-25 株式会社東芝 耐摩耗性部材およびその製造方法
WO2013035302A1 (ja) * 2011-09-05 2013-03-14 株式会社 東芝 窒化珪素焼結体とその製造方法、およびそれを用いた耐摩耗性部材とベアリング

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3114302B2 (ja) * 1990-11-30 2000-12-04 トヨタ自動車株式会社 窒化珪素焼結体及びその製造方法
JP2002029851A (ja) * 2000-07-17 2002-01-29 Denki Kagaku Kogyo Kk 窒化珪素質組成物、それを用いた窒化珪素質焼結体の製造方法と窒化珪素質焼結体
JP4795588B2 (ja) * 2001-01-12 2011-10-19 株式会社東芝 窒化けい素製耐摩耗性部材
WO2009128386A1 (ja) * 2008-04-18 2009-10-22 株式会社東芝 耐摩耗性部材、耐摩耗性機器および耐摩耗性部材の製造方法
JP2010194591A (ja) 2009-02-26 2010-09-09 Kyocera Corp 摩擦攪拌接合用工具および摩擦攪拌接合装置
JP5268750B2 (ja) 2009-04-01 2013-08-21 株式会社東芝 耐衝撃部材およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180738A (ja) * 1993-12-24 1995-07-18 Kyocera Corp セラミック弾性部材
WO2011102298A1 (ja) * 2010-02-16 2011-08-25 株式会社東芝 耐摩耗性部材およびその製造方法
WO2013035302A1 (ja) * 2011-09-05 2013-03-14 株式会社 東芝 窒化珪素焼結体とその製造方法、およびそれを用いた耐摩耗性部材とベアリング

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CINIBULK, MICHAEL K. ET AL.: "Quantitative Comparison of TEM Techniques for Determining Amorphous Intergranular Film Thickness", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 76, no. 2, 1993, pages 426 - 432, XP055320285, ISSN: 0002-7820 *
KLEEBE, HANS-JOACHIM ET AL.: "Statistical Analysis of the Intergranular Film Thickness in Silicon Nitride Ceramics", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 76, no. 8, 1993, pages 1969 - 1977, XP055320288, ISSN: 0002-7820 *
See also references of EP3281927A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111153700A (zh) * 2019-12-31 2020-05-15 欧钛鑫光电科技(苏州)有限公司 一种氮化物靶材的制备方法
JP7528209B2 (ja) 2020-05-26 2024-08-05 株式会社東芝 窒化珪素焼結体、それを用いた耐摩耗性部材、および窒化珪素焼結体の製造方法
WO2023171510A1 (ja) * 2022-03-10 2023-09-14 デンカ株式会社 セラミック焼結体及びその製造方法、並びに焼結助剤粉末
WO2023171511A1 (ja) * 2022-03-10 2023-09-14 デンカ株式会社 セラミック焼結体及びその製造方法、並びに焼結助剤粉末
JP7401718B1 (ja) * 2022-03-10 2023-12-19 デンカ株式会社 窒化ケイ素焼結体及び焼結助剤粉末
JP7408884B1 (ja) 2022-03-10 2024-01-05 デンカ株式会社 窒化ケイ素焼結体及び焼結助剤粉末
WO2024111483A1 (ja) * 2022-11-25 2024-05-30 デンカ株式会社 セラミック焼結体及びその製造方法、接合体、並びにパワーモジュール
JP7576209B2 (ja) 2022-11-25 2024-10-30 デンカ株式会社 窒化ケイ素焼結体及びその製造方法、接合体、並びに、パワーモジュール

Also Published As

Publication number Publication date
US10787393B2 (en) 2020-09-29
EP3281927A1 (en) 2018-02-14
EP3281927A4 (en) 2018-12-05
CN107531579A (zh) 2018-01-02
EP3281927B1 (en) 2020-02-19
US20180134626A1 (en) 2018-05-17
CN107531579B (zh) 2020-10-23
JPWO2016163263A1 (ja) 2018-03-22
JP6677714B2 (ja) 2020-04-08

Similar Documents

Publication Publication Date Title
WO2016163263A1 (ja) 窒化珪素焼結体およびそれを用いた高温耐久性部材
JP5487099B2 (ja) 耐摩耗性部材、耐摩耗性機器および耐摩耗性部材の製造方法
JP6826169B2 (ja) 窒化珪素焼結体製摩擦攪拌接合ツール部材、摩擦攪拌接合装置、および、摩擦攪拌接合方法
JP7351492B2 (ja) 窒化珪素焼結体製摩擦攪拌接合ツール部材、摩擦攪拌接合装置、およびそれを用いた摩擦攪拌接合方法
JP7376050B2 (ja) 摩擦攪拌接合方法
JP6685688B2 (ja) 窒化珪素焼結体およびそれを用いた耐磨耗性部材
JP6491964B2 (ja) 窒化珪素焼結体およびそれを用いた耐摩耗性部材
JP5677638B1 (ja) 切削工具
JPH02145484A (ja) 窒化珪素焼結体
JP6321608B2 (ja) 窒化珪素質焼結体、その製造方法、及びベアリング用転動体
JP4894770B2 (ja) 炭化珪素/窒化硼素複合材料焼結体、その製造方法およびその焼結体を用いた部材
JP7353820B2 (ja) 窒化珪素焼結体およびそれを用いた耐摩耗性部材
JP2014231460A (ja) 窒化珪素質焼結体及びその製造方法、並びにベアリング用転動体
JP2005298239A (ja) 被覆Si3N4基焼結体工具
JP2006193353A (ja) アルミナ焼結体、切削インサートおよび切削工具
JP2005126304A (ja) 工具用部材及び工具
JP2008230922A (ja) 窒化珪素焼結体とそれを用いた摺動部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776431

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2017510938

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15564320

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016776431

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE