WO2017026856A1 - 차량용 램프 - Google Patents

차량용 램프 Download PDF

Info

Publication number
WO2017026856A1
WO2017026856A1 PCT/KR2016/008920 KR2016008920W WO2017026856A1 WO 2017026856 A1 WO2017026856 A1 WO 2017026856A1 KR 2016008920 W KR2016008920 W KR 2016008920W WO 2017026856 A1 WO2017026856 A1 WO 2017026856A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
thermoelectric
heat
unit
module
Prior art date
Application number
PCT/KR2016/008920
Other languages
English (en)
French (fr)
Inventor
신종배
김인태
원부운
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US15/751,309 priority Critical patent/US10344941B2/en
Publication of WO2017026856A1 publication Critical patent/WO2017026856A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/30Ventilation or drainage of lighting devices
    • F21S45/33Ventilation or drainage of lighting devices specially adapted for headlamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/28Cover glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/60Heating of lighting devices, e.g. for demisting
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction

Definitions

  • An embodiment of the present invention is directed to a vehicle lamp structure that eliminates condensation on the lens portion.
  • the headlamp of the vehicle is used to illuminate the front of the vehicle when the vehicle is driven.
  • a headlight is provided inside the headlamp, and irradiates light to the upper or lower portion of the front of the vehicle by the light emitted from the light source.
  • the problem of moisture generation inside the headlamp has a problem of deterioration of the light source of the headlamp and deterioration of merchandise, and it is recognized as a problem in the vehicle headlamp system.
  • various solutions have been proposed, but a fundamental solution has been made. The situation is not lost.
  • Embodiments of the present invention have been made to solve the above-mentioned problems, and in particular, by applying a heat source to the heat absorbing portion of the thermoelectric module to increase the temperature of the cooling zone, thereby raising the temperature of the heat generating portion (heating region) of the thermoelectric module together.
  • a heat source to the heat absorbing portion of the thermoelectric module to increase the temperature of the cooling zone, thereby raising the temperature of the heat generating portion (heating region) of the thermoelectric module together.
  • the thermal conversion efficiency of the limited thermoelectric module can be improved, and a higher temperature wind and heat source can be applied to the headlamp lens unit, thereby maximizing the efficiency of dehumidification in the lamp.
  • thermoelectric circulation unit configured to provide air through the thermoelectric module into the separation space, and in particular, the thermoelectric module further includes a heating unit adjacent to a substrate forming a cooling area and applying a heat source to the substrate.
  • a vehicle lamp can be provided.
  • thermoelectric module by applying a heat source to the heat absorbing portion of the thermoelectric module to increase the temperature of the cooling region, thereby increasing the temperature of the heat generating portion (heating region) of the thermoelectric module, thereby improving the thermal conversion efficiency of the limited thermoelectric module.
  • a heat source to be applied to the head lamp lens portion, it is possible to maximize the efficiency of dehumidification in the lamp.
  • thermoelectric circulation in a structure in contact with the heat absorbing portion of the thermoelectric module to the heat source of the vehicle lamp light source, to promote heat dissipation of the lamp light source and at the same time to raise the temperature of the heat absorbing portion of the thermoelectric module,
  • thermoelectric circulation By simultaneously increasing the temperature of the heat generating portion, it is possible to efficiently increase the temperature of the hot air for dehumidification.
  • the endothermic portion of the thermoelectric module can increase the temperature of the lamp heat dissipation function and the opposite side of the heat generating unit to control the implementation of high temperature hot air to maximize the effect of dehumidification.
  • the local area of the lens surface as well as the entire surface of the lens can selectively provide air to the bar, there is an effect that can significantly reduce the capacity of the thermoelectric module and blower module.
  • thermoelectric circulation unit can prevent the air heated by the thermoelectric module to increase the lens surface temperature of the head lamp to cause condensation, in particular in this case in some areas where condensation occurs. It may be possible to provide a selective warm air or hot air.
  • FIG 1 and 2 are cross-sectional conceptual view of a vehicle lamp according to an embodiment of the present invention.
  • 3 and 4 is a cross-sectional conceptual view of a vehicle lamp according to another embodiment of the present invention.
  • FIG. 5 schematically illustrates the structure of the thermoelectric circulation unit in FIGS. 1 to 4 as viewed from the front.
  • FIG. 6 is a perspective view of an implementation image of a vehicle lamp according to an embodiment of the present invention.
  • FIG. 7 is a perspective view illustrating the back image of FIG. 6.
  • thermoelectric module 8 is a cross-sectional view illustrating main parts of a thermoelectric module according to an exemplary embodiment of the present invention applied to a vehicle lamp described with reference to FIGS. 1 to 4.
  • FIG. 9 illustrates an extension of the structure of FIG.
  • thermoelectric module 10 illustrates another embodiment of the thermoelectric module and the heat conversion member described above with reference to FIGS. 1 to 5.
  • FIG. 11 illustrates the structure of the first heat conversion member according to the embodiment of the present invention described with reference to FIG. 10.
  • FIG. 12 is an enlarged conceptual view of a structure in which one flow path pattern is formed in the first heat conversion member.
  • thermoelectric module 13 is a sectional view showing main parts of a thermoelectric module according to another embodiment of the present invention.
  • FIG. 14 illustrates an example in which the structure of the thermoelectric semiconductor device according to the exemplary embodiment of the present invention described above with reference to FIGS. 8 and 13 is implemented in another method and configuration.
  • FIG. 1 illustrates a cross-sectional conceptual view of a structure of a vehicle lamp according to an embodiment of the present invention.
  • a vehicle lamp according to an exemplary embodiment of the present invention is provided with a lens unit 10, a lens unit 10, and a spaced space D, and includes a light source including a reflector to accommodate a light emitting device.
  • Module 20 adjacent to the light source module, to provide air through the bezel portion 30 and the thermoelectric module 100 to provide the separation space between the lens unit and the light source module into the separation space.
  • the thermoelectric module 100 may further include a heating unit 190 for applying a heat source to a position adjacent to the heat absorbing portion that implements the cooling area of the thermoelectric module 100.
  • the heating unit 190 may form a cooling area, particularly in the structure of the thermoelectric module 100 in which a thermoelectric semiconductor element is disposed between a pair of opposing substrates, the first substrate 140 and the second substrate 150. Can be disposed on a substrate.
  • the following structure and operation will be described with an example in which the substrate in which the cooling region is implemented is implemented in the second substrate 150.
  • the lens unit 10 may be an outer lens of the outermost of the head lamp of the vehicle, the lens unit 10 is combined with the housing of the lamp to form the overall appearance of the lamp.
  • the light source module 20 that emits light to the outside through the lens unit 10, one or more may be implemented.
  • the low beam 20L and the high beam A structure having 20H
  • the light source module 20 includes a concept including a structure including a light emitting package having various solid light emitting devices such as a halogen lamp, a HID lamp, or an LED, LD, OLED, and a reflective member formed adjacent to the light emitting device. to be.
  • thermoelectric module 100 In the peripheral portion of the light exit surface of the light source module 20 is provided with an intermediate cover member, so-called bezel portion 30, which performs a function such as securing aesthetics inside the lamp and having a reflection function.
  • the air heated in the heat generating portion of the thermoelectric module 100 is supplied to the space D between the rear surface of the lens portion 10 and the bezel portion 30, condensation on the surface of the lens portion. It is characterized by the ability to eliminate the phenomenon.
  • the heating unit 190 is disposed on the second substrate 150 to form an endothermic region of the thermoelectric module 100, thereby being implemented on the second substrate.
  • thermoelectric capacity ( ⁇ T) of the predetermined thermoelectric module thereby realizing an effect of increasing the temperature of the warm air more efficiently. It becomes possible.
  • the cooling part temperature is 40 ° C. and the heat generating part temperature is 80 ° C.
  • the temperature that can be converted to warm air is 80 ° C, but when the second heat conversion member contacts the light source part and the predetermined temperature rises to 50 ° C, the maximum temperature of the heat generating part can be increased to 90 ° C by the predetermined ⁇ T (40 ° C). Done. In this case, the temperature of the warm air can be raised to 90 °C, which is to implement the advantage of realizing a higher temperature wind at the same power.
  • thermoelectric circulation part 40 may be disposed at the rear of the first heat conversion part 200 to guide air from the outside or the inside of the lamp into the first heat transfer member.
  • the thermoelectric circulation part 40 may include a first blowing module 42 including a blowing fan.
  • the thermoelectric circulation part 40 may include various components such as a power supply part for applying power to the first blower module 42, a wiring part, and a circuit board having a control part.
  • the air moves in the thermoelectric circulation part 40 and passes through the first heat conversion member inside the first heat conversion part 200 of the thermoelectric module 100,
  • the temperature of the air is increased, the heated air is moved along the blow guide unit 60 of the structure that is disposed adjacent to or connected to the first heat conversion unit 200, the moved air is a blow guide unit (
  • the hot air (X) is applied to the separation space (D) from the discharge portion 61, which is the end of the 60, thereby removing condensation on the surface of the lens unit (10).
  • the temperature of the warm air X may be realized at a higher temperature by the action of the heating unit 190 in the embodiment of the present invention.
  • the heating unit 190 may be applied to a variety of devices and structures that can be heated by applying a heat source on the second substrate of the thermoelectric module 100, for example, as shown in FIG.
  • the second substrate 150 may be directly applied to the second substrate 150 or may be configured to apply heat through a heat transfer structure.
  • FIG. 2 shows an embodiment different from the embodiment of the vehicle lamp according to FIG. 1.
  • the structure in which the heating unit 190 is disposed adjacent to the thermoelectric module 100 may be equally applied.
  • 2 illustrates an embodiment different from the embodiment of the vehicle lamp of FIG. 1.
  • elements such as the contact structure of the thermoelectric module 100 and the light source module 20 and the structure of the first heat conversion unit 200 may be equally applied. The difference is that the structure of the part for guiding the air converted into warm air via the first heat conversion unit 200 in the spaced space D is modified.
  • the air flow path part 32 through which air can move is formed on the surface or the inside of the bezel part 30, and guides the air provided through the thermoelectric circulation part 40, which will be described later, and the bezel part 30. On the surface of the) so that the warm air is emitted to the space (D) of the lens unit 10 and the bezel portion 30.
  • thermoelectric circulation unit 40 for providing warm air to remove condensation generated in the surface area of the lens unit 10
  • thermoelectric for implementing the warm air Simultaneously with the module 100
  • the movement of the warm air is guided through the air flow path part 32, which is implemented on the inner or outer surface of the bezel part 30, and not only the entire surface of the lens part 10. Condensation can be eliminated by directly providing warm air to a local area such as an edge of the lens where condensation frequently occurs.
  • the warm air guided along the air flow path part 32 is discharged through the air discharge parts 31 and 33 disposed on the surface of the bezel part 30.
  • the air discharge parts 31 and 33 are disposed in at least two or more areas of the surface area of the bezel part, and the hot air is concentrated to the area where condensation frequently occurs in the local area to remove condensation even with small power. Make it possible to increase its efficiency.
  • the air discharge portions 31 and 33 may be provided on the same horizontal line as the edge region of the lens portion, which is a weak point where condensation frequently occurs. That is, the air discharge parts 31 and 33 may be embodied in the shape of one or more holes or slit structures in the left and right edge portions or the other edge portions of the lens unit 10. The shape of the air discharge portions 31 and 33 may be variously modified, such as a wedge-shaped hole structure or a slit structure having a predetermined length so as to control the direction of the wind.
  • one end of the air flow path part 32 communicates with the thermoelectric circulation part 40, and the other end may be formed in a structure communicating with the separation space D.
  • the air flow path part 32 is illustrated as being implemented on the outer surface of the bezel part 30, but as another example, the flow path inside the bezel part 30. It is also possible to implement a structure to form a.
  • the external structure of the bezel part is simplified and thinned as a whole, thereby realizing an advantage of allowing a wider space for arranging the thermoelectric module and the thermoelectric circulation part mounted in the limited space.
  • a second blowing module such as a blower fan having an auxiliary function, may be disposed in the air flow path 32 to control the flow of air.
  • a second blowing module such as a blower fan having an auxiliary function
  • the arrangement structure of the thermoelectric circulation part 40 having one first blower module 42 in the structure of FIG. 2 is as described above. Considering that the freedom of design is restricted in this regard, it may be difficult to implement a desired air flow rate or wind pressure, and thus, an additional blower fan may be provided to implement a stronger wind pressure.
  • thermoelectric module having a thermoelectric conversion member for implementing warm air
  • a structure having a single blower module and one thermoelectric module and a plurality of thermoelectric module having a thermoelectric conversion member for implementing warm air (for example, a plurality of heat sink members) may be implemented, and a structure including a plurality of blowing fans or a structure in which a plurality of blowing fans share one thermoelectric module may be implemented.
  • FIG. 3 is a cross-sectional conceptual view showing the structure of a vehicle lamp according to another embodiment of the present invention.
  • FIG. 3 corresponds to an embodiment in which the structure of FIG. 1 is modified.
  • the structure of FIG. 3 is different from that of FIG. 1 in that the heating unit 190 is disposed adjacent to the second substrate 150, but the heat on the second substrate 150 or the second substrate 150 is the same.
  • the heat conversion member such as a sink is formed in a structure that is implemented in a structure in contact with one region of the light source module 20. That is, the application of the heat source is to use the heat generated from the light source module 20 as well as through the heating unit 190.
  • the heat dissipation of the lamp light source is promoted and the temperature of the heat absorbing portion of the thermoelectric module is raised to increase the temperature of the heat generating portion at the same time, thereby efficiently increasing the temperature of the hot air for dehumidification.
  • thermoelectric module 100 the principle of raising the temperature of the warm air by applying a heat source to the cooling region of the thermoelectric module 100 is the same as described above in Figure 1, in particular in the structure of the present embodiment at the same time with the heat radiation function of the light source module thermoelectric module Its advantage is that it can increase the thermoelectric efficiency. Specifically, when the portion of the second substrate 150 constituting the heat absorbing portion or the portion of the second heat conversion portion (300 'in FIG. 10) disposed on the second substrate 150 contacts the part of the light source module that generates heat.
  • the temperature of the cooling part of the thermoelectric module is raised to a certain degree, so that the temperature of the heat generating part can be further increased according to the thermoelectric capacity ( ⁇ T) of the predetermined thermoelectric module. It is possible to implement the action that can increase the temperature more efficiently.
  • the efficiency of providing the warm air is such that the second substrate 150 forming the heat absorbing portion of the thermoelectric module 100 contacts the light source module 20 or is not illustrated, but the second substrate 150 is not shown.
  • FIG. 4 is a conceptual diagram illustrating a structure of a vehicle lamp according to still another embodiment of the present invention.
  • the embodiment of FIG. 4 is a modified embodiment of the structure of FIG. 2 described above.
  • the difference from the structure of FIG. 2 is that the heating unit 190 is disposed adjacent to the second substrate 150.
  • the heat conversion member such as a heat sink on the substrate 150 or the second substrate 150 is formed to have a structure in contact with one region of the light source module 20.
  • the principle of increasing the thermoelectric efficiency by the contact structure of the light source module 20 and the thermoelectric module 100 through the substrate or the heat conversion member will be omitted as described above in the structure of FIG. 3.
  • FIG. 5 schematically illustrates the structure of the thermoelectric circulation unit in FIGS. 1 to 4 as viewed from the front.
  • thermoelectric module applied to the embodiment of the present invention is implemented in a structure in which a plurality of thermoelectric semiconductor elements are provided between the first substrate 140 and the second substrate 150 which face each other.
  • the heat generating region is implemented according to the thermoelectric effect of the first substrate 140, and a structure such as the first heat conversion member 52 may be disposed on the top of the first substrate 140.
  • the first heat conversion member 52 is arranged in a structure in which a thermoelectric circulation part 40 including a first blower module is disposed at the rear thereof, so that the air passing through can be converted into warm air.
  • FIGS. 1 and 2 show a structure in which only a heating unit is applied, and the structures of FIGS. 3 and 4 have a structure in which a portion of the second substrate 150 shown in FIG. 5 contacts the light source module 20.
  • the thermoelectric circulation part 40 is disposed at the rear of the heat conversion member 52 so that the air passing through the first heat conversion member 52 (black arrow) that implements the heating area is converted into heated warm air.
  • FIG. 6 is a perspective view of an implementation image of a vehicle lamp according to an embodiment of the present invention
  • FIG. 7 is a perspective view illustrating the rear image of FIG. 6. 6 and 7, as described above with reference to FIGS. 1 to 4, a heat source is applied to a portion of the second substrate 150 that acts as a cooling (heat absorption) of the thermoelectric module through a heating unit, or a second substrate ( 150 is disposed in a structure in contact with the outer case 20A of the light source module, the first heat conversion unit 200 is accommodated in the upper portion of the first substrate and the thermoelectric circulation portion 40 behind it. ) Is arranged, it can be seen that implemented in the structure to implement the warm air.
  • the warm air is discharged through the discharge part 61, which is the end of the air blowing guide part 60, and then the warm air can be supplied to the surface of the lens part as illustrated in FIG. 1.
  • thermoelectric module applied to the vehicle lighting according to the embodiment of the present invention described above.
  • FIG. 8 is a cross-sectional view illustrating main parts of a thermoelectric module according to an exemplary embodiment of the present invention applied to the vehicle lamp described above with reference to FIGS. 1 to 4, and FIG. 9 illustrates the expansion of the structure of FIG.
  • the thermoelectric module 100 applied to a vehicle lamp includes a first semiconductor element 120 and a second semiconductor element 130 between a first substrate 140 and a second substrate 150 facing each other. It is implemented in a structure that is arranged.
  • a first heat conversion unit 200 that performs a heat generation function is disposed on the first substrate 140 to perform a heat generation action
  • a second heat conversion unit that performs an endothermic function on the second substrate 150 ( 300) is installed to perform the cooling function.
  • the first heat conversion unit 200 is defined as a module including the first heat conversion member 52 in FIG. 5.
  • the first substrate 140 and the second substrate 150 may use an insulating substrate, such as an alumina substrate.
  • a metal substrate may be used to realize endothermic, heat generating efficiency, and thinning. have.
  • the electrode layers 160a and 160b formed on the first and second substrates 140 and 150, respectively. It is preferable that the dielectric layer 170a and 170b are further included therebetween.
  • the thickness that can be thinned can be formed in a range of 0.1 mm to 0.5 mm.
  • the thickness of the metal substrate is 0.1 mm or thinner, or in the thickness exceeding 0.5 mm, the heat dissipation characteristics are too high or the thermal conductivity is too high, which greatly reduces the reliability of the thermoelectric module.
  • a material having a high heat dissipation performance is used as a material having a thermal conductivity of 5 to 10 W / K in consideration of the thermal conductivity of the cooling thermoelectric module, and the thickness is 0.01 mm to 0.15.
  • the electrode layers 160a and 160b electrically connect the first semiconductor element and the second semiconductor element using electrode materials such as Cu, Ag, and Ni, and when the unit cells shown in FIG. As such, electrical connections are formed with adjacent unit cells.
  • the electrode layer may have a thickness ranging from 0.01 mm to 0.3 mm. If the thickness of the electrode layer is less than 0.01mm, the electrical conductivity is poor due to poor function as an electrode, and even if it exceeds 0.3mm, the conductivity becomes lower due to the increase in resistance.
  • the heating unit 190 for applying a heat source may be disposed on the heat absorbing portion of the thermoelectric module according to the embodiment of the present invention, that is, the second substrate 150 implementing the cooling region.
  • FIG. 9 may have a modular structure in which a plurality of unit cells (a pair of thermoelectric semiconductor elements are connected) as shown in FIG. 8 are connected and modularized.
  • the thermoelectric elements forming the unit cell will be described later.
  • a thermoelectric device including a unit device having a stacked structure according to 14 may be applied, and in this case, one side may be composed of a P-type semiconductor as the first semiconductor device 120 and an N-type semiconductor as the second semiconductor device 130.
  • the first semiconductor and the second semiconductor are connected to the metal electrodes 160a and 160b, and a plurality of such structures are formed, and circuit circuits 181 and 182 are provided to supply current through the electrodes.
  • the Peltier effect is implemented.
  • the semiconductor element in the thermoelectric module may be a P-type semiconductor or an N-type semiconductor material.
  • the N-type semiconductor device is selenium (Se), nickel (Ni), aluminum (Al), copper (Cu), silver (Ag), lead (Pb), boron (B ), Gallium (Ga), tellurium (Te), bismuth (Bi), bismuth telluride-based (BiTe-based) including indium (In), and 0.001 ⁇ 1.0wt% of the total weight of the main raw material It can be formed using a mixture of Bi or Te corresponding to.
  • the main raw material may be a Bi-Se-Te material, and may be formed by adding Bi or Te to a weight corresponding to 00.001 to 1.0 wt% of the total weight of Bi-Se-Te. That is, when 100 g of Bi-Se-Te is added, it is preferable to add Bi or Te to be mixed in a range of 0.001 g to 1.0 g.
  • the weight range of the material added to the above-described main raw material is in the range of 0.001wt% to 0.1wt%, the thermal conductivity is not lowered, the electrical conductivity is lowered can not be expected to improve the ZT value
  • the P-type semiconductor material is antimony (Sb), nickel (Ni), aluminum (Al), copper (Cu), silver (Ag), lead (Pb), boron (B), gallium (Ga), tellurium (A mixture of a main raw material consisting of Te), bismuth (Bi), bismuth telluride (BiTe) including indium (In), and Bi or Te corresponding to 0.001 to 1.0 wt% of the total weight of the main raw material It is preferable to form using.
  • the main raw material may be a Bi-Sb-Te material, and may be formed by adding Bi or Te to a weight corresponding to 0.001 to 1.0wt% of the total weight of Bi-Sb-Te.
  • Bi or Te further mixed may be added in the range of 0.001g ⁇ 1g.
  • the weight range of the material added to the above main raw material has a significance in that the thermal conductivity does not decrease and the electrical conductivity decreases outside the range of 0.001 wt% to 0.1 wt%, so that the ZT value cannot be improved.
  • the shape and size of the first semiconductor element and the second semiconductor element which form a unit cell and face each other are the same, but in this case, the electrical conductivity of the P-type semiconductor element and that of the N-type semiconductor element are different from each other, thereby improving cooling efficiency. In consideration of the fact that it acts as a deterrent factor, it is also possible to improve the cooling performance by forming one volume different from the volume of the other semiconductor element facing each other.
  • differently forming the volume of the semiconductor elements of the unit cells that are arranged to face each other may form a large overall shape or widen the diameter of one of the cross-sections of a semiconductor device having the same height, or of the same shape. It is possible to implement the semiconductor device by a method of varying the height or the diameter of the cross section. In particular, the diameter of the N-type semiconductor device is formed larger than the P-type semiconductor device to increase the volume to improve the thermoelectric efficiency.
  • FIG. 10 illustrates another embodiment of the thermoelectric module and the heat conversion member described above with reference to FIGS. 1 to 5.
  • the structure of the first heat conversion member described above in FIG. 5 illustrates a structure in which a plurality of heat dissipation fins have a fin structure or a thin plate-like structure, but in the embodiment of FIG. 10, an embodiment in which heat generation or cooling efficiency can be maximized.
  • a structure having a curvature to the shape of the heat conversion member.
  • FIG. 10 illustrates a first thermoelectric conversion unit 200 disposed on an upper portion of a thermoelectric module 100 including a thermoelectric semiconductor element between a pair of substrates, and a second thermal conversion unit 300 disposed below. It is provided with a structure.
  • the first thermal conversion unit 200 and the second thermal conversion unit 300 are introduced into the air by using a thermoelectric effect implemented through the first substrate 140 and the second substrate 150 of the thermoelectric module 100. It is also possible to implement heat conversion in the exhaust air.
  • the second thermoelectric conversion unit 300 may be applied in a structure in which the thermoelectric module 100 is removed.
  • the second heat conversion unit 300 may be modified to have a structure in contact with the light source module 20 in the structure shown in FIGS. 3 and 4 to increase the height.
  • the air passing through the first blower module such as the blower fan passes through the first heat switch member (52 of FIG. 5 and 220 of FIG. 10) in the structure of FIGS. 1 to 4.
  • the heating unit is implemented to be a warm air.
  • the first heat conversion unit 200 may include a heat conversion member 220 on the first substrate 140. This structure is the same as the second heat conversion unit 300 to arrange the heat conversion member 320 on the second substrate 150, in the following the heat conversion member 220 of the first heat conversion unit 200 The structure provided will be described as an example.
  • the first heat conversion unit 200 may be arranged to be in contact with the first substrate 140, and thus, the first heat conversion member 200 of the first heat conversion unit 200 may be disposed.
  • the air passing through 220 is implemented as a warm air whose temperature is increased by the exothermic action, so that the warm air can be supplied to the lens part via the air flow path described above with reference to FIGS. 2 and 4.
  • the 320 may be implemented as a structure in direct contact with the first substrate 140 and the second substrate 150, but may be formed as a structure disposed in the separate accommodation modules 210 and 310.
  • FIG. 11 illustrates the structure of the first heat conversion member 220 according to the embodiment of the present invention described above with reference to FIG. 10, and FIG. 12 illustrates one flow path pattern 220A in the first heat conversion member 220. Is an enlarged conceptual view of the structure in which) is formed. The same may be applied to the structure of the second heat conversion member 320 on the second substrate 150.
  • the structure of the first heat conversion member 220 will be described in detail.
  • the first heat conversion member 220 is a second plane 222 opposite to the first plane 221 and the first plane 221 to perform surface contact with air.
  • the flat substrate may have a structure in which at least one flow path pattern 220A is formed to form an air flow path C 1, which is a movement path of constant air.
  • the flow path pattern 220A has a folding structure, that is, a folding structure, so that a curvature pattern having a constant pitch P 1 and P 2 and a height T 1 is formed. It is also possible to implement in such a way. That is, the heat conversion members 220 and 320 according to the embodiment of the present invention may have a planar surface in which air is in surface contact, and may have a structure in which a flow path pattern for maximizing contact surface area is formed.
  • the heat conversion member 220 is configured to include a resistance pattern 223 on the surface of the substrate, as shown in Figs. Can be.
  • the resistance pattern 223 may be formed on each of the first curved surface B1 and the second curved surface B2 in consideration of the unit flow path pattern.
  • the resistance pattern may be embodied in a structure protruding in any one direction between a first plane and a second plane facing the first plane.
  • the first heat conversion member 220 may further include a plurality of fluid flow grooves 224 penetrating the surface of the substrate, through which the first and second planes of the heat conversion member 240 are formed. The air contact and movement between them can be made more freely.
  • the resistance pattern 224 is formed of a protrusion structure inclined to have an inclination angle ⁇ in the direction in which air enters, so as to maximize friction with air so as to maximize a contact area.
  • the inclination angle ⁇ is more preferably such that the horizontal extension line of the resistance pattern surface and the extension line of the surface of the substrate form an acute angle, because the effect of resistance is reduced when the angle is perpendicular or obtuse.
  • the arrangement of the above-described flow groove 224 may be disposed at the connection portion between the resistance pattern and the substrate to increase the resistance of the fluid such as air and to efficiently move to the opposite side.
  • the flow grooves 224 are formed in the base surface of the front portion of the resistance pattern 223, so that a part of the air contacting the resistance pattern 223 passes through the front and rear surfaces of the substrate, The area can be further increased.
  • the flow path pattern is formed to have a constant pitch in a structure having a constant pitch.
  • the flow path pattern may be modified so that the pitch of the unit pattern is not uniform and the pattern period is also uniformly implemented.
  • the height T 1 of each unit pattern may also be unevenly deformed.
  • FIG. 10 to 12 illustrate a structure in which one first heat conversion member included in the heat conversion module is included in the heat transfer apparatus according to the embodiment of the present invention.
  • a plurality of heat conversion members may be included in one heat transfer module. May be implemented in a stacked structure. Through this, it is possible to further maximize the contact surface area with the air, such a structure is implemented in a structure that can implement a large number of contact surface in a narrow area due to the special characteristics of the heat conversion member of the present invention formed of a folding structure, More heat conversion members can be arranged.
  • a supporting substrate such as a second intermediate member, may be further disposed between each of the thermal conversion members stacked.
  • the pitch of the first thermoelectric conversion member of the thermoelectric module (first substrate) forming the heat generating portion and the pitch of the second thermoelectric conversion member of the thermoelectric module (second substrate) forming the heat absorbing portion may be different from each other.
  • the pitch of the flow path pattern of the heat conversion member in the heat conversion module forming the heat generating unit may be formed more than the pitch of the flow path pattern of the heat conversion member in the heat conversion module forming the heat absorbing portion.
  • the pitch ratio of the pitch of the first heat conversion member of the first heat conversion unit and the flow path pattern of the first heat conversion member of the second heat conversion unit may be formed in a range of (0.5 to 2.0): 1.
  • the structure of the heat conversion member according to the embodiment of the present invention to form a flow path pattern can realize a much more contact area in the same volume than the heat conversion member of the plate-like structure or the existing heat sink fin structure, the heat conversion member of the plate structure
  • the air contact area can be increased by more than 50%, and the size of the module can be greatly reduced.
  • the heat conversion member may be applied to a variety of members, such as high heat transfer efficiency metal material, such as aluminum, synthetic resin.
  • thermoelectric semiconductor device provided in the thermoelectric module 100 applied to the vehicle lamp structure of FIGS.
  • thermoelectric element 120 may have a first element portion 122 having a first cross-sectional area and a position facing the first element portion 122.
  • the second element portion 126 having a second cross-sectional area and the first element portion 122 and the connection portion 124 having a third cross-sectional area connecting the second element portion 126 to be implemented Can be.
  • the cross-sectional area in any area in the horizontal direction of the connecting portion 124 may be provided with a structure that is smaller than the first cross-sectional area and the second cross-sectional area.
  • thermoelectric element having the same cross-sectional structure as a cube structure When the same material is used and the same amount of material as the thermoelectric element having the same cross-sectional structure as a cube structure is applied, the area of the first element portion and the second element portion can be increased, and the length of the connecting portion can be realized on the road. As a result, an advantage of increasing the temperature difference ⁇ T between the first device portion and the second device portion may be realized. Increasing the temperature difference increases the amount of free electrons moving between the hot side and the cold side, thereby increasing the amount of electricity generated, and in the case of heating or cooling, the efficiency is increased.
  • thermoelectric element 120 may realize a wide horizontal cross-sectional area of the first element portion and the second element portion, which are implemented in a flat structure or other three-dimensional structure, on the upper and lower portions of the connecting portion 124, Extend the length so that the cross-sectional area of the connection can be reduced.
  • the ratio of C) can be implemented in a range that satisfies the range of 1: (1.5 ⁇ 4). If it is out of this range, the heat conduction is conducted from the heat generating side to the cooling side, but rather lowers the power generation efficiency, or lowers the heat generation or cooling efficiency.
  • thermoelectric element 120 the thickness (a1, a3) in the longitudinal direction of the first element portion and the second element is smaller than the longitudinal thickness (s2) of the connection portion. It may be configured to be implemented.
  • the first cross-sectional area of the first device view 122 in the horizontal direction and the second cross-sectional area of the second device part 126 in the horizontal direction may be different from each other. This is to easily control the desired temperature difference by adjusting the thermoelectric efficiency.
  • the first device portion, the second device portion and the connection portion may be configured in a structure that is integrally implemented with each other, in which case each configuration may be implemented with the same material.
  • FIG. 14 illustrates an example in which the structure of the thermoelectric semiconductor device according to the exemplary embodiment of the present invention described above with reference to FIGS. 8 and 13 is implemented in another method and configuration.
  • the structure of the semiconductor device described above may be implemented as a structure having a stacked structure instead of a bulk structure to further improve thinning and cooling efficiency.
  • the structures of the first semiconductor device 120 and the second semiconductor device 130 in FIG. 8 or 13 are formed as a unit member in which a plurality of structures coated with a semiconductor material on a sheet-shaped substrate are stacked. By cutting this, it is possible to prevent the loss of material and to improve the electrical conductivity.
  • FIG. 14 is a conceptual view illustrating a process of manufacturing the unit member having the above-described laminated structure.
  • a unit material 110 is formed by fabricating a material including a semiconductor material in the form of a paste, and applying a paste onto a base material 111 such as a sheet or a film to form a semiconductor layer 112. Form.
  • the unit member 110 is formed by stacking a plurality of unit members 100a, 100b, and 100c to form a stacked structure, and then cutting the stacked structure to form a unit thermoelectric device 120. That is, the unit thermoelectric device 120 according to the present invention may be formed as a structure in which a plurality of unit members 110 in which the semiconductor layer 112 is stacked on the substrate 111 is stacked.
  • the process of applying the semiconductor paste on the substrate 111 may be implemented using various methods.
  • tape casting that is, a very fine semiconductor material powder may be used in an aqueous or non-aqueous solvent (A slurry is prepared by mixing a solvent, a binder, a plasticizer, a dispersant, a defoamer, or a surfactant, and then a moving blade or moving carrier substrate.
  • a slurry is prepared by mixing a solvent, a binder, a plasticizer, a dispersant, a defoamer, or a surfactant, and then a moving blade or moving carrier substrate.
  • the thickness of the substrate may be a material such as a film, sheet, etc. in the range of 10um ⁇ 100um
  • the applied semiconductor material can be applied to the P-type material and N-type material for manufacturing the above-described bulk device as it is Of course.
  • the process of stacking the unit members 110 in a multilayer manner may be formed in a stacked structure by compressing at a temperature of 50 ° C. to 250 ° C.
  • the number of stacked units of the unit members 110 is 2. It can be made in the range of ⁇ 50.
  • a cutting process may be performed in a desired shape and size, and a sintering process may be added.
  • a unit thermoelectric device formed by stacking a plurality of unit members 110 manufactured according to the above-described process may ensure uniformity of thickness and shape size. That is, the conventional bulk thermoelectric element cuts the sintered bulk structure after ingot grinding and miniaturization of the ball-mill process, and thus many materials are lost in the cutting process, as well as uniformity.
  • the sheet-shaped unit members are laminated in multiple layers, and then the sheet laminate As it cuts, there is almost no material loss, the material has a uniform thickness, it can secure the uniformity of the material, and the thickness of the entire unit thermoelectric element can be reduced to less than 1.5mm, and in various shapes Application is possible.
  • the finally implemented structure may be implemented by cutting into the shape of FIG. 14 (d), such as the structure of Figure 8 or the structure of the thermoelectric element according to the embodiment of the present invention described above in FIG.
  • the manufacturing process of the unit thermoelectric device according to an embodiment of the present invention further comprising the step of forming a conductive layer on the surface of each unit member 110 during the process of forming a laminated structure of the unit member 110 It can be done.
  • a conductive layer similar to the structure of FIG. 15 may be formed between the unit members of the stacked structure of FIG. 14C.
  • the conductive layer may be formed on an opposite surface of the substrate surface on which the semiconductor layer is formed, and in this case, the conductive layer may be configured as a patterned layer to form a region where the surface of the unit member is exposed. This can improve the electrical conductivity as well as improve the bonding strength between each unit member as compared to the front coating, it is possible to implement the advantage of lowering the thermal conductivity.
  • FIG. 15 illustrates various modifications of the conductive layer C according to the embodiment of the present invention, and the pattern of exposing the surface of the unit member is illustrated in FIGS. 15A and 15B.
  • the mesh-type structure including the closed opening patterns c 1 and c 2 or the open opening patterns c 3 and c 4 as shown in FIGS. 15C and 15D. It can be designed by various modifications such as a line type including.
  • the conductive layer has the advantage of increasing the adhesive strength between the unit members in the unit thermoelectric element formed of a laminated structure of the unit member, as well as lowering the thermal conductivity between the unit members, improve the electrical conductivity, Cooling capacity (Qc) and ⁇ T (°C) is improved compared to the bulk thermoelectric element, in particular the power factor (Power factor) is 1.5 times, that is, the electrical conductivity is increased 1.5 times.
  • the increase in the electrical conductivity is directly connected to the improvement of the thermoelectric efficiency, thereby improving the cooling efficiency.
  • the conductive layer may be formed of a metal material, and all of the metal-based electrode materials of Cu, Ag, and Ni may be applied.
  • the embodiment of the present invention is used.
  • the thermoelectric module is disposed and the thermoelectric module is implemented as a unit cell having an electrode layer and a dielectric layer, the entire thickness Th may be formed in a range of 1. mm to 1.5 mm. It is possible to realize remarkable thinning in comparison with the use.
  • the present invention described above with reference to FIGS. 1 to 4 implements the condensation removing apparatus of the vehicle lamp according to the embodiment, it is possible to efficiently utilize in a limited space.
  • thermoelectric elements 120 and 130 described above with reference to FIG. 11 are arranged to be horizontally arranged in the upper direction X and the lower direction Y, as shown in FIG. By cutting as), it is possible to implement a thermoelectric device according to an embodiment of the present invention.
  • thermoelectric module may be formed in a structure in which the surfaces of the first substrate and the second substrate, the semiconductor layer, and the substrate are adjacent to each other.
  • a structure in which side surfaces of the unit thermoelectric element are disposed adjacent to the first and second substrates is also possible.
  • the distal end portion of the conductive layer is exposed to the side portion rather than the horizontally arranged structure, thereby lowering the thermal conductivity efficiency in the vertical direction and improving the electrical conductivity, thereby further increasing the cooling efficiency.
  • FIG. 11 may be implemented by cutting the shape as shown in FIG. 16C.
  • thermoelectric device applied to the thermoelectric module of the present invention which can be implemented in various embodiments, the shape and size of the first semiconductor device and the second semiconductor device opposing to each other may be the same, but in this case, P-type
  • P-type In consideration of the fact that the electrical conductivity of the semiconductor device and the electrical conductivity of the N-type semiconductor device are different from each other, it acts as a factor that hinders the cooling efficiency, so that the volume of one of the semiconductor devices is different from that of the other semiconductor devices facing each other. It is also possible to improve the cooling performance.
  • thermoelectric elements having various structures and thermoelectric modules including the same according to an embodiment of the present invention described above may be applied to a structure for implementing warm air as an air flow path in a vehicle lamp shown in FIGS. 1 to 4 as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

본 발명의 실시예는 렌즈부의 결로를 제거하는 차량 램프 구조에 대한 것으로, 열전모듈의 흡열부에 열원을 인가하여 냉각영역의 온도를 상승시킴으로써, 열전모듈의 발열부(발열영역)의 온도를 함께 상승시킴으로써, 한정된 열전모듈의 열전환 효율을 향상시키며, 더욱 고온의 바람과 열원을 헤드램프 렌즈부에 인가할 수 있도록 함으로써, 램프내 제습의 효율을 극대화할 수 있도록 한다.

Description

차량용 램프
본 발명의 실시예는 렌즈부의 결로를 제거하는 차량 램프 구조에 대한 것이다.
자동차의 헤드 램프는 차량의 운행시 차량 전방을 비추기 위해 사용되는 것으로, 헤드 램프의 내부에는 광원이 구비되어 있고, 광원에서 발산되는 빛에 의해 차량 전방의 상부 또는 하부로 빛을 조사한다.
이러한 헤드 램프의 광원 자체의 열과 자동차의 엔진에서 전해지는 열 등으로 인해 고온의 환경에 높이게 되고 외부와 온도 차이가 발생하게 되고, 이로 인해 헤드 램프 내부에 결로가 발생하게 된다.
이와 같은 헤드램프 내부의 습기 발생 문제는 헤드 램프의 광원부 고장 및 상품성을 저하시키는 문제가 있고, 또한 차량 헤드 램프 시스템에서 고질적인 문제점으로 인식되고 있어 다양한 해결책이 제시되고 있기는 하지만, 근본적인 해결이 이루어지지 않는 실정에 있다.
본 발명의 실시예들은 상술한 과제를 해결하기 위하여 안출된 것으로, 특히 열전모듈의 흡열부에 열원을 인가하여 냉각영역의 온도를 상승시킴으로써, 열전모듈의 발열부(발열영역)의 온도를 함께 상승시킴으로써, 한정된 열전모듈의 열전환 효율을 향상시키며, 더욱 고온의 바람과 열원을 헤드램프 렌즈부에 인가할 수 있도록 함으로써, 램프내 제습의 효율을 극대화할 수 있으며, 겨울철 렌즈 외부의 눈이나 결빙을 효율적으로 제거할 수 있는 차량램프의 구조를 제공할 수 있도록 한다.
상술한 과제를 해결하기 위한 수단으로서, 본 발명의 실시예에서는 렌즈부; 상기 렌즈부와 이격공간을 마련하며 배치되며, 발광소자를 수용하는 반사부를 포함하는 광원모듈; 상기 광원모듈에 인접하며, 상기 렌즈부와 상기 광원모듈 사이에 상기 이격공간을 마련하는 베젤부; 및 열전모듈을 경유한 공기를 상기 이격공간 내부로 제공하는 열전순환부;를 포함하며, 특히 상기 열전모듈은, 냉각영역을 형성하는 기판과 인접하여 상기 기판에 열원을 인가하는 가열부를 더 포함하는 차량용 램프를 제공할 수 있다.
본 발명의 실시예에 따르면, 열전모듈의 흡열부에 열원을 인가하여 냉각영역의 온도를 상승시킴으로써, 열전모듈의 발열부(발열영역)의 온도를 함께 상승시킴으로써, 한정된 열전모듈의 열전환 효율을 향상시키며, 더욱 고온의 바람과 열원을 헤드램프 렌즈부에 인가할 수 있도록 함으로써, 램프내 제습의 효율을 극대화할 수 있도록 한다. 나아가 겨울철 렌즈 외부의 눈이나 결빙을 효율적으로 제거할 수 있는 효과도 있다.
또한, 본 발명의 다른 실시예에 따르면, 차량 램프 광원의 발열원에 열전모듈의 흡열부를 접촉하는 구조로 열전순환부를 구현하여, 램프 광원의 방열을 촉진함과 동시에 열전모듈의 흡열부를 온도를 올려, 발열부의 온도를 동시에 상승시켜, 제습을 위한 열풍의 온도를 효율적으로 높일 수 있도록 할 수 있다. 이를 통해, 열전모듈의 흡열부가 램프 방열 기능 및 반대편 발열부의 온도를 상승시켜 고온의 열풍을 구현을 제어하는 기능을 발휘하여 제습의 효과를 극대화할 수 있게 된다.
나아가, 열전순환부의 기능을 통해 램프의 렌즈의 제습을 효율적으로 구현할 수 있게 된다.
또한, 본 발명의 실시예의 다른 측면에 따르면, 차량 램프 광원의 주변에 필수적으로 구비되는 베젤부에 공기유로부를 마련하여 송풍구조를 간소화할 수 있도록 하며, 렌즈의 전표면 뿐만 아니라 렌즈면의 국부 영역에 선별적으로 공기를 제공할 수 있는바, 열전모듈과 송풍모듈의 용량을 현저하게 절감할 수 있는 효과가 있다.
즉, 본 발명의 실시예에 따른 열전순환부는 열전모듈에 의해 가열된 공기가 헤드 램프의 렌즈 표면 온도를 상승시켜 결로가 발생하는 것을 원천적으로 차단할 수 있으며, 특히 이 경우 결로가 발생하는 일부 영역에 선별적인 온풍 또는 열풍을 제공할 수 있도록 할 수 있다.
도 1 및 도 2는 본 발명의 실시예에 따른 차량용 램프의 단면 개념도이다.
도 3 및 도 4는 본 발명의 다른 실시예에 따른 차량용 램프의 단면개념도이다.
도 5는 도 1 내지 도 4에서의 열전순환부의 구조를 정면에서 바라본 것을 개략적으로 나타낸 것이다.
도 6는 본 발명의 실시예에 따른 차량용 램프의 구현이미지 중 사시도를 도시한 것이다.
도 7는 도 6의 배면 이미지를 도시한 투시도면이다.
도 8은 도 1 내지 도 4에서 상술한 차량용 램프에 적용되는 본 발명의 실시예에 따른 열전모듈의 요부단면도이다.
도 9은 도 8의 구조를 모듈화하여 확장한 것을 예시한 것이다.
도 10은 도 1 내지 도 5에서 상술한 열전모듈과 열전환부재의 다른 실시예를 도시한 것이다.
도 11은 도 10에서 상술한 본 발명의 일 실시예에 따른 제1열전환부재의 구조를 구체화한 것이다.
도 12는 상기 제1열전환부재에서 하나의 유로패턴이 형성된 구조의 확대개념도이다.
도 13은 본 발명의 다른 시예에 따른 열전모듈의 요부단면도이다.
도 14는 도 8 및 도 13에서 상술한 본 발명의 실시예에 따른 열전반도체소자의 구조를 다른 공법과 구성으로 구현한 예를 도시한 것이다.
도 15 및 도16은 본 발명의 실시형태에 따른 전도성층(C)의 다양한 변형예를 도시한 것이다.
이하에서는 첨부한 도면을 참조하여 본 발명에 따른 구성 및 작용을 구체적으로 설명한다. 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성요소는 동일한 참조부여를 부여하고, 이에 대한 중복설명은 생략하기로 한다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
도 1은 본 발명의 실시예에 따른 차량용 램프의 구조의 단면 개념도를 도시한 것이다.
도 1을 참조하면, 본 발명의 실시예에 따른 차량용 램프는 렌즈부(10)와 상기 렌즈부(10)와 이격공간(D)을 마련하며 배치되며, 발광소자를 수용하는 반사부를 포함하는 광원모듈(20), 상기 광원모듈에 인접하며, 상기 렌즈부와 상기 광원모듈 사이에 상기 이격공간을 마련하는 베젤부(30) 및 열전모듈(100)을 경유한 공기를 상기 이격공간 내부로 제공하는 열전순환부(40)를 포함하여 구성될 수 있다. 특히, 이 경우, 상기 열전모듈(100)의 냉각영역을 구현하는 흡열부에 인접하는 위치에 열원을 인가하는 가열부(190)을 더 포함하여 구성될 수 있다.
상기 가열부(190)는 한 쌍의 대향하는 기판인 제1기판(140)과 제2기판(150) 사이에 열전반도체소자가 배치되는 상기 열전모듈(100)의 구조에서 특히 냉각영역을 형성하는 기판 상에 배치될 수 있다. 본 실시예에서는, 냉각영역이 구현되는 기판이 제2기판(150)에 구현되는 것을 예로 하여 이하의 구조 및 작용을 설명하기로 한다.
구체적으로, 상기 렌즈부(10)는 차량이 헤드 램프의 가장 외부의 아우터 렌즈일 수 있으며, 상기 렌즈부(10)는 램프의 하우징과 결합하여 전체적인 램프의 외관을 형성한다. 상기 렌즈부(10)를 통해 외부로 광을 출사하는 광원모듈(20)의 경우, 하나 또는 다수개가 구현될 수 있으며, 본 발명의 실시예에서는 일 실시예로, 로우빔(20L)과 하이빔(20H)을 구비한 구조를 예로 들어 설명하기로 한다. 상기 광원모듈(20)은 할로겐 램프나 HID램프, 또는 LED, LD, OLED 등 다양한 고체발광소자를 구비하는 발광패키지와 발광소자에 인접하여 형성되는 반사부재 등의 구조를 포함하는 구조물을 포괄하는 개념이다.
상기 광원모듈(20)의 광출사면의 주변부에는 램프 내부의 미관을 확보하고, 반사기능을 구비하는 등의 기능을 수행하는 중간 커버부재, 이른바 베젤부(30)가 구비되게 된다. 본 실시예에서는, 상기 렌즈부(10)의 후면과 상기 베젤부(30) 사이의 이격공간(D)으로 상기 열전모듈(100)의 발열부에서 가열된 공기가 공급되어, 렌즈부 표면의 결로현상을 제거할 수 있도록 하는 데 그 특징이 있다. 나아가, 상기 열전모듈(100)의 열전 효율을 극대화하기 위해, 열전모듈(100)의 흡열영역을 형성하는 제2기판(150) 상에 가열부(190)을 배치하여, 제2기판에 구현되는 흡열부의 온도를 높임에 따라, 상대적으로 열전환 용량이 정해진 발열부의 온도도 함께 상승하게 되는 효과를 구현하여, 전체적으로 온풍의 온도를 높일 수 있도록 하게 된다. 이는 열전모듈의 냉각부의 온도가 일정 부분 올라가게 하여, 정해진 열전모듈의 열전용량(ΔT)에 따라 발열부의 온도를 더욱 증가시킬 수 있게 되어, 온풍의 온도를 더욱 효율적으로 높일 수 있게 되는 작용을 구현할 수 있게 된다.
일예로, 본 발명의 실시예에 적용된 열전모듈의 발열부와 냉각부의 온도변화량(ΔT)이 40℃ 이고, 냉각부 온도가 40℃, 발열부 온도가 80℃로 정해진 용량인 경우, 일반적인 경우에 온풍으로 변환가능한 온도는 80℃이나, 제2열전환부재가 광원부에 접촉하여 일정 부분 온도가 올라가 50℃가 되는 경우, 정해진 ΔT(40℃)에 의해 발열부의 최고 온도는 90℃ 까지 상승이 가능하게 된다. 이 경우, 온풍의 온도는 90℃로 올릴 수 있게 되며, 이는 동일한 전력에서 더욱 고온의 바람을 구현할 수 있는 장점이 구현되는 것이다.
도 1에 도시된 구조에서 상기 열전모듈(100)의 발열부를 형성하는 제1기판(140) 부분 상에는 제1열전달부재(도 5의 '52', 도 10의 '220' 참조)를 포함하는 제1열변환부(200)가 배치될 수 있다. 상기 제1열변환부(200)의 후방에는 외부나 램프 내부의 공기를 제1열전달부재 내부로 유도하는 열전순환부(40)가 배치될 수 있다. 상기 열전순환부(40)는 송풍팬을 포함하는 제1송풍모듈(42)를 구비할 수 있다. 이외에도 열전순환부(40)는 도시되지는 않았으나, 제1송풍모듈(42)에 전원을 인가하는 전원부나 배선부, 제어부를 구비하는 회로기판 등의 다양한 구성을 포함하여 구성될 수 있다.
요컨데, 본 발명이 차량용 램프의 구조에서는, 열전순환부(40)에서 공기가 이동하며 열전모듈(100)의 제1열변환부(200) 내부의 제1열전환부재를 경유하면서, 발열효과로 인해 공기의 온도가 상승하게 되며, 가열된 공기는 상기 제1열변환부(200)와 인접하여 배치되거나, 연결되는 구조의 송풍 가이드부(60)를 따라서 이동하게 되며, 이동되는 공기는 송풍 가이드부(60)의 말단인 토출부(61) 부분에서 상기 이격공간(D)으로 온풍(X)을 인가하게 되며, 이를 통해 렌즈부(10) 표면의 결로현상을 제거할 수 있게 된다. 이러한 온풍(X)의 온도는 상술한 것과 같이, 본 발명의 실시예에서의 가열부(190)의 작용으로 더욱 고온으로 구현될 수 있게 된다.
상기 가열부(190)는 상기 열전모듈(100)의 제2기판 상에 열원을 인가하여 가열할 수 있는 다양한 장치 및 구조물이 적용될 수 있으며, 일예로 도 1에 도시된 것과 같이 열선(191)이 제2기판(150)에 접촉하거나 인접하여 배치됨으로서, 제2기판(150)에 직접 열을 가하거나, 열전달구조물을 매개로 열을 가하는 구조로 구현될 수 있다.
도 2는 도 1에 따른 차량용 램프에 대한 실시예와는 다른 실시예를 도시한 것이다. 도 2의 실시예의 구조와 도 1의 구조는, 열전모듈(100) 상에 가열부(190)가 인접하여 배치되는 구조는 모두 동일하게 적용될 수 있다. 다만, 도 2는 도 1에 따른 차량용 램프에 대한 실시예와는 다른 실시예를 도시한 것이다. 도 2의 실시예의 구조와 도 1의 구조는, 열전모듈(100)과 광원모듈(20)의 접촉구조, 제1열변환부(200)의 구조 등의 요소는 모두 동일하게 적용될 수 있다. 차이점은, 제1열변환부(200)을 경유하여 온풍으로 변환된 공기를 이격공간(D)에 가이드 하는 부분의 구조를 변형한 점에 특징이 있다. 즉, 상기 베젤부(30)의 표면이나 내부에 공기가 이동할 수 있는 공기 유로부(32)를 형성하고, 후술하는 열전순환부(40)를 통해 제공되는 공기를 가이드 하여, 상기 베젤부(30)의 표면에서 렌즈부(10)과 베젤부(30)의 이격공간(D)에 온풍이 출사될 수 있도록 한다.
즉, 본 발명의 실시예에 따른 차량용 램프의 구조에서는, 렌즈부(10)의 표면 영역에 발생하는 결로를 제거하기 위해 온풍을 제공하는 열전순환부(40)을 구비하며, 온풍의 구현을 열전모듈(100)을 통해 구현함과 동시에, 온풍의 이동을 베젤부(30)의 내부나 외부 표면에 구현되는 공기유로부(32)를 통해 가이드 하여 렌즈부(10)의 전체면 뿐아니라, 특히 결로가 자주 발생하는 렌즈의 에지부 등의 국부영역에 온풍을 직접 제공하여, 결로 발생을 제거할 수 있도록 한다.
이는, 공기유로부(32)를 따라 가이드되는 온풍이, 상기 베젤부(30)의 표면에 배치되는 공기배출부(31, 33)를 통해 배출된다. 이 경우 상기 공기배출부(31, 33)는 상기 베젤부의 표면 영역 중 적어도 2 이상의 영역에 배치되도록 하여, 국부 영역에 결로가 자주 발생하는 영역에 집중적으로 온풍을 인가하여 결로를 작은 전력으로도 제거할 수 있도록 하여, 그 효율성을 높일 수 있도록 한다.
공기배출부(31, 33)은 결로가 자주 발생하는 취약 지점인 렌즈부의 엣지 영역과 동일 수평선상에 마련될 수 있다. 즉, 상기 공기배출부(31, 33)는 렌즈부(10)의 좌우 에지부분이나 그외 가장자리 개소에 하나 또는 다수의 홀이나 슬릿구조의 형상으로 구현될 수 있다. 상기 공기배출부(31, 33)의 형상은 바람의 방향을 제어할 수 있도록 렌즈의 표면으로 확산이 가능한 쐐기모양의 홀구조나 일정한 길이를 가지는 슬릿구조 등 다양하게 변형이 가능하다.
따라서, 상기 공기 유로부(32)의 일단은 상기 열전순환부(40)와 연통하며, 타단은 상기 이격공간(D)과 연통하는 구조로 형성될 수 있도록 한다. 아울러, 도 2에 도시된 구조에서는, 상기 공기유로부(32)가 베젤부(30)의 외표면에 배치되는 구조로 구현되는 것을 예시하였으나, 다른 예로서는, 상기 베젤부(30)의 내부에 유로를 형성하는 구조로 구현하는 것도 가능하다. 이렇게 베젤부 내부에 유로를 형성하는 경우에는 전체적으로 베젤부의 외부 구조가 간소화 및 박형화되어, 한정된 공간에 장착되는 열전모듈 및 열전순환부의 배치 공간을 더욱 넓게 확보할 수 있게 되는 장점이 구현된다.
나아가, 상기 공기유로부(32)의 내부에는 공기의 흐름을 강화할 수 있도록 제어가 가능한 보조적인 기능의 송풍팬과 같은 제2송풍모듈이 배치될 수도 있다. 이는 도 2의 구조에서 하나의 제1송풍모듈(42)을 구비하는 열전순환부(40)의 배치 구조는 상술한 것과 같이, 차량이 전방부분에 극히 한정된 램프 배치 장소는 그 공간이 한정되어 있다는 점에서 디자인의 자유도가 제약되는 점을 감안할 때, 원하는 출력의 풍량이나 풍압을 구현하기 어려울 수 있는바, 보조적인 송풍팬을 구비하여 보다 강한 풍압을 구현할 수 있도록 할 수 있다.
또는, 다른 실시예의 측면에서는, 도 2에 도시된 구조와 같이, 단일 송풍모듈과 하나의 열전모듈을 구비하는 구조에 한정되는 것이 아니라, 다수의 열전모듈을 구비하여 온풍을 구현하는 열전환부재(이를테면 히트싱크 부재)를 다수 구현하고, 다수의 송풍팬을 구비하는 구조나, 다수의 송풍팬이 하나의 열전모듈을 공유하는 구조 등으로 변형되어 구현될 수도 있음은 물론이다.
도 3은 본 발명의 다른 실시예에 따른 차량용 램프의 구조를 도시한 단면 개념도이다. 특히 도 3은 도 1의 구조를 변형한 실시예에 해당한다. 도 3의 구조가 도 1의 구조와의 차이는 가열부(190)가 제2기판(150)에 인접하여 배치되는 요지는 동일하나, 제2기판(150)이나 제2기판(150) 상의 히트싱크와 같은 열전환부재가 상기 광원모듈(20)의 일영역과 접촉하는 구조로 구현되는 구조로 형성하는 데 있다. 즉, 열원의 인가를 가열부(190)를 통해서 뿐만 아니라 광원모듈(20)에서 발생하는 열을 이용할 수 있도록 하는 것이다. 이를 통해, 램프 광원의 방열을 촉진함과 동시에 열전모듈의 흡열부를 온도를 올려, 발열부의 온도를 동시에 상승시켜, 제습을 위한 열풍의 온도를 효율적으로 높일 수 있도록 한다.
도 3의 구조에서, 열전모듈(100)의 냉각영역에 열원을 인가하여 온풍의 온도를 올리는 원리는 도 1에서 상술한 것과 동일하며, 특히 본 실시예의 구조에서는 광원모듈의 방열 기능과 동시에 열전모듈의 열전효율을 높일 수 있는 데 그 장점이 있다. 구체적으로, 흡열부를 구성하는 제2기판(150)이나, 제2기판(150) 상부에 배치되는 제2열변환부(도 10의 '300' 부분)부분이 발열하는 광원모듈의 일부에 접촉하는 경우에는, 광원에서 발생하는 열을 방열시키는 효과 이외에도, 열전모듈의 냉각부의 온도가 일정 부분 올라가게 하여, 정해진 열전모듈의 열전용량(ΔT)에 따라 발열부의 온도를 더욱 증가시킬 수 있게 되어, 온풍의 온도를 더욱 효율적으로 높일 수 있게 되는 작용을 구현할 수 있게 된다. 이러한 온풍의 제공효율은 상술한 것과 같이, 상기 열전모듈(100)의 흡열부를 형성하는 제2기판(150)이 광원모듈(20)에 접촉하거나, 도시되지는 않았으나, 상기 제2기판(150) 상에 배치되는 제2변환부가 광원모듈(20)에 접촉하여, 광원모듈(20) 자체의 열발생을 효율적으로 방열시키며, 동시에 열전모듈 냉각부의 온도를 일정 부분 올리는 효과를 구현하여, 발열부의 온도를 상승시킬 수 있도록 하여 공기의 가열효과를 동일한 전력으로도 높일 수 있게 되는 장점이 구현된다.
도 4는 본 발명의 또 다른 실시예에 따른 차량 램프의 구조를 도시한 개념도이다. 도 4의 실시예는 상술한 도 2의 구조의 변형 실시예로서, 도 2의 구조와 다른 점은 가열부(190)가 제2기판(150)에 인접하여 배치되는 요지는 동일하나, 제2기판(150)이나 제2기판(150) 상의 히트싱크와 같은 열전환부재가 상기 광원모듈(20)의 일영역과 접촉하는 구조로 구현되는 구조로 형성하는 데 있다. 이와 같이 광원모듈(20)과 열전모듈(100)의 기판이나 열전환부재를 통한 접촉 구조로 열전효율을 높이는 원리는 도 3의 구조에서 상술한 바 생략하기로 한다.
도 5는 도 1 내지 도 4에서의 열전순환부의 구조를 정면에서 바라본 것을 개략적으로 나타낸 것이다.
본 발명의 실시예에 적용되는 열전모듈은 상호 대향하는 제1기판(140)과 제2기판(150) 사이에 다수의 열전반도체소자가 구비되는 구조로 구현된다. 이 경우, 싱기 제1기판(140) 영역은 열전효과에 따라 발열영역이 구현되며, 그 상부에 도 3에 도시된 것과 같이 제1열전환부재(52)와 같은 구조물이 배치될 수 있다. 상기 제1열전환부재(52)는 그 후방에 제1송풍모듈을 포함하는 열전순환부(40)가 배치되는 구조로 배치되어, 경유하는 공기를 온풍으로 변환될 수 있도록 한다.
즉, 도 1 및 도 2는 가열부만을 적용하는 구조이며, 도 3 및 도 4의 구조는 도 5에 도시된 제2기판(150) 부분이 광원모듈(20)에 접촉하는 구조이며, 제1열전환부재(52)의 후방에 열전순환부(40)이 배치되어, 발열영역을 구현하는제1열전환부재(52)를 경유(검정색 화살표)한 공기는 가열된 온풍으로 변환하게 된다.
도 6는 본 발명의 실시예에 따른 차량용 램프의 구현이미지 중 사시도를 도시한 것이며, 도 7는 도 6의 배면 이미지를 도시한 투시도면이다. 도 6 및 도 7을 참조하면, 도 1 내지 도 4에서 상술한 것과 같이, 열전모듈의 냉각(흡열) 작용을 하는 제2기판(150) 부분에 가열부를 통해 열원을 인가하거나, 제2기판(150) 부분이 광원모듈의 외부 케이스(20A)와 접촉하는 구조로 배치되며, 제1기판의 상부에는 제1열전환부재가 수용되는 제1열변환부(200)과 그 후방의 열전순환부(40)이 배치되어, 온풍을 구현하는 구조로 구현되는 것을 확인할 수 있다. 온풍은 송풍가이드부(60)의 말단인 토출부(61)를 통해 토출되며, 이후 도 1에 도시된 개념도와 같이, 온풍이 렌즈부의 표면에 공급될 수 있게 된다.
이하에서는 상술한 본 발명의 실시예에 따른 차량용 조명에 적용되는 열전모듈의 다양한 실시예를 설명하기로 한다.
도 8은 도 1 내지 도 4에서 상술한 차량용 램프에 적용되는 본 발명의 실시예에 따른 열전모듈의 요부단면도이며, 도 9은 도 8의 구조를 모듈화하여 확장한 것을 예시한 것이다.
본 발명의 실시예에 따른 차량용 램프에 적용되는 열전모듈(100)은 제1기판(140)과 대향하는 제2기판(150) 사이에 제1반도체소자(120) 및 제2반도체소자(130)이 배치되는 구조로 구현된다. 특히, 제1기판(140) 상에는 발열기능을 수행하는 제1열변환부(200)가 배치되어 발열작용을 수행할 수 있게 하며, 제2기판(150) 상에는 흡열기능을 수행하는 제2열변환부(300)가 설치되어 냉각기능을 수행할 수 있도록 한다. 후술하겠지만, 상기 제1열변환부(200)는 도 5에서의 제1열전환부재(52)를 포함하는 모듈로 정의한다.
상기 제1기판(140) 및 상기 제2기판(150)은 절연기판, 이를테면 알루미나 기판을 사용할 수 있으며, 또는 다른 실시형태의 경우 금속기판을 사용하여 흡열 및 발열효율 및 박형화를 구현할 수 있도록 할 수 있다. 물론, 제1기판(140) 및 제2기판(150)을 금속기판으로 형성하는 경우에는 도 8에 도시된 것과 같이 제1기판 및 제2기판(140, 150)에 형성되는 전극층(160a, 160b)과의 사이에 유전체층(170a, 170b)을 더 포함하여 형성됨이 바람직하다.
금속기판의 경우, Cu 또는 Cu 합금을 적용할 수 있으며, 박형화가 가능한 두께는 0.1mm~0.5mm 범위로 형성이 가능하다. 금속기판의 두께가 0.1mm 보나 얇은 경우나 0.5mm를 초과하는 두께에서는 방열 특성이 지나치게 높거나 열전도율이 너무 높아 열전모듈의 신뢰성이 크게 저하되게 된다. 또한, 상기 유전체층(170a, 170b)의 경우 고방열 성능을 가지는 유전소재로서 냉각용 열전모듈의 열전도도를 고려하면 5~10W/K의 열전도도를 가지는 물질을 사용하며, 두께는 0.01mm~0.15mm의 범위에서 형성될 수 있다. 이 경우, 두께가 0.01mm 미만에서는 절연효율(혹은 내전압 특성)이 크게 저하되며, 0.15mm를 초과하는 경우에는 열전전도도가 낮아져 방열효율이 떨어지게 된다. 상기 전극층(160a, 160b)은 Cu, Ag, Ni 등의 전극재료를 이용하여 제1반도체 소자 및 제2반도체 소자를 전기적으로 연결하며, 도시된 단위 셀이 다수 연결되는 경우, 도 7에 도시된 것과 같이 인접하는 단위 셀과 전기적으로 연결을 형성하게 된다. 상기 전극층의 두께는 0.01mm~0.3mm의 범위에서 형성될 수 있다. 전극 층의 두께가 0.01mm 미만에서는 전극으로서 기능이 떨어져 전기 전도율이 불량하게 되며, 0.3mm를 초과하는 경우에도 저항의 증가로 전도효율이 낮아지게 된다.
특히, 본 발명의 실시예에 따른 열전모듈의 흡열부, 즉 냉각영역을 구현하는 제2기판(150) 상에는 열원을 인가하는 가열부(190)가 배치될 수 있음은 상술한 바와 같다.
도 9는 도 8의 구조와 같은 단위 셀(열전반도체소자가 한 쌍으로 이루어진 것)이 다수 연결되어 모듈화한 구조를 구비할 수 있으며, 특히, 이 경우 단위 셀을 이루는 열전소자는 후술하겠지만, 도 14에 따른 적층형 구조의 단위소자를 포함하는 열전소자를 적용할 수 있으며, 이 경우 한쪽은 제1반도체소자(120)로서 P형 반도체 와 제2반도체소자(130)로서 N형 반도체로 구성될 수 있으며, 상기 제1반도체 및 상기 제2반도체는 금속 전극 (160a, 160b)과 연결되며, 이러한 구조가 다수 형성되며 상기 반도체 소자에 전극을 매개로 전류가 공급되는 회로선(181, 182)에 의해 펠티어 효과를 구현하게 된다.
열전모듈 내의 반도체소자는 P 형 반도체 또는 N 형 반도체 재료를 적용할 수 있다. 이러한 P 형 반도체 또는 N 형 반도체 재료는 상기 N형 반도체소자는, 셀레늄(Se), 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga), 텔루륨(Te), 비스무트(Bi), 인듐(In)을 포함한 비스무트텔룰라이드계(BiTe계)로 이루어지는 주원료물질과, 상기 주원료물질의 전체 중량의 0.001~1.0wt%에 해당하는 Bi 또는 Te이 혼합된 혼합물을 이용하여 형성할 수 있다. 이를테면, 상기 주원료물질은 Bi-Se-Te 물질로 하고, 여기에 Bi 또는 Te를 Bi-Se-Te 전체 중량의 00.001~1.0wt%에 해당하는 중량을 더 추가하여 형성할 수 있다. 즉, Bi-Se-Te의 중량이 100g이 투입되는 경우, 추가로 혼합되는 Bi 또는 Te는 0.001g~1.0g의 범위에서 투입하는 것이 바람직하다. 상술한 바와 같이, 상술한 주원료물질에 추가되는 물질의 중량범위는 0.001wt%~0.1wt% 범위 외에서는 열전도도가 낮아지지 않고 전기전도도는 하락하여 ZT값의 향상을 기대할 수 없다는 점에서 의의를 가진다.
상기 P형 반도체 재료는, 안티몬(Sb), 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga), 텔루륨(Te), 비스무트(Bi), 인듐(In)을 포함한 비스무트텔룰라이드계(BiTe계)로 이루어지는 주원료물질과, 상기 주원료물질의 전체 중량의 0.001~1.0wt%에 해당하는 Bi 또는 Te이 혼합된 혼합물을 이용하여 형성함이 바람직하다. 이를 테면, 상기 주원료물질은 Bi-Sb-Te 물질로 하고, 여기에 Bi 또는 Te를 Bi-Sb-Te 전체 중량의 0.001~1.0wt%에 해당하는 중량을 더 추가하여 형성할 수 있다. 즉, Bi-Sb-Te의 중량이 100g이 투입되는 경우, 추가로 혼합되는 Bi 또는 Te는 0.001g~1g의 범위에서 투입될 수 있다. 상술한 주원료물질에 추가되는 물질의 중량범위는 0.001wt%~0.1wt% 범위 외에서는 열전도도가 낮아지지 않고 전기전도도는 하락하여 ZT값의 향상을 기대할 수 없다는 점에서 의의를 가진다.
단위 셀을 이루며 상호 대향 하는 제1반도체소자 및 제2반도체소자의 형상 및 크기는 동일하게 이루어지나, 이 경우 P 형 반도체소자의 전기전도도와 N 형 반도체 소자의 전기전도도 특성이 서로 달라 냉각효율을 저해하는 요소로 작용하게 되는 점을 고려하여, 어느 한쪽의 체적을 상호 대향 하는 다른 반도체소자의 체적과는 상이하게 형성하여 냉각성능을 개선할 수 있도록 하는 것도 가능하다.
즉, 상호 대향 하여 배치되는 단위 셀의 반도체 소자의 체적을 상이하게 형성하는 것은, 크게 전체적인 형상을 다르게 형성하거나, 동일한 높이를 가지는 반도체소자에서 어느 한쪽의 단면의 직경을 넓게 형성하거나, 동일한 형상의 반도체 소자에서 높이나 단면의 직경을 다르게 하는 방법으로 구현하는 것이 가능하다. 특히 N형 반도체소자의 직경을 P형 반도체소자보다 더 크게 형성하여 체적을 증가시켜 열전효율을 개선할 수 있도록 한다.
도 10은 도 1 내지 도 5에서 상술한 열전모듈과 열전환부재의 다른 실시예를 도시한 것이다. 도 5에서 상술한 제1열전환부재의 구조는 방열핀이 핀구조물이나 얇은 판상의 구조물을 복수개 배치한 구조를 예시하였으나, 본 도 10의 실시예에서는, 발열이나 냉각효율을 극대화할 수 있는 실시 형태로 열전환부재의 형태를 곡률을 구비한 구조물을 적용한 것을 예시한다.
도 10을 참조하면, 도 10은 한 쌍의 기판 사이에 열전반도체소자를 포함하는 열전모듈(100)의 상부에 배치되는 제1열변환부(200), 하부에 배치되는 제2열변환부(300)를 구비한 구조이다. 상기 제1열변환부(200) 및 상기 제2열변환부(300)는 상기 열전모듈(100)의 제1기판(140)과 제2기판(150)을 통해 구현되는 열전효과를 이용하여 유입되는 공기나 배출되는 공기에 열전환을 구현할 수 있도록 한다. 도 8에 도시된 구조의 열전모듈(100)은 본 발명의 실시예에 따른 도 1 내지 도 4에 적용되는 경우, 제2열변환부(300) 부분은 제거되는 구조로 적용될 수도 있으며, 냉각효율을 높이기 위해 제2열변환부(300)가 도 3 및 도 4와 같은 구조에서 광원모듈(20)과 접촉하는 구조로 변형될 수도 있음은 상술한 바와 같다.
특히, 상기 제1열변환부(200)는 도 1 내지 도 4의 구조에서 송풍팬과 같은 제1송풍모듈을 경유한 공기가 제1열전환부재(도 5의 52, 도 10의 220)를 통과하여 온풍이 될 수 있도록 발열부가 구현된다. 상기 제1열변환부(200)는 제1기판(140) 상에 열전환부재(220)를 구비할 수 있도록 한다. 이러한 구조는 상기 제2열변환부(300)가 제2기판(150) 상에 열전환부재(320)를 배치하는 것과 동일한바, 이하에서는 제1열변환부(200)의 열전환부재(220)가 구비되는 구조를 예로 하여 설명하기로 한다.
상기 제1열변환부(200)는 도 10에 도시된 것과 같이, 제1기판(140)과 접촉하는 구조로 배치될 수 있으며, 이를 통해 상기 제1열변환부(200)의 제1열전환부재(220)를 경유한 공기가 발열작용에 의해 온도가 상승된 온풍으로 구현되고, 도 2나 도 4에서 상술한 공기유로부를 거쳐서 렌즈부에 온풍을 공급할 수 있도록 한다.
도 10에 도시된 구조와 같이, 발열기능을 구현하는 제1열변환부(200) 내의 제1열전환부재(220)와, 흡열기능을 구현하는 제2열변환부(300) 내의 제2열전환부재(320)는 제1기판(140) 및 제2기판(150)과 직접 접촉하는 구조로 구현될 수도 있으나, 별도의 수용모듈(210, 310)의 내에 배치되는 구조로 형성될 수 있다.
도 11은 도 10에서 상술한 본 발명의 일 실시예에 따른 제1열전환부재(220)의 구조를 구체화한 것이며, 도 12는 상기 제1열전환부재(220)에서 하나의 유로패턴(220A)이 형성된 구조의 확대개념도이다. 제2기판(150) 상의 제2열전환부재(320)의 구조도 이와 동일한 것이 적용될 수 있는바, 이하에서는, 제1열전환부재(220)의 구조를 중심으로 상술한다.
도 11에 도시된 것과 같이, 상기 제1열전환부재(220)는 공기와 면접촉을 수행할 수 있도록 제1평면(221)과 상기 제1평면(221)의 반대 면인 제2평면(222)의 평판형상의 기재에 일정한 공기의 이동로인 공기 유로(C 1)를 형성하는 적어도 하나의 유로패턴(220A)이 구현되는 구조로 형성될 수 있다.
상기 유로패턴(220A)은 도 11에 도시된 것과 같이, 일정한 피치(P 1, P 2)와 높이(T 1)를 가지는 곡률 패턴이 형성되도록 기재를 폴딩(folding) 구조, 즉 접는 구조로 형성하는 방식으로 구현하는 것도 가능하다. 즉, 본 발명의 실시예에 따른 열전환부재(220, 320)는 공기가 면 접촉하는 평면을 2면을 구비하고, 접촉하는 표면적을 극대화하기 위한 유로패턴을 형성되는 구조로 구현될 수 있다.
도 11에 도시된 구조에서는, 공기가 유입되는 유입부의 유로(C 1)방향에서 유입되는 경우, 상술한 제1평면(221)과 상기 제1평면(221)의 반대 면인 제2평면(222)과 공기가 고르게 접촉하며 이동하여 유로의 말단(C 2)방향으로 진행될 수 있도록 하는바, 단순한 평판형상과의 접촉 면보다 동일 공간에서 훨씬 많은 공기와의 접촉을 유도할 수 있게 되는바, 흡열이나 발열의 효과가 더욱 증진되게 된다.
특히, 공기의 접촉면적을 더욱 증대하기 위해서, 본 발명의 실시예에 따른 열전환부재(220)는 도 11 및 도 12에 도시된 것과 같이, 기재의 표면에 저항패턴(223)을 포함하여 구성될 수 있다. 상기 저항패턴(223)은 단위 유로패턴을 고려할 때, 제1곡면(B1) 및 제2곡면(B2)에 각각 형성될 수 있다. 상기 저항패턴은 제1평면과 상기 제1평면에 대향 하는 제2평면 중 어느 하나의 방향으로 돌출되는 구조로 구현될 수 있다. 나아가, 상기 제1열전환부재(220)에는 상기 기재의 표면을 관통하는 다수의 유체 유동 홈(224)을 더 포함할 수 있으며, 이를 통해 열전환부재(240)의 제1평면과 제2평면 사이에 공기 접촉과 이동을 더욱 자유롭게 구현할 수 있도록 할 수 있다.
특히, 도 12의 부분 확대도와 같이, 상기 저항패턴(224)은 공기가 진입하는 방향으로 경사각(θ)을 가지도록 기울어진 돌출구조물로 형성되어 공기와의 마찰을 극대화하는 할 수 있도록 하여 접촉면적이나 접촉효율을 더욱 높일 수 있도록 한다. 상기 경사각(θ)은 상기 저항패턴 표면의 수평연장선과 상기 기재의 표면의 연장선이 예각을 이루도록 함이 더욱 바람직하며, 이는 직각이나 둔각일 경우 저항의 효과가 절감되기 때문이다. 아울러, 상술한 유동홈(224)의 배치를 저항패턴과 상기 기재의 연결부에 배치되도록 하여 공기 등의 유체의 저항을 높게 함과 동시에 반대 면으로 이동을 효율화할 수 있도록 할 수 있다. 구체적으로, 상기 저항패턴(223)의 앞 부분의 기재 면에 유동 홈(224)을 형성하여, 상기 저항패턴(223)과 접촉하는 공기의 일부를 기재의 전면과 후면을 통과하여 접촉의 빈도나 면적을 더욱 높일 수 있도록 할 수 있다.
도 12에서 도시된 것은 유로패턴이 일정한 피치를 가지는 구조로 일정한 주기를 가지도록 형성한 것이지만, 이와는 달리 단위패턴의 피치를 균일하게 하지 않고, 패턴의 주기 역시 불균일하게 구현하도록 변형할 수 있으며, 나아가 각 단위패턴의 높이(T 1) 역시 불균일하게 변형할 수 있음은 물론이다.
도 10 내지 도 12에서 본 발명의 실시예에 따른 열전달장치에서 열변환모듈 내에 포함되는 제1열전환부재가 1 개가 포함되는 구조를 설명하였으나, 다른 실시예로서는 하나의 열전달모듈 내에 다수의 열전환부재가 적층되는 구조로 구현될 수 있다. 이를 통해 공기 등과의 접촉표면적을 더욱 극대화할 수 있으며, 이러한 구조는 폴딩 구조로 형성되는 본 발명의 열전환부재의 특수성 상 좁은 면적에 많은 접촉 면을 구현할 수 있는 구조로 구현되는바, 동일 체적에 더욱 많은 수의 열전환부재를 배치할 수 있다. 물론, 이 경우 각각 적층되는 열전환부재 사이에는 제2중간부재 등의 지지기판이 더 배치될 수도 있다. 나아가 본 발명의 또 다른 실시예에서는 2개 이상의 열전모듈을 구비하는 구조로 구현하는 것도 가능하다.
또한, 발열부를 형성하는 열전모듈(제1기판)의 제1열전환부재의 피치와 흡열부를 형성하는 열전모듈(제2기판)의 제2열전환부재의 피치를 서로 상이하게 형성하는 것도 가능하다. 이 경우 특히, 발열부를 형성하는 열변환모듈 내의 열전환부재의 유로패턴의 피치가 흡열부를 형성하는 열변환모듈 내의 열전환부재의 유로패턴의 피치 이상으로 형성될 수 있다. 이 경우 상기 제1열변환부의 제1열전환부재의 피치와 상기 제2열변환부의 제1열전환부재의 유로패턴의 피치비율은, (0.5~2.0):1의 범위에서 형성될 수 있다.
유로패턴을 형성하는 본 발명의 실시예에 따른 열전환부재의 구조는 평판형 구조의 열전환부재나 기존이 방열핀 구조보다 동일한 체적 내에 훨씬 많은 접촉면적을 구현할 수 있는바, 평판구조의 열전환부재 대비 50% 이상의 공기 접촉면적의 증대를 가져올 수 있으며, 이에 따라 모듈의 크기도 대폭 절감할 수 있게 된다. 아울러, 이러한 열전환부재는 알루미늄과 같은 열전달효율이 높은 금속재질, 합성수지 등 다양한 부재를 적용할 수 있다.
이하에서는, 도 1 내지 도 4의 본 실시예의 차량 램프 구조에 적용되는 열전모듈(100)에 구비되는 열전반도체소자의 형상을 변경하여 발열효율을 높일 수 있는 변형 실시예를 설명하기로 한다.
즉, 도 8의 열전모듈의 단위 구조에, 도 13의 열전반도체소자의 변형 형상을 적용할 수 있다. 도 8 및 도 13을 참조하면, 본 발명의 다른 변형 실시예에 따른 열전소자(120)는, 제1단면적을 가지는 제1소자부(122), 상기 제1소자부(122)와 대향하는 위치에 제2단면적을 가지는 제2소자부(126) 및 상기 제1소자부(122)와 상기 제2소자부(126)를 연결하는 제3단면적을 가지는 연결부(124)를 포함하는 구조로 구현될 수 있다. 특히 이 경우, 상기 연결부(124)의 수평방향의 임의의 영역에서의 단면적이 상기 제1단면적 및 상기 제2단면적보다 작게 구현되는 구조로 마련될 수 있다.
이러한 구조는 동일한 재료를 가지고 정육면체 구조와 같은 단일 단면적을 가지는 구조의 열전소자와 동량의 재료를 적용하는 경우, 제1소자부와 제2소자부의 면적을 넓히고, 연결부의 길이를 길에 구현할 수 있게 됨으로써, 제1소자부와 제2소자부 사이의 온도차(△T)를 크게 할 수 있는 장점이 구현될 수 있게 된다. 이러한 온도차를 증가시키면, 발열측(Hot side)와 냉각측(Cold side) 사이에 이동하는 자유전자의 양이 많아져 전기의 발전량이 증가되며, 발열이나 냉각의 경우 그 효율이 높아지게 된다.
따라서, 본 실시예에 따른 열전소자(120)은 연결부(124)의 상부 및 하부에 평판형 구조나 다른 입체 구조로 구현되는 제1소자부 및 제2소자부의 수평 단면적을 넓게 구현하고, 연결부의 길이를 연장하여 연결부의 단면적을 좁힐 수 있도록 한다. 특히, 본 발명의 실시예에서는, 상기 연결부의 수평 단면 중 가장 긴 폭을 가지는 단면의 폭(B)과, 상기 제1소자부 및 상기 제2소자부의 수평단면적 중 더 큰 단면의 폭(A or C)의 비율이 1:(1.5~4)의 범위를 충족하는 범위에서 구현될 수 있도록 한다. 이 범위를 벗어나는 경우에는, 열전도가 발열측에서 냉각측으로 전도되어 오히려 발전효율을 떨어뜨리거나, 발열이나 냉각효율을 떨어뜨리게 된다.
이러한 구조의 실시예의 다른 측면에서는, 상기 열전소자(120)는, 상기 제1소자부 및 상기 제2소자의 길이방향의 두께(a1, a3)는, 상기 연결부의 길이방향 두께(s2)보다 작게 구현되도록 형성될 수 있다.
나아가, 본 실시예에서는, 제1소자뷰(122)의 수평방향의 단면적인 상기 제1단면적과 제2소자부(126)의 수평방향의 단면적인 상기 제2단면적이 서로 다르게 구현할 수 있다. 이는 열전효율을 조절하여 원하는 온도차를 쉽게 제어하기 위함이다. 나아가, 상기 제1소자부, 상기 제2소자부 및 상기 연결부는 상호 일체로 구현되는 구조로 구성될 수 있으며, 이 경우 각각의 구성은 상호 동일한 재료로 구현될 수 있다.
도 14는 도 8 및 도 13에서 상술한 본 발명의 실시예에 따른 열전반도체소자의 구조를 다른 공법과 구성으로 구현한 예를 도시한 것이다.
도 14를 참조하면, 본 발명의 또 다른 실시예에서는 상술한 반도체소자의 구조를 벌크형 구조가 아닌 적층형 구조의 구조물로 구현하여 박형화 및 냉각효율을 더욱 향상시킬 수 있도록 할 수 있다. 구체적으로는, 도 8이나 도 13에서의 제1반도체소자(120) 및 제2반도체소자(130)의 구조를 시트 형상의 기재에 반도체물질이 도포된 구조물이 다수 적층된 단위부재로 형성한 후 이를 절단하여 재료의 손실을 막고 전기전도특성을 향상시킬 수 있도록 할 수 있다.
이에 대해서 도14를 참조하면, 도 14는 상술한 적층 구조의 단위부재를 제조하는 공정 개념도를 도시한 것이다. 도 14에 따르면, 반도체 소재 물질을 포함하는 재료를 페이스트 형태로 제작하고, 시트, 필름 등의 기재(111) 상에 페이스트를 도포하여 반도체층(112)을 형성하여 하나의 단위부재(110)를 형성한다. 상기 단위부재(110)은 도 14에 도시된 것과 같이 다수의 단위부재(100a, 100b, 100c)를 적층하여 적층구조물을 형성하고, 이후 적층구조물을 절단하여 단위열전소자(120)를 형성한다. 즉, 본 발명에 따른 단위열전소자(120)은 기재(111) 상에 반도체 층(112)가 적층된 단위부재(110)이 다수가 적층된 구조물로 형성될 수 있다.
상술한 공정에서 기재(111) 상에 반도체 페이스트를 도포하는 공정은 다양한 방법을 이용하여 구현될 수 있으며, 일예로는 테이프캐스팅(Tape casting), 즉 매우 미세한 반도체 소재 분말을 수계 또는 비수계 용매(solvent)와 결합제(binder), 가소제(plasticizer), 분산제(dispersant), 소포제(defoamer), 계면활성제 중 선택되는 어느 하나를 혼합하여 슬러리(slurry)를 제조한 후 움직이는 칼날(blade)또는 움직이는 운반 기재위에 일정한 두께로 목적하는 바에 따라서 성형하는 공정으로 구현될 수 있다. 이 경우 상기 기재의 두께는 10um~100um의 범위의 필름, 시트 등의 자재를 사용할 수 있으며, 도포되는 반도체소재는 상술한 벌크형 소자를 재조하는 P 형 재료 및 N 형 재료를 그대로 적용할 수 있음은 물론이다.
상기 단위부재(110)을 다층으로 어라인하여 적층하는 공정은 50℃~250℃의 온도로 압착하여 적층구조로 형성할 수 있으며, 본 발명의 실시예에서는 이러한 단위부재(110)의 적층 수는 2~50개의 범위에서 이루어질 수 있다. 이후, 원하는 형태와 사이즈로 커팅공정이 이루어질 수 있으며, 소결공정이 추가될 수 있다.
상술한 공정에 따라 제조되는 단위부재(110)이 다수 적층되어 형성되는 단위열전소자는 두께 및 형상 사이즈의 균일성을 확보할 수 있다. 즉, 기존의 벌크(Bulk) 형상의 열전소자는 잉곳분쇄, 미세화 볼-밀(ball-mill) 공정 후, 소결한 벌크구조를 커팅하게 되는바, 커팅공정에서 소실되는 재료가 많음은 물론, 균일한 크기로 절단하기도 어려우며, 두께가 3mm~5mm 정도로 두꺼워 박형화가 어려운 문제가 있었으나, 본 발명의 실시형태에 따른 적층형 구조의 단위열전소자는, 시트형상의 단위부재를 다층 적층한 후, 시트 적층물을 절단하게 되는바, 재료 손실이 거의 없으며, 소재가 균일한 두께를 가지는바 소재의 균일성을 확보할 수 있으며, 전체 단위열전소자의 두께도 1.5mm 이하로 박형화가 가능하게 되며, 다양한 형상으로 적용이 가능하게 된다.
최종적으로 구현되는 구조는 도 8의 구조 또는 도 13에서 상술한 본 발명의 실시예에 따른 열전소자의 구조와 같이, 도 14의 (d)의 형상으로 절단하여 구현할 수 있게 된다. 특히, 본 발명의 실시형태에 따른 단위열전소자의 제조공정에서, 단위부재(110)의 적층구조를 형성하는 공정 중에 각 단위부재(110)의 표면에 전도성층을 형성하는 공정을 더 포함하여 구현될 수 있도록 할 수 있다.
즉, 도 14의 (c)의 적층구조물의 단위부재의 사이 사이에 도 15의 구조와 같은 전도성층을 형성할 수 있다. 상기 전도성층은 반도체층이 형성되는 기재면의 반대면에 형성될 수 있으며, 이 경우 단위부재의 표면이 노출되는 영역이 형성되도록 패턴화된 층으로 구성할 수 있다. 이는 전면 도포되는 경우에 비하여 전기전도도를 높일 수 있음과 동시에 각 단위부재 간의 접합력을 향상시킬 수 있게 되며, 열전도도를 낮추는 장점을 구현할 수 있게 된다.
즉, 도 15에 도시된 것은 본 발명의 실시형태에 따른 전도성층(C)의 다양한 변형예를 도시한 것으로, 단위부재의 표면이 노출되는 패턴이라 함은 도 15의 (a), (b)에 도시된 것과 같이, 폐쇄형 개구패턴(c1, c2)을 포함하는 메쉬타입 구조 또는 도 15의 (c), (d)에 도시된 것과 같이, 개방형 개구패턴(c3, c4)을 포함하는 라인타입 등으로 다양하게 변형하여 설계될 수 있다. 이상의 전도성층은 단위부재의 적층구조로 형성되는 단위열전소자의 내부에서 각 단위부재간의 접착력을 높이는 것은 물론, 단위부재간 열전도도를 낮추며, 전기전도도는 향상시킬 수 있게 하는 장점이 구현되며, 종래 벌크형 열전소자 대비 냉각용량(Qc) 및 ΔT(℃) 가 개선되며, 특히 파워 팩터(Power factor)가 1.5배, 즉 전기전도도가 1.5배 상승하게 된다. 전기전도도의 상승은 열전효율의 향상과 직결되는바, 냉각효율을 증진하게 된다. 상기 전도성층은 금속물질로 형성할 수 있으며, Cu, Ag, Ni 등의 재질의 금속계열의 전극물질은 모두 적용이 가능하다.
도 14에서 상술한 적층형 구조의 단위열전소자를 도 8 및 도 9에 도시된 열전모듈에 적용하는 경우, 즉 제1기판(140)과 제2기판(150)의 사이에 본 발명의 실시예에 따른 열전소자를 배치하고, 전극층 및 유전체층을 포함하는 구조의 단위셀로 열전모듈을 구현하는 경우 전체 두께(Th)는 1.mm~1.5mm의 범위로 형성이 가능하게 되는바, 기존 벌크형 소자를 이용하는 것에 비해 현저한 박형화를 실현할 수 있게 된다. 이 경우, 도 1 내지 도 4에서 상술한 본 발명이 실시예에 따른 차량용 램프의 결로 제거 장치를 구현하는 경우, 한정된 공간에 효율적으로 활용이 가능하게 된다.
또한, 도 11에서 상술한 열전소자(120, 130)는 도 16의 (a)에 도시된 것과 같이, 상부 방향(X) 및 하부방향(Y)으로 수평하게 배치될 수 있도록 어라인하여, (c)와 같이 절단하여, 본 발명의 실시예에 따른 열전소자를 구현할 수도 있다.
즉, 제1기판 및 제2기판과 반도체층 및 기재의 표면이 인접하도록 배치되는 구조로 열전모듈을 형성할 수 있으나, 도 16의 (b)에 도시된 것과 같이, 열전소자 자체를 수직으로 세워, 단위열전소자의 측면부가 상기 제1 및 제2기판에 인접하게 배치 되도록 하는 구조도 가능하다. 이와 같은 구조에서는 수평배치구조보다 측면 부에 전도층의 말단부가 노출되며, 수직방향의 열전도 효율을 낮추는 동시에 전기전도특성을 향상할 수 있어 냉각효율을 더욱 높일 수 있게 된다. 나아가, 도 11이 형상을 도 16의 (c)와 같이 절단하여 구현하여 적용할 수도 있다.
상술한 것과 같이, 다양한 실시형태로 구현이 가능한 본 발명의 열전모듈에 적용되는 열전소자에서, 상호 대향하는 제1반도체소자 및 제2반도체소자의 형상 및 크기는 동일하게 이루어지나, 이 경우 P 형 반도체소자의 전기전도도와 N 형 반도체 소자의 전기전도도 특성이 서로 달라 냉각효율을 저해하는 요소로 작용하게 되는 점을 고려하여, 어느 한쪽의 체적을 상호 대향하는 다른 반도체소자의 체적과는 상이하게 형성하여 냉각성능을 개선할 수 있도록 하는 것도 가능하다.
즉, 상호 대향하여 배치되는 반도체 소자의 체적을 상이하게 형성하는 것은, 크게 전체적인 형상을 다르게 형성하거나, 동일한 높이를 가지는 반도체소자에서 어느 한쪽의 단면의 직경을 넓게 형성하거나, 동일한 형상의 반도체 소자에서 높이나 단면의 직경을 다르게 하는 방법으로 구현하는 것이 가능하다. 특히 N형 반도체소자의 직경을 P형 반도체소자보다 더 크게 형성하여 체적을 증가시켜 열전효율을 개선할 수 있도록 할 수 있다.
상술한 본 발명의 일 실시형태에 따른 다양한 구조의 열전소자 및 이를 포함하는 열전모듈은 상술한 것과 같이 도 1 내지 도 4에서 도시된 차량용 램프 내에 공기유로부로 온풍을 구현하는 구조에 적용될 수 있다.
전술한 바와 같은 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였다. 그러나 본 발명의 범주에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능하다. 본 발명의 기술적 사상은 본 발명의 전술한 실시예에 국한되어 정해져서는 안 되며, 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (12)

  1. 렌즈부;
    상기 렌즈부와 소정 간격 이격하여 마련되는 베젤부;
    상기 베젤부에 마련되며 발광소자를 수용하는 반사부를 포함하는 광원 모듈;
    열전모듈을 경유한 공기를 상기 베젤부와 상기 렌즈부 사이의 이격공간 내부로 제공하는 열전순환부;를 포함하며,
    상기 열전모듈은,
    냉각영역을 형성하는 기판과 인접하여 상기 기판에 열원을 인가하는 가열부;
    를 더 포함하는 차량용 램프.
  2. 청구항 1에 있어서,
    상기 열전모듈은,
    상호 대향하는 제1기판 및 제2기판 사이에 배치되는 다수의 열전반도체소자를 포함하며,
    상기 제2기판에 냉각영역인 흡열부가 구현되는 차량용 램프.
  3. 청구항 2에 있어서,
    상기 가열부는,
    상기 제2기판과 접촉하는 열선을 포함하는 차량용 램프.
  4. 청구항 2에 있어서,
    상기 제2기판의 일단이 연장되어 상기 광원모듈의 반사부와 접촉하는 차량용 램프.
  5. 청구항 4에 있어서,
    상기 제2기판 상의 제2열전환부재의 일단이 상기 광원모듈과 접촉하는 차량용 램프.
  6. 청구항 4에 있어서,
    상기 제1기판 상에 배치되는 제1열전환부재를 더 포함하는 차량용 램프.
  7. 청구항 1 내지 청구항 6 중 어느 한 항에 있어서,
    상기 열전순환부는,
    상기 열전모듈의 제1기판 상에 배치되는 제1열전환부재로 공기를 제공하는 제1송풍모듈;
    을 포함하는 차량용 램프.
  8. 청구항 7에 있어서,
    상기 제1열전환부재의 일단과 연결되며, 타단은 상기 이격공간과 연통하는 송풍가이드부;
    를 더 포함하는 차량용 램프.
  9. 청구항 8에 있어서,
    상기 베젤부의 내부 또는 표면에 마련되는 공기유로부를 포함하며,
    상기 공기유로부의 일단은 상기 송풍가이드부와 연통하며, 상기 공기유로부의 타단은 상기 이격공간과 연통하는 차량용 램프.
  10. 제9항에 있어서,
    상기 공기유로부는 상기 이격공간 방향으로 적어도 하나의 공기배출부가 마련되는 차량용 램프.
  11. 제10항에 있어서,
    상기 공기배출부는 상기 렌즈부의 엣지 영역과 동일 수평선상에 마련되는 차량용 램프.
  12. 제10항에 있어서,
    상기 공기배출부는 쐐기모양의 홀구조 또는 슬릿구조로 마련되는 차량용 램프.
PCT/KR2016/008920 2015-08-13 2016-08-12 차량용 램프 WO2017026856A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/751,309 US10344941B2 (en) 2015-08-13 2016-08-12 Vehicle lamp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150114700A KR20170020042A (ko) 2015-08-13 2015-08-13 차량용 램프
KR10-2015-0114700 2015-08-13

Publications (1)

Publication Number Publication Date
WO2017026856A1 true WO2017026856A1 (ko) 2017-02-16

Family

ID=57984591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008920 WO2017026856A1 (ko) 2015-08-13 2016-08-12 차량용 램프

Country Status (3)

Country Link
US (1) US10344941B2 (ko)
KR (1) KR20170020042A (ko)
WO (1) WO2017026856A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180283648A1 (en) * 2017-03-28 2018-10-04 Toyota Motor Engineering & Manufacturing North America, Inc. Headlamp assemblies with bezel structures having airflow openings

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207364902U (zh) * 2017-04-11 2018-05-15 法雷奥照明湖北技术中心有限公司 发光模块以及包括该发光模块的机动车辆
KR20220073052A (ko) * 2020-11-26 2022-06-03 현대자동차주식회사 차량용 led 램프 방열 제어 장치 및 방법
KR102469176B1 (ko) * 2022-06-08 2022-11-21 최승인 에어 가이드를 채택한 강제공랭식 엘이디 조명의 냉각구조

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100048617A (ko) * 2008-10-31 2010-05-11 현대모비스 주식회사 공기순환식 헤드램프
KR20100063999A (ko) * 2008-12-04 2010-06-14 강성열 차량 전조등용 램프
KR20100122642A (ko) * 2009-05-13 2010-11-23 현대모비스 주식회사 헤드램프장치
WO2015084015A1 (ko) * 2013-12-02 2015-06-11 엘지이노텍 주식회사 방열 장치 및 조명 장치
KR20150082914A (ko) * 2014-01-08 2015-07-16 엘지이노텍 주식회사 열전모듈 및 이를 포함하는 열전환장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100048617A (ko) * 2008-10-31 2010-05-11 현대모비스 주식회사 공기순환식 헤드램프
KR20100063999A (ko) * 2008-12-04 2010-06-14 강성열 차량 전조등용 램프
KR20100122642A (ko) * 2009-05-13 2010-11-23 현대모비스 주식회사 헤드램프장치
WO2015084015A1 (ko) * 2013-12-02 2015-06-11 엘지이노텍 주식회사 방열 장치 및 조명 장치
KR20150082914A (ko) * 2014-01-08 2015-07-16 엘지이노텍 주식회사 열전모듈 및 이를 포함하는 열전환장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180283648A1 (en) * 2017-03-28 2018-10-04 Toyota Motor Engineering & Manufacturing North America, Inc. Headlamp assemblies with bezel structures having airflow openings
US10408414B2 (en) * 2017-03-28 2019-09-10 Toyota Motor Engineering & Manufacturing North America, Inc. Headlamp assemblies with bezel structures having airflow openings

Also Published As

Publication number Publication date
US20180231207A1 (en) 2018-08-16
KR20170020042A (ko) 2017-02-22
US10344941B2 (en) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2017039363A1 (ko) 차량용 램프
WO2017026856A1 (ko) 차량용 램프
WO2016159649A1 (ko) 제습장치
KR20160139777A (ko) 차량용 램프
CN101689537B (zh) 用于元件或电路的冷却盒
WO2016167540A1 (ko) 헤드 램프의 결로 발생 방지 장치
WO2019112288A1 (ko) 열변환장치
WO2020218753A1 (ko) 열변환장치
KR102170479B1 (ko) 열전환장치
WO2011040671A1 (ko) 발광다이오드 조명기구
WO2011159077A2 (ko) 열전대를 이용한 매립형 광소자 패키지 모듈
KR101820424B1 (ko) 열전환장치
WO2016159591A1 (ko) 열전소자, 열전모듈 및 이를 포함하는 열전환장치
US9829173B2 (en) Vehicular lamp
KR100663117B1 (ko) 열전 모듈
KR20150040590A (ko) 단위열전모듈 및 이를 포함하는 열전모듈, 냉각장치
KR20180000550A (ko) 차량용 램프
WO2020040479A1 (ko) 열전 모듈
WO2015163729A1 (ko) 열전환장치
WO2018226046A1 (ko) 열변환장치
KR20160130733A (ko) 열전환장치
JP2013084874A (ja) 熱電モジュール
KR20170020043A (ko) 차량용 램프
KR20170020041A (ko) 차량용 램프
JP4288927B2 (ja) 多段熱電モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835496

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15751309

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16835496

Country of ref document: EP

Kind code of ref document: A1