WO2016158859A1 - Fluid jetting method and fluid film formation method - Google Patents

Fluid jetting method and fluid film formation method Download PDF

Info

Publication number
WO2016158859A1
WO2016158859A1 PCT/JP2016/059926 JP2016059926W WO2016158859A1 WO 2016158859 A1 WO2016158859 A1 WO 2016158859A1 JP 2016059926 W JP2016059926 W JP 2016059926W WO 2016158859 A1 WO2016158859 A1 WO 2016158859A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
jet
ejection
row
pattern
Prior art date
Application number
PCT/JP2016/059926
Other languages
French (fr)
Japanese (ja)
Inventor
松永 正文
Original Assignee
エムテックスマート株式会社
松永 正文
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エムテックスマート株式会社, 松永 正文 filed Critical エムテックスマート株式会社
Priority to CN201680031793.0A priority Critical patent/CN107614124B/en
Priority to CN202011292640.6A priority patent/CN112439659B/en
Publication of WO2016158859A1 publication Critical patent/WO2016158859A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/02Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling time, or sequence, of delivery
    • B05B12/04Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling time, or sequence, of delivery for sequential operation or multiple outlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/002Pretreatement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method of ejecting a gas, liquid, melt, powder, supercritical fluid, or a fluid selected and mixed from these, or a method of ejecting these fluids to form a film on an object.
  • the jet of the present invention means that the fluid moves from the jet outlet at a desired speed, and the area of the jet flow pattern downstream of the jet outlet is larger than the jet outlet, for example, dripping, dispensing, spraying.
  • the jet port may be a fine hole or a complex shape such as a two-fluid spray nozzle, and the size of the shape is not questioned.
  • the final product related to or manufactured by fluid includes a granulation method in which a liquid drug is made into particles in the air and used for pharmaceuticals, etc., and fiber or non-woven fabric manufacturing by a melt blown method or electrospinning. It also includes cleaning of the base material by ejecting liquid such as deionized water or solvent, or dry granulated ice. Furthermore, blasting is also included in which the granular material is ejected together with the compressed gas to contact or collide with the object to be deburred.
  • a granulation method in which a liquid drug is made into particles in the air and used for pharmaceuticals, etc., and fiber or non-woven fabric manufacturing by a melt blown method or electrospinning. It also includes cleaning of the base material by ejecting liquid such as deionized water or solvent, or dry granulated ice. Furthermore, blasting is also included in which the granular material is ejected together with the compressed gas to contact or collide with the object to be deburred.
  • film formation includes CVD in which a jet flow moves toward an object such as an object to be coated, and collides with or adheres to the object, and general coating and CVD that forms a film by bringing a source gas into contact with a high-temperature object.
  • CVD chemical vapor deposition
  • MOCVD method in which an organic metal raw material is moved by a carrier gas by bubbling or the like to form a film is also included.
  • Powder that is ejected from the jet outlet as a fluid mixed with compressed gas, moved and applied, spray of fluid such as liquid mixed with supercriticality, air-assisted dispensing jet, atomization (including fiberization) application This includes a method of applying particles and fibers to an object to be coated, such as electrostatic atomization (including fiberization) application, and also includes microcurtain application.
  • a micro curtain is a wide-angle airless spray nozzle or the like that is used to spray liquid or the like at a relatively low pressure of 1 MPa or less, preferably around 0.3 MPa. In this method, the nozzle is traversed and applied, and overspray particles are not generated on the coating surface. It changes to a mist when the distance increases after passing through the object.
  • atomization In addition to atomization (spraying), atomization (fibrosis) is applied by a method of producing particles and fibers by spinning liquids and melts with ultrasonic waves, electrospinning spins, centrifugal force with rotating bodies, melt-blown methods, etc. It refers to a method of attaching or applying them to an object.
  • An object to be coated such as a thin plate having no unevenness or a long web (WEB), which is a liquid or a melted material, can be processed at high speed with a simple coating apparatus such as a roll coat, curtain coat or slot nozzle.
  • a simple coating apparatus such as a roll coat, curtain coat or slot nozzle.
  • electrode ink to uneven coating objects such as LEDs, and delicate electrolyte membranes for polymer electrolyte fuel cells (PEFC) that instantly deform with moisture or moisture
  • PEFC polymer electrolyte fuel cells
  • the head of the wide spray pattern is used, for example, 30 to 60 per minute perpendicular to the base material. It was necessary to traverse at a high speed of meters or to use a plurality of spray heads side by side so as to be orthogonal to the substrate. If the spray angle of the spray is wide, there are many rebounds according to the reason of incidence and reflection, and the spray flow is blown by the wind generated at the traverse speed and the directionality is lost, so the coating efficiency is less than 30% in the two-fluid spray, airless The spray was 50% or less. Even in the latter case, the rebound is the same.
  • the spray pattern When the spray pattern is arranged so as to wrap and sprayed at the same time, the spray pattern interferes and the pattern is disturbed and deformed, and a uniform coating distribution cannot be obtained. For this reason, it is necessary to install them apart from each other so that the spray patterns do not interfere with each other. This increases the control cost of the apparatus, which necessitates a complicated and large apparatus.
  • the coating efficiency was 30% or less in a method called air spray or two-fluid spray. With similar specifications, the coating efficiency in airless spraying was about 40 to 60 percent. Even when static electricity was applied, the former was 40 to 60 percent and the latter was about 60 to 75 percent.
  • Patent Document 1 is a prior art invented by the present inventors in order to solve the above-mentioned problem, and in order to eliminate nozzle clogging, it is intermittently (pulsed) sprayed with a nozzle having a large flow path to unit time. The flow rate per hit can be reduced.
  • Patent Document 2 is a method of applying powder by a pulse application method invented by the present inventor to stabilize the application amount by increasing the ejector pump pressure and to adjust the flow rate by the number of pulses per unit time.
  • Patent Documents 3 and 4 are also cleaning methods invented by the present inventors, and have a cleaning effect that cannot be achieved by continuous spraying by irradiating the cleaning medium against the object to be cleaned in a pulsed manner. Is disclosed.
  • spraying in the general coating field and cleaning methods are generally performed by continuous spraying using a wide-angle nozzle to increase productivity, and when performing pulse spraying using multiple spray devices or spray heads. Even so, there were many cases of ignoring the interference of the spray style. In order to prevent the interference, for example, the heads are separated from each other in the flow direction of the object to be coated and the apparatus becomes large and the control is complicated.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to increase the productivity and make the apparatus compact. Increase material use efficiency. Another purpose, for example, to perform perfect cleaning with impact on the object to be cleaned by the cleaning agent. Alternatively, deposit a gas fluid or liquid uniformly on the target. A large amount of granulation with stable quality and stable quality. Alternatively, an effective blasting of the object is performed.
  • the present invention provides a method for ejecting fluid from a plurality of ejection ports, wherein the fluid is ejected at different timings so that the ejection flow from adjacent ejection ports does not interfere downstream. To do.
  • the present invention provides a fluid jetting method characterized by jetting in pulses at different timings so that jets from adjacent jet outlets do not interfere with each other.
  • the present invention provides a fluid ejection method, wherein the fluid is a liquid, a melt, a powder, a gas, a supercritical fluid, or a mixture selected from at least two of them.
  • the present invention provides a fluid ejection method characterized by electrostatically charging a fluid.
  • the present invention provides a fluid ejection method characterized by adding ultrasonic waves to a fluid at least in the vicinity of an ejection port.
  • the present invention provides a fluid ejection method, wherein the ejected fluid is particles or fibers.
  • the present invention provides a fluid ejection method, wherein the number of pulses is 1 to 1000 per second.
  • the present invention includes a first step of installing a plurality of jets downstream of one automatic opening / closing mechanism (valve) of fluid, a second step of installing a plurality of automatic opening / closing mechanisms, and a plurality of automatic opening / closing mechanisms.
  • a fluid ejection method comprising a third step in which at least two automatic opening / closing mechanisms are selected and the downstream ejection ports are alternately arranged so as to be adjacent to each other.
  • the present invention is a method of ejecting a fluid from a plurality of jets toward an object, and a first step of arranging the plurality of jets so that a jet pattern from adjacent jets on the target wraps. And when one of the adjacent jets ejects, the second process in which the jets are ejected in a pulsed manner at different timings so as not to eject from the other jet, and the ejected fluid collides with the object or A fluid film forming method comprising a third step of contacting is provided.
  • the present invention is characterized in that a plurality of spouts exist as a group in one row or substantially one row or a plurality of rows, the plurality of spouts and the object move relative to each other, and the ejected fluid collides with or comes into contact with the object.
  • a fluid deposition method is provided.
  • the present invention provides a fluid film forming method characterized in that a plurality of jet nozzles are arranged on a circle or a substantially circle, or a circle or a circle.
  • the present invention is directed to an object of a pulsed jet flow of fluid from a jet group consisting of a plurality of jet nozzles arranged in a row or substantially in a row, or from a jet group consisting of a plurality of jet ports arranged in one head.
  • a pattern in which the fluid is adhered to each other by the reciprocating movement of 1 to 30 millimeters perpendicular to or substantially perpendicular to the object.
  • a third step of lapping A fluid film forming method is provided.
  • the present invention is directed to an object of a pulsed jet flow of fluid from a jet group consisting of a plurality of jet nozzles arranged in a row or substantially in a row, or from a jet group consisting of a plurality of jet ports arranged in one head.
  • a step, a third step in which the object and the outlet group move relative to each other, and a pattern in which at least a second row of ejection pulse-like jet flows on the object has already been attached to the fluid in the first row.
  • a fluid film forming method comprising a fourth step of lapping.
  • the fluid is a liquid, a melt, a granular material, a gas, a supercritical fluid, or a mixture of at least two selected from them, and the ejected fluid is formed on the object.
  • a method for forming a fluid film is provided.
  • the present invention is characterized in that the object is a heated substrate, the fluid is a raw material gas or a spray pyrolysis method solution, and is performed in a pulsed manner so that the jet flow of the fluid overcomes the rising airflow of the object A fluid film forming method is provided.
  • fluids from a plurality of ejection ports do not interfere with each other and move independently in a desired ejection flow pattern.
  • the fluid is a paint such as liquid or powder, It can be applied to the coating as a coating pattern as calculated.
  • the present invention can be applied to the method of obtaining a pattern such as a circle or donut shape by blowing and colliding with a compressed gas from a compressed fluid ejection hole that circulates toward the outflow of a liquid or a melt according to Japanese Patent Laid-Open No. 04-004060.
  • a pattern such as a circle or donut shape
  • the first head is 0 degrees
  • the first head can be 90 degrees
  • the third head can be 180 degrees
  • the fourth head can be 270 degrees.
  • the device can be made compact with almost no difference from one head.
  • the swirl spray pattern introduced in this patent document forms a small-diameter circular or donut pattern with a swirling flow of gas.
  • the method of this document can be swirled mechanically, so it is more accurate when a small-diameter pattern is desired.
  • the swirl spray pattern changes depending on the amount of flow and the viscosity. Therefore, it is difficult to adjust the swirl spray pattern to obtain a desired pattern.
  • a pattern as calculated can be obtained.
  • the number and pitch of the heads can be freely set according to the purpose, and it can be applied not only to liquids such as paints and adhesives and heated melts, but also to powdery paints and adhesives and electrostatically using electric fields. When charged, a wide and uniform circular pattern can be obtained. It is also suitable for mass granulation of pharmaceuticals. The scale and cost can be remarkably reduced by using a conventional rotary atomizing type apparatus using a large number of heads.
  • the desired donuts with small or large diameter A circle pattern can be drawn. Even in such a case, it is possible to change the ejection timing of each head attached to one or a plurality of rotating bodies so as not to interfere with the ejection flow.
  • the object and the rotating body may be moved relative to each other.
  • the erupting flow can continuously draw a circle or donut pattern, or it can intermittently erupt to draw a circle or donut pattern.
  • the ejection may be performed by atomizing a liquid or a melt by an airless spray or a two-fluid spray, or may be ejected in a bead shape while maintaining the shape of the ejection hole.
  • the hydraulic pressure is 3.5 MPa or more and a hot melt adhesive or adhesive having a relatively low viscosity is discharged at a high speed into the air several meters ahead from a nozzle with a diameter of 0.25 to 0.5 millimeters, like a melt blown Appropriate fiber clumps can be produced without using hot compressed gas.
  • This method can be applied not only to liquids but also to powder and gas jets.
  • a commercially available one-fluid or multi-fluid rotary joint may be used.
  • the fluid is not limited, such as a liquid, a melt, or a mixture of powder and gas.
  • the method disclosed in Japanese Patent Laid-Open No. 03-238061 can be made compact by preparing a plurality of devices or heads and preventing the jet flow from interfering with the same concept as described above.
  • the same purpose as above can be achieved, but in this method, if the spray angle is reduced and the distance to the object is shortened, impact can be given, so it can be used for washing and application to uneven objects. Especially useful.
  • the ejection timing pulses of the adjacent ejection heads of the plurality of heads are shifted in phase so that the ejection flow does not interfere in the air. Can be made. Even if the pattern width when reaching the target is 250 mm, for example, even if the distance between adjacent heads is 25 mm, there is no interference, so that the apparatus can be made compact and dense coating can be performed, so the cost can be reduced. Will also improve productivity. Naturally, it can also be applied to rotational atomization coating of bells and discs.
  • the bell and disk are electrostatically charged and applied, but in the present invention, the spraying of the paint to the atomizing head such as the bell and disk is performed with pulses, so if the timing is shifted, adjacent patterns can be prevented from interfering in the air. .
  • the particle diameter changes when the flow rate per unit time of paint or the like changes with the rotation speed of a bell or the like being constant, but in the present invention, the flow rate per unit time can be kept constant and the flow rate can be controlled with pulses, so it is always constant. Of fine particles are easy to manage.
  • the present invention is effective for a uniform ejection pattern particularly in a head having a large number of fine ejection holes such as a liquid in a head having a wide width, for example, 100 to 2000 mm, such as a head of a melt blown manufacturing apparatus or a liquid ejection head using the mechanism.
  • a method for producing nonwoven fabrics with meltblown is introduced in, for example, US Pat. No. 3,825,380A. Discharge molten resin from 20 to 30 nozzles of 0.008 to 0.0022 inches per inch, blow hot air from the air slots on both sides, put it on the speed and stretch the resin to make it fiber and further stretch it An example of manufacturing a non-woven fabric is described.
  • the compressed gas is not ejected from the air slot (AIR SLOT) system but can be ejected independently from the periphery of the hole of the molten resin or liquid.
  • the structure of the head is not limited.
  • the holes of the liquid and the jet of the compressed gas are processed by etching a plurality of metal thin plates into a comb shape, for example, and combining them.
  • the head can be manufactured at a low cost with high accuracy by forming a square outflow hole such as the above and an independent square compressed gas jet port.
  • a plurality of thin plates of the processed head can be decomposed or welded to form a three-dimensional structure.
  • At least two systems of pairs of opening / closing mechanisms upstream of many fine outflow holes such as liquids and compressed gas opening / closing mechanisms that are made into fibers or particles, and their downstream ejection holes are adjacent to each other. What is necessary is just to shift the phase.
  • the compressed gas is ejected, the pattern expands from the diameter of the ejection hole downstream. Therefore, if the number is 5 to 10 per inch so as not to interfere with each other, a relatively low viscosity hot melt adhesive or It is effective for the production of adhesive webs in which the pressure-sensitive adhesive has been shortened and the application of liquid fine particles.
  • the liquid contains a solvent
  • a plurality of ejector pumps and opening / closing mechanisms upstream of a large number of adjacent ejection ports may be provided.
  • the conditions such as fluid, jet flow, and pulse are not particularly limited.
  • spraying is carried out in pulses in millisecond units, and the distance from the spray head to the object to be coated is 5 to 80 mm.
  • the spray particles are given a certain speed within a degree, preferably within 10 degrees, and more preferably within 6 degrees, a liquid or the like can be reliably attached to a target location even in a two-fluid spray.
  • the spray angle is set to 10 degrees or less, the coating efficiency can be increased to 95% or more which overturns the common sense of spraying when the entire surface is applied to A4 size. Therefore, when the method of the present invention is adopted using a plurality of heads, productivity as well as coating quality can be improved.
  • the above method is also effective for cleaning, and even when the airless spray method is adopted, the spray angle is within 45 degrees, preferably within 30 degrees, and the distance to the object to be cleaned is within 150 millimeters. It is effective to use a plurality of spray heads with 5 to 15 MPa.
  • the fluid to be ejected is a gas containing raw material gas, a powder or granular fiber mixed with gas, transferred, paint, liquid adhesive, cleaning agent, organic solvent, water, liquid such as oil, hot
  • a melt such as a melt adhesive or a molten resin, a liquefied gas, a supercritical fluid obtained by bringing a liquefied carbon dioxide gas into a supercritical state, a mixture thereof, and the like are included.
  • the particles and fibers are repelled and aggregated by electrostatically charging gas, liquid particles, melt particles, fibers produced by the melt blown method, electrospinning, or the like upstream or downstream of the jet flow. It can be easily attached to the object to be coated. It does not ask the shape, material, size, etc. of the object, but it is used for single-wafer types such as semiconductor substrates, LED ceramic substrates, wafer level LEDs, glass, single-wafer films, paper, or rolls to rolls. A thin sheet metal, a sheet glass, a film, paper, a web such as carbon fiber, or a composite thereof can be selected.
  • the single-wafer object to be coated may be placed on a tray, and a long web or the like may be adsorbed on the opposite side of the jet flow by a heating adsorption drum or the like.
  • an ultrasonic vibrator or a horn can be added to a jet outlet or a structure such as an ultrasonic spray, an airless spray, or a two-fluid spray so that the fluid is easily formed into particles.
  • the main object of the present invention is to prevent a plurality of jets from interfering with each other in the air, but in order to make the distribution of the jets uniform after colliding with or contacting a target object and liquid or the like adheres.
  • a plurality of jets can be arranged so that the desired pattern of the jet flow of the desired wraps on the object. It is important to shift the timing in a pulse manner so that adjacent jets do not interfere with each other until they collide or adhere to the object.
  • a plurality of heads are arranged in the moving direction of the object, with one head having a plurality of outlets whose respective jet patterns do not interfere on the object as one jet stream group, or the jet stream group and the object Can be wrapped so that the pattern ejected to the object in a pulse manner in the ejection group of the first head and the pattern of each of the second head or the third head have a desired shape.
  • a group arranged so that the jet flow of a plurality of jet nozzles in one row does not interfere on the object is regarded as one jet flow group and arranged in multiple rows on the target in the same manner as above.
  • a liquid or the like can be attached with a uniform distribution.
  • the above two methods can wrap the pattern of the jet flow on the target at the jet outlet for each head or row by reciprocating, for example, 1 to 30 mm perpendicular to or substantially perpendicular to the moving direction of the target.
  • a pattern having a small diameter of 2 to 40 millimeters or an ellipse with a narrow angle can be used as the pattern width when adhering to such a short traverse.
  • the pattern width is not limited, 10 mm or less is preferable, and the smaller the pattern width, the higher the adhesion efficiency of the fluid.
  • the productivity may be improved. From the cost-effectiveness, 5 to 10 are suitable for a small device for an LED having a small object, and 10 to 100 or more are suitable for injecting a liquid or a melt onto a web or the like.
  • the target gas or spray pyrolysis method solution is jetted from a plurality of jets in a pulsed manner to overcome the rising air current of the target and collide with or come into contact.
  • a uniform film can be formed.
  • the raw material is a liquid, it may be vaporized by using a bubbling method or the like and transferred directly or together with another carrier gas.
  • a bubbling method or the like for example, when an FTO film is formed on a glass plate heated to 400 to 600 ° C., for example, spraying with a pattern width of 100 millimeters is pushed back to the rising air current, which is not a good idea.
  • fluids from a plurality of jet nozzles can be uniformly distributed over a wide range at a low cost. Therefore, not only the production of high-quality powder particles and fibers, but also film formation including coating on an object can be performed with high productivity with a compact apparatus.
  • FIG. 3 is an arrangement diagram of two rows according to the embodiment of the present invention.
  • FIG. 3 is an arrangement diagram of three rows according to the embodiment of the present invention. It is a layout diagram on a circle related to carrying of the present invention.
  • the heads are arranged so that the continuous jet flow of the fluid from the jet heads 1, 2 and 3 having a fluid opening / closing function interferes downstream.
  • the ejection timing 1 and 3 can be ejected at the same timing. For example, when the cycle of the timing is 100 milliseconds / cycle, the ejection heads 1 and 3 are ejected during 100 milliseconds of the first cycle. For example, the ejection is started after 45 milliseconds, and the ejection is stopped after 55 milliseconds.
  • Reference numerals 4 and 5 are pulsating jets of the heads 1 and 3 and move while spreading.
  • the ejection head 2 adjacent to 1 and 3 starts ejection after 45 milliseconds in the same manner in the second cycle later than that, and stops after 55 milliseconds.
  • Reference numeral 6 denotes a pulsating jet of the head 2 which flies one cycle behind.
  • 7 and 8 are jet flows of the heads 1 and 3 in the third cycle, and similarly, they are further delayed by one cycle. By doing so, each jet will fly without any interference. Since the heads 1 and 3 may have the same ejection timing, the downstream of one head having a fluid opening / closing mechanism may be branched to form two ejection ports.
  • the downstream of the two opening / closing mechanisms of the fluid is branched to provide a large number of outlets, and the plurality of outlets downstream of the two opening / closing mechanisms are arranged so as to be adjacent to each other. Install so as to interfere in the air or on the object. Then, if one of the adjacent jet outlets is delayed by one cycle and ejected in a pulse manner in the same manner as the timing of FIG. 1, there is no interference.
  • the present invention can be applied to the MEA production of PEFC type fuel cell vehicles that are attracting attention as a means of overcoming environmental problems.
  • FIG. 2 is a timing chart of FIG.
  • FIG. 3 is a timing chart for one cycle when the fluid is a liquid or a melt and particles or fibers are formed with compressed gas.
  • the ejection is performed in a pulsed manner, it is necessary to eject the compressed gas before and after the discharge or outflow of liquid or the like. It is necessary to eject the compressed gas 5 to 10 milliseconds longer in the front-rear direction with respect to the liquid discharge timing. Of course, it may be longer if it is within the cycle, but it is not good to increase consumption from the standpoint of resource saving.
  • FIG. 4 is a diagram in which ejection heads and ejection flow patterns are arranged in two rows.
  • the heads 11 to 14 are arranged in the front row, and the heads 15 to 18 are arranged in the rear row.
  • the heads 11 and 13 and the heads 15 and 17 eject the fluid in the first cycle
  • the heads 12 and 14 and 16 and 18 do not eject but eject at the desired timing of the second cycle.
  • Reference numerals 21 to 28 denote ejection flow patterns.
  • the heads 11, 13, 15 and 17 may have one opening / closing mechanism, for example, a dispensing open / close automatic valve excellent in high-speed response and an automatic opening / closing spray gun downstream, and each may serve as a jet outlet.
  • the heads 12, 14, 16, and 18 may also be branched downstream of another one opening / closing mechanism to serve as ejection ports.
  • FIG. 5 is a diagram of three rows with densely arranged heads.
  • every other head 31, 33, 39, 41 only in the front and rear rows is ejected
  • every other head 36, 38 in the middle row is ejected
  • the fluid is ejected from the heads 32, 34, 40, and 42 that have not been ejected in the front and rear rows.
  • each of the jet patterns for example 131, 136, 139, does not interfere with each other, when the liquid or the like is granulated with compressed gas, the compressed gas spreads outside the particle jet pattern and the compressed gases interfere with each other. It is necessary to confirm in advance because there is a possibility of disturbing the particle jet pattern.
  • FIG. 6 shows an example in which fluid is ejected onto a circle (CIRCULAR), and the heads 31, 33, 35, 37, 39 eject in the first cycle to obtain ejection patterns 41, 43, 45, 47, 49.
  • Can do A donut pattern can be obtained by ejecting from the heads 32, 34, 36, 38, 40 in the second cycle.
  • a denser donut pattern can be obtained by increasing the number of heads.
  • a full cone pattern can be formed in the same procedure by arranging many heads or jet nozzles inside the circular shape. This method is particularly effective for disk-shaped film formation such as a silicon wafer.
  • the coating method of the present invention can be applied to the production of products with high added value as described above.
  • the fluid can be a fuel cell electrode catalyst ink
  • the object to be coated can be a GDL (gas diffusion layer) or an electrolyte membrane.
  • GDL gas diffusion layer
  • electrolyte membrane When electrode ink is directly applied to the electrolyte membrane, it is ideal because the adhesion between the electrode and the electrolyte membrane is good and the electrical interface resistance can be lowered.
  • Die-type slot nozzles known for high-speed productivity are wide and can be applied intermittently, so they are perfect for GDL from the aspect of productivity, but apply directly to a thin electrolyte membrane of 25 micrometers or less without a backsheet.
  • the slot nozzle method was difficult to form micropores, mesopores, macropores, etc. in the catalyst layer from the viewpoint of performance. Therefore, a pulse-type spray coating method having a long track record in MEA such as FCV has been desired for forming ideal macropores.
  • the electrode catalyst is a pulse spray applied to an electrolyte membrane that is instantly deformed by moisture with a slurry (SLURY) composed of a catalyst, an electrolyte solution, and a solvent, one or more spray heads are attached while the electrolyte membrane is heated and adsorbed. Since it was necessary to traverse and apply a thin film, the productivity was extremely low and it was not suitable for the roll-to-roll method.
  • SLURY slurry
  • the electrode can be formed without masking by setting the spray pattern diameter to 5 mm or less. Further, by arranging them in a plurality of rows, a much higher productivity can be obtained with a compact and low total cost apparatus.
  • a compact and low-cost apparatus can be achieved regardless of the type of fluid, so that productivity in all fields such as granulation, fiberization, cleaning, and film formation can be increased. It can also be applied to high value-added applications.
  • Second cycle ejection flow 7 Third cycle ejection flow 11, 12, 13, 14 Front row head 15, 16, 17, 18 Rear row heads 21, 21, 25, 27 First cycle jets 22, 24, 26, 28 Second cycle jets 31, 32, 33, 34 Front row heads 35, 36, 37, 38 Row heads 39, 40, 41, 42 Rear row heads 131, 133, 136, 138, 139, 141 First cycle jets 132, 134, 135, 137, 140, 142 Second jets 61, 62, 63-69, 70 yen head 161, 163, 165, 167, 169 First cycle jet flow 162, 164, 166, 168, 170 Second cycle jet flow

Abstract

[Problem] To jet a fluid with increased productivity using a compact, inexpensive apparatus provided with a plurality of jetting ports whereby effects are maintained that are the same as ideal effects of a pulsed spray or the like jetted from a single jetting port. [Solution] In the present invention, the timing of jetting from adjacent jetting ports among a plurality of jetting ports arranged compactly in one row, multiple rows, a circle, or another arrangement is offset and jetting is performed so that adjacent jet flows do not interfere with each other in space. Jetting is also performed in pulsed fashion and the jetting timing of fluid from adjacent jetting ports is offset, whereby the patterns of jet flows from individual jetting ports do not interfere in space. A pattern the same as that of jetting from a single jetting port is therefore obtained, and particle diameter or fiber diameter is stabilized. Large quantities of particles or fibers can also be manufactured. The quality of washing, film formation, or the like as the subject is also stabilized for the same reason, and productivity can be enhanced. The size of the apparatus is also not increased, and initial cost can be suppressed.

Description

流体の噴出方法および流体の成膜方法Fluid ejection method and fluid film formation method
 本発明はガス、液体、溶融体、粉体、超臨界性流体、あるいはそれらの中から選択し混合した流体を噴出する方法、あるいはそれらの流体を噴出させ対象物に成膜させる方法に関する。
本発明の噴出とは、噴出口から流体が所望するスピードを持って移動することを指し、噴出口の下流の噴出流のパターンの面積が噴出口より大であって例えば滴下やディスペンス、スプレイを含む。よって噴出口は微細な孔でも、2流体スプレイノズルのような複合形状でも良く、その形状大小を問うものではない。流体が関係するあるいは製造される最終製品としては空中で液状薬剤を粒子化させて医薬品などに使用される造粒方法やメルトブローン方式あるいはエレクトロスピニング等による繊維や不織布製造も含まれる。脱イオン水や溶剤などの液体や粒子化したドライアイスなどを噴出して行う基材の洗浄も含まれる。更に粉粒体を圧縮ガスとともに噴出し対象物に接触乃至衝突させてバリ取りなどを行うブラストも含まれる。また成膜とは噴出流が被塗物などの対象物に向けて移動し、衝突または接触して付着することを含み一般的塗装、原料ガスを高温の対象物に接触させて成膜するCVDや、有機金属原料をバブリングさるなどしてキャリヤガスで移動させ成膜させるMOCVD法も含有する。圧縮気体と共に混合された流体として噴出口から噴出され移動させ塗着させる粉粒体、超臨界性と混合した液体などの流体のスプレイ、エアアシストディスペンスジェット、霧化(含む繊維化)施与、静電霧化(含む繊維化)施与等の粒子や繊維を被塗物に塗布する工法を含み、マイクロカーテン施与も含む。
マイクロカーテンとは広角パターンのエアレススプレイノズル等で液体などを1MPa以下好ましくは0.3MPa前後の比較的低圧でスプレイする際、霧になる前の液膜の部分を使用して被塗物とスプレイノズルをトラバースして塗布する方法であって塗面にオーバースプレイ粒子は発生しない。被塗物を通り過ぎて距離が離れると霧状に変化する。
また霧化(繊維化)施与とはスプレイによる粒子化以外に、液体や溶融体などを超音波、エレクトロスピニングなどのスピン、回転体による遠心力、メルトブローン方式などで粒子や繊維をつくりだす方法により対象物にそれらを付着あるいは塗布する工法を指す。
The present invention relates to a method of ejecting a gas, liquid, melt, powder, supercritical fluid, or a fluid selected and mixed from these, or a method of ejecting these fluids to form a film on an object.
The jet of the present invention means that the fluid moves from the jet outlet at a desired speed, and the area of the jet flow pattern downstream of the jet outlet is larger than the jet outlet, for example, dripping, dispensing, spraying. Including. Accordingly, the jet port may be a fine hole or a complex shape such as a two-fluid spray nozzle, and the size of the shape is not questioned. The final product related to or manufactured by fluid includes a granulation method in which a liquid drug is made into particles in the air and used for pharmaceuticals, etc., and fiber or non-woven fabric manufacturing by a melt blown method or electrospinning. It also includes cleaning of the base material by ejecting liquid such as deionized water or solvent, or dry granulated ice. Furthermore, blasting is also included in which the granular material is ejected together with the compressed gas to contact or collide with the object to be deburred. In addition, film formation includes CVD in which a jet flow moves toward an object such as an object to be coated, and collides with or adheres to the object, and general coating and CVD that forms a film by bringing a source gas into contact with a high-temperature object. In addition, an MOCVD method in which an organic metal raw material is moved by a carrier gas by bubbling or the like to form a film is also included. Powder that is ejected from the jet outlet as a fluid mixed with compressed gas, moved and applied, spray of fluid such as liquid mixed with supercriticality, air-assisted dispensing jet, atomization (including fiberization) application, This includes a method of applying particles and fibers to an object to be coated, such as electrostatic atomization (including fiberization) application, and also includes microcurtain application.
A micro curtain is a wide-angle airless spray nozzle or the like that is used to spray liquid or the like at a relatively low pressure of 1 MPa or less, preferably around 0.3 MPa. In this method, the nozzle is traversed and applied, and overspray particles are not generated on the coating surface. It changes to a mist when the distance increases after passing through the object.
In addition to atomization (spraying), atomization (fibrosis) is applied by a method of producing particles and fibers by spinning liquids and melts with ultrasonic waves, electrospinning spins, centrifugal force with rotating bodies, melt-blown methods, etc. It refers to a method of attaching or applying them to an object.
従来、液体や溶融体あるいは粉体などの材料を使用して塗装などの工程で材料を噴出(スプレイ)するなどの塗布作業を行う場合、被塗物以外の箇所まで粒子が飛散し付着してしまう現象(業界ではオーバースプレイと呼ぶ)があった。粉体塗料は金属などの被塗装物に粉体を付着させる必要があるため大部分が静電気を利用し粉体を帯電させて被塗装物に付着させオーブンで粉体をメルトさせて塗膜にしていた。また液体や溶融体も被塗物が金属などの導電体の場合はより塗着効率を高めるために静電気を使用していた。塗材が液体や溶融体であって凹凸の無い薄板や長尺のウェブ(WEB)などの被塗物はロールコート、カーテンコート、スロットノズルなどのシンプルな塗布装置で高速に処理し対応できる。しかしLEDなどのような凹凸のある被塗物や、瞬時に湿気や水分で変形するデリケートな固体高分子型燃料電池(PEFC)用電解質膜に電極インクを塗布するには薄膜で均一に積層塗布できるスプレイや超音波霧化などの微粒子施与などを応用するしか方法がなかった。 Conventionally, when performing application work such as spraying materials in a process such as painting using materials such as liquids, melts, or powders, particles are scattered and adhered to places other than the object to be coated. There was a phenomenon (called overspray in the industry). Since powder coatings require powder to adhere to the object to be coated, such as metal, most use static electricity to charge the powder and attach it to the object to be coated. It was. In addition, when the object to be coated is a conductor such as metal, static electricity is used to improve the coating efficiency. An object to be coated such as a thin plate having no unevenness or a long web (WEB), which is a liquid or a melted material, can be processed at high speed with a simple coating apparatus such as a roll coat, curtain coat or slot nozzle. However, in order to apply electrode ink to uneven coating objects such as LEDs, and delicate electrolyte membranes for polymer electrolyte fuel cells (PEFC) that instantly deform with moisture or moisture, a thin film is uniformly laminated. There was no other way but to apply fine particles such as spraying and ultrasonic atomization.
スプレイノズルなどで流体を噴出する場合、スプレイパターンより広幅の基材に塗布しかつ生産スピードを上げるためには広幅のスプレイパターンのヘッドを使用して基材と直交して例えば分速30乃至60メートルの高速でトラバースするか、複数のスプレイヘッドを基材と直交するように並べて使用する必要があった。スプレイの噴射角が広いと入射と反射の理屈通りリバウンドが多く、またスプレイ流はトラバースのスピードで発生する風に煽られ方向性が失われるので塗着効率は2流体スプレイでは30%以下、エアレススプレイでも50%以下であった。後者でもリバウンドは同様にあり、スプレイパターンをラップさせる様に配列して同時にスプレイするとスプレイパターンが干渉してパターンが乱れて変形し均一な塗膜分布を得ることができなかった。そのためスプレイパターンが干渉しないようにそれぞれを遠ざけて設置する必要が生じ装置としての制御コストがかかり複雑で装置が大型にならざるをえなかった。 When the fluid is ejected by a spray nozzle or the like, in order to apply to a base material wider than the spray pattern and increase the production speed, the head of the wide spray pattern is used, for example, 30 to 60 per minute perpendicular to the base material. It was necessary to traverse at a high speed of meters or to use a plurality of spray heads side by side so as to be orthogonal to the substrate. If the spray angle of the spray is wide, there are many rebounds according to the reason of incidence and reflection, and the spray flow is blown by the wind generated at the traverse speed and the directionality is lost, so the coating efficiency is less than 30% in the two-fluid spray, airless The spray was 50% or less. Even in the latter case, the rebound is the same. When the spray pattern is arranged so as to wrap and sprayed at the same time, the spray pattern interferes and the pattern is disturbed and deformed, and a uniform coating distribution cannot be obtained. For this reason, it is necessary to install them apart from each other so that the spray patterns do not interfere with each other. This increases the control cost of the apparatus, which necessitates a complicated and large apparatus.
また、一般的な連続スプレイ装置ではノズル詰まりを解消するためにノズル口径や流量制限部の断面積を大きくするのが一般的であった。その為被塗物に薄膜で塗装などを所望する場合、被塗物を低スピードで搬送すると単位面積当たりの塗布量が多くなりすぎるため、被塗物を高速で移動させるか、低スピード搬送で良い場合は被塗物に直交してスプレイ装置を高速でトラバースさせながら塗布する必要があった。スプレイ流は高速で移動されると上記のように風に煽られて塗着効率が極端に低下することが業界の常識であった。そのため一般塗装の分野では塗着効率は以下に示す通り低かった。また塗料の被塗物への仕上がり状態を良くするにはスプレイ粒子を微粒化する必要があった。微粒化して広角でスプレイするとエアスプレイまたは二流体スプレイとよばれる方法では塗着効率は30パーセント以下であった。また同様な仕様ではエアレススプレイでの塗着効率も40乃至60パーセント程度であった。静電を付加しても前者は40乃至60パーセント、後者は60乃至75パーセント程度であった。 Further, in a general continuous spray device, in order to eliminate nozzle clogging, it is common to increase the nozzle diameter and the cross-sectional area of the flow rate restricting portion. For this reason, if you want to coat the object with a thin film, if the object is transported at a low speed, the amount of coating per unit area will increase too much. If it was good, the spray device had to be applied while traversing the spray device at high speed perpendicular to the object. It was common knowledge in the industry that when the spray flow is moved at a high speed, it is blown by the wind as described above and the coating efficiency is extremely lowered. Therefore, in the field of general coating, the coating efficiency was low as shown below. Moreover, in order to improve the finished state of the coating material, it was necessary to atomize the spray particles. When atomized and sprayed at a wide angle, the coating efficiency was 30% or less in a method called air spray or two-fluid spray. With similar specifications, the coating efficiency in airless spraying was about 40 to 60 percent. Even when static electricity was applied, the former was 40 to 60 percent and the latter was about 60 to 75 percent.
特許文献1は本発明者らにより上記問題を解決するために発明された先行技術であってノズル詰まりを無くするために流路の大きいノズルで間欠的(パルス的)にスプレイすることで単位時間当たりの流量を少なくすることができる。 Patent Document 1 is a prior art invented by the present inventors in order to solve the above-mentioned problem, and in order to eliminate nozzle clogging, it is intermittently (pulsed) sprayed with a nozzle having a large flow path to unit time. The flow rate per hit can be reduced.
特許文献2は本発明者によって発明された粉体のパルス的塗布方法でエジェクターポンプ圧を高くして塗布量を安定させ、単位時間当たりのパルスの数で流量調整ができる方法である。 Patent Document 2 is a method of applying powder by a pulse application method invented by the present inventor to stabilize the application amount by increasing the ejector pump pressure and to adjust the flow rate by the number of pulses per unit time.
特許文献3及び4は同じく本発明者らによって発明された洗浄方法であって、洗浄媒体を被洗浄物にパルス的に打ち当てて洗浄することにより連続スプレイではなし得なかった洗浄効果があることが開示されている。 Patent Documents 3 and 4 are also cleaning methods invented by the present inventors, and have a cleaning effect that cannot be achieved by continuous spraying by irradiating the cleaning medium against the object to be cleaned in a pulsed manner. Is disclosed.
特開昭61-161175JP 61-161175 A 特開昭62-11574JP 62-11574 特開平03-123681JP 03-123681 A 特開平03-196884Japanese Patent Laid-Open No. 03-196884
一般塗装分野のスプレイによる塗装作業や洗浄方法では前述のごとく、生産性を高めるため広角ノズルを用いて連続スプレイすることが一般的で、複数のスプレイ装置あるいはスプレイヘッドを用いてパルススプレイを行う場合であっても、スプレイ流の干渉を無視するケースが多かった。干渉しないようにする場合は例えば被塗物などの流れ方向にヘッド同士を離して設置していたため装置が大型化し、制御も複雑であった。 As described above, spraying in the general coating field and cleaning methods are generally performed by continuous spraying using a wide-angle nozzle to increase productivity, and when performing pulse spraying using multiple spray devices or spray heads. Even so, there were many cases of ignoring the interference of the spray style. In order to prevent the interference, for example, the heads are separated from each other in the flow direction of the object to be coated and the apparatus becomes large and the control is complicated.
本発明は前述の課題を解決するためになされたもので、本発明の目的は生産性を高めたうえで装置をコンパクトにすること。材料の使用効率を上げること。また別な目的例えば洗浄剤による被洗浄物へのインパクトを与えた完璧な洗浄を行うこと。あるいはガス流体や液体などを均一に目的物に成膜させること。またコンパクトな装置でかつ安定した品質の造粒を大量に行うこと。またあるいは目的物に効果的なブラストを行うことなどである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to increase the productivity and make the apparatus compact. Increase material use efficiency. Another purpose, for example, to perform perfect cleaning with impact on the object to be cleaned by the cleaning agent. Alternatively, deposit a gas fluid or liquid uniformly on the target. A large amount of granulation with stable quality and stable quality. Alternatively, an effective blasting of the object is performed.
本発明は複数の噴出口から流体を噴出する方法であって、隣り合う噴出口からの噴出流が下流で干渉しないように、タイミングをずらして噴出することを特徴とする流体の噴出方法を提供する。 The present invention provides a method for ejecting fluid from a plurality of ejection ports, wherein the fluid is ejected at different timings so that the ejection flow from adjacent ejection ports does not interfere downstream. To do.
本発明は隣り合う噴出口からの噴出流が干渉しないようにタイミングをずらしてパルス的に噴出することを特徴とする流体の噴出方法を提供する。 The present invention provides a fluid jetting method characterized by jetting in pulses at different timings so that jets from adjacent jet outlets do not interfere with each other.
本発明は流体が液体、溶融体、粉粒体、ガス、超臨界性流体の単独あるいはそれらの中から少なくとも2種類を選択した混合体であることを特徴とする流体の噴出方法を提供する。 The present invention provides a fluid ejection method, wherein the fluid is a liquid, a melt, a powder, a gas, a supercritical fluid, or a mixture selected from at least two of them.
本発明は流体を静電気的に帯電させることを特徴とする流体の噴出方法を提供する。 The present invention provides a fluid ejection method characterized by electrostatically charging a fluid.
本発明は少なくとも噴出口付近で流体に超音波を付加することを特徴とする流体の噴出方法を提供する。 The present invention provides a fluid ejection method characterized by adding ultrasonic waves to a fluid at least in the vicinity of an ejection port.
本発明は噴出した流体が粒子または繊維になることを特徴とする流体の噴出方法を提供する。 The present invention provides a fluid ejection method, wherein the ejected fluid is particles or fibers.
本発明はパルス回数が1秒当たり1乃至1000回であることを特徴とする流体の噴出方法を提供する。 The present invention provides a fluid ejection method, wherein the number of pulses is 1 to 1000 per second.
本発明は流体の一つの自動開閉機構(バルブ)の下流に複数の噴出口を設置する第一の工程と、複数の自動開閉機構を設置する第二の工程と、複数の自動開閉機構の内少なくとも二つの自動開閉機構を選択しそれぞれの下流の噴出口が隣り合うように交互に配置される第三の工程からなることを特徴とする流体の噴出方法を提供する。 The present invention includes a first step of installing a plurality of jets downstream of one automatic opening / closing mechanism (valve) of fluid, a second step of installing a plurality of automatic opening / closing mechanisms, and a plurality of automatic opening / closing mechanisms. There is provided a fluid ejection method comprising a third step in which at least two automatic opening / closing mechanisms are selected and the downstream ejection ports are alternately arranged so as to be adjacent to each other.
本発明は流体を対象物に向けて複数の噴出口から噴出する方法であって、対象物上で隣り合う噴出口からの噴出パターンがラップするように複数の噴出口を配置する第一の工程と、隣り合う噴出口の片方が噴出するとき、もう片方の噴出口からは噴出しないようにお互いがタイミングをずらしてパルス的に噴出する第二の工程と、噴出した流体を対象物に衝突または接触させる第三の工程からなる流体の成膜方法を提供する。 The present invention is a method of ejecting a fluid from a plurality of jets toward an object, and a first step of arranging the plurality of jets so that a jet pattern from adjacent jets on the target wraps. And when one of the adjacent jets ejects, the second process in which the jets are ejected in a pulsed manner at different timings so as not to eject from the other jet, and the ejected fluid collides with the object or A fluid film forming method comprising a third step of contacting is provided.
本発明は複数の噴出口は一列または略一列または複数列に群として存在し、複数の噴出口と対象物とは相対移動し噴出された流体は対象物に衝突または接触することを特徴とする流体の成膜方法を提供する。 The present invention is characterized in that a plurality of spouts exist as a group in one row or substantially one row or a plurality of rows, the plurality of spouts and the object move relative to each other, and the ejected fluid collides with or comes into contact with the object. A fluid deposition method is provided.
本発明は複数の噴出口が円上または略円上に、または円形または略円形に配置されることを特徴とする流体の成膜方法を提供する。 The present invention provides a fluid film forming method characterized in that a plurality of jet nozzles are arranged on a circle or a substantially circle, or a circle or a circle.
本発明は一列または略一列に配置された複数の噴出口からなる噴出口群、または1つのヘッドに配置された複数の噴出口からなる噴出口群からの流体のパルス的噴出流の対象物上でのパターンがラップしないように前記流体を対象物に付着させる第一の工程と、前記対象物と前記一列または略一列の噴出口群または一つのヘッドの噴出口群は相対移動する第二の工程と、上記略一列の噴出口群または一つのヘッドの噴出口群は対象物と直交または略直交して1乃至30ミリメートル往復移動してパルス的に流体を噴出し、前記流体が付着したパターンとラップせる第三の工程とからなることを特徴とする流体の成膜方法を提供する。 The present invention is directed to an object of a pulsed jet flow of fluid from a jet group consisting of a plurality of jet nozzles arranged in a row or substantially in a row, or from a jet group consisting of a plurality of jet ports arranged in one head. A first step of adhering the fluid to an object so as not to wrap the pattern in the second object, and a second object in which the object and the one-row or substantially one-row jet group or the jet group of one head move relative to each other. And a pattern in which the fluid is adhered to each other by the reciprocating movement of 1 to 30 millimeters perpendicular to or substantially perpendicular to the object. And a third step of lapping. A fluid film forming method is provided.
本発明は一列または略一列に配置された複数の噴出口からなる噴出口群、または1つのヘッドに配置された複数の噴出口からなる噴出口群からの流体のパルス的噴出流の対象物上でのパターンがラップしないようにする第一の工程と、前記一列または略一列の噴出口群またはヘッドの噴出口群を対象物の移動方向と直交または略直交して複数列配置する第二の工程と、前記対象物と前記噴出口群は相対移動する第三の工程と、前記対象物上で少なくとも2列目の噴出パルス的噴出流のパターンを1列目のすでに流体が付着したパターンとラップさせる第四の工程からなる流体の成膜方法。 The present invention is directed to an object of a pulsed jet flow of fluid from a jet group consisting of a plurality of jet nozzles arranged in a row or substantially in a row, or from a jet group consisting of a plurality of jet ports arranged in one head. And a second step of arranging a plurality of rows of the one row or substantially one row of jet nozzle groups or head jet nozzle groups perpendicularly or substantially perpendicular to the moving direction of the object. A step, a third step in which the object and the outlet group move relative to each other, and a pattern in which at least a second row of ejection pulse-like jet flows on the object has already been attached to the fluid in the first row. A fluid film forming method comprising a fourth step of lapping.
本発明は流体が液体、溶融体、粉粒体、ガス、超臨界性流体またはそれらの中から選択された少なくとも2種類の混合体からなり噴射された流体が対象物上に成膜されることを特徴とする流体の成膜方法を提供する。 In the present invention, the fluid is a liquid, a melt, a granular material, a gas, a supercritical fluid, or a mixture of at least two selected from them, and the ejected fluid is formed on the object. A method for forming a fluid film is provided.
本発明は対象物が加熱された基材であって流体が原料ガスまたはスプレイ熱分解法用溶液であって、流体の噴出流が対象物の上昇気流に打ち勝つようにパルス的に行うことを特徴とする流体の成膜方法を提供する。 The present invention is characterized in that the object is a heated substrate, the fluid is a raw material gas or a spray pyrolysis method solution, and is performed in a pulsed manner so that the jet flow of the fluid overcomes the rising airflow of the object A fluid film forming method is provided.
本発明の流体の噴出方法や成膜方法によれば複数の噴出口からの流体は干渉せず独立して所望する噴出流パターンで移動し例えば流体が液体や粉体などの塗料であれば被塗物に計算通りの塗布パターンとして塗布させることができる。 According to the fluid ejection method and film formation method of the present invention, fluids from a plurality of ejection ports do not interfere with each other and move independently in a desired ejection flow pattern. For example, if the fluid is a paint such as liquid or powder, It can be applied to the coating as a coating pattern as calculated.
本発明は特開平04-004060の液体や溶融体の流出流に向けて周回する圧縮流体噴出孔から圧縮気体を吹き付け衝突させて偏向させて円やドーナツ状などのパターンを得る方法に応用できる。例えば4個のヘッドまたは装置を設置して同時に液体などの流出をスタートした場合、周回する圧縮気体噴出孔の奇跡の円の角度を0から360度とすると1つ目のヘッドは0度、2つ目のヘッドは90度、3つ目のヘッドは180度、4つ目のヘッドは270度とすることができる。そうすればパターン幅より複数のヘッドのピッチを狭くしてもそれぞれの噴出流を全く干渉させずにそれぞれのヘッドのピッチを例えば50mmとしドーナツパターンを1メートルとしてトラバースするとヘッドの移動方向と直交して移動する広幅なウェブに対しても緻密な分布のパターンを形成できる。そして1ヘッドの4倍のスピードで生産ができる。10ヘッドなら10倍になる。そのうえ装置は1ヘッドとほとんど変わらずコンパクトにできる。本特許文献で紹介されているスワールスプレイパターンは気体の旋回流で小径のサーキュラやドーナツパターンを形成するが本文献の方法は機械的に確実に旋回できるので小径のパターンを所望する場合は更に精度を追究した方法として応用できる。またスワールスプレイパターンは流出量や粘度によってパターンが変化するので所望するパターンを得ようとすると調整が困難であるが、本方法では計算通りのパターンを得ることができる。もちろんヘッドの数、ピッチは目的に合わせて自由に設置でき、塗料や接着剤などの液体や加熱溶融体に限らず粉粒体の塗料や接着剤にも応用でき静電気的に電界を利用して帯電させるとワイドで均一な円形パターンを得ることもできる。また医薬品などの大量造粒にも適している。多数ヘッドを利用した従来の回転霧化方式の装置などからすると規模とコストを著しく抑えることできる。 The present invention can be applied to the method of obtaining a pattern such as a circle or donut shape by blowing and colliding with a compressed gas from a compressed fluid ejection hole that circulates toward the outflow of a liquid or a melt according to Japanese Patent Laid-Open No. 04-004060. For example, when four heads or devices are installed and the outflow of liquid or the like is started at the same time, if the angle of the miracle circle of the circulating compressed gas ejection hole is 0 to 360 degrees, the first head is 0 degrees, The first head can be 90 degrees, the third head can be 180 degrees, and the fourth head can be 270 degrees. Then, even if the pitch of the plurality of heads is made narrower than the pattern width, traversing with the head pitch of, for example, 50 mm and the donut pattern of 1 meter without interfering with each jet flow is orthogonal to the head moving direction. Thus, a dense distribution pattern can be formed even on a wide web that moves. And it can be produced four times faster than one head. 10 heads will be 10 times. In addition, the device can be made compact with almost no difference from one head. The swirl spray pattern introduced in this patent document forms a small-diameter circular or donut pattern with a swirling flow of gas. However, the method of this document can be swirled mechanically, so it is more accurate when a small-diameter pattern is desired. Can be applied as a method of pursuing In addition, the swirl spray pattern changes depending on the amount of flow and the viscosity. Therefore, it is difficult to adjust the swirl spray pattern to obtain a desired pattern. However, in this method, a pattern as calculated can be obtained. Of course, the number and pitch of the heads can be freely set according to the purpose, and it can be applied not only to liquids such as paints and adhesives and heated melts, but also to powdery paints and adhesives and electrostatically using electric fields. When charged, a wide and uniform circular pattern can be obtained. It is also suitable for mass granulation of pharmaceuticals. The scale and cost can be remarkably reduced by using a conventional rotary atomizing type apparatus using a large number of heads.
上記のように圧縮気体で流出流を偏向させるだけでなく流体の噴出ヘッドそのものを所望する角度をもって外向きに回転体にセットして中心軸を回転させると、小径や大径の所望するドーナツや円パターンを描くことができる。その場合であっても1個乃至複数の回転体に取り付けたそれぞれのヘッドの噴出タイミングを変えて設置し噴出流を干渉させないようにすることができる。1個の回転体に複数のヘッドを取り付ける場合は目的物と回転体は相対移動すればよい。噴出流は連続で円やドーナツ状パターンを描くこともできるし、間欠的に噴出して円やドーナツパターンを描くこともできる。噴出は液体や溶融体をエアレススプレイや二流体スプレイなどで粒子化してもよく、噴出孔の形状のままビード状に噴出しても良い。液圧を3.5MPa以上にして比較的粘度の低いホットメルト接着剤や粘着剤を0.25乃至0.5ミリメートルの口径のノズルから数メートル先の空中に速いスピードで放出するとメルトブローンのように高温の圧縮ガスを使用しなくてもそれなりの繊維の塊を製造できる。本方法は液体だけでなく粉体やガスの噴出にも適用できる。軸の中心から外向きに配置した流体の噴出ヘッドを回転するには市販の安価な1流体用あるいは多流体用ロータリージョイントを使用すればよい。流体は液体、溶融体、粉粒体とガスの混合体など制限はない。 Not only deflecting the outflow with compressed gas as described above, but also setting the fluid ejection head itself to the rotating body at the desired angle outward and rotating the central axis, the desired donuts with small or large diameter A circle pattern can be drawn. Even in such a case, it is possible to change the ejection timing of each head attached to one or a plurality of rotating bodies so as not to interfere with the ejection flow. When attaching a plurality of heads to one rotating body, the object and the rotating body may be moved relative to each other. The erupting flow can continuously draw a circle or donut pattern, or it can intermittently erupt to draw a circle or donut pattern. The ejection may be performed by atomizing a liquid or a melt by an airless spray or a two-fluid spray, or may be ejected in a bead shape while maintaining the shape of the ejection hole. When the hydraulic pressure is 3.5 MPa or more and a hot melt adhesive or adhesive having a relatively low viscosity is discharged at a high speed into the air several meters ahead from a nozzle with a diameter of 0.25 to 0.5 millimeters, like a melt blown Appropriate fiber clumps can be produced without using hot compressed gas. This method can be applied not only to liquids but also to powder and gas jets. In order to rotate the fluid ejection head arranged outward from the center of the shaft, a commercially available one-fluid or multi-fluid rotary joint may be used. The fluid is not limited, such as a liquid, a melt, or a mixture of powder and gas.
また特開平03-238061の方法も複数の装置またはヘッドを用意して上記と同じ考え方で噴出流が干渉しないようにしてコンパクト化を図れる。上記と同じ目的が達成できるが、本方法ではどちらかと言えば噴出角度を小さくして対象物との距離を短くするとインパクトを持たせることができるので、洗浄や凹凸のある対象物への塗布に特に有益である。 Also, the method disclosed in Japanese Patent Laid-Open No. 03-238061 can be made compact by preparing a plurality of devices or heads and preventing the jet flow from interfering with the same concept as described above. The same purpose as above can be achieved, but in this method, if the spray angle is reduced and the distance to the object is shortened, impact can be given, so it can be used for washing and application to uneven objects. Especially useful.
本発明では複数のヘッド同士のピッチがパターン幅よりも狭くても複数のヘッドの内、隣り合う噴出ヘッドの噴出タイミングのパルスの位相をずらして噴出させて、噴出流が空中で干渉しないようにさせることができる。目的物に到達する時のパターン幅が例えば250ミリメートルであっても隣り合うヘッドとヘッドの距離を25ミリメートルにしても全く干渉しないので装置をコンパクトにでき密度の濃い塗布ができるのでコストを抑えても生産性が向上することになる。当然のことながらベルやディスクなどの回転霧化塗布にも応用できる。ベルやディスクは静電気的に帯電させて塗布を行うが本発明では塗料のベルやディスクなどの霧化ヘッドへの噴出はパルスで行うのでタイミングをずらすと隣り合うパターンは空中で干渉しないようにできる。またベルなどの回転数を一定にして塗料などの単位時間当たりの流量が変わると微粒子径は変化するが本発明では連続した単位時間当たりの流量を一定にしてパルスで流量を制御できるので常に一定の微粒子が得られ品質的に管理しやすい。また水性塗料などの導電性材料をベルなどで静電塗装する場合、噴出はパルス的に行われるので静電気が絶縁されアースに流れにくいので帯電効率の面でも効果的である。そのため大型の塗料用容器や配管を絶縁する必要がないので安全でかつ設備費を大幅に低減できる。 In the present invention, even if the pitch between the plurality of heads is narrower than the pattern width, the ejection timing pulses of the adjacent ejection heads of the plurality of heads are shifted in phase so that the ejection flow does not interfere in the air. Can be made. Even if the pattern width when reaching the target is 250 mm, for example, even if the distance between adjacent heads is 25 mm, there is no interference, so that the apparatus can be made compact and dense coating can be performed, so the cost can be reduced. Will also improve productivity. Naturally, it can also be applied to rotational atomization coating of bells and discs. The bell and disk are electrostatically charged and applied, but in the present invention, the spraying of the paint to the atomizing head such as the bell and disk is performed with pulses, so if the timing is shifted, adjacent patterns can be prevented from interfering in the air. . In addition, the particle diameter changes when the flow rate per unit time of paint or the like changes with the rotation speed of a bell or the like being constant, but in the present invention, the flow rate per unit time can be kept constant and the flow rate can be controlled with pulses, so it is always constant. Of fine particles are easy to manage. In addition, when a conductive material such as a water-based paint is electrostatically coated with a bell or the like, since the ejection is performed in a pulse manner, static electricity is insulated and it is difficult to flow to the ground, which is effective in terms of charging efficiency. Therefore, it is not necessary to insulate a large paint container or pipe, so that it is safe and the equipment cost can be greatly reduced.
本発明はメルトブローン製造装置のヘッドあるいはその機構を応用した液体の噴出ヘッドのように特に広幅例えば100乃至2000ミリメートルのヘッドに多数の液体などの微細な噴出孔があるヘッドでの均一噴出パターンに効果的である。メルトブローンで不織布を製造する方法は例えばUS3825380Aで紹介されている。1インチ当たり20~30個の0.008乃至0.0022インチの口径のノズルから溶融樹脂を吐出し両側のエアスロットから熱風を噴出させてスピードに乗せて樹脂を引き延ばしながら繊維化し更に引き伸ばし絡ませて不織布を製造する事例が記載されている。本発明では圧縮気体の噴出はエアスロット(AIR SLOT)方式でなく溶融樹脂や液体の孔の周囲からそれぞれ独立させて噴出させるようにできる。また本発明ではヘッドの構造を限定するものではないが精度を向上させるために液体などの孔や圧縮気体の噴出口は複数の金属の薄板を例えば櫛状にエッチングして加工し、組み合わせて液体などの四角い流出孔や独立した四角い圧縮気体の噴出口を形成するようにして高精度ながら低コストでヘッドを製造することもできる。加工されたヘッドの複数の薄板は分解もできるし溶着させて立体的構造体にすることもできる。液体などの多数の微細な流出孔の上流の開閉機構と繊維化あるいは粒子化する圧縮気体の開閉機構の対を少なくとも二系統にしてそれらの下流の噴出孔は隣り合うようにして、それぞれのパルスの位相をずらせばよい。圧縮気体は噴出するとそのパターンは下流で噴出孔径より膨張するので2個隣の噴出流同士が干渉しないように例えば1インチ当たり5個乃至10個にすれば比較的低粘度のホットメルト接着剤や粘着剤の短繊維化した接着用ウェブ製造や液体の微粒子塗布などに効果的である。液体が溶媒を含む場合は圧縮気体の回路に溶媒微粒子や溶媒蒸気などを存在させて液体の流出孔を流体の固形分が乾燥して閉塞させないようにすることが肝要である。粉体などの他の流体の噴出に関しても多数の隣り合う噴出口の上流のエジェクターポンプや開閉機構などを複数の系統にすれば良い。 INDUSTRIAL APPLICABILITY The present invention is effective for a uniform ejection pattern particularly in a head having a large number of fine ejection holes such as a liquid in a head having a wide width, for example, 100 to 2000 mm, such as a head of a melt blown manufacturing apparatus or a liquid ejection head using the mechanism. Is. A method for producing nonwoven fabrics with meltblown is introduced in, for example, US Pat. No. 3,825,380A. Discharge molten resin from 20 to 30 nozzles of 0.008 to 0.0022 inches per inch, blow hot air from the air slots on both sides, put it on the speed and stretch the resin to make it fiber and further stretch it An example of manufacturing a non-woven fabric is described. In the present invention, the compressed gas is not ejected from the air slot (AIR SLOT) system but can be ejected independently from the periphery of the hole of the molten resin or liquid. In the present invention, the structure of the head is not limited. However, in order to improve accuracy, the holes of the liquid and the jet of the compressed gas are processed by etching a plurality of metal thin plates into a comb shape, for example, and combining them. The head can be manufactured at a low cost with high accuracy by forming a square outflow hole such as the above and an independent square compressed gas jet port. A plurality of thin plates of the processed head can be decomposed or welded to form a three-dimensional structure. At least two systems of pairs of opening / closing mechanisms upstream of many fine outflow holes such as liquids and compressed gas opening / closing mechanisms that are made into fibers or particles, and their downstream ejection holes are adjacent to each other. What is necessary is just to shift the phase. When the compressed gas is ejected, the pattern expands from the diameter of the ejection hole downstream. Therefore, if the number is 5 to 10 per inch so as not to interfere with each other, a relatively low viscosity hot melt adhesive or It is effective for the production of adhesive webs in which the pressure-sensitive adhesive has been shortened and the application of liquid fine particles. When the liquid contains a solvent, it is important to prevent the liquid outflow holes from becoming clogged by drying the solids of the fluid by causing solvent fine particles, solvent vapor, or the like to exist in the compressed gas circuit. Regarding the ejection of other fluids such as powder, a plurality of ejector pumps and opening / closing mechanisms upstream of a large number of adjacent ejection ports may be provided.
流体、噴出流、パルスなどの条件は特に限定しないが、例えばスプレイをミリセカンド単位のパルス的に行いスプレイヘッドから被塗物までの距離を5乃至80ミリメートルとしてスプレイ(噴出)流の角度を20度以内、好ましくは10度以内、更に好ましくは6度以内にしてスプレイ粒子にある程度のスピードをもたせば二流体スプレイであっても狙った箇所に確実に液体などを付着させることができる。またスプレイ角度を10度以内にすれば、A4サイズに全面塗布した場合その塗着効率はスプレイの常識を覆す95%以上に高めることができる。そのため複数のヘッドを使用して本発明の方法を採用すると塗布の品質のみならず生産性を向上させることができる。当然洗浄に対しても上記方法は効果的でエアレススプレイ方法を採用する場合であってもスプレイ角度を45度以内好ましくは30度以内にして被洗浄物までの距離を150ミリメートル以内にして液圧を5乃至15MPaにして複数のスプレイヘッドを使用すると効果的である。 The conditions such as fluid, jet flow, and pulse are not particularly limited. For example, spraying is carried out in pulses in millisecond units, and the distance from the spray head to the object to be coated is 5 to 80 mm. If the spray particles are given a certain speed within a degree, preferably within 10 degrees, and more preferably within 6 degrees, a liquid or the like can be reliably attached to a target location even in a two-fluid spray. If the spray angle is set to 10 degrees or less, the coating efficiency can be increased to 95% or more which overturns the common sense of spraying when the entire surface is applied to A4 size. Therefore, when the method of the present invention is adopted using a plurality of heads, productivity as well as coating quality can be improved. Of course, the above method is also effective for cleaning, and even when the airless spray method is adopted, the spray angle is within 45 degrees, preferably within 30 degrees, and the distance to the object to be cleaned is within 150 millimeters. It is effective to use a plurality of spray heads with 5 to 15 MPa.
前述の通り噴出される流体は原料ガスを含む気体、粉粒体や短繊維でガスと混合させて移送するもの、塗料や液状接着剤、洗浄剤、有機溶剤、水、オイルなどの液体、ホットメルト接着剤や溶融樹脂などの溶融体、液化ガス、液化炭酸ガスを超臨界状態にした超臨界性流体、それらの混合体などを含むが、噴出流の下流の目的は問わない。 As described above, the fluid to be ejected is a gas containing raw material gas, a powder or granular fiber mixed with gas, transferred, paint, liquid adhesive, cleaning agent, organic solvent, water, liquid such as oil, hot A melt such as a melt adhesive or a molten resin, a liquefied gas, a supercritical fluid obtained by bringing a liquefied carbon dioxide gas into a supercritical state, a mixture thereof, and the like are included.
本発明では上記噴出流の上流や下流で気体、液体粒子、溶融体粒子、メルトブローン法やエレクトロスピニングなどで製造される繊維などに静電気的に帯電させて粒子や繊維同士を反発させて凝集させることなく目的物である被塗物などに付着させやすくすることができる。目的物の形状、材質、サイズなどを問うものでないが、半導体基板、LEDセラミック基板やウェハーレベルLED、ガラスなどの枚葉タイプや、枚葉のフィルム、紙、あるいはロール to ロールなどに使用する長尺の薄板金属、薄板ガラス、フィルム、紙、カーボン繊維などのウェブあるいはそれらのコンポジットなどが選択できる。流体を噴射する際、枚葉の被塗物はトレイに載置してもよく、また長尺のウェブなどは噴射流の反対側を加熱吸着ドラムなどで吸着しても良い。 In the present invention, the particles and fibers are repelled and aggregated by electrostatically charging gas, liquid particles, melt particles, fibers produced by the melt blown method, electrospinning, or the like upstream or downstream of the jet flow. It can be easily attached to the object to be coated. It does not ask the shape, material, size, etc. of the object, but it is used for single-wafer types such as semiconductor substrates, LED ceramic substrates, wafer level LEDs, glass, single-wafer films, paper, or rolls to rolls. A thin sheet metal, a sheet glass, a film, paper, a web such as carbon fiber, or a composite thereof can be selected. When the fluid is ejected, the single-wafer object to be coated may be placed on a tray, and a long web or the like may be adsorbed on the opposite side of the jet flow by a heating adsorption drum or the like.
また流体は粒子化しやすいように超音波スプレイ、あるいはエアレススプレイ、二流体スプレイなどの噴出口や構造体に超音波振動子やホーンを付加することができる。 In addition, an ultrasonic vibrator or a horn can be added to a jet outlet or a structure such as an ultrasonic spray, an airless spray, or a two-fluid spray so that the fluid is easily formed into particles.
本発明は空中で複数の噴出流が干渉しないようにすることを主目的とするが、対象物上に衝突または接触させて液体などが付着した後の噴出流の分布を均一にするために複数の噴出流の所望するパターンが対象物上で所望するラップをするように複数の噴出口を配置することができる。そして隣り合う噴出流が対象物に衝突または塗着するまでの間に干渉しないようにパルス的にタイミングをずらすことが肝要である。またそれぞれの噴出流のパターンが対象物上で干渉しない複数の噴出口を持つ一つのヘッドを一つの噴出流グループとして対象物の移動方向に複数のヘッドを配列し、あるいは噴出流グループと対象物を相対移動し、1ヘッド目の噴出流グループのそれぞれのパルス的に対象物に噴出したパターンと2ヘッド目あるいは3ヘッド目のそれぞれのパターンとを所望する形状になるようにラップさせることができる。また上記ヘッドと同様に一列の複数の噴出口の噴出流が対象物上で干渉しないように配置した群れを一つの噴出流グループとみなし複数列配置することで上記と同じ方法で対象物上に液体などを均一な分布で付着させることができる。
上記二つの方法は対象物の移動方向と直交または略直交して例えば1乃至30ミリメートル往復移動しヘッドまたは列ごとの噴出口の対象物上での噴出流のパターンをラップさせることもできる。このようなショートトラバースするときの付着するときのパターン幅は2乃至40ミリメートルの小径あるいは楕円の狭い角度のパターンを使用できる。パターン幅を限定するものでないが10mm以下が好ましく小さいパターン幅ほど流体の付着効率を高めることができる。1つのヘッドあるいは一列または略一列の複数の噴出口の数は多いほど生産性の面でよい。費用対効果から5乃至10個は対象物が小さいLEDなど向けの小型装置に好ましく、10乃至100個あるいはそれ以上はウェブなどへの液体や溶融体の噴射に適している。
The main object of the present invention is to prevent a plurality of jets from interfering with each other in the air, but in order to make the distribution of the jets uniform after colliding with or contacting a target object and liquid or the like adheres. A plurality of jets can be arranged so that the desired pattern of the jet flow of the desired wraps on the object. It is important to shift the timing in a pulse manner so that adjacent jets do not interfere with each other until they collide or adhere to the object. In addition, a plurality of heads are arranged in the moving direction of the object, with one head having a plurality of outlets whose respective jet patterns do not interfere on the object as one jet stream group, or the jet stream group and the object Can be wrapped so that the pattern ejected to the object in a pulse manner in the ejection group of the first head and the pattern of each of the second head or the third head have a desired shape. . Similarly to the above head, a group arranged so that the jet flow of a plurality of jet nozzles in one row does not interfere on the object is regarded as one jet flow group and arranged in multiple rows on the target in the same manner as above. A liquid or the like can be attached with a uniform distribution.
The above two methods can wrap the pattern of the jet flow on the target at the jet outlet for each head or row by reciprocating, for example, 1 to 30 mm perpendicular to or substantially perpendicular to the moving direction of the target. A pattern having a small diameter of 2 to 40 millimeters or an ellipse with a narrow angle can be used as the pattern width when adhering to such a short traverse. Although the pattern width is not limited, 10 mm or less is preferable, and the smaller the pattern width, the higher the adhesion efficiency of the fluid. As the number of one head or the plurality of jet nozzles in one row or substantially one row is larger, the productivity may be improved. From the cost-effectiveness, 5 to 10 are suitable for a small device for an LED having a small object, and 10 to 100 or more are suitable for injecting a liquid or a melt onto a web or the like.
また本発明ではMOCVD法などのCVDに応用でき原料ガスやスプレイ熱分解法用溶液を加熱した対象物にパルス的に複数の噴出口から噴射させ対象物の上昇気流に打ち勝って衝突または接触させて均一に成膜させることができる。原料が液体の場合はバブリング法などを採用して気化させ直接または他のキャリヤガスと一緒に移送しても良い。例えば400乃至600℃に加熱したガラス板上にFTO膜を成膜する場合例えば100ミリメートルのパターン幅でスプレイすると上昇気流に押し戻されるので得策ではない。 Further, in the present invention, it can be applied to CVD such as MOCVD, and the target gas or spray pyrolysis method solution is jetted from a plurality of jets in a pulsed manner to overcome the rising air current of the target and collide with or come into contact. A uniform film can be formed. When the raw material is a liquid, it may be vaporized by using a bubbling method or the like and transferred directly or together with another carrier gas. For example, when an FTO film is formed on a glass plate heated to 400 to 600 ° C., for example, spraying with a pattern width of 100 millimeters is pushed back to the rising air current, which is not a good idea.
上記のように本発明によれば複数の噴出口からの流体を低コストで広範囲に均一に分散できる。そのため高品質な粉粒体や繊維などの製造は勿論のこと、対象物への塗装などを含む成膜をコンパクトな装置で高い生産性のもとに行うことできる。 As described above, according to the present invention, fluids from a plurality of jet nozzles can be uniformly distributed over a wide range at a low cost. Therefore, not only the production of high-quality powder particles and fibers, but also film formation including coating on an object can be performed with high productivity with a compact apparatus.
本発明の実施の形態に係る略一列のパターン配置図である。It is a pattern arrangement | sequence figure of the substantially 1 line which concerns on embodiment of this invention. 本発明の実施の形態に係るタイミングチャートである。It is a timing chart concerning an embodiment of the invention. 本発明の実施の形態に係わる2流体スプレイのタイミングチャートである。It is a timing chart of 2 fluid spray concerning an embodiment of the invention. 本発明の実施の形態に係る2列の配置図である。FIG. 3 is an arrangement diagram of two rows according to the embodiment of the present invention. 本発明の実施の形態に係る3列の配置図である。FIG. 3 is an arrangement diagram of three rows according to the embodiment of the present invention. 本発明の実施の携帯に係わる円上の配置図である。It is a layout diagram on a circle related to carrying of the present invention.
以下、図面を参照して本発明の好適な実施形態について説明する。なお、以下の実施形態は発明の理解を容易にするための一例にすぎず本発明の技術的思想を逸脱しない範囲において当業者により実施可能な付加、置換、変形等を施すことを排除するものではない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. The following embodiments are merely examples for facilitating understanding of the invention, and exclude additions, substitutions, modifications, etc. that can be implemented by those skilled in the art without departing from the technical idea of the present invention. is not.
図面は本発明の好適な実施の形態を概略的に示している。 The drawings schematically show a preferred embodiment of the invention.
図1において流体の開閉機能を備えた噴出ヘッド1,2,3の流体の連続した噴出流が下流で干渉するように各ヘッドを配置する。噴出タイミングは1と3が同じタイミングで噴出することができる。そして例えばそのタイミングのサイクルを100ミリ秒/サイクルとすると噴出ヘッド1と3は最初のサイクルの100ミリ秒の間に噴出する。例えば45ミリ秒後に噴出を開始し、55ミリ秒後に噴出を停止する。符号4と5はヘッド1と3のパルス的噴出流であって末広がりになりながら移動する。1と3の隣の噴出ヘッド2はそれより遅れた2番目のサイクルで同じように45ミリ秒後に噴出を開始し55ミリ秒後に停止する。6はヘッド2のパルス的噴出流であって1サイクル遅れて飛行する。同様に7,8は3番目のサイクルのヘッド1,3の噴出流であって同様に更に1サイクル分遅れて飛行する。そうすることによって、それぞれの噴出流は全く干渉することなく飛行する。ヘッド1,3は同じ噴出タイミングで良いので流体の開閉機構を備えた1つのヘッドの下流を分岐して2つの噴出口にしてもよい。そして流体の2個の開閉機構の下流を分岐して多くの噴出口を備え、2個の開閉機構の下流の複数の噴出口が必ず隣り合うように配置して、それぞれの連続した噴出流が空中または目的物上で干渉するように設置する。そして図1のタイミングと同じ方法で隣り合う噴出口の片方を1サイクル分遅くしてパルス的に噴出させると全く干渉することはない。昨今環境の課題を克服する手段として注目を浴びているPEFCタイプ燃料電池車のMEA製造に本発明は応用できる。流体が燃料電池用電極インクであって対象物の電解質膜に200ミリメートル幅にパルス的に直接塗布する場合、隣り合う噴出口のピッチを7.5ミリメートルとして噴出パターンが10ミリメートルの56の噴出口をもつ塗布器を両極分製作すると年間6000乃至15000台分の燃料電池車用の理想的なMEA(メンブラン電極アッセンブリー)が生産できる。生産量は塗布器の数に比例するが装置は非常にコンパクトにできる。 In FIG. 1, the heads are arranged so that the continuous jet flow of the fluid from the jet heads 1, 2 and 3 having a fluid opening / closing function interferes downstream. As for the ejection timing, 1 and 3 can be ejected at the same timing. For example, when the cycle of the timing is 100 milliseconds / cycle, the ejection heads 1 and 3 are ejected during 100 milliseconds of the first cycle. For example, the ejection is started after 45 milliseconds, and the ejection is stopped after 55 milliseconds. Reference numerals 4 and 5 are pulsating jets of the heads 1 and 3 and move while spreading. The ejection head 2 adjacent to 1 and 3 starts ejection after 45 milliseconds in the same manner in the second cycle later than that, and stops after 55 milliseconds. Reference numeral 6 denotes a pulsating jet of the head 2 which flies one cycle behind. Similarly, 7 and 8 are jet flows of the heads 1 and 3 in the third cycle, and similarly, they are further delayed by one cycle. By doing so, each jet will fly without any interference. Since the heads 1 and 3 may have the same ejection timing, the downstream of one head having a fluid opening / closing mechanism may be branched to form two ejection ports. Then, the downstream of the two opening / closing mechanisms of the fluid is branched to provide a large number of outlets, and the plurality of outlets downstream of the two opening / closing mechanisms are arranged so as to be adjacent to each other. Install so as to interfere in the air or on the object. Then, if one of the adjacent jet outlets is delayed by one cycle and ejected in a pulse manner in the same manner as the timing of FIG. 1, there is no interference. The present invention can be applied to the MEA production of PEFC type fuel cell vehicles that are attracting attention as a means of overcoming environmental problems. When the fluid is electrode ink for a fuel cell and is directly applied to an electrolyte membrane of an object in a pulse width of 200 mm, 56 jet nozzles having a jet pattern of 10 mm with an adjacent jet nozzle pitch of 7.5 mm When an applicator with a pole is manufactured for both poles, an ideal MEA (membrane electrode assembly) for a fuel cell vehicle for 6000 to 15000 units can be produced annually. The production volume is proportional to the number of applicators, but the device can be very compact.
図2は図1のタイミングチャートである。 FIG. 2 is a timing chart of FIG.
図3は流体が液体や溶融体であって圧縮気体で粒子や繊維化する際の1サイクル分のタイミングチャートである。噴出をパルス的に行う場合は液体などの吐出や流出の前後にも圧縮気体を噴出させる必要がある。液体の吐出のタイミングに対して圧縮気体を前後にそれぞれ5乃至10ミリ秒長く噴出する必要がある。
もちろんサイクル内であればそれより長くてもよいが省資源の立場から消費量を多くすることは良くない。
FIG. 3 is a timing chart for one cycle when the fluid is a liquid or a melt and particles or fibers are formed with compressed gas. When the ejection is performed in a pulsed manner, it is necessary to eject the compressed gas before and after the discharge or outflow of liquid or the like. It is necessary to eject the compressed gas 5 to 10 milliseconds longer in the front-rear direction with respect to the liquid discharge timing.
Of course, it may be longer if it is within the cycle, but it is not good to increase consumption from the standpoint of resource saving.
図4は噴出ヘッドと噴出流のパターンを2列に配置した図である。ヘッド11から14は前列に、ヘッド15乃至18は後列に配置してある。ヘッド11と13、ヘッド15と17が最初のサイクルで流体を噴出したときはヘッド12と14及び16と18は噴出せず第2のサイクルの所望するタイミングで噴出する。符号21乃至28は噴出流のパターンを示す。イニシャルコストの観点からヘッド11,13,15,17は1つの開閉機構、例えば高速応答性に優れているディスペンス用開閉自動バルブや自動開閉スプレイガンの下流を分岐してそれぞれを噴出口としてよく、ヘッド12,14,16,18も別の1つの開閉機構の下流を分岐して噴出口としてよい。 FIG. 4 is a diagram in which ejection heads and ejection flow patterns are arranged in two rows. The heads 11 to 14 are arranged in the front row, and the heads 15 to 18 are arranged in the rear row. When the heads 11 and 13 and the heads 15 and 17 eject the fluid in the first cycle, the heads 12 and 14 and 16 and 18 do not eject but eject at the desired timing of the second cycle. Reference numerals 21 to 28 denote ejection flow patterns. From the viewpoint of initial cost, the heads 11, 13, 15 and 17 may have one opening / closing mechanism, for example, a dispensing open / close automatic valve excellent in high-speed response and an automatic opening / closing spray gun downstream, and each may serve as a jet outlet. The heads 12, 14, 16, and 18 may also be branched downstream of another one opening / closing mechanism to serve as ejection ports.
図5は密にヘッドを配置した3列の図である。最初のサイクルで前と後の列のみの1個おきのヘッド31,33,39,41が噴出し、2番目のサイクルで真ん中の列のヘッドの1個おきのヘッド36,38が噴出し、3番目のサイクルで前と後ろの列の噴出していなかったヘッド32,34,40,42から流体は噴出する。それぞれの噴出流のパターン例えば131,136,139がぎりぎり干渉しないとしても圧縮気体で液体等を粒子化する場合、圧縮気体は粒子噴出流のパターンの外まで広って圧縮気体同士が干渉して粒子噴出流のパターンを乱す可能性もあるので事前に確認が必要である。 FIG. 5 is a diagram of three rows with densely arranged heads. In the first cycle, every other head 31, 33, 39, 41 only in the front and rear rows is ejected, in the second cycle every other head 36, 38 in the middle row is ejected, In the third cycle, the fluid is ejected from the heads 32, 34, 40, and 42 that have not been ejected in the front and rear rows. Even if each of the jet patterns, for example 131, 136, 139, does not interfere with each other, when the liquid or the like is granulated with compressed gas, the compressed gas spreads outside the particle jet pattern and the compressed gases interfere with each other. It is necessary to confirm in advance because there is a possibility of disturbing the particle jet pattern.
図6は円(CIRCULAR)上に流体を噴出する例であって、ヘッド31,33,35,37,39が最初のサイクルで噴出し、噴出パターン41,43,45,47,49を得ることができる。第2のサイクルでヘッド32,34,36,38,40から噴出してドーナツパターンを得ることができる。ヘッドの数を増やすことによりさらに密なドーナツパターンを得ることができる。 FIG. 6 shows an example in which fluid is ejected onto a circle (CIRCULAR), and the heads 31, 33, 35, 37, 39 eject in the first cycle to obtain ejection patterns 41, 43, 45, 47, 49. Can do. A donut pattern can be obtained by ejecting from the heads 32, 34, 36, 38, 40 in the second cycle. A denser donut pattern can be obtained by increasing the number of heads.
図6と同じように円形の内側にも多くのヘッドまたは噴出口を配置し同じような手順でフルコーンのパターンを形成できる。特にシリコンウェハーなどのディスク形状の成膜にはこの方法は効果的である。 As in FIG. 6, a full cone pattern can be formed in the same procedure by arranging many heads or jet nozzles inside the circular shape. This method is particularly effective for disk-shaped film formation such as a silicon wafer.
また本発明の塗布方法を前述のように付加価値の高い製品の製造に応用できる。例えばPEFCなどの燃料電池電極形成に応用することができる。流体を燃料電池電極触媒インクとし、被塗物をGDL(ガスディフュージョンレイヤー)や電解質膜とすることができる。電極インクを電解質膜に直接塗布すると電極と電解質膜の密着性が良く、電気的界面抵抗が低くできるので理想的とされている。高速生産性で知られるダイ方式のスロットノズルは広幅で間歇塗布ができるので生産性の面からGDLに対しては申し分ないが、バックシートの無い25マイクロメートル以下の薄い電解質膜に直接塗布することは不可能で、またスロットノズル方式は性能面からすると触媒層にはマイクロポア、メソポア、マクロポアなどの形成が難しかった。そのため理想的なマクロポアなどの形成に過去からFCVなどのMEAで実績の多いパルス的スプレイ塗布方法が嘱望されていた。とくに電極触媒が触媒と電解質溶液と溶媒からなるスラーリー(SLURRY)を水分で瞬間的に変形する電解質膜にパルス的スプレイ塗布をする場合、電解質膜を加熱吸着しながら1個または複数のスプレイヘッドをトラバースして薄膜で積層塗布する必要があったため生産性が極めて低くロール to ロール方式には適さなかった。しかし本発明の方法によれば噴出流の塗布パターン径を5ミリメートル以下にすることによりマスキングなしで電極形成ができる。またそれを複数列配置することによりコンパクトでトータルコストの低い装置をもって遥かに高い生産性を得ることができる。 Moreover, the coating method of the present invention can be applied to the production of products with high added value as described above. For example, it can be applied to the formation of fuel cell electrodes such as PEFC. The fluid can be a fuel cell electrode catalyst ink, and the object to be coated can be a GDL (gas diffusion layer) or an electrolyte membrane. When electrode ink is directly applied to the electrolyte membrane, it is ideal because the adhesion between the electrode and the electrolyte membrane is good and the electrical interface resistance can be lowered. Die-type slot nozzles known for high-speed productivity are wide and can be applied intermittently, so they are perfect for GDL from the aspect of productivity, but apply directly to a thin electrolyte membrane of 25 micrometers or less without a backsheet. The slot nozzle method was difficult to form micropores, mesopores, macropores, etc. in the catalyst layer from the viewpoint of performance. Therefore, a pulse-type spray coating method having a long track record in MEA such as FCV has been desired for forming ideal macropores. In particular, when the electrode catalyst is a pulse spray applied to an electrolyte membrane that is instantly deformed by moisture with a slurry (SLURY) composed of a catalyst, an electrolyte solution, and a solvent, one or more spray heads are attached while the electrolyte membrane is heated and adsorbed. Since it was necessary to traverse and apply a thin film, the productivity was extremely low and it was not suitable for the roll-to-roll method. However, according to the method of the present invention, the electrode can be formed without masking by setting the spray pattern diameter to 5 mm or less. Further, by arranging them in a plurality of rows, a much higher productivity can be obtained with a compact and low total cost apparatus.
本発明によれば流体の種類に関係なくコンパクトでかつコストが低い装置化が図れるので、造粒、繊維化、洗浄、成膜などのあらゆる分野の生産性を上げることができる。そして付加価値の高いアプリケーションにも適用できる。 According to the present invention, a compact and low-cost apparatus can be achieved regardless of the type of fluid, so that productivity in all fields such as granulation, fiberization, cleaning, and film formation can be increased. It can also be applied to high value-added applications.
1,2,3                   噴出ヘッド
4,5                     第1サイクル噴出流
6                       第2サイクル噴出流
7,8                     第3サイクル噴出流
11,12,13,14             前列ヘッド                       
15,16,17,18             後列ヘッド
21,21,25,27             第1サイクル噴出流
22,24,26,28             第2サイクル噴出流
31,32,33,34             前列ヘッド
35,36,37,38             中列ヘッド
39,40,41,42             後列ヘッド
131,133,136,138,139,141 第1サイクル噴出流
132,134,135,137,140,142 第2噴出流
61,62,63~69、70           円上のヘッド                      
161,163,165,167,169     第1サイクル噴出流
162,164,166,168,170     第2サイクル噴出流
1, 2, 3 Ejection heads 4, 5 First cycle ejection flow 6 Second cycle ejection flow 7, 8 Third cycle ejection flow 11, 12, 13, 14 Front row head
15, 16, 17, 18 Rear row heads 21, 21, 25, 27 First cycle jets 22, 24, 26, 28 Second cycle jets 31, 32, 33, 34 Front row heads 35, 36, 37, 38 Row heads 39, 40, 41, 42 Rear row heads 131, 133, 136, 138, 139, 141 First cycle jets 132, 134, 135, 137, 140, 142 Second jets 61, 62, 63-69, 70 yen head
161, 163, 165, 167, 169 First cycle jet flow 162, 164, 166, 168, 170 Second cycle jet flow

Claims (15)

  1. 複数の噴出口から流体を噴出する方法であって、隣り合う噴出口からの噴出流が下流で干渉しないように、タイミングをずらして噴出することを特徴とする流体の噴出方法。 A method of ejecting fluid from a plurality of ejection ports, wherein the fluid is ejected at different timings so that ejection flow from adjacent ejection ports does not interfere downstream.
  2. 隣り合う合う噴出口からの噴出流が干渉しないようにタイミングをずらしてパルス的に噴出することを特徴とする請求項1の流体の噴出方法。 2. The fluid ejection method according to claim 1, wherein the ejection is performed in a pulsed manner at different timings so that the ejection flows from adjacent ejection ports do not interfere with each other.
  3. 流体が液体、溶融体、粉粒体、ガス、超臨界性流体の単独流あるいはそれらの中から少なくとも2種類を選択した混合体であることを特徴とする請求項1の流体の噴出方法。 2. The fluid ejection method according to claim 1, wherein the fluid is a single flow of liquid, melt, powder, gas, supercritical fluid, or a mixture selected from at least two of them.
  4. 流体を静電気的に帯電させることを特徴とする請求項1の流体の噴出方法。 The fluid ejection method according to claim 1, wherein the fluid is electrostatically charged.
  5. 少なくとも噴出口付近で流体に超音波を付加することを特徴とする請求項1の流体の噴出方法。 2. The fluid ejection method according to claim 1, wherein ultrasonic waves are added to the fluid at least in the vicinity of the ejection port.
  6. 噴出した流体が粒子または繊維になることを特徴とする請求項1の流体の噴出方法。 2. The fluid ejection method according to claim 1, wherein the ejected fluid is particles or fibers.
  7. パルスの回数が1秒当たり1乃至1000回であることを特徴とする請求項2の流体の噴出方法。 3. The fluid ejection method according to claim 2, wherein the number of pulses is 1 to 1000 times per second.
  8. 自動開閉機構の下流に複数の噴出口を設置する第一の工程と、複数の自動開閉機構を設置する第二の工程と、複数の自動開閉機構の内少なくとも二つの自動開閉機構を選択しそれぞれの下流の噴出口が隣り合うように交互に設置される第三の工程からなることを特徴とする請求項1乃至7のいずれかに記載の流体の噴出方法。 Select a first step of installing a plurality of jets downstream of the automatic opening / closing mechanism, a second step of installing a plurality of automatic opening / closing mechanisms, and at least two of the plurality of automatic opening / closing mechanisms. The fluid ejection method according to any one of claims 1 to 7, further comprising a third step in which the downstream ejection ports are alternately installed so as to be adjacent to each other.
  9. 流体を対象物に向けて複数の噴出口から噴出する方法であって、対象物上で隣り合う噴出口からの噴出パターンがラップするように複数の噴出口を配置する第一の工程と、隣り合う噴出口の片方が噴出するとき、もう片方の噴出口からは噴出しないようにお互いがパルス的にタイミングをずらして噴出する第二の工程と、噴出した流体を対象物に衝突または接触させる第三の工程からなることを特徴とする流体の成膜方法。 A method of ejecting fluid from a plurality of jets toward an object, the first step of arranging the plurality of jets so that a jet pattern from adjacent jets on the target wraps; When one of the matching spouts ejects, the second step in which the spouts are ejected at different timings so that they do not spout from the other spout, and the ejected fluid collides with or comes into contact with the object. A fluid film forming method comprising three steps.
  10. 複数の噴出口は群として一列または略一列または複数列に配置し、複数の噴出口と対象物とは相対移動し噴出された流体は対象物に衝突または接触することを特徴とする請求項9の流体の成膜方法。 The plurality of jet nozzles are arranged in one row or substantially one row or a plurality of rows as a group, the plurality of jet nozzles and the target object move relative to each other, and the jetted fluid collides with or contacts the target object. A method of forming a fluid film.
  11. 複数の噴出口が円上または略円上にまたは円形または略円形に配置されることを特徴とする請求項9の流体の成膜方法。 The fluid deposition method according to claim 9, wherein the plurality of jet nozzles are arranged on a circle, a substantially circle, or a circle or a circle.
  12. 一列または略一列に配置された複数の噴出口からなる噴出口群、または1つのヘッドに配置された複数の噴出口からなる噴出口群からの流体のパルス的噴出流の対象物上でのパターンがラップしないように前記流体を対象物に付着させる第一の工程と、前記対象物と前記一列または略一列の噴出口群または一つのヘッドの噴出口群は相対移動する第二の工程と、上記一列または略一列の噴出口群または一つのヘッドの噴出口群は対象物と直交または略直交して1乃至30ミリメートル往復移動してパルス的に流体を噴出し、前記流体が付着したパターンとラップせる第三の工程とからなることを特徴とする流体の成膜方法。 A pattern on the object of a pulsed jet flow of fluid from a jet group consisting of a plurality of jet nozzles arranged in one or substantially one row, or from a jet group consisting of a plurality of jet nozzles arranged in one head A first step of adhering the fluid to the object so as not to wrap, a second step of relative movement of the object and the one row or substantially one row of outlet groups or one head outlet group; The above-mentioned one row or substantially one row of jet nozzle groups or one head jet nozzle group reciprocates 1 to 30 millimeters perpendicularly or substantially perpendicularly to the object, and ejects fluid in a pulse manner, and the pattern to which the fluid adheres A fluid film forming method comprising a third step of lapping.
  13. 一列または略一列に配置された複数の噴出口からなる噴出口群、または1つのヘッドに配置された複数の噴出口からなる噴出口群からの流体のパルス的噴出流の対象物上でのパターンがラップしないようにする第一の工程と、前記一列または略一列の噴出口群またはヘッドの噴出口群を対象物の移動方向と直交または略直交して複数列配置する第二の工程と、前記対象物と前記噴出口群は相対移動する第三の工程と、前記対象物上で少なくとも2列目の噴出パルス的噴出流のパターンを1列目のすでに流体が付着したパターンとラップさせる第四の工程からなることを特徴とする流体の成膜方法。 A pattern on the object of a pulsed jet flow of fluid from a jet group consisting of a plurality of jet nozzles arranged in one or substantially one row, or from a jet group consisting of a plurality of jet nozzles arranged in one head A second step of arranging a plurality of rows of the one row or substantially one row of outlet groups or the head outlet groups orthogonal to or substantially perpendicular to the moving direction of the object; A third step in which the object and the jet group move relative to each other; and a pattern in which at least a second row of ejection pulsed jet flows is overlapped with a pattern in which fluid is already attached to the first row on the object. A fluid film-forming method comprising four steps.
  14. 流体が液体、溶融体、粉粒体、ガス、超臨界性流体またはそれらの中から選択された少なくとも2種類の混合体からなり噴射された流体が対象物上に成膜されることを特徴とする請求項9乃至13のいずれかに記載の流体の成膜方法。 The fluid is a liquid, a melt, a granular material, a gas, a supercritical fluid, or a mixture of at least two selected from them, and a jetted fluid is formed on the object. The fluid film forming method according to claim 9.
  15. 対象物が加熱された基材であって流体が原料ガスまたはスプレイ熱分解法用溶液であって、流体の噴出流が対象物上の上昇気流に打ち勝つようにパルス的に行うことを特徴とする請求項9乃至13の流体の成膜方法。 The target object is a heated base material, and the fluid is a raw material gas or a spray pyrolysis method solution, and the fluid jet is performed in a pulsed manner so as to overcome the ascending current on the target object. The fluid film-forming method according to claim 9.
PCT/JP2016/059926 2015-04-02 2016-03-28 Fluid jetting method and fluid film formation method WO2016158859A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680031793.0A CN107614124B (en) 2015-04-02 2016-03-28 Fluid ejection method and fluid film formation method
CN202011292640.6A CN112439659B (en) 2015-04-02 2016-03-28 Cleaning method and sand blasting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-076193 2015-04-02
JP2015076193A JP6684397B2 (en) 2015-04-02 2015-04-02 Fluid ejection method and fluid film formation method

Publications (1)

Publication Number Publication Date
WO2016158859A1 true WO2016158859A1 (en) 2016-10-06

Family

ID=57006796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059926 WO2016158859A1 (en) 2015-04-02 2016-03-28 Fluid jetting method and fluid film formation method

Country Status (3)

Country Link
JP (1) JP6684397B2 (en)
CN (3) CN107614124B (en)
WO (1) WO2016158859A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020030910A (en) * 2018-08-21 2020-02-27 エムテックスマート株式会社 Manufacturing method of all-solid battery
WO2022102528A1 (en) * 2020-11-13 2022-05-19 正文 松永 Method for producing fuel cell, and fuel cell

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6984848B2 (en) * 2018-02-26 2021-12-22 エムテックスマート株式会社 Manufacturing method of membrane electrode assembly for fuel cells
JP2020129495A (en) * 2019-02-08 2020-08-27 エムテックスマート株式会社 Method for producing all-solid-state battery
KR102453334B1 (en) * 2020-10-15 2022-10-12 주식회사 제이마이크로 Sterilizing device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0781061A (en) * 1993-09-17 1995-03-28 Hitachi Koki Co Ltd Liquid jet recording method
JP2004262160A (en) * 2003-03-04 2004-09-24 Sony Corp Liquid discharging head, liquid discharging device, and driving method of liquid discharging head
JP2011102455A (en) * 2009-10-15 2011-05-26 Tokyo Institute Of Technology Electrospinning method and electrospinning apparatus
WO2012115078A1 (en) * 2011-02-23 2012-08-30 エムテックスマート株式会社 Coating method and device
WO2013038953A1 (en) * 2011-09-14 2013-03-21 エムテックスマート株式会社 Led manufacturing method, led manufacturing device, and led
WO2013108669A1 (en) * 2012-01-16 2013-07-25 エムテックスマート株式会社 Coating method and device
WO2014171535A1 (en) * 2013-04-20 2014-10-23 エムテックスマート株式会社 Particulate coating or distribution method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256243A (en) * 1992-03-12 1993-10-05 Fuji Electric Co Ltd Irregular type pelton turbine
WO1995028235A1 (en) * 1994-04-14 1995-10-26 Kabushiki Kaisha Toshiba Washing method and washing device
CN100490212C (en) * 2002-09-24 2009-05-20 夏普株式会社 Method and apparatus for manufacturing active-matrix organic EL display, active-matrix organic EL display, method for manufacturing liquid crystal array, liquid crystal array, filter substrate, method
JP4175128B2 (en) * 2003-01-31 2008-11-05 トヨタ自動車株式会社 Viscous fluid application equipment
CN100392828C (en) * 2003-02-06 2008-06-04 株式会社半导体能源研究所 Method for manufacturing display device
JP2005216743A (en) * 2004-01-30 2005-08-11 Seiko Epson Corp Manufacturing method of membrane electrode junction, membrane electrode assembly, and fuel cell
EP1666258B1 (en) * 2004-12-01 2011-10-05 FUJIFILM Corporation Repellency increasing structure and method of producing the same, liquid ejection head and method of producing the same, and stain-resistant film
CN1962083B (en) * 2005-11-11 2010-06-23 精工爱普生株式会社 Discharge method
JP2007144843A (en) * 2005-11-29 2007-06-14 Fujifilm Corp Ink jet head and image forming apparatus equipped with the same
JP5034252B2 (en) * 2006-02-07 2012-09-26 凸版印刷株式会社 Electrode catalyst layer for polymer electrolyte fuel cell and method for producing the same
JP5169056B2 (en) * 2007-07-31 2013-03-27 日産自動車株式会社 Fuel cell system and its operation stop method
US20090107398A1 (en) * 2007-10-31 2009-04-30 Nordson Corporation Fluid dispensers and methods for dispensing viscous fluids with improved edge definition
JP2009245639A (en) * 2008-03-28 2009-10-22 Asahi Glass Co Ltd Electrolyte membrane for polymer electrolyte fuel cell, method for manufacturing thereof, and membrane-electrode assembly for polymer electrolyte fuel cell
JP5590813B2 (en) * 2008-04-30 2014-09-17 キヤノン株式会社 Inkjet recording method, recording unit, and inkjet recording apparatus
JP5783670B2 (en) * 2009-08-11 2015-09-24 武蔵エンジニアリング株式会社 Liquid material coating method, coating apparatus and program
JP2012244065A (en) * 2011-05-23 2012-12-10 Mitsubishi Electric Corp Thin film photoelectric conversion device, manufacturing method thereof, and thin film photoelectric conversion module
JP6007715B2 (en) * 2012-03-29 2016-10-12 東京エレクトロン株式会社 Trap mechanism, exhaust system, and film forming apparatus
CN110970528A (en) * 2019-12-06 2020-04-07 中国科学院长春光学精密机械与物理研究所 Preparation method of ZnMgGaO quaternary alloy film and ZnMgGaO quaternary alloy film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0781061A (en) * 1993-09-17 1995-03-28 Hitachi Koki Co Ltd Liquid jet recording method
JP2004262160A (en) * 2003-03-04 2004-09-24 Sony Corp Liquid discharging head, liquid discharging device, and driving method of liquid discharging head
JP2011102455A (en) * 2009-10-15 2011-05-26 Tokyo Institute Of Technology Electrospinning method and electrospinning apparatus
WO2012115078A1 (en) * 2011-02-23 2012-08-30 エムテックスマート株式会社 Coating method and device
WO2013038953A1 (en) * 2011-09-14 2013-03-21 エムテックスマート株式会社 Led manufacturing method, led manufacturing device, and led
WO2013108669A1 (en) * 2012-01-16 2013-07-25 エムテックスマート株式会社 Coating method and device
WO2014171535A1 (en) * 2013-04-20 2014-10-23 エムテックスマート株式会社 Particulate coating or distribution method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020030910A (en) * 2018-08-21 2020-02-27 エムテックスマート株式会社 Manufacturing method of all-solid battery
WO2020039999A1 (en) * 2018-08-21 2020-02-27 エムテックスマート株式会社 Method for manufacturing all-solid-state battery
JP7180863B2 (en) 2018-08-21 2022-11-30 エムテックスマート株式会社 Method for manufacturing all-solid-state battery
US11894542B2 (en) 2018-08-21 2024-02-06 Mtek-Smart Corporation Method for manufacturing all-solid-state battery
WO2022102528A1 (en) * 2020-11-13 2022-05-19 正文 松永 Method for producing fuel cell, and fuel cell

Also Published As

Publication number Publication date
CN112439659A (en) 2021-03-05
CN107614124A (en) 2018-01-19
CN112439659B (en) 2022-08-16
CN107614124B (en) 2021-07-23
CN112018416A (en) 2020-12-01
JP2018089543A (en) 2018-06-14
JP6684397B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
WO2016158859A1 (en) Fluid jetting method and fluid film formation method
JP7114246B2 (en) Application head for coating product onto surface to be coated and application system comprising such application head
US20210339278A1 (en) Composite ultrasonic material applicators with individually addressable micro-applicators and methods of use thereof
CN104994966B (en) Method of application and application system
KR101721118B1 (en) Projector and member for spraying a coating material, and spraying method using such a sprayer
JP5733996B2 (en) Rotary atomizing coating equipment
EP0498600B1 (en) Spray die for producing spray fans
JPH0470951B2 (en)
JP6328104B2 (en) How to apply powder
US10625297B2 (en) Method of applying powder or granular material
KR101620046B1 (en) Electrospraying nozzle and a preparation method thereof, the nanoparticles synthesized apparatus and method using thereof
CN108301146B (en) Device and method for preparing structural color of flexible matrix
JP6779443B2 (en) How to make a fuel cell
KR101397384B1 (en) Spray nozzle and system for coating for the same
JP2016533890A (en) Apparatus and method for producing an aerosol, and focusing component
JP6780171B2 (en) Fluid ejection method and fluid film formation method
KR101506456B1 (en) Coating system capable of uniform coating
KR101727053B1 (en) Spray coating unit, and a coating system using the same
JP6264240B2 (en) Spray application equipment
JPS58104656A (en) Rotary atomizing type electrostatic painting apparatus
JP2017100080A (en) Electrostatic spray method and electrostatic spray device
US20210001369A1 (en) Composite ultrasonic material applicators with embedded shaping gas micro-applicators and methods of use thereof
JP4188491B2 (en) Method for forming multicolor pattern by transfer
KR20180014536A (en) Spray nozzle and system for coating using the same
JP2004249154A (en) Method and apparatus for electrostatic application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP