WO2016159649A1 - 제습장치 - Google Patents

제습장치 Download PDF

Info

Publication number
WO2016159649A1
WO2016159649A1 PCT/KR2016/003247 KR2016003247W WO2016159649A1 WO 2016159649 A1 WO2016159649 A1 WO 2016159649A1 KR 2016003247 W KR2016003247 W KR 2016003247W WO 2016159649 A1 WO2016159649 A1 WO 2016159649A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
heat conversion
unit
air
plane
Prior art date
Application number
PCT/KR2016/003247
Other languages
English (en)
French (fr)
Inventor
이종민
조용상
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US15/562,708 priority Critical patent/US10520208B2/en
Priority to CN201680020137.0A priority patent/CN107438743A/zh
Publication of WO2016159649A1 publication Critical patent/WO2016159649A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1405Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification in which the humidity of the air is exclusively affected by contact with the evaporator of a closed-circuit cooling system or heat pump circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0042Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater characterised by the application of thermo-electric units or the Peltier effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
    • F24F2003/1446Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only by condensing

Definitions

  • Embodiment of the present invention relates to a dehumidifying apparatus using a thermoelectric module.
  • Dehumidification is a principle which removes moisture in air using the condensation phenomenon which condenses moisture in air into water using a temperature difference, and the apparatus using this principle is a dehumidifier.
  • a dehumidifier that maintains a pleasant state by removing moisture in a humid room, in addition to a humidifier that maintains humidity in a dry room.
  • the cooling dehumidification method also called the compressor method
  • the heating dehumidification method also called desiccant method
  • the dehumidification effect is dependent on the capacity of the compressor.
  • the compressor In order to dehumidify the limit amount, the compressor (Compressor) must be operated excessively, there is a big noise problem.
  • An embodiment of the present invention is to provide a dehumidification apparatus that can discharge the lowered air temperature after dehumidification while high dehumidification efficiency.
  • the dehumidifier is a compression unit for compressing the refrigerant, a cooling unit for cooling the air through the refrigerant, and a drying unit for drying the air passing through the cooling unit
  • Dehumidification module comprising; And a first substrate, a second substrate disposed to face the first substrate, a thermoelectric element disposed between the first substrate and the second substrate, connected to the first substrate, and adjacent to a drying unit of the dehumidification module.
  • a thermoelectric module including a first heat conversion unit disposed and a second heat conversion unit connected to the second substrate and disposed adjacent to the cooling unit of the dehumidification module.
  • the embodiment of the present invention it is possible to obtain a dehumidifying device that is excellent in dehumidification performance but does not have a high temperature of air discharged after dehumidification.
  • FIG. 1 is a structural diagram for explaining the basic principle of the dehumidification module
  • Figure 2 is a conceptual diagram for explaining the structure of the dehumidifying apparatus according to an embodiment of the present invention to which the thermoelectric module is applied to FIG.
  • FIG. 3 is a cross-sectional view of a main part of a thermoelectric module according to an exemplary embodiment of the present invention applied to the dehumidifying apparatus according to FIG. 2, and
  • FIG. 4 illustrates a modular expansion of the structure of FIG. 2.
  • 5 to 8 are conceptual views for explaining the main portion of the thermoelectric conversion member applied to the thermoelectric module according to an embodiment of the present invention.
  • thermoelectric device 9 to 12 are schematic diagrams illustrating another embodiment of a thermoelectric device applied to a thermoelectric module according to an exemplary embodiment of the present invention.
  • FIG. 1 is a structural diagram for explaining the basic principle of the dehumidification module
  • Figure 2 is a conceptual diagram for explaining the structure of the dehumidifying apparatus according to an embodiment of the present invention to which the thermoelectric module is applied to FIG.
  • the dehumidification module 400 discharges the moisture S contained in the air moistened by using the compression unit 430 and the compressed refrigerant to condense the refrigerant to the external storage 440.
  • the cooling capacity of the dehumidifier is dependent on the capacity of the compressor included in the compression unit 430, there is a limit that can lower the temperature.
  • the temperature of the dehumidified air passes through the drying unit 420, the user's discomfort may be increased.
  • the amount of operation of the compressor must be increased, thereby generating noise.
  • the dehumidifying apparatus based on the dehumidification module 400 described above in Figure 1, on the first substrate 140, the first substrate 140 A second substrate 150 disposed to face each other, a thermoelectric element 120 and 130 disposed between the first substrate 140 and the second substrate 150, and the first substrate 140 and the dehumidification
  • the first heat conversion unit 200 is disposed adjacent to the drying unit 420 of the module 400, and is connected to the second substrate 150 and disposed adjacent to the cooling unit 410 of the dehumidification module 400.
  • It includes a thermoelectric module 100 including a second thermal conversion unit 300 to be.
  • the thermoelectric module 100 implements the thermal conversion effect by passing air introduced into the dehumidification module 400.
  • the thermoelectric module 100 has a structure in which thermoelectric semiconductor devices 120 and 130 are electrically connected to each other between a pair of substrates 140 and 150 facing each other.
  • the thermoelectric semiconductor device may include a P-type semiconductor device.
  • the N-type semiconductor elements are arranged in pairs, and the pair of substrates described above may be implemented as a heat absorbing part and a heat generating part by the Peltier effect when an electric current is applied.
  • the P-type semiconductor device may be mixed with the P-type thermoelectric device
  • the N-type semiconductor device may be mixed with the N-type thermoelectric device.
  • the first substrate 140 serves as the heat absorbing portion
  • the second substrate 150 serves as the heat generating portion
  • the first heat converting portion 200 serves as the heat absorbing (cooling) region.
  • the second heat conversion unit 200 will be described with an example serving as a heat generating region.
  • the second heat conversion unit 300 may primarily dry the wet air before entering the cooling unit 410 of the dehumidification module 400.
  • air condensed by passing through the cooling unit 410 is discharged through the drying unit 420, the secondary is dried to dehumidify. Thereafter, the air after passing through the drying unit 420 may be cooled while passing through the first heat conversion unit 200.
  • the dehumidification is performed at the same time the temperature of the exhaust air can be lowered, thereby improving the freshness of the user.
  • the dehumidifier may further include an air circulation module 450 disposed at a position adjacent to the first heat conversion unit 200 or the second heat conversion unit 300.
  • the air circulation module 450 may be, for example, a fan.
  • FIG. 3 is a cross-sectional view of a main part of a thermoelectric module according to an exemplary embodiment of the present invention applied to the dehumidifying apparatus according to FIG. 2, and
  • FIG. 4 illustrates a modular expansion of the structure of FIG. 2.
  • 5 to 8 illustrate the structure of the dehumidifying apparatus and the heat conversion unit according to the embodiment of the present invention.
  • thermoelectric module 100 applied to a dehumidifying apparatus may include a first semiconductor device 120 between a first substrate 140 and a second substrate 150 facing the first substrate 140. ) And the second semiconductor device 130 are implemented.
  • a first heat conversion unit 200 that performs a cooling function is disposed on the first substrate 140 to perform a cooling function
  • a second heat conversion unit that performs a heating function on the second substrate 150 ( 300) is installed to perform the drying function.
  • first heat conversion unit 200 and the second heat conversion unit 300 is in contact with the air having a constant pitch as shown in FIG. 5, it is possible to implement a cooling or heating effect by using the first substrate and the second substrate. It may include a heat conversion member.
  • thermoelectric module 100 the first heat conversion unit 200 and the second heat conversion unit 300 are implemented through the first substrate 140 and the second substrate 150 of the thermoelectric module 100.
  • the thermoelectric effect is used to thermally convert air introduced from the outside or air discharged to the outside.
  • the first heat conversion unit 200 may include a heat conversion member 220 disposed on the first substrate 140.
  • This structure is the same as the second heat conversion unit 300 to arrange the heat conversion member 320 on the second substrate 150, in the following the heat conversion member 220 of the first heat conversion unit 200
  • the structure provided will be described as an example.
  • the heat conversion part 200 may be arranged to be in contact with the first substrate 140.
  • the heat conversion part 200 passes through the cooling part 410 and the drying part 420 using the same.
  • the elevated air can be cooled.
  • the structure of FIG. 5 extends from the first region Tc and the first region Tc in contact with the first substrate 140 to face the drying unit 420.
  • the first heat conversion unit 200 may be deformed to have a structure in which it is arranged. Further, in the case of the second heat conversion part 300, the third area Th in contact with the second substrate 150 extends from the third area Th to face the cooling part 410. It may be modified to a structure in which the second heat conversion unit 300 is disposed.
  • the heat conversion members 220 and 320 may be formed in a structure disposed in separate accommodation modules 210 and 310.
  • the heat conversion parts 200 and 300 are arranged on a pair of the first substrate 140 and the second substrate 150.
  • the heat conversion members 220 and 320 are formed of the first substrate 140.
  • the switching member may be disposed in a structure disposed opposite to the second region and the fourth region, which are air outlet surfaces.
  • the structure of the heat conversion members 220 and 320 performing thermal conversion by contacting the first substrate 140 and the second substrate 150 is in contact with air, liquid, or the like.
  • air, liquid, or the like Although provided with a surface, it can be implemented in a structure having a flow path groove in a structure that can maximize the contact area.
  • FIG. 6 illustrates an embodiment of the structure of the heat conversion member 220 included in the heat conversion unit according to the embodiment of the present invention
  • FIG. 7 illustrates one flow path pattern 220A in the heat conversion member 220. This is an enlarged conceptual view of the formed structure.
  • the heat conversion member 220 is a flat plate-shaped substrate of the second plane 222 opposite to the first plane 221 and the first plane 221 to perform surface contact with air
  • At least one flow path pattern 220A forming an air flow path C 1, which is a movement path of constant air, may be formed in the structure.
  • the flow path pattern 220A has a structure that folds the substrate so that a curvature pattern having a constant pitch P 1 and P 2 and a height T 1 is formed, that is, a folding structure. It may be formed. That is, the heat conversion members 220 and 320 according to the exemplary embodiment of the present invention may have two surfaces in which air is in surface contact, and may have a structure in which a flow path pattern for maximizing contact surface area is formed.
  • the heat conversion member 220 in order to further increase the contact area of air, includes a resistance pattern 223 formed on the surface of the substrate, as shown in Figs. You may.
  • the resistance pattern 223 may be formed on each of the first curved surface B1 and the second curved surface B2 in consideration of the unit flow path pattern.
  • the resistance pattern may be implemented in a structure protruding in any one direction between a first plane and a second plane facing the first plane.
  • the heat conversion member 220 may further include a plurality of fluid flow grooves 224 penetrating the surface of the substrate, and thus, between the first and second planes of the heat conversion member 240. The air contact and movement can be made more freely.
  • the resistance pattern 224 is formed of a protruding structure inclined to have an inclination angle ⁇ in the direction in which air enters, so as to maximize friction with air so as to maximize the contact area.
  • the inclination angle ⁇ is more preferably such that the horizontal extension line of the resistance pattern surface and the extension line of the surface of the substrate form an acute angle, because the effect of resistance is reduced when the angle is perpendicular or obtuse.
  • the arrangement of the above-described flow groove 224 may be disposed at the connection portion between the resistance pattern and the substrate to increase the resistance of the fluid such as air and to efficiently move to the opposite side.
  • the flow grooves 224 are formed in the base surface of the front portion of the resistance pattern 223, so that a part of the air contacting the resistance pattern 223 passes through the front and rear surfaces of the substrate, The area can be further increased.
  • the flow path pattern is formed to have a constant period in a structure having a constant pitch.
  • the flow path pattern may be modified so that the pitch of the unit pattern is not uniform and the pattern period is also uniformly implemented.
  • the height T 1 of each unit pattern may also be unevenly deformed.
  • FIG. 5 illustrates a structure in which one heat conversion member included in the heat conversion module is included in the heat transfer apparatus according to the embodiment of the present invention, but in another embodiment, a plurality of heat conversion members are stacked in one heat transfer module. Can be implemented. Through this, it is possible to further maximize the contact surface area with the air, such a structure is implemented in a structure that can implement a large number of contact surface in a narrow area due to the special characteristics of the heat conversion member of the present invention formed of a folding structure, More heat conversion members can be arranged. Of course, in this case, a supporting substrate, such as a second intermediate member, may be further disposed between each of the thermal conversion members stacked. Furthermore, in another embodiment of the present invention, it is also possible to implement a structure having two or more thermoelectric modules.
  • the pitch of the thermoelectric conversion member of the thermoelectric module (second substrate) forming the heat generating portion and the pitch of the thermoelectric conversion member of the thermoelectric module (first substrate) forming the heat absorbing portion may be different from each other.
  • the pitch of the flow path pattern of the heat conversion member in the heat conversion module forming the heat generating unit may be formed more than the pitch of the flow path pattern of the heat conversion member in the heat conversion module forming the heat absorbing portion.
  • the pitch ratio of the pitch of the first heat conversion member of the first heat conversion unit and the flow path pattern of the first heat conversion member of the second heat conversion unit may be formed in a range of (0.5 to 2.0): 1.
  • the structure of the heat conversion member according to the embodiment of the present invention to form a flow path pattern can realize a much more contact area in the same volume than the heat conversion member of the plate-like structure or the existing heat sink fin structure, the heat conversion member of the plate structure
  • the air contact area can be increased by more than 50%, and the size of the module can be greatly reduced.
  • the heat conversion member may be applied to a variety of members, such as high heat transfer efficiency metal material, such as aluminum, synthetic resin.
  • thermoelectric module applied to the dehumidifying apparatus according to the embodiment of the present invention described above with reference to FIG. 1 will be described in more detail with reference to FIGS. 3 and 4.
  • thermoelectric module including a thermoelectric device includes a first substrate 140 and a second substrate 150 that face each other, and a first substrate 140 between the first and second substrates 140 and 150.
  • the semiconductor device 120 may be formed in a structure including at least one unit cell including the second semiconductor device 130 electrically connected to the semiconductor device 120.
  • the first substrate 140 and the second substrate 150 may use an insulating substrate, such as an alumina substrate.
  • a metal substrate may be used to realize endothermic, heat generating efficiency, and thinning. have.
  • the first substrate 140 and the second substrate 150 is formed of a metal substrate, as shown in FIG. 8, the electrode layers 160a and 160b formed on the first and second substrates 140 and 150, respectively.
  • the dielectric layer further includes the dielectric layers 170a and 170b.
  • the third substrate 210A and the fourth substrate 310B of the first module 200 and the second module 300 are integrally formed with the first substrate and the second substrate.
  • materials such as alumina, Cu, and Cu alloys can be applied.
  • the thickness that can be thinned can be formed in a range of 0.1 mm to 0.5 mm. If the thickness of the metal substrate is thinner than 0.1mm or more than 0.5mm, the heat dissipation characteristics are too high or the thermal conductivity is too high, which greatly reduces the reliability of the thermoelectric module.
  • a material having a high heat dissipation performance is used as a material having a thermal conductivity of 5 to 10 W / K in consideration of the thermal conductivity of the cooling thermoelectric module, and the thickness is 0.01 mm to 0.15. It can be formed in the range of mm.
  • the electrode layers 160a and 160b electrically connect the first semiconductor element and the second semiconductor element using electrode materials such as Cu, Ag, and Ni, and when the unit cells shown in FIG. As such, electrical connections are formed with adjacent unit cells.
  • the electrode layer may have a thickness ranging from 0.01 mm to 0.3 mm. If the thickness of the electrode layer is less than 0.01mm, the electrical conductivity is poor due to poor function as an electrode, and even if it exceeds 0.3mm, the conductivity becomes lower due to the increase in resistance.
  • the thermoelectric device constituting the unit cell may be a thermoelectric device including a unit device having a stacked structure according to an embodiment of the present invention.
  • one side of the thermoelectric device includes a P-type semiconductor as the first semiconductor device 120.
  • the second semiconductor device 130 may be formed of an N-type semiconductor.
  • the first semiconductor device and the second semiconductor device may be connected to the metal electrodes 160a and 160b, and a plurality of such structures may be formed in the semiconductor device.
  • the Peltier effect is realized by circuit lines 181 and 182 supplied with current through the electrodes.
  • the semiconductor element in the thermoelectric module may be a P-type semiconductor or an N-type semiconductor material.
  • the N-type semiconductor device is selenium (Se), nickel (Ni), aluminum (Al), copper (Cu), silver (Ag), lead (Pb), boron (B ), Gallium (Ga), tellurium (Te), bismuth (Bi), bismuth telluride-based (BiTe-based) including indium (In) and 0.001 ⁇ 1.0wt% of the total weight of the main raw material It can be formed using a mixture of Bi or Te corresponding to.
  • the main raw material may be a Bi-Se-Te material, and may be formed by adding Bi or Te to a weight corresponding to 0.001 to 1.0wt% of the total weight of Bi-Se-Te. That is, when 100 g of Bi-Se-Te is added, it is preferable to add Bi or Te to be mixed in a range of 0.001 g to 1.0 g.
  • the weight range of the material added to the above-described main raw material is in the range of 0.001wt% to 0.1wt%, the thermal conductivity is not lowered, the electrical conductivity is lowered can not be expected to improve the ZT value
  • the P-type semiconductor material is antimony (Sb), nickel (Ni), aluminum (Al), copper (Cu), silver (Ag), lead (Pb), boron (B), gallium (Ga), tellurium (A mixture of a main raw material consisting of Te), bismuth (Bi), bismuth telluride (BiTe) including indium (In), and Bi or Te corresponding to 0.001 to 1.0 wt% of the total weight of the main raw material It is preferable to form using.
  • the main raw material may be a Bi-Sb-Te material, and may be formed by adding Bi or Te to a weight corresponding to 0.001 to 1.0wt% of the total weight of Bi-Sb-Te.
  • Bi or Te further mixed may be added in the range of 0.001g ⁇ 1g.
  • the weight range of the material added to the above main raw material has a significance in that the thermal conductivity does not decrease and the electrical conductivity decreases outside the range of 0.001 wt% to 0.1 wt%, so that the ZT value cannot be improved.
  • the shape and size of the first semiconductor element and the second semiconductor element which form a unit cell and face each other are the same, but in this case, the electrical conductivity of the P-type semiconductor element and that of the N-type semiconductor element are different from each other, thereby improving cooling efficiency. In consideration of the fact that it acts as a deterrent factor, it is also possible to improve the cooling performance by forming one volume different from the volume of the other semiconductor element facing each other.
  • differently forming the volume of the semiconductor elements of the unit cells that are arranged to face each other may form a large overall shape or widen the diameter of one of the cross-sections of a semiconductor device having the same height, or of the same shape. It is possible to implement the semiconductor device by a method of varying the height or the diameter of the cross section. In particular, the diameter of the N-type semiconductor device is formed larger than the P-type semiconductor device to increase the volume to improve the thermoelectric efficiency.
  • FIG. 9 illustrates a modified embodiment of changing the shape of the thermoelectric device described above with reference to FIG. 3.
  • thermoelectric element 120 may have a first element portion 122 having a first cross-sectional area and a position facing the first element portion 122.
  • the second element portion 126 having a second cross-sectional area and the first element portion 122 and the connection portion 124 having a third cross-sectional area connecting the second element portion 126 to be implemented Can be.
  • the cross-sectional area in any area in the horizontal direction of the connecting portion 124 may be provided with a structure that is smaller than the first cross-sectional area and the second cross-sectional area.
  • thermoelectric element having the same cross-sectional structure as a cube structure When the same material is used and the same amount of material as the thermoelectric element having the same cross-sectional structure as a cube structure is applied, the area of the first element portion and the second element portion can be increased, and the length of the connecting portion can be realized on the road. As a result, an advantage of increasing the temperature difference ⁇ T between the first device portion and the second device portion may be realized. Increasing the temperature difference increases the amount of free electrons moving between the hot side and the cold side, thereby increasing the amount of electricity generated, and in the case of heating or cooling, the efficiency is increased.
  • thermoelectric element 120 may realize a wide horizontal cross-sectional area of the first element portion and the second element portion, which are implemented in a flat structure or other three-dimensional structure, on the upper and lower portions of the connecting portion 124, Extend the length so that the cross-sectional area of the connection can be reduced.
  • the width B of the cross section having the longest width among the horizontal cross sections of the connecting portion and the width A of the larger cross section of the horizontal cross-sectional areas of the first and second device portions A The ratio of C) can be implemented in a range that satisfies the range of 1: (1.5 ⁇ 4). If it is out of this range, the heat conduction is conducted from the heat generating side to the cooling side, but rather lowers the power generation efficiency, or lowers the heat generation or cooling efficiency.
  • thermoelectric element 120 the thickness (a1, a3) in the longitudinal direction of the first element portion and the second element is smaller than the longitudinal thickness (s2) of the connection portion. It may be configured to be implemented.
  • first cross-sectional area of the first device portion 122 in the horizontal direction and the second cross-sectional area of the second device portion 126 in the horizontal direction may be different from each other. This is to easily control the desired temperature difference by adjusting the thermoelectric efficiency.
  • first device portion, the second device portion and the connection portion may be configured in a structure that is integrally implemented with each other, in which case each configuration may be implemented with the same material.
  • FIG. 10 illustrates an example in which the structure of the thermoelectric device according to the exemplary embodiment of the present invention described above with reference to FIGS. 3 and 9 is implemented in other methods and configurations.
  • the structure of the semiconductor device described above may be implemented as a stacked structure instead of a bulk structure to further improve thinning and cooling efficiency.
  • the structures of the first semiconductor device 120 and the second semiconductor device 130 in FIG. 3 or 9 are formed as a unit member in which a plurality of structures in which semiconductor materials are applied to a sheet-shaped substrate are stacked. By cutting this, it is possible to prevent the loss of material and to improve the electrical conductivity.
  • FIG. 10 is a conceptual view illustrating a process of manufacturing the unit member having the above-described laminated structure.
  • a material including a semiconductor material material is manufactured in the form of a paste, and a unit layer 110 is formed by applying a paste onto a base material 111 such as a sheet or a film to form a semiconductor layer 112.
  • the unit member 110 forms a stacked structure by stacking a plurality of unit members 100a, 100b, and 100c, and then cuts the stacked structure to form a unit thermoelectric device 120.
  • the unit thermoelectric device 120 may be formed as a structure in which a plurality of unit members 110 in which the semiconductor layer 112 is stacked on the substrate 111 is stacked.
  • the process of applying the semiconductor paste on the substrate 111 may be implemented using various methods.
  • tape casting that is, a very fine semiconductor material powder may be used in an aqueous or non-aqueous solvent (A slurry is prepared by mixing a solvent, a binder, a plasticizer, a dispersant, a defoamer, or a surfactant, and then a moving blade or moving carrier substrate.
  • a slurry is prepared by mixing a solvent, a binder, a plasticizer, a dispersant, a defoamer, or a surfactant, and then a moving blade or moving carrier substrate.
  • the thickness of the substrate may be a material such as a film, sheet, etc. in the range of 10um ⁇ 100um
  • the applied semiconductor material can be applied to the P-type material and N-type material for manufacturing the above-described bulk device as it is Of course.
  • the process of stacking the unit members 110 in a multilayer manner may be formed in a stacked structure by compressing at a temperature of 50 ° C. to 250 ° C.
  • the number of stacked units of the unit members 110 is 2. It can be made in the range of ⁇ 50.
  • a cutting process may be performed in a desired shape and size, and a sintering process may be added.
  • a unit thermoelectric device formed by stacking a plurality of unit members 110 manufactured according to the above-described process may ensure uniformity of thickness and shape size. That is, the conventional bulk thermoelectric element cuts the sintered bulk structure after ingot grinding and miniaturization of the ball-mill process, and thus many materials are lost in the cutting process, as well as uniformity.
  • the sheet-shaped unit members are laminated in multiple layers, and then the sheet laminate As it cuts, there is almost no material loss, the material has a uniform thickness, it can secure the uniformity of the material, and the thickness of the entire unit thermoelectric element can be reduced to less than 1.5mm, and in various shapes Application is possible.
  • the finally implemented structure may be implemented by cutting to the shape of FIG. 10 (d), as shown in FIG. 3 or the structure of the thermoelectric device according to the embodiment of the present invention described above in FIG.
  • thermoelectric device in the manufacturing process of the unit thermoelectric device according to an embodiment of the present invention, further comprising the step of forming a conductive layer on the surface of each unit member 110 during the process of forming a laminated structure of the unit member 110 It can be done.
  • a conductive layer like the structure of FIG. 11 may be formed between the unit members of the stacked structure of FIG. 10 (c).
  • the conductive layer may be formed on an opposite surface of the substrate surface on which the semiconductor layer is formed, and in this case, the conductive layer may be configured as a patterned layer to form a region where the surface of the unit member is exposed. This can improve the electrical conductivity as well as improve the bonding strength between each unit member as compared to the front coating, it is possible to implement the advantage of lowering the thermal conductivity.
  • FIG. 11 illustrates various modifications of the conductive layer C according to the embodiment of the present invention, and the pattern of exposing the surface of the unit member is illustrated in FIGS. 11A and 11B.
  • the mesh-type structure including the closed opening patterns c 1 and c 2 or the open opening patterns c 3 and c 4 as shown in FIGS. 11 c and 11 d. It can be designed by various modifications such as a line type including.
  • the conductive layer has the advantage of increasing the adhesive strength between the unit members in the unit thermoelectric element formed of a laminated structure of the unit member, as well as lowering the thermal conductivity between the unit members, improve the electrical conductivity, Cooling capacity (Qc) and ⁇ T (°C) is improved compared to the bulk thermoelectric element, in particular the power factor (Power factor) is 1.5 times, that is, the electrical conductivity is increased 1.5 times.
  • the increase in the electrical conductivity is directly connected to the improvement of the thermoelectric efficiency, thereby improving the cooling efficiency.
  • the conductive layer may be formed of a metal material, and all of the metal-based electrode materials of Cu, Ag, and Ni may be applied.
  • thermoelectric module 10 is applied to the thermoelectric module illustrated in FIGS. 3 and 4, that is, between the first and second substrates 140 and 150, the embodiment of the present invention.
  • the thermoelectric module is disposed and the thermoelectric module is implemented as a unit cell having an electrode layer and a dielectric layer, the entire thickness Th may be formed in a range of 1. mm to 1.5 mm. It is possible to realize remarkable thinning in comparison with the use.
  • thermoelectric elements 120 and 130 described above with reference to FIG. 6 are horizontally disposed in the upper direction X and the lower direction Y, as shown in FIG. 12A. Arranged so as to be cut, as shown in (c), may implement a thermoelectric device according to an embodiment of the present invention.
  • thermoelectric module may be formed in a structure in which the surfaces of the first substrate and the second substrate, the semiconductor layer, and the substrate are adjacent to each other.
  • a structure in which side surfaces of the unit thermoelectric element are disposed adjacent to the first and second substrates is also possible.
  • the distal end portion of the conductive layer is exposed to the side portion rather than the horizontally arranged structure, thereby lowering the thermal conductivity efficiency in the vertical direction and improving the electrical conductivity, thereby further increasing the cooling efficiency.
  • FIG. 9 may be implemented by cutting the shape as shown in FIG. 12C.
  • thermoelectric device applied to the thermoelectric module of the present invention which can be implemented in various embodiments, the shape and size of the first semiconductor device and the second semiconductor device opposing to each other may be the same, but in this case, P-type
  • P-type In consideration of the fact that the electrical conductivity of the semiconductor device and the electrical conductivity of the N-type semiconductor device are different from each other, it acts as a factor that hinders the cooling efficiency, so that the volume of one of the semiconductor devices is different from that of the other semiconductor devices facing each other. It is also possible to improve the cooling performance.
  • thermoelectric elements having various structures and thermoelectric modules including the same according to an embodiment of the present invention described above may be applied to a dehumidifying apparatus as described above to maximize efficiency of dehumidification.
  • unit member 111 base material
  • thermoelectric element 112: semiconductor layer 120: thermoelectric element
  • first element portion 124 connecting portion
  • first element portion 134 connecting portion
  • dehumidification module 410 cooling unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

