WO2016159316A1 - Alloy material, contact probe, and connection terminal - Google Patents

Alloy material, contact probe, and connection terminal Download PDF

Info

Publication number
WO2016159316A1
WO2016159316A1 PCT/JP2016/060830 JP2016060830W WO2016159316A1 WO 2016159316 A1 WO2016159316 A1 WO 2016159316A1 JP 2016060830 W JP2016060830 W JP 2016060830W WO 2016159316 A1 WO2016159316 A1 WO 2016159316A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy material
contact
plunger
probe
present
Prior art date
Application number
PCT/JP2016/060830
Other languages
French (fr)
Japanese (ja)
Inventor
風間 俊男
幸央 谷
哲 荘司
照男 安楽
正之 相ノ谷
智大 久保田
孝太郎 豊武
一志 安部
Original Assignee
日本発條株式会社
山本貴金属地金株式会社
神鋼メタルプロダクツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社, 山本貴金属地金株式会社, 神鋼メタルプロダクツ株式会社 filed Critical 日本発條株式会社
Priority to JP2016563015A priority Critical patent/JP6728057B2/en
Publication of WO2016159316A1 publication Critical patent/WO2016159316A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes

Definitions

  • the present invention relates to, for example, an alloy material, which is made of the alloy material, and includes a contact probe or an electrical contact used for a conduction state inspection or an operation characteristic inspection of an inspection target such as a semiconductor integrated circuit or a liquid crystal display.
  • the present invention relates to a connection terminal to be connected.
  • the contact probe is used by repeatedly contacting an inspection object such as a semiconductor integrated circuit or a liquid crystal display device. At this time, if the contact probe deteriorates due to repeated use, for example, the inspection result is affected.
  • the inspection object is soft, such as a tin (Sn) plating electrode
  • the Sn plating of the electrode tends to adhere to the contact probe surface, and the resistance value fluctuates due to the Sn plating adhesion, making stable inspection difficult.
  • the material used for the contact probe is required to have high hardness, high conductivity, corrosion resistance, and good oxidation resistance as compared with an inspection object that is not easily worn even when repeatedly contacted.
  • the coating film may be peeled off due to repeated contact with the inspection object, and may adhere to the inspection object as a foreign substance, resulting in poor conduction. Therefore, it is desired to produce a contact probe pin with a bulk material that does not cause the coating to peel off.
  • the present invention has been made in view of the above, and an object of the present invention is to provide an alloy material having no Sn coating and excellent in corrosion resistance to Sn, a contact probe made of this alloy material, and a connection terminal.
  • the alloy material according to the present invention is mainly composed of copper (Cu), silver (Ag) is 10 to 30 wt%, nickel (Ni) is 0.5 to 0.5%. It is characterized by adding 10 wt%.
  • the alloy material according to the present invention is characterized in that, in the above-described invention, 5 to 20 wt% of palladium (Pd) is further added.
  • the alloy material according to the present invention is characterized in that in the above-mentioned invention, 0.5 to 5 wt% of tin (Sn) is further added.
  • the alloy material according to the present invention is characterized in that, in the above-mentioned invention, 0.01 to 0.1 wt% of any one of iridium (Ir) and ruthenium (Ru) or a combination thereof is further added.
  • the contact probe according to the present invention is a conductive contact probe that comes into contact with the contact object at both ends in the longitudinal direction, and at least a part of the contact probe is formed using the alloy material according to the above invention.
  • the contact probe according to the present invention is the above-described invention, wherein the first conductive plunger that contacts one contact object at one end, the second conductive plunger that contacts the other contact object at one end, A coil spring provided between the first and second plungers to connect the first and second plungers in a telescopic manner, and includes at least one of the first plunger, the second plunger, and the coil spring.
  • One is made of the alloy material.
  • connection terminal according to the present invention is a conductive connection terminal that comes into contact with the contact object at both ends in the longitudinal direction, and at least a part of the connection terminal is formed using the alloy material according to the present invention.
  • the present invention since Cu is the main component, Ag is added in an amount of 10 to 30 wt%, and Ni is added in an amount of 0.5 to 10 wt%, it has no coating, has excellent Sn corrosion resistance, There is an effect that an alloy material excellent in conductivity, workability, and hardness can be obtained for the connection terminal.
  • FIG. 1 is a perspective view showing a schematic configuration of a socket according to one usage mode of an alloy material according to an embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional view showing a configuration of a main part of the socket according to one usage mode of the alloy material according to the embodiment of the present invention.
  • FIG. 3 is a partial cross-sectional view showing a configuration of a main part of the socket at the time of inspection of the semiconductor integrated circuit of the socket according to one usage mode of the alloy material according to the embodiment of the present invention.
  • the alloy material according to the embodiment of the present invention will be described.
  • the present invention is an alloy material mainly composed of copper (Cu).
  • Cu exhibits high conductivity, but its oxidation resistance is slightly inferior and its hardness is low.
  • silver (Ag) or nickel (Ni) as an additive element to Cu, the conductivity, hardness, oxidation resistance, and tin (Sn) corrosion resistance were improved.
  • Ag is excellent in conductivity and oxidation resistance, and by performing an aging treatment, Ag dissolved in Cu is precipitated, and an increase in hardness can be expected. Aging precipitation hardening is difficult to occur when the amount of Ag added is small, so it is desirable to add 10 wt% or more of Ag. However, adding over 30 wt% is not preferable because Sn corrosion resistance deteriorates.
  • Ni is added to the alloy material according to the present embodiment. Ni is effective in improving Sn corrosion resistance and increasing hardness. If it is less than 0.5 wt%, Sn corrosion resistance cannot be obtained, and if it exceeds 10 wt%, the workability deteriorates, which is not preferable.
  • Pd palladium
  • 5 to 20 wt% of palladium (Pd) can be added to the alloy material having the above composition.
  • Pd is excellent in oxidation resistance, and an increase in hardness can be expected by addition. If the amount of Pd added is small, there is no effect in improving the oxidation resistance and increasing the hardness, so it is desirable to add 5 wt% or more of Pd. However, adding over 20 wt% is not preferable because the conductivity and Sn corrosion resistance will decrease.
  • 0.5 to 5 wt% of Sn can be further added to the alloy material having the above composition. Addition of Sn suppresses external Sn adhesion and can also be expected to increase hardness. If the added amount of Sn is small, there is no effect in improving the Sn corrosion resistance and increasing the hardness. Therefore, it is desirable to add 0.5 wt% or more of Sn. However, adding over 5 wt% is not preferable because the workability will decrease.
  • any one of iridium (Ir) and ruthenium (Ru) or a combination thereof can be further added to the alloy material having the above-described composition.
  • These additive metals are useful for workability, and fine cracks on the alloy surface are reduced during rolling as compared with those not added, and workability is improved. Since the effect does not change even if the amount of any one of Ir and Ru or a combination thereof exceeds 0.1 wt%, an appropriate amount is 0.01 to 0.1 wt%.
  • Ir and Ru have the effect of refining crystal grains, and if the crystal grains are small, it is difficult to cause grain boundary cracking during rolling.
  • Cu is the main component
  • Ag is added in an amount of 10 to 30 wt%
  • Ni is added in an amount of 0.5 to 10 wt%. Therefore, the contact probe has conductivity, hardness, oxidation resistance, An alloy material excellent in Sn corrosion resistance can be obtained.
  • FIG. 1 is a perspective view showing a schematic configuration of a socket (contact probe) according to one usage mode of an alloy material according to an embodiment of the present invention.
  • a socket 1 shown in FIG. 1 is a device that is used when an electrical characteristic test is performed on a semiconductor integrated circuit 100 that is an object to be tested, and a circuit board that outputs a test signal to the semiconductor integrated circuit 100 and the semiconductor integrated circuit 100.
  • 200 is an apparatus for electrically connecting to 200.
  • the socket 1 is in contact with one electrode (contact object) of the semiconductor integrated circuit 100 which is a contacted body on one end side in the longitudinal direction, and the electrode (contact object) on the circuit board 200 on the other end side.
  • a plurality of contact probes 2 (hereinafter simply referred to as “probes 2”) that contact each other, a probe holder 3 that accommodates and holds the plurality of probes 2 according to a predetermined pattern, and a probe holder 3 that is provided around the probe holder 3 for inspection.
  • a holder member 4 that suppresses the displacement of the semiconductor integrated circuit 100 that contacts the plurality of probes 2 at the time.
  • FIG. 2 is a partial cross-sectional view showing the configuration of the main part of the socket (contact probe) according to one usage mode of the alloy material of the present embodiment, and shows the detailed configuration of the probe 2 accommodated in the probe holder 3.
  • the probe 2 shown in FIG. 2 contacts the first plunger 21 that contacts the connection electrode of the semiconductor integrated circuit 100 and the electrode 201 of the circuit board 200 that includes the inspection circuit.
  • a coil spring 23 provided between the first plunger 21 and the second plunger 22 to connect the first plunger 21 and the second plunger 22 so as to be extendable and contractible.
  • the first plunger 21 and the second plunger 22 and the coil spring 23 constituting the probe 2 have the same axis.
  • the coil spring 23 expands and contracts in the axial direction, so that the impact on the connection electrode of the semiconductor integrated circuit 100 is reduced, and the semiconductor integrated circuit 100 and the circuit board 200 are reduced. Apply load.
  • the coil spring 23 has a contraction amount of the rough winding portion 23b when a predetermined load is applied, for example, in a state where the probe 2 is accommodated in the probe holder 3 when the initial load is applied (see FIG. 1).
  • the diameter of the wire or the diameter of the wire is designed so that the spring characteristic becomes larger than the shortest distance between the proximal end portion of the second plunger 22 and the tightly wound portion 23a.
  • the base end portion is brought into sliding contact with the tightly wound portion 23 a, and the electric power between the proximal end portion and the tightly wound portion 23 a is obtained. Continuity is possible.
  • the probe holder 3 is formed using an insulating material such as resin, machinable ceramics, or silicon, and a first member 31 located on the upper surface side and a second member 32 located on the lower surface side in FIG. 2 are laminated. Become.
  • the first member 31 and the second member 32 are formed with the same number of holder holes 33 and 34 for receiving the plurality of probes 2, and the holder holes 33 and 34 for receiving the probes 2 have the same axis. It is formed as follows. The formation positions of the holder holes 33 and 34 are determined according to the wiring pattern of the semiconductor integrated circuit 100.
  • FIG. 3 is a partial cross-sectional view showing the configuration of the main part of the socket at the time of inspection of the semiconductor integrated circuit of the socket (contact probe) according to one use mode of the alloy material of the present embodiment. It is a figure which shows the state at the time of the test
  • the coil spring has been described as having a coarsely wound portion and a tightly wound portion. However, a coil spring consisting of only a coarsely wound portion may be used.
  • the tip of the first plunger 21 is tapered, even if an oxide film is formed on the surface of the connection electrode 101, the oxide film is broken through and the tip of the first plunger 21 is connected. Direct contact with the electrode 101 is possible.
  • the structure of the probe 2 demonstrated here is only an example to the last, and it is possible to apply the alloy material mentioned above to various kinds of probes known conventionally.
  • the probe is not limited to a plunger and a coil spring as described above, a probe having a pipe member, a pogo pin, a wire probe that obtains a load by bending a wire into a bow shape, and electrical contacts are connected to each other.
  • a connection terminal may be used.
  • connection terminal connects the electrical contacts to each other.
  • the conductive two terminals that are in contact with the electrical contacts and the terminals can be slid.
  • a holding elastic member or holding member).
  • at least the terminal is made of the alloy material described above.
  • the hardness test piece was measured for Vickers hardness (aging material hardness) after solution treatment and aging treatment.
  • the test piece for electrical conductivity was prepared by solution treatment and aging treatment. Thereafter, the resistance value of the test piece for electrical conductivity was measured using an electrical resistance measuring device to determine the electrical conductivity.
  • the test piece for Sn corrosion resistance evaluation was produced as follows.
  • the test piece for electrical conductivity prepared earlier was cut so that the tip diameter was 0.1 mm.
  • the test piece was brought into contact with the Sn plating plate with a predetermined spring force, and the tip of the test piece was observed with an SEM.
  • the case where there was no adhesion of Sn in the SEM observation was evaluated as ⁇ , and the case where the adhesion was observed was evaluated as x.
  • the workability was evaluated based on whether or not the rolling process at the time of preparing the test piece for electrical conductivity and the processing at the time of the cutting process at the time of preparing the test piece for evaluating Sn corrosion resistance were possible.
  • the evaluation criteria were ⁇ when it did not break during rolling and was cut into a pin shape and was within the processing dimension tolerance, and ⁇ when outside the tolerance.
  • Table 1 shows the weight ratio (composition) and measurement results of the alloy materials according to Examples 1 to 13 and Comparative Examples 1 to 7.
  • Examples 1 to 13 have compositions within the scope of the present embodiment.
  • Comparative Examples 1 to 7 have compositions outside the range of the present embodiment.
  • Examples 1 to 13 have compositions in the range of the present embodiment. In Examples 1 to 13, it was confirmed that Sn adhesion was not observed and high Sn corrosion resistance was exhibited. Also, good results were shown in terms of hardness, conductivity, and workability.
  • Comparative Example 1 has a composition outside the range of the present embodiment with a small amount of Ni added. Comparative Example 1 has more Sn adhesion and lower Sn corrosion resistance than Examples 1-13. From Comparative Example 1, it can be said that if the amount of Ni added is small, Sn corrosion resistance deteriorates, which is not preferable.
  • Comparative Example 2 has a composition outside the range of the present embodiment with a large amount of Ni added. Comparative Example 2 could not be processed with high accuracy. From Comparative Example 2, it can be said that if the amount of Ni added is large, workability deteriorates and is not preferable.
  • Comparative Example 3 is a composition outside the range of the present embodiment with a small amount of Ag added. Comparative Example 3 has a lower hardness than Examples 1 to 13 and is not preferable for use as a contact probe.
  • Comparative Example 4 has a composition outside the range of the present embodiment with a large amount of Ag added. Comparative Example 4 has more Sn adhesion and lower Sn corrosion resistance than Examples 1-13. From Comparative Example 4, it can be said that if the amount of Ag added is large, Sn corrosion resistance deteriorates, which is not preferable.
  • Comparative Example 5 has a composition outside the range of the present embodiment with a large amount of Pd added. Comparative Example 5 has more Sn adhesion and lower Sn corrosion resistance than Examples 1-13. From Comparative Example 5, it can be said that if the amount of Pd added is large, Sn corrosion resistance deteriorates, which is not preferable.
  • Comparative Example 6 has a composition outside the range of the present embodiment with a large amount of Sn added. In Comparative Example 6, cracks occurred during the rolling process, and the test piece for electrical conductivity could not be processed. According to Comparative Example 6, it can be said that if the amount of Sn added is large, the workability deteriorates, which is not preferable.
  • Comparative Example 7 is a composition outside the scope of the present embodiment, which is made of Cu, Ag, Pd, manganese (Mn), and Ir. Comparative Example 7 is larger in hardness than Examples 1 to 13, but inferior in cutting workability and inferior in Sn corrosion resistance. From Comparative Example 7, it can be said that it is not preferable as a contact probe application for a low hardness material such as Sn solder.
  • the alloy material according to the present invention, the contact probe and the connection terminal made of the alloy material are useful for contact probes in terms of conductivity, hardness, oxidation resistance, and Sn corrosion resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Measuring Leads Or Probes (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

This alloy material has copper (Cu) as the main component thereof and has added thereto 10-30 wt% silver (Ag) and 0.5-10 wt% nickel (Ni). As a result, an alloy material having no coating and having excellent Sn-corrosion resistance, a contact probe comprising this alloy material, and a connection terminal can be provided.

Description

合金材料、コンタクトプローブおよび接続端子Alloy materials, contact probes and connection terminals
 本発明は、例えば、合金材料に関するものであって、この合金材料からなり、半導体集積回路や液晶表示装置などの検査対象の導通状態検査または動作特性検査に用いられるコンタクトプローブや、電気接点同士を接続する接続端子に関するものである。 The present invention relates to, for example, an alloy material, which is made of the alloy material, and includes a contact probe or an electrical contact used for a conduction state inspection or an operation characteristic inspection of an inspection target such as a semiconductor integrated circuit or a liquid crystal display. The present invention relates to a connection terminal to be connected.
 従来、半導体集積回路や液晶パネルなどの検査対象の導通状態検査や動作特性検査を行う際には、検査対象と検査用信号を出力する回路基板を有する信号処理装置との間の電気的な接続を図る導電性のコンタクトプローブが用いられる。正確な導通状態検査や動作特性検査を行うため、コンタクトプローブを介した検査用信号の入出力を確実に行うことが求められている。 Conventionally, when conducting a conduction state inspection or an operation characteristic inspection of an inspection target such as a semiconductor integrated circuit or a liquid crystal panel, electrical connection between the inspection target and a signal processing apparatus having a circuit board for outputting an inspection signal A conductive contact probe is used. In order to perform an accurate conduction state inspection and operation characteristic inspection, it is required to reliably input / output an inspection signal via a contact probe.
 コンタクトプローブは、半導体集積回路や液晶表示装置などの検査対象物に繰り返し接触させて使用する。このとき、例えば繰り返しの使用によってコンタクトプローブが劣化すると、検査結果に影響を及ぼす。特にスズ(Sn)メッキ電極など検査対象が柔らかい場合、電極のSnメッキがコンタクトプローブ表面に付着しやすく、Snメッキの付着により抵抗値の変動が起きて、安定した検査が難しくなる。このため、コンタクトプローブに用いられる材料には、繰り返し接触しても磨耗しづらい検査対象に比して高い硬度や、高い導電性や耐食性、良好な耐酸化性が要求される。この要求に対し、Sn耐食性を向上させるため、例えば、コンタクトプローブピンの先端部に、炭素被膜をコーティングする技術やロジウム(Rh)メッキを施す技術などが提案されている(例えば、特許文献1,2を参照)。 The contact probe is used by repeatedly contacting an inspection object such as a semiconductor integrated circuit or a liquid crystal display device. At this time, if the contact probe deteriorates due to repeated use, for example, the inspection result is affected. In particular, when the inspection object is soft, such as a tin (Sn) plating electrode, the Sn plating of the electrode tends to adhere to the contact probe surface, and the resistance value fluctuates due to the Sn plating adhesion, making stable inspection difficult. For this reason, the material used for the contact probe is required to have high hardness, high conductivity, corrosion resistance, and good oxidation resistance as compared with an inspection object that is not easily worn even when repeatedly contacted. In response to this requirement, in order to improve Sn corrosion resistance, for example, a technique of coating the tip of the contact probe pin with a carbon film or a technique of applying rhodium (Rh) plating has been proposed (for example, Patent Document 1, Patent Document 1). 2).
特開平10-226874号公報JP-A-10-226874 特開2002-131334号公報JP 2002-131334 A
 しかしながら、上記の様なコーティング技術やメッキ技術では、検査対象との繰り返し接触によって被膜が剥がれ落ち、検査対象に異物として付着して導通不良を起こす場合がある。そのため、被膜が剥がれるおそれのないムク材でのコンタクトプローブピン作製が望まれている。 However, with the coating technique and plating technique as described above, the coating film may be peeled off due to repeated contact with the inspection object, and may adhere to the inspection object as a foreign substance, resulting in poor conduction. Therefore, it is desired to produce a contact probe pin with a bulk material that does not cause the coating to peel off.
 本発明は、上記に鑑みてなされたものであって、被膜を有しないSn耐食性に優れた合金材料、この合金材料からなるコンタクトプローブおよび接続端子を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide an alloy material having no Sn coating and excellent in corrosion resistance to Sn, a contact probe made of this alloy material, and a connection terminal.
 上述した課題を解決し、目的を達成するために、本発明にかかる合金材料は、銅(Cu)を主成分とし、銀(Ag)を10~30wt%、ニッケル(Ni)を0.5~10wt%添加したことを特徴とする。 In order to solve the above-described problems and achieve the object, the alloy material according to the present invention is mainly composed of copper (Cu), silver (Ag) is 10 to 30 wt%, nickel (Ni) is 0.5 to 0.5%. It is characterized by adding 10 wt%.
 また、本発明にかかる合金材料は、上記の発明において、さらにパラジウム(Pd)を5~20wt%添加してなることを特徴とする。 Further, the alloy material according to the present invention is characterized in that, in the above-described invention, 5 to 20 wt% of palladium (Pd) is further added.
 また、本発明にかかる合金材料は、上記の発明において、さらにスズ(Sn)を0.5~5wt%添加してなることを特徴とする。 The alloy material according to the present invention is characterized in that in the above-mentioned invention, 0.5 to 5 wt% of tin (Sn) is further added.
 また、本発明にかかる合金材料は、上記の発明において、さらにイリジウム(Ir)およびルテニウム(Ru)のいずれか1つ若しくはこれらの組み合わせを0.01~0.1wt%添加してなることを特徴とする。 The alloy material according to the present invention is characterized in that, in the above-mentioned invention, 0.01 to 0.1 wt% of any one of iridium (Ir) and ruthenium (Ru) or a combination thereof is further added. And
 また、本発明にかかるコンタクトプローブは、長手方向の両端で接触対象とそれぞれ接触する導電性のコンタクトプローブであって、少なくとも一部が、上記の発明にかかる合金材料を用いて形成されたことを特徴とする。 In addition, the contact probe according to the present invention is a conductive contact probe that comes into contact with the contact object at both ends in the longitudinal direction, and at least a part of the contact probe is formed using the alloy material according to the above invention. Features.
 また、本発明にかかるコンタクトプローブは、上記の発明において、一端で一方の接触対象と接触する導電性の第1プランジャと、一端で他方の接触対象と接触する導電性の第2プランジャと、前記第1および第2プランジャの間に設けられて該第1および第2プランジャを伸縮自在に連結するコイルばねと、を有し、前記第1プランジャ、前記第2プランジャおよび前記コイルばねのうち、少なくとも一つが前記合金材料からなることを特徴とする。 Moreover, the contact probe according to the present invention is the above-described invention, wherein the first conductive plunger that contacts one contact object at one end, the second conductive plunger that contacts the other contact object at one end, A coil spring provided between the first and second plungers to connect the first and second plungers in a telescopic manner, and includes at least one of the first plunger, the second plunger, and the coil spring. One is made of the alloy material.
 また、本発明にかかる接続端子は、長手方向の両端で接触対象とそれぞれ接触する導電性の接続端子であって、少なくとも一部が、上記の発明にかかる合金材料を用いて形成されたことを特徴とする。 Further, the connection terminal according to the present invention is a conductive connection terminal that comes into contact with the contact object at both ends in the longitudinal direction, and at least a part of the connection terminal is formed using the alloy material according to the present invention. Features.
 本発明によれば、Cuを主成分とし、Agを10~30wt%、Niを0.5~10wt%添加されるようにしたので、被膜を有さず、Sn耐食性に優れるとともに、コンタクトプローブや接続端子用として導電性・加工性・硬度に優れた合金材料を得ることができるという効果を奏する。 According to the present invention, since Cu is the main component, Ag is added in an amount of 10 to 30 wt%, and Ni is added in an amount of 0.5 to 10 wt%, it has no coating, has excellent Sn corrosion resistance, There is an effect that an alloy material excellent in conductivity, workability, and hardness can be obtained for the connection terminal.
図1は、本発明の実施の形態の合金材料の一使用態様にかかるソケットの概略構成を示す斜視図である。FIG. 1 is a perspective view showing a schematic configuration of a socket according to one usage mode of an alloy material according to an embodiment of the present invention. 図2は、本発明の実施の形態の合金材料の一使用態様にかかるソケットの要部の構成を示す部分断面図である。FIG. 2 is a partial cross-sectional view showing a configuration of a main part of the socket according to one usage mode of the alloy material according to the embodiment of the present invention. 図3は、本発明の実施の形態の合金材料の一使用態様にかかるソケットの半導体集積回路の検査時におけるソケットの要部の構成を示す部分断面図である。FIG. 3 is a partial cross-sectional view showing a configuration of a main part of the socket at the time of inspection of the semiconductor integrated circuit of the socket according to one usage mode of the alloy material according to the embodiment of the present invention.
 以下、本発明を実施するための形態を図面と共に詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。また、以下の説明において参照する各図は、本発明の内容を理解でき得る程度に形状、大きさ、および位置関係を概略的に示してあるに過ぎない。すなわち、本発明は各図で例示された形状、大きさ、および位置関係のみに限定されるものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the following embodiment. The drawings referred to in the following description only schematically show the shape, size, and positional relationship so that the contents of the present invention can be understood. That is, the present invention is not limited only to the shape, size, and positional relationship illustrated in each drawing.
 本発明の実施の形態にかかる合金材料について説明する。本発明は銅(Cu)を主成分とした合金材料である。Cuは高い導電性を示すが、耐酸化性がやや劣り、硬度も低い。そこで、Cuに対する添加元素として銀(Ag)やニッケル(Ni)を添加することで、導電性、硬度、耐酸化性、スズ(Sn)耐食性の向上を図った。 The alloy material according to the embodiment of the present invention will be described. The present invention is an alloy material mainly composed of copper (Cu). Cu exhibits high conductivity, but its oxidation resistance is slightly inferior and its hardness is low. Thus, by adding silver (Ag) or nickel (Ni) as an additive element to Cu, the conductivity, hardness, oxidation resistance, and tin (Sn) corrosion resistance were improved.
 Agは導電性・耐酸化性に優れており、また、時効処理を行うことでCuに固溶していたAgが析出され硬度の上昇が期待できる。時効析出硬化はAg添加量が少ないと起こりづらいため、Agを10wt%以上添加する事が望ましい。ただし、30wt%を超えて添加するとSn耐食性が劣化する為、好ましくない。 Ag is excellent in conductivity and oxidation resistance, and by performing an aging treatment, Ag dissolved in Cu is precipitated, and an increase in hardness can be expected. Aging precipitation hardening is difficult to occur when the amount of Ag added is small, so it is desirable to add 10 wt% or more of Ag. However, adding over 30 wt% is not preferable because Sn corrosion resistance deteriorates.
 さらに本実施の形態にかかる合金材料には、Niが0.5~10wt%添加される。NiはSn耐食性の向上・硬度上昇に効果がある。0.5wt%未満だとSn耐食性が得られず、10wt%を超えると加工性が劣化し好ましくない。 Furthermore, 0.5 to 10 wt% of Ni is added to the alloy material according to the present embodiment. Ni is effective in improving Sn corrosion resistance and increasing hardness. If it is less than 0.5 wt%, Sn corrosion resistance cannot be obtained, and if it exceeds 10 wt%, the workability deteriorates, which is not preferable.
 また、上述した組成の合金材料に対して、さらにパラジウム(Pd)を5~20wt%添加できる。Pdは耐酸化性に優れており、添加により硬度の上昇も期待できる。Pd添加量が少ないと耐酸化性の向上・硬度上昇に効果がないため、Pdを5wt%以上添加する事が望ましい。ただし、20wt%を超えて添加すると導電性・Sn耐食性が低下していく為、好ましくない。 Further, 5 to 20 wt% of palladium (Pd) can be added to the alloy material having the above composition. Pd is excellent in oxidation resistance, and an increase in hardness can be expected by addition. If the amount of Pd added is small, there is no effect in improving the oxidation resistance and increasing the hardness, so it is desirable to add 5 wt% or more of Pd. However, adding over 20 wt% is not preferable because the conductivity and Sn corrosion resistance will decrease.
 また、上述した組成の合金材料に対して、さらにSnを0.5~5wt%添加できる。Sn添加により外部からのSn付着を抑え、硬度の上昇も期待できる。Sn添加量が少ないとSn耐食性の向上・硬度上昇に効果がないため、Snを0.5wt%以上添加する事が望ましい。ただし、5wt%を超えて添加すると加工性が低下していく為、好ましくない。 Further, 0.5 to 5 wt% of Sn can be further added to the alloy material having the above composition. Addition of Sn suppresses external Sn adhesion and can also be expected to increase hardness. If the added amount of Sn is small, there is no effect in improving the Sn corrosion resistance and increasing the hardness. Therefore, it is desirable to add 0.5 wt% or more of Sn. However, adding over 5 wt% is not preferable because the workability will decrease.
 また、上述した組成の合金材料に対して、さらにイリジウム(Ir)、ルテニウム(Ru)のいずれか1つまたはそれらの組み合わせを0.01~0.1wt%添加できる。これらの添加金属は、加工性に有用であり、添加しないものと比べて圧延加工時に合金表面の細かな割れが減少して加工性が改善される。Ir、Ruのいずれか1つ若しくはこれらの組み合わせの添加量は、0.1wt%を超えても効果は変わらないため、0.01~0.1wt%が適量である。Ir、Ruは、結晶粒を微細化させる作用があり、結晶粒が小さいと圧延加工時に粒界割れを起こしにくい。 Further, 0.01 to 0.1 wt% of any one of iridium (Ir) and ruthenium (Ru) or a combination thereof can be further added to the alloy material having the above-described composition. These additive metals are useful for workability, and fine cracks on the alloy surface are reduced during rolling as compared with those not added, and workability is improved. Since the effect does not change even if the amount of any one of Ir and Ru or a combination thereof exceeds 0.1 wt%, an appropriate amount is 0.01 to 0.1 wt%. Ir and Ru have the effect of refining crystal grains, and if the crystal grains are small, it is difficult to cause grain boundary cracking during rolling.
 上述した実施の形態によれば、Cuを主成分とし、Agを10~30wt%、Niを0.5~10wt%添加されるようにしたので、コンタクトプローブとして導電性、硬度、耐酸化性、Sn耐食性に優れた合金材料を得ることができる。 According to the embodiment described above, Cu is the main component, Ag is added in an amount of 10 to 30 wt%, and Ni is added in an amount of 0.5 to 10 wt%. Therefore, the contact probe has conductivity, hardness, oxidation resistance, An alloy material excellent in Sn corrosion resistance can be obtained.
 次に、本実施の形態にかかる合金材料をコンタクトプローブとして使用する場合について説明する。図1は、本発明の実施の形態の合金材料の一使用態様にかかるソケット(コンタクトプローブ)の概略構成を示す斜視図である。図1に示すソケット1は、検査対象物である半導体集積回路100の電気特性検査を行う際に使用する装置であって、半導体集積回路100と半導体集積回路100へ検査用信号を出力する回路基板200との間を電気的に接続する装置である。 Next, the case where the alloy material according to the present embodiment is used as a contact probe will be described. FIG. 1 is a perspective view showing a schematic configuration of a socket (contact probe) according to one usage mode of an alloy material according to an embodiment of the present invention. A socket 1 shown in FIG. 1 is a device that is used when an electrical characteristic test is performed on a semiconductor integrated circuit 100 that is an object to be tested, and a circuit board that outputs a test signal to the semiconductor integrated circuit 100 and the semiconductor integrated circuit 100. 200 is an apparatus for electrically connecting to 200.
 ソケット1は、長手方向の一方の端部側で被接触体である半導体集積回路100の一つの電極(接触対象)と接触し、他方の端部側で回路基板200の電極(接触対象)とそれぞれ接触する複数のコンタクトプローブ2(以下、単に「プローブ2」という)と、複数のプローブ2を所定のパターンにしたがって収容して保持するプローブホルダ3と、プローブホルダ3の周囲に設けられ、検査の際に複数のプローブ2と接触する半導体集積回路100の位置ずれが生じるのを抑制するホルダ部材4と、を有する。 The socket 1 is in contact with one electrode (contact object) of the semiconductor integrated circuit 100 which is a contacted body on one end side in the longitudinal direction, and the electrode (contact object) on the circuit board 200 on the other end side. A plurality of contact probes 2 (hereinafter simply referred to as “probes 2”) that contact each other, a probe holder 3 that accommodates and holds the plurality of probes 2 according to a predetermined pattern, and a probe holder 3 that is provided around the probe holder 3 for inspection. And a holder member 4 that suppresses the displacement of the semiconductor integrated circuit 100 that contacts the plurality of probes 2 at the time.
 図2は、本実施の形態の合金材料の一使用態様にかかるソケット(コンタクトプローブ)の要部の構成を示す部分断面図であって、プローブホルダ3に収容されるプローブ2の詳細な構成を示す図である。図2に示すプローブ2は、半導体集積回路100の検査を行なうときに、その半導体集積回路100の接続用電極に接触する第1プランジャ21と、検査回路を備えた回路基板200の電極201に接触する第2プランジャ22と、第1プランジャ21と第2プランジャ22との間に設けられて第1プランジャ21および第2プランジャ22を伸縮自在に連結するコイルばね23とを備える。プローブ2を構成する第1プランジャ21および第2プランジャ22、ならびにコイルばね23は同一の軸線を有している。プローブ2は、半導体集積回路100をコンタクトさせた際に、コイルばね23が軸線方向に伸縮することによって半導体集積回路100の接続用電極への衝撃を和らげるとともに、半導体集積回路100および回路基板200に荷重を加える。 FIG. 2 is a partial cross-sectional view showing the configuration of the main part of the socket (contact probe) according to one usage mode of the alloy material of the present embodiment, and shows the detailed configuration of the probe 2 accommodated in the probe holder 3. FIG. When the semiconductor integrated circuit 100 is inspected, the probe 2 shown in FIG. 2 contacts the first plunger 21 that contacts the connection electrode of the semiconductor integrated circuit 100 and the electrode 201 of the circuit board 200 that includes the inspection circuit. And a coil spring 23 provided between the first plunger 21 and the second plunger 22 to connect the first plunger 21 and the second plunger 22 so as to be extendable and contractible. The first plunger 21 and the second plunger 22 and the coil spring 23 constituting the probe 2 have the same axis. When the probe 2 contacts the semiconductor integrated circuit 100, the coil spring 23 expands and contracts in the axial direction, so that the impact on the connection electrode of the semiconductor integrated circuit 100 is reduced, and the semiconductor integrated circuit 100 and the circuit board 200 are reduced. Apply load.
 第1プランジャ21、第2プランジャ22およびコイルばね23の少なくとも一つは上述した合金材料を用いて形成され、全ての部材がこの合金材料を用いて形成されることが好ましい。また、コイルばね23は、所定荷重が加わったときの粗巻き部23bの縮み量が、初期荷重が加わったときに、例えば、プローブ2がプローブホルダ3に収容された状態(図1参照)における第2プランジャ22の基端部と密着巻き部23aとの最短距離より大きくなるようなばね特性となるように線材の径や、巻回されてなる径が設計される。このばね特性を有するコイルばね23を用いることによって、プローブ2に所定荷重を加えた場合に基端部を密着巻き部23a内に摺接させ、基端部と密着巻き部23aとの間の電気的導通が可能となる。 It is preferable that at least one of the first plunger 21, the second plunger 22, and the coil spring 23 is formed using the above-described alloy material, and all members are formed using this alloy material. Further, the coil spring 23 has a contraction amount of the rough winding portion 23b when a predetermined load is applied, for example, in a state where the probe 2 is accommodated in the probe holder 3 when the initial load is applied (see FIG. 1). The diameter of the wire or the diameter of the wire is designed so that the spring characteristic becomes larger than the shortest distance between the proximal end portion of the second plunger 22 and the tightly wound portion 23a. By using the coil spring 23 having this spring characteristic, when a predetermined load is applied to the probe 2, the base end portion is brought into sliding contact with the tightly wound portion 23 a, and the electric power between the proximal end portion and the tightly wound portion 23 a is obtained. Continuity is possible.
 プローブホルダ3は、樹脂、マシナブルセラミックス、シリコンなどの絶縁性材料を用いて形成され、図2の上面側に位置する第1部材31と下面側に位置する第2部材32とが積層されてなる。第1部材31および第2部材32には、複数のプローブ2を収容するためのホルダ孔33および34が同数ずつ形成され、プローブ2を収容するホルダ孔33および34は、互いの軸線が一致するように形成されている。ホルダ孔33および34の形成位置は、半導体集積回路100の配線パターンに応じて定められる。 The probe holder 3 is formed using an insulating material such as resin, machinable ceramics, or silicon, and a first member 31 located on the upper surface side and a second member 32 located on the lower surface side in FIG. 2 are laminated. Become. The first member 31 and the second member 32 are formed with the same number of holder holes 33 and 34 for receiving the plurality of probes 2, and the holder holes 33 and 34 for receiving the probes 2 have the same axis. It is formed as follows. The formation positions of the holder holes 33 and 34 are determined according to the wiring pattern of the semiconductor integrated circuit 100.
 図3は、本実施の形態の合金材料の一使用態様にかかるソケット(コンタクトプローブ)の、半導体集積回路の検査時におけるソケットの要部の構成を示す部分断面図であって、プローブホルダ3を用いた半導体集積回路100の検査時の状態を示す図である。半導体集積回路100の検査時にコイルばね23が圧縮されると、図3に示すように、第2プランジャ22の基端部は、密着巻き部23aの内周側と摺接する。このとき、回路基板200から半導体集積回路100に供給される検査用信号は、第2プランジャ22、密着巻き部23a、第1プランジャ21を経由して半導体集積回路100の接続用電極101へ到達する。このように、プローブ2では、第1プランジャ21と第2プランジャ22が密着巻き部23aを介して導通するため、電気信号の導通経路を最小にすることができる。したがって、検査時に粗巻き部23bに信号が流れるのを防止し、インダクタンスの低減および安定化を図ることができる。なお、本実施例ではコイルばねが粗巻き部と密着巻き部を有するものとして説明したが、単に粗巻き部のみからなるコイルばねを用いても構わない。 FIG. 3 is a partial cross-sectional view showing the configuration of the main part of the socket at the time of inspection of the semiconductor integrated circuit of the socket (contact probe) according to one use mode of the alloy material of the present embodiment. It is a figure which shows the state at the time of the test | inspection of the used semiconductor integrated circuit. When the coil spring 23 is compressed during the inspection of the semiconductor integrated circuit 100, the proximal end portion of the second plunger 22 is in sliding contact with the inner peripheral side of the tightly wound portion 23a, as shown in FIG. At this time, the inspection signal supplied from the circuit board 200 to the semiconductor integrated circuit 100 reaches the connection electrode 101 of the semiconductor integrated circuit 100 via the second plunger 22, the tightly wound portion 23 a, and the first plunger 21. . Thus, in the probe 2, since the first plunger 21 and the second plunger 22 are conducted through the tightly wound portion 23a, the conduction path of the electric signal can be minimized. Therefore, it is possible to prevent a signal from flowing through the rough winding portion 23b during inspection, and to reduce and stabilize the inductance. In the present embodiment, the coil spring has been described as having a coarsely wound portion and a tightly wound portion. However, a coil spring consisting of only a coarsely wound portion may be used.
 また、第1プランジャ21の先端が先細に形成されているため、接続用電極101の表面に酸化被膜が形成されている場合であっても酸化被膜を突き破り、第1プランジャ21の先端を接続用電極101と直接接触させることができる。 Further, since the tip of the first plunger 21 is tapered, even if an oxide film is formed on the surface of the connection electrode 101, the oxide film is broken through and the tip of the first plunger 21 is connected. Direct contact with the electrode 101 is possible.
 なお、ここで説明したプローブ2の構成はあくまでも一例に過ぎず、従来知られているさまざまな種類のプローブに上述した合金材料を適用することが可能である。例えば、上述したようなプランジャとコイルばねとで構成されるものに限らず、パイプ部材を備えるプローブ、ポゴピン、またはワイヤを弓状に撓ませて荷重を得るワイヤープローブや、電気接点同士を接続する接続端子(コネクタ)でもよい。 In addition, the structure of the probe 2 demonstrated here is only an example to the last, and it is possible to apply the alloy material mentioned above to various kinds of probes known conventionally. For example, the probe is not limited to a plunger and a coil spring as described above, a probe having a pipe member, a pogo pin, a wire probe that obtains a load by bending a wire into a bow shape, and electrical contacts are connected to each other. A connection terminal (connector) may be used.
 ここで、接続端子は、電気接点同士を接続するものであって、例えば、上述したプローブ2のように、各電気接点とそれぞれ接触する導電性の2つの端子と、各端子を摺動可能に保持する弾性部材(または保持部材)と、を備えるものである。このような接続端子では、少なくとも端子が上述した合金材料からなる。 Here, the connection terminal connects the electrical contacts to each other. For example, like the probe 2 described above, the conductive two terminals that are in contact with the electrical contacts and the terminals can be slid. A holding elastic member (or holding member). In such a connection terminal, at least the terminal is made of the alloy material described above.
 以下、この発明の合金材料の実施例および比較例について詳細に説明する。まず、本実施例にかかる合金材料の測定内容について説明する。 Hereinafter, examples and comparative examples of the alloy material of the present invention will be described in detail. First, the measurement contents of the alloy material according to this example will be described.
 硬度試験片は、溶体化処理および時効処理後、ビッカース硬さ(時効材硬度)を測定した。 The hardness test piece was measured for Vickers hardness (aging material hardness) after solution treatment and aging treatment.
 電気伝導度用の試験片は、溶体化処理および時効処理により作製した。その後、電気抵抗測定機を用いて、この電気伝導度用の試験片の抵抗値を測定し、電気伝導度を求めた。 The test piece for electrical conductivity was prepared by solution treatment and aging treatment. Thereafter, the resistance value of the test piece for electrical conductivity was measured using an electrical resistance measuring device to determine the electrical conductivity.
 Sn耐食性評価用の試験片は、以下のようにして作製した。先に作製した電気伝導度用の試験片を先端径が0.1mmになるように切削加工を行った。Snメッキプレートへ所定のばね力にて試験片を接触させ、試験片先端をSEMで観察した。Sn耐食性の評価は、SEM観察でSnの付着が無いものを○とし、付着が見られたものを×とした。 The test piece for Sn corrosion resistance evaluation was produced as follows. The test piece for electrical conductivity prepared earlier was cut so that the tip diameter was 0.1 mm. The test piece was brought into contact with the Sn plating plate with a predetermined spring force, and the tip of the test piece was observed with an SEM. In the evaluation of Sn corrosion resistance, the case where there was no adhesion of Sn in the SEM observation was evaluated as ◯, and the case where the adhesion was observed was evaluated as x.
 加工性は、先の電気伝導度用試験片作製時の圧延加工および、Sn耐食性評価用試験片作製時の切削加工時の加工の可否で評価した。評価基準は、圧延加工時に破断せず、かつピン形状に切削加工した際に、加工寸法公差内であれば○、公差外であれば×とした。 The workability was evaluated based on whether or not the rolling process at the time of preparing the test piece for electrical conductivity and the processing at the time of the cutting process at the time of preparing the test piece for evaluating Sn corrosion resistance were possible. The evaluation criteria were ○ when it did not break during rolling and was cut into a pin shape and was within the processing dimension tolerance, and × when outside the tolerance.
 次に、本実施例にかかる合金材料の各金属の重量比割合について説明する。表1は、実施例1~13および比較例1~7にかかる合金材料の重量比割合(組成)と測定結果とを示すものである。実施例1~13は、本実施の形態の範囲内の組成である。比較例1~7は本実施の形態の範囲外の組成である。
Figure JPOXMLDOC01-appb-T000001
Next, the weight ratio ratio of each metal of the alloy material according to this example will be described. Table 1 shows the weight ratio (composition) and measurement results of the alloy materials according to Examples 1 to 13 and Comparative Examples 1 to 7. Examples 1 to 13 have compositions within the scope of the present embodiment. Comparative Examples 1 to 7 have compositions outside the range of the present embodiment.
Figure JPOXMLDOC01-appb-T000001
 以下、実施例1~13および比較例1~7の測定結果について説明する。実施例1~13は、本実施の形態の範囲の組成である。実施例1~13は、Sn付着が見られず高いSn耐食性を示すことが確認された。また、硬度・導電性・加工性についても良好な結果を示した。 Hereinafter, the measurement results of Examples 1 to 13 and Comparative Examples 1 to 7 will be described. Examples 1 to 13 have compositions in the range of the present embodiment. In Examples 1 to 13, it was confirmed that Sn adhesion was not observed and high Sn corrosion resistance was exhibited. Also, good results were shown in terms of hardness, conductivity, and workability.
 比較例1は、Ni添加量が少ない本実施の形態の範囲外の組成である。比較例1は、実施例1~13に比べて、Sn付着が多くSn耐食性が低い。比較例1から、Ni添加量が少ないとSn耐食性が劣化し好ましくないといえる。 Comparative Example 1 has a composition outside the range of the present embodiment with a small amount of Ni added. Comparative Example 1 has more Sn adhesion and lower Sn corrosion resistance than Examples 1-13. From Comparative Example 1, it can be said that if the amount of Ni added is small, Sn corrosion resistance deteriorates, which is not preferable.
 比較例2は、Ni添加量が多い本実施の形態の範囲外の組成である。比較例2は、精度良く加工が出来なかった。比較例2から、Ni添加量が多いと加工性が劣化し好ましくないといえる。 Comparative Example 2 has a composition outside the range of the present embodiment with a large amount of Ni added. Comparative Example 2 could not be processed with high accuracy. From Comparative Example 2, it can be said that if the amount of Ni added is large, workability deteriorates and is not preferable.
 比較例3は、Ag添加量が少ない本実施の形態の範囲外の組成である。比較例3は、実施例1~13に比べて、硬度が低くコンタクトプローブ用途として好ましくない。 Comparative Example 3 is a composition outside the range of the present embodiment with a small amount of Ag added. Comparative Example 3 has a lower hardness than Examples 1 to 13 and is not preferable for use as a contact probe.
 比較例4は、Ag添加量が多い本実施の形態の範囲外の組成である。比較例4は、実施例1~13に比べて、Sn付着が多くSn耐食性が低い。比較例4から、Ag添加量が多いとSn耐食性が劣化し好ましくないといえる。 Comparative Example 4 has a composition outside the range of the present embodiment with a large amount of Ag added. Comparative Example 4 has more Sn adhesion and lower Sn corrosion resistance than Examples 1-13. From Comparative Example 4, it can be said that if the amount of Ag added is large, Sn corrosion resistance deteriorates, which is not preferable.
 比較例5は、Pd添加量が多い本実施の形態の範囲外の組成である。比較例5は、実施例1~13に比べて、Sn付着が多くSn耐食性が低い。比較例5から、Pd添加量が多いとSn耐食性が劣化し好ましくないといえる。 Comparative Example 5 has a composition outside the range of the present embodiment with a large amount of Pd added. Comparative Example 5 has more Sn adhesion and lower Sn corrosion resistance than Examples 1-13. From Comparative Example 5, it can be said that if the amount of Pd added is large, Sn corrosion resistance deteriorates, which is not preferable.
 比較例6は、Sn添加量が多い本実施の形態の範囲外の組成である。比較例6は、圧延加工時にひび割れが発生し、電気伝導度用試験片の加工が出来なかった。比較例6により、Sn添加量が多いと加工性が劣化し好ましくないといえる。 Comparative Example 6 has a composition outside the range of the present embodiment with a large amount of Sn added. In Comparative Example 6, cracks occurred during the rolling process, and the test piece for electrical conductivity could not be processed. According to Comparative Example 6, it can be said that if the amount of Sn added is large, the workability deteriorates, which is not preferable.
 比較例7は、Cu、Ag、Pd、マンガン(Mn)およびIrからなる本実施の形態の範囲外の組成である。比較例7は、実施例1~13に比べて、硬度は大きいが切削加工性に劣り、Sn耐食性も悪い。比較例7から、Snはんだ等低硬度材向けのコンタクトプローブ用途として好ましくないといえる。 Comparative Example 7 is a composition outside the scope of the present embodiment, which is made of Cu, Ag, Pd, manganese (Mn), and Ir. Comparative Example 7 is larger in hardness than Examples 1 to 13, but inferior in cutting workability and inferior in Sn corrosion resistance. From Comparative Example 7, it can be said that it is not preferable as a contact probe application for a low hardness material such as Sn solder.
 以上のように、本発明にかかる合金材料、この合金材料からなるコンタクトプローブおよび接続端子は、導電性、硬度、耐酸化性、Sn耐食性の面で、コンタクトプローブ用として有用である。 As described above, the alloy material according to the present invention, the contact probe and the connection terminal made of the alloy material are useful for contact probes in terms of conductivity, hardness, oxidation resistance, and Sn corrosion resistance.
 1 ソケット
 2 コンタクトプローブ(プローブ)
 3 プローブホルダ
 4 ホルダ部材
 21 第1プランジャ
 22 第2プランジャ
 23 コイルばね
 23a 密着巻き部
 23b 粗巻き部
 31 第1部材
 32 第2部材
 33,34 ホルダ孔
 100 半導体集積回路
 101 接続用電極
 200 回路基板
 201 電極
1 socket 2 contact probe (probe)
DESCRIPTION OF SYMBOLS 3 Probe holder 4 Holder member 21 1st plunger 22 2nd plunger 23 Coil spring 23a Contact | adhering winding part 23b Coarse winding part 31 1st member 32 2nd member 33,34 Holder hole 100 Semiconductor integrated circuit 101 Connection electrode 200 Circuit board 201 electrode

Claims (7)

  1.  銅(Cu)を主成分とし、銀(Ag)を10~30wt%、ニッケル(Ni)を0.5~10wt%添加してなることを特徴とする合金材料。 An alloy material comprising copper (Cu) as a main component, silver (Ag) added at 10 to 30 wt%, and nickel (Ni) at 0.5 to 10 wt%.
  2.  パラジウム(Pd)を5~20wt%さらに添加してなることを特徴とする請求項1に記載の合金材料。 The alloy material according to claim 1, wherein 5 to 20 wt% of palladium (Pd) is further added.
  3.  スズ(Sn)を0.5~5wt%さらに添加してなることを特徴とする請求項1または2に記載の合金材料。 The alloy material according to claim 1 or 2, further comprising 0.5 to 5 wt% of tin (Sn).
  4.  イリジウム(Ir)およびルテニウム(Ru)のいずれか1つ若しくはこれらの組み合わせを0.01~0.1wt%さらに添加してなることを特徴とする請求項1~3のいずれか一つに記載の合金材料。 4. One of iridium (Ir) and ruthenium (Ru) or a combination thereof is further added in an amount of 0.01 to 0.1 wt%, according to any one of claims 1 to 3, Alloy material.
  5.  長手方向の両端で接触対象とそれぞれ接触する導電性のコンタクトプローブであって、
     少なくとも一部が、請求項1~4のいずれか一つに記載の合金材料を用いて形成されたことを特徴とするコンタクトプローブ。
    Conductive contact probes that come into contact with the contact object at both ends in the longitudinal direction,
    At least a part of the contact probe is formed using the alloy material according to any one of claims 1 to 4.
  6.  一端で一方の接触対象と接触する導電性の第1プランジャと、
     一端で他方の接触対象と接触する導電性の第2プランジャと、
     前記第1および第2プランジャの間に設けられて該第1および第2プランジャを伸縮自在に連結するコイルばねと、
     を有し、
     前記第1プランジャ、前記第2プランジャおよび前記コイルばねのうち、少なくとも一つが前記合金材料からなることを特徴とする請求項5に記載のコンタクトプローブ。
    A conductive first plunger in contact with one contact object at one end;
    A conductive second plunger in contact with the other contact object at one end;
    A coil spring provided between the first and second plungers to connect the first and second plungers in a telescopic manner;
    Have
    The contact probe according to claim 5, wherein at least one of the first plunger, the second plunger, and the coil spring is made of the alloy material.
  7.  長手方向の両端で接触対象とそれぞれ接触する導電性の接続端子であって、
     少なくとも一部が、請求項1~4のいずれか一つに記載の合金材料を用いて形成されたことを特徴とする接続端子。
    Conductive connection terminals that come into contact with the contact object at both ends in the longitudinal direction,
    At least a part of the connection terminal is formed using the alloy material according to any one of claims 1 to 4.
PCT/JP2016/060830 2015-03-31 2016-03-31 Alloy material, contact probe, and connection terminal WO2016159316A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016563015A JP6728057B2 (en) 2015-03-31 2016-03-31 Alloy materials, contact probes and connection terminals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015074331 2015-03-31
JP2015-074331 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159316A1 true WO2016159316A1 (en) 2016-10-06

Family

ID=57004414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060830 WO2016159316A1 (en) 2015-03-31 2016-03-31 Alloy material, contact probe, and connection terminal

Country Status (3)

Country Link
JP (1) JP6728057B2 (en)
TW (1) TW201702392A (en)
WO (1) WO2016159316A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013163A1 (en) * 2017-07-10 2019-01-17 株式会社協成 Conductive member using copper-silver alloy, contact pin and device
WO2023189157A1 (en) * 2022-03-29 2023-10-05 株式会社ヨコオ Probe
WO2023189160A1 (en) * 2022-03-29 2023-10-05 石福金属興業株式会社 Alloy material for probe pins
KR20230170101A (en) 2022-06-08 2023-12-18 에스더블유씨씨 가부시키가이샤 Conductor for electrical property inspection and method of manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6809978B2 (en) * 2017-04-28 2021-01-06 株式会社アドバンテスト Carrier for electronic component testing equipment
JP6765529B2 (en) 2017-06-14 2020-10-07 日本発條株式会社 Conductive contactor unit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133442A (en) * 1980-03-24 1981-10-19 Tanaka Kikinzoku Kogyo Kk Electrical contact material
JPS57171599A (en) * 1981-04-13 1982-10-22 Mitsubishi Metal Corp Low melting point cu-ag system alloy solder with excellent wetting property
JPS6293327A (en) * 1985-10-21 1987-04-28 Tanaka Kikinzoku Kogyo Kk Material for commutator
JP2004061265A (en) * 2002-07-29 2004-02-26 Sumitomo Electric Ind Ltd Minute component for electric contacts, and its manufacturing method
JP2006206988A (en) * 2005-01-31 2006-08-10 Nikko Kinzoku Kk Copper alloy for electronic appliance
JP2006291271A (en) * 2005-04-08 2006-10-26 Swcc Showa Cable Systems Co Ltd High-strength copper alloy material having excellent settling resistance, and method for producing the same
JP2010275596A (en) * 2009-05-29 2010-12-09 Tanaka Kikinzoku Kogyo Kk Silver alloy having excellent contact resistance antifouling property and suitable for application of probe pin
WO2014049874A1 (en) * 2012-09-28 2014-04-03 株式会社徳力本店 Ag-Pd-Cu-Co ALLOY FOR USES IN ELECTRICAL/ELECTRONIC DEVICES

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY184937A (en) * 2012-08-03 2021-04-30 Yamamoto Precious Metal Co Ltd Alloy material, contact probe, and connection terminal

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133442A (en) * 1980-03-24 1981-10-19 Tanaka Kikinzoku Kogyo Kk Electrical contact material
JPS57171599A (en) * 1981-04-13 1982-10-22 Mitsubishi Metal Corp Low melting point cu-ag system alloy solder with excellent wetting property
JPS6293327A (en) * 1985-10-21 1987-04-28 Tanaka Kikinzoku Kogyo Kk Material for commutator
JP2004061265A (en) * 2002-07-29 2004-02-26 Sumitomo Electric Ind Ltd Minute component for electric contacts, and its manufacturing method
JP2006206988A (en) * 2005-01-31 2006-08-10 Nikko Kinzoku Kk Copper alloy for electronic appliance
JP2006291271A (en) * 2005-04-08 2006-10-26 Swcc Showa Cable Systems Co Ltd High-strength copper alloy material having excellent settling resistance, and method for producing the same
JP2010275596A (en) * 2009-05-29 2010-12-09 Tanaka Kikinzoku Kogyo Kk Silver alloy having excellent contact resistance antifouling property and suitable for application of probe pin
WO2014049874A1 (en) * 2012-09-28 2014-04-03 株式会社徳力本店 Ag-Pd-Cu-Co ALLOY FOR USES IN ELECTRICAL/ELECTRONIC DEVICES

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013163A1 (en) * 2017-07-10 2019-01-17 株式会社協成 Conductive member using copper-silver alloy, contact pin and device
JPWO2019013163A1 (en) * 2017-07-10 2020-02-06 株式会社協成 Conductive member, contact pin and device using copper-silver alloy
CN110809805A (en) * 2017-07-10 2020-02-18 株式会社协成 Conductive member, contact pin, and device using copper-silver alloy
KR20200018576A (en) * 2017-07-10 2020-02-19 교세이 가부시키가이샤 Conductive member, contact pin and device using copper silver alloy
JP2021099346A (en) * 2017-07-10 2021-07-01 株式会社協成 Conductive member using copper-silver alloy, contact pin and device
CN110809805B (en) * 2017-07-10 2021-10-26 株式会社协成 Conductive member, contact pin, and device using copper-silver alloy
CN113690656A (en) * 2017-07-10 2021-11-23 株式会社协成 Contact pin, contact, inspection device, industrial spring, and suspension wire
KR102350158B1 (en) * 2017-07-10 2022-01-12 유나이티드 프리시젼 테크놀로지스 컴퍼니 리미티드 Conductive member, contact pin and device using copper-silver alloy
JP2022050442A (en) * 2017-07-10 2022-03-30 ユナイテッド・プレシジョン・テクノロジーズ株式会社 Conductive member using copper-silver alloy, contact pin and device
WO2023189157A1 (en) * 2022-03-29 2023-10-05 株式会社ヨコオ Probe
WO2023189160A1 (en) * 2022-03-29 2023-10-05 石福金属興業株式会社 Alloy material for probe pins
KR20230170101A (en) 2022-06-08 2023-12-18 에스더블유씨씨 가부시키가이샤 Conductor for electrical property inspection and method of manufacturing the same
KR20240042565A (en) 2022-06-08 2024-04-02 에스더블유씨씨 가부시키가이샤 Electrical-property-inspection conductor wire and manufacturing method therefor

Also Published As

Publication number Publication date
JP6728057B2 (en) 2020-07-22
TW201702392A (en) 2017-01-16
JPWO2016159316A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
WO2016159316A1 (en) Alloy material, contact probe, and connection terminal
JP6280866B2 (en) Alloy materials, contact probes and connection terminals
KR101415722B1 (en) Contact probe and probe unit
KR100718577B1 (en) Material for probe pins
TWI491883B (en) Electrical test probe
JP6550457B2 (en) Alloy material, contact probe and connection terminal
JP2017145496A (en) Alloy material, contact probe and connection terminal
CN106574937B (en) Connecting terminal
JP2014025737A (en) Inspecting tool and contact
KR20040013010A (en) Conductive contact
TW201131172A (en) Contactor
JP2011038831A (en) Tool for substrate inspection, and method for substrate inspection
KR101260135B1 (en) Silver alloy having excellent contact resistance and antifouling property and suitable for use in probe pin
JP2001337110A (en) Probe pin and probe card
WO2007052508A1 (en) Probe needle for probe card
TWI305839B (en) Contact-making apparatus and method for production of at least one contact element of a contact-making apparatus
KR20230160852A (en) Alloy material for probe pins
JP2005114393A (en) Contact probe with lead wire, and manufacturing method therefor
WO2012063858A1 (en) Probe unit
WO2024014231A1 (en) Probe device
JP7008529B2 (en) Lead wires for inspection equipment, lead wire mounting parts, and inspection jigs
JP2005268090A (en) Contact pin and socket for electrical component
JP2007141505A (en) Flexible flat cable terminal part

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016563015

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773196

Country of ref document: EP

Kind code of ref document: A1