WO2016158725A1 - Vessel - Google Patents

Vessel Download PDF

Info

Publication number
WO2016158725A1
WO2016158725A1 PCT/JP2016/059565 JP2016059565W WO2016158725A1 WO 2016158725 A1 WO2016158725 A1 WO 2016158725A1 JP 2016059565 W JP2016059565 W JP 2016059565W WO 2016158725 A1 WO2016158725 A1 WO 2016158725A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
duct member
duct
propeller rotation
ship
Prior art date
Application number
PCT/JP2016/059565
Other languages
French (fr)
Japanese (ja)
Inventor
虎卓 山本
秀聡 秋林
沙織 岡
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Priority to CN201680019898.4A priority Critical patent/CN107428403B/en
Priority to KR1020177015057A priority patent/KR102463848B1/en
Publication of WO2016158725A1 publication Critical patent/WO2016158725A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/16Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to a ship provided with a duct at the stern.
  • a duct device for a ship having a high energy-saving effect and easy to manufacture a tube having a substantially truncated cone shape is mainly used.
  • a semi-conical outer shell cut in half in a plane including the shaft, and two connecting plates that fix the outer shell to the stern, with the shorter outer shell diameter facing the propeller A ship duct device has been proposed in which the outer shell is disposed so that the outer shell faces the upper half of the propeller.
  • the two connecting plates connected to both ends of the outer shell that fixes the outer shell to the stern portion have a shape that hardly resists the water flow through the duct device.
  • it is used only as a support structure for the outer shell.
  • the stern portion is improved in order to improve the small amount of thrust generated at the side portion of the semicircular duct.
  • a propeller provided, an arc-shaped duct disposed in front of the propeller and above the center position of the stern vertical vortex generated at the stern part, and having a diameter expanded from the rear to the front of the ship, and both lower ends of the ducts;
  • a ship provided with main fins that respectively extend in the radial direction of the propeller between the sides of the stern part and incline forward from the rear to the front.
  • the main fin is formed in a downwardly projecting wing cross-sectional shape, and tilts forward from the rear of the ship toward the front, and assists from the downward flow flowing from the upper side to the lower side of the duct. It is said that by obtaining thrust, thrust can be generated efficiently and resistance does not increase.
  • auxiliary fin extended outwardly is formed in an upwardly convex wing cross-sectional shape, and is inclined forward and downward from the rear of the ship toward the front, so that the outer side of the duct is directed upward from below. It is said that by obtaining auxiliary thrust from the flowing upward flow, thrust can be generated efficiently and resistance does not increase.
  • the present inventors need the duct support function of the strut.
  • the shape of the duct and strut is determined for the purpose of obtaining thrust.
  • the flow direction that rectifies the bilge vortex to weaken the flow in the same direction as the propeller rotation direction and the direction of the water flow flowing into the propeller surface is opposite to the propeller rotation direction.
  • the present invention has been conceived by thinking that it can have a conversion function and not only obtain thrust but also play a major role in improving propeller efficiency.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a duct having a duct member and a strut supporting the duct member at the stern, and a propeller rotation axis just before the propeller.
  • the duct member and the strut that supports the duct member can obtain a thrust by the duct member, and the bilge vortex is rectified by the connecting portion between the duct member and the strut to determine the propeller rotation direction.
  • An object of the present invention is to provide a ship capable of improving the propeller efficiency by weakening the flow in the same direction and changing the direction of the water flow flowing into the propeller surface in the direction opposite to the rotation direction of the propeller by the strut.
  • a ship for achieving the above object is a ship in which a duct having a duct member and a strut that supports the duct member on the hull is arranged above the propeller axis immediately before the propeller.
  • the struts are connected to both ends of the duct member, and the connection site between the duct member and the strut is disposed in the vicinity of the center of the bilge vortex generated at the stern when the duct is not provided, and the duct member is disposed on the front end side.
  • the strut is formed with an opening angle of 0 ° to 40 ° outward from the rear end side with respect to the propeller rotation axis, and the strut has a flow component in a direction opposite to the propeller rotation direction with respect to the hull longitudinal direction. It is provided with an angle for guiding so as to increase.
  • the duct member generates lift by the wing effect caused by the downward water flow flowing along the hull flowing into the upper portion of the propeller surface, and uses the hull longitudinal component of this lift as the thrust.
  • the strut that supports the duct member on the hull it is arranged at an angle with respect to the direction of the incoming water flow, and by changing the direction of the water flow, that is, the water flow flowing into the propeller surface is changed in the propeller rotation direction. By changing the flow component in the opposite direction, the propeller propulsion efficiency is increased.
  • the bilge vortex that develops at the stern flows in the same direction as the propeller rotation direction on the port side, outside the bilge vortex on the port side, and inside the bilge vortex on the starboard side.
  • a flow in the same direction as the propeller rotation direction is induced on the starboard side inside the bilge vortex and on the starboard side outside the bilge vortex.
  • the bilge vortex By arranging the connecting portion of the bilge vortex near the center of the bilge vortex, the bilge vortex can be rectified by the duct member and the strut, and the flow in the same direction as the propeller rotation direction of the bilge vortex can be weakened.
  • the cross-sectional shape of the duct member when the cross-sectional shape of the duct member is formed into a wing shape having a convex camber on the inside, the lift generated by the duct member can be increased, and the thrust obtained from the duct can be increased. it can.
  • the resistance component acting on the strut can be weakened while maintaining the function of changing the direction of water flow, and the resistance of the strut can be reduced.
  • the duct member when the duct member is configured in a polygonal shape, the duct member can be disposed in a portion more suitable for generating lift than when the duct is formed in an arc shape, and the duct member The angle of attack can be set to an optimum angle with respect to the position of the duct member on each polygon side, and the thrust generated in the duct member can be increased.
  • the polygonal shape increases connection work such as welding of the duct member as compared with the arc shape, but the workability is not deteriorated because it is not necessary to bend the duct member.
  • a first horizontal fin that extends from the hull outer plate in the ship width direction and whose tip position is in the vicinity of the propeller rotation circle is provided to suppress the flow in the same direction as the propeller rotation direction outside the bilge vortex.
  • the first horizontal fin is configured to suppress the upward flow outside the bilge vortex in front of the propeller, the propeller rotates clockwise on the port side when viewed from the stern and rotates counterclockwise when viewed from the stern.
  • the tip side of the first horizontal fin is disposed in a region having a flow in the same direction as the propeller rotation direction, and the water flow is induced so that the flow is opposite to the propeller rotation direction. So, it is possible to increase the propeller efficiency.
  • a second horizontal fin extending from the hull outer plate in the ship width direction and having a tip position near the ship width direction position at the center of the bilge vortex is provided, and is the same as the propeller rotation direction inside the bilge vortex
  • horizontal fins can be placed only on the port side, in the range up to the vicinity of the position in the width direction of the center of the bilge vortex, with the same flow direction as the propeller rotation direction.
  • the “horizontal fin” in the “first horizontal fin” and the “second horizontal fin” is substantially horizontal when the ship is viewed from directly behind, for example, at an angle within 10 ° of horizontal plus / minus. , Refers to the fin to be attached.
  • the cross-sectional shape of the first horizontal fin and the second horizontal fin is preferably an airfoil having a leading edge on the bow side and a trailing edge on the stern side.
  • thrust is generated by the wing effect of the duct member, and the propulsion efficiency of the propeller can be increased by the effect of changing the direction of the water flow flowing into the propeller surface of the strut supporting the duct member. Furthermore, by arranging the connection part of the duct member and the strut near the center of the bilge vortex, the bilge vortex generated at the stern can be rectified, and the flow in the same direction as the propeller rotation direction of the bilge vortex can be weakened. Efficiency can be improved.
  • FIG. 1 is a side view schematically showing the arrangement of ducts in a ship according to an embodiment of the present invention.
  • FIG. 2 is a rear view schematically showing the arrangement of ducts as seen from the rear of the ship of FIG.
  • FIG. 3 is a side view for explaining the opening angle of the duct member.
  • FIG. 4 is a rear view for showing the cross-sectional positions of the duct member and the strut.
  • 5 is a cross-sectional view taken along the line Y1-Y1 of FIG. 4 showing a cross section of the duct member.
  • 6 is a cross-sectional view taken along the line Y2-Y2 of FIG.
  • FIG. 4 showing a cross-section of the starboard side strut (in the case of a right-handed propeller viewed from the stern).
  • FIG. 7 is a cross-sectional view taken along the line Y3-Y3 of FIG.
  • FIG. 8 is a rear view schematically showing a rectangular duct.
  • FIG. 9 is a rear view schematically showing a pentagonal duct.
  • FIG. 10 is a rear view schematically showing a hexagonal duct.
  • FIG. 11 is a rear view schematically showing the first horizontal fin and the second horizontal fin.
  • the ship 1 has a propeller 3 and a rudder 4 at the rear of the hull 2, and at the stern just before the propeller 3 and above the propeller rotation axis Lp, the duct 10. Arranged.
  • the duct 10 includes a duct member 11 and struts 12 a and 12 b that support the duct member 11 on the hull 2.
  • the struts 12 a and 12 b are provided between the end of the duct member 11 and the hull 2.
  • the starboard-side strut 12 a is connected to the starboard side end of the duct member 11, and the port side end of the duct member 11 is connected.
  • a port side strut 12b is connected to the section. That is, the struts 12 a and 12 b are connected to both ends of the duct member 11. 2 indicates a circle drawn by the tip of the propeller 3 (propeller rotation circle), and the diameter of the circle 20 is the propeller diameter Dp.
  • connection part 13 of this duct member 11 and the struts 12a and 12b is arrange
  • the front end of the connection portion 13 is centered on the center Pw of the bilge vortex generated at the stern when the duct 10 is not provided in the plane perpendicular to the propeller rotation axis Lp including the front end, and the radius ra is the propeller diameter.
  • the position of the center Pw of the bilge vortex when the duct 10 is not provided can be easily specified by calculation using a water tank test or a fluid analysis program.
  • the duct member 11 is formed with an opening angle ⁇ of 0 ° or more and 40 ° or less where the front end side is more outward than the rear end side with respect to the propeller rotation axis Lp.
  • the duct member 11 generates lift L due to the wing effect caused by the downward water flow W flowing along the hull 2 flowing into the upper portion of the propeller surface Sp, and uses the hull longitudinal component Lf of this lift L as thrust. To do.
  • the cross-sectional shape of the duct member 11 into a wing shape having a camber protruding inward.
  • the lift L generated in the duct member 11 can be further increased, and the thrust Lf obtained from the duct 10 can be increased.
  • angles ⁇ a and ⁇ b of the lines connecting the front and rear edges of the struts 12a and 12b with respect to the longitudinal direction of the hull are set to 0 ° to 20 °. It is preferable to make it into °.
  • the struts 12a and 12b that support the duct member 11 on the hull 2 are arranged at angles ⁇ a and ⁇ b with respect to the direction of the inflowing water flow W, and change the direction of the water flow W. Since the direction of the water flow W flowing into the propeller surface Sp can be increased by increasing the component of the flow in the direction opposite to the propeller rotation direction R, the effect of increasing the propulsion efficiency of the propeller 3 can be obtained.
  • the struts 12a and 12b are formed.
  • the component in the direction opposite to the propeller rotation direction R can be increased in the water flow W flowing into the propeller surface Sp, the propeller efficiency can be improved.
  • the resistance component acting on the struts 12a and 12b can be weakened while maintaining the function of changing the direction of the water flow W, and the resistance of the struts 12a and 12b can be reduced. Can be reduced.
  • the duct 10 when a polygonal shape such as a quadrangular shape, a pentagonal shape, or a hexagonal shape is used, the duct 10 is formed in an arc shape.
  • the duct member 11 can be arranged in a portion more suitable for generating the lift L, and the opening angle (attack angle) ⁇ of the duct member 11 is set with respect to the position of the duct member 11 on each polygonal side. An optimum angle can be obtained, and the thrust Lf generated in the duct member 11 can be increased.
  • the polygonal shape increases connection work such as welding of the duct member 11 as compared to the arc shape, but the workability is not deteriorated because the duct member 11 need not be bent.
  • the propeller rotation axis Lp is set to the height immediately before the propeller 3, and when the propeller rotation direction R is a right rotation when viewed from the stern, the propeller rotation direction is not shown.
  • the flow is configured to suppress the flow in the same direction as the rotation direction R. That is, the first horizontal fin 14 whose tip position is in the vicinity R1 of the propeller rotation circle 20 is provided.
  • the angle at which the front edge is above the rear edge is defined as plus, within ⁇ 30 °, preferably within ⁇ 20 °, more preferably It is arranged with an angle of ⁇ 10 ° to 20 °.
  • the first horizontal fin 14 guides the water flow so as to suppress the flow in the same direction as the propeller rotation direction R. That is, the first horizontal fin 14 suppresses the upward flow in front of the propeller on the tip side of the first horizontal fin 14, in other words, the upward flow outside the bilge vortex. In FIG. 11, only the starboard side of the bilge vortex is shown for easy viewing.
  • the first horizontal fin 14 is placed in a region having a flow in the same direction as the propeller rotation direction R on the port side of a propeller that rotates clockwise as viewed from the stern or on the starboard side of a propeller that rotates left as viewed from the stern. Since the front end side is arranged and the water flow is induced so as to suppress the flow in the same direction as the propeller rotation direction R, the propeller efficiency can be increased.
  • the propeller rotation axis Lp is positioned immediately before the propeller 3, and on the starboard side when the propeller rotation direction R is a right rotation when viewed from the stern, or although not illustrated, the propeller rotation direction Is provided with a second horizontal fin 15 extending from the hull skin plate in the ship width direction and having a tip position near the position in the ship width direction of the center Pw of the bilge vortex. It is configured to suppress the flow in the same direction as the propeller rotation direction R inside the bilge vortex.
  • the second horizontal fin 15 whose tip position is the vicinity R2 of the position in the ship width direction of the center Pw of the bilge vortex is provided.
  • the second horizontal fin 15 is within ⁇ 30 °, preferably within ⁇ 20 °, more preferably ⁇ 20 ° when the angle at which the leading edge is upward with respect to the trailing edge when viewed from the side is plus. It arrange
  • the second horizontal fin 15 guides the water flow so as to suppress the flow in the same direction as the propeller rotation direction R. In other words, the second horizontal fin 15 suppresses the downward flow generated inside the center Pw of the bilge vortex.
  • the ship at the center Pw of the bilge vortex center Pw has the same flow direction as the propeller rotation direction R on the starboard side in the right-hand propeller 3 as viewed from the stern and on the starboard side in the left-hand propeller 3 as viewed from the stern. Since the second horizontal fin 15 can be disposed only in the range up to the vicinity R2 of the width direction position, the second horizontal fin 15 induces a water flow so as to suppress the flow in the same direction as the propeller rotation direction R, Propeller efficiency can be increased.
  • the first horizontal fins 14 and the second horizontal fins 15 are attached substantially horizontally when the ship is viewed from directly behind, for example, at an angle within a horizontal plus / minus 10 °.
  • the cross-sectional shapes of the first horizontal fin 14 and the second horizontal fin 15 are preferably airfoils with a leading edge on the bow side and a trailing edge on the stern side.
  • the range R1 in the vicinity of the propeller rotation circle 20 indicating the tip position of the first horizontal fin 14 is a circle of Dp ⁇ 0.5 times and a circle of Dp ⁇ 1.15 times the propeller diameter Dp.
  • a range R2 in the vicinity of the position in the ship width direction of the center Pw of the bilge vortex Pw indicating the tip position of the second horizontal fin 15 is the horizontal distance from the center line of the hull is the center of the bilge vortex from the center line of the hull.
  • the propeller is caused by the thrust Lf generated by the wing effect of the duct member 11 and the direction change effect of the water flow W flowing into the propeller surface Sp in the struts 12a and 12b supporting the duct member 11.
  • 3 propulsion efficiency can be increased.
  • the connection part 13 between the duct member 11 and the struts 12a and 12b in the vicinity of the center Pw of the bilge vortex, the bilge vortex is rectified and the flow of the bilge vortex in the same direction as the propeller rotation direction R is weakened. Can improve the propeller efficiency.
  • the propulsion efficiency of the propeller can be increased by the thrust generated by the wing effect of the duct member and the effect of changing the direction of the water flow flowing into the propeller surface of the strut supporting the duct member. Furthermore, by arranging the connection part between the duct member and the strut in the vicinity of the center of the bilge vortex, the bilge vortex can be rectified to weaken the flow of the bilge vortex in the same direction as the propeller rotation direction, and the propeller efficiency can be improved. So it can be used for many ships.

Abstract

In the present invention, a connecting location 13 between a duct member 11 and each of struts 12a and 12b is disposed in the vicinity of a bilge vortex occurring at the stern in cases when a duct 10 is not provided. The duct member is formed with an opening angle α of 0-40° where the leading edge-side is further to the outside with respect to the propeller rotary axis Lp than the trailing edge-side. The struts are provided at angles γa and γb with respect to the hull longitudinal direction X so as to induce the increase in a flow component that is opposite in direction to the propeller rotation direction R. Thus, in a vessel 1 in which the duct is disposed at the stern, propulsion can be achieved by the duct member, and the bilge vortex is rectified by the connecting location between the duct member and each of the struts to weaken the flow in the same direction as the propeller rotation direction, and the direction of water flowing into the propeller surface Sp is turned in the direction opposite the rotation direction of a propeller 3 by the struts to improve the propeller efficiency.

Description

船舶Ship
 本発明は、船尾にダクトを備えた船舶に関する。 The present invention relates to a ship provided with a duct at the stern.
 一般の商用船等の排水量型の船舶においてプロペラ軸の高さより上方では、船尾側の船体によって発生するビルジ渦により、船尾から見て右回りに回転するプロペラの場合は、左舷側ではビルジ渦の外側でプロペラ回転と同じ向きの流れが誘起され、右舷側ではビルジ渦の内側でプロペラ回転と同じ向きの流れが誘起され、左回転のプロペラの場合はその逆となるので、プロペラに流入する水流の相対的な流速が遅くなり、プロペラ効率が悪くなるという問題がある。 In the case of a propeller that rotates clockwise as viewed from the stern due to the bilge vortex generated by the hull on the stern side above the height of the propeller shaft in a displacement type ship such as a general commercial ship, the bilge vortex appears on the port side. A flow in the same direction as the propeller rotation is induced on the outside, a flow in the same direction as the propeller rotation is induced on the starboard side inside the bilge vortex, and the reverse is the case in the case of the left rotation propeller. There is a problem that the relative flow velocity of the motor becomes slower and the propeller efficiency becomes worse.
 これに対する対策の一つとして、例えば、日本出願特開2008-137462号公報に記載されているように、省エネルギー効果が高く、製造が容易な船舶のダクト装置として、略円錐台形状の筒を中心軸を含む平面で略半分に切断した略半円錐台形状の外殻と、外殻を船尾部に固定する2枚の連結板とを備え、外殻の径の短い方をプロペラ側に向けるとともに外殻がプロペラの上半分の部分と相対するように外殻を配置した船舶のダクト装置が提案されている。 As one of countermeasures against this, as described in Japanese Patent Application Laid-Open No. 2008-137462, for example, a duct device for a ship having a high energy-saving effect and easy to manufacture, a tube having a substantially truncated cone shape is mainly used. A semi-conical outer shell cut in half in a plane including the shaft, and two connecting plates that fix the outer shell to the stern, with the shorter outer shell diameter facing the propeller A ship duct device has been proposed in which the outer shell is disposed so that the outer shell faces the upper half of the propeller.
 この船舶のダクト装置では、通常の円形のダクトにおける、プロペラ回転軸よりも下の部分に抵抗が発生し、ダクトによる推力に比べて抵抗が大きくなって省エネルギー効果が低下するという問題に対して、ダクトが有効に推力を発生し、かつ整流効果を高めるように、円形のダクトの下側部分を排除して、推力を発生するダクトの上の部分だけ(外殻)を残した半円弧ダクトを採用し、この外殻の寸法と高さ位置を設定している。 In this ship duct device, resistance occurs in a portion below the propeller rotation shaft in a normal circular duct, and the resistance increases compared to the thrust by the duct and the energy saving effect is reduced. A semicircular arc duct that leaves only the upper part (outer shell) of the duct that generates thrust, eliminating the lower part of the circular duct so that the duct effectively generates thrust and enhances the rectification effect. Adopt and set the dimensions and height position of this outer shell.
 しかしながら、この船舶のダクト装置では、外殻を船尾部に固定する外殻の両端部に接続する2枚の連結板に関しては、ダクト装置を通る水流に対して抵抗となりにくい形状であることが好ましいとされているが、単なる外殻の支持構造としてのみ使用されている。 However, in this ship duct device, it is preferable that the two connecting plates connected to both ends of the outer shell that fixes the outer shell to the stern portion have a shape that hardly resists the water flow through the duct device. However, it is used only as a support structure for the outer shell.
 更に、これに関連して、例えば、日本出願特開2011-178222号公報に記載されているように、半円形のダクトの側面部分で推力の発生量が小さいことを改良すべく、船尾部に設けられたプロペラと、プロペラの前方且つ船尾部に生じる船尾縦渦の中心位置よりも上方に配置され、船舶後方から前方へ向かって拡径された円弧状のダクトと、ダクトの両下端部と船尾部の側面との間をプロペラの半径方向に各々延出し、船舶後方から前方へ向かって前上がりに傾斜する主フィンとを備えた船舶が提案されている。 Further, in relation to this, as described in Japanese Patent Application Laid-Open No. 2011-178222, for example, the stern portion is improved in order to improve the small amount of thrust generated at the side portion of the semicircular duct. A propeller provided, an arc-shaped duct disposed in front of the propeller and above the center position of the stern vertical vortex generated at the stern part, and having a diameter expanded from the rear to the front of the ship, and both lower ends of the ducts; There has been proposed a ship provided with main fins that respectively extend in the radial direction of the propeller between the sides of the stern part and incline forward from the rear to the front.
 この船舶では、主フィンは、下方に凸の翼断面形状に形成される共に、船舶後方から前方に向かって前上がりに傾斜して、ダクトの内側を上方から下方に向かって流れる下降流から補助推力を得ることにより、効率的に推力を発生することができ、また、抵抗が増えることが無いとされている。 In this ship, the main fin is formed in a downwardly projecting wing cross-sectional shape, and tilts forward from the rear of the ship toward the front, and assists from the downward flow flowing from the upper side to the lower side of the duct. It is said that by obtaining thrust, thrust can be generated efficiently and resistance does not increase.
 また、その外側に延接された補助フィンは、上方に凸の翼断面形状に形成されると共に、船舶後方から前方に向かって前下がりに傾斜して、ダクトの外側を下方から上方に向かって流れる上昇流から補助推力を得ることにより、効率的に推力を発生することができ、また、抵抗が増えることが無いとされている。 In addition, the auxiliary fin extended outwardly is formed in an upwardly convex wing cross-sectional shape, and is inclined forward and downward from the rear of the ship toward the front, so that the outer side of the duct is directed upward from below. It is said that by obtaining auxiliary thrust from the flowing upward flow, thrust can be generated efficiently and resistance does not increase.
日本出願特開2008-137462号公報Japanese Patent Application Publication No. 2008-137462 日本出願特開2011-178222号公報Japanese Application No. 2011-178222
 本発明者らは、このダクト(外殻)とこのダクトを支持するストラット(連結板、主フィン)の流体的な効果を考えた結果、ストラットのダクト支持機能は必要であるが、従来技術においては、ダクトもストラットも推力を得ることを目的にその形状が決定されている。しかし、推力発生以外にも、ビルジ渦を整流して、プロペラの回転方向と同じ向きの流れを弱める機能や、プロペラ面に流入する水流の方向をプロペラの回転方向と逆になるようにする流向変換機能を持たせることができ、推力を得るだけでなく、プロペラ効率の向上に大きな役割を果たすことができるのではないかと考えて、本発明に想到した。 As a result of considering the fluid effect of the duct (outer shell) and the strut (connecting plate, main fin) that supports the duct, the present inventors need the duct support function of the strut. The shape of the duct and strut is determined for the purpose of obtaining thrust. However, in addition to thrust generation, the flow direction that rectifies the bilge vortex to weaken the flow in the same direction as the propeller rotation direction and the direction of the water flow flowing into the propeller surface is opposite to the propeller rotation direction. The present invention has been conceived by thinking that it can have a conversion function and not only obtain thrust but also play a major role in improving propeller efficiency.
 本発明は、上記の状況を鑑みてなされたものであり、その目的は、船尾にダクト部材とこのダクト部材を支持するストラットとを有して構成されたダクトを、プロペラの直前でプロペラ回転軸線よりも上方に配置した船舶において、ダクト部材とこのダクト部材を支持するストラットにより、ダクト部材による推力を得られると共に、ダクト部材とストラットの接続部位によりビルジ渦を整流して、プロペラの回転方向と同じ向きの流れを弱めると共に、ストラットにより、プロペラ面に流入する水流の方向をプロペラの回転方向と逆方向に方向転換させて、プロペラ効率を向上できる船舶を提供することにある。 The present invention has been made in view of the above situation, and an object of the present invention is to provide a duct having a duct member and a strut supporting the duct member at the stern, and a propeller rotation axis just before the propeller. In a ship arranged above the duct member, the duct member and the strut that supports the duct member can obtain a thrust by the duct member, and the bilge vortex is rectified by the connecting portion between the duct member and the strut to determine the propeller rotation direction. An object of the present invention is to provide a ship capable of improving the propeller efficiency by weakening the flow in the same direction and changing the direction of the water flow flowing into the propeller surface in the direction opposite to the rotation direction of the propeller by the strut.
 上記のような目的を達成するための船舶は、ダクト部材と該ダクト部材を船体に支持するストラットを有して構成されたダクトを、プロペラの直前でプロペラ軸線よりも上方に配置した船舶において、前記ダクト部材の両端部に前記ストラットを接続して、前記ダクト部材と前記ストラットの接続部位を前記ダクトを設けない場合における船尾で生じるビルジ渦の中心の近辺に配置し、前記ダクト部材を前端側が後端側よりも前記プロペラ回転軸線に対して外方になる0°以上40°以下の開き角度を持って形成すると共に、前記ストラットを船体前後方向に関して、プロペラ回転方向と逆向きの流れ成分が増加するように誘導する角度を付けて設けて構成する。 A ship for achieving the above object is a ship in which a duct having a duct member and a strut that supports the duct member on the hull is arranged above the propeller axis immediately before the propeller. The struts are connected to both ends of the duct member, and the connection site between the duct member and the strut is disposed in the vicinity of the center of the bilge vortex generated at the stern when the duct is not provided, and the duct member is disposed on the front end side. The strut is formed with an opening angle of 0 ° to 40 ° outward from the rear end side with respect to the propeller rotation axis, and the strut has a flow component in a direction opposite to the propeller rotation direction with respect to the hull longitudinal direction. It is provided with an angle for guiding so as to increase.
 この構成によれば、ダクト部材では、プロペラ面の上部に流入する、船体に沿って流れる下向きの水流による翼効果で揚力を発生し、この揚力の船体前後方向成分を推力として利用する。一方、ダクト部材を船体に支持するストラットでは、流入してくる水流の方向に対して角度を持って配置され、水流の方向変換を行うことで、つまり、プロペラ面に流入する水流をプロペラ回転方向と逆向きの流れの成分が増加するよう変えることで、プロペラの推進効率を高める効果を得る。 According to this configuration, the duct member generates lift by the wing effect caused by the downward water flow flowing along the hull flowing into the upper portion of the propeller surface, and uses the hull longitudinal component of this lift as the thrust. On the other hand, in the strut that supports the duct member on the hull, it is arranged at an angle with respect to the direction of the incoming water flow, and by changing the direction of the water flow, that is, the water flow flowing into the propeller surface is changed in the propeller rotation direction. By changing the flow component in the opposite direction, the propeller propulsion efficiency is increased.
 更に、船尾で発達するビルジ渦は、船尾から見て、右回転のプロペラの場合は、左舷側ではビルジ渦の外側で、右舷側ではビルジ渦の内側で、プロペラ回転方向と同じ向きの流れを誘起し、左回転のプロペラの場合は、左舷側ではビルジ渦の内側で、右舷側ではビルジ渦の外側で、プロペラ回転方向と同じ向きの流れを誘起するのでプロペラ効率が悪くなるが、ダクト部材とストラットの接続部位をビルジ渦の中心近傍に配置することで、ダクト部材とストラットにより、ビルジ渦を整流して、ビルジ渦のプロペラ回転方向と同じ向きの流れを弱めることができる。 Furthermore, the bilge vortex that develops at the stern, when viewed from the stern, flows in the same direction as the propeller rotation direction on the port side, outside the bilge vortex on the port side, and inside the bilge vortex on the starboard side. In the case of a propeller that rotates counterclockwise, a flow in the same direction as the propeller rotation direction is induced on the starboard side inside the bilge vortex and on the starboard side outside the bilge vortex. By arranging the connecting portion of the bilge vortex near the center of the bilge vortex, the bilge vortex can be rectified by the duct member and the strut, and the flow in the same direction as the propeller rotation direction of the bilge vortex can be weakened.
 上記の船舶において、前記ストラットの断面形状を、プロペラが回転していく方向側に凸のキャンバーを持った形状に形成して構成すると、ストラットにより、プロペラ面に流入する水流において、プロペラの回転方向と逆方向に流れの成分を大きくすることができるので、プロペラ効率を向上できる。 In the above-described ship, when the cross-sectional shape of the strut is formed in a shape having a convex camber on the direction in which the propeller rotates, the propeller rotation direction in the water flow flowing into the propeller surface by the strut Since the flow component can be increased in the opposite direction, the propeller efficiency can be improved.
 上記の船舶において、前記ダクト部材の断面形状を内側に凸のキャンバーを持った翼形状に形成すると、よりダクト部材で発生する揚力を大きくすることができ、ダクトから得られる推力を大きくすることができる。 In the above-mentioned ship, when the cross-sectional shape of the duct member is formed into a wing shape having a convex camber on the inside, the lift generated by the duct member can be increased, and the thrust obtained from the duct can be increased. it can.
 上記の船舶において、前記ストラットの断面形状を翼形状に形成すると、水流の方向を変化させる機能を維持したまま、ストラットに働く抵抗成分を弱めることができ、ストラットの抵抗を少なくすることができる。 In the above-mentioned ship, when the cross-sectional shape of the strut is formed into a wing shape, the resistance component acting on the strut can be weakened while maintaining the function of changing the direction of water flow, and the resistance of the strut can be reduced.
 上記の船舶において、前記ダクト部材を多角形形状で構成すると、ダクトを円弧形状で形成する場合よりも、より揚力の発生に適した部位にダクトの部材を配置することができると共に、ダクト部材の迎角をそれぞれの多角形の辺のダクト部材の位置に対して最適な角度とすることができ、ダクト部材で発生する推力を増加させることができる。なお、多角形形状にすると円弧形状に比べて、ダクト部材の溶接などの接続作業は増加するが、ダクト部材を曲げ加工する必要がなくなるので工作性は悪くならない。 In the above-described ship, when the duct member is configured in a polygonal shape, the duct member can be disposed in a portion more suitable for generating lift than when the duct is formed in an arc shape, and the duct member The angle of attack can be set to an optimum angle with respect to the position of the duct member on each polygon side, and the thrust generated in the duct member can be increased. Note that the polygonal shape increases connection work such as welding of the duct member as compared with the arc shape, but the workability is not deteriorated because it is not necessary to bend the duct member.
 上記の船舶において、前記プロペラの直前でプロペラ回転軸線の高さに、プロペラ回転方向が船尾から見て右回転の場合は左舷側に、または、プロペラ回転方向が船尾から見て左回転の場合は右舷側に、船体外板から船幅方向に延出し、先端位置がプロペラ回転円の近傍となる第1水平フィンを設け、前記ビルジ渦の外側のプロペラ回転方向と同じ向きの流れを抑制するように構成すると、つまり、第1水平フィンにより、プロペラ前方のビルジ渦の外側の上昇流を抑制するように構成すると、船尾から見て右回転のプロペラでは左舷側で、船尾から見て左回転のプロペラでは右舷側で、プロペラ回転方向と同じ向きの流れを有する領域に第1水平フィンの先端側が配置されて、プロペラ回転方向と逆向きの流れとなるように水流を誘導するので、プロペラ効率を上げることができる。 In the above ship, the height of the propeller rotation axis immediately before the propeller, on the port side when the propeller rotation direction is right rotation when viewed from the stern, or when the propeller rotation direction is counterclockwise when viewed from the stern On the starboard side, a first horizontal fin that extends from the hull outer plate in the ship width direction and whose tip position is in the vicinity of the propeller rotation circle is provided to suppress the flow in the same direction as the propeller rotation direction outside the bilge vortex. In other words, if the first horizontal fin is configured to suppress the upward flow outside the bilge vortex in front of the propeller, the propeller rotates clockwise on the port side when viewed from the stern and rotates counterclockwise when viewed from the stern. In the propeller, on the starboard side, the tip side of the first horizontal fin is disposed in a region having a flow in the same direction as the propeller rotation direction, and the water flow is induced so that the flow is opposite to the propeller rotation direction. So, it is possible to increase the propeller efficiency.
 上記の船舶において、前記プロペラの直前でプロペラ回転軸線の高さに、プロペラ回転方向が船尾から見て右回転の場合は右舷側に、または、プロペラ回転方向が船尾から見て左回転の場合は左舷側に、船体外板から船幅方向に延出し、先端位置が前記ビルジ渦の中心の船幅方向位置の近傍となる第2水平フィンを設け、前記ビルジ渦の内側のプロペラ回転方向と同じ向きの流れを抑制するように構成すると、つまり、第2水平フィンにより、ビルジ渦の中心より内側に生じる下降流を抑制するように構成すると、船尾から見て右回転のプロペラでは右舷側で、船尾から見て左回転のプロペラでは左舷側で、プロペラ回転方向と同じ向きの流れを有する、ビルジ渦の中心の船幅方向位置の近傍までの範囲にのみ、水平フィンを配置できるので、この水平フィンにより、プロペラ回転方向と逆向きの流れとなるように水流を誘導して、プロペラ効率を上げることができる。 In the above ship, when the propeller rotation direction is right rotation when viewed from the stern, on the starboard side, or when the propeller rotation direction is counterclockwise when viewed from the stern, immediately before the propeller, On the port side, a second horizontal fin extending from the hull outer plate in the ship width direction and having a tip position near the ship width direction position at the center of the bilge vortex is provided, and is the same as the propeller rotation direction inside the bilge vortex When configured to suppress the flow in the direction, that is, when configured to suppress the downward flow generated inside the center of the bilge vortex by the second horizontal fin, on the starboard side in the right-handed propeller as viewed from the stern, With a left-handed propeller as viewed from the stern, horizontal fins can be placed only on the port side, in the range up to the vicinity of the position in the width direction of the center of the bilge vortex, with the same flow direction as the propeller rotation direction. By this horizontal fin, to induce the flow so that the flow of the propeller rotation opposite to the direction, it is possible to increase the propeller efficiency.
 なお、この「第1水平フィン」と「第2水平フィン」における「水平フィン」とは、船舶を真後から見た場合に略水平に、例えば、水平のプラス・マイナス10°以内の角度で、取り付けられるフィンのことをいう。また、この第1水平フィンと第2水平フィンの断面形状は好ましくは前縁が船首側、後縁が船尾側にある翼形とする。 The “horizontal fin” in the “first horizontal fin” and the “second horizontal fin” is substantially horizontal when the ship is viewed from directly behind, for example, at an angle within 10 ° of horizontal plus / minus. , Refers to the fin to be attached. The cross-sectional shape of the first horizontal fin and the second horizontal fin is preferably an airfoil having a leading edge on the bow side and a trailing edge on the stern side.
 本発明によれば、ダクト部材の翼効果で推力を発生すると共に、ダクト部材を支持するストラットにおけるプロペラ面に流入する水流の方向変換の効果により、プロペラの推進効率を高めることができる。更に、ダクト部材とストラットの接続部位をビルジ渦の中心近傍に配置することで、船尾で発生するビルジ渦を整流して、ビルジ渦のプロペラ回転方向と同じ向きの流れを弱めることができ、プロペラ効率を向上できる。 According to the present invention, thrust is generated by the wing effect of the duct member, and the propulsion efficiency of the propeller can be increased by the effect of changing the direction of the water flow flowing into the propeller surface of the strut supporting the duct member. Furthermore, by arranging the connection part of the duct member and the strut near the center of the bilge vortex, the bilge vortex generated at the stern can be rectified, and the flow in the same direction as the propeller rotation direction of the bilge vortex can be weakened. Efficiency can be improved.
図1は、本発明の実施の形態の船舶におけるダクトの配置を模式的に示す側面図である。FIG. 1 is a side view schematically showing the arrangement of ducts in a ship according to an embodiment of the present invention. 図2は、図1の船舶の後方から見たダクトの配置を模式的に示す背面図である。FIG. 2 is a rear view schematically showing the arrangement of ducts as seen from the rear of the ship of FIG. 図3は、ダクト部材の開き角度を説明するための側面図である。FIG. 3 is a side view for explaining the opening angle of the duct member. 図4は、ダクト部材とストラットの断面位置を示すための背面図である。FIG. 4 is a rear view for showing the cross-sectional positions of the duct member and the strut. 図5は、ダクト部材の断面を示す図4のY1-Y1断面図である。5 is a cross-sectional view taken along the line Y1-Y1 of FIG. 4 showing a cross section of the duct member. 図6は、右舷側のストラットの断面を示す図4のY2-Y2断面図である(船尾より見て右回転プロペラの場合)。6 is a cross-sectional view taken along the line Y2-Y2 of FIG. 4 showing a cross-section of the starboard side strut (in the case of a right-handed propeller viewed from the stern). 図7は、左舷側のストラットの断面を示す図4のY3-Y3断面図である(船尾より見て右回転プロペラの場合)。FIG. 7 is a cross-sectional view taken along the line Y3-Y3 of FIG. 図8は、四角形形状のダクトを模式的に示す背面図である。FIG. 8 is a rear view schematically showing a rectangular duct. 図9は、五角形形状のダクトを模式的に示す背面図である。FIG. 9 is a rear view schematically showing a pentagonal duct. 図10は、六角形形状のダクトを模式的に示す背面図である。FIG. 10 is a rear view schematically showing a hexagonal duct. 図11は、第1水平フィンと第2水平フィンを模式的に示す背面図である。FIG. 11 is a rear view schematically showing the first horizontal fin and the second horizontal fin.
 以下、本発明に係る実施の形態の船舶について、図面を参照しながら説明する。図1に示すように、この船舶1は、船体2の後部にプロペラ3と舵4を有しており、船尾において、プロペラ3の直前で、かつ、プロペラ回転軸線Lpよりも上方に、ダクト10を配置して構成される。 Hereinafter, a ship according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the ship 1 has a propeller 3 and a rudder 4 at the rear of the hull 2, and at the stern just before the propeller 3 and above the propeller rotation axis Lp, the duct 10. Arranged.
 図1及び図2に示すように、このダクト10は、ダクト部材11とこのダクト部材11を船体2に支持するストラット12a、12bを有して構成されている。このストラット12a、12bは、ダクト部材11の端部と船体2との間に設けられており、ダクト部材11の右舷側端部に右舷側のストラット12aを接続し、ダクト部材11の左舷側端部に左舷側のストラット12bを接続している。つまり、ダクト部材11の両端部にストラット12a、12bを接続している。なお図2の円20はプロペラ3の先端が描く円(プロペラ回転円)を示しており、この円20の直径がプロペラ径Dpとなる。 As shown in FIGS. 1 and 2, the duct 10 includes a duct member 11 and struts 12 a and 12 b that support the duct member 11 on the hull 2. The struts 12 a and 12 b are provided between the end of the duct member 11 and the hull 2. The starboard-side strut 12 a is connected to the starboard side end of the duct member 11, and the port side end of the duct member 11 is connected. A port side strut 12b is connected to the section. That is, the struts 12 a and 12 b are connected to both ends of the duct member 11. 2 indicates a circle drawn by the tip of the propeller 3 (propeller rotation circle), and the diameter of the circle 20 is the propeller diameter Dp.
 そして、本発明では、図2に示すように、このダクト部材11とストラット12a、12bの接続部位13を、ダクト10を設けない場合における船尾で生じるビルジ渦の中心Pwの近辺に配置する。言い換えれば、この接続部位13の前端を、この前端を含むプロペラ回転軸線Lpに垂直な面内において、ダクト10を設けない場合における船尾で生じるビルジ渦の中心Pwを中心とし、半径raがプロペラ直径Dpの0.15倍の円C1よりも内側に配置する。なお、このダクト10を設けないときのビルジ渦の中心Pwの位置は水槽試験や流体解析プログラムによる計算により、容易に特定することができる。 And in this invention, as shown in FIG. 2, the connection part 13 of this duct member 11 and the struts 12a and 12b is arrange | positioned in the vicinity of the center Pw of the bilge vortex produced in the stern when the duct 10 is not provided. In other words, the front end of the connection portion 13 is centered on the center Pw of the bilge vortex generated at the stern when the duct 10 is not provided in the plane perpendicular to the propeller rotation axis Lp including the front end, and the radius ra is the propeller diameter. Arranged inside the circle C1 0.15 times Dp. In addition, the position of the center Pw of the bilge vortex when the duct 10 is not provided can be easily specified by calculation using a water tank test or a fluid analysis program.
 これにより、ダクト10ではダクト部材11をビルジ渦の中心Pwまで持っていくことで適切な迎角でダクト部材11に水が流入し推力を得ることができ、また、ストラット12a、12bによりビルジ渦により生じるプロペラ回転方向と同じ向きの流れを逆向きに変換することができるので、推進性能、プロペラ効率を向上することができる。 As a result, in the duct 10, by bringing the duct member 11 to the center Pw of the bilge vortex, water can flow into the duct member 11 at an appropriate angle of attack to obtain thrust, and the bilge vortex can be obtained by the struts 12a and 12b. As a result, the flow in the same direction as the propeller rotation direction can be converted in the reverse direction, so that the propulsion performance and the propeller efficiency can be improved.
 更に、図3に示すように、ダクト部材11を前端側が後端側よりもプロペラ回転軸線Lpに対して外方になる0°以上40°以下の開き角度αを持って形成する。これにより、ダクト部材11で、プロペラ面Spの上部に流入する、船体2に沿って流れる下向きの水流Wによる翼効果で揚力Lを発生し、この揚力Lの船体前後方向成分Lfを推力として利用する。 Furthermore, as shown in FIG. 3, the duct member 11 is formed with an opening angle α of 0 ° or more and 40 ° or less where the front end side is more outward than the rear end side with respect to the propeller rotation axis Lp. As a result, the duct member 11 generates lift L due to the wing effect caused by the downward water flow W flowing along the hull 2 flowing into the upper portion of the propeller surface Sp, and uses the hull longitudinal component Lf of this lift L as thrust. To do.
 更に、図5に示すように、ダクト部材11の断面形状を内側に凸のキャンバーを持った翼形状に形成することが好ましい。これにより、よりダクト部材11で発生する揚力Lを大きくすることができ、ダクト10から得られる推力Lfを大きくすることができる。 Furthermore, as shown in FIG. 5, it is preferable to form the cross-sectional shape of the duct member 11 into a wing shape having a camber protruding inward. Thereby, the lift L generated in the duct member 11 can be further increased, and the thrust Lf obtained from the duct 10 can be increased.
 また、図6及び図7に示すように、ストラット12a、12bについては、船体の前後方向に対して、ストラット12a、12bの前縁と後縁を結ぶ線の角度γa、γbを0°~20°とすることが好ましい。 As shown in FIGS. 6 and 7, for the struts 12a and 12b, the angles γa and γb of the lines connecting the front and rear edges of the struts 12a and 12b with respect to the longitudinal direction of the hull are set to 0 ° to 20 °. It is preferable to make it into °.
 この構成により、ダクト部材11を船体2に支持するストラット12a、12bでは、流入してくる水流Wの方向に対して角度βa、βbを持って配置され、水流Wの方向変換を行うので、つまり、プロペラ面Spに流入する水流Wの向きをプロペラ回転方向Rと逆向きの流れの成分を増加させることができるので、プロペラ3の推進効率を高める効果を得ることができる。 With this configuration, the struts 12a and 12b that support the duct member 11 on the hull 2 are arranged at angles βa and βb with respect to the direction of the inflowing water flow W, and change the direction of the water flow W. Since the direction of the water flow W flowing into the propeller surface Sp can be increased by increasing the component of the flow in the direction opposite to the propeller rotation direction R, the effect of increasing the propulsion efficiency of the propeller 3 can be obtained.
 また、図6及び図7に示すように、ストラット12a、12bの断面形状を、プロペラ3が回転していく方向側Rに凸のキャンバーを持った形状に形成して構成すると、ストラット12a、12bにより、プロペラ面Spに流入する水流Wにおいてプロペラ回転方向Rと逆方向の成分を増加することができるので、プロペラ効率を向上できる。 As shown in FIGS. 6 and 7, when the cross-sectional shape of the struts 12a and 12b is formed to have a shape having a convex camber on the direction side R in which the propeller 3 rotates, the struts 12a and 12b are formed. Thus, since the component in the direction opposite to the propeller rotation direction R can be increased in the water flow W flowing into the propeller surface Sp, the propeller efficiency can be improved.
 また、ストラット12a、12bの断面形状を翼形状に形成すると、水流Wの方向を変更させる機能を維持したまま、ストラット12a、12bに働く抵抗成分を弱めることができ、ストラット12a、12bの抵抗を少なくすることができる。 Moreover, if the cross-sectional shape of the struts 12a and 12b is formed into a wing shape, the resistance component acting on the struts 12a and 12b can be weakened while maintaining the function of changing the direction of the water flow W, and the resistance of the struts 12a and 12b can be reduced. Can be reduced.
 また、図8~図10に示すようなダクト10A、10B、10Cに示すように、四角形形状、五角形形状、六角形形状等の多角形形状で構成すると、ダクト10を円弧形状で形成する場合よりも、より揚力Lの発生に適した部位にダクト部材11を配置することができると共に、ダクト部材11の開き角度(迎角)αをそれぞれの多角形の辺のダクト部材11の位置に対して最適な角度とすることができ、ダクト部材11で発生する推力Lfを増加させることができる。なお、多角形形状にすると円弧形状に比べて、ダクト部材11の溶接などの接続作業は増加するが、ダクト部材11を曲げ加工する必要がなくなるので工作性は悪くならない。 Further, as shown in the ducts 10A, 10B, and 10C as shown in FIGS. 8 to 10, when a polygonal shape such as a quadrangular shape, a pentagonal shape, or a hexagonal shape is used, the duct 10 is formed in an arc shape. In addition, the duct member 11 can be arranged in a portion more suitable for generating the lift L, and the opening angle (attack angle) α of the duct member 11 is set with respect to the position of the duct member 11 on each polygonal side. An optimum angle can be obtained, and the thrust Lf generated in the duct member 11 can be increased. Note that the polygonal shape increases connection work such as welding of the duct member 11 as compared to the arc shape, but the workability is not deteriorated because the duct member 11 need not be bent.
 更に、図11に示すように、プロペラ3の直前でプロペラ回転軸線Lpの高さに、プロペラ回転方向Rが船尾から見て右回転の場合は左舷側に、または、図示しないが、プロペラ回転方向が船尾から見て左回転の場合は右舷側に、船体外板から船幅方向に延出し、先端位置がプロペラ回転円20の近傍となる第1水平フィン14を設け、ビルジ渦の外側のプロペラ回転方向Rと同じ向きの流れを抑制するように構成する。つまり、先端位置がプロペラ回転円20の近傍R1となる第1水平フィン14を設ける。この第1水平フィン14を横方向から見たときに、前縁が後縁に対して上になる角度をプラスとしたときに、±30°以内、好ましくは、±20°以内、より好ましくは-10°以上20°以下の角度を有して配置される。この第1水平フィン14により、プロペラ回転方向Rと同じ向きの流れを抑制するように水流を誘導する。つまり、第1水平フィン14により、第1水平フィン14の先端側におけるプロペラ前方の上昇流、言い換えれば、ビルジ渦の外側の上昇流を抑制する。なお、図11では、見易くするために、ビルジ渦は右舷側のみ図示している。 Further, as shown in FIG. 11, the propeller rotation axis Lp is set to the height immediately before the propeller 3, and when the propeller rotation direction R is a right rotation when viewed from the stern, the propeller rotation direction is not shown. Is provided with first horizontal fins 14 extending in the width direction of the ship from the hull outer plate and having a tip position in the vicinity of the propeller rotation circle 20 on the starboard side when rotating counterclockwise when viewed from the stern. The flow is configured to suppress the flow in the same direction as the rotation direction R. That is, the first horizontal fin 14 whose tip position is in the vicinity R1 of the propeller rotation circle 20 is provided. When the first horizontal fin 14 is viewed from the lateral direction, when the angle at which the front edge is above the rear edge is defined as plus, within ± 30 °, preferably within ± 20 °, more preferably It is arranged with an angle of −10 ° to 20 °. The first horizontal fin 14 guides the water flow so as to suppress the flow in the same direction as the propeller rotation direction R. That is, the first horizontal fin 14 suppresses the upward flow in front of the propeller on the tip side of the first horizontal fin 14, in other words, the upward flow outside the bilge vortex. In FIG. 11, only the starboard side of the bilge vortex is shown for easy viewing.
 これにより、船尾から見て右回転のプロペラでは左舷側で、または、船尾から見て左回転のプロペラでは右舷側で、プロペラ回転方向Rと同じ向きの流れを有する領域に第1水平フィン14の先端側を配置して、プロペラ回転方向Rと同じ向きの流れを抑制するように水流を誘導するので、プロペラ効率を上げることができる。 As a result, the first horizontal fin 14 is placed in a region having a flow in the same direction as the propeller rotation direction R on the port side of a propeller that rotates clockwise as viewed from the stern or on the starboard side of a propeller that rotates left as viewed from the stern. Since the front end side is arranged and the water flow is induced so as to suppress the flow in the same direction as the propeller rotation direction R, the propeller efficiency can be increased.
 また、図11に示すように、プロペラ3の直前でプロペラ回転軸線Lpの高さに、プロペラ回転方向Rが船尾から見て右回転の場合は右舷側に、または、図示しないが、プロペラ回転方向が船尾から見て左回転の場合は左舷側に、船体外板から船幅方向に延出し、先端位置がビルジ渦の中心Pwの船幅方向位置の近傍となる第2水平フィン15を設け、ビルジ渦の内側のプロペラ回転方向Rと同じ向きの流れを抑制するように構成する。つまり、先端位置がビルジ渦の中心Pwの船幅方向位置の近傍R2となる第2水平フィン15を設ける。この第2水平フィン15は横方向から見たときに、前縁が後縁に対して上になる角度をプラスとしたときに±30°以内、好ましくは、±20°以内、より好ましくは-10°以上20°以下の角度を有して配置される。この第2水平フィン15により、プロペラ回転方向Rと同じ向きの流れを抑制するように水流を誘導する。つまり、第2水平フィン15により、ビルジ渦の中心Pwより内側に生じる下降流を抑制する。 Further, as shown in FIG. 11, the propeller rotation axis Lp is positioned immediately before the propeller 3, and on the starboard side when the propeller rotation direction R is a right rotation when viewed from the stern, or although not illustrated, the propeller rotation direction Is provided with a second horizontal fin 15 extending from the hull skin plate in the ship width direction and having a tip position near the position in the ship width direction of the center Pw of the bilge vortex. It is configured to suppress the flow in the same direction as the propeller rotation direction R inside the bilge vortex. In other words, the second horizontal fin 15 whose tip position is the vicinity R2 of the position in the ship width direction of the center Pw of the bilge vortex is provided. The second horizontal fin 15 is within ± 30 °, preferably within ± 20 °, more preferably −20 ° when the angle at which the leading edge is upward with respect to the trailing edge when viewed from the side is plus. It arrange | positions with an angle of 10 degrees or more and 20 degrees or less. The second horizontal fin 15 guides the water flow so as to suppress the flow in the same direction as the propeller rotation direction R. In other words, the second horizontal fin 15 suppresses the downward flow generated inside the center Pw of the bilge vortex.
 これにより、船尾から見て右回転のプロペラ3では右舷側で、船尾から見て左回転のプロペラ3では左舷側で、プロペラ回転方向Rと同じ向きの流れを有する、ビルジ渦の中心Pwの船幅方向位置の近傍R2までの範囲にのみ、第2水平フィン15を配置できるので、この第2水平フィン15により、プロペラ回転方向Rと同じ向きの流れを抑制するように水流を誘導して、プロペラ効率を上げることができる。 As a result, the ship at the center Pw of the bilge vortex center Pw has the same flow direction as the propeller rotation direction R on the starboard side in the right-hand propeller 3 as viewed from the stern and on the starboard side in the left-hand propeller 3 as viewed from the stern. Since the second horizontal fin 15 can be disposed only in the range up to the vicinity R2 of the width direction position, the second horizontal fin 15 induces a water flow so as to suppress the flow in the same direction as the propeller rotation direction R, Propeller efficiency can be increased.
 なお、この第1水平フィン14と第2水平フィン15は、船舶を真後から見た場合に略水平に、例えば、水平のプラス・マイナス10°以内の角度で、取り付けられている。また、この第1水平フィン14と第2水平フィン15の断面形状は好ましくは前縁が船首側、後縁が船尾側にある翼形とする。 The first horizontal fins 14 and the second horizontal fins 15 are attached substantially horizontally when the ship is viewed from directly behind, for example, at an angle within a horizontal plus / minus 10 °. The cross-sectional shapes of the first horizontal fin 14 and the second horizontal fin 15 are preferably airfoils with a leading edge on the bow side and a trailing edge on the stern side.
 また、この第1水平フィン14の先端位置を示すプロペラ回転円20の近傍の範囲R1とは、プロペラ直径Dpに対して、Dp×0.5倍の円とDp×1.15倍の円との間であり、第2水平フィン15の先端位置を示すビルジ渦の中心Pwの船幅方向位置の近傍の範囲R2とは、船体中心線からの水平距離が、船体中心線からビルジ渦の中心Pwまでの距離に対して、プロペラ直径Dpの0.15倍の距離だけプラス・マイナスした範囲の内側R2のことをいう。 The range R1 in the vicinity of the propeller rotation circle 20 indicating the tip position of the first horizontal fin 14 is a circle of Dp × 0.5 times and a circle of Dp × 1.15 times the propeller diameter Dp. And a range R2 in the vicinity of the position in the ship width direction of the center Pw of the bilge vortex Pw indicating the tip position of the second horizontal fin 15 is the horizontal distance from the center line of the hull is the center of the bilge vortex from the center line of the hull The inside R2 in a range in which the distance to Pw is plus or minus by a distance of 0.15 times the propeller diameter Dp.
 上記の構成の船舶1によれば、ダクト部材11の翼効果で発生する推力Lfと、ダクト部材11を支持するストラット12a、12bにおけるプロペラ面Spに流入する水流Wの方向変換の効果により、プロペラ3の推進効率を高めることができる。更に、ダクト部材11とストラット12a、12bの接続部位13をビルジ渦の中心Pwの近傍に配置することで、ビルジ渦を整流して、プロペラ回転方向Rと同じ向きのビルジ渦の流れを弱めることができ、プロペラ効率を向上できる。 According to the ship 1 having the above-described configuration, the propeller is caused by the thrust Lf generated by the wing effect of the duct member 11 and the direction change effect of the water flow W flowing into the propeller surface Sp in the struts 12a and 12b supporting the duct member 11. 3 propulsion efficiency can be increased. Further, by arranging the connection part 13 between the duct member 11 and the struts 12a and 12b in the vicinity of the center Pw of the bilge vortex, the bilge vortex is rectified and the flow of the bilge vortex in the same direction as the propeller rotation direction R is weakened. Can improve the propeller efficiency.
 本発明の船舶によれば、ダクト部材の翼効果で発生する推力と、ダクト部材を支持するストラットにおけるプロペラ面に流入する水流の方向変換の効果により、プロペラの推進効率を高めることができる。更に、ダクト部材とストラットの接続部位をビルジ渦の中心近傍に配置することで、ビルジ渦を整流して、プロペラ回転方向と同じ向きのビルジ渦の流れを弱めることができ、プロペラ効率を向上できるので、多くの船舶に利用することができる。 According to the ship of the present invention, the propulsion efficiency of the propeller can be increased by the thrust generated by the wing effect of the duct member and the effect of changing the direction of the water flow flowing into the propeller surface of the strut supporting the duct member. Furthermore, by arranging the connection part between the duct member and the strut in the vicinity of the center of the bilge vortex, the bilge vortex can be rectified to weaken the flow of the bilge vortex in the same direction as the propeller rotation direction, and the propeller efficiency can be improved. So it can be used for many ships.
1 船舶
2 船体
3 プロペラ
4 舵
10、10A、10B、10C ダクト
11 ダクト部材
12a、12b ストラット
13 接続部位
14 第1水平フィン
15 第2水平フィン
20 プロペラの先端軌跡の円(プロペラ回転円)
C1 円(ビルジ渦の近傍)
Dp プロペラ径
L 揚力
Lf 推力
Lp プロペラ回転軸線
Ls 揚力Lの鉛直方向成分
Pc プロペラ回転中心
Pw ビルジ渦の中心
R プロペラ回転方向
ra 円の半径
Sp プロペラ面
W 水流
α ダクト部材の開き角度
βa、βb ストラットの水流に対する角度
γa、γb ストラットの船体前後方向に対する角度
δ 水流の船体前後方向に対する角度
DESCRIPTION OF SYMBOLS 1 Ship 2 Hull 3 Propeller 4 Rudder 10, 10A, 10B, 10C Duct 11 Duct member 12a, 12b Strut 13 Connection site | part 14 1st horizontal fin 15 2nd horizontal fin 20 The circle | round | yen of the tip locus of a propeller (propeller rotation circle)
C1 circle (near the bilge vortex)
Dp Propeller diameter L Lift Lf Thrust Lp Propeller rotation axis Ls Vertical component Pc of lift L Pc Propeller rotation center Pw Bilge vortex center R Propeller rotation direction ra Circle radius Sp Propeller surface W Water flow α Duct member opening angle βa, βb Strut Angle γa, γb Strut angle with respect to hull longitudinal direction δ Angle of water flow with respect to hull longitudinal direction

Claims (7)

  1.  ダクト部材と該ダクト部材を船体に支持するストラットを有して構成されたダクトを、プロペラの直前でプロペラ回転軸線よりも上方に配置した船舶において、
     前記ダクト部材の両端部に前記ストラットを接続して、前記ダクト部材と前記ストラットの接続部位を前記ダクトを設けない場合における船尾で生じるビルジ渦の中心の近辺に配置し、
     前記ダクト部材を前端側が後端側よりも前記プロペラ回転軸線に対して外方になる0°以上40°以下の開き角度を持って形成すると共に、
     前記ストラットを船体前後方向に関して、プロペラ回転方向と逆向きの流れ成分が増加するように誘導する角度を付けて設けたことを特徴とする船舶。
    In a ship in which a duct having a duct member and a strut that supports the duct member on the hull is disposed above the propeller rotation axis immediately before the propeller,
    The struts are connected to both ends of the duct member, and the connection site between the duct member and the strut is disposed in the vicinity of the center of the bilge vortex generated at the stern when the duct is not provided.
    The duct member is formed with an opening angle of 0 ° or more and 40 ° or less where the front end side is outward with respect to the propeller rotation axis than the rear end side,
    A ship provided with an angle for guiding the strut so that a flow component in a direction opposite to a propeller rotation direction increases with respect to a longitudinal direction of the hull.
  2.  前記ストラットの断面形状を、プロペラが回転していく方向側に凸のキャンバーを持った形状に形成したことを特徴とする請求項1に記載の船舶。 The ship according to claim 1, wherein the cross-sectional shape of the strut is formed into a shape having a convex camber on the direction side in which the propeller rotates.
  3.  前記ダクト部材の断面形状を内側に凸のキャンバーを持った翼形状に形成したことを特徴とする請求項1又は2に記載の船舶。 The vessel according to claim 1 or 2, wherein the duct member has a cross-sectional shape formed into a wing shape having a convex camber on the inside.
  4.  前記ストラットの断面形状を翼形状に形成したことを特徴とする請求項1~3のいずれか1項に記載の船舶。 The ship according to any one of claims 1 to 3, wherein a cross-sectional shape of the strut is formed in a wing shape.
  5.  前記ダクト部材を多角形形状で構成したことを特徴とする請求項1~4のいずれか1項に記載の船舶。 The ship according to any one of claims 1 to 4, wherein the duct member is formed in a polygonal shape.
  6.  前記プロペラの直前でプロペラ回転軸線の高さに、プロペラ回転方向が船尾から見て右回転の場合は左舷側に、または、プロペラ回転方向が船尾から見て左回転の場合は右舷側に、船体外板から船幅方向に延出し、先端位置がプロペラ回転円の近傍となる第1水平フィンを設け、前記ビルジ渦の外側のプロペラ回転方向と同じ向きの流れを抑制するように構成した請求項1~5のいずれか1項に記載の船舶。 The hull at the height of the propeller rotation axis immediately before the propeller, on the port side when the propeller rotation direction is clockwise when viewed from the stern, or on the starboard side when the propeller rotation direction is counterclockwise when viewed from the stern. A first horizontal fin extending from the outer plate in the ship width direction and having a tip position in the vicinity of the propeller rotation circle is provided to suppress a flow in the same direction as the propeller rotation direction outside the bilge vortex. The ship according to any one of 1 to 5.
  7.  前記プロペラの直前でプロペラ回転軸線の高さに、プロペラ回転方向が船尾から見て右回転の場合は右舷側に、または、プロペラ回転方向が船尾から見て左回転の場合は左舷側に、船体外板から船幅方向に延出し、先端位置が前記ビルジ渦の中心の船幅方向位置の近傍となる第2水平フィンを設け、前記ビルジ渦の内側のプロペラ回転方向と同じ向きの流れを抑制するように構成した請求項1~6のいずれか1項に記載の船舶。 The hull at the height of the propeller rotation axis immediately before the propeller, on the starboard side when the propeller rotation direction is clockwise when viewed from the stern, or on the port side when the propeller rotation direction is counterclockwise when viewed from the stern. A second horizontal fin that extends from the outer plate in the ship width direction and whose tip position is in the vicinity of the ship width direction position at the center of the bilge vortex suppresses the flow in the same direction as the propeller rotation direction inside the bilge vortex. The marine vessel according to any one of claims 1 to 6, wherein the marine vessel is configured to do so.
PCT/JP2016/059565 2015-03-31 2016-03-25 Vessel WO2016158725A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680019898.4A CN107428403B (en) 2015-03-31 2016-03-25 Ship with a detachable cover
KR1020177015057A KR102463848B1 (en) 2015-03-31 2016-03-25 Vessel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-073360 2015-03-31
JP2015073360A JP6418451B2 (en) 2015-03-31 2015-03-31 Ship

Publications (1)

Publication Number Publication Date
WO2016158725A1 true WO2016158725A1 (en) 2016-10-06

Family

ID=57006810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059565 WO2016158725A1 (en) 2015-03-31 2016-03-25 Vessel

Country Status (4)

Country Link
JP (1) JP6418451B2 (en)
KR (1) KR102463848B1 (en)
CN (1) CN107428403B (en)
WO (1) WO2016158725A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6478228B2 (en) * 2016-12-05 2019-03-06 国立研究開発法人 海上・港湾・航空技術研究所 Stern shape and ship with stern duct and fins
KR102060494B1 (en) * 2018-03-26 2019-12-30 삼성중공업 주식회사 Propulsion efficiency enhancing apparatus
JP6722340B1 (en) * 2019-12-06 2020-07-15 川崎重工業株式会社 Stern structure
CN114889787B (en) * 2022-03-24 2023-03-21 中国人民解放军海军工程大学 Method for adjusting wake field of stern part of ship body
WO2024055213A1 (en) * 2022-09-14 2024-03-21 广东逸动科技有限公司 Ship thruster, ship, and control method for ship thruster

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537096A (en) * 1976-07-06 1978-01-23 Mitsui Eng & Shipbuild Co Ltd Ship
JPS6238800U (en) * 1985-08-28 1987-03-07
JP2623895B2 (en) * 1990-03-30 1997-06-25 石川島播磨重工業株式会社 Stern viscous drag reduction device
JP2011178222A (en) * 2010-02-26 2011-09-15 Ihi Corp Ship

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271095A (en) * 1975-08-14 1977-06-14 Mitsui Eng & Shipbuild Co Ltd Ship
JPS57130796U (en) * 1981-02-10 1982-08-14
DE4025339C2 (en) * 1990-08-10 1999-07-08 Schneekluth Herbert Control system
JP3668884B2 (en) * 1999-11-18 2005-07-06 ユニバーサル造船株式会社 Energy saving-ship
JP2003011880A (en) * 2001-06-29 2003-01-15 Ishikawajima Harima Heavy Ind Co Ltd Stern structure
JP2006347285A (en) * 2005-06-14 2006-12-28 Ishikawajima Harima Heavy Ind Co Ltd Stern structure of vessel, and designing method thereof
JP2011105061A (en) * 2009-11-13 2011-06-02 Ihi Corp Stern duct testing method and device
JP5936033B2 (en) * 2011-12-28 2016-06-15 国立研究開発法人 海上・港湾・航空技術研究所 Stern structure and ship
KR20130128110A (en) * 2012-05-16 2013-11-26 한국해양과학기술원 Energy saving fin with hydro-foil section attached on the ship stern
JP5901512B2 (en) * 2012-12-27 2016-04-13 三菱重工業株式会社 Duct device and ship using the same
JP6021678B2 (en) * 2013-02-15 2016-11-09 三菱重工業株式会社 Duct device and ship using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537096A (en) * 1976-07-06 1978-01-23 Mitsui Eng & Shipbuild Co Ltd Ship
JPS6238800U (en) * 1985-08-28 1987-03-07
JP2623895B2 (en) * 1990-03-30 1997-06-25 石川島播磨重工業株式会社 Stern viscous drag reduction device
JP2011178222A (en) * 2010-02-26 2011-09-15 Ihi Corp Ship

Also Published As

Publication number Publication date
KR20180026363A (en) 2018-03-12
KR102463848B1 (en) 2022-11-03
CN107428403A (en) 2017-12-01
JP2016193625A (en) 2016-11-17
CN107428403B (en) 2020-06-26
JP6418451B2 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
WO2016158725A1 (en) Vessel
JP4939269B2 (en) Stern horizontal duct and ship
JP5276670B2 (en) Twin Skeg ship
KR20110132310A (en) Ship propulsion device and ship with same
JP2010179869A (en) Propulsion performance enhancement device
JP3213165U (en) Ship flow control device by coupling asymmetric duct and fin structure
JP2007326502A (en) Mariner type high-lift two-rudder device
JP6046652B2 (en) Ship
JP2021501089A (en) Propulsion efficiency improvement device
JP2009056989A (en) Maritime propulsion efficiency improvement device and its construction method
WO2011102103A1 (en) Thruster with duct attached and vessel comprising same
WO2018025644A1 (en) Ship
JP6138680B2 (en) Duct equipment
KR102388163B1 (en) Ship
WO2018030142A1 (en) Ship
JP2011042204A (en) Complex type energy-saving propulsion device for vessel and single-screw twin-rudder vessel
KR102535242B1 (en) Stern plate construction and ship
KR101764400B1 (en) Duct apparatus for ship with twist type stator
JP6493691B2 (en) Ship
JP6478228B2 (en) Stern shape and ship with stern duct and fins
KR102531811B1 (en) Stern geometry and vessel with stern duct
JP6704303B2 (en) Reaction fin device
JP2021091250A (en) Stern structure
KR101383687B1 (en) Vortex reducing module for rudder of vessel
JP2016120836A (en) Rudder and ship

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772606

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177015057

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772606

Country of ref document: EP

Kind code of ref document: A1