본 발명의 실시예에 따른 제습장치는 냉매를 압축하는 압축부, 상기 냉매를 통해 공기를 냉각하는 냉각부, 그리고 상기 냉각부를 통과한 공기를 건조시키는 건조부를 포함하는 제습모듈; 그리고 제1 기판, 상기 제1 기판에 대향하여 배치되는 제2 기판, 상기 제1 기판과 상기 제2 기판 사이에 배치되는 열전소자, 상기 제1 기판에 연결되며 상기 제습모듈의 건조부에 인접하여 배치되는 제1 열변환부, 그리고 상기 제2 기판에 연결되며 상기 제습모듈의 냉각부에 인접하여 배치되는 제2 열변환부를 포함하는 열전모듈을 포함한다.

Description

제습장치
본 발명의 실시예는 열전모듈을 이용한 제습장치에 대한 것이다.
제습이란, 공기 중의 수분을 온도차를 이용하여 물로 응축시키는 결로 현상을 이용하여 공기 중의 수분을 제거하는 원리이며, 이러한 원리를 이용하는 장치가 제습기이다. 최근 가정이나 사무실 등의 실내에서, 건조한 실내의 습기를 유지하는 가습기와 더불어, 습한 실내의 습기를 제거하여 쾌적한 상태를 유지하는 제습기에 대한 요구가 증가하고 있다.
현재까지, 제습의 방법으로 열을 빼앗아 감습하는 냉각 감습 방식(압축기 방식이라고도 함)과, 열을 이용하여 감습하는 가열 감습 방식(데시칸트 방식이라고도 함)이 주로 사용되고 있다.
특히, 냉각 감습 방식의 경우, 1차적으로 냉매를 이용하여 다습한 공기의 수분을 응축하여 배출한 이후, 공기를 다시 건조하는 방식을 구현하는바, 제습효과가 압축기의 용량에 의존하게 되어 그 한계가 있으며, 한계량의 제습을 위해서 콤프레셔(Compressor)를 과하게 작동하여야 하므로, 소음이 큰 문제가 있다.
본 발명의 실시예는 제습 효율이 높으면서도 제습 후 공기의 온도를 낮추어 배출할 수 있는 제습장치를 제공하는 것이다.
상술한 과제를 해결하기 위한 수단으로서, 본 발명의 실시예에 따른 제습장치는 냉매를 압축하는 압축부, 상기 냉매를 통해 공기를 냉각하는 냉각부, 그리고 상기 냉각부를 통과한 공기를 건조시키는 건조부를 포함하는 제습모듈; 그리고 제1 기판, 상기 제1 기판에 대향하여 배치되는 제2 기판, 상기 제1 기판과 상기 제2 기판 사이에 배치되는 열전소자, 상기 제1 기판에 연결되며 상기 제습모듈의 건조부에 인접하여 배치되는 제1 열변환부, 그리고 상기 제2 기판에 연결되며 상기 제습모듈의 냉각부에 인접하여 배치되는 제2 열변환부를 포함하는 열전모듈을 포함한다.
본 발명의 실시예에 따르면, 제습 성능이 우수하면서도, 제습 후 배출되는 공기의 온도가 높지 않은 제습 장치를 얻을 수 있다.
도 1은 제습모듈의 기본 원리를 설명하기 위한 구조도이며, 도 2는 도 1에 열전모듈을 적용한 본 발명의 실시예에 따른 제습장치의 구조를 설명하기 위한 개념도이다.
도 3은 도 2에 따른 제습장치에 적용되는 본 발명의 실시예에 따른 열전모듈의 요부단면도이며, 도 4는 도 2의 구조를 모듈화하여 확장한 것을 예시한 것이다.
도 5 내지 도 8은 본 발명의 실시예에 따른 열전모듈에 적용되는 열전환부재의 요부를 설명하기 위한 개념도이다.
도 9 내지 도 12는 본 발명의 실시예에 따른 열전모듈에 적용되는 열전소자의 다른 실시예의 구현 모식도이다.
이하에서는 첨부한 도면을 참조하여 본 발명에 따른 구성 및 작용을 구체적으로 설명한다. 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성요소는 동일한 참조부여를 부여하고, 이에 대한 중복설명은 생략하기로 한다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
도 1은 제습모듈의 기본 원리를 설명하기 위한 구조도이며, 도 2는 도 1에 열전모듈을 적용한 본 발명의 실시예에 따른 제습장치의 구조를 설명하기 위한 개념도이다.
도 1 및 도 2를 참조하면, 제습모듈(400)은, 냉매를 응축하는 압축부(430)과 압축된 냉매를 이용하여 습윤한 공기에 포함된 수분(S)을 외부 저장소(440)로 배출하는 냉각부(410), 그리고 냉각부(410)을 경유한 공기를 재차 건조하는 건조부(420)를 포함한다. 그러나, 이러한 제습장치의 냉각용량은 압축부(430)에 포함되는 콤프레셔의 용량에 의존하게 되는바, 온도를 낮출 수 있는 한계점이 존재하게 된다. 그리고, 제습된 공기가 건조부(420)를 거치면 온도가 높아지므로, 사용자의 불쾌감을 높일 수 있게 된다. 나아가 강한 제습을 위해서는 콤프레셔의 작동량을 증가시켜야 하므로, 소음이 발생하게 된다.
이에, 도 2에 도시된 것과 같이, 본 발명의 실시예에 따른 제습장치는, 도 1에서 상술한 제습모듈(400)을 기준으로, 제1 기판(140), 상기 제1 기판(140)에 대향하여 배치되는 제2 기판(150), 상기 제1 기판(140)과 상기 제2 기판(150) 사이에 배치되는 열전소자(120, 130), 상기 제1 기판(140)에 연결되며 상기 제습모듈(400)의 건조부(420)에 인접하여 배치되는 제1 열변환부(200), 그리고 상기 제2 기판(150)에 연결되며 상기 제습모듈(400)의 냉각부(410)에 인접하여 배치되는 제2 열변환부(300)를 포함하는 열전모듈(100)을 포함한다. 본 발명의 실시예에 따르면, 열전모듈(100)은 제습모듈(400)에 인입하는 공기를 경유시켜 열변환효과를 구현한다.
상기 열전모듈(100)은 상호 대향하는 한 쌍의 기판(140, 150) 사이에 서로 전기적으로 연결되는 열전반도체소자(120, 130)가 배치되는 구조로, 상기 열전 반도체소자는 P형 반도체소자와 N형 반도체소자가 쌍을 이루어 배치되며, 전류의 인가 시 펠티어 효과에 의해 상술한 한 쌍의 기판이 흡열부와 발열부로 구현될 수 있다. 본 명세서에서, P형 반도체소자는 P형 열전소자와 혼용될 수 있고, N형 반도체소자는 N형 열전소자와 혼용될 수 있다. 본 발명의 실시예에서는 도 2의 구조에서 제1기판(140)이 흡열부로 작용하고, 제2 기판(150)이 발열부로 작용하며, 제1 열변환부(200)는 흡열(냉각)영역으로 작용하고, 제2 열변환부(200)는 발열영역으로 작용하는 것을 예로 들어 설명한다.
이에 따라, 상기 제2열변환부(300)는 제습모듈(400)의 냉각부(410)로 들어가기 전의 습윤한 공기를 1차적으로 건조시킬 수 있다. 그리고, 냉각부(410)을 통과하여 응축된 수분이 배출된 공기는, 상기 건조부(420)를 통과하며 2차적으로 건조되어 제습이 이루어지게 된다. 이후, 건조부(420)을 통과한 후의 공기는 상기 제1열변환부(200)을 거치며 냉각될 수 있다. 이에 따라, 본 발명의 실시예에 따르면, 제습이 이루어짐과 동시에 배출 공기의 온도를 낮출 수 있으므로, 사용자의 상쾌감을 높일 수 있다. 나아가, 공기의 순환효과를 강화하기 위해, 상기 제습장치는, 상기 제1 열변환부(200) 또는 제2 열변환부(300)에 인접하는 위치에 배치되는 공기순환모듈(450)을 더 포함할 수 있으며, 공기순환모듈(450)은, 예를 들어 팬일 수 있다.
도 3은 도 2에 따른 제습장치에 적용되는 본 발명의 실시예에 따른 열전모듈의 요부단면도이며, 도 4는 도 2의 구조를 모듈화하여 확장한 것을 예시한 것이다. 또한, 도 5 내지 도 8는 본 발명의 실시예의 제습장치와 열변환부의 구조를 예시한 것이다.
도 2 내지 도 4를 참조하면, 본 발명의 실시예에 따른 제습장치에 적용되는 열전모듈(100)은 제1기판(140)과 대향하는 제2기판(150) 사이에 제1반도체소자(120) 및 제2반도체소자(130)이 배치되는 구조로 구현된다. 특히, 제1기판(140)상에는 냉각기능을 수행하는 제1열변환부(200)이 배치되어 냉각기능을 수행할 수 있게 하며, 제2기판(150) 상에는 발열기능을 수행하는 제2열변환부(300)이 설치되어 건조기능을 수행할 수 있도록 한다.
특히, 상기 제1열변환부(200) 및 상기 제2열변환부(300)는 도 5와 같이 일정한 피치를 가지고 공기와 접촉하며, 제1기판과 제2기판을 이용하여 냉각 또는 발열 효과를 구현할 수 있는 열전환부재를 포함할 수 있다.
도 2 및 도 5를 참조하면, 상기 제1열변환부(200) 및 상기 제2열변환부(300)는 상기 열전모듈(100)의 제1기판(140)과 제2기판(150)을 통해 구현되는 열전효과를 이용하여 외부로부터 유입되는 공기 또는 외부로 배출되는 공기를 열전환한다.
이를 위해서, 상기 제1열변환부(200)는 제1기판(140) 상에 배치되는 열전환부재(220)를 포함할 수 있다. 이러한 구조는 상기 제2열변환부(300)가 제2기판(150) 상에 열전환부재(320)를 배치하는 것과 동일한바, 이하에서는 제1열변환부(200)의 열전환부재(220)가 구비되는 구조를 예로 하여 설명하기로 한다. 상기 열변환부(200)은 도 5에 도시된 것과 같이, 제1기판(140)과 접촉하는 구조로 배치될 수 있으며, 이를 이용하여 상기 냉각부(410) 및 건조부(420)을 거치며 온도가 상승한 공기는 냉각될 수 있다. 설계에 따라서, 도 5의 구조는 도 2와 같이, 제1기판(140)과 접촉하는 제1영역(Tc)과 상기 제1영역(Tc)에서 연장하여 상기 건조부(420)과 대향하는 위치에 상기 제1열변환부(200)을 배치하는 구조로 변형설계할 수 있다. 나아가, 상기 제2열변환부(300)의 경우도, 제2기판(150)과 접촉하는 제3영역(Th)과 상기 제3영역(Th)에서 연장하여 상기 냉각부(410)에 대향하도록 상기 제2열변환부(300)을 배치하는 구조로 변형할 수 있다.
도 5 및 도 6을 참조하면, 상기 열전환부재(220, 320)는 별도의 수용모듈(210, 310)의 내에 배치되는 구조로 형성될 수 있다.
상기 열변환부(200, 300)는 한 쌍의 제1기판(140) 및 제2기판(150) 상에 배치되는 구성으로, 도시된 구조에서는 열전환부재(220, 320)가 제1기판(140) 및 제2기판(150)의 표면과 직접 접촉하는 구조를 예시하였으나, 도 2에 도시된 것과 같이, 기판에 접촉하는 제1영역(Tc) 또는 제3영역(Th)과 이들로부터 연장하여 열전환부재가 공기 유출면인 제2영역 및 제4영역에 대향 배치되는 구조로 배치될 수 있음은 상술한 바와 같다.
본 발명의 실시예에 따른 열전환장치는 상기 제1기판(140) 및 제2기판(150)에 접촉하여 열변환을 수행하는 열전환부재(220, 320)의 구조가 공기, 액체 등과 접촉하는 면을 구비하되, 접촉면적을 극대화할 수 있는 구조로 유로 홈을 구비하는 구조로 구현할 수 있다.
도 6은 본 발명의 실시예에 따른 열변환부 내에 포함되는 열전환부재(220)의 구조의 일실시예를 도시한 것이며, 도 7는 상기 열전환부재(220)에서 하나의 유로패턴(220A)이 형성된 구조의 확대개념도이다.
도시된 것과 같이, 상기 열전환부재(220)는 공기와 면접촉을 수행할 수 있도록 제1평면(221)과 상기 제1평면(221)의 반대 면인 제2평면(222)의 평판형상의 기재에 일정한 공기의 이동로인 공기 유로(C 1)를 형성하는 적어도 하나의 유로패턴(220A)이 구현되는 구조로 형성될 수 있다.
상기 유로패턴(220A)은 도 6에 도시된 것과 같이, 일정한 피치(P 1, P 2)와 높이(T 1)를 가지는 곡률 패턴이 형성되도록 기재를 폴딩(folding)하는 구조, 즉 접는 구조로 형성할 수도 있다. 즉, 본 발명의 실시예에 따른 열전환부재(220, 320)는 공기가 면 접촉하는 2면을 구비하고, 접촉하는 표면적을 극대화하기 위한 유로패턴을 형성되는 구조로 구현될 수 있다.
도 6에 도시된 구조에서는, 공기가 유입되는 유입부의 유로(C 1)방향에서 유입되는 경우, 상술한 제1평면(221)과 상기 제1평면(221)의 반대 면인 제2평면(222)에는 공기가 고르게 접촉하며 이동하여, 유로의 말단(C 2)방향으로 진행될 수 있도록 하는바, 단순한 평판형상과의 접촉 면보다 동일 공간에서 훨씬 많은 공기와의 접촉을 유도할 수 있게 되는바, 흡열이나 발열의 효과가 더욱 증진되게 된다.
특히, 공기의 접촉면적을 더욱 증대하기 위해서, 본 발명의 실시예에 따른 열전환부재(220)는 도 6 및 도 7에 도시된 것과 같이, 기재의 표면에 형성되는 저항패턴(223)을 포함할 수도 있다. 상기 저항패턴(223)은 단위 유로패턴을 고려할 때, 제1곡면(B1) 및 제2곡면(B2)에 각각 형성될 수 있다. 상기 저항패턴은 제1평면과 상기 제1평면에 대향하는 제2평면 중 어느 하나의 방향으로 돌출되는 구조로 구현될 수 있다.
나아가, 상기 열전환부재(220)에는 상기 기재의 표면을 관통하는 다수의 유체 유동 홈(224)을 더 포함할 수 있으며, 이를 통해 열전환부재(240)의 제1평면과 제2평면 사이에 공기 접촉과 이동을 더욱 자유롭게 구현할 수 있도록 할 수 있다.
특히, 도 7의 부분 확대도와 같이, 상기 저항패턴(224)은 공기가 진입하는 방향으로 경사각(θ)을 가지도록 기울어진 돌출구조물로 형성되어 공기와의 마찰을 극대화하는 할 수 있도록 하여 접촉면적이나 접촉효율을 더욱 높일 수 있도록 한다. 상기 경사각(θ)은 상기 저항패턴 표면의 수평연장선과 상기 기재의 표면의 연장선이 예각을 이루도록 함이 더욱 바람직하며, 이는 직각이나 둔각일 경우 저항의 효과가 절감되기 때문이다.
아울러, 상술한 유동홈(224)의 배치를 저항패턴과 상기 기재의 연결부에 배치되도록 하여 공기 등의 유체의 저항을 높게 함과 동시에 반대 면으로 이동을 효율화할 수 있도록 할 수 있다. 구체적으로, 상기 저항패턴(223)의 앞 부분의 기재 면에 유동 홈(224)을 형성하여, 상기 저항패턴(223)과 접촉하는 공기의 일부를 기재의 전면과 후면을 통과하여 접촉의 빈도나 면적을 더욱 높일 수 있도록 할 수 있다.
도 7에서 도시된 것은 유로패턴이 일정한 피치를 가지는 구조로 일정한 주기를 가지도록 형성한 것이지만, 이와는 달리 단위패턴의 피치를 균일하게 하지 않고, 패턴의 주기 역시 불균일하게 구현하도록 변형할 수 있으며, 나아가 각 단위패턴의 높이(T 1) 역시 불균일하게 변형할 수 있음은 물론이다.
도 5에서 본 발명의 실시예에 따른 열전달장치에서 열변환모듈 내에 포함되는 열전환부재가 1 개가 포함되는 구조를 설명하였으나, 다른 실시예로서는 하나의 열전달모듈 내에 다수의 열전환부재가 적층되는 구조로 구현될 수 있다. 이를 통해 공기 등과의 접촉표면적을 더욱 극대화할 수 있으며, 이러한 구조는 폴딩 구조로 형성되는 본 발명의 열전환부재의 특수성 상 좁은 면적에 많은 접촉 면을 구현할 수 있는 구조로 구현되는바, 동일 체적에 더욱 많은 수의 열전환부재를 배치할 수 있다. 물론, 이 경우 각각 적층되는 열전환부재 사이에는 제2중간부재 등의 지지기판이 더 배치될 수도 있다. 나아가 본 발명의 또 다른 실시예에서는 2개 이상의 열전모듈을 구비하는 구조로 구현하는 것도 가능하다.
또한, 발열부를 형성하는 열전모듈(제2기판)의 열전환부재의 피치와 흡열부를 형성하는 열전모듈(제1기판)의 열전환부재의 피치를 서로 상이하게 형성하는 것도 가능하다. 이 경우 특히, 발열부를 형성하는 열변환모듈 내의 열전환부재의 유로패턴의 피치가 흡열부를 형성하는 열변환모듈 내의 열전환부재의 유로패턴의 피치 이상으로 형성될 수 있다. 이 경우 상기 제1열변환부의 제1열전환부재의 피치와 상기 제2열변환부의 제1열전환부재의 유로패턴의 피치비율은, (0.5~2.0):1의 범위에서 형성될 수 있다.
유로패턴을 형성하는 본 발명의 실시예에 따른 열전환부재의 구조는 평판형 구조의 열전환부재나 기존이 방열핀 구조보다 동일한 체적 내에 훨씬 많은 접촉면적을 구현할 수 있는바, 평판구조의 열전환부재 대비 50% 이상의 공기 접촉면적의 증대를 가져올 수 있으며, 이에 따라 모듈의 크기도 대폭 절감할 수 있게 된다. 아울러, 이러한 열전환부재는 알루미늄과 같은 열전달효율이 높은 금속재질, 합성수지 등 다양한 부재를 적용할 수 있다.
이하에서는, 도 1에서 상술한 본 발명의 실시예에 따른 제습장치에 적용되는 열전모듈의 구조를 도 3 및 도 4를 참조하여 좀 더 구체적으로 설명하기로 한다.
본 발명의 실시예에 따른 열전소자를 포함하는 열전모듈은 상호 대향 하는 제1기판(140) 및 제2기판(150)과 상기 제1기판(140) 및 제2기판(150) 사이에 제1반도체소자(120)와 전기적으로 연결되는 제2반도체소자(130)를 포함하는 단위 셀을 적어도 1 이상 포함하는 구조로 형성될 수 있다. 상기 제1기판(140) 및 상기 제2기판(150)은 절연기판, 이를테면 알루미나 기판을 사용할 수 있으며, 또는 다른 실시형태의 경우 금속기판을 사용하여 흡열 및 발열효율 및 박형화를 구현할 수 있도록 할 수 있다. 물론, 제1기판(140) 및 제2기판(150) 금속기판으로 형성하는 경우에는 도 8에 도시된 것과 같이 제1기판 및 제2기판(140, 150)에 형성되는 전극층(160a, 160b)과의 사이에 유전체층(170a, 170b)을 더 포함하여 형성됨이 바람직하다. 이는 도 1에서 상술한 구조에서 제1모듈(200)과 제2모듈(300)의 제3기판(210A) 및 제4기판(310B)와 상기 제1기판 및 제2기판과 일체형 구조로 구현되는 경우, 알루미나, Cu, Cu 합금 등의 소재를 적용할 수 있다.
금속기판의 경우, Cu 또는 Cu 합금을 적용할 수 있으며, 박형화가 가능한 두께는 0.1mm~0.5mm 범위로 형성이 가능하다. 금속기판의 두께가 0.1mm 보다 얇은 경우나 0.5mm를 초과하는 두께에서는 방열 특성이 지나치게 높거나 열전도율이 너무 높아 열전모듈의 신뢰성이 크게 저하되게 된다. 또한, 상기 유전체층(170a, 170b)의 경우 고방열 성능을 가지는 유전소재로서 냉각용 열전모듈의 열전도도를 고려하면 5~10W/K의 열전도도를 가지는 물질을 사용하며, 두께는 0.01mm~0.15mm의 범위에서 형성될 수 있다. 이 경우, 두께가 0.01mm 미만에서는 절연효율(혹은 내전압 특성)이 크게 저하되며, 0.15mm를 초과하는 경우에는 열전도도가 낮아져 방열효율이 떨어지게 된다. 상기 전극층(160a, 160b)은 Cu, Ag, Ni 등의 전극재료를 이용하여 제1반도체 소자 및 제2반도체 소자를 전기적으로 연결하며, 도시된 단위 셀이 다수 연결되는 경우, 도 3에 도시된 것과 같이 인접하는 단위 셀과 전기적으로 연결을 형성하게 된다. 상기 전극층의 두께는 0.01mm~0.3mm의 범위에서 형성될 수 있다. 전극 층의 두께가 0.01mm 미만에서는 전극으로서 기능이 떨어져 전기 전도율이 불량하게 되며, 0.3mm를 초과하는 경우에도 저항의 증가로 전도효율이 낮아지게 된다.
특히, 이 경우 단위 셀을 이루는 열전소자는 본 발명의 실시형태에 따른 적층형 구조의 단위소자를 포함하는 열전소자를 적용할 수 있으며, 이 경우 한쪽은 제1반도체소자(120)로서 P형 반도체 와 제2반도체소자(130)로서 N형 반도체로 구성될 수 있으며, 상기 제1반도체소자 및 상기 제2반도체소자는 금속 전극 (160a, 160b)과 연결되며, 이러한 구조가 다수 형성되며 상기 반도체 소자에 전극을 매개로 전류가 공급되는 회로선(181, 182)에 의해 펠티어 효과를 구현하게 된다.
열전모듈 내의 반도체소자는 P 형 반도체 또는 N 형 반도체 재료를 적용할 수 있다. 이러한 P 형 반도체 또는 N 형 반도체 재료는 상기 N형 반도체소자는, 셀레늄(Se), 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga), 텔루륨(Te), 비스무트(Bi), 인듐(In)을 포함한 비스무트텔룰라이드계(BiTe계)로 이루어지는 주원료물질과, 상기 주원료물질의 전체 중량의 0.001~1.0wt%에 해당하는 Bi 또는 Te이 혼합된 혼합물을 이용하여 형성할 수 있다. 이를테면, 상기 주원료물질은 Bi-Se-Te 물질로 하고, 여기에 Bi 또는 Te를 Bi-Se-Te 전체 중량의 0.001~1.0wt%에 해당하는 중량을 더 추가하여 형성할 수 있다. 즉, Bi-Se-Te의 중량이 100g이 투입되는 경우, 추가로 혼합되는 Bi 또는 Te는 0.001g~1.0g의 범위에서 투입하는 것이 바람직하다. 상술한 바와 같이, 상술한 주원료물질에 추가되는 물질의 중량범위는 0.001wt%~0.1wt% 범위 외에서는 열전도도가 낮아지지 않고 전기전도도는 하락하여 ZT값의 향상을 기대할 수 없다는 점에서 의의를 가진다.
상기 P형 반도체 재료는, 안티몬(Sb), 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga), 텔루륨(Te), 비스무트(Bi), 인듐(In)을 포함한 비스무트텔룰라이드계(BiTe계)로 이루어지는 주원료물질과, 상기 주원료물질의 전체 중량의 0.001~1.0wt%에 해당하는 Bi 또는 Te이 혼합된 혼합물을 이용하여 형성함이 바람직하다. 이를 테면, 상기 주원료물질은 Bi-Sb-Te 물질로 하고, 여기에 Bi 또는 Te를 Bi-Sb-Te 전체 중량의 0.001~1.0wt%에 해당하는 중량을 더 추가하여 형성할 수 있다. 즉, Bi-Sb-Te의 중량이 100g이 투입되는 경우, 추가로 혼합되는 Bi 또는 Te는 0.001g~1g의 범위에서 투입될 수 있다. 상술한 주원료물질에 추가되는 물질의 중량범위는 0.001wt%~0.1wt% 범위 외에서는 열전도도가 낮아지지 않고 전기전도도는 하락하여 ZT값의 향상을 기대할 수 없다는 점에서 의의를 가진다.
단위 셀을 이루며 상호 대향 하는 제1반도체소자 및 제2반도체소자의 형상 및 크기는 동일하게 이루어지나, 이 경우 P 형 반도체소자의 전기전도도와 N 형 반도체 소자의 전기전도도 특성이 서로 달라 냉각효율을 저해하는 요소로 작용하게 되는 점을 고려하여, 어느 한쪽의 체적을 상호 대향 하는 다른 반도체소자의 체적과는 상이하게 형성하여 냉각성능을 개선할 수 있도록 하는 것도 가능하다.
즉, 상호 대향 하여 배치되는 단위 셀의 반도체 소자의 체적을 상이하게 형성하는 것은, 크게 전체적인 형상을 다르게 형성하거나, 동일한 높이를 가지는 반도체소자에서 어느 한쪽의 단면의 직경을 넓게 형성하거나, 동일한 형상의 반도체 소자에서 높이나 단면의 직경을 다르게 하는 방법으로 구현하는 것이 가능하다. 특히 N형 반도체소자의 직경을 P형 반도체소자보다 더 크게 형성하여 체적을 증가시켜 열전효율을 개선할 수 있도록 한다.
도 9는 도 3에서 상술한 열전소자의 형상을 변경한 변형 실시예를 도시한 것이다.
도 3 및 도 9를 참조하면, 본 발명의 다른 변형 실시예에 따른 열전소자(120)는, 제1단면적을 가지는 제1소자부(122), 상기 제1소자부(122)와 대향하는 위치에 제2단면적을 가지는 제2소자부(126) 및 상기 제1소자부(122)와 상기 제2소자부(126)를 연결하는 제3단면적을 가지는 연결부(124)를 포함하는 구조로 구현될 수 있다. 특히 이 경우, 상기 연결부(124)의 수평방향의 임의의 영역에서의 단면적이 상기 제1단면적 및 상기 제2단면적보다 작게 구현되는 구조로 마련될 수 있다.
이러한 구조는 동일한 재료를 가지고 정육면체 구조와 같은 단일 단면적을 가지는 구조의 열전소자와 동량의 재료를 적용하는 경우, 제1소자부와 제2소자부의 면적을 넓히고, 연결부의 길이를 길에 구현할 수 있게 됨으로써, 제1소자부와 제2소자부 사이의 온도차(△T)를 크게 할 수 있는 장점이 구현될 수 있게 된다. 이러한 온도차를 증가시키면, 발열측(Hot side)와 냉각측(Cold side) 사이에 이동하는 자유전자의 양이 많아져 전기의 발전량이 증가되며, 발열이나 냉각의 경우 그 효율이 높아지게 된다.
따라서, 본 실시예에 따른 열전소자(120)은 연결부(124)의 상부 및 하부에 평판형 구조나 다른 입체 구조로 구현되는 제1소자부 및 제2소자부의 수평 단면적을 넓게 구현하고, 연결부의 길이를 연장하여 연결부의 단면적을 좁힐 수 있도록 한다. 특히, 본 발명의 실시예에서는, 상기 연결부의 수평 단면 중 가장 긴 폭을 가지는 단면의 폭(B)과, 상기 제1소자부 및 상기 제2소자부의 수평단면적 중 더 큰 단면의 폭(A or C)의 비율이 1:(1.5~4)의 범위를 충족하는 범위에서 구현될 수 있도록 한다. 이 범위를 벗어나는 경우에는, 열전도가 발열측에서 냉각측으로 전도되어 오히려 발전효율을 떨어뜨리거나, 발열이나 냉각효율을 떨어뜨리게 된다.
이러한 구조의 실시예의 다른 측면에서는, 상기 열전소자(120)는, 상기 제1소자부 및 상기 제2소자의 길이방향의 두께(a1, a3)는, 상기 연결부의 길이방향 두께(s2)보다 작게 구현되도록 형성될 수 있다.
나아가, 본 실시예에서는, 제1소자부(122)의 수평방향의 단면적인 상기 제1단면적과 제2소자부(126)의 수평방향의 단면적인 상기 제2단면적이 서로 다르게 구현할 수 있다. 이는 열전효율을 조절하여 원하는 온도차를 쉽게 제어하기 위함이다. 나아가, 상기 제1소자부, 상기 제2소자부 및 상기 연결부는 상호 일체로 구현되는 구조로 구성될 수 있으며, 이 경우 각각의 구성은 상호 동일한 재료로 구현될 수 있다.
도 10은 도 3 및 도 9에서 상술한 본 발명의 실시예에 따른 열전소자의 구조를 다른 공법과 구성으로 구현한 예를 도시한 것이다.
도 10을 참조하면, 본 발명의 또 다른 실시예에서는 상술한 반도체소자의 구조를 벌크형 구조가 아닌 적층형 구조의 구조물로 구현하여 박형화 및 냉각효율을 더욱 향상시킬 수 있도록 할 수 있다. 구체적으로는, 도 3이나 도 9에서의 제1반도체소자(120) 및 제2반도체소자(130)의 구조를 시트 형상의 기재에 반도체물질이 도포된 구조물이 다수 적층된 단위부재로 형성한 후 이를 절단하여 재료의 손실을 막고 전기전도특성을 향상시킬 수 있도록 할 수 있다.
