WO2011102103A1 - Thruster with duct attached and vessel comprising same - Google Patents

Thruster with duct attached and vessel comprising same Download PDF

Info

Publication number
WO2011102103A1
WO2011102103A1 PCT/JP2011/000770 JP2011000770W WO2011102103A1 WO 2011102103 A1 WO2011102103 A1 WO 2011102103A1 JP 2011000770 W JP2011000770 W JP 2011000770W WO 2011102103 A1 WO2011102103 A1 WO 2011102103A1
Authority
WO
WIPO (PCT)
Prior art keywords
duct
thruster
edge
bulging
speed
Prior art date
Application number
PCT/JP2011/000770
Other languages
French (fr)
Japanese (ja)
Inventor
功 舩野
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010-031061 priority Critical
Priority to JP2010031061A priority patent/JP2011168075A/en
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2011102103A1 publication Critical patent/WO2011102103A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/14Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in non-rotating ducts or rings, e.g. adjustable for steering purpose
    • B63H5/15Nozzles, e.g. Kort-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/14Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in non-rotating ducts or rings, e.g. adjustable for steering purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/42Steering or dynamic anchoring by propulsive elements; Steering or dynamic anchoring by propellers used therefor only; Steering or dynamic anchoring by rudders carrying propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters

Abstract

Disclosed is a thruster with a duct attached, wherein the cross-section shape of a wing-shaped cross-section duct (5), which is provided upon the periphery of a propeller (4), is provided with a bulge portion (6) on the exterior periphery of the leading edge portion of the duct, said bulge portion (6) bulging outwardly from a standard wing shape in a circular arc shape, such that pressure changes on the external surface of the leading edge portion are alleviated when a vessel travels at high speed. The duct (5) has an angle (a) that opens in the leading edge direction such that a prescribed tow force is generated when operating at low speeds, thereby facilitating improved efficiency, allowing ensuring stable tow force when operating at low speeds and preventing ablative eddies from forming upon the exterior surface of the duct when operating at high speeds.

Description

ダクト付きスラスタ及びそれを備えた船舶Thruster with duct and ship equipped with the same
 本発明は、船舶に備えられるダクト付きのスラスタと、それを備えた船舶に関する。 The present invention relates to a thruster with a duct provided in a ship and a ship provided with the same.
 従来、舶用スラスタとして、プロペラの周囲にダクトが設けられたダクト付きスラスタがある。このダクト付きスラスタは、例えば、船体船尾部の船内に設けられた原動機の出力を、船底から下方に向けて突設させたストラットの内部を通る縦回転軸から、ストラット下部に設けられたギアケース(ポッド)内のベベルギアを介して横回転軸に伝え、この横回転軸でプロペラを駆動するように構成されている。また、プロペラの周囲に翼形断面を持ったリング状のダクトを設けることにより、タグボートなどの大きな曳引力を必要とする船舶で、大きな推進力を発生させることが可能なようにしている。 Conventionally, as a marine thruster, there is a thruster with a duct provided with a duct around a propeller. This thruster with duct is, for example, a gear case provided at the lower part of the strut from a vertical rotation shaft passing through the inside of the strut projecting the output of the prime mover provided in the hull stern part downward from the ship bottom. This is transmitted to the horizontal rotation shaft via a bevel gear in the (pod), and the propeller is driven by this horizontal rotation shaft. Further, by providing a ring-shaped duct having an airfoil cross section around the propeller, a large propulsive force can be generated in a ship that requires a large tug, such as a tugboat.
 さらに、このようなスラスタは、船体に設けられた旋回駆動用の原動機によってプロペラを縦軸周りに360°のいずれの方向にも旋回させることができるように構成され、推力の方向を調整することができるようになっている。なお、プロペラとしては、使用条件等によって、固定ピッチプロペラ、可変ピッチプロペラのいずれかが採用されている。 Furthermore, such a thruster is configured so that the propeller can be swiveled in any direction of 360 ° around the vertical axis by a turning drive prime mover provided in the hull, and the direction of thrust can be adjusted. Can be done. As the propeller, either a fixed pitch propeller or a variable pitch propeller is adopted depending on usage conditions and the like.
 図8は、ダクトを断面で示す一般的なダクト付きスラスタ100の側面図であり、ギアケース101の後部にプロペラ102が設けられ、このプロペラ102の周囲にリング状に形成された翼形断面のダクト103が設けられている。このダクト103の翼形断面としては、一般的に、図9に示すように、外面が直線的で、内面が膨らんだ形状となっており、後述するようにベルヌーイの定理によって揚力が生じるようになっている。また、ダクト103は、所定の角度で前部が開くように形成されている。この翼形断面のダクト103は、断面形状の最前端を「前縁104」、最後端を「後縁105」といい、前縁104を含む前端部分を「前端部」、後縁105を含む後端部分を「後端部」という。また、前縁104と後縁105とを結ぶ直線分を「ノーズテールライン106(翼弦線)」といい、断面形状の厚さ方向の中心を通る中心線を「キャンバーライン107(矢高曲線)」という。さらに、ダクト軸心X(プロペラ中心軸)とノーズテールラインとがなす角度を「ダクト開き角α」という(図では、ダクト軸心Xと平行な線で示す)。 FIG. 8 is a side view of a general thruster 100 with a duct showing a duct in cross section. A propeller 102 is provided at the rear of the gear case 101, and an airfoil cross section formed in a ring shape around the propeller 102 is shown. A duct 103 is provided. As shown in FIG. 9, the airfoil cross section of the duct 103 is generally formed such that the outer surface is linear and the inner surface is swollen, and lift is generated by Bernoulli's theorem as described later. It has become. Further, the duct 103 is formed so that the front part opens at a predetermined angle. The duct 103 having the airfoil cross section includes a front end of the cross-sectional shape as a “front edge 104”, a rear end as a “rear edge 105”, a front end portion including the front edge 104 as a “front end”, and a rear edge 105. The rear end portion is referred to as “rear end portion”. A straight line connecting the leading edge 104 and the trailing edge 105 is referred to as a “nose tail line 106 (chord line)”, and a center line passing through the center in the thickness direction of the cross-sectional shape is referred to as a “camber line 107 (arrow height curve)”. " Furthermore, an angle formed by the duct axis X (propeller central axis) and the nose tail line is referred to as a “duct opening angle α” (indicated by a line parallel to the duct axis X in the drawing).
 この種のダクト付きスラスタに関する先行技術として、例えば、ダクト(ノズル)内のプロペラの形状改良と、ダクトに対するプロペラの配置とで推進効率の向上を図ろうとした船舶用推進装置がある(例えば、特許文献1参照)。 As a prior art related to this type of thruster with a duct, for example, there is a marine propulsion device that attempts to improve propulsion efficiency by improving the shape of the propeller in the duct (nozzle) and arranging the propeller with respect to the duct (for example, patents). Reference 1).
 また、他の先行技術として、プロペラの周囲に配置されたノズルの断面形状を、内面に大きく膨らむ形状とすることで、ボラード状態におけるスラストの向上と航走時の推進効率向上とを図ろうとするノズルプロペラもある(例えば、特許文献2参照)。 As another prior art, the cross-sectional shape of the nozzle arranged around the propeller is made to swell greatly on the inner surface, thereby improving thrust in the bollard state and improving propulsion efficiency during cruising. There is also a nozzle propeller (see, for example, Patent Document 2).
日本国 特許出願公開第2009-1212号公報Japan Patent Application Publication No. 2009-1212 日本国 特許出願公開第2006-306304号公報Japan Patent Application Publication No. 2006-306304
 ところで、上記ダクト付きスラスタが採用される一般的な船舶として上記タグボートがあるが、このタグボートには、大型船を狭い港内等で押したり引いたりして着岸させる低速作業を主に行うハーバータグと、大型タンカー等の前方を先導して安全を確保するエスコートタグ等がある。ハーバータグは、例えば、13ノット程度以下の低速作業での運用を前提に設計されており、エスコートタグは、例えば、15ノット以上の高速航行での運用を前提に設計されている。 By the way, there is the above-mentioned tugboat as a general ship where the above-mentioned thruster with duct is adopted, and this tugboat has a harbor tag that mainly performs low-speed work to push and pull a large ship in a narrow harbor etc. There are escort tags that lead the front of large tankers and the like to ensure safety. For example, the harbor tag is designed on the premise of operation at a low speed work of about 13 knots or less, and the escort tag is designed on the assumption of operation at a high speed navigation of 15 knots or more, for example.
 そして、従来はこのようなハーバータグ、エスコートタグはそれぞれ適した性能を有するタグボートとして別々に存在したが、近年、このようなハーバータグとエスコートタグとに両用できるタグボートの要求がある。 In the past, such a harbor tag and escort tag existed separately as tugboats having suitable performance, but in recent years, there is a demand for a tugboat that can be used for both a harbor tag and an escort tag.
 一方、図10に示すように、ハーバータグとして低速作業を行う時の上記ダクト付きスラスタ100は、ほぼ停止した状態(ボラード状態)で推力を発生させるため、プロペラ102によって後方へ流される水流111と、ダクト103の外面から内面に沿って流れる水流110とがある。水流110は、ダクト103の外面後部におけるスタグネイションポイントSPからダクト103の前縁104を介してダクト103の内面へと流れる。そのため、このような低速作業を主に行うダクト付きスラスタ100は、ダクト103のキャンバーライン107(図9)を適切にし、このダクト103の開き角αを水流111の流入方向に対して最適な角度とすることで、上記ベルヌーイの定理によってダクト103の内面前端部が負圧になり、このダクト103によって揚力Lが発生するようになっている。 On the other hand, as shown in FIG. 10, the ducted thruster 100 when performing low-speed work as a harbor tag generates thrust in a substantially stopped state (bollard state). There is a water flow 110 flowing from the outer surface of the duct 103 along the inner surface. The water flow 110 flows from the stagnation point SP at the rear rear portion of the duct 103 to the inner surface of the duct 103 via the front edge 104 of the duct 103. Therefore, the thruster with duct 100 mainly performing such low-speed work makes the camber line 107 (FIG. 9) of the duct 103 appropriate, and the opening angle α of the duct 103 is an optimum angle with respect to the inflow direction of the water flow 111. As a result, the inner front end of the duct 103 has a negative pressure according to the Bernoulli theorem, and the duct 103 generates a lift L.
 そして、この揚力Lのダクト軸心X方向の成分Lxと、プロペラ102の推力とによって大きな曳引力T(ボラード推力)を得るようにしている。 Further, a large pulling force T (bollard thrust) is obtained by the component Lx of the lift L in the direction of the duct axis X and the thrust of the propeller 102.
 しかしながら、図11に示すように、エスコートタグとして高速航行する時の上記ダクト付きスラスタ100は、水流110のスタグネイションポイントSPがダクト103の前縁104となり、この水流の一部はこのスタグネイションポイントSPからダクト103の外面に沿って後方へと流れることになる。 However, as shown in FIG. 11, in the ducted thruster 100 when navigating at high speed as an escort tag, the stagnation point SP of the water flow 110 becomes the leading edge 104 of the duct 103, and a part of this water flow is this stag. It flows backward from the nation point SP along the outer surface of the duct 103.
 そして、上記低速作業での運用を前提に設計されているハーバータグを、高速航行させて運用しようとすると、上記大きな曳引力Tが得られる翼形断面に設計されたダクト103では、上述した図8にも示すように、ダクト外面の流れが乱れて剥離渦112を生じ、ダクト103による抵抗が増加して推進効率が低下してしまう。 When the harbor tag designed on the premise of the operation at the low speed operation is operated at a high speed, the duct 103 designed to have the airfoil cross section that can obtain the large pulling force T is used in the above-described figure. As shown in FIG. 8, the flow on the outer surface of the duct is disturbed to generate a separation vortex 112, the resistance by the duct 103 is increased, and the propulsion efficiency is lowered.
 なお、上記特許文献1に記載の船舶用推進装置は、ダクト内方に配置されるプロペラの形状と配置の改良であるため、上記したように低速作業と高速航行とを行う船舶において十分な推進効率を得ることができるものではない。また、上記特許文献2に記載の推進装置では、ダクトの内面を大きく膨らませる形状とすることで推力向上を図っているが、高速航行時におけるダクト外面における剥離渦を抑止できるものではなく、推進効率が低下してしまう。 Since the marine vessel propulsion device described in Patent Document 1 is an improvement in the shape and arrangement of the propeller arranged inside the duct, sufficient propulsion is achieved in a vessel that performs low-speed work and high-speed navigation as described above. The efficiency cannot be obtained. Further, in the propulsion device described in Patent Document 2, the thrust is improved by making the inner surface of the duct greatly inflated. However, the propulsion device cannot suppress the separation vortex on the outer surface of the duct during high-speed navigation. Efficiency will decrease.
 そこで、本発明は、低速作業時における安定した曳引力の確保と、高速航行時におけるダクト外面の剥離渦を抑止した推進効率の向上とを図ることができるダクト付きスラスタと、それを備えた船舶を提供することを目的とする。 Therefore, the present invention provides a thruster with a duct capable of ensuring stable towing force during low-speed work and improving propulsion efficiency while suppressing separation vortices on the outer surface of the duct during high-speed navigation, and a ship equipped with the thruster The purpose is to provide.
 上記目的を達成するために、本発明に係るダクト付きスラスタは、プロペラの周囲に翼形断面のダクトを備えたダクト付きスラスタであって、前記ダクトの断面形状は、高速航行時にダクト前端部の外面における圧力変化を抑制するように標準翼形から外方に円弧状断面で膨出する膨出部を前端部外周に備え、該ダクトは、低速作業時に所定の曳引力を発揮するように前縁方向が広がる開き角を有している。この明細書及び特許請求の範囲の書類中における「標準翼形」は、ダクト付きスラスタにおいて一般的に採用されている「19A翼形」をいう。 In order to achieve the above object, a ducted thruster according to the present invention is a thruster with a duct having an airfoil-shaped duct around a propeller, and the duct has a cross-sectional shape of a front end of the duct during high-speed navigation. A bulging part that bulges outward from the standard airfoil with an arc-shaped cross section is provided on the outer periphery of the front end so as to suppress the pressure change on the outer surface, and the duct has a front so as to exhibit a predetermined pulling force during low-speed work. It has an opening angle in which the edge direction widens. The “standard airfoil” in this specification and claims refers to the “19A airfoil” commonly employed in ducted thrusters.
 これにより、ダクトの前端部外周に備えられた膨出部により、高速航行時にダクト前縁から外面に沿う流れの急激な圧力変化を抑制することができるので、ダクト外面の前端部に剥離渦が発生するのを抑止することができ、推進効率の向上を図ることができる。しかも、ダクトの前縁方向が広がる開き角により、低速作業時における曳引力を確保することができる。 As a result, the swollen portion provided on the outer periphery of the front end portion of the duct can suppress a rapid pressure change in the flow from the front edge of the duct along the outer surface during high-speed navigation, so that a separation vortex is generated at the front end portion of the outer surface of the duct Generation | occurrence | production can be suppressed and the improvement of propulsion efficiency can be aimed at. And the pulling force at the time of a low-speed operation | work can be ensured by the opening angle which the front edge direction of a duct spreads.
 また、前記膨出部は、前記ダクトの前縁から滑らかな曲線で外方に膨出し、最大膨出部分から滑らかな曲線でダクト外面に連なってダクトの後縁に向けて延びるように形成されているのが好ましい。このようにすれば、ダクト外面の膨出部からダクト後縁に向けてスムーズな流線で水流を流すことができる。 Further, the bulging portion bulges outward from the front edge of the duct with a smooth curve and is formed so as to extend from the maximum bulge portion to the duct outer surface with a smooth curve toward the rear edge of the duct. It is preferable. If it does in this way, a water stream can be made to flow with a smooth streamline from the bulging part of a duct outer surface toward a duct rear edge.
 さらに、前記膨出部は、ダクトの全長に対する比率で、最大膨出部分の軸方向位置がダクト前縁から後方に2.5%を超え30%以下の範囲であり、且つ最大膨出部分の半径方向位置がダクト前縁から外方に2.8%を超え10%以下の範囲となるように構成され、前記ダクトの開き角は、前記ダクト前縁とダクト後縁とを結ぶノーズテールラインがダクト軸心に対して8°を超え12°以下の範囲となるように構成されているのが好ましい。このようにすれば、低速作業時により安定した曳引力を得るとともに、高速航行時により推進効率の向上を図ることができる。 Further, the bulging portion is a ratio with respect to the total length of the duct, and the axial position of the maximum bulging portion is in the range of more than 2.5% and 30% or less rearward from the leading edge of the duct, and A radial position is configured to be in the range of more than 2.8% and less than 10% outward from the duct leading edge, and the opening angle of the duct is a nose tail line connecting the duct leading edge and the duct trailing edge Is preferably in the range of more than 8 ° and 12 ° or less with respect to the duct axis. In this way, it is possible to obtain a more stable pulling force during low-speed work and to improve propulsion efficiency during high-speed navigation.
 また、前記最大膨出部分の軸方向位置は、ダクトの全長に対する比率で、ダクト前縁から後方に10%以上で25%以下の範囲であり、且つ前記最大膨出部分の半径方向位置は、ダクト前縁から外方に4%以上で8%以下の範囲となるように構成され、前記ダクトの開き角は、ノーズテールラインがダクト軸心に対して8°を超え10°以下の範囲となるように構成されているのが更に好ましい。このようにすれば、更に安定した曳引力と、更に安定した推進効率の向上とを両立させることができるとともに、重量増加を抑えたダクト付きスラスタを構成することができる。 Further, the axial position of the maximum bulge portion is a ratio of 10% or more and 25% or less rearward from the front edge of the duct in a ratio to the total length of the duct, and the radial position of the maximum bulge portion is It is configured to be in the range of 4% to 8% outward from the duct leading edge, and the opening angle of the duct is such that the nose tail line is more than 8 ° and less than 10 ° with respect to the duct axis. More preferably, it is configured as follows. In this way, it is possible to achieve both a more stable pulling force and a more stable improvement in propulsion efficiency, and it is possible to configure a ducted thruster that suppresses an increase in weight.
 一方、本発明に係る船舶は、上記いずれかのダクト付きスラスタを備え、該ダクト付きスラスタは、船体の後部に設けられている。これにより、低速作業時には安定した曳引力を発揮できるとともに、高速航行時にはダクト外面の剥離渦の発生を抑止した推進効率の良い船舶を構成することができる。 On the other hand, the ship according to the present invention includes any one of the above thrusters with ducts, and the thrusters with ducts are provided at the rear of the hull. Thereby, while being able to exhibit the stable pulling force at the time of low speed work, the ship with good propulsion efficiency which suppressed generation | occurrence | production of the peeling vortex of the duct outer surface at the time of high speed navigation can be comprised.
 本発明によれば、低速作業時には曳引力を安定して発揮することができるとともに、高速航行時には高い推進効率で航行することができるので、低速作業と高速航行とに両用できるダクト付きスラスタを提供することが可能となる。 According to the present invention, a thruster with a duct that can be used for both low-speed work and high-speed sailing can be provided because it can stably exert a pulling force during low-speed work and can sail with high propulsion efficiency during high-speed sailing. It becomes possible to do.
図1は、本発明の一実施形態に係るダクト付きスラスタを示す図面であり、ダクトを断面にして示す側面図である。FIG. 1 is a view showing a thruster with a duct according to an embodiment of the present invention, and is a side view showing the duct in cross section. 図2は、本発明に係るダクト付きスラスタにおいて、ダクト断面の外側膨出部分位置を軸方向と半径方向にパラメトリックに変化させたときの抵抗係数Cdの変化傾向を示した図である。FIG. 2 is a diagram showing a change tendency of the resistance coefficient Cd when the outer bulge portion position of the duct cross section is changed parametrically in the axial direction and the radial direction in the thruster with duct according to the present invention. 図3は、図1に示すダクト付きスラスタの高速航行時における水流を示した側面図である。FIG. 3 is a side view showing a water flow during high-speed navigation of the ducted thruster shown in FIG. 図4は、比較例の2次元CFD計算による高速航行時の流線分布を示す図である。FIG. 4 is a diagram illustrating a streamline distribution during high-speed navigation based on the two-dimensional CFD calculation of the comparative example. 図5は、実施例の2次元CFD計算による高速航行時の流線分布を示す図である。FIG. 5 is a diagram illustrating a streamline distribution during high-speed navigation according to the two-dimensional CFD calculation of the embodiment. 図6は、図1に示すダクト付きスラスタと従来のダクト付きスラスタとの性能を比較検証するために、水槽試験によって得られたそれぞれの推進性能特性曲線を示す図である。FIG. 6 is a diagram showing propulsion performance characteristic curves obtained by a water tank test in order to compare and verify the performance of the ducted thruster shown in FIG. 1 and the conventional ducted thruster. 図7は、図1に示すダクト付きスラスタと従来のダクト付きスラスタとの性能を比較検証するために、船速と必要馬力の関係を示した図である。FIG. 7 is a diagram showing the relationship between the ship speed and the required horsepower in order to compare and verify the performance of the thruster with duct shown in FIG. 1 and the conventional thruster with duct. 図8は、従来のダクト付きスラスタの高速航行時における水流を示した側面図である。FIG. 8 is a side view showing a water flow during high-speed navigation of a conventional thruster with a duct. 図9は、図8に示すダクト付きスラスタのダクト断面図である。FIG. 9 is a cross-sectional view of the ducted thruster shown in FIG. 図10は、ダクト付きスラスタの低速作業時におけるダクトに作用する水流の説明図である。FIG. 10 is an explanatory diagram of water flow acting on the duct during low-speed work of the thruster with duct. 図11は、ダクト付きスラスタの高速航行時におけるダクトに作用する水流の説明図である。FIG. 11 is an explanatory diagram of water flow acting on the duct during high-speed navigation of the thruster with duct.
 以下、本発明の一実施形態を図面に基づいて説明する。以下の実施形態における「標準翼形」は、この種のダクトにおいて工作性が優れていることで一般的に採用されている「19A翼形」である。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The “standard airfoil” in the following embodiments is a “19A airfoil” that is generally adopted because of excellent workability in this type of duct.
 図1に示すように、ダクト付きスラスタ1は、ギアケース2から突出された横回転軸3にプロペラ4が設けられ、このプロペラ4の周囲にリング状のダクト5が設けられている。このダクト5は、翼形断面(図は断面であり、ハッチングを省略)に形成されており、ダクト軸心X(プロペラ4の軸心)に対して全周で同一の断面形状となっている。 As shown in FIG. 1, the thruster with duct 1 is provided with a propeller 4 on a lateral rotation shaft 3 protruding from a gear case 2, and a ring-shaped duct 5 is provided around the propeller 4. The duct 5 is formed in an airfoil cross section (the figure is a cross section, and hatching is omitted), and has the same cross sectional shape on the entire circumference with respect to the duct axis X (the axis of the propeller 4). .
 そして、上記ダクト5の前端部における外周に、標準翼形から外方に円弧状断面で膨出する膨出部6が備えられている。この膨出部6は、ダクト5の前縁7から滑らかな曲線で外方に膨出し、最大膨出部分8から滑らかな曲線でダクト外面9に連なってダクトの後縁10に向けて延びるように形成されている。 Further, a bulging portion 6 that bulges outward from the standard airfoil with an arc-shaped cross section is provided on the outer periphery of the front end portion of the duct 5. The bulging portion 6 bulges outward from the front edge 7 of the duct 5 with a smooth curve, and extends from the maximum bulge portion 8 to the duct outer surface 9 with a smooth curve and extends toward the rear edge 10 of the duct. Is formed.
 上記膨出部6は、最大膨出部分8の軸方向位置Aが、上記ダクト5の全長Ldに対する比率で、ダクト前縁7から後方に2.5%を超え30%以下の範囲で、且つ半径方向位置Bがダクト前縁7から外周方向に2.8%を超え10%以下の範囲となるように構成される。 The bulging portion 6 has a position in which the axial position A of the largest bulging portion 8 is within a range of more than 2.5% and less than 30% rearward from the duct leading edge 7 in a ratio to the total length Ld of the duct 5 The radial position B is configured to be in the range of more than 2.8% and 10% or less from the duct leading edge 7 in the outer circumferential direction.
 この最大膨出部分8の軸方向位置Aが、ダクト全長Ldに対する比率で前縁7から後方に2.5%を超えていないと、ダクト外面の前縁部が外面に向かって尖った形状となって、前方から流入してくる水流が最大膨出部分8の箇所から流れの剥離を起して剥離渦を発生し、抵抗となる。この軸方向位置Aが30%を超えると、最大膨出部分8から後縁部へのダクト外面の傾斜が急傾斜となり、剥離渦を発生し、抵抗となる。しかも、ダクトの重量増加をまねくおそれがある。 If the axial position A of the maximum bulging portion 8 does not exceed 2.5% rearward from the front edge 7 in a ratio to the duct total length Ld, the front edge portion of the duct outer surface is sharpened toward the outer surface. Thus, the water flow that flows in from the front causes separation of the flow from the location of the maximum bulging portion 8 to generate a separation vortex, which becomes resistance. When this axial position A exceeds 30%, the inclination of the outer surface of the duct from the maximum bulging portion 8 to the rear edge becomes steep, and a separation vortex is generated, resulting in resistance. Moreover, there is a risk of increasing the weight of the duct.
 また、最大膨出部分8の半径方向位置Bが、ダクト全長Ldに対する比率で前縁7から外周方向に2.8%を超えていないと、ダクト前縁部付近が尖った形状となり、前縁部付近の圧力分布が外面に向って急激に変化し、流れの剥離が生じ、抵抗となる。この半径方向位置Bが10%を超えると、ダクト外面の突出量が大きくなるとともに、ダクト後縁に向かって急傾斜となり、前方から流入してくる水流が最大膨出部分8の箇所から流れの剥離を起して剥離渦を発生し、抵抗となる。 Further, if the radial position B of the maximum bulging portion 8 does not exceed 2.8% in the outer peripheral direction from the front edge 7 in a ratio to the duct total length Ld, the vicinity of the duct front edge becomes a sharp shape, and the front edge The pressure distribution in the vicinity of the part changes rapidly toward the outer surface, causing flow separation and resistance. If this radial position B exceeds 10%, the amount of protrusion on the outer surface of the duct increases, and a steep slope toward the rear edge of the duct causes the water flow flowing from the front to flow from the location of the maximum bulge portion 8. Separation occurs and a separation vortex is generated, resulting in resistance.
 さらに、上記最大膨出部分8は、軸方向位置Aがダクト前縁7から後方に10%以上で25%以下の範囲で、且つ半径方向位置Bがダクト前縁7から外周方向に4%以上で8%以下の範囲とするのがより好ましい。この範囲とすることで、より抵抗係数Cdが小さくなるとともに、ダクト付きスラスタ1の重量増加を抑えて、原動機の大型化や船体の変更等、大幅なコストアップを抑制することができる。 Further, the maximum bulging portion 8 has an axial position A in the range of 10% or more and 25% or less rearward from the duct leading edge 7, and a radial position B of 4% or more in the outer circumferential direction from the duct leading edge 7. Is more preferably 8% or less. By setting this range, the resistance coefficient Cd can be further reduced, and an increase in the weight of the ducted thruster 1 can be suppressed, so that a significant increase in cost such as an increase in the size of the prime mover or a change in the hull can be suppressed.
 この膨出部6の最大膨出部分8を上記軸方向位置Aと半径方向位置Bとの範囲とする根拠は、図2に示すように、上記位置範囲内でダクトの抵抗係数Cdがほぼ最小となる傾向があることに基づくものである。図2は、図1のダクト断面形状と類似の2次元翼に対する2次元境界層理論計算プログラムを使って抵抗係数Cdを推定計算したものであり、流入迎角を一定として、膨出部6の最大膨出部分8の軸方向位置Aと半径方向位置Bをパラメトリックに変更した時の抵抗係数Cdの変化を示したものである。図中にて破線は、半径方向位置Bをある位置に固定した各抵抗係数Cd曲線の包絡線を示しており、この例では、最大膨出部分8の位置を、半径方向位置Bをダクト全長Ldに対する比率で前縁7から外方に5%の位置とした場合、軸方向位置Aがダクト全長Ldに対する比率で前縁7から後方に15%の位置とすることで抵抗係数Cdを最も小さくでき、この図から上記最大膨出部分8の軸方向位置Aと半径方向位置Bの最適な組合せ範囲の傾向がわかる。 As shown in FIG. 2, the reason why the maximum bulging portion 8 of the bulging portion 6 is in the range between the axial position A and the radial position B is as follows. As shown in FIG. It is based on the tendency to become. FIG. 2 shows an estimation calculation of the resistance coefficient Cd using a two-dimensional boundary layer theoretical calculation program for a two-dimensional blade similar to the duct cross-sectional shape of FIG. The change of the resistance coefficient Cd when the axial direction position A and the radial direction position B of the maximum bulging portion 8 are changed parametrically is shown. In the figure, the broken line indicates the envelope of each resistance coefficient Cd curve with the radial position B fixed at a certain position. In this example, the position of the maximum bulging portion 8 is defined as the radial position B as the total length of the duct. When the position relative to Ld is 5% outward from the front edge 7, the axial position A is 15% rearward from the front edge 7 relative to the duct total length Ld, so that the resistance coefficient Cd is minimized. This figure shows the tendency of the optimum combination range of the axial position A and the radial position B of the maximum bulge portion 8.
 一方、このようにダクト5の前端部外面に膨出部6を備えさせることで外周面を膨らせた場合、ダクト断面のキャンバーライン11が変化して最大キャンバー比が減少することでキャンバーが小さくなり、ダクト内面による揚力が減少する。そこで、ダクト前縁7とダクト後縁10とを結ぶノーズテールライン12のダクト軸心Xに対する迎角、すなわちダクト5の開き角αを大きくすることで、その揚力の減少分を補うように増加させている。つまり、キャンバーの減少分を補うように開き角αを大きくすることで曳引力を増加させて、最大キャンバー比の減少による曳引力の減少分を補うようにしている。 On the other hand, when the outer peripheral surface is inflated by providing the bulging portion 6 on the outer surface of the front end portion of the duct 5 in this way, the camber line 11 on the duct cross section changes and the maximum camber ratio is reduced, so that the camber is reduced. It becomes smaller and the lift by the duct inner surface decreases. Therefore, by increasing the angle of attack of the nose tail line 12 connecting the duct leading edge 7 and the duct trailing edge 10 with respect to the duct axis X, that is, the opening angle α of the duct 5, it is increased to compensate for the decrease in lift. I am letting. That is, the pulling force is increased by increasing the opening angle α so as to compensate for the decrease in the camber, and the decrease in the pulling force due to the decrease in the maximum camber ratio is compensated.
 このダクト5の開き角αとしては、ノーズテールライン12がダクト軸心Xに対して8°を超え12°以下の範囲となるようにしている。ダクト5の開き角αが8°を超えないと、低速時にて大きな曳引力が得られない。また、逆に開き角αが12°を超えると、高速航行時にてダクト5が失速現象を起して大きな抵抗となる。このように、ダクト5の開き角αとしては、高速航行時の膨出部6によるダクト5の前縁部外面における圧力および流速変化の抑制と、低速作業時のダクト5による曳引力の発揮とを両立させることが可能な角度に設定される。 The opening angle α of the duct 5 is set so that the nose tail line 12 is in the range of more than 8 ° and not more than 12 ° with respect to the duct axis X. If the opening angle α of the duct 5 does not exceed 8 °, a large pulling force cannot be obtained at a low speed. On the other hand, when the opening angle α exceeds 12 °, the duct 5 causes a stall phenomenon during high speed navigation, resulting in a large resistance. As described above, the opening angle α of the duct 5 includes suppression of changes in pressure and flow velocity on the outer surface of the front edge of the duct 5 due to the bulging portion 6 during high-speed sailing, and display of the pulling force due to the duct 5 during low-speed work. Is set to an angle at which both can be achieved.
 そして、上記したようにダクト5の外周に膨出部6を設けるとともにダクト5の開き角αを設定することにより、図3に示すように、高速航行時においてダクト5の前端部外面付近において剥離渦が発生するのを抑止してダクト5の抵抗低減による推進効率の向上を図りつつ、低速作業時における曳引力を安定して発揮することができる。 Then, by providing the bulging portion 6 on the outer periphery of the duct 5 and setting the opening angle α of the duct 5 as described above, separation occurs in the vicinity of the outer surface of the front end portion of the duct 5 during high-speed navigation as shown in FIG. While suppressing the generation of vortices and improving the propulsion efficiency by reducing the resistance of the duct 5, the pulling force during low-speed work can be stably exhibited.
 従って、上記ダクト付きスラスタ1によれば、低速作業時における曳引力の確保と、高速航行時における推進効率の向上とを両立させることが可能となり、例えば、ハーバータグとして使用できるとともに、エスコートタグとしても使用できる船舶の推進機として利用することができる。 Therefore, according to the thruster 1 with the duct, it is possible to achieve both the securing of the pulling force during low-speed work and the improvement of the propulsion efficiency during high-speed navigation. For example, it can be used as a harbor tag and as an escort tag. It can also be used as a propulsion device for ships that can also be used.
 また、上記膨出部6の位置及び大きさ(膨出量)と、ダクト5の開き角αとは、旋回抵抗の増加、重量増加による旋回動力の増加、製造コスト等を考慮して決定すればよく、これにより生産コストの増加等を抑止するようにすればよい。 Further, the position and size of the bulging portion 6 (bulging amount) and the opening angle α of the duct 5 are determined in consideration of an increase in turning resistance, an increase in turning power due to an increase in weight, manufacturing costs, and the like. What is necessary is just to suppress the increase in production cost, etc. by this.
