WO2017200128A1 - 컵홀더 - Google Patents

컵홀더 Download PDF

Info

Publication number
WO2017200128A1
WO2017200128A1 PCT/KR2016/005389 KR2016005389W WO2017200128A1 WO 2017200128 A1 WO2017200128 A1 WO 2017200128A1 KR 2016005389 W KR2016005389 W KR 2016005389W WO 2017200128 A1 WO2017200128 A1 WO 2017200128A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fan
heat sink
holder body
cup holder
Prior art date
Application number
PCT/KR2016/005389
Other languages
English (en)
French (fr)
Inventor
신종배
강종현
임수찬
정성혁
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to CN201680085892.7A priority Critical patent/CN109153350A/zh
Priority to US16/301,480 priority patent/US20190126804A1/en
Publication of WO2017200128A1 publication Critical patent/WO2017200128A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N3/00Arrangements or adaptations of other passenger fittings, not otherwise provided for
    • B60N3/10Arrangements or adaptations of other passenger fittings, not otherwise provided for of receptacles for food or beverages, e.g. refrigerated
    • B60N3/104Arrangements or adaptations of other passenger fittings, not otherwise provided for of receptacles for food or beverages, e.g. refrigerated with refrigerating or warming systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N3/00Arrangements or adaptations of other passenger fittings, not otherwise provided for
    • B60N3/10Arrangements or adaptations of other passenger fittings, not otherwise provided for of receptacles for food or beverages, e.g. refrigerated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/20External fittings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/18Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/20Energy converters
    • B60Y2400/208Peltier or Thomson elements for cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/021Control thereof
    • F25B2321/0212Control thereof of electric power, current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/023Mounting details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0251Removal of heat by a gas

Definitions

  • the present invention relates to a cup holder, and more particularly to a cold cup holder.
  • the cup holder mounted in a specific place such as a vehicle only plays a role of fixing the cup to prevent the contents of the cup from spilling due to movement, and does not allow the contents of the cup or the can to be cold or hot. There is this.
  • the technical problem to be achieved by the present invention is to provide a cold cup holder using a thermoelectric element.
  • Cup holder according to an embodiment of the present invention is disposed on the holder body, the thermoelectric element disposed on the lower portion of the holder body, the heat sink disposed on the lower portion of the thermoelectric element and the side of the holder body, the side of the holder body And a fan for discharging the air sucked from the through the heat sink.
  • the heat sink may include a plurality of wings spaced apart in the same direction in which the air is discharged.
  • the plurality of wings may be arranged in parallel.
  • thermoelectric element may be disposed in the hole.
  • the air flow path may be formed such that the sucked air passes toward the heat sink.
  • the fan may discharge the air in a direction different from a direction in which the air is sucked.
  • the fan may be a blower fan.
  • It may further include a housing surrounding the outer surface of the heat sink and the fan.
  • the housing may include an inlet port through which air is sucked from the fan and a discharge port through which the sucked air is discharged.
  • the discharge port may be disposed adjacent to the heat sink.
  • the holder body may be a metal material capable of heat conduction.
  • the apparatus may further include a power module for supplying power to the fan and the thermoelectric element.
  • the power module may control the thermoelectric element to perform one of cooling and heating of the holder body.
  • It may further include a switch connected to the power module for transmitting a control signal for one of the cooling and heating of the holder body to the power module.
  • the cup holder according to the embodiment of the present invention may provide a cold temperature function to a container containing a beverage by using an endothermic or exothermic function of the thermoelectric element.
  • the thermoelectric element may be disposed under the cup holder to provide an even cold temperature function to the entire container in the cup holder.
  • the power supply can be easily supplied without restriction of the place can provide a cup holder with increased portability and convenience.
  • thermoelectric element heat exchange takes place effectively by matching the direction of air flow in the cup holder with the structure of the heat sink attached to the thermoelectric element, and a slim cup holder can be realized by changing the arrangement positions of the thermoelectric element and the fan.
  • the space efficiency in a cup holder can be improved.
  • FIG. 1 is a view showing a cup holder according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of a cup holder according to an embodiment of the present invention.
  • FIG 3 is a sectional view of a cup holder and an enlarged view of a heat sink according to an embodiment of the present invention.
  • FIG. 4 is a perspective view of a cup holder according to an embodiment of the present invention.
  • FIG. 5 is a side view of the cup holder according to an embodiment of the present invention.
  • FIG. 6 is a view illustrating various fans according to an embodiment of the present invention.
  • thermoelectric device 7 is a cross-sectional view of a thermoelectric device according to an embodiment of the present invention.
  • thermoelectric device 8 is a perspective view of a thermoelectric device according to an embodiment of the present invention.
  • thermoelectric leg of a laminated structure illustrates a method of manufacturing a thermoelectric leg of a laminated structure.
  • 10 to 12 are conceptual views of a heat sink according to an embodiment of the present invention.
  • ordinal numbers such as second and first
  • first and second components may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • second component may be referred to as the first component, and similarly, the first component may also be referred to as the second component.
  • FIG. 1 is a view showing a cup holder according to an embodiment of the present invention
  • Figure 2 is an exploded perspective view of a cup holder according to an embodiment of the present invention.
  • the cup holder 10 is to accommodate the container therein, to provide a cold and heat function to the received container, the holder body 100, the thermoelectric element 200, the heat sink 300, the fan 400, the guide part 500, the power module 600, the housing 700, the switch 800, and the connection part 900 are included.
  • the holder body 100 has a hollow central shape, and the receiving body is provided in the holder body 100. And the receiving portion may be equipped with a container for receiving a liquid, such as a cup or drink the user drinks.
  • the holder body 100 may include a metal, an alloy material, a synthetic resin material having a good heat transfer efficiency, so that the effect of cold and heat is provided to a cup or a beverage mounted inside the holder body 100.
  • the holder body 100 may have a cylindrical structure having a curvature, and the lower portion of the holder body 100 may have a flat plate-shaped area to mount the thermoelectric element 200.
  • thermoelectric element 200 may be provided under the holder body 100, and may be disposed such that the heat generating portion or the heat absorbing portion of the thermoelectric element 200 contacts the lower surface of the holder body 100.
  • a thermal grease may be provided between the thermoelectric element 200 and the lower portion of the holder body 100.
  • the portion of the thermoelectric element 200 in contact with the lower surface of the thermoelectric element 200 and the holder body 100 may be a heat generating portion or a heat absorbing portion according to the polarity of the power supplied to the thermoelectric element 200.
  • thermoelectric element 200 which is a heat source
  • the thermoelectric element 200 is provided below the holder body 100, the heat source generated by the thermoelectric element 200 may be evenly provided throughout the holder body (100).
  • heat transfer is further improved to the liquid in the container accommodated inside the holder body 100 at the convex side of heat.
  • thermoelectric element 200 In addition, the structure of the thermoelectric element 200 will be described with reference to FIG. 7.
  • the heat sink 300 is provided on the lower surface of the thermoelectric element 200, and exchanges heat received from the thermoelectric element 200 with ambient air.
  • the heat sink 300 includes a plurality of wings 310 spaced apart and protruding on a flat base.
  • the plurality of wings 310 includes a metal material having excellent heat conduction and heat dissipation, and includes an aluminum material in one embodiment.
  • the plurality of wings 310 may be spaced apart to form a predetermined interval. And the plurality of wings 310 may be arranged in parallel.
  • the fan 400 is provided on the side of the holder body 100 to perform the aspiration of air and to promote heat exchange in the heat sink 300. That is, air is sucked from one surface of the holder main body 100 due to the suction of air by the fan 400, and the sucked air is lowered from the holder main body 100 through the heat sink 300 of the cup holder 10. Can be discharged. As a result, the fan 400 performs a function of guiding air onto the heat sink 300 and at the same time allows air to circulate inside the apparatus.
  • FIG. 3 is a sectional view of a cup holder and an enlarged view of a heat sink, according to an embodiment of the present invention
  • the outlet flows to the bottom surface of the holder body 100 in which the heat sink 300 is disposed, and is formed on the other side of the holder body 100 along a space formed between the plurality of wings 310 due to the air continuously flowing ( O) air is exhausted.
  • the cup holder since the fan 400 and the thermoelectric element 200 (including the heat sink 300) are different from each other in the disposed position, the cup holder (the cup holder) may be disposed in close contact with the thermoelectric element 200 and the fan 400. 10) can reduce the overall size.
  • the cup holder 10 according to an embodiment has the advantage that can be made compact.
  • the suction and discharge directions of air in the fan 400-1 may be the same (FIG. 6 (a)).
  • the fan 400-2 may have a different suction direction and a discharge direction, and may form a predetermined angle (FIG. 6B).
  • the fan may be a blower fan 400-2, and the suction direction and the discharge direction of the fan 400-2 may be vertical.
  • the air sucked from the side of the holder body 100 can be immediately discharged to the lower portion of the cup holder in which the heat sink is located.
  • less air colliding with the holder main body 100 may prevent backflow of the air, and the sucked air may be smoothly discharged to the outlet to promote heat exchange through the heat sink 300.
  • the guide part 500 guides the air sucked through the fan 400 to the heat sink 300 and supports the holder body 100.
  • the guide part 500 includes a first member 510 and a second member 520. .
  • the first member 510 is disposed between the holder body 100 and the heat sink 300, and includes a hole h.
  • the thermoelectric element 200 is disposed in the hole h such that the first member 510 surrounds the thermoelectric element 200.
  • the first member supports the holder body 100 and prevents the air sucked from the outside through the fan 400 from being transferred to the holder body 100.
  • the holder body is caused by the air sucked from the outside. Thermal equilibrium of 100 can be prevented.
  • the second member 520 is disposed between the holder body 100 and the fan 400, and includes an air flow path guiding air sucked from the fan 400 to the heat sink 300.
  • the second member 520 is disposed on the side of the holder body 100 so as to surround the side of the holder body 100 to prevent the external air introduced from the fan 400 to be transferred to the holder body 100. Can be.
  • the second member 520 is formed to guide the flow path of the air so that the air sucked from the fan 400 flows toward the heat sink 300.
  • the second member 520 may be inclined toward the heat sink 300.
  • the second member 520 may form an accommodating part in which the fan 400 may be mounted, and the air flows so that the air sucked toward the heat sink 300 existing under the cup holder 10 flows. It can be formed to switch. For example, the air suction direction and the air discharge direction of the fan 400 may be different from each other. Thus, the thermal balance of the holder body 100 may be adjusted by the air sucked from the outside through the second member 520. You can block. In addition, the air sucked through the fan 400 flows through the heat sink 300 without an external outflow, and by smoothly flowing the air, an effective heat exchange may be performed in the heat sink 300.
  • the second member 520 may be positioned on or at an end of the first member 510, and the first member 510 and the second member 520 may be integrally coupled to each other.
  • the power module 600 supplies power to the thermoelectric element 200 and the fan 400, and controls the polarity of the power supplied to the thermoelectric element 200 to heat or cool the holder body 100.
  • the wire connected between one of the external power source or the switch 800 and the power module 600 may be two strands.
  • the power module 600 may be connected to the fan 400 and the thermoelectric element 200 by two wires, respectively.
  • the power module 600 may be disposed inside or outside the cup holder 10. The power module is illustrated as being disposed therein, but is not limited thereto.
  • the housing 700 is an outer surface of the cup holder 10 surrounding the holder body 100, the thermoelectric element 200, the heat sink 300, the fan 400, the guide part 500, and the power module 600. 4 and 5, the housing 700 has a suction port I through which air is sucked.
  • the suction port I is formed to correspond to the position of the fan 400 disposed inside the housing 700 and the suction direction of the air, thereby smoothly sucking the air.
  • the inlet I may include a plurality of holes, and may have the same size as the area of the fan 400.
  • the discharge port (O) is formed on one side of the holder body 100 in the direction in which air flows through the plurality of wings 310, whereby the air is smoothly discharged to the outside.
  • the outlet O may include a plurality of holes, and the plurality of holes may be formed in various shapes.
  • the outlet (O) may be formed to correspond to the shape formed between the plurality of wings 310 of the heat sink 300 through which air flows.
  • the housing 700 is disposed on the outer surface of the cup holder 10 so that the air introduced into the inlet port I flows through the heat sink 300, and the air is other than the inlet port I and the outlet port O.
  • the holder body 100, the fan 400, the thermoelectric element 200, and the heat sink 300 are enclosed so as not to be discharged to the air.
  • one side of the housing 700 may be formed with a wire hole (P) connected to the power source.
  • the switch 800 may be connected to the power module 600 and disposed inside or outside the cup holder 10. In addition, the switch 800 may cool or heat the holder body 100 by transmitting a control signal to the power module 600 according to a user's selection.
  • connection unit 900 is a connection unit 900 connected to an external power source, and may have various forms. In one embodiment, it is formed of a USB (Universal Serial Bus) power source can easily supply power anywhere.
  • USB Universal Serial Bus
  • the cup holder may be provided at various places or places, such as a seating chair of a vehicle or a theater, a drink receiving space of a conference table of a conference room.
  • it is provided in a detachable structure that can be detached to increase the ease of use, and is formed to be combined with the container of various sizes, the existing cup holder can be easily mounted.
  • it can be implemented to change the insertion diameter of the container to exhibit the versatility.
  • the thermoelectric device 200 may include a lower substrate 210 and a lower electrode ( 220, a P-type thermoelectric leg 230, an N-type thermoelectric leg 240, an upper electrode 250, and an upper substrate 260.
  • Thermoelectric phenomenon is a phenomenon caused by the movement of electrons and holes in a material, and means a direct energy conversion between heat and electricity.
  • thermoelectric device is a generic term for a device using a thermoelectric phenomenon, and has a structure in which a P-type thermoelectric material and an N-type thermoelectric material are bonded between metal electrodes to form a PN junction pair.
  • Thermoelectric elements may be classified into a device using a temperature change of the electrical resistance, a device using the Seebeck effect, a phenomenon in which electromotive force is generated by a temperature difference, a device using a Peltier effect, a phenomenon in which endothermic or heat generation by current occurs. .
  • the lower electrode 220 is disposed between the lower substrate 210 and the lower bottom surface of the P-type thermoelectric leg 230 and the N-type thermoelectric leg 240, and the upper electrode 250 is the upper substrate 260 and the P-type.
  • the thermoelectric leg 230 and the upper bottom surface of the N-type thermoelectric leg 240 is disposed. Accordingly, the plurality of P-type thermoelectric legs 230 and the plurality of N-type thermoelectric legs 240 are electrically connected by the lower electrode 220 and the upper electrode 250.
  • a pair of P-type thermoelectric legs 230 and N-type thermoelectric legs 240 disposed between the lower electrode 220 and the upper electrode 250 and electrically connected to each other may form a unit cell.
  • thermoelectric leg 230 when a voltage is applied to the lower electrode 220 and the upper electrode 250 through the lead wires 281 and 282, a current is transmitted from the P-type thermoelectric leg 230 to the N-type thermoelectric leg 240 due to the Peltier effect.
  • the flowing substrate absorbs heat to act as a cooling unit, and the substrate flowing current from the N-type thermoelectric leg 240 to the P-type thermoelectric leg 230 may be heated to act as a heat generating unit.
  • the P-type thermoelectric leg 230 and the N-type thermoelectric leg 240 may be a bismuth fluoride (Bi-Te) -based thermoelectric leg including bismuth (Bi) and tellurium (Ti) as main materials.
  • Bi-Te bismuth fluoride
  • Ti tellurium
  • P-type thermoelectric leg 230 is antimony (Sb), nickel (Ni), aluminum (Al), copper (Cu), silver (Ag), lead (Pb), boron (B), gallium relative to the total weight 100wt%
  • a mixture comprising 99 to 99.999 wt% of bismustelulide (Bi-Te) -based main raw material including at least one of (Ga), tellurium (Te), bismuth (Bi) and indium (In) and Bi or Te 0.001 It may be a thermoelectric leg including to 1wt%.
  • the main raw material is Bi-Se-Te, and may further include Bi or Te as 0.001 to 1wt% of the total weight.
  • the N-type thermoelectric leg 240 has selenium (Se), nickel (Ni), aluminum (Al), copper (Cu), silver (Ag), lead (Pb), boron (B), and gallium based on the total weight of 100 wt%.
  • a mixture comprising 99 to 99.999 wt% of bismustelulide (Bi-Te) -based main raw material including at least one of (Ga), tellurium (Te), bismuth (Bi) and indium (In) and Bi or Te 0.001 It may be a thermoelectric leg including to 1wt%.
  • the main raw material is Bi-Sb-Te, and may further include Bi or Te as 0.001 to 1wt% of the total weight.
  • the P-type thermoelectric leg 230 and the N-type thermoelectric leg 240 may be formed in a bulk type or a stacked type.
  • the bulk P-type thermoelectric leg 230 or the bulk N-type thermoelectric leg 240 is manufactured by heating a thermoelectric material to produce an ingot, pulverizing and sieving the ingot, and then obtaining the powder for thermoelectric leg. Sintering, and can be obtained through the process of cutting the sintered body.
  • the stacked P-type thermoelectric leg 230 or the stacked N-type thermoelectric leg 240 is formed by applying a paste including a thermoelectric material on a sheet-shaped substrate to form a unit member, and then stacking and cutting the unit members. Can be obtained.
  • the pair of P-type thermoelectric legs 230 and the N-type thermoelectric legs 240 may have the same shape and volume, or may have different shapes and volumes.
  • the height or the cross-sectional area of the N-type thermoelectric leg 240 may be the height or the cross-sectional area of the P-type thermoelectric leg 230. It can also be formed differently.
  • thermoelectric device The performance of the thermoelectric device according to the exemplary embodiment of the present invention may be represented by Seebeck index.
  • the Seebeck index ZT may be expressed as in Equation 1.
  • is the Seebeck coefficient [V / K]
  • sigma is the electrical conductivity [S / m]
  • ⁇ 2 sigma is the Power Factor [W / mK 2 ].
  • T is the temperature and k is the thermal conductivity [W / mK].
  • k can be represented by a ⁇ c p ⁇ ⁇ , a is thermal diffusivity [cm 2 / S], c p is specific heat [J / gK], and ⁇ is density [g / cm 3 ].
  • the Z value (V / K) may be measured using a Z meter, and the Seebeck index (ZT) may be calculated using the measured Z value.
  • the upper electrode 250 disposed between the thermoelectric legs 240 includes at least one of copper (Cu), silver (Ag), and nickel (Ni), and may have a thickness of 0.01 mm to 0.3 mm.
  • the thickness of the lower electrode 220 or the upper electrode 250 is less than 0.01mm, the function as the electrode may be degraded to lower the electrical conduction performance, if it exceeds 0.3mm, the conduction efficiency may be lowered due to the increase in resistance. .
  • the lower substrate 210 and the upper substrate 260 facing each other may be an insulating substrate or a metal substrate.
  • the insulating substrate may be an alumina substrate or a polymer resin substrate having flexibility.
  • Flexible polymer resin substrates are highly permeable, such as polyimide (PI), polystyrene (PS), polymethyl methacrylate (PMMA), cyclic olefin copoly (COC), polyethylene terephthalate (PET), and resin
  • Various insulating resin materials, such as plastics can be included.
  • the metal substrate may include Cu, Cu alloy, or Cu—Al alloy, and the thickness may be 0.1 mm to 0.5 mm.
  • the thickness of the metal substrate is less than 0.1 mm or more than 0.5 mm, the heat dissipation characteristics or the thermal conductivity may be too high, so that the reliability of the thermoelectric element may be lowered.
  • the dielectric layer 270 between the lower substrate 210 and the lower electrode 220 and between the upper substrate 260 and the upper electrode 250, respectively. This can be further formed.
  • the dielectric layer 270 may include a material having a thermal conductivity of 5 to 10 W / K, and may be formed to a thickness of 0.01 mm to 0.15 mm. When the thickness of the dielectric layer 270 is less than 0.01 mm, insulation efficiency or withstand voltage characteristics may be lowered, and when the thickness of the dielectric layer 270 is greater than 0.15 mm, thermal conductivity may be lowered to reduce heat radiation efficiency.
  • sizes of the lower substrate 210 and the upper substrate 260 may be formed differently.
  • the volume, thickness, or area of one of the lower substrate 210 and the upper substrate 260 may be greater than the volume, thickness, or area of the other.
  • a heat radiation pattern for example, an uneven pattern may be formed on at least one surface of the lower substrate 210 and the upper substrate 260.
  • the heat dissipation performance of a thermoelectric element can be improved.
  • the uneven pattern is formed on the surface in contact with the P-type thermoelectric leg 230 or the N-type thermoelectric leg 240, the bonding characteristics between the thermoelectric leg and the substrate can also be improved.
  • thermoelectric leg of a laminated structure illustrates a method of manufacturing a thermoelectric leg of a laminated structure.
  • a material including a semiconductor material is prepared in the form of a paste, and then coated on a substrate 1110 such as a sheet or a film to form a semiconductor layer 1120. Accordingly, one unit member 1100 may be formed.
  • a plurality of unit members 1100a, 1100b, and 1100c may be stacked to form the stacked structure 1200, and the unit thermoelectric legs 1300 may be obtained by cutting the stacked structures 1200.
  • the unit thermoelectric leg 1300 may be formed by a structure in which a plurality of unit members 1100 having the semiconductor layer 1120 formed on the substrate 1110 are stacked.
  • the process of applying the paste on the substrate 1110 may be performed in various ways.
  • Tape casting method is a slurry by mixing a fine semiconductor material powder with at least one selected from an aqueous or non-aqueous solvent, binder, plasticizer, dispersant, defoamer and surfactant
  • the preparation in the form (slurry) it is a method of molding on a moving blade (blade) or a moving substrate.
  • the substrate 1110 may be a film, a sheet, or the like having a thickness of 10 ⁇ m to 100 ⁇ m, and the P-type thermoelectric material or the N-type thermoelectric material for manufacturing the bulk type device may be applied as it is.
  • the process of arranging the unit members 1100 in a plurality of layers may be performed by pressing at a temperature of 50 to 250 ° C., and the number of the unit members 110 to be stacked may be, for example, 2 to 50. have. Thereafter, it may be cut into a desired shape and size, and a sintering process may be added.
  • the unit thermoelectric leg 1300 manufactured as described above may secure uniformity in thickness, shape, and size, and may be advantageously thinned and may reduce material loss.
  • the unit thermoelectric leg 1300 may have a cylindrical shape, a polygonal column shape, an elliptical column shape, or the like, and may be cut into a shape as illustrated in FIG. 9 (d).
  • thermoelectric leg having a stacked structure a thermoelectric leg having a stacked structure
  • a conductive layer may be further formed on one surface of the unit member 1100.
  • 10 to 12 are conceptual views of a heat sink according to an embodiment of the present invention.
  • the heat sink 300 according to the embodiment of the present invention is a flat substrate having a first plane 311 and a second plane 312, and forms an air flow path C1.
  • At least one flow path pattern 312A may be included.
  • the flow path pattern 312A may be formed in a structure that folds the substrate, that is, a folding structure, so that a curvature pattern having a constant pitch P1 and P2 and a height T1 is formed. Can be.
  • air is in surface contact with the first plane 311 and the second plane 312 of the heat sink 300, and an area in which air is in surface contact with the flow path pattern 312A may be maximized.
  • the air when air flows in the flow path direction C1, the air may move evenly in contact with the first plane 311 and the second plane 222, and may proceed in the flow path direction C2.
  • the contact surface with air is wider than that of a simple flat substrate, so that the effects of endotherm and heat generation are increased.
  • a protruding resistance pattern 313 may be formed on the surface of the substrate.
  • the resistance pattern 313 may be formed as a protruding structure inclined to have a predetermined inclination angle ⁇ in the direction in which air is introduced. Accordingly, the friction between the resistance pattern 313 and the air can be maximized, thereby increasing the contact area or the contact efficiency.
  • the groove 314 may be formed in the base surface of the front portion of the resistance pattern 313. Part of the air in contact with the resistance pattern 223 passes through the groove 314 to move between the front and rear of the substrate, it is possible to further increase the contact area or contact efficiency.
  • the resistance pattern 313 is illustrated as being formed on the first plane 311, but is not limited thereto.
  • the resistance pattern 313 may be formed on the second plane 312.
  • the flow path pattern may have various modifications.
  • a pattern having a curvature is repeatedly formed at a constant pitch P1 as shown in FIG. 12 (a), or a pattern having an attachment is repeatedly formed as shown in FIG. 12 (b), or as shown in FIGS.
  • the unit pattern may have a polygonal structure.
  • a resistance pattern may be formed on the surfaces B1 and B2 of the pattern.
  • the flow path pattern has a constant period and height, but is not limited thereto.
  • the period and height T1 of the flow path pattern may be unevenly modified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

일실시예로 컵홀더가 개시된다. 상기 컵홀더는 홀더본체, 상기 홀더본체의 하부에 배치되는 열전소자, 상기 열전소자의 하부에 배치되는 히트싱크 및 상기 홀더본체의 측면에 배치되며, 상기 홀더본체의 측면으로부터 흡입된 공기를 상기 히트싱크를 통하여 배출시키는 팬을 포함한다.

Description

컵홀더
본 발명은 컵홀더에 관한 것으로, 더욱 상세하게는 냉온 컵홀더에 관한 것이다.
차량 등의 특정 장소에 장착되는 컵 홀더는 움직임에 의해 컵에 담긴 내용물이 쏟아지는 것을 방지하기 위하여 컵을 고정시키는 역할만을 수행하고 있을 뿐, 컵 또는 캔 등에 담기는 내용물을 차갑게 하거나 뜨겁게 할 수 없다는 문제점이 있다.
이러한 컵 홀더의 문제점을 해결하기 위하여 냉/온방이 가능한 컵 홀더가 개발되고 있지만, 냉방모드와 온방모드가 모두 이루어질 수 없다는 문제점이 있다.
또한, 열전소자를 이용한 컵홀더가 개발되었으나, 열전소자 및 열전소자에 부착된 히트싱크에 팬이 접촉되는 형태로, 컵홀더의 부피가 크다는 문제점이 존재한다. 또한, 팬을 통해 유입된 공기가 흐르는 유로 공간이 커서, 컵홀더가 컴팩트하게 제작되기 어려운 점이 존재한다.
본 발명이 이루고자 하는 기술적 과제는 열전소자를 이용한 냉온 컵홀더를 제공하는 데 있다.
본 발명의 일실시예에 따른 컵홀더는 홀더본체, 상기 홀더본체의 하부에 배치되는 열전소자, 상기 열전소자의 하부에 배치되는 히트싱크 및 상기 홀더본체의 측면에 배치되며, 상기 홀더본체의 측면으로부터 흡입된 공기를 상기 히트싱크를 통하여 배출시키는 팬을 포함한다.
상기 히트싱크는, 상기 공기가 배출되는 방향과 동일한 방향으로 이격 배치된 복수의 날개를 포함할 수 있다.
상기 복수의 날개는 평행하게 배치될 수 있다.
상기 홀더본체와 상기 히트싱크 사이에 배치되고, 홀을 포함하는 제1 부재 및 상기 홀더본체와 상기 팬 사이에 배치되어, 상기 흡입된 공기를 안내하는 공기유로를 포함하는 제2 부재를 포함하는 가이드부를 더 포함할 수 있다.
상기 열전소자는 상기 홀에 배치될 수 있다.
상기 공기유로는, 상기 흡입된 공기가 상기 히트싱크를 향하여 지나가도록 형성될 수 있다.
상기 팬은, 상기 공기를 흡입하는 방향과 상이한 방향으로 상기 공기를 배출시킬 수 있다.
상기 팬은, 블로어 팬(blower fan)일 수 있다.
상기 히트싱크 및 상기 팬의 외면을 둘러싸는 하우징을 더 포함할 수 있다.
상기 하우징은, 상기 팬으로부터 공기가 흡입되는 흡입구 및 상기 흡입된 공기가 배출되는 배출구를 포함할 수 있다.
상기 배출구는, 상기 히트싱크에 인접하게 배치될 수 있다.
상기 홀더본체는 열전도가 가능한 금속재질일 수 있다.
상기 팬 및 상기 열전소자에 전원을 공급하는 파워모듈을 더 포함할 수 있다.
상기 파워모듈은 상기 열전소자가 상기 홀더본체의 냉각 및 가열 중 하나를 수행하도록 제어할 수 있다.
상기 파워모듈에 연결되어 상기 홀더본체의 냉각 및 가열 중 하나에 대한 제어신호를 상기 파워모듈에 송신하는 스위치를 더 포함할 수 있다.
본 발명의 실시예에 따른 컵홀더는 열전소자의 흡열 또는 발열 기능을 이용하여 음료를 수용하는 용기에 냉온 기능을 제공할 수 있다. 특히, 열전소자를 컵홀더 하부에 배치하여 컵홀더 내의 용기 전체에 골고루 냉온 기능을 제공할 수 있다.
또한, 장소의 제약없이 전원을 쉽게 공급받을 수 있어 휴대성과 편의성이 증가한 컵홀더를 제공할 수 있다.
뿐만 아니라, 컵홀더 내에서 공기가 흐르는 방향과 열전소자에 부착된 히트싱크의 구조를 대응시켜 열교환이 효과적으로 일어나도록 하며, 열전소자와 팬의 배치위치를 달리하여 슬림한 구조의 컵홀더를 구현할 수 있고, 컵홀더 내의 공간효율을 높일 수 있다.
도 1은 본 발명의 일실시예에 따른 컵홀더를 도시한 도면이다.
도 2는 본 발명의 일실시예에 따른 컵홀더의 분해사시도이다.
도 3은 본 발명의 일실시예에 따른 컵홀더의 단면도 및 히트싱크의 확대도이다.
도 4는 본 발명의 일실시예에 따른 컵홀더의 사시도이다.
도 5는 본 발명의 일실시예에 따른 컵홀더의 측면도이다.
도 6은 본 발명의 일실시예에 따른 다양한 팬을 도시한 도면이다.
도 7은 본 발명의 일실시예에 따른 열전소자의 단면도이다.
도 8은 본 발명의 일실시예에 따른 열전소자의 사시도이다.
도 9는 적층형 구조의 열전 레그를 제조하는 방법을 도시한 도면이다.
도 10 내지 12는 본 발명의 한 실시예에 따른 히트싱크의 개념도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 본 발명의 일실시예에 따른 컵홀더를 도시한 도면이고, 도 2는 본 발명의 일실시예에 따른 컵홀더의 분해사시도이다.
일실시예로, 컵홀더(10)는 내부에 용기를 수용하며, 수용된 용기에 냉온열기능을 제공할 수 있는 것으로, 홀더본체(100), 열전소자(200), 히트싱크(300), 팬(400), 가이드부(500), 파워모듈(600), 하우징(700), 스위치(800), 연결부(900)를 포함한다.
홀더본체(100)는 중심부가 중공의 형상을 가지며, 홀더본체(100) 내부에는 수용부가 마련된다. 그리고 수용부에는 사용자가 마시는 컵이나 음료 등의 액체를 수용하는 용기가 장착될 수 있다. 또한, 홀더본체(100) 내부에 장착된 컵이나 음료에 냉, 온열의 효과가 제공되도록, 홀더본체(100)는 열전달 효율이 좋은 금속재, 합금재, 합성수지재를 포함할 수 있다.
또한, 홀더본체(100)는 곡률을 가진 원통형 구조일 수 있으며, 홀더본체(100)의 하부는 평판형 영역을 가져 열전소자(200)가 장착될 수 있다.
열전소자(200)는 홀더본체(100)의 하부에 마련되고, 열전소자(200)의 발열부나 흡열부가 홀더본체(100)의 하부면에 접촉하도록 배치될 수 있다. 열전효율의 특성을 향상시키기 위하여 열전소자(200)와 홀더본체(100)의 하부 사이에 열전도성 그리스(thermal grease)를 마련할 수 있다.
열전소자(200)에서 열전소자(200)와 홀더본체(100)의 하부면이 접하는 부분은 열전소자(200)에 공급되는 전원의 극성에 따라 발열부 또는 흡열부가 될 수 있다. 이로써, 홀더본체(100)에 수용된 용기에 냉각효과 또는 발열효과를 모두 제공할 수 있다.
또한, 열원인 열전소자(200)가 홀더본체(100)의 측면에 배치되는 경우 열전소자(200)가 배치된 부분으로부터 거리가 먼 부분에는 열원이 전달되기 어렵다는 한계가 존재한다. 본 발명의 일실시예 따르면, 열전소자(200)는 홀더본체(100)의 하부에 마련되어, 열전소자(200)에 의해 발생한 열원이 홀더본체(100) 전체에 고르게 제공될 수 있다. 또한, 홀더본체(100)의 하면에서 발열이 이루어지는 경우 열의 대류측면에서 홀더본체(100) 내부에 수용된 용기 내의 액체에 열전달이 더욱 향상된다.
추가적으로, 열전소자(200)의 구조 등에 대해서는 이하 도 7과 함께 설명하겠다.
히트싱크(300)는 열전소자(200)의 하부면에 마련되고, 열전소자(200)로부터 전달받은 열을 주변 공기와 교환한다. 히트싱크(300)는 평편한 베이스에 이격 배치되고 돌출된 복수의 날개(310)를 포함한다.
다수의 날개(310)는 열 전도와 방열성이 우수한 금속 재질을 포함하며, 일 실시예로 알루미늄재질을 포함한다. 또한, 다수의 날개(310)는 소정의 간격을 형성하도록 이격 배치될 수 있다. 그리고 다수의 날개(310)는 평행하게 배치될 수 있다.
히트싱크(300)에서 평행하게 배치된 다수의 날개(310) 사이에는 공기가 흐르며, 공기가 배출하는 방향과 동일한 방향으로 공기가 흐르는 유로를 형성할 수 있다. 이로써, 히트싱크(300) 내에서 공기가 원할하게 이동하며, 열교환도 효과적으로 이루어진다.
팬(400)은 홀더본체(100)의 측면에 마련되어 공기의 흡출을 수행하고 히트싱크(300)에서의 열교환을 촉진한다. 즉, 팬(400)에 의한 공기의 흡출로 인해 홀더본체(100)의 일면에서 공기가 흡입되고, 흡입된 공기는 컵홀더(10)의 히트싱크(300)를 통해 홀더본체(100)의 하부로 배출될 수 있다. 이로써, 팬(400)은 히트싱크(300) 상으로 공기를 유도하는 기능을 수행함과 동시에, 장치 내부에서 공기가 순환할 수 있도록 한다.
본 발명의 일실시예에 따른 컵홀더의 단면도 및 히트싱크의 확대도인 도 3을 참조하면, 컵홀더(10) 내부에서 홀더본체(100)의 측면에 마련된 팬(400)을 통해 유입된 공기는 히트싱크(300)가 배치된 홀더본체(100)의 하면으로 흐르고, 지속적으로 유입되는 공기로 인해 복수의 날개(310) 사이에 형성된 공간을 따라 홀더본체(100)의 타측면에 형성된 배출구(O)로 공기가 배출된다.
또한, 팬(400)과 열전소자(200)(히트싱크(300) 포함)는 배치된 위치를 달리하므로, 열전소자(200)와 팬(400)이 밀착하여 일체로 배치된 경우보다 컵홀더(10)의 전체 사이즈를 줄일 수 있다. 이로써, 일실시예에 따른 컵홀더(10)는 컴팩트하게 제작될 수 있는 이점이 존재한다.
본 발명의 일실시예에 따른 다양한 팬을 도시한 도면인 도 6을 참조하면, 팬(400-1)에서 공기의 흡입 방향과 배출 방향은 동일할 수 있다 (도 6(a)). 또한, 팬(400-2)은 흡입 방향과 배출방향은 상이할 수 있으며, 소정의 각도를 형성할 수 있다 (도 6(b)).
도 6(b)를 참조하면, 팬은 블로어 팬(400-2)(blower fan)일 수 있고, 팬(400-2)에서 흡입 방향과 배출 방향이 수직이 될 수 있다. 이에, 홀더본체(100)의 측면으로부터 흡입된 공기가 바로 히트싱크가 위치한 컵홀더의 하부로 배출될 수 있다. 이로써, 홀더본체(100)에 충돌하는 공기가 적어져 공기의 역류를 방지할 수 있으며, 흡입된 공기가 원할히 배출구로 배출되어 히트싱크(300)를 통한 열교환 촉진이 향상될 수 있다.
가이드부(500)는 팬(400)을 통해 흡입된 공기를 히트싱크(300)로 안내하고 홀더본체(100)를 지지하는 것으로, 제1 부재(510) 및 제2 부재(520)을 포함한다.
제1 부재(510)는 홀더본체(100)와 히트싱크(300) 사이에 배치되고, 홀(h)을 포함한다. 제1 부재(510)가 열전소자(200)를 둘러싸도록 홀(h)에 열전소자(200)가 배치된다. 이로써, 제1 부재는 홀더본체(100)를 지지하며, 팬(400)을 통해 외부로부터 흡입된 공기가 홀더본체(100)에 전달되는 것을 방지한다.이에, 외부로부터 흡입된 공기에 의해 홀더본체(100)의 열평형을 방지할 수 있다.
제2 부재 (520)는 홀더본체(100)와 팬(400) 사이에 배치되며, 팬(400)으로부터 흡입된 공기를 히트싱크(300)로 안내하는 공기유로를 포함한다.
제2 부재(520)는 홀더본체(100)의 측면에 배치되어 팬(400)으로부터 유입된 외부 공기가 홀더본체(100)에 전달되는 것을 방지하기 위해 홀더본체(100)의 측면을 둘러싸도록 형성될 수 있다.
또한, 제2 부재(520)는 팬(400)으로부터 흡입된 공기가 히트싱크(300)를 향해 흐르도록 공기의 흐름 경로를 안내하도록 형성된다. 일실시예로, 제2 부재(520)는 히트싱크(300)를 향해 경사지게 형성될 수 있다.
또한, 제2 부재(520)는 팬(400)이 장착될 수 있는 수용부를 형성할 수 있고, 컵홀더(10) 하부에 존재하는 히트싱크(300)를 향해 흡입된 공기가 흐를 수 있도록 공기 흐름을 전환하도록 형성될 수 있다. 예를 들어, 팬(400)의 공기 흡입방향과 공기 배출방향이 상이하도록 형성될 수 있다.이로써, 제2 부재(520)를 통해 외부로부터 흡입된 공기에 의해 홀더본체(100)의 열평형을 차단할 수 있다. 또한, 팬(400)을 통해 흡입된 공기가 외부 유출 없이 히트싱크(300)를 통해 흐르고, 공기의 흐름을 원활히 함으로써, 히트싱크(300)에서 효과적인 열교환이 수행될 수 있다.
그리고 제1 부재(510)의 단부 상에 또는 일단에 제2 부재(520)가 위치할 수 있으며, 제1 부재(510)와 제2 부재(520)는 일체로 결합된 형태일 수 있다.
파워모듈(600)은 열전소자(200)와 팬(400)에 전원을 공급하는 것으로, 열전소자(200)에 공급되는 전원의 극성을 제어하여 홀더본체(100)를 가열 또는 냉각시킬 수 있다. 또한, 일실시예로, 외부전원 또는 스위치(800) 중 하나와 파워모듈(600) 사이에 연결된 전선은 2가닥일 수 있다. 그리고 파워모듈(600)은 팬(400)과 열전소자(200)에 각각 2가닥의 전선으로 연결될 수 있다. 그리고 파워모듈(600)은 컵홀더(10) 내부 또는 외부에 배치될 수 있다. 그리고 파워 모듈이 내부에 배치되는 것으로 예시되어 있으나, 이에 한정하는 것은 아니다.
하우징(700)은 홀더본체(100), 열전소자(200), 히트싱크(300), 팬(400), 가이드부(500) 및 파워모듈(600)을 감싸는 컵홀더(10)의 외면이다. 도 4 및 도 5를 참조하면, 하우징(700)은 공기가 흡입되는 흡입구(I)가 측면에 형성된다. 흡입구(I)는 하우징(700) 내측에 배치된 팬(400)의 위치 및 공기의 흡입 방향에 대응되도록 형성되어, 공기를 원할히 흡입한다. 일실시예로, 흡입구(I)는 복수의 홀을 포함할 수 있으며, 팬(400)의 면적과 동일한 크기로 형성될 수 있다.
또한, 배출구(O)는 공기가 복수의 날개(310) 사이를 통해 흐르는 방향으로 홀더본체(100) 일측면에 형성되며, 이로써 공기가 외부로 원활히 배출된다. 또한, 일실시예로 배출구(O)는 복수의 홀을 포함할 수 있으며, 복수의 홀은 다양한 모양으로 형성될 수 있다.
일실시예로, 배출구(O)는 공기가 흐르는 히트싱크(300)의 복수의 날개(310) 사이에 형성된 형상과 대응되도록 형성될 수 있다.
또한, 하우징(700)은 흡입구(I)로 유입된 공기가 히트싱크(300)를 통해 흐르도록 컵홀더(10)의 외면에 배치되며, 공기가 흡입구(I) 및 배출구(O) 외 다른 곳으로 배출되지 않도록 홀더본체(100), 팬(400), 열전소자(200) 및 히트싱크(300)를 둘러싸 밀폐시킨다.
또한, 하우징(700)의 일측면에는 전원과 연결되는 전선구멍(P)이 형성될 수 있다.
스위치(800)는 파워모듈(600)에 연결되어 컵홀더(10) 내부 또는 외부에 배치될 수 있다. 또한, 스위치(800)는 사용자의 선택에 따라 파워모듈(600)에 제어신호를 송신하여 홀더본체(100)를 냉각 또는 가열시킬 수 있다.
연결부(900)는 외부 전원과 연결된 연결부(900)로, 다양한 형태일 수 있다. 일실시예로, USB(Universal Serial Bus) 전원으로 형성되어 원하는 장소 어디서든지 전원을 용이하게 공급할 수 있다.
이처럼, 컵홀더는 차량이나 극장의 좌석의자, 회의실의 회의용 테이블의 음료수용공간 등 다양한 장소나 개소에 구비될 수 있다. 또한, 분리형으로 착탈이 가능한 구조로 제공되어 사용의 편의성을 높일 수 있음과 동시에, 다양한 사이즈의 용기과 결합할 수 있도록 형성되어, 기존에 존재하는 컵홀더가 용이하게 장착될 수 있다. 또한, 용기의 삽입 직경을 변경할 수 있도록 구현되어 범용성을 발휘할 수 있게 된다.
본 발명의 일실시예에 따른 열전소자의 단면도인 도 7과 본 발명의 일실시예에 따른 열전소자의 사시도인 도 8을 참조하면, 열전소자(200)는 하부 기판(210), 하부 전극(220), P형 열전 레그(230), N형 열전 레그(240), 상부 전극(250) 및 상부 기판(260)을 포함한다.
열전현상은 재료 내부의 전자(electron)와 정공(hole)의 이동에 의해 발생하는 현상으로, 열과 전기 사이의 직접적인 에너지 변환을 의미한다.
열전소자는 열전현상을 이용하는 소자를 총칭하며, P형 열전 재료와 N형 열전 재료를 금속 전극들 사이에 접합시켜 PN 접합 쌍을 형성하는 구조를 가진다.
열전소자는 전기저항의 온도 변화를 이용하는 소자, 온도 차에 의해 기전력이 발생하는 현상인 제벡 효과를 이용하는 소자, 전류에 의한 흡열 또는 발열이 발생하는 현상인 펠티에 효과를 이용하는 소자 등으로 구분될 수 있다.
하부 전극(220)은 하부 기판(210)과 P형 열전 레그(230) 및 N형 열전 레그(240)의 하부 바닥면 사이에 배치되고, 상부 전극(250)은 상부 기판(260)과 P형 열전 레그(230) 및 N형 열전 레그(240)의 상부 바닥면 사이에 배치된다. 이에 따라, 복수의 P형 열전 레그(230) 및 복수의 N형 열전 레그(240)는 하부 전극(220) 및 상부 전극(250)에 의하여 전기적으로 연결된다. 하부 전극(220)과 상부 전극(250) 사이에 배치되며, 전기적으로 연결되는 한 쌍의 P형 열전 레그(230) 및 N형 열전 레그(240)는 단위 셀을 형성할 수 있다.
예를 들어, 리드선(281, 282)을 통하여 하부 전극(220) 및 상부 전극(250)에 전압을 인가하면, 펠티에 효과로 인하여 P형 열전 레그(230)로부터 N형 열전 레그(240)로 전류가 흐르는 기판은 열을 흡수하여 냉각부로 작용하고, N형 열전 레그(240)로부터 P형 열전 레그(230)로 전류가 흐르는 기판은 가열되어 발열부로 작용할 수 있다.
여기서, P형 열전 레그(230) 및 N형 열전 레그(240)는 비스무스(Bi) 및 텔루륨(Ti)를 주원료로 포함하는 비스무스텔루라이드(Bi-Te)계 열전 레그일 수 있다. P형 열전 레그(230)는 전체 중량 100wt%에 대하여 안티몬(Sb), 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga), 텔루륨(Te), 비스무스(Bi) 및 인듐(In) 중 적어도 하나를 포함하는 비스무스텔루라이드(Bi-Te)계 주원료 물질 99 내지 99.999wt%와 Bi 또는 Te를 포함하는 혼합물 0.001 내지 1wt%를 포함하는 열전 레그일 수 있다. 예를 들어, 주원료물질이 Bi-Se-Te이고, Bi 또는 Te를 전체 중량의 0.001 내지 1wt%로 더 포함할 수 있다. N형 열전 레그(240)는 전체 중량 100wt%에 대하여 셀레늄(Se), 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga), 텔루륨(Te), 비스무스(Bi) 및 인듐(In) 중 적어도 하나를 포함하는 비스무스텔루라이드(Bi-Te)계 주원료 물질 99 내지 99.999wt%와 Bi 또는 Te를 포함하는 혼합물 0.001 내지 1wt%를 포함하는 열전 레그일 수 있다. 예를 들어, 주원료물질이 Bi-Sb-Te이고, Bi 또는 Te를 전체 중량의 0.001 내지 1wt%로 더 포함할 수 있다.
P형 열전 레그(230) 및 N형 열전 레그(240)는 벌크형 또는 적층형으로 형성될 수 있다. 일반적으로 벌크형 P형 열전 레그(230) 또는 벌크형 N형 열전 레그(240)는 열전 소재를 열처리하여 잉곳(ingot)을 제조하고, 잉곳을 분쇄하고 체거름하여 열전 레그용 분말을 획득한 후, 이를 소결하고, 소결체를 커팅하는 과정을 통하여 얻어질 수 있다. 적층형 P형 열전 레그(230) 또는 적층형 N형 열전 레그(240)는 시트 형상의 기재 상에 열전 소재를 포함하는 페이스트를 도포하여 단위 부재를 형성한 후, 단위 부재를 적층하고 커팅하는 과정을 통하여 얻어질 수 있다.
이때, 한 쌍의 P형 열전 레그(230) 및 N형 열전 레그(240)는 동일한 형상 및 체적을 가지거나, 서로 다른 형상 및 체적을 가질 수 있다. 예를 들어, P형 열전 레그(230)와 N형 열전 레그(240)의 전기 전도 특성이 상이하므로, N형 열전 레그(240)의 높이 또는 단면적을 P형 열전 레그(230)의 높이 또는 단면적과 다르게 형성할 수도 있다.
본 발명의 한 실시예에 따른 열전 소자의 성능은 제벡 지수로 나타낼 수 있다. 제백 지수(ZT)는 수학식 1과 같이 나타낼 수 있다.
Figure PCTKR2016005389-appb-M000001
여기서, α는 제벡계수[V/K]이고, σ는 전기 전도도[S/m]이며, α2σ는 파워 인자(Power Factor, [W/mK2])이다. 그리고, T는 온도이고, k는 열전도도[W/mK]이다. k는 a·cp·ρ로 나타낼 수 있으며, a는 열확산도[cm2/S]이고, cp 는 비열[J/gK]이며, ρ는 밀도[g/cm3]이다.
열전 소자의 제백 지수를 얻기 위하여, Z미터를 이용하여 Z 값(V/K)을 측정하며, 측정한 Z값을 이용하여 제벡 지수(ZT)를 계산할 수 있다.
여기서, 하부 기판(210)과 P형 열전 레그(230) 및 N형 열전 레그(240) 사이에 배치되는 하부 전극(220), 그리고 상부 기판(260)과 P형 열전 레그(230) 및 N형 열전 레그(240) 사이에 배치되는 상부 전극(250)은 구리(Cu), 은(Ag) 및 니켈(Ni) 중 적어도 하나를 포함하며, 0.01mm 내지 0.3mm의 두께를 가질 수 있다. 하부 전극(220) 또는 상부 전극(250)의 두께가 0.01mm 미만인 경우, 전극으로서 기능이 떨어지게 되어 전기 전도 성능이 낮아질 수 있으며, 0.3mm를 초과하는 경우 저항의 증가로 인하여 전도 효율이 낮아질 수 있다.
그리고, 상호 대향하는 하부 기판(210)과 상부 기판(260)은 절연 기판 또는 금속 기판일 수 있다. 절연 기판은 알루미나 기판 또는 유연성을 가지는 고분자 수지 기판일 수 있다. 유연성을 가지는 고분자 수지 기판은 폴리이미드(PI), 폴리스티렌(PS), 폴리메틸 메타크릴레이트(PMMA), 환상 올레핀 코폴리(COC), 폴리에틸렌 테레프탈레이트(PET), 레진(resin)과 같은 고투과성 플라스틱 등의 다양한 절연성 수지재를 포함할 수 있다. 금속 기판은 Cu, Cu 합금 또는 Cu-Al 합금을 포함할 수 있으며, 그 두께는 0.1mm~0.5mm일 수 있다. 금속 기판의 두께가 0.1mm 미만이거나, 0.5mm를 초과하는 경우, 방열 특성 또는 열전도율이 지나치게 높아질 수 있으므로, 열전 소자의 신뢰성이 저하될 수 있다. 또한, 하부 기판(210)과 상부 기판(260)이 금속 기판인 경우, 하부 기판(210)과 하부 전극(220) 사이 및 상부 기판(260)과 상부 전극(250) 사이에는 각각 유전체층(270)이 더 형성될 수 있다. 유전체층(270)은 5~10W/K의 열전도도를 가지는 소재를 포함하며, 0.01mm~0.15mm의 두께로 형성될 수 있다. 유전체층(270)의 두께가 0.01mm 미만인 경우 절연 효율 또는 내전압 특성이 저하될 수 있고, 0.15mm를 초과하는 경우 열전전도도가 낮아져 방열효율이 떨어질 수 있다.
이때, 하부 기판(210)과 상부 기판(260)의 크기는 다르게 형성될 수도 있다. 예를 들어, 하부 기판(210)과 상부 기판(260) 중 하나의 체적, 두께 또는 면적은 다른 하나의 체적, 두께 또는 면적보다 크게 형성될 수 있다. 이에 따라, 열전 소자의 흡열 성능 또는 방열 성능을 높일 수 있다.
또한, 하부 기판(210)과 상부 기판(260) 중 적어도 하나의 표면에는 방열 패턴, 예를 들어 요철 패턴이 형성될 수도 있다. 이에 따라, 열전 소자의 방열 성능을 높일 수 있다. 요철 패턴이 P형 열전 레그(230) 또는 N형 열전 레그(240)와 접촉하는 면에 형성되는 경우, 열전 레그와 기판 간의 접합 특성도 향상될 수 있다.
도 9는 적층형 구조의 열전 레그를 제조하는 방법을 도시한 도면이다. 도 9를 참조하면, 반도체 물질을 포함하는 재료를 페이스트 형태로 제작한 후, 시트, 필름 등의 기재(1110) 상에 도포하여 반도체층(1120)을 형성한다. 이에 따라, 하나의 단위부재(1100)가 형성될 수 있다.
복수의 단위부재(1100a, 1100b, 1100c)를 적층하여 적층 구조물(1200)을 형성하고, 이를 절단하면 단위 열전 레그(1300)를 얻을 수 있다.
이와 같이, 단위 열전 레그(1300)는 기재(1110) 상에 반도체층(1120)이 형성된 단위부재(1100)가 복수로 적층된 구조물에 의하여 형성될 수 있다.
여기서, 기재(1110) 상에 페이스트를 도포하는 공정은 다양한 방법으로 행해질 수 있다. 예를 들어, 테이프캐스팅(Tape casting) 방법으로 행해질 수 있다. 테이프캐스팅 방법은 미세한 반도체 물질의 분말을 수계 또는 비수계 용매(solvent), 결합제(binder), 가소제(plasticizer), 분산제(dispersant), 소포제(defoamer) 및 계면활성제 중 선택되는 적어도 하나와 혼합하여 슬러리(slurry) 형태로 제조한 후, 움직이는 칼날(blade) 또는 움직이는 기재 상에서 성형하는 방법이다. 이때, 기재(1110)는 10um~100um 두께의 필름, 시트 등일 수 있으며, 도포되는 반도체 물질로는 상술한 벌크형 소자를 제조하는 P 형 열전 재료 또는 N 형 열전 재료가 그대로 적용될 수 있다.
단위부재(1100)를 복수의 층으로 어라인하여 적층하는 공정은 50~250℃의 온도에서 압착하는 방법으로 행해질 수 있으며, 적층되는 단위부재(110)의 수는, 예를 들어 2~50개일 수 있다. 이후, 원하는 형태와 사이즈로 절단될 수 있으며, 소결공정이 추가될 수 있다.
이와 같이 제조되는 단위 열전 레그(1300)는 두께, 형상 및 크기의 균일성을 확보할 수 있으며, 박형화가 유리하고, 재료의 손실을 줄일 수 있다.
단위 열전 레그(1300)는 원기둥 형상, 다각 기둥 형상, 타원형 기둥 형상 등일 수 있으며, 도 9(d)에서 예시한 바와 같은 형상으로 절단될 수도 있다.
한편, 적층형 구조의 열전 레그를 제조하기 위하여, 단위 부재(1100)의 한 표면에 전도성층을 더 형상할 수도 있다.
도 10 내지 12는 본 발명의 한 실시예에 따른 히트싱크의 개념도이다. 도 10 내지 12를 참조하면, 본 발명의 실시예에 따른 히트싱크(300)는 제1평면(311) 및 제2평면(312)을 가지는 평판형상의 기재로, 공기 유로(C1)를 형성하는 적어도 하나의 유로패턴(312A)을 포함할 수 있다.
도 10 내지 12에서 도시한 바와 같이, 유로패턴(312A)은 일정한 피치(P1, P2)와 높이(T1)를 가지는 곡률 패턴이 형성되도록 기재를 폴딩(folding)하는 구조, 즉 접는 구조로 형성될 수 있다.
이와 같이, 히트싱크(300)의 제1 평면(311) 및 제2 평면(312)에는 공기가 면접촉하며, 유로패턴(312A)에 의하여 공기가 면접촉하는 면적이 최대화될 수 있다.
도 10을 참조하면, 공기가 유로 방향(C1)으로 유입되는 경우, 공기가 제1평면(311)과 제2평면(222)에 고르게 접촉하며 이동하여, 유로 방향(C2)으로 진행될 수 있다. 이에 따라, 단순한 평판 형상의 기재에 비하여 공기와의 접촉 면이 넓으므로, 흡열이나 발열의 효과가 증가하게 된다.
본 발명의 실시예에 따르면, 공기의 접촉 면적을 더욱 증대하기 위하여, 기재의 표면에 돌출형 저항패턴(313)을 형성할 수도 있다.
나아가, 도 11에 도시된 바와 같이, 저항패턴(313)은 공기가 유입되는 방향으로 일정한 경사각(θ)을 가지도록 기울어진 돌출 구조물로 형성될 수도 있다. 이에 따라, 저항패턴(313)과 공기 간의 마찰을 극대화할 수 있으므로, 접촉면적 또는 접촉효율을 높일 수 있다. 또한, 저항패턴(313)의 앞 부분의 기재 면에 홈(314)을 형성할 수도 있다. 저항패턴(223)과 접촉하는 공기의 일부는 홈(314)을 통과하여 기재의 전면과 후면 사이를 이동하므로, 접촉면적 또는 접촉효율을 더욱 높일 수 있다.
저항패턴(313)이 제1평면(311)에 형성되는 것으로 도시되어 있으나, 이에 한정되는 것은 아니며, 제2 평면(312)에 형성될 수도 있다.
도 12를 참조하면, 유로패턴은 다양한 변형예를 가질 수 있다.
예를 들어, 도 12(a)와 같이 일정한 피치(P1)로 곡률을 가지는 패턴을 반복적으로 형성하거나, 도 12(b)와 같이 첨부를 가지는 패턴이 반복하여 형성되거나, 도12(c) 및 도12(d)에 도시된 바와 같이 단위패턴이 다각형 구조를 가질 수도 있다. 도시되지 않았으나, 패턴의 표면(B1, B2)에 저항패턴이 형성될 수 있음은 물론이다.
도 12에서는 유로패턴이 일정한 주기 및 높이를 가지고 있으나, 이에 한정되지 않으며, 유로패턴의 주기 및 높이(T1)는 불균일하게 변형될 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (10)

  1. 홀더본체;
    상기 홀더본체의 하부에 배치되는 열전소자;
    상기 열전소자의 하부에 배치되는 히트싱크; 및
    상기 홀더본체의 측면에 배치되며, 상기 홀더본체의 측면으로부터 흡입된 공기를 상기 히트싱크를 통하여 배출시키는 팬을 포함하는 컵홀더.
  2. 제 1항에 있어서,
    상기 히트싱크는,
    상기 공기가 배출되는 방향과 동일한 방향으로 이격 배치된 복수의 날개를 포함하는 컵홀더.
  3. 제 2항에 있어서,
    상기 복수의 날개는 평행하게 배치된 컵홀더.
  4. 제 1항에 있어서,
    상기 홀더본체와 상기 히트싱크 사이에 배치되고, 홀을 포함하는 제1 부재; 및
    상기 홀더본체와 상기 팬 사이에 배치되어, 상기 흡입된 공기를 안내하는 공기유로를 포함하는 제2 부재를 포함하는 가이드부;를 더 포함하는 컵홀더.
  5. 제 4항에 있어서,
    상기 열전소자는 상기 홀에 배치되는 컵홀더.
  6. 제 4항에 있어서,
    상기 공기유로는,
    상기 흡입된 공기가 상기 히트싱크를 향하여 지나가도록 형성된 컵홀더.
  7. 제 1항에 있어서,
    상기 팬은,
    상기 공기를 흡입하는 방향과 상이한 방향으로 상기 공기를 배출시키는 컵홀더.
  8. 제 1항에 있어서,
    상기 팬은,
    블로어 팬(blower fan)인 컵홀더.
  9. 제 1항에 있어서,
    상기 히트싱크 및 상기 팬의 외면을 둘러싸는 하우징을 더 포함하는 컵홀더.
  10. 제 1항에 있어서,
    상기 하우징은,
    상기 팬으로부터 공기가 흡입되는 흡입구; 및
    상기 흡입된 공기가 배출되는 배출구를 포함하는 컵홀더.
PCT/KR2016/005389 2016-05-19 2016-05-20 컵홀더 WO2017200128A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680085892.7A CN109153350A (zh) 2016-05-19 2016-05-20 杯保持器
US16/301,480 US20190126804A1 (en) 2016-05-19 2016-05-20 Cup holder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160061644A KR20170130872A (ko) 2016-05-19 2016-05-19 컵홀더
KR10-2016-0061644 2018-05-19

Publications (1)

Publication Number Publication Date
WO2017200128A1 true WO2017200128A1 (ko) 2017-11-23

Family

ID=60325971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005389 WO2017200128A1 (ko) 2016-05-19 2016-05-20 컵홀더

Country Status (4)

Country Link
US (1) US20190126804A1 (ko)
KR (1) KR20170130872A (ko)
CN (1) CN109153350A (ko)
WO (1) WO2017200128A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200047654A1 (en) * 2017-02-15 2020-02-13 Gentherm Incorporated Improved control systems and methods for thermally conditioned receptacles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11148599B2 (en) 2019-10-14 2021-10-19 Toyota Motor Engineering & Manufacturing North America, Inc. Cup holders within console assemblies for vehicles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060114593A (ko) * 2005-05-02 2006-11-07 주식회사 오리엔스유니온 냉온기능을 구비한 컵 홀더 및 그를 구비한 시트
KR101084001B1 (ko) * 2010-08-16 2011-11-16 정강용 마이컴을 통한 음료·주류 휴대용 저온보관장치
JP2013526698A (ja) * 2010-05-25 2013-06-24 ビーイー・エアロスペース・インコーポレーテッド 車両座席用パーソナル飲料加温器および冷却器
KR20140073136A (ko) * 2012-12-06 2014-06-16 한라비스테온공조 주식회사 차량용 냉온장 컵홀더 장치
KR20140100181A (ko) * 2013-02-06 2014-08-14 한라비스테온공조 주식회사 차량용 냉온장 컵홀더 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060114593A (ko) * 2005-05-02 2006-11-07 주식회사 오리엔스유니온 냉온기능을 구비한 컵 홀더 및 그를 구비한 시트
JP2013526698A (ja) * 2010-05-25 2013-06-24 ビーイー・エアロスペース・インコーポレーテッド 車両座席用パーソナル飲料加温器および冷却器
KR101084001B1 (ko) * 2010-08-16 2011-11-16 정강용 마이컴을 통한 음료·주류 휴대용 저온보관장치
KR20140073136A (ko) * 2012-12-06 2014-06-16 한라비스테온공조 주식회사 차량용 냉온장 컵홀더 장치
KR20140100181A (ko) * 2013-02-06 2014-08-14 한라비스테온공조 주식회사 차량용 냉온장 컵홀더 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200047654A1 (en) * 2017-02-15 2020-02-13 Gentherm Incorporated Improved control systems and methods for thermally conditioned receptacles

Also Published As

Publication number Publication date
CN109153350A (zh) 2019-01-04
US20190126804A1 (en) 2019-05-02
KR20170130872A (ko) 2017-11-29

Similar Documents

Publication Publication Date Title
WO2019112288A1 (ko) 열변환장치
WO2020218753A1 (ko) 열변환장치
WO2016159649A1 (ko) 제습장치
WO2017039363A1 (ko) 차량용 램프
WO2017200128A1 (ko) 컵홀더
WO2020159177A1 (ko) 열전소자
WO2016159591A1 (ko) 열전소자, 열전모듈 및 이를 포함하는 열전환장치
CN114828539A (zh) 散热背夹和电子设备组件
WO2020246749A1 (ko) 열전소자
WO2019146990A1 (ko) 열전소자 및 그의 제조 방법
WO2019022570A1 (ko) 냉온장치
WO2020004827A1 (ko) 열전소자
WO2018226046A1 (ko) 열변환장치
WO2021029590A1 (ko) 열전장치
WO2019143140A1 (ko) 열전 소자
KR20180013146A (ko) 컵 홀더
WO2021101267A1 (ko) 열전소자
WO2021141284A1 (ko) 열전모듈
WO2020256398A1 (ko) 열전소자
WO2020055100A1 (ko) 열전모듈
WO2020096228A1 (ko) 열전모듈
WO2017209549A1 (ko) 열전 레그 및 이를 포함하는 열전 소자
CN110268536B (zh) 热电元件
KR20200034982A (ko) 열변환장치
WO2019194539A1 (ko) 열전소자

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902495

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902495

Country of ref document: EP

Kind code of ref document: A1