이에 대해서 도10을 참조하면, 도 10은 상술한 적층 구조의 단위부재를 제조하는 공정 개념도를 도시한 것이다. 도 10에 따르면, 반도체 소재 물질을 포함하는 재료를 페이스트 형태로 제작하고, 시트, 필름 등의 기재(111) 상에 페이스트를 도포하여 반도체층(112)을 형성하여 하나의 단위부재(110)를 형성한다. 상기 단위부재(110)은 도 2에 도시된 것과 같이 다수의 단위부재(100a, 100b, 100c)를 적층하여 적층구조물을 형성하고, 이후 적층구조물을 절단하여 단위열전소자(120)를 형성한다. 즉, 본 발명에 따른 단위열전소자(120)은 기재(111) 상에 반도체 층(112)가 적층된 단위부재(110)이 다수가 적층된 구조물로 형성될 수 있다.
상술한 공정에서 기재(111) 상에 반도체 페이스트를 도포하는 공정은 다양한 방법을 이용하여 구현될 수 있으며, 일예로는 테이프캐스팅(Tape casting), 즉 매우 미세한 반도체 소재 분말을 수계 또는 비수계 용매(solvent)와 결합제(binder), 가소제(plasticizer), 분산제(dispersant), 소포제(defoamer), 계면활성제 중 선택되는 어느 하나를 혼합하여 슬러리(slurry)를 제조한 후 움직이는 칼날(blade)또는 움직이는 운반 기재위에 일정한 두께로 목적하는 바에 따라서 성형하는 공정으로 구현될 수 있다. 이 경우 상기 기재의 두께는 10um~100um의 범위의 필름, 시트 등의 자재를 사용할 수 있으며, 도포되는 반도체소재는 상술한 벌크형 소자를 재조하는 P 형 재료 및 N 형 재료를 그대로 적용할 수 있음은 물론이다.
상기 단위부재(110)을 다층으로 어라인하여 적층하는 공정은 50℃~250℃의 온도로 압착하여 적층구조로 형성할 수 있으며, 본 발명의 실시예에서는 이러한 단위부재(110)의 적층 수는 2~50개의 범위에서 이루어질 수 있다. 이후, 원하는 형태와 사이즈로 커팅공정이 이루어질 수 있으며, 소결공정이 추가될 수 있다.
상술한 공정에 따라 제조되는 단위부재(110)이 다수 적층되어 형성되는 단위열전소자는 두께 및 형상 사이즈의 균일성을 확보할 수 있다. 즉, 기존의 벌크(Bulk) 형상의 열전소자는 잉곳분쇄, 미세화 볼-밀(ball-mill) 공정 후, 소결한 벌크구조를 커팅하게 되는바, 커팅공정에서 소실되는 재료가 많음은 물론, 균일한 크기로 절단하기도 어려우며, 두께가 3mm~5mm 정도로 두꺼워 박형화가 어려운 문제가 있었으나, 본 발명의 실시형태에 따른 적층형 구조의 단위열전소자는, 시트형상의 단위부재를 다층 적층한 후, 시트 적층물을 절단하게 되는바, 재료 손실이 거의 없으며, 소재가 균일한 두께를 가지는바 소재의 균일성을 확보할 수 있으며, 전체 단위열전소자의 두께도 1.5mm 이하로 박형화가 가능하게 되며, 다양한 형상으로 적용이 가능하게 된다. 최종적으로 구현되는 구조는 도 3이 구조 또는 도 9에서 상술한 본 발명의 실시예에 따른 열전소자의 구조와 같이, 도 10의 (d)의 형상으로 절단하여 구현할 수 있게 된다.
특히, 본 발명의 실시형태에 따른 단위열전소자의 제조공정에서, 단위부재(110)의 적층구조를 형성하는 공정 중에 각 단위부재(110)의 표면에 전도성층을 형성하는 공정을 더 포함하여 구현될 수 있도록 할 수 있다.
즉, 도 10의 (c)의 적층구조물의 단위부재의 사이 사이에 도 11의 구조와 같은 전도성층을 형성할 수 있다. 상기 전도성층은 반도체층이 형성되는 기재면의 반대면에 형성될 수 있으며, 이 경우 단위부재의 표면이 노출되는 영역이 형성되도록 패턴화된 층으로 구성할 수 있다. 이는 전면 도포되는 경우에 비하여 전기전도도를 높일 수 있음과 동시에 각 단위부재 간의 접합력을 향상시킬 수 있게 되며, 열전도도를 낮추는 장점을 구현할 수 있게 된다.
즉, 도 11에 도시된 것은 본 발명의 실시형태에 따른 전도성층(C)의 다양한 변형예를 도시한 것으로, 단위부재의 표면이 노출되는 패턴이라 함은 도 11의 (a),(b)에 도시된 것과 같이, 폐쇄형 개구패턴(c1, c2)을 포함하는 메쉬타입 구조 또는 도 11의 (c), (d)에 도시된 것과 같이, 개방형 개구패턴(c3, c4)을 포함하는 라인타입 등으로 다양하게 변형하여 설계될 수 있다. 이상의 전도성층은 단위부재의 적층구조로 형성되는 단위열전소자의 내부에서 각 단위부재간의 접착력을 높이는 것은 물론, 단위부재간 열전도도를 낮추며, 전기전도도는 향상시킬 수 있게 하는 장점이 구현되며, 종래 벌크형 열전소자 대비 냉각용량(Qc) 및 ΔT(℃) 가 개선되며, 특히 파워 팩터(Power factor)가 1.5배, 즉 전기전도도가 1.5배 상승하게 된다. 전기전도도의 상승은 열전효율의 향상과 직결되는바, 냉각효율을 증진하게 된다. 상기 전도성층은 금속물질로 형성할 수 있으며, Cu, Ag, Ni 등의 재질의 금속계열의 전극물질은 모두 적용이 가능하다.
도 10에서 상술한 적층형 구조의 단위열전소자를 도 3 및 도 4에 도시된 열전모듈에 적용하는 경우, 즉 제1기판(140)과 제2기판(150)의 사이에 본 발명의 실시예에 따른 열전소자를 배치하고, 전극층 및 유전체층을 포함하는 구조의 단위셀로 열전모듈을 구현하는 경우 전체 두께(Th)는 1.mm~1.5mm의 범위로 형성이 가능하게 되는바, 기존 벌크형 소자를 이용하는 것에 비해 현저한 박형화를 실현할 수 있게 된다.
또한, 도 12에 도시된 것과 같이, 도 6에서 상술한 열전소자(120, 130)는 도 12의 (a)에 도시된 것과 같이, 상부 방향(X) 및 하부방향(Y)으로 수평하게 배치될 수 있도록 어라인하여, (c)와 같이 절단하여, 본 발명의 실시예에 따른 열전소자를 구현할 수도 있다.
즉, 제1기판 및 제2기판과 반도체층 및 기재의 표면이 인접하도록 배치되는 구조로 열전모듈을 형성할 수 있으나, 도 12의 (b)에 도시된 것과 같이, 열전소자 자체를 수직으로 세워, 단위열전소자의 측면부가 상기 제1 및 제2기판에 인접하게 배치 되도록 하는 구조도 가능하다. 이와 같은 구조에서는 수평배치구조보다 측면 부에 전도층의 말단부가 노출되며, 수직방향의 열전도 효율을 낮추는 동시에 전기전도특성을 향상할 수 있어 냉각효율을 더욱 높일 수 있게 된다. 나아가, 도 9이 형상을 도 12의 (c)와 같이 절단하여 구현하여 적용할 수도 있다.
상술한 것과 같이, 다양한 실시형태로 구현이 가능한 본 발명의 열전모듈에 적용되는 열전소자에서, 상호 대향하는 제1반도체소자 및 제2반도체소자의 형상 및 크기는 동일하게 이루어지나, 이 경우 P 형 반도체소자의 전기전도도와 N 형 반도체 소자의 전기전도도 특성이 서로 달라 냉각효율을 저해하는 요소로 작용하게 되는 점을 고려하여, 어느 한쪽의 체적을 상호 대향하는 다른 반도체소자의 체적과는 상이하게 형성하여 냉각성능을 개선할 수 있도록 하는 것도 가능하다.
즉, 상호 대향하여 배치되는 반도체 소자의 체적을 상이하게 형성하는 것은, 크게 전체적인 형상을 다르게 형성하거나, 동일한 높이를 가지는 반도체소자에서 어느 한쪽의 단면의 직경을 넓게 형성하거나, 동일한 형상의 반도체 소자에서 높이나 단면의 직경을 다르게 하는 방법으로 구현하는 것이 가능하다. 특히 N형 반도체소자의 직경을 P형 반도체소자보다 더 크게 형성하여 체적을 증가시켜 열전효율을 개선할 수 있도록 할 수 있다.
상술한 본 발명의 일 실시형태에 따른 다양한 구조의 열전소자 및 이를 포함하는 열전모듈은 상술한 것과 같이 제습장치에 적용하여 제습이 효율을 극대화할 수 있도록 한다.
전술한 바와 같은 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였다. 그러나 본 발명의 범주에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능하다. 본 발명의 기술적 사상은 본 발명의 전술한 실시예에 국한되어 정해져서는 안 되며, 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
부호의 설명
110: 단위부재 111: 기재
112: 반도체층 120: 열전소자
122: 제1소자부 124: 연결부
126: 제2소자부 130: 열전소자
132: 제1소자부 134: 연결부
136: 제2소자부 140: 제1기판
150: 제2기판 160a, 160b: 전극층
170a, 170b: 유전체층 181, 182: 회로선
200, 300: 열변환부
210, 310: 열변환부 하우징
220, 320: 열전환부재
400: 제습모듈 410: 냉각부
420: 건조부 430: 압축부

Claims (16)

  1. 냉매를 압축하는 압축부, 상기 냉매를 통해 공기를 냉각하는 냉각부, 그리고 상기 냉각부를 통과한 공기를 건조시키는 건조부를 포함하는 제습모듈; 그리고
    제1 기판, 상기 제1 기판에 대향하여 배치되는 제2 기판, 상기 제1 기판과 상기 제2 기판 사이에 배치되는 열전소자, 상기 제1 기판에 연결되며 상기 제습모듈의 건조부에 인접하여 배치되는 제1 열변환부, 그리고 상기 제2 기판에 연결되며 상기 제습모듈의 냉각부에 인접하여 배치되는 제2 열변환부를 포함하는 열전모듈을 포함하는
    제습장치.
  2. 청구항 1에 있어서,
    상기 열전소자는 교대로 배치되는 P형 열전소자 및 N형 열전소자를 포함하며,
    상기 제1 기판은 흡열부이고, 상기 제2 기판은 발열부인 제습장치.
  3. 청구항 2에 있어서,
    상기 제1 열변환부는 상기 건조부를 통과한 후의 공기를 냉각시키고, 상기 제2 열변환부는 상기 냉각부를 통과하기 전의 공기를 건조시키는 제습장치.
  4. 청구항 2에 있어서,
    상기 제1열변환부는,
    상기 제1기판과 인접하는 제1영역, 그리고 상기 제1영역으로부터 연장되며 상기 건조부를 통과한 후의 공기의 유로상에 배치되는 제2영역을 포함하며,
    상기 제2열변환부는,
    상기 제2기판과 인접하는 제3영역, 그리고 상기 제3영역으로부터 연장되며 상기 냉각부를 통과하기 전의 공기의 유로상에 배치되는 제4영역을 포함하는, 제습장치.
  5. 청구항 4에 있어서,
    상기 제1열변환부 및 상기 제2열변환부는,
    제1 평면과 상기 제2 평면의 반대 면인 제2 평면을 포함하는 기재의 폴딩(folding)에 의하여 유로패턴이 형성되는 열전환부재를 포함하는 제습장치.
  6. 청구항 5에 있어서,
    상기 유로패턴은,
    소정의 피치와 높이를 가지는 제습장치.
  7. 청구항 6에 있어서,
    상기 제1열변환부에 포함되는 제1열전환부재의 피치와 상기 제2열변환부에 포함되는 제2열전환부재의 피치의 비율은,
    (0.5~2.0):1인 제습장치.
  8. 청구항 5에 있어서,
    상기 기재의 표면 상에 형성되는 저항패턴을 더 포함하는 제습장치.
  9. 청구항 8에 있어서,
    상기 저항패턴은 상기 제1 평면 및 상기 제2 평면 중 적어도 하나로부터 소정 간격으로 돌출되는 제습장치.
  10. 청구항 9에 있어서,
    상기 저항패턴은 상기 제1 평면 및 상기 제2 평면 중 적어도 하나의 평면 상에서 소정 각도로 기울어져 돌출되는 제습장치.
  11. 청구항 5에 있어서,
    상기 기재에 소정 간격으로 형성되는 복수의 홈을 더 포함하는 제습장치.
  12. 청구항 5에 있어서,
    상기 열전환부재는 적어도 2 이상으로 적층되는 제습장치.
  13. 청구항 1에 있어서,
    상기 제1 열변환부 또는 상기 제2 열변환부에 인접하여 배치되는 공기순환모듈을 더 포함하는 제습장치.
  14. 제1 기판,
    상기 제1 기판에 대향하여 배치되는 제2 기판,
    상기 제1 기판과 상기 제2 기판 사이에 배치되는 열전소자,
    상기 제1 기판에 연결되며 제습모듈의 한 면에 인접하여 배치되도록 설정되는 제1 열변환부, 그리고
    상기 제2 기판에 연결되며 상기 제습모듈의 다른 면에 인접하여 배치되도록 설정되는 제2 열변환부
    를 포함하는 열전모듈.
  15. 청구항 14에 있어서,
    상기 제1 기판은 흡열부이고, 상기 제2 기판은 발열부이며,
    상기 제습모듈의 한 면은 공기가 유입되는 면이고, 상기 제습모듈의 다른 면은 공기가 유출되는 면인 열전모듈.
  16. 청구항 15에 있어서,
    상기 제1 열변환부 및 상기 제2 열변환부는 제1 평면과 상기 제2 평면의 반대 면인 제2 평면을 포함하는 기재의 폴딩(folding)에 의하여 유로패턴이 형성되는 열전환부재를 포함하는 열전모듈.
PCT/KR2016/003247 2015-03-31 2016-03-30 제습장치 WO2016159649A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/562,708 US10520208B2 (en) 2015-03-31 2016-03-30 Dehumidifier
CN201680020137.0A CN107438743A (zh) 2015-03-31 2016-03-30 除湿器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0045010 2015-03-31
KR1020150045010A KR20160116776A (ko) 2015-03-31 2015-03-31 제습장치

Publications (1)

Publication Number Publication Date
WO2016159649A1 true WO2016159649A1 (ko) 2016-10-06

Family

ID=57006135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003247 WO2016159649A1 (ko) 2015-03-31 2016-03-30 제습장치

Country Status (4)

Country Link
US (1) US10520208B2 (ko)
KR (1) KR20160116776A (ko)
CN (1) CN107438743A (ko)
WO (1) WO2016159649A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180281957A1 (en) * 2017-03-29 2018-10-04 Rockwell Collins, Inc. Liquid Chilled Galley Bar Unit
CN109340968A (zh) * 2018-11-15 2019-02-15 珠海格力电器股份有限公司 一种空调器
TWI736025B (zh) * 2019-11-21 2021-08-11 均華精密工業股份有限公司 載板熱壓模封設備及其方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107504558A (zh) * 2017-07-18 2017-12-22 西安交通大学 一种热管增效的双级半导体除湿装置
US11472264B2 (en) * 2018-03-07 2022-10-18 Gogoro Inc. Apparatuses for controlling environmental conditions and associated methods
KR102618305B1 (ko) * 2019-06-05 2023-12-28 엘지이노텍 주식회사 열전소자
KR20210001074A (ko) * 2019-06-26 2021-01-06 엘지전자 주식회사 열전 모듈 및 이를 구비한 냉장고
US11835259B2 (en) 2020-06-16 2023-12-05 City University Of Hong Kong Self-regenerated hybrid dehumidifier with air purification
WO2022092357A1 (ko) * 2020-10-29 2022-05-05 엘티메탈 주식회사 열전 소자를 포함하는 열전환장치
WO2022131395A1 (ko) * 2020-12-16 2022-06-23 엘티메탈 주식회사 열전 변환 모듈

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669550A (ja) * 1992-08-18 1994-03-11 Nippondenso Co Ltd 熱電変換装置
JP2002210321A (ja) * 2001-01-19 2002-07-30 Fujitsu General Ltd 熱電除湿装置
KR20130000864A (ko) * 2011-06-24 2013-01-03 코웨이 주식회사 제습 기능과 공기 청정 기능을 구비한 장치 및 이의 제어 방법
KR20130024621A (ko) * 2011-08-31 2013-03-08 코웨이 주식회사 공기 청정기
KR20130130578A (ko) * 2012-05-22 2013-12-02 (주)퓨리셈 수냉식 방열판

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180985A (en) * 1977-12-01 1980-01-01 Northrup, Incorporated Air conditioning system with regeneratable desiccant bed
US4324052A (en) * 1980-09-05 1982-04-13 Bosher John L Solvent and heat recovery system for drying oven
US6134895A (en) * 1997-10-21 2000-10-24 Chrysler Corporation Method of air conditioning system temperature control
CN2589862Y (zh) * 2002-12-05 2003-12-03 赵耀华 除湿器
KR20060077396A (ko) * 2004-12-30 2006-07-05 엘지전자 주식회사 냉장고 및 냉장고의 하이브리드 냉각구조
US20070101737A1 (en) * 2005-11-09 2007-05-10 Masao Akei Refrigeration system including thermoelectric heat recovery and actuation
US8151591B2 (en) * 2007-03-05 2012-04-10 Denso International America, Inc. Air conditioning case and drain for condensate removal
US20130192272A1 (en) * 2008-10-23 2013-08-01 Gentherm Incorporated Temperature control systems with thermoelectric devices
DK177003B1 (en) * 2009-08-20 2010-11-15 Maersk Container Ind As Dehumidifier
FR2957949B1 (fr) * 2010-03-24 2012-10-26 Wws Dispositif d'extraction d'eau contenue dans l'air, systeme et machine de production d'eau potable
CN102692053A (zh) 2011-05-17 2012-09-26 上海成信建业节能科技有限公司 采用热电制冷辅助的温湿度可独立控制的空气调节系统
WO2012177072A2 (en) 2011-06-24 2012-12-27 Woongjin Coway Co., Ltd Dehumidification-type air cleaner and control method thereof
JP5452565B2 (ja) * 2011-10-27 2014-03-26 三菱電機株式会社 除湿装置
AU2013387943B2 (en) * 2013-04-24 2016-04-21 Mitsubishi Electric Corporation Dehumidifier
KR20160116997A (ko) * 2015-03-31 2016-10-10 엘지이노텍 주식회사 열전환장치 및 이를 포함하는 제습장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669550A (ja) * 1992-08-18 1994-03-11 Nippondenso Co Ltd 熱電変換装置
JP2002210321A (ja) * 2001-01-19 2002-07-30 Fujitsu General Ltd 熱電除湿装置
KR20130000864A (ko) * 2011-06-24 2013-01-03 코웨이 주식회사 제습 기능과 공기 청정 기능을 구비한 장치 및 이의 제어 방법
KR20130024621A (ko) * 2011-08-31 2013-03-08 코웨이 주식회사 공기 청정기
KR20130130578A (ko) * 2012-05-22 2013-12-02 (주)퓨리셈 수냉식 방열판

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180281957A1 (en) * 2017-03-29 2018-10-04 Rockwell Collins, Inc. Liquid Chilled Galley Bar Unit
US11136125B2 (en) * 2017-03-29 2021-10-05 Rockwell Collins, Inc. Liquid chilled galley bar unit
CN109340968A (zh) * 2018-11-15 2019-02-15 珠海格力电器股份有限公司 一种空调器
TWI736025B (zh) * 2019-11-21 2021-08-11 均華精密工業股份有限公司 載板熱壓模封設備及其方法

Also Published As

Publication number Publication date
CN107438743A (zh) 2017-12-05
KR20160116776A (ko) 2016-10-10
US20180094823A1 (en) 2018-04-05
US10520208B2 (en) 2019-12-31

Similar Documents

Publication Publication Date Title
WO2016159649A1 (ko) 제습장치
KR20160116997A (ko) 열전환장치 및 이를 포함하는 제습장치
WO2019112288A1 (ko) 열변환장치
CN101385153B (zh) 热电变换组件及其制造方法
KR102170479B1 (ko) 열전환장치
WO2017039363A1 (ko) 차량용 램프
WO2020218753A1 (ko) 열변환장치
KR101820424B1 (ko) 열전환장치
WO2015026159A1 (ko) 열전모듈 및 이를 포함하는 열전환장치
KR20160139777A (ko) 차량용 램프
WO2017026856A1 (ko) 차량용 램프
US20130269740A1 (en) Thermoelectric generator
WO2016159591A1 (ko) 열전소자, 열전모듈 및 이를 포함하는 열전환장치
WO2015026151A1 (ko) 열전소자 및 이를 포함하는 열전모듈, 열전환장치
WO2015163729A1 (ko) 열전환장치
KR102235502B1 (ko) 열전환장치
KR20170016596A (ko) 차량용 램프
WO2018226046A1 (ko) 열변환장치
KR20160129637A (ko) 열전모듈 및 이를 포함하는 열전환장치
JPH04101472A (ja) 冷却装置
WO2015034294A1 (ko) 열전모듈 및 이를 포함하는 냉각장치
WO2017200128A1 (ko) 컵홀더
WO2021141284A1 (ko) 열전모듈
WO2021141302A1 (ko) 열전소자
CN111448677A (zh) 热电模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773430

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15562708

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773430

Country of ref document: EP

Kind code of ref document: A1