 さらに、以上のようなダクト付きスラスタ1によれば、例えば、従来の標準翼形断面のダクト付きスラスタと比較すると、以下に説明するように約4%程度の推進効率向上を図ることができる。 Furthermore, according to the thruster 1 with duct as described above, for example, as compared with a conventional thruster with a duct having a standard airfoil cross section, it is possible to improve the propulsion efficiency by about 4% as described below.
 実施例として、ダクト5とダクト103の断面形状の差異による影響をCFD(Computational Fluid Dynamics:数値流体力学)計算により比較検証した結果を以下に示す。計算条件としては、2次元計算で、高速航行時の実船状態を模擬した。図4にダクト103の流線分布を示し、図5にダクト5の流線分布を示す。これらの図で、流れは右から左に流れている。図4では、ダクト前縁部外面付近で、流線が過度に集中し、流れの剥離が起こる可能性を示している。一方、図5では、同じような箇所で流線の集中が緩和され流れが滑らかとなり、流れの剥離が起こりにくいことを示している。 As an example, the results of comparison and verification of the influence of the difference in cross-sectional shape of the duct 5 and the duct 103 by CFD (Computational Fluid Dynamics) calculation are shown below. As a calculation condition, the actual ship state during high-speed navigation was simulated by two-dimensional calculation. FIG. 4 shows the streamline distribution of the duct 103, and FIG. 5 shows the streamline distribution of the duct 5. In these figures, the flow is from right to left. FIG. 4 shows the possibility that the flow lines are excessively concentrated near the outer surface of the duct front edge and flow separation occurs. On the other hand, FIG. 5 shows that the concentration of streamlines is relaxed at the same location, the flow becomes smooth, and the flow separation hardly occurs.
 次に、性能検証実施例として、ダクト付きスラスタの単独性能水槽試験を実施した結果を図6に示す。水槽試験は、長さ200m、幅13m、深さ6.5mの試験水槽にて、実機の約1/8.5のスケール比のダクト付きスラスタと同様な模型を制作し、ダクトを5と103に変えた以外は、プロペラ、ストラット等を共通にした。水槽試験での計測項目は、前進速度Va、スラスタ全体のスラストTt、プロペラトルクQ、プロペラ回転数nである。 Next, as a performance verification example, the results of a single performance water tank test of a thruster with duct are shown in FIG. In the tank test, a model similar to a thruster with a duct having a scale ratio of about 1 / 8.5 of the actual machine was produced in a test tank of 200 m in length, 13 m in width, and 6.5 m in depth. The propeller, strut, etc. were made common except for changing to. The measurement items in the water tank test are the forward speed Va, the thrust Tt of the entire thruster, the propeller torque Q, and the propeller rotational speed n.
 図6に示す実線がダクト5のものであり、破線がダクト103のものである。また、図6の横軸Jはプロペラ前進係数(=Va/(nD))、縦軸のKttは全体スラスト係数(Tt/(ρn24))、Kqはプロペラトルク係数(=Q/(ρn25))、ηoはスラスタ全体の単独効率(=KttJ/(2πKq))を示す。但し、ρは清水密度、Dはプロペラ直径である。 The solid line shown in FIG. 6 is that of the duct 5, and the broken line is that of the duct 103. In FIG. 6, the horizontal axis J is the propeller forward coefficient (= Va / (nD)), the vertical axis Ktt is the overall thrust coefficient (Tt / (ρn 2 D 4 )), and Kq is the propeller torque coefficient (= Q / ( ρn 2 D 5 )), ηo represents the single efficiency of the entire thruster (= KttJ / (2πKq)). Where ρ is the fresh water density and D is the propeller diameter.
 図6より、プロペラ前進係数Jが約0.5以下では、両ダクトの特性はほぼ同じであるが、高速航行時と等価であるプロペラ前進係数Jが約0.5を超えると、ダクト5を備えたスラスタの方の全体スラスト係数Kttがダクト103を備えたスラスタのものより上回っている。すなわち、ダクトの抵抗が減少したために、結果として単独効率ηoは、ダクト5を備えたスラスタの方がダクト103を備えたスラスタのものより上回ることがわかる。つまり、ダクト5を備えたスラスタは高速航行時に、より高い推進効率を有することがわかる。 From FIG. 6, when the propeller forward coefficient J is about 0.5 or less, the characteristics of both ducts are almost the same. However, when the propeller forward coefficient J, which is equivalent to that at high speed navigation, exceeds about 0.5, the duct 5 is The total thrust coefficient Ktt of the provided thruster is higher than that of the thruster provided with the duct 103. That is, since the resistance of the duct is reduced, it can be understood that the single efficiency ηo is higher in the thruster with the duct 5 than the thruster with the duct 103 as a result. That is, it can be seen that the thruster provided with the duct 5 has higher propulsion efficiency during high-speed navigation.
 次に、図6の推進性能特性曲線を用いて、同一船体で同一航行条件にて、実船の推進必要馬力を推定し、比較検証した結果を図7に示す。横軸は船速Vs、縦軸は必要馬力Pdである。実線が本発明の実施例であるダクト5を備えたスラスタによるものであり、破線が比較として従来の一般的なダクト103を備えたスラスタによるものである。 Next, using the propulsion performance characteristic curve in FIG. 6, the necessary horsepower for propulsion of the actual ship is estimated under the same navigation conditions with the same hull, and the result of comparison and verification is shown in FIG. The horizontal axis represents the ship speed Vs, and the vertical axis represents the necessary horsepower Pd. The solid line is due to the thruster having the duct 5 according to the embodiment of the present invention, and the broken line is due to the thruster having the conventional general duct 103 as a comparison.
 図示するように、ダクト5を備えたスラスタは、同じ船速を出すための必要馬力が、ダクト103を備えたスラスタと比較して、約4%~5%程度減少しており、約4%~5%程度の推進効率向上が図れているといえる。 As shown in the figure, the thruster provided with the duct 5 has about 4% to 5% less horsepower required for achieving the same boat speed than the thruster provided with the duct 103. It can be said that the propulsion efficiency is improved by about 5%.
 このような結果から、ダクト前端部分における外周に膨出部6を備えさせることにより、高速航行時における推進効率の向上を図ることができ、膨出部6を設けたことによるキャンバーの減少を補うようにダクト5の開き角αを設定することで、低速作業時における曳引力の安定した確保との両立を図ることができているといえる。 From these results, it is possible to improve the propulsion efficiency during high-speed navigation by providing the bulging portion 6 on the outer periphery of the duct front end portion, and compensate for the reduction in camber due to the provision of the bulging portion 6. By setting the opening angle α of the duct 5 as described above, it can be said that both the stable securing of the pulling force during low-speed work can be achieved.
 なお、上記実施形態における標準翼形は一例であり、一般的な翼形断面であれば同様の作用効果を奏することができ、翼形断面は上記実施形態に限定されるものではない。 Note that the standard airfoil in the above embodiment is an example, and the same effect can be obtained as long as it is a general airfoil cross section. The airfoil cross section is not limited to the above embodiment.
 また、上述した実施形態は一例を示しており、本発明の要旨を損なわない範囲での種々の変更は可能であり、本発明は上述した実施形態に限定されるものではない。 Further, the above-described embodiment shows an example, and various modifications can be made without departing from the gist of the present invention, and the present invention is not limited to the above-described embodiment.
 本発明に係るダクト付きスラスタは、低速作業時に安定した曳引力を得たいハーバータグ等としての使用と、高速航行時に推進効率向上を図りたいエスコートタグ等としての使用とを両立させたい船舶に利用できる。 The ducted thruster according to the present invention is used for ships that want to achieve both use as a harbor tag that wants to obtain a stable towing force during low speed work and use as an escort tag that wants to improve propulsion efficiency during high speed navigation. it can.
    1 ダクト付きスラスタ
    4 プロペラ
    5 ダクト
    6 膨出部
    7 前縁
    8 最大膨出部分
    9 ダクト外面
   10 後縁
   11 キャンバーライン
   12 ノーズテールライン
15,16 水流
    X ダクト軸心
    α 開き角
    A 軸方向位置
    B 半径方向位置
DESCRIPTION OF SYMBOLS 1 Thruster with a duct 4 Propeller 5 Duct 6 Bulging part 7 Leading edge 8 Maximum bulging part 9 Duct outer surface 10 Rear edge 11 Camber line 12 Nose tail line 15, 16 Water flow X Duct axis α Opening angle A Axial position B Radius Directional position

Claims (5)

  1.  プロペラの周囲に翼形断面のダクトを備えたダクト付きスラスタであって、
     前記ダクトの断面形状は、高速航行時にダクト前端部の外面における圧力変化を抑制するように標準翼形から外方に円弧状断面で膨出する膨出部を前端部外周に備え、
     該ダクトは、低速作業時に所定の曳引力を発揮するように前縁方向が広がる開き角を有していることを特徴とするダクト付きスラスタ。
    A ducted thruster with an airfoil section duct around a propeller,
    The duct has a cross-sectional shape including a bulging portion that bulges outward from the standard airfoil with an arc-shaped cross section on the outer periphery of the front end so as to suppress pressure change on the outer surface of the duct front end during high-speed navigation,
    The ducted thruster characterized in that the duct has an opening angle that widens the front edge direction so as to exhibit a predetermined pulling force during low-speed work.
  2.  前記膨出部は、前記ダクトの前縁から滑らかな曲線で外方に膨出し、最大膨出部分から滑らかな曲線でダクト外面に連なってダクトの後縁に向けて延びるように形成されている請求項1に記載のダクト付きスラスタ。 The bulging portion bulges outward from the front edge of the duct with a smooth curve, and extends from the maximum bulge portion to the duct outer surface with a smooth curve and extends toward the rear edge of the duct. The ducted thruster according to claim 1.
  3.  前記膨出部は、ダクトの全長に対する比率で、最大膨出部分の軸方向位置がダクト前縁から後方に2.5%を超え30%以下の範囲であり、且つ最大膨出部分の半径方向位置がダクト前縁から外方に2.8%を超え10%以下の範囲となるように構成され、
     前記ダクトの開き角は、前記ダクト前縁とダクト後縁とを結ぶノーズテールラインがダクト軸心に対して8°を超え12°以下の範囲となるように構成されている請求項1又は請求項2に記載のダクト付きスラスタ。
    The bulging portion is a ratio with respect to the total length of the duct, and the axial position of the largest bulging portion is in the range of more than 2.5% and less than 30% rearward from the leading edge of the duct, and the radial direction of the largest bulging portion. The position is configured to be in the range of more than 2.8% and less than 10% outward from the duct leading edge,
    The opening angle of the duct is configured such that a nose tail line connecting the duct leading edge and the duct trailing edge is in a range of more than 8 ° and not more than 12 ° with respect to the duct axis. Item 3. A thruster with a duct according to item 2.
  4.  前記最大膨出部分の軸方向位置は、ダクトの全長に対する比率で、ダクト前縁から後方に10%以上で25%以下の範囲であり、且つ前記最大膨出部分の半径方向位置は、ダクト前縁から外方に4%以上で8%以下の範囲となるように構成され、
     前記ダクトの開き角は、ノーズテールラインがダクト軸心に対して8°を超え10°以下の範囲となるように構成されている請求項3に記載のダクト付きスラスタ。
    The axial position of the maximum bulge portion is a ratio with respect to the total length of the duct and ranges from 10% to 25% rearward from the front edge of the duct, and the radial position of the maximum bulge portion is the front of the duct. It is configured to be 4% or more and 8% or less outward from the edge,
    The thruster with a duct according to claim 3, wherein an opening angle of the duct is configured such that a nose tail line is in a range of more than 8 ° and not more than 10 ° with respect to the duct axis.
  5.  請求項1~4のいずれか1項に記載のダクト付きスラスタを備え、該ダクト付きスラスタは、船体の後部に設けられていることを特徴とする船舶。 A ship comprising the thruster with duct according to any one of claims 1 to 4, wherein the thruster with duct is provided at a rear portion of a hull.
PCT/JP2011/000770 2010-02-16 2011-02-10 Thruster with duct attached and vessel comprising same WO2011102103A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010-031061 2010-02-16
JP2010031061A JP2011168075A (en) 2010-02-16 2010-02-16 Thruster with duct and vessel including the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2011800080867A CN102712353A (en) 2010-02-16 2011-02-10 Thruster with duct attached and vessel comprising same
BR112012019241A BR112012019241A2 (en) 2010-02-16 2011-02-10 "duct thruster and ship comprising duct thruster"
SG2012057675A SG183162A1 (en) 2010-02-16 2011-02-10 Thruster with duct and ship including the same

Publications (1)

Publication Number Publication Date
WO2011102103A1 true WO2011102103A1 (en) 2011-08-25

Family

ID=44482709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000770 WO2011102103A1 (en) 2010-02-16 2011-02-10 Thruster with duct attached and vessel comprising same

Country Status (6)

Country Link
JP (1) JP2011168075A (en)
KR (1) KR20120098941A (en)
CN (1) CN102712353A (en)
BR (1) BR112012019241A2 (en)
SG (1) SG183162A1 (en)
WO (1) WO2011102103A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2955099B1 (en) 2013-02-08 2018-08-29 Samsung Heavy Ind. Co., Ltd. Propulsion device for ship
KR101444293B1 (en) 2013-02-08 2014-09-30 삼성중공업 주식회사 Duct for propulsion apparatus
KR101589124B1 (en) 2014-02-07 2016-01-27 삼성중공업 주식회사 Propulsion apparatus of vessel
CN103963948B (en) * 2014-05-22 2017-02-15 中国船舶重工集团公司第七○二研究所 Method for designing efficient duct
KR20200000045A (en) * 2018-06-22 2020-01-02 필드지 주식회사 Duct for ship

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143598A (en) * 1974-10-09 1976-04-14 Mitsubishi Heavy Ind Ltd NOZURUPUROPERA
JPH02151593A (en) * 1988-12-01 1990-06-11 Grausring Joship Propulsion unit for ship
JP2006306304A (en) * 2005-04-28 2006-11-09 Niigata Shipbuilding & Repair Inc Propulsion device and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI79991C (en) * 1986-04-29 1990-04-10 Hollming Oy PROPELLERANORDNING FOER ETT FARTYG.
DE202008006069U1 (en) * 2008-03-10 2008-07-17 Becker Marine Systems Gmbh & Co. Kg Device for reducing the power requirement of a ship

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143598A (en) * 1974-10-09 1976-04-14 Mitsubishi Heavy Ind Ltd NOZURUPUROPERA
JPH02151593A (en) * 1988-12-01 1990-06-11 Grausring Joship Propulsion unit for ship
JP2006306304A (en) * 2005-04-28 2006-11-09 Niigata Shipbuilding & Repair Inc Propulsion device and its manufacturing method

Also Published As

Publication number Publication date
BR112012019241A2 (en) 2019-09-24
SG183162A1 (en) 2012-09-27
CN102712353A (en) 2012-10-03
JP2011168075A (en) 2011-09-01
KR20120098941A (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP6490595B2 (en) Ship propulsion device
EP2738084B1 (en) Propeller with small duct, and ship
WO2011102103A1 (en) Thruster with duct attached and vessel comprising same
JP2006306304A (en) Propulsion device and its manufacturing method
JP5231878B2 (en) Ship thruster with duct
KR20110138858A (en) Propeller hub cap with fin for ship decreasing hub voltex
JP6021678B2 (en) Duct device and ship using the same
KR101403618B1 (en) Propeller system for vessel
US9376186B2 (en) Marine tunnel thruster
KR101523920B1 (en) Propulsion apparatus for vessel
KR20140064223A (en) Propeller for vessel
WO2015098665A1 (en) Duct device
CN105346697A (en) Propeller for guide pipe type ship
JP6241905B2 (en) Stern shape with stern duct and ship
KR20110133676A (en) Rudder for ship and ship including the same
US20150266554A1 (en) Tractor Mode Marine Propulsion
KR101589124B1 (en) Propulsion apparatus of vessel
WO2019014873A1 (en) Propeller for dredger
CN212267811U (en) Underwater tandem type co-rotating propeller equipment
KR20120110232A (en) Structure for improving propulsion efficency in rudder of ship
JP2016155511A (en) Ship
Gruzling et al. The Development and Application of High Efficiency Nozzles and Rudders
JP2008062660A (en) Propulsion unit for vessel
WO2017168549A1 (en) Ship propulsion device
JP3167085U (en) Propulsion device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180008086.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127019773

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012019241

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 11744395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112012019241

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120801