JPH0781061A - Liquid jet recording method - Google Patents

Liquid jet recording method

Info

Publication number
JPH0781061A
JPH0781061A JP23191393A JP23191393A JPH0781061A JP H0781061 A JPH0781061 A JP H0781061A JP 23191393 A JP23191393 A JP 23191393A JP 23191393 A JP23191393 A JP 23191393A JP H0781061 A JPH0781061 A JP H0781061A
Authority
JP
Japan
Prior art keywords
recording
phase difference
head
ink
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23191393A
Other languages
Japanese (ja)
Other versions
JP3335724B2 (en
Inventor
Masao Mitani
正男 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP23191393A priority Critical patent/JP3335724B2/en
Priority to US08/228,897 priority patent/US5666140A/en
Publication of JPH0781061A publication Critical patent/JPH0781061A/en
Priority to US08/439,936 priority patent/US5896154A/en
Application granted granted Critical
Publication of JP3335724B2 publication Critical patent/JP3335724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the printing quality, in a liquid jet recording method opposing an ink jet recording head to a recording medium to perform recording, by successively driving respective adjacent heating resistors with phase difference of a specific value or greater. CONSTITUTION:The ink droplets 19 from the ink emitting orifices 17 provided to the emitting surface 16 of a recording head arrive at a recording medium to print dots on the recording medium 18. In a sequential driving system printing the (i+1)-th sub-scanning line after the printing of the i-th sub-scanning line, when the emitting phase difference between the adjacent ink droplets 19 is 10mum or generator, the generation probability of the mutual union of the ink droplets caused by the deflection of a flight direction becomes zero. When the emitting phase difference is shorter than 10mum, one line are divided into (n) odd-number row data and (n) even-number row data and non-emission data are inserted in the gaps between the respective data to form (2n) data rows and the data are inputted to the head at a twofold speed to drive the head. At the time, the number of sub-scanning lines becomes twice. In this case, the scanning time of one line becomes n/f sec(f; clock frequency) and the emitting phase difference between adjacent ink droplets becomes 1/2f+2n/2f n/f.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱エネルギを利用して
インク液滴を記録媒体に向けて飛翔させる形式の記録装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a recording apparatus of a type in which thermal energy is used to eject ink droplets toward a recording medium.

【0002】[0002]

【従来の技術】パルス加熱によってインクの一部を急速
に気化させ、その膨張力によってインク液滴をオリフィ
スから吐出させる方式のインクジェット記録装置は特開
昭48−9622号公報、特開昭54−51837号公
報等によって開示されている。
2. Description of the Related Art An ink jet recording apparatus of a type in which a part of ink is rapidly vaporized by pulse heating and an ink droplet is ejected from an orifice by its expansive force is disclosed in JP-A-48-9622 and JP-A-54-54. No. 51837, for example.

【0003】このパルス加熱の最も簡便な方法は発熱抵
抗体にパルス通電することであり、その具体的な方法が
日経メカニカル1992年12月28日号58ページ、
及びHewlett-Packard-Journal,Aug.1988で発表されてい
る。これら従来の発熱抵抗体の共通する基本的構成は、
薄膜抵抗体と薄膜導体を酸化防止層で被覆し、この上に
該酸化防止層のキャビテーション破壊を防ぐ目的で、耐
キャビテーション層を1〜2層被覆するというものであ
った。
The simplest method of pulse heating is to energize the heating resistor with a pulse, and the specific method is Nikkei Mechanical, December 28, 1992, p. 58,
And Hewlett-Packard-Journal, Aug. 1988. The common basic configuration of these conventional heating resistors is
The thin film resistor and the thin film conductor are coated with an antioxidation layer, and one or two cavitation resistant layers are coated on the antioxidation layer for the purpose of preventing cavitation destruction of the antioxidation layer.

【0004】この複雑な多層構造を抜本的に簡略化する
ものとして、特願平5−68257号公報に記載のよう
に、前記酸化防止層と耐キャビテーション層を不要とす
る発熱抵抗体を用いて印字する方法がある。この場合
は、薄膜抵抗体がインク(水性、油性のどちらでも良
い)と直接接触しているため、パルス加熱によるインク
の急激な気化とそれによるインクの吐出特性が大幅に改
善され、熱効率の大幅な改善(約30倍)と吐出周波数
の向上を図ることができた。このような画期的な性能を
実現できた最大の理由は、耐パルス性、耐酸化性、耐キ
ャビテーション性、耐電食性に優れたCr−Si−Si
OまたはTa−Si−SiO合金薄膜抵抗体とNiまた
はWからなる薄膜導体のみから構成される発熱抵抗体を
用いたことにあり、如何なる保護層も必要としないこと
による。
As a radical simplification of this complicated multi-layer structure, as described in Japanese Patent Application No. 5-68257, a heating resistor which does not require the oxidation preventing layer and the cavitation resistant layer is used. There is a method of printing. In this case, since the thin-film resistor is in direct contact with the ink (either water-based or oil-based), the rapid vaporization of the ink by pulse heating and the resulting ink ejection characteristics are greatly improved, and the thermal efficiency is greatly improved. It was possible to improve (about 30 times) and the ejection frequency. The biggest reason why we have achieved such epoch-making performance is Cr-Si-Si, which has excellent pulse resistance, oxidation resistance, cavitation resistance, and electrolytic corrosion resistance.
This is because the heating resistor made up of only the O or Ta-Si-SiO alloy thin film resistor and the thin film conductor made of Ni or W is used, and no protective layer is required.

【0005】このように、従来技術に比較して、大幅に
小さな投入エネルギでインク噴射が可能となったので、
この発熱抵抗体を駆動用LSIチップ上のデバイス領域
に近接して形成しても、もはやLSIデバイスを加熱し
て温度上昇をもたらすこともなく、非常に簡単な構成の
モノリシックLSIヘッドを実現することができるよう
になった。これについては本出願人が先に出願した特願
平4−347150号及び特願平5−90123号に記
載の通りである。この新しい技術によって、多くのイン
ク噴射ノズルを持つオンデマンド型インクジェットプリ
ントヘッドが高密度に集積化して製造することができる
ようになり、しかもその駆動を制御する配線本数が大幅
に削減できるので実装方法も非常に簡略化することがで
きた。
As described above, since it is possible to eject ink with much smaller input energy as compared with the prior art,
Even if this heating resistor is formed in the vicinity of the device area on the driving LSI chip, it will no longer heat the LSI device to cause a temperature rise, and realize a monolithic LSI head with a very simple structure. Is now possible. This is as described in Japanese Patent Application Nos. 4-347150 and 5-90123 previously filed by the present applicant. This new technology enables on-demand type inkjet printheads with many ink jet nozzles to be integrated and manufactured at high density, and the number of wires that control the drive can be greatly reduced. Could also be very simplified.

【0006】[0006]

【発明が解決しようとする課題】このように、大規模高
密度に集積化したインクジェットプリントヘッドを用い
て高速、高精細なインクジェットプリンタを実現するこ
とが可能となったが、連続して印刷を続けると印字品質
が若干低下するという問題が発生することが分かった。
これは既に特開昭55−109672号公報で指摘され
ているように、隣合う飛翔中のインク滴がその飛翔方向
のブレによって合体することによる。感熱記録ヘッドの
駆動方法として周知のマトリックス駆動方法を採用して
いる前記公報では、隣合う発熱抵抗体のグループをいく
つかのブロックとする方法に替え、一つ置き、あるいは
二つ置きの発熱抵抗体のグループをブロックとする方法
でこれを解決している。
As described above, it has become possible to realize a high-speed and high-definition ink jet printer by using the ink jet print head integrated on a large scale with high density. It was found that the printing quality would be slightly deteriorated if continued.
This is because, as already pointed out in Japanese Patent Laid-Open No. 55-109672, ink droplets in flight that are adjacent to each other coalesce due to blurring in the flight direction. In the above-mentioned publication, which employs a well-known matrix driving method as a driving method of the thermal recording head, a method of forming groups of adjacent heating resistors into several blocks is used, and one or two heating resistors are arranged. This is solved by using a group of bodies as a block.

【0007】これに対し、本出願人が先に出願した特開
平4−347150号及び特開平5−90125号によ
って作られるインクジェットプリントヘッドの駆動方法
は順次連続駆動方式を採用している。この方式では、マ
トリックス駆動方式に不可欠であったラッチ回路が不要
となって駆動回路の小型、低コスト化が実現し、しかも
駆動に必要な信号線の必要数が大幅に削減されて実装コ
ストの削減も達成されている。更に駆動回路のICと発
熱抵抗体を一体化し、インクジェットプリントヘッドの
大幅な小型、低コスト化を達成し得るものである。
On the other hand, the method of driving the ink jet print head made by the applicant of the present invention in Japanese Patent Application Laid-Open No. 4-347150 and Japanese Patent Application Laid-Open No. 5-90125 adopts a sequential continuous driving method. With this method, the latch circuit, which was indispensable for the matrix drive method, is not required, so that the drive circuit can be made smaller and the cost can be reduced. Moreover, the required number of signal lines required for the drive can be significantly reduced and the mounting cost Reductions have also been achieved. Further, the IC of the drive circuit and the heating resistor are integrated to achieve a drastic reduction in size and cost of the inkjet print head.

【0008】本発明の目的は、前記順次連続駆動方式を
採用したインクジェットプリンタの印字品質の更なる向
上を目指した記録方法を提供することにある。
An object of the present invention is to provide a recording method aimed at further improving the printing quality of an ink jet printer adopting the above-mentioned sequential continuous drive system.

【0009】[0009]

【課題を解決するための手段】上記目的は、互いに近接
して配列された複数の吐出口に各々連通する複数の記録
液体通路と、該記録液体通路と連通している記録液体供
給溜と、前記記録液体通路内の吐出口近傍に吐出口毎に
対応して配設された発熱抵抗体と、該発熱抵抗体を電気
的に順次駆動する駆動回路とからなるインクジェット記
録ヘッドを記録媒体に対向させながら記録を行う液体噴
射記録方法において、隣接する各発熱抵抗体を10μS
以上の位相差を持って順次駆動することによって達成さ
れる。あるいは、隣接する各発熱抵抗体の位相差が10
μS以下である場合には、隣接する各発熱抵抗体が10
μS以上の位相差で駆動できるように、発熱抵抗体を順
次駆動すべく時系列に並べられた駆動信号を再構成する
ことによって達成される。
The above object is to provide a plurality of recording liquid passages respectively communicating with a plurality of ejection ports arranged in close proximity to each other, and a recording liquid supply reservoir communicating with the recording liquid passages. An ink jet recording head including a heating resistor disposed in the vicinity of the ejection port in the recording liquid passage and corresponding to each ejection port, and a drive circuit for electrically sequentially driving the heating resistors is opposed to the recording medium. In the liquid jet recording method in which recording is performed while recording is performed, the adjacent heating resistors are set to 10 μS.
This is achieved by sequentially driving with the above phase difference. Alternatively, the phase difference between adjacent heating resistors is 10
When μS or less, each adjacent heating resistor has 10
This is achieved by reconfiguring the drive signals arranged in time series so as to sequentially drive the heating resistors so that they can be driven with a phase difference of μS or more.

【0010】[0010]

【作用】上記のように構成されたインクジェットプリン
タにおいては、互いに隣接する発熱抵抗体の駆動は少な
くとも10μSの位相差があるので、約10m/Sの飛
翔速度を有する相隣合う飛翔中のインク滴は少なくとも
約10m/S×10μS=100μmの距離だけ前後に
離れることとなる。従って、通常の40〜50μm球サ
イズのインク滴であれば、飛翔方向のブレによる合体の
発生は大幅に低減できる。
In the ink jet printer constructed as described above, since the driving of the heating resistors adjacent to each other has a phase difference of at least 10 μS, ink droplets in flight adjacent to each other having a flight speed of about 10 m / S. Will be separated back and forth by a distance of at least about 10 m / S × 10 μS = 100 μm. Therefore, in the case of a normal 40 to 50 μm sphere-sized ink droplet, the occurrence of coalescence due to blur in the flight direction can be greatly reduced.

【0011】また、飛翔中のインク滴は飛翔方向に少し
伸びている場合が多いので、互いに隣接する発熱抵抗体
の駆動の位相差を更に大きい値、すなわち30〜50μ
Sとすれば、飛翔中の相隣合うインク滴の合体する確率
は零とすることができ、印字品質の低下を完全に防ぐこ
とができる。
Further, since the flying ink droplets often extend a little in the flying direction, the driving phase difference between the heating resistors adjacent to each other is further increased, that is, 30 to 50 μm.
If S is set, the probability that adjacent ink droplets in flight will coalesce can be zero, and the deterioration of print quality can be completely prevented.

【0012】[0012]

【実施例】以下、図面を用いて実施例を説明する。EXAMPLES Examples will be described below with reference to the drawings.

【0013】図1は本発明が適用されるサーマルインク
ジェット記録ヘッドの一例を示す断面図である。図1の
紙面に垂直の方向に多くのインク吐出口8が例えば約7
0μmピッチ(360dpi)で並んでおり、その総数
は、例えば64ヶのシリアルスキャンタイプのものから
1512ヶ×2=3024ヶのラインヘッドタイプのも
のまで製造することができることは特願平5−9012
3号に述べた通りである。
FIG. 1 is a sectional view showing an example of a thermal ink jet recording head to which the present invention is applied. For example, many ink ejection ports 8 are arranged in a direction perpendicular to the paper surface of FIG.
It is arranged at 0 μm pitch (360 dpi), and the total number can be manufactured, for example, from 64 serial scan type to 1512 × 2 = 3024 line head type.
As stated in No. 3.

【0014】このヘッドの特徴は、インク吐出用ヒータ
(発熱抵抗体)2が例えば約700Å厚さのCr−Si
−SiO合金薄膜抵抗体からなり、これに通電するため
の共通配線導体3と個別配線導体4が例えば1μm厚さ
のNi薄膜導体からなっていて何らの保護層も被覆され
ていないことである。このため、インク吐出に必要な投
入エネルギが約1μJ/dropと非常に小さくなり、
実用化されている従来技術の保護層付き発熱抵抗体に比
べ、約1/30と大幅に低減することができる。勿論、
水性インク、油性インクの種類を問わず、10億パルス
以上の寿命試験に合格していることは特願平5−682
57号、特願平5−90123号にも述べた通りであ
る。
The characteristic of this head is that the ink ejecting heater (heat generating resistor) 2 has a thickness of, for example, about 700 Å Cr-Si.
That is, the common wiring conductor 3 and the individual wiring conductors 4 which are made of a —SiO alloy thin film resistor and which conduct electricity thereto are made of, for example, a Ni thin film conductor having a thickness of 1 μm and are not covered with any protective layer. Therefore, the input energy required for ejecting ink is very small, about 1 μJ / drop,
Compared with a conventional heating resistor with a protective layer that has been put into practical use, it can be reduced to about 1/30, which is a significant reduction. Of course,
No matter what kind of water-based ink or oil-based ink is used, it has passed the life test of 1 billion pulses or more.
57 and Japanese Patent Application No. 5-90123.

【0015】このように必要印加エネルギが大幅に小さ
くなったので、これらの発熱抵抗体を駆動するための駆
動IC部5に近接して同一シリコン基板1上に発熱抵抗
体2を配設することが可能となり、小型で大規模なサー
マルインクジェットプリントヘッドを実用化することが
できた。
Since the required applied energy is greatly reduced in this way, the heat generating resistor 2 should be disposed on the same silicon substrate 1 in the vicinity of the drive IC section 5 for driving these heat generating resistors. It has become possible to put a small-sized and large-scale thermal inkjet printhead into practical use.

【0016】更にこのヘッドは次のような大きな特徴を
持っている。それはこの駆動ICにはラッチ回路がな
く、サーマルプリントヘッドなどで周知であったブロッ
ク駆動方式に替えて、新しい順次連続駆動方式を採用し
たことである。その回路構成図を図2に示す。
Further, this head has the following major features. This drive IC has no latch circuit and adopts a new sequential continuous drive system instead of the block drive system known in thermal print heads and the like. The circuit configuration diagram is shown in FIG.

【0017】従来技術によるサーマルインクジェットプ
リントヘッドの駆動方式は、サーマルプリントヘッドで
周知であったブロック駆動方式が採用されていた。それ
は図2に示すシフトレジスタ20とドライバ21の中間
にラッチ回路(図示せず)が入っており、ヘッド駆動回
路側にもラッチ回路制御用のタイミング生成回路を追加
して設け、その信号をヘッド側に伝える配線が2〜3本
追加される構成となる。すなわち、図2に示す順次連続
駆動方式は従来に比べて回路規模も小さく、ヘッド側へ
の配線本数も少なくなってコスト的にも安くできるので
ある。
As a driving method of the thermal ink jet print head according to the prior art, the block driving method which is well known in the thermal print head is adopted. A latch circuit (not shown) is provided between the shift register 20 and the driver 21 shown in FIG. 2, and a timing generation circuit for controlling the latch circuit is additionally provided on the head drive circuit side. It has a configuration in which two to three wirings are transmitted to the side. That is, the sequential continuous drive system shown in FIG. 2 has a smaller circuit scale, a smaller number of wires to the head side, and a lower cost than the conventional one.

【0018】さて、図2に示す順次連続駆動方式で図1
に示すサーマルインクジェットプリントヘッドを駆動
し、そのヘッド前面に記録媒体を搬送させて印字する様
子を模式的に示したのが図3である。
Now, with the sequential continuous drive system shown in FIG.
FIG. 3 schematically shows a state in which the thermal ink jet print head shown in FIG.

【0019】ヘッドの吐出面16上に並んでいるインク
吐出口17(1〜2n)からインク滴19が飛び出し、
記録媒体18に到達するとドット状に印字される。ヘッ
ド16と記録媒体18は相対的に移動させるが、今の場
合、ヘッド側を固定し、記録媒体18を図3の紙面に垂
直の方向に一定速度で搬送させる場合で考える。
Ink droplets 19 are ejected from the ink ejection openings 17 (1 to 2n) arranged on the ejection surface 16 of the head,
When it reaches the recording medium 18, it is printed in dots. Although the head 16 and the recording medium 18 are moved relative to each other, in the present case, the case where the head side is fixed and the recording medium 18 is conveyed at a constant speed in the direction perpendicular to the paper surface of FIG. 3 will be considered.

【0020】図2に示す順次連続駆動方式の場合、記録
データ(Aij)を順次シフトレジスタに送り込むと、
j番目の信号Aijがj番目のレジスタに来た時にドラ
イバ側に転送される。j番目のドライバはこの信号が吐
出信号(1)の場合、あらかじめ設定されているパルス
幅の電圧を吐出用ヒータに印加し、それをパルス発熱さ
せる。Aijが不吐出信号(0)の場合は電圧は印加さ
れない。このようにしてi番目の副走査線が全て印字
((Aij),j=1〜2n)されると、i+1番目の
副走査線の印字((Ai+1,j),j=1〜2n)が
引き続いて開始される。この印字方式を順次連続駆動方
式と呼んでいる。
In the case of the sequential continuous drive system shown in FIG. 2, when the recording data (Aij) is sequentially sent to the shift register,
When the jth signal Aij comes to the jth register, it is transferred to the driver side. When this signal is the ejection signal (1), the j-th driver applies a voltage having a preset pulse width to the ejection heater and causes it to generate pulse heat. When Aij is the non-ejection signal (0), no voltage is applied. In this way, when all the i-th sub-scanning lines are printed ((Aij), j = 1 to 2n), the i + 1-th sub-scanning line is printed ((Ai + 1, j), j = 1 to 2n). It will be started successively. This printing method is called a sequential continuous driving method.

【0021】さて、この順次連続駆動方式はすでに述べ
たように回路的に最も簡単で、配線数も少なくコスト的
に最も有利な方式である。この駆動方式で全黒印字した
場合のインク滴の飛翔状況を示したのが図3の(a)で
ある。この実施例の場合、インク滴の大きさは直径約5
0μmの球形または飛翔方向に少し延びた形状をしてい
る。そしてインク滴の飛翔速度は約13m/Sなので、
隣合うインク滴の吐出位相差が8〜10μS以上であれ
ば、隣合うインク滴間距離は100〜130μm以上と
なり、飛翔方向のブレによるインク滴同志の合体の発生
確率がほとんど零となる。
As described above, this sequential continuous drive method is the simplest in terms of circuit, has the least number of wirings, and is the most advantageous in terms of cost. FIG. 3A shows how the ink droplets fly when all-black printing is performed by this driving method. In this embodiment, the size of the ink droplet is about 5 in diameter.
It has a spherical shape of 0 μm or a shape slightly extending in the flight direction. And the flight speed of ink drops is about 13m / S,
When the ejection phase difference between adjacent ink droplets is 8 to 10 μS or more, the distance between adjacent ink droplets is 100 to 130 μm or more, and the probability of coalescence of ink droplets due to blurring in the flight direction is almost zero.

【0022】しかし、この位相差が8〜10μSより短
い場合、合体による印字品質の低下が認められるケース
が増加する。この場合、ヘッドに送る記録データ(Ai
j)の配列を変換し、記録データ転送用クロックをこの
変更に応じて変えることだけで上記合体による印字品質
の低下を完全に防止することが可能となる。その具体的
な実施例の一つが図3の(b)である。
However, when this phase difference is shorter than 8 to 10 μS, the number of cases in which the deterioration of the printing quality due to coalescence is recognized increases. In this case, the recording data (Ai
Only by converting the arrangement of j) and changing the recording data transfer clock according to this change, it is possible to completely prevent the deterioration of the printing quality due to the above-mentioned coalescence. One of the concrete examples is (b) of FIG.

【0023】今、記録データ(Aij)をクロック周波
数fHzでヘッドに加え、2n個の発熱抵抗体を1/f
秒で走査することを考える。この場合の隣合う発熱抵抗
体を駆動する位相差は1/2nfである。図3(b)の
駆動方法はこの(Aij)を
Now, the recording data (Aij) is added to the head at a clock frequency fHz, and 2n heating resistors are added to 1 / f.
Consider scanning in seconds. In this case, the phase difference for driving the adjacent heating resistors is 1/2 nf. The driving method of FIG. 3 (b) uses this (Aij)

【0024】[0024]

【数1】 [Equation 1]

【0025】に変換し、クロック周波数を2fHzにす
ることによって行われる。ここで、
Is performed and the clock frequency is set to 2 fHz. here,

【0026】[0026]

【数2】 [Equation 2]

【0027】を示し、(A、0)+(0、A)は(A、
0)をヘッドに入力したあとに引き続いて(0、A)の
記録データを入力することを意味している。
Where (A, 0) + (0, A) is (A,
It means that after inputting (0) to the head, the print data of (0, A) is subsequently input.

【0028】すなわち、1ライン当り2n個の記録デー
タをn個の奇数列のデータとn個の偶数列のデータに分
け、それぞれのデータ間に不吐出データを挿入して2n
個ずつの二つの記録データ列を作り、これを2倍の速さ
でヘッドに入力して駆動するのである。この時、副走査
線の数は2倍となる。このように記録データ列を変換す
るのは、プリンタに搭載されている信号処理回路(CP
Uなど)の一部の機能を使うことで容易に可能であり、
コストアップの要因とはならない。また、クロック周波
数を2倍にすることも、ヘッド側に搭載されるシフトレ
ジスタの性能から言って何ら問題とはならない。この新
しい駆動方法での1ラインの走査時間は1/2f秒とな
り、隣合うインク滴の吐出位相差は1/2f+1/4n
f≒1/2fとなる。
That is, 2n print data per line is divided into n odd-row data and n even-row data, and non-ejection data is inserted between each data to 2n
Two recording data strings are created one by one, and this is input to the head and driven at twice the speed. At this time, the number of sub-scanning lines is doubled. The conversion of the print data string is performed by the signal processing circuit (CP) installed in the printer.
It is easily possible by using some functions (such as U),
It does not cause a cost increase. Also, doubling the clock frequency does not pose any problem from the performance of the shift register mounted on the head side. With this new driving method, the scanning time for one line is 1/2 f second, and the ejection phase difference between adjacent ink drops is 1/2 f + 1 / 4n.
f≈1 / 2f.

【0029】従って、64ノズル/ラインのシリアルス
キャンタイプのヘッドで、クロック周波数も厳しい10
kHzとした場合、図3(a)では隣合うインク滴の吐
出位相差は1/64×104=1.56μSとなってイ
ンク滴の合体発生の可能性が高くなる。これに対し、
(b)の方式の場合は1/2×104=50μSとなっ
てインク滴間の距離も13m/S×50μS=650μ
mとなり、印字品質の低下は完全に防止される。この事
情は規模の大きいラインヘッド(数100〜数1000
ノズル/ライン)になればなるほど有利となることは明
らかである。そして(b)に示す一つ置きに吐出する方
法の他に二つ置きにするとか、その他種々の方法が可能
であるが、最も重要なことは、隣接する次の発熱抵抗体
の駆動を10μS以上の位相差、更に望ましくは20μ
S以上の位相差で駆動できるよう、駆動信号を再構成し
て駆動することである。
Therefore, with a 64 nozzle / line serial scan type head, the clock frequency is severe.
When the frequency is set to kHz, the ejection phase difference between adjacent ink droplets in FIG. 3A is 1/64 × 10 4 = 1.56 μS, which increases the possibility of coalescence of ink droplets. In contrast,
In the case of the method (b), 1/2 × 10 4 = 50 μS, and the distance between ink droplets is also 13 m / S × 50 μS = 650 μS.
m, and the deterioration of print quality is completely prevented. This situation is due to the large line head (several hundreds to several thousands).
It is clear that the more nozzles / lines) the better. In addition to the method of discharging every other one as shown in (b), other methods such as every other two methods are possible, but the most important thing is to drive the next adjacent heating resistor by 10 μS. Phase difference above, more preferably 20μ
The driving signal is reconfigured so that it can be driven with a phase difference of S or more.

【0030】以上、本方式の技術的根拠を中心に述べて
きたが、実際に図1に示す128ノズル/ラインのヘッ
ドを試作し、印加パルス幅1μS、印加電力1W/発熱
抵抗体のパルス加熱を順次連続駆動方式で行い、ヘッド
前面に置かれた記録媒体に全黒印字し、一行置きに空印
字ラインを設けながら記録媒体を搬送して印字品質を評
価した。その評価法は、インク吐出繰返し周波数を0.
5kHz〜5kHzの範囲で変え、順次連続駆動する隣
接ノズルの吐出位相差を約16μS〜約1.6μSの範
囲で変えられるようにして印字することによって行っ
た。その結果、吐出位相差が7〜8μS以上ある場合に
は印字品質が低下しないか、低下する場合でも長時間の
印字後に発生するのに対し、これより短い吐出位相差の
場合は印字品質の低下がヘッド面のクリーニング後でも
比較的早い時期から認められることが分かった。
Although the technical basis of this method has been mainly described above, the 128 nozzle / line head shown in FIG. 1 was actually manufactured, and the applied pulse width was 1 μS, the applied power was 1 W, and the heating resistor was pulse-heated. Were sequentially driven by a continuous driving method, all-black printing was performed on the recording medium placed on the front surface of the head, and the recording medium was conveyed while the blank printing line was provided every other line to evaluate the printing quality. The evaluation method is as follows.
Printing was performed by changing the discharge phase difference between adjacent nozzles that are successively driven in succession within a range of approximately 16 μS to approximately 1.6 μS while changing the range of 5 kHz to 5 kHz. As a result, when the ejection phase difference is 7 to 8 μS or more, the print quality does not deteriorate, or even when the ejection phase difference deteriorates, it occurs after printing for a long time, whereas when the ejection phase difference is shorter than this, the print quality deteriorates. It was found that even after the cleaning of the head surface, it was recognized relatively early.

【0031】一方、インク吐出繰返し周波数を5kHz
とし、先に述べた一つ置きに吐出させる本方式(図3の
(b))で印字させた場合、長時間の連続印字の場合で
もインク滴の合体による印字品質の低下は認められず、
その有効性を確認することができた。そして明らかなこ
とではあるが、2つ置きに吐出させても印字品質の低下
は認められず、また大規模なラインヘッドの場合でも同
様の結果を得た。結局、隣接するノズルの吐出位相差を
10μS以上とすることにより印字品質の低下を防止す
ることができ、これは順次連続駆動方式を最も有効に作
用させる方法であることも分かった。
On the other hand, the ink ejection repetition frequency is set to 5 kHz.
When printing is performed by the above-mentioned method of discharging every other portion ((b) of FIG. 3) described above, deterioration of printing quality due to coalescence of ink droplets is not recognized even in continuous printing for a long time.
We were able to confirm its effectiveness. And, as is clear, even if the ink is ejected every two nozzles, the print quality is not deteriorated, and the same result is obtained in the case of a large-scale line head. After all, it has been found that by setting the ejection phase difference of the adjacent nozzles to 10 μS or more, it is possible to prevent the print quality from deteriorating, and this is the method in which the sequential continuous drive method works most effectively.

【0032】本実施例では図1に示すような発熱抵抗体
面と垂直方向にインク滴を吐出させるタイプのヘッドに
ついて記載したが、発熱抵抗体面と平行な方向にインク
滴を吐出させるタイプのヘッドの場合であっても同様の
効果を得ることができる。
In this embodiment, the head of the type that ejects ink droplets in the direction perpendicular to the surface of the heating resistor as shown in FIG. 1 has been described. However, in the head of the type that ejects ink droplets in the direction parallel to the surface of the heating resistor. Even in the case, the same effect can be obtained.

【0033】[0033]

【発明の効果】本発明によれば、順次連続駆動方式を採
用したサーマルインクジェットプリントヘッドにおい
て、高密度にインク吐出ノズルを配列した場合に発生が
認められた印字品質の低下が完全に防止でき、しかもこ
の方法の採用によるコストの増加を抑制することができ
る。
According to the present invention, in the thermal ink jet print head adopting the sequential continuous drive system, it is possible to completely prevent the deterioration of the print quality which is recognized when the ink discharge nozzles are arranged at a high density. Moreover, it is possible to suppress an increase in cost due to the adoption of this method.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明が適用されるサーマルインクジェット
プリントヘッドの一例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of a thermal inkjet printhead to which the present invention is applied.

【図2】 本発明の順次連続駆動方式を説明する回路構
成図である。
FIG. 2 is a circuit configuration diagram illustrating a sequential continuous drive system of the present invention.

【図3】 本発明の駆動方式を説明する模式図である。FIG. 3 is a schematic diagram illustrating a drive system of the present invention.

【符号の説明】[Explanation of symbols]

1はシリコン基板、2は吐出用ヒータ(発熱抵抗体)、
3は共通配線導体、4は個別配線導体、5は駆動IC部
(デバイス領域)、6はドライバ電源配線導体、7は駆
動IC用信号配線導体等、8はインク吐出口、9は個別
インク通路、10はモールド樹脂内共通インク通路、1
1はシリコン基板内共通インク通路、12は連結穴、1
3はフレーム内共通インク通路、14はインク通路形成
部材、15はフレーム、16はヘッド吐出面、17はイ
ンク吐出口番号、18は記録媒体、19は飛翔中のイン
ク滴、20はシフトレジスタ、21はドライバである。
1 is a silicon substrate, 2 is a discharge heater (heating resistor),
Reference numeral 3 is a common wiring conductor, 4 is an individual wiring conductor, 5 is a drive IC portion (device region), 6 is a driver power supply wiring conductor, 7 is a drive IC signal wiring conductor, etc., 8 is an ink ejection port, and 9 is an individual ink passage. 10 is a common ink passage in the mold resin, 1
1 is a common ink passage in the silicon substrate, 12 is a connecting hole, 1
3 is a common ink passage in the frame, 14 is an ink passage forming member, 15 is a frame, 16 is a head ejection surface, 17 is an ink ejection port number, 18 is a recording medium, 19 is a flying ink droplet, 20 is a shift register, 21 is a driver.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年4月14日[Submission date] April 14, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Name of item to be corrected] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0023】今、記録データ(Aij)をクロック周波
数fHzでヘッドに加え、2n個の発熱抵抗体を位相差
/f秒で走査することを考える。図3(b)の駆動方
法はこの(Aij)を
Now, the recording data (Aij) is applied to the head at the clock frequency fHz, and the phase difference of 2n heating resistors is applied.
Consider scanning at 1 / f second . The driving method of FIG. 3 (b) uses this (Aij)

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0028】すなわち、1ライン当り2n個の記録デー
タをn個の奇数列のデータとn個の偶数列のデータに分
け、それぞれのデータ間に不吐出データを挿入して2n
個ずつの二つの記録データ列を作り、これを2倍の速さ
でヘッドに入力して駆動するのである。この時、副走査
線の数は2倍となる。このように記録データ列を変換す
るのは、プリンタに搭載されている信号処理回路(CP
Uなど)の一部の機能を使うことで容易に可能であり、
コストアップの要因とはならない。また、クロック周波
数を2倍にすることも、ヘッド側に搭載されるシフトレ
ジスタの性能から言って何ら問題とはならない。この新
しい駆動方法での1ラインの走査時間はn/f秒とな
り、隣合うインク滴の吐出位相差は1/2f+2n/2
f≒n/fとなる。
That is, 2n print data per line is divided into n odd-row data and n even-row data, and non-ejection data is inserted between each data to 2n
Two recording data strings are created one by one, and this is input to the head and driven at twice the speed. At this time, the number of sub-scanning lines is doubled. The conversion of the print data string is performed by the signal processing circuit (CP) installed in the printer.
It is easily possible by using some functions (such as U),
It does not cause a cost increase. Also, doubling the clock frequency does not pose any problem from the performance of the shift register mounted on the head side. The scanning time for one line in this new driving method is n / f seconds, and the ejection phase difference between adjacent ink droplets is 1 / 2f + 2n / 2.
f≈n / f .

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0029】従って、64ノズル/ラインのシリアルス
キャンタイプのヘッドで、クロック周波数も厳しい64
kHzとした場合、図3(a)では隣合うインク滴の
吐出位相差は1/64×104=1.56μSとなって
インク滴の合体発生の可能性が高くなる。これに対し、
(b)の方式の場合は1/2×104=50μSとなっ
てインク滴間の距離も13m/S×50μS=650μ
mとなり、印字品質の低下は完全に防止される。この事
情は規模の大きいラインヘッド(数100〜数1000
ノズル/ライン)になればなるほど有利となることは明
らかである。そして(b)に示す一つ置きに吐出する方
法の他に二つ置きにするとか、その他種々の方法が可能
であるが、最も重要なことは、隣接する次の発熱抵抗体
の駆動を10μS以上の位相差、更に望ましくは20μ
S以上の位相差で駆動できるよう、駆動信号を再構成し
て駆動することである。
Therefore, with a serial scan type head having 64 nozzles / line, the clock frequency is 64
When the frequency is 0 kHz, the ejection phase difference between adjacent ink droplets is 1/64 × 10 4 = 1.56 μS in FIG. 3A, and the possibility of coalescence of ink droplets increases. In contrast,
In the case of the method (b), 1/2 × 10 4 = 50 μS, and the distance between ink droplets is also 13 m / S × 50 μS = 650 μS.
m, and the deterioration of print quality is completely prevented. This situation is due to the large line head (several hundreds to several thousands).
It is clear that the more nozzles / lines) the better. In addition to the method of discharging every other one as shown in (b), other methods such as every other two methods are possible, but the most important thing is to drive the next adjacent heating resistor by 10 μS. Phase difference above, more preferably 20μ
The driving signal is reconfigured so that it can be driven with a phase difference of S or more.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 互いに近接して配列された複数の吐出口
に各々連通する複数の記録液体通路と、該記録液体通路
と連通している記録液体供給溜と、前記記録液体通路内
の吐出口近傍に吐出口毎に対応して配設された発熱抵抗
体と、該発熱抵抗体を電気的に順次駆動する駆動回路と
からなるインクジェット記録ヘッドを記録媒体に対向さ
せながら記録を行う液体噴射記録方法において、隣接す
る各発熱抵抗体を10μS以上の位相差を持って順次駆
動することを特徴とする液体噴射記録方法。
1. A plurality of recording liquid passages respectively communicating with a plurality of ejection outlets arranged in close proximity to each other, a recording liquid supply reservoir communicating with the recording liquid passages, and ejection outlets in the recording liquid passages. Liquid jet recording in which recording is performed while an ink jet recording head including a heating resistor disposed in the vicinity corresponding to each ejection port and a drive circuit for electrically sequentially driving the heating resistor is opposed to a recording medium. In the method, a liquid jet recording method is characterized in that adjacent heating resistors are sequentially driven with a phase difference of 10 μS or more.
【請求項2】 互いに近接して配列された複数の吐出口
に各々連通する複数の記録液体通路と、該記録液体通路
と連通している記録液体供給溜と、前記記録液体通路内
の吐出口近傍に吐出口毎に対応して配設された発熱抵抗
体と、該発熱抵抗体を電気的に順次駆動する駆動回路と
からなるインクジェット記録ヘッドを記録媒体に対向さ
せながら記録を行う液体噴射記録方法において、隣接す
る各発熱抵抗体の位相差が10μS以下である場合に
は、隣接する各発熱抵抗体が10μS以上の位相差で駆
動できるように、発熱抵抗体を順次駆動するべく時系列
に並べられた駆動信号を再構成することを特徴とする液
体噴射記録方法。
2. A plurality of recording liquid passages respectively communicating with a plurality of ejection outlets arranged in close proximity to each other, a recording liquid supply reservoir communicating with the recording liquid passages, and an ejection outlet in the recording liquid passages. Liquid jet recording in which recording is performed while an ink jet recording head including a heating resistor disposed in the vicinity corresponding to each ejection port and a drive circuit for electrically sequentially driving the heating resistor is opposed to a recording medium. In the method, when the phase difference between adjacent heating resistors is 10 μS or less, the heating resistors are sequentially driven in time series so that the adjacent heating resistors can be driven with a phase difference of 10 μS or more. A liquid jet recording method comprising reconstructing arranged drive signals.
JP23191393A 1993-04-16 1993-09-17 Liquid jet recording method Expired - Fee Related JP3335724B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP23191393A JP3335724B2 (en) 1993-09-17 1993-09-17 Liquid jet recording method
US08/228,897 US5666140A (en) 1993-04-16 1994-04-18 Ink jet print head
US08/439,936 US5896154A (en) 1993-04-16 1995-05-12 Ink jet printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23191393A JP3335724B2 (en) 1993-09-17 1993-09-17 Liquid jet recording method

