WO2016157813A1 - Load driving apparatus - Google Patents

Load driving apparatus Download PDF

Info

Publication number
WO2016157813A1
WO2016157813A1 PCT/JP2016/001618 JP2016001618W WO2016157813A1 WO 2016157813 A1 WO2016157813 A1 WO 2016157813A1 JP 2016001618 W JP2016001618 W JP 2016001618W WO 2016157813 A1 WO2016157813 A1 WO 2016157813A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching device
gate
zener diode
voltage
drain
Prior art date
Application number
PCT/JP2016/001618
Other languages
French (fr)
Japanese (ja)
Inventor
真一 星
安史 樋口
小山 和博
青吾 大澤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016157813A1 publication Critical patent/WO2016157813A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage

Definitions

  • the present disclosure relates to a load driving apparatus that includes a switching device (semiconductor switching element) that controls power supply to a load, and controls the power supply to the load by driving the switching device with a drive circuit.
  • a switching device semiconductor switching element
  • a load driving apparatus that performs power supply to a load using a switching device.
  • a nitride semiconductor represented by gallium nitride hereinafter referred to as GaN
  • GaN gallium nitride
  • bandgap energy Eg 3.4 eV
  • electron drift velocity 2.7 ⁇ 10 7 cm / s dielectric breakdown electric field 4 .0 than ⁇ 10 6 V / cm
  • Non-Patent Document 1 a low on-resistance is realized in a GaN-HEMT (gallium nitride high electron mobility transistor), which is an element representative of a nitride semiconductor, due to the high capability of the material. It is described. Specifically, in a GaN-HEMT device having a 200V breakdown voltage as an on-resistance and breakdown voltage element limit, 1/10 of MOSFET (metal-oxide film-semiconductor field effect transistor) using Si, IGBT (insulated gate multiple) The on-resistance can be reduced to 1/3 or less of that of a port transistor.
  • MOSFET metal-oxide film-semiconductor field effect transistor
  • an L load such as an inductor element
  • a switch such as an inverter having an L load motor
  • the L load withstand capability can be obtained by using a protection diode. This is a method also used in Si-IGBT when a larger L load is used.
  • the GaN-HEMT When the GaN-HEMT is off, it functions to protect the switching device from high voltage and high energy applied to the drain.
  • the gate voltage is applied to the gate of the GaN-HEMT 100 from the drive circuit 101 via the gate resistor 102 to turn on the GaN-HEMT 100, and the L load 103 connected to the drain of the GaN-HEMT 100 is applied.
  • the circuit supplies current.
  • a Zener diode 104 is connected between the gate and drain of the GaN-HEMT 100, and a Zener diode 105 for high voltage protection is also connected between the gate and source.
  • a Zener breakdown voltage (hereinafter referred to as a break voltage) Vz, which is the operating voltage of the Zener diode 104
  • Vz Zener breakdown voltage
  • the drain voltage of the GaN-HEMT 100 passes through the Zener diode 104.
  • a current flows to the GND through the gate (see the path (1) in FIG. 7).
  • a gate voltage VG is generated by the current flowing at this time and the gate resistance 102.
  • this current exceeds a predetermined current value, the GaN-HEMT 100 is turned on again, and a current flows from the L load 103 side (in FIG. 7). Route (2)).
  • the high voltage and applied energy applied to the drain are consumed by the entire chip on which the GaN-HEMT 100 or the like is formed, and it is easy to ensure a high energy resistance.
  • the break voltage Vz of the Zener diode 104 between the gate and the drain becomes the drain clamp voltage.
  • the current value of the current flowing through the path (1) and the gate voltage VG at that time change depending on the resistance value of the gate resistor 102 that determines the circuit speed. There is no sex. Further, when the resistance of the gate resistor 102 is reduced in order to increase the circuit speed, a current value for setting the gate voltage VG to turn on the GaN-HEMT 100 is required, and the capacity of the Zener diode 104 is increased. An increase in the capacitance of the Zener diode 104 causes an increase in chip area if the Zener diode 104 is built in the same chip as the GaN-HEMT 100. Further, if the Zener diode 104 is an external Zener diode that is externally attached to the chip on which the GaN-HEMT 100 is formed, the same Zener diode cannot be used and lacks versatility. In any case, the cost increases.
  • An object of the present disclosure is to provide a load driving device including a switching device capable of ensuring a withstand capability corresponding to various gate resistances, and applying a gate voltage from a driving circuit to the gate via the gate resistance.
  • the load driving device includes a semiconductor switching element configured to supply a current to the load by causing a current to flow between the drain and the source by applying a gate voltage to the gate.
  • a driving circuit for applying a voltage, and when a gate voltage exceeds a predetermined threshold voltage, a current flows between the drain and the source, and the drain and the source are connected between the gate and the drain of the first switching device.
  • a second switching device constituted by a semiconductor switching element, and the second switching device And a Zener diode connected between the drain - a second gate resistor connected to the gate, the gate of the second switching device.
  • the second switching device is arranged between the gate and drain of the first switching device. Further, a Zener diode is disposed between the gate and the drain of the second switching device, and a second gate resistor is connected to the gate. With this configuration, the second switching device can be operated based on the break voltage of the Zener diode, the resistance value of the second gate resistor, and the current flowing through the Zener diode and the second gate resistor. Since a high operating current can be obtained by turning on the second switching device, the first switching device can be turned on without increasing the capacity of the Zener diode.
  • the resistance value of the first gate resistor changes variously, it is possible to ensure the withstand capability correspondingly. Furthermore, since the range of the resistance value of the first gate resistor can be expanded, even if the resistance value of the first gate resistor is lowered to increase the circuit speed, the capacitance of the Zener diode is not increased. It is possible to secure the tolerance. Therefore, if the Zener diode is built in the same chip as the first switching device or the like, an increase in the chip area can be suppressed, and when an external Zener diode is used, the same can be used to increase versatility. Is possible.
  • FIG. 1 is a diagram illustrating a circuit configuration of the load driving device according to the first embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a circuit configuration of the load driving device according to the second embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a mounting structure of each unit constituting the load driving device described in the third embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating an example of a mounting structure of each unit included in the load driving device described in the fourth embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating a circuit configuration of the load driving device according to the first embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a circuit configuration of the load driving device according to the second embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a mounting structure of each unit constituting the load driving device described in the third embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating an example of a mounting structure of each unit included in the load
  • FIG. 5 is a diagram illustrating an example of a mounting structure of each part constituting the load driving device described in the fifth embodiment of the present disclosure.
  • FIG. 6 is a diagram illustrating an example of a mounting structure of each unit included in the load driving device described in the sixth embodiment of the present disclosure.
  • FIG. 7 is a diagram showing a circuit configuration of a conventional load driving device.
  • the load driving device shown in FIG. 1 includes a first switching device 2 connected to a load 1, a drive circuit 3 that supplies power to the load 1 by turning on the first switching device 2, and the like.
  • the load 1 may be any device as long as it is driven by turning on and off the power supply.
  • an inverter is configured by providing a plurality of first switching devices 2, a three-phase motor or the like is provided.
  • a power source (not shown) is provided on the opposite side of the first switching device 2 across the load 1, and when the first switching device 2 is turned on, a current path from the power source to GND is established. Conducted, current is supplied to the load 1.
  • the first switching device 2 is configured by a semiconductor switching element such as a GaN-HEMT, IGBT, or power MOSFET.
  • a semiconductor switching element such as a GaN-HEMT, IGBT, or power MOSFET.
  • the drain terminal D1 of the first switching device 2 is connected to the load 1, and the source terminal S1 is grounded to GND.
  • the source terminal S1 side is set as a reference potential point and may be set to another potential.
  • the gate G1 of the first switching device 2 is connected to the drive circuit 3 via the first gate resistor 4, and the gate voltage output from the drive circuit 3 is connected to the first switching device via the first gate resistor 4. 2 is applied to the second gate G1.
  • a second switching device 5 serving as another switching device is disposed together with a Zener diode 6 and a second gate resistor 7.
  • the source terminal S2 of the second switching device 5 is connected to the gate G1 of the first switching device 2, and the drain terminals D1 and D2 of the first switching device 2 and the second switching device 5 are connected to each other.
  • the size of the second switching device 5 is made smaller. More specifically, when the gate width of the first switching device 2 is Wg1, and the gate width of the second switching device 5 is Wg2, the relationship between the first and second switching devices 2, 5 is such that Wg1> Wg2. Dimensional design is made.
  • the zener diode 6 is connected between the gate and drain of the second switching device 5.
  • the Zener diode 6 is configured by, for example, arranging a plurality of p-type and n-type doped polysilicon in multiple stages.
  • the Zener diode 6 is a voltage equal to or higher than the break voltage Vz with a predetermined Zener breakdown voltage as the break voltage Vz from the drain side of the second switching device 5 to the direction of the second gate resistor 7 and in the opposite direction. When it is applied, current flows.
  • the break voltage Vz of the Zener diode 6 is set lower than the withstand voltages VB1 and VB2. Therefore, before the first and second switching devices 2 and 5 are destroyed, the break voltage Vz of the Zener diode 6 is reached and the Zener diode 6 is made conductive.
  • the second gate resistor 7 is connected to the gate of the second switching device 5.
  • the second gate resistor 7 has a side opposite to the side connected to the gate G ⁇ b> 2 of the second switching device 5. GND is grounded.
  • the Zener diode 8 provided between the gate and the source of the first switching device 2 is a high voltage protection Zener diode.
  • the Zener diode 8 is turned on when the gate-source voltage of the first switching device 2 is going to be a high voltage, thereby preventing the first switching device 2 from exceeding a predetermined voltage. It is designed to be protected.
  • the load driving device according to the present embodiment is configured. Next, the operation of the load driving device according to the present embodiment configured as described above will be described.
  • the first switching device 2 is turned on by applying, for example, a pulsed gate voltage (for example, 20 V) from the drive circuit 3.
  • a pulsed gate voltage for example, 20 V
  • the drain-source of the first switching device 2 becomes conductive, and the current path through which the current I flows to the GND through the load 1 is made conductive based on the current supply from the power source (not shown).
  • the power source not shown
  • the first switching device 2 is turned off.
  • the drain voltages of the first and second switching devices 2 and 5 are increased by the L load energy of the load 1.
  • the Zener diode 6 is turned on. For this reason, a current flows from the drain of the second switching device 5 to the GND through the Zener diode 6 through the gate and the second gate resistor 7 (see the path (1) in FIG. 1). The current value of the current flowing at this time is determined by the Zener diode 6 and the second gate resistor 7.
  • the second switching device 5 is turned on and the driving capability is high, and a large amount of current can flow between the drain and source of the second switching device 5.
  • the electric current (henceforth operating current) which can be sent through the gate of the 1st switching device 2 and the 1st gate resistance 4 side can be increased.
  • the Zener diode 6 provided in the circuit configuration of the present embodiment has the same width as that of a Zener diode having a conventional structure, the operating current can be increased by one digit or more.
  • the first switching device 2 can be turned on and the L load energy can be released. Is possible.
  • the resistance value of the first gate resistor 4 may be reduced to 1/10 compared with the conventional circuit configuration, the resistance value range of the first gate resistor 4 is compared with the conventional circuit configuration. Can be increased 10 times. Therefore, even if the resistance value of the first gate resistor 4 changes variously, it is possible to ensure the withstand amount correspondingly.
  • the second switching device 5 is arranged between the gate and the drain of the first switching device 2. Further, a Zener diode 6 is disposed between the gate and drain of the second switching device 5, and a second gate resistor 7 is connected to the gate. With this configuration, the second switching device 5 is operated based on the break voltage Vz of the Zener diode 6, the resistance value of the second gate resistor 7, and the current flowing through the Zener diode 6 and the second gate resistor 7. It is done. Since a high operating current can be obtained by turning on the second switching device 5, the first switching device 5 can be turned on without increasing the capacity of the Zener diode 6.
  • the resistance value of the first gate resistor 4 changes variously, it is possible to ensure the withstand capability correspondingly. Further, since the range of the resistance value of the first gate resistor 4 can be expanded, even if the resistance value of the first gate resistor 4 is lowered to increase the circuit speed, the capacitance of the Zener diode 6 is increased. Without having to do so, it is possible to ensure the tolerance. Therefore, if the Zener diode 6 is built in the same chip as the first switching device 2 or the like, an increase in the chip area can be suppressed. It becomes possible to raise.
  • the resistance value Rg1 of the first gate resistor 4 is 100 ⁇
  • an operating current of 50 mA is required to raise the gate voltage G1 to 5V.
  • the operating current generated when the break voltage Vz is applied to the Zener diode is 50 mA
  • the Zener diode is composed of polysilicon having a thickness of 250 nm, a width of 100 mm or more is required. .
  • the area where the polysilicon is installed becomes a factor for increasing the chip area.
  • the width of the polysilicon to be formed can be 1/100 of the conventional structure, that is, 1 mm. Therefore, in the case of the structure of this embodiment, if the Zener diode 6 is built in the same chip as the first switching device 2 or the like, an increase in the chip area can be suppressed. It can be used and versatility can be improved.
  • connection destination of the second gate resistor 7 is changed with respect to the first embodiment, and the other parts are the same as those in the first embodiment. Therefore, only the parts different from the first embodiment will be described. To do.
  • the load driving device according to the present embodiment is the same as the first embodiment in terms of the basic circuit configuration.
  • the side of the second gate resistor 7 opposite to the side connected to the gate of the second switching device 5 is connected between the gate of the first switching device 2 and the first gate resistor 4.
  • the second switching device 5 when the first switching device 2 is turned on, the second switching device 5 remains off because the potential between the gate and the source in the second switching device 5 is the same. It becomes. For this reason, the second switching device 5, the Zener diode 6 and the second gate resistor 7 do not particularly act, and the drive circuit 3 can control the first switching device 2 via the first gate resistor 4.
  • the drain voltages of the first and second switching devices 2 and 5 are increased by the L load energy of the load 1. .
  • the Zener diode 6 is turned on. Therefore, a current flows through the Zener diode 6 from the drain of the second switching device 5 to the gate, and further through the second gate resistor 7 and the first gate resistor 4 (see the route (1) in FIG. 2). Thereby, the same operation as in the first embodiment is performed, and it becomes possible to release L load energy.
  • the gate voltage applied from the drive circuit 3 to the first switching device 2 can be a negative voltage as well as a positive voltage.
  • the gate voltage can be controlled to ⁇ 20V. That is, since the Zener diode 6 is provided between the load 1 and the connection point between the gate of the first switching device 2 and the first gate resistor 4, the gate voltage of the first switching device 2 becomes a negative voltage. However, no current flows to the load 1 side due to the Zener diode 6. In this way, by making the gate voltage applied to the first switching device 2 not only a positive voltage but also a negative voltage, it is possible to increase the speed at the turn-off time and to reduce the switching loss. Is possible.
  • the first switching device 2, the second switching device 5, the Zener diode 6, and the like are all discrete elements (external elements). 10 is mounted. Thus, for example, all elements can be assembled as discrete elements.
  • the first switching device 2 and the second switching device 5 are configured on the same chip, and the Zener diode 6 is printed as a discrete element. It can also be configured by mounting on the substrate 10. Thus, for example, not all elements are discrete elements, but some elements can be assembled as discrete elements.
  • first and second switching devices 2 and 5 are formed on the same chip, these may be formed by lateral elements, for example, by LDMOS (Laterally Diffused Metal Oxide Semiconductor) or lateral GaN-HEMT.
  • LDMOS Laterally Diffused Metal Oxide Semiconductor
  • GaN-HEMT lateral GaN-HEMT
  • the second gate resistor 7 and the Zener diode 6 are also formed on the same chip. It is composed. Although not shown, only the first gate resistor 4 is a discrete element. Such a configuration can also be adopted.
  • the first and second switching devices 2 and 5 are configured by horizontal elements.
  • the second gate resistor 7 is constituted by a diffusion resistor formed on the semiconductor substrