WO2016158820A1 - 青果物検査装置 - Google Patents

青果物検査装置 Download PDF

Info

Publication number
WO2016158820A1
WO2016158820A1 PCT/JP2016/059813 JP2016059813W WO2016158820A1 WO 2016158820 A1 WO2016158820 A1 WO 2016158820A1 JP 2016059813 W JP2016059813 W JP 2016059813W WO 2016158820 A1 WO2016158820 A1 WO 2016158820A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
vegetables
inspection
fruit
fruits
Prior art date
Application number
PCT/JP2016/059813
Other languages
English (en)
French (fr)
Inventor
健一 平泉
嘉英 西山
広志 早瀬
Original Assignee
三井金属計測機工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属計測機工株式会社 filed Critical 三井金属計測機工株式会社
Priority to JP2017509950A priority Critical patent/JP6403872B2/ja
Publication of WO2016158820A1 publication Critical patent/WO2016158820A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids

Definitions

  • the present invention relates to a fruit and vegetable inspection apparatus for inspecting the presence or absence of abnormality in the fruit skin surface and inside the fruit skin, such as water rot appearing on the surface of citrus fruit skin or abnormal drying of the fruit skin.
  • Specific symptoms of water rot include a state where the citrus peel has swelled, and rot has spread over a wide range of the peel from the generation site, causing mold and dry rot.
  • a specific fluorescence wavelength derived from a substance emitting fluorescence in the visible region is detected by ultraviolet irradiation. Image inspection is performed.
  • the light for inspection is irradiated from below the fruits and vegetables by the light projecting means, and the fruits and vegetables are picked up by the CCD camera disposed above, and the three primary colors (R, R, G, B) are used to obtain the difference value between the R signal, in which the difference in the amount of transmitted light is likely to appear as a difference in the image signal, and the G signal, B signal, which are difficult to appear, depending on the presence or absence of the decayed portion.
  • a method for detecting the presence or absence of a rot portion is also known.
  • an image based on visible light is taken by a CCD camera, and the R signal included in the image has an average light amount in a wavelength range of about 550 nm to 700 nm. It is only detecting.
  • the sensitivity is low to detect minute water rot or dry rot of about 10 mm in diameter as required in the market in recent years, and sufficient inspection cannot be performed.
  • An object is to provide an inspection device.
  • a fruit and vegetable inspection apparatus for determining the presence or absence of abnormality of fruit and vegetables
  • a light projecting means for irradiating the fruit and vegetables with inspection light
  • Imaging means for imaging the fruits and vegetables with the inspection light
  • Analysis means for detecting the presence or absence of abnormality of the fruits and vegetables based on the inspection image of the fruits and vegetables imaged by the imaging means
  • the light projecting means can be irradiated with light including at least the absorption wavelength of water
  • the analysis means is configured to detect the presence or absence of abnormality of the fruits and vegetables using an inspection image based on the light having an absorption wavelength of water.
  • the imaging means uses an InGaAs photodiode as an imaging element.
  • the image pickup means can pick up an inspection image of the fruits and vegetables using reflected light obtained by reflecting the inspection light irradiated from the light projecting means on the fruits and vegetables.
  • the image pickup means can pick up an inspection image of the fruits and vegetables with transmitted light in which the inspection light irradiated from the light projecting means has transmitted through the fruits and vegetables.
  • the fruit and vegetable inspection apparatus of the present invention it is possible to detect a disorder related to the increase or decrease of moisture appearing on the fruit skin and / or the skin under the fruit and fruit as an abnormality of the fruit or vegetable.
  • the present invention by using an inspection image based on light having an absorption wavelength of water, even in the case of water rot of fruits and vegetables, which is difficult to discriminate in an image based on visible light, it is clear that the normal portion and the rotting portion. Contrast is generated and can be easily and accurately determined.
  • FIG. 1 is a schematic configuration diagram for explaining the configuration of an embodiment of the fruit and vegetable inspection apparatus of the present invention.
  • FIG. 2 (a) is a grayscale image obtained by imaging the fruits and vegetables S with visible light
  • FIG. 2 (b) is an inspection image based on 1200 nm light as the water absorption wavelength for the fruits and vegetables S in FIG. 2 (a). It is an analysis image at the time of comparing with the inspection image based on the light of 1030 nm as light of the predetermined absorption wavelength used as a standard.
  • 3 (a) is a grayscale image obtained by imaging the fruits and vegetables S with visible light
  • FIG. 3 (b) is an inspection image based on light of 1160 nm as the water absorption wavelength for the fruits and vegetables S in FIG.
  • FIG. 3 (a) It is an analysis image at the time of taking the difference with the test
  • 4A is a grayscale image obtained by imaging the fruits and vegetables S with visible light
  • FIG. 4B is an inspection image 2 based on 1200 nm light as the water absorption wavelength for the fruits and vegetables S in FIG. 4A. It is the analysis image which took the second derivative.
  • FIG. 5 shows spectrum data obtained by measuring normal fruits and vegetables, fruits and vegetables having water rot, and fruits and vegetables having dry rot using the fruit and vegetable inspection apparatus shown in FIG.
  • FIG. 6 is a schematic configuration diagram for explaining a configuration in another embodiment of the fruit and vegetable inspection apparatus of the present invention.
  • FIG. 5 shows spectrum data obtained by measuring normal fruits and vegetables, fruits and vegetables having water rot, and fruits and vegetables having dry rot using the fruit and vegetable inspection apparatus shown in FIG.
  • FIG. 6 is a schematic configuration diagram for explaining
  • FIG. 7 is a schematic configuration diagram for explaining a configuration in still another embodiment of the fruit and vegetable inspection apparatus of the present invention.
  • 8A and 8B show a test for mandarin oranges having mold as the fruits and vegetables S.
  • FIG. 8A shows a visible image and
  • FIG. 8B shows an inspection image.
  • FIG. 9 shows an inspection of mandarin oranges having dried scratches on the surface of fruits and vegetables S.
  • FIG. 9A shows a visible image and FIG. 9B shows an inspection image.
  • FIG. 10 shows an inspection of peaches with so-called press marks as fruits and vegetables S.
  • FIG. 10 (a) shows a visible image
  • FIG. 10 (b) shows an inspection image
  • FIG. 11 It is the visible image of the fruit and vegetables S made into the state which can confirm the inside of a fruit skin.
  • FIG. 11 is a person who inspected pears with water fruits as fruits and vegetables S
  • FIG. 11 (a) is a visible image
  • FIG. 11 (b) is an inspection image
  • FIG. 11 (c) is a peeled peel. It is the visible image of the fruit and vegetables S which made the state which can confirm the inside.
  • FIG. 1 is a schematic configuration diagram for explaining the configuration of an embodiment of the fruit and vegetable inspection apparatus according to the present invention.
  • the fruit and vegetable inspection apparatus 10 of the present embodiment includes a light projecting unit 12 that irradiates inspection light onto the fruit and vegetable S to be measured, and an inspection light (reflected light) reflected by the fruit and vegetable S.
  • the fruits and vegetables S are not particularly limited, but may be, for example, citrus fruits such as mandarin oranges and citrus fruits, pears, peaches, loquats, plums, and apples.
  • the fruits and vegetables inspection apparatus 10 of this embodiment for example, water rot found in citrus fruits, water fruits found in pears, peaches, loquats, plums, apples, etc. It is possible to inspect the press marks.
  • water rot means that when the skin is damaged, as described above, bacteria enter the wound, and the surface of the skin is wet for a long time due to rain or dew. It is a symptom that appears as if the pericarp swells, appearing under temperature conditions.
  • water fruit is a symptom in which the pulp is immersed in water. When the degree becomes severe, the pulp becomes brownish.
  • pressing marks are the result of local pressure being applied to the surface of fruits and vegetables by contact between the fruits and vegetables, destroying the flesh tissue of the fruits and vegetables, and moisture exuded from the flesh tissue between the peel and the flesh. This is a symptom in which a state to perform (so-called internal bleeding state in the human body) appears.
  • the fruit and vegetable inspection apparatus 10 is not limited to the inspection of such a failure, but, for example, is a general failure related to the increase or decrease of water that appears in the skin surface and / or under the skin when the pulp cell is destroyed. It is possible to check for.
  • the light projecting means 12 is not particularly limited as long as it is near infrared light of 900 nm to 2000 nm and can irradiate light including the absorption wavelength of water.
  • a halogen lamp or LED light source is used.
  • the LED light source may be one that emits white light, but may be one that emits only light of a specific wavelength.
  • the absorption wavelength of water is known as 960 nm, 1150 nm, 1450 nm, and 1940 nm, since the absorption wavelength of water is not a specific wavelength but exists as a wide wavelength band, if absorption by water can be confirmed A wavelength slightly around may be used.
  • the imaging unit 14 is not particularly limited as long as it can capture an image based on the inspection light having the wavelength irradiated by the light projecting unit 12, and is not limited to an area camera, a line camera, an imaging spectrometer, and a multiband camera. Etc. can be used. In particular, it is preferable to use a photodiode such as InGaAs, Ge, or PbS that can detect near-infrared light of 900 nm to 2000 nm as the imaging device of the imaging means 14.
  • a photodiode such as InGaAs, Ge, or PbS that can detect near-infrared light of 900 nm to 2000 nm
  • a band-pass filter 18 that transmits only light of a predetermined wavelength may be provided between the fruit and vegetables S and the imaging unit 14.
  • the imaging unit 14 can receive only light having a wavelength that is necessary, and light having a wavelength unnecessary for image analysis is not received, so that noise can be reduced.
  • the fruit and vegetables S are irradiated with inspection light from the light projecting means 12 and the fruit and vegetables S are picked up by the imaging means 14 using the reflected light from the fruits and vegetables S to obtain an inspection image. is doing.
  • Each pixel value of the inspection image can be determined based on the light amount L of the inspection light received by the imaging unit 14, but in this embodiment, the reflected light from the fruits and vegetables S is expressed by the following equation (1). And each pixel value of the inspection image based on the reflection ratio of the fruits and vegetables S calculated as a ratio to the reflected light from a standard body (for example, a gray chart) obtained by irradiating incident light acquired in advance. Has been decided. In addition, as represented by the following formula (2), the pixel value may be determined based on the apparent absorbance from the calculated reflection ratio.
  • the reflection ratio R can be measured with almost no variation even when the light amount is reduced due to, for example, deterioration of the light projecting means 12. Therefore, a stable inspection can be performed for a long time.
  • each pixel value of the inspection image based on the reflection ratio R and the apparent absorbance A can be performed as follows, for example.
  • the pixel value is a value from 0 to 255. Therefore, the assumed minimum value of the reflection ratio R (appropriately set based on the performance of the imaging unit 14) is “0”, and the reflection ratio R is The reflection ratio R of each pixel may be converted so that 1 which is the maximum value becomes “255”.
  • the ratio of inspection images based on light of a plurality of wavelengths (2) difference of inspection images based on light of a plurality of wavelengths (3) inspection image based on light of absorption wavelength of water
  • these image analyzes because the amount of water in the rot portion of the fruits and vegetables S is larger than that in the normal portion, the light of the absorption wavelength of water is absorbed by the rot portion, and when imaged by the imaging means 14, This is based on the fact that the amount of light at the decayed portion is reduced as compared with the normal portion.
  • an inspection image based on light having a water absorption wavelength ⁇ 1 and an inspection image based on light having a predetermined absorption wavelength ⁇ 2 as a reference are used.
  • the decaying part is specified by taking a light quantity ratio for each pixel.
  • X is any of the light quantity L, the reflection ratio R, and the apparent absorbance A.
  • Fig. 2 shows an example of an analysis image when the ratio of inspection images is taken.
  • FIG. 2 (a) is a grayscale image obtained by imaging the fruits and vegetables S with visible light
  • FIG. 2 (b) is an inspection image based on 1200 nm light as the water absorption wavelength for the fruits and vegetables S in FIG. 2 (a). It is an analysis image at the time of taking a ratio with the inspection image based on the light of 1030 nm as light of the predetermined absorption wavelength used as a standard.
  • the inspection image based on the light having the water absorption wavelength ⁇ 1 and the inspection image based on the light having the reference absorption wavelength ⁇ 2 are used.
  • the decaying part is specified by taking a difference in light quantity for each pixel.
  • X is any of the light quantity L, the reflection ratio R, and the apparent absorbance A.
  • Fig. 3 shows an example of an analysis image when the difference between inspection images is taken.
  • FIG. 3 (a) is a grayscale image obtained by imaging the fruits and vegetables S with visible light
  • FIG. 3 (b) is an inspection image based on light of 1160 nm as the water absorption wavelength for the fruits and vegetables S in FIG. 3 (a)
  • It is an analysis image at the time of taking the difference with the test
  • the second derivative of the inspection image by using the inspection image based on the light of the absorption wavelength of water and the inspection image based on the light of the wavelength before and after that, by taking the second derivative of the light amount for each pixel, The site of corruption is identified.
  • the inspection image B based on light absorption wavelength lambda B
  • the analysis image D can be obtained by performing the calculation of the following formula (5) for each pixel using the inspection image C based on the light of the wavelength ⁇ C.
  • P D P A ⁇ 2 ⁇ P B ⁇ P C (5)
  • P A pixel signal P B of the inspection image A: pixel signal P C of the inspection image B: pixel signal P D of the inspection image C: pixel signal of the analysis image D
  • a single light projecting unit 12 and a single image capturing unit 14 are provided.
  • a plurality of light projecting units 12 may be provided.
  • a plurality of imaging means 14 may be provided.
  • FIG. 4 shows an example of an analysis image in the case of taking the second derivative of the inspection image.
  • FIG. 4A is a grayscale image obtained by imaging the fruits and vegetables S with visible light
  • FIG. 4B is an inspection image 2 based on 1200 nm light as the water absorption wavelength for the fruits and vegetables S in FIG. 4A. It is the analysis image which took the second derivative.
  • FIG. 4A when imaging is performed with visible light, there is almost no difference in saturation, chromaticity, and lightness between the normal site X and the rotting site Y, but FIG. As shown, by comparing the inspection images, a clear contrast occurs between the normal site X and the rot site Y, and the presence or absence of the rot site Y can be easily and reliably determined.
  • FIG. 5 shows spectrum data obtained by measuring normal fruits and vegetables, fruits and vegetables having water rot, and fruits and vegetables having dry rot using the fruit and vegetable inspection apparatus 10 of FIG. Note that the spectral data shown in FIG. 5 is obtained by subjecting absorbance to second-order differentiation processing at intervals of a wavelength of 25 nm.
  • the fruits and vegetables having water rot show an increase in absorption at around 960 nm and around 1150 nm, which are the absorption wavelengths of water, compared to normal fruits and vegetables.
  • abnormalities such as water rot of fruits and vegetables can be detected by using a test image based on light having an absorption wavelength of water and observing a change in the degree of absorption of the test light.
  • FIG. 6 is a schematic configuration diagram for explaining the configuration in another embodiment of the fruit and vegetable inspection apparatus of the present invention.
  • the fruit and vegetable inspection apparatus 10 shown in FIG. 6 has basically the same configuration as the fruit and vegetable inspection apparatus 10 shown in FIGS. 1 to 5, and the same components are denoted by the same reference numerals and detailed description thereof is omitted. To do.
  • the light projecting means 12 and the imaging means 14 are arranged in the same direction with respect to the fruit and vegetables S, and the fruit and vegetables S are imaged by reflected light. Then, the inspection light irradiated by the light projecting means 12 passes through the fruits and vegetables S, and an inspection image of the fruits and vegetables S is picked up by the imaging means 14 using the transmitted light.
  • the inspection image is picked up only by the transmitted light.
  • the inspection image may be picked up by using both the transmitted light and the reflected light in combination with the above-described embodiment.
  • FIG. 7 is a schematic configuration diagram for explaining the configuration of still another embodiment of the fruit and vegetable inspection apparatus of the present invention.
  • the fruit and vegetable inspection apparatus 10 shown in FIG. 7 has basically the same configuration as the fruit and vegetable inspection apparatus 10 shown in FIGS. 1 to 6, and the same components are denoted by the same reference numerals and detailed description thereof is omitted. To do.
  • the fruit and vegetable inspection apparatus 10 shown in FIGS. 1 to 6 is configured such that inspection light is irradiated from the light projecting means 12 to the stationary fruit and vegetables S, and an inspection image based on the inspection light is captured by the imaging means 14.
  • the inspection light is irradiated to the fruit and vegetables S conveyed in one direction by the conveying means 20 and an inspection image is taken.
  • the side surfaces of the fruits and vegetables S are reflected on the reflectors by providing the reflecting mirrors 22 on both sides in the transport direction.
  • the entire image of the fruits and vegetables S be imaged by the imaging unit 14.
  • FIG. 8 to 12 show examples of a visible image and an inspection image when the fruits and vegetables S are inspected using the fruits and vegetables inspection apparatus 10 shown in FIG.
  • FIG. 8 shows an inspection of mandarin oranges with molds as fruits and vegetables S.
  • FIG. 8A is a visible image and
  • FIG. 8B is an inspection image.
  • the mold appearing in the upper part of the visible image can be confirmed white in the inspection image.
  • FIG. 9 shows the fruit and fruit S inspected for mandarin orange with dry scratches on the skin surface.
  • FIG. 9A shows a visible image and
  • FIG. 9B shows an inspection image.
  • the dry scratch appearing at the bottom of the visible image can be confirmed as white in the inspection image.
  • FIG. 10 shows an inspection of peaches with so-called press marks as fruits and vegetables S.
  • FIG. 10 (a) shows a visible image
  • FIG. 10 (b) shows an inspection image
  • FIG. 10 (c) peels the skin. It is the visible image of the fruit and vegetables S made into the state which can confirm the inside of a fruit skin.
  • a pressing mark that is difficult to confirm in the visible image (a portion where the color is dark in FIG. 10C) can be confirmed black in the inspection image.
  • FIG. 11 is a person who inspected pears with water fruits as fruits and vegetables S
  • FIG. 11 (a) is a visible image
  • FIG. 11 (b) is an inspection image
  • FIG. 11 (c) is a peeled peel. It is the visible image of the fruit and vegetables S which made the state which can confirm the inside.
  • an inspection image based on light of two wavelengths is used as a comparison of inspection images based on light of a plurality of wavelengths.
  • various modifications are possible without departing from the object of the present invention, such as image analysis using inspection images based on light of three or more wavelengths. is there.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

[課題]青果物の果皮表面及び果皮内部に存在する水腐れや乾燥腐れなどの異常を正確に検出し、また、微小な水腐れであっても検出することができる青果物検査装置を提供する。 [解決手段]青果物に対して検査光を照射する投光手段と、検査光により青果物を撮像する撮像手段と、撮像手段により撮像された青果物の検査画像に基づき、青果物の異常の有無を検出する解析手段とを備え、投光手段は、少なくとも水の吸収波長を含む光が照射可能であり、解析手段は、水の吸収波長の光に基づく検査画像を用いて、青果物の異常の有無を検出する。

Description

青果物検査装置
 本発明は、例えば、柑橘類の果皮表面に現れる水腐れや、果皮の異常乾燥など、青果物の果皮表面及び果皮内部の異常の有無を検査するための青果物検査装置に関する。
 柑橘類では、果皮に傷が付いた際に、その傷から菌が入り込み、雨や露などにより長期にわたり果皮表面が濡れた状態となり、また、25度前後の環境温度の条件下において、水腐れ病と呼ばれる症状が現れることがある。
 水腐れの具体的症状としては、柑橘類の果皮が膨潤したような状態となり、発生部位から腐敗が果皮の広範囲に拡大し、カビが生じたり、乾燥腐れとなったりすることもある。
 このため、水腐れの生じた柑橘類を、正常品と混載梱包した場合、正常品まで腐敗させてしまう恐れがあることから、商品の品質を確保するためにも、水腐れの生じた個体を、選果段階で排除することが望まれている。
 水腐れの初期症状とも言える果皮の傷、特に発生直後の生傷については、特許文献1,2に開示されるように、紫外線照射により、可視領域の蛍光を発する物質由来の特定蛍光波長を検出することによる画像検査が行われている。
 このような水腐れ、カビ及び乾燥腐れの初期症状である果皮の傷を検出することで、選果工程において不良品の流出をある程度防ぐことはできるが、例えば、選果工程の時点で既に水腐れが生じてしまっている青果物の場合、水腐れが進むにつれて果皮が膨らむことで、果皮表面の傷が隠れてしまい、特許文献1,2に開示されるような画像検査では水腐れの生じた青果物を検出することができないことがある。
 また、水腐れ、カビ及び乾燥腐れの有無を検査する方法としては、例えば、特許文献3に開示されるように、青果物に対して、ハロゲンランプ等の照明ランプより光を照射し、青果物からの反射光を撮像用カメラによって撮像することで、青果物の変色又は腐敗した部分の有無を検出する方法が知られている。
 また、特許文献4に開示されるように、青果物の下方から投光手段により検査用光を照射するとともに、上方に配置されたCCDカメラにより青果物を撮像し、画像に含まれる3原色(R,G,B)の各々が示す画像信号を利用して、腐敗部の存否により透過光の光量の差が画像信号の差異として現れやすいR信号と、現れにくいG信号、B信号との差分値に基づき、腐敗部の存否を検出する方法も知られている。
特開2003-14650号公報 特開2011-33612号公報 特開平9-24343号公報 特開2006-10511号公報
 しかしながら、特許文献3に開示された方法では、撮像用カメラにより撮像された画像の彩度、色度、明度を用いて検査を行うため、柑橘類の青カビなどのように可視光に変化を生じる不良については適しているが、水腐れや乾燥腐れのように、正常部位と腐敗部位とに彩度、色度、明度の差がほとんど生じない場合には、正確な判別が困難であり、腐敗品を正常品と判断してしまうことがあった。
 また、特許文献4に開示された水腐れ検出方法では、CCDカメラにより可視光に基づく画像を撮影しており、画像に含まれるR信号は、約550nm~700nmの波長域の平均的な光量を検出しているに過ぎない。
 このため、近年の市場で要求されるような直径10mm程度の微小な水腐れや乾燥腐れなどを検出するには感度が低く、充分な検査を行うことができない。
 本発明では、このような現状に鑑み、青果物の果皮表面及び果皮内部に存在する腐敗部や傷などの異常を正確に検出し、また、微小な水腐れであっても検出することができる青果物検査装置を提供することを目的とする。
 本発明は、前述するような従来技術における課題を解決するために発明されたものであって、本発明の青果物検査装置は、
 青果物の異常の有無を判別するための青果物検査装置であって、
 前記青果物に対して検査光を照射する投光手段と、
 前記検査光により前記青果物を撮像する撮像手段と、
 前記撮像手段により撮像された前記青果物の検査画像に基づき、前記青果物の異常の有無を検出する解析手段と、を備え、
 前記投光手段は、少なくとも水の吸収波長を含む光が照射可能であり、
 前記解析手段は、前記水の吸収波長の光に基づく検査画像を用いて、前記青果物の異常の有無を検出するように構成されていることを特徴とする。
 この場合、前記撮像手段が、撮像素子としてInGaAsフォトダイオードを用いていることが好ましい。
 また、前記撮像手段は、前記投光手段から照射された検査光が前記青果物に反射した反射光により、前記青果物の検査画像を撮像することができる。
 また、前記撮像手段は、前記投光手段から照射された検査光が前記青果物を透過した透過光により、前記青果物の検査画像を撮像することができる。
 また、本発明の青果物検査装置では、前記青果物の異常として、前記青果物の果皮表層及び/又は果皮下に現れる水分の増減に関連する障害を検出することができる。
 本発明によれば、水の吸収波長の光に基づく検査画像を用いることによって、可視光に基づく画像では判別しにくい、青果物の水腐れなどであっても、正常部位と腐敗部位とに明らかなコントラストを生じさせ、容易かつ正確に判別することができる。
図1は、本発明の青果物検査装置の一実施例における構成を説明するための概略構成図である。 図2(a)は、青果物Sを可視光により撮像したグレースケール画像、図2(b)は、図2(a)の青果物Sについて、水の吸収波長として1200nmの光に基づく検査画像と、基準とする所定の吸収波長の光として1030nmの光に基づく検査画像とを比較した場合の解析画像である。 図3(a)は、青果物Sを可視光により撮像したグレースケール画像、図3(b)は、図3(a)の青果物Sについて、水の吸収波長として1160nmの光に基づく検査画像と、基準とする所定の吸収波長の光として1135nmの光に基づく検査画像との差をとった場合の解析画像である。 図4(a)は、青果物Sを可視光により撮像したグレースケール画像、図4(b)は、図4(a)の青果物Sについて、水の吸収波長として1200nmの光に基づく検査画像の2次微分を取った解析画像である。 図5は、図1の青果物検査装置を用いて、正常な青果物、水腐れを有する青果物、乾燥腐れを有する青果物について測定を行った際のスペクトルデータである。 図6は、本発明の青果物検査装置の別の実施例における構成を説明するための概略構成図である。 図7は、本発明の青果物検査装置のさらに別の実施例における構成を説明するための概略構成図である。 図8は、青果物Sとして、カビが生じた蜜柑について検査を行ったもので、図8(a)は可視画像、図8(b)は検査画像である。 図9は、青果物Sとして、果皮表面に乾燥キズが生じた蜜柑について検査を行ったもので、図9(a)は可視画像、図9(b)は検査画像である。 図10は、青果物Sとして、いわゆる押せ痕が生じた桃について検査を行ったもので、図10(a)は可視画像、図10(b)は検査画像、図10(c)は果皮をむいて果皮内部を確認できる状態にした青果物Sの可視画像である。 図11は、青果物Sとして、水果が生じた梨について検査を行った者で、図11(a)は可視画像、図11(b)は検査画像、図11(c)は果皮をむいて果皮内部を確認できる状態にした青果物Sの可視画像である。
 以下、本発明の実施の形態(実施例)を図面に基づいてより詳細に説明する。
 図1は、本発明の青果物検査装置の一実施例における構成を説明するための概略構成図である。
 図1に示すように、本実施例の青果物検査装置10は、被測定対象である青果物Sに検査光を照射する投光手段12と、青果物Sに反射した検査光(反射光)により青果物Sを撮像する撮像手段14と、撮像手段14により撮像された青果物Sの検査画像に基づき青果物Sの腐敗部位を検出する解析手段16とを備えている。
 なお、本実施例において、青果物Sとしては、特に限定されるものではないが、例えば、蜜柑や橘などの柑橘類、梨、桃、ビワ、スモモ、リンゴなどとすることができる。
 また、このような青果類Sとした場合、本実施例の青果物検査装置10では、例えば、柑橘類などに見られる水腐れ、梨などに見られる水果、桃、ビワ、スモモ、リンゴなどに見られる押せ痕などを検査することができる。
 ここで「水腐れ」とは、上述するように、果皮に傷が付いた際に、その傷から菌が入り込み、雨や露などにより長期にわたり果皮表面が濡れた状態で、25度前後の環境温度の条件下において現れる、果皮が膨潤したような状態となる症状である。
 また、「水果」とは、果肉が水浸した状態となる症状である。程度が酷くなると果肉が褐色を帯びた状態となる。
 また、「押せ痕」とは、青果物同士の接触などによって青果物表面に局部的な圧力が加わることで、青果物の果肉組織が破壊され、果皮と果肉の間に果肉組織から染み出した水分が存在する状態(いわば、人体でいう内出血の状態)が現れる症状である。
 なお、本実施例の青果物検査装置10は、このような障害の検査に限らず、例えば、果肉細胞が破壊されることで果皮表層及び/又は果皮下に現れる、水分の増減に関連する障害全般について検査することが可能である。
 投光手段12としては、900nm~2000nmの近赤外光であって、水の吸収波長を含む光を照射可能なものであれば特に限定されるものではなく、例えば、ハロゲンランプやLED光源を用いることができる。なお、LED光源としては、白色光を照射するものであってもよいが、特定波長の光のみを照射するものとすることもできる。
 なお、水の吸収波長としては、960nm、1150nm、1450nm、1940nmが知られているが、水の吸収波長は特定波長ではなく、広い波長帯として存在していることから、水による吸収が確認できれば、多少前後した波長を利用しても構わない。
 撮像手段14としては、投光手段12により照射された波長の検査光に基づく画像を撮像可能なものであれば特に限定されるものではなく、エリアカメラ、ラインカメラ、イメージング分光器、マルチバンドカメラなどを用いることができる。特に、撮像手段14の撮像素子として、900nm~2000nmの近赤外光を検出することができる、例えば、InGaAs、Ge、PbSなどのフォトダイオードを用いたものであることが好ましい。
 なお、青果物Sと撮像手段14との間に、所定の波長の光のみを透過するバンドパスフィルタ18を設けることもできる。
 このように構成することで、撮像手段14が必要な波長の光だけを受光することができ、画像解析に不要な波長の光を受光しないため、ノイズを低減することができる。
 本実施例の青果物検査装置10では、青果物Sに対して投光手段12より検査光を照射するとともに、青果物Sからの反射光を用いて撮像手段14により青果物Sを撮像して検査画像を取得している。
 検査画像の各画素値は、撮像手段14が受光した検査光の光量Lに基づいて決定することもできるが、本実施例では、下記式(1)で表すように、青果物Sからの反射光と、あらかじめ取得している入射光を照射し得られた標準体(例えば、グレーチャートなど)からの反射光との比率として算出された青果物Sの反射比に基づいて検査画像の各画素値を決定している。なお、下記式(2)で表すように、算出された反射比から見かけ上の吸光度に基づき画素値を決定するようにしてもよい。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 このように、標準体からの反射光Rrを基準とすることで、例えば、投光手段12が経年劣化するなどして光量が低下した場合にも、反射比Rはほぼ変動なく測定することができるため、長期間安定した検査を行うことができる。
 なお、反射比Rや見かけ上の吸光度Aに基づく検査画像の各画素値の決定は、例えば、以下のようにして行うことができる。
 例えば、8ビット画像の場合、画素値は0~255の値となるため、想定される反射比Rの最低値(撮像手段14の性能などに基づき適宜設定)が「0」、反射比Rの最高値である1が「255」となるように、各画素の反射比Rを換算すればよい。
 そして、この検査画像を、解析手段16により後述するように画像解析することで、青果物Sの腐敗部位を検出することができる。
 解析手段16における画像解析では、(1)複数の波長の光に基づく検査画像の比(2)複数の波長の光に基づく検査画像の差分(3)水の吸収波長の光に基づく検査画像の2次微分のいずれかを行うことによって、検査画像における腐敗部位を明瞭にした解析画像を生成し、腐敗部位を検出している。
 なお、これらの画像解析は、青果物Sの腐敗部位が、正常部位と比べて水分量が多くなることから、水の吸収波長の光が腐敗部位に吸収され、撮像手段14により撮像した際に、正常部位と比べて腐敗部位の光量が低下することに基づいている。
 以下、各画像解析について詳細に説明する。
 (1)複数の波長の光に基づく検査画像の比では、水の吸収波長λ1の光に基づく検査画像と、基準とする所定の吸収波長λ2の光に基づく検査画像とを用いて、下記式(3)に示すように、画素毎に光量の比を取ることにより、腐敗部位を特定している。
Figure JPOXMLDOC01-appb-M000003
 ここで、Xは光量L、反射比R、見かけ上の吸光度Aのいずれかである。
 図2に、検査画像の比をとった場合の解析画像の一例を示す。
 図2(a)は、青果物Sを可視光により撮像したグレースケール画像、図2(b)は、図2(a)の青果物Sについて、水の吸収波長として1200nmの光に基づく検査画像と、基準とする所定の吸収波長の光として1030nmの光に基づく検査画像との比をとった場合の解析画像である。
 図2(a)に示すように、可視光により撮像した場合には、正常部位Xと腐敗部位Yにおいて彩度、色度、明度にほとんど差が生じていないが、図2(b)に示すように、検査画像の比較を行うことによって、正常部位Xと腐敗部位Yとに明らかなコントラストが生じ、腐敗部位Yの有無を容易に、かつ、確実に判別することができる。
 (2)複数の波長の光に基づく検査画像の差では、水の吸収波長λ1の光に基づく検査画像と、基準とする所定の吸収波長λ2の光に基づく検査画像とを用いて、下記式(4)に示すように、画素毎に光量の差を取ることにより、腐敗部位を特定している。
Figure JPOXMLDOC01-appb-M000004
 ここで、Xは光量L、反射比R、見かけ上の吸光度Aのいずれかである。
 図3に、検査画像の差をとった場合の解析画像の一例を示す。
 図3(a)は、青果物Sを可視光により撮像したグレースケール画像、図3(b)は、図3(a)の青果物Sについて、水の吸収波長として1160nmの光に基づく検査画像と、基準とする所定の吸収波長の光として1135nmの光に基づく検査画像との差をとった場合の解析画像である。
 図3(a)に示すように、可視光により撮像した場合には、正常部位Xと腐敗部位Yにおいて彩度、色度、明度にほとんど差が生じていないが、図3(b)に示すように、検査画像の比較を行うことによって、正常部位Xと腐敗部位Yとに明らかなコントラストが生じ、腐敗部位Yの有無を容易に、かつ、確実に判別することができる。
 また、検査画像の2次微分では、水の吸収波長の光に基づく検査画像と、その前後の波長の光に基づく検査画像とを用いて、画素毎に光量の2次微分を取ることにより、腐敗部位を特定している。
 なお、2次微分の計算は、近似式を用いることができる。
 具体的には、吸収波長λBの光に基づく検査画像Bと、水の吸収波長λBよりも所定波長短い波長λAの光に基づく検査画像Aと、吸収波長λBよりも所定波長長い波長λCの光に基づく検査画像Cとを用いて、画素毎に下記式(5)の計算を行うことにより解析画像Dを得ることができる。       
 PD=PA-2×PB-PC                                         (5)
 上記式(5)において、PA:検査画像Aの画素信号PB:検査画像Bの画素信号PC:検査画像Cの画素信号PD:解析画像Dの画素信号である。
 各画素について、このように計算を行うことによって、水の吸収波長の光に基づく検査画像の2次微分を取った解析画像を生成することができる。
 なお、本実施例では、説明を簡便にするために、1台の投光手段12と、1台の撮像手段14を備えた構成としているが、複数台の投光手段12を備えてもよいし、また、複数台の撮像手段14を備えてもよい。
 図4に、検査画像の2次微分を取った場合の解析画像の一例を示す。
 図4(a)は、青果物Sを可視光により撮像したグレースケール画像、図4(b)は、図4(a)の青果物Sについて、水の吸収波長として1200nmの光に基づく検査画像の2次微分を取った解析画像である。
 図4(a)に示すように、可視光により撮像した場合には、正常部位Xと腐敗部位Yとにおいて彩度、色度、明度にほとんど差が生じていないが、図4(b)に示すように、検査画像の比較を行うことによって、正常部位Xと腐敗部位Yとに明らかなコントラストが生じ、腐敗部位Yの有無を容易に、かつ、確実に判別することができる。
 なお、本実施例では、青果物の異常として水腐れが生じたものについての一例に基づいて説明したが、青果物の果皮に乾燥腐れが生じた場合であっても、正常部位とは異なるスペクトルを得ることができることから、同様に画像解析を行うことで、青果物の異常を検出することができる。
 図5は、図1の青果物検査装置10を用いて、正常な青果物、水腐れを有する青果物、乾燥腐れを有する青果物について測定を行った際のスペクトルデータである。なお、図5に示すスペクトルデータは、波長25nm間隔において吸光度を2次微分処理したものである。
 図5に示すように、水腐れを有する青果物は、正常な青果物と比べ、水の吸収波長である960nm前後、1150nm前後において吸収の増加が見られる。
 また、乾燥腐れを有する青果物については、正常な青果物と比べ、水の吸収波長である960nm前後、1150nm前後において吸収の低下が見られる。
 すなわち、水の吸収波長の光に基づく検査画像を用い、検査光の吸収の度合いの変化を見ることによって、青果物の水腐れなどの異常を検出できることがわかる。
 一方で、青果物の果皮に異常乾燥が生じている場合には、正常な青果物と比べ、水の吸収波長の光が吸収されないことになる。このため、正常な青果物と、果皮に異常乾燥が生じた青果物とを判別することが可能である。
 図6は、本発明の青果物検査装置の別の実施例における構成を説明するための概略構成図である。
 図6に示す青果物検査装置10は、基本的には図1~5に示した青果物検査装置10と同様な構成であり、同じ構成部材には、同じ符号を付してその詳細な説明を省略する。
 図1に示す青果物検査装置10では、青果物Sに対して投光手段12と撮像手段14を同じ方向に配置し、反射光によって青果物Sを撮像しているが、この実施例の青果物検査装置10では、投光手段12により照射された検査光が青果物Sを透過して、この透過光を用いて撮像手段14により青果物Sの検査画像を撮像している。
 このように、透過光に基づく検査画像を用いた場合であっても、上述するように、反射光に基づく検査画像を用いた場合と同様に、画像解析を行うことによって、青果物Sの正常部位と腐敗部位とを判別することができる。
 なお、本実施例では、透過光のみにより検査画像を撮像しているが、上述する実施例と組み合わせることで、透過光と反射光の両方を用いて検査画像を撮像しても構わない。
 図7は、本発明の青果物検査装置のさらに別の実施例における構成を説明するための概略構成図である。
 図7に示す青果物検査装置10は、基本的には図1~6に示した青果物検査装置10と同様な構成であり、同じ構成部材には、同じ符号を付してその詳細な説明を省略する。
 図1~6に示す青果物検査装置10では、静止状態の青果物Sに対して投光手段12から検査光を照射し、この検査光に基づく検査画像を撮像手段14によって撮像するように構成しているが、この実施例の青果物検査装置10では、搬送手段20によって一方向に搬送される青果物Sに対して検査光を照射し、検査画像を撮像するように構成している。
 このように、インラインで青果物検査を行うように構成することによって、大量の青果物を効率よく検査することができる。
 なお、搬送手段20によって青果物Sを搬送しながら検査を行う場合には、図7に示すように、搬送方向の両側方に反射鏡22を設けることで、青果物Sの側面部を反射鏡に映すことで、撮像手段14によって青果物S全体を撮像するように構成することが好ましい。
 図8~12では、図1に示す青果物検査装置10を用いて、青果物Sについて検査を行った際の可視画像と検査画像の例を示す。
 図8は、青果物Sとして、カビが生じた蜜柑について検査を行ったもので、図8(a)は可視画像、図8(b)は検査画像である。
 可視画像において上部に現れているカビが、検査画像では、白く確認することができる。
 図9は、青果物Sとして、果皮表面に乾燥キズが生じた蜜柑について検査を行ったもので、図9(a)は可視画像、図9(b)は検査画像である。
 可視画像において下部に現れている乾燥キズが、検査画像では、白く確認することができる。
 図8のカビ、図9の乾燥キズのように、果皮表層若しくは果皮下の水分が減少している場合には、近赤外光の吸収率が低いため、検査画像のような赤外画像には、白く現れる。
 図10は、青果物Sとして、いわゆる押せ痕が生じた桃について検査を行ったもので、図10(a)は可視画像、図10(b)は検査画像、図10(c)は果皮をむいて果皮内部を確認できる状態にした青果物Sの可視画像である。
 可視画像では確認が困難な押せ痕(図10(c)において色が濃くなっている箇所)について、検査画像では黒く確認することができる。
 図11は、青果物Sとして、水果が生じた梨について検査を行った者で、図11(a)は可視画像、図11(b)は検査画像、図11(c)は果皮をむいて果皮内部を確認できる状態にした青果物Sの可視画像である。
 可視画像では確認が困難な水果(図11(c)において色が濃くなっている箇所)について、検査画像では黒く確認することができる。
 図10の押せ痕、図11の水果のように、果皮表層若しくは果皮下の水分が増加している場合には、近赤外光の吸収率が高いため、検査画像のような赤外画像には、黒く現れる。
 以上、本発明の好ましい実施例を説明したが、本発明はこれに限定されることはなく、例えば、複数の波長の光に基づく検査画像の比較として、2つの波長の光に基づく検査画像を用いて画像解析を行っているが、3つ以上の波長の光に基づく検査画像を用いて画像解析を行うようにしてもよいなど、本発明の目的を逸脱しない範囲で種々の変更が可能である。
10   青果物検査装置
12   投光手段
14   撮像手段
16   解析手段
18   バンドパスフィルタ
20   搬送手段
22   反射鏡

Claims (5)

  1.  青果物の異常の有無を判別するための青果物検査装置であって、
     前記青果物に対して検査光を照射する投光手段と、
     前記検査光により前記青果物を撮像する撮像手段と、
     前記撮像手段により撮像された前記青果物の検査画像に基づき、前記青果物の異常の有無を検出する解析手段と、を備え、
     前記投光手段は、少なくとも水の吸収波長を含む光が照射可能であり、
     前記解析手段は、前記水の吸収波長の光に基づく検査画像を用いて、前記青果物の異常の有無を検出するように構成されていることを特徴とする青果物検査装置。
  2.  前記撮像手段が、撮像素子として900nm~2000nmの波長を受光可能なフォトダイオードを用いていることを特徴とする請求項1に記載の青果物検査装置。
  3.  前記撮像手段は、前記投光手段から照射された検査光が前記青果物に反射した反射光により、前記青果物の検査画像を撮像することを特徴とする請求項1または2に記載の青果物検査装置。
  4.  前記撮像手段は、前記投光手段から照射された検査光が前記青果物を透過した透過光により、前記青果物の検査画像を撮像することを特徴とする請求項1から3のいずれかに記載の青果物検査装置。
  5.  前記青果物の異常が、前記青果物の果皮表層及び/又は果皮下に現れる水分の増減に関連する障害であることを特徴とする請求項1から4のいずれかに記載の青果物検査装置。
PCT/JP2016/059813 2015-03-31 2016-03-28 青果物検査装置 WO2016158820A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017509950A JP6403872B2 (ja) 2015-03-31 2016-03-28 青果物検査装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015072790 2015-03-31
JP2015-072790 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016158820A1 true WO2016158820A1 (ja) 2016-10-06

Family

ID=57007135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059813 WO2016158820A1 (ja) 2015-03-31 2016-03-28 青果物検査装置

Country Status (2)

Country Link
JP (1) JP6403872B2 (ja)
WO (1) WO2016158820A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107064056A (zh) * 2017-03-08 2017-08-18 北京农业智能装备技术研究中心 一种水果无损检测的方法及装置
JP2020165779A (ja) * 2019-03-29 2020-10-08 三井金属計測機工株式会社 青果類検査装置及び青果類検査方法並びに鮮度保持機能付き青果類検査装置及び鮮度保持のための青果類検査方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610953B1 (en) * 1998-03-23 2003-08-26 University Of Arkansas Item defect detection apparatus and method
JP2004184172A (ja) * 2002-12-02 2004-07-02 Kubota Corp 果菜類の品質評価装置
JP2005201636A (ja) * 2004-01-13 2005-07-28 Shizuoka Prefecture 腐敗部判定方法及び判定装置
JP2006191816A (ja) * 2005-01-11 2006-07-27 Cosmo Plant Kk メロンの栽培方法およびその栽培方法に用いる栽培装置
JP2010074099A (ja) * 2008-09-22 2010-04-02 Sumitomo Electric Ind Ltd 食品品質検査装置、食品成分検査装置、異物成分検査装置、食味検査装置および変移状態検査装置
WO2013137145A1 (ja) * 2012-03-14 2013-09-19 千代田電子工業株式会社 非破壊測定装置
US20140183362A1 (en) * 2012-12-31 2014-07-03 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for detecting counterfeit or illicit drugs and pharmaceutical process control

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162358A (ja) * 2000-11-22 2002-06-07 Ishii Ind Co Ltd 被検出物の変異部検出方法及びその変異部検出装置
JP2006170669A (ja) * 2004-12-13 2006-06-29 Mitsui Mining & Smelting Co Ltd 青果物の品質検査装置
WO2007041755A1 (en) * 2005-10-07 2007-04-19 The Australian Wine Research Institute Hyperspectral imaging of contaminants in products and processes of agriculture
JP2009168748A (ja) * 2008-01-18 2009-07-30 Sumitomo Electric Ind Ltd 食品検査装置
IL216903A (en) * 2010-12-10 2016-09-29 Advanced Vision Tech (A V T ) Ltd Conveyor facility with imaging background surface

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610953B1 (en) * 1998-03-23 2003-08-26 University Of Arkansas Item defect detection apparatus and method
JP2004184172A (ja) * 2002-12-02 2004-07-02 Kubota Corp 果菜類の品質評価装置
JP2005201636A (ja) * 2004-01-13 2005-07-28 Shizuoka Prefecture 腐敗部判定方法及び判定装置
JP2006191816A (ja) * 2005-01-11 2006-07-27 Cosmo Plant Kk メロンの栽培方法およびその栽培方法に用いる栽培装置
JP2010074099A (ja) * 2008-09-22 2010-04-02 Sumitomo Electric Ind Ltd 食品品質検査装置、食品成分検査装置、異物成分検査装置、食味検査装置および変移状態検査装置
WO2013137145A1 (ja) * 2012-03-14 2013-09-19 千代田電子工業株式会社 非破壊測定装置
US20140183362A1 (en) * 2012-12-31 2014-07-03 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for detecting counterfeit or illicit drugs and pharmaceutical process control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BARANOWSKI P ET AL.: "Detection of early bruises in apples using hyperspectral data and thermal imaging", JOURNAL OF FOOD ENGINEERING, vol. 110, pages 345 - 355, XP028455713 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107064056A (zh) * 2017-03-08 2017-08-18 北京农业智能装备技术研究中心 一种水果无损检测的方法及装置
CN107064056B (zh) * 2017-03-08 2020-05-22 北京农业智能装备技术研究中心 一种水果无损检测的方法及装置
JP2020165779A (ja) * 2019-03-29 2020-10-08 三井金属計測機工株式会社 青果類検査装置及び青果類検査方法並びに鮮度保持機能付き青果類検査装置及び鮮度保持のための青果類検査方法

Also Published As

Publication number Publication date
JPWO2016158820A1 (ja) 2017-05-25
JP6403872B2 (ja) 2018-10-10

Similar Documents

Publication Publication Date Title
JP6203923B1 (ja) 青果物検査装置
JP6940215B2 (ja) 検査装置及び検査装置の識別手段の学習方法
US11830179B2 (en) Food inspection assisting system, food inspection assisting apparatus and computer program
Lu Detection of bruises on apples using near–infrared hyperspectral imaging
CN106442561B (zh) 用于检测柑橘表皮缺陷的在线图像采集系统及方法
US20090185182A1 (en) Simultaneous Acquisition of Fluorescence and Reflectance Imaging Techniques with a Single Imaging Device for Multitask Inspection
JP6203922B1 (ja) 青果物検査装置
JP2006170669A (ja) 青果物の品質検査装置
JP2003527594A (ja) 可視光線スペクトル/近赤外線スペクトルにより果物の特性を測定し、相互に関連付けるための装置および方法
KR101750858B1 (ko) 결함 검출 시스템 및 결함 검출 방법
JP2008209211A (ja) 異物検査装置および異物検査方法
JP6403872B2 (ja) 青果物検査装置
Heitschmidt et al. Improved hyperspectral imaging system for fecal detection on poultry carcasses
DONG et al. Detection of thrips defect on green-peel citrus using hyperspectral imaging technology combining PCA and B-spline lighting correction method
JP2015203586A (ja) 検査方法
JP2000111473A (ja) 青果物検査装置
WO2011122584A1 (ja) 食品の品質検査装置及び食品の品質検査方法
Xing et al. Wavelength selection for surface defects detection on tomatoes by means of a hyperspectral imaging system
JP7065755B2 (ja) 物品検査装置
JP2003014650A (ja) 農産物検査装置及び検査方法
JP7034111B2 (ja) 検査装置、ptp包装機及びptpシートの製造方法
WO2018044327A1 (en) Food inspection systems and methods
KR102205445B1 (ko) 다분광 형광 영상을 이용한 가공 채소류 측 이물질 검출시스템 및 검출방법
JP2021092461A (ja) 青果物の内部品質検査装置
WO2018131685A1 (ja) 莢豆の検査方法及び莢豆食品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509950

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772701

Country of ref document: EP

Kind code of ref document: A1