Publications (2)

Publication Number Publication Date
JPH0781061A true JPH0781061A (en) 1995-03-28
JP3335724B2 JP3335724B2 (en) 2002-10-21

Family

ID=16931026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23191393A Expired - Fee Related JP3335724B2 (en) 1993-04-16 1993-09-17 Liquid jet recording method

Country Status (1)

Country Link
JP (1) JP3335724B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370361A (en) * 2001-06-15 2002-12-24 Canon Inc Recording head, head cartridge having the recording head, recorder using the recording head, and recording head element substrate
WO2016158859A1 (en) * 2015-04-02 2016-10-06 エムテックスマート株式会社 Fluid jetting method and fluid film formation method
JP2018507735A (en) * 2015-03-16 2018-03-22 ザ プロクター アンド ギャンブル カンパニー System and method for dispensing material
JP2020022970A (en) * 2019-11-14 2020-02-13 エムテックスマート株式会社 Method of jetting fluid and method of forming fluid film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370361A (en) * 2001-06-15 2002-12-24 Canon Inc Recording head, head cartridge having the recording head, recorder using the recording head, and recording head element substrate
JP2018507735A (en) * 2015-03-16 2018-03-22 ザ プロクター アンド ギャンブル カンパニー System and method for dispensing material
WO2016158859A1 (en) * 2015-04-02 2016-10-06 エムテックスマート株式会社 Fluid jetting method and fluid film formation method
CN107614124A (en) * 2015-04-02 2018-01-19 玛太克司马特股份有限公司 The jet method of fluid and the film build method of fluid
JP2018089543A (en) * 2015-04-02 2018-06-14 エムテックスマート株式会社 Method of jetting fluid and method of forming fluid film
JP2020022970A (en) * 2019-11-14 2020-02-13 エムテックスマート株式会社 Method of jetting fluid and method of forming fluid film

Also Published As

Publication number Publication date
JP3335724B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
US5600349A (en) Method of reducing drive energy in a high speed thermal ink jet printer
DE69904993D1 (en) OPERATION OF A DROPLET DEPOSITOR
JP4726159B2 (en) Liquid ejection head, liquid ejection apparatus, and image forming apparatus
EP2344340B1 (en) Precursor pulse generation for inkjet printhead
JP3176136B2 (en) INK JET PRINT HEAD EQUIPPED WITH SEMICONDUCTOR CHIP FOR RECORD HEAD AND INK JET PRINTING APPARATUS
US6902257B2 (en) Fluid injection head structure and method for manufacturing the same
JPH0781066A (en) Ink jet recording apparatus
JPH10305579A (en) Ink-jet recording head
JP5137553B2 (en) Printhead substrate, printhead, and printing apparatus
JPH05330045A (en) Recording head and ink-jet recording device with the same recording head
JPH0781061A (en) Liquid jet recording method
JPH06297714A (en) Ink jet printing head and recording method of ink jet printer
JPH1071714A (en) Recording head and recorder using the recording head
US6789880B2 (en) Microinjector for jetting droplets of different sizes
JP2705930B2 (en) Multi-nozzle ink jet head
JPH10180997A (en) Ink jet recording method
JP4089957B2 (en) Inkjet printer head and manufacturing method thereof
JP2004243574A (en) Ink jet recording head and ink jet recording method
JP2840480B2 (en) INK JET RECORDING APPARATUS AND RECORDING METHOD THEREOF
JPH1058716A (en) Method and apparatus for recording by ejecting recording liquid
JPH1058715A (en) Recording apparatus by ejecting recording liquid and recording method by the same
JP2004066601A (en) Recording head and recorder employing it
JPH0948125A (en) Recording head, ink jet recording apparatus using the same and recording method of recording head
JP2000127397A (en) Thermal ink jet head
KR20060111135A (en) Apparatus and method for compensating for bad nozzle of ink-jet printer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020710

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070802

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070802

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070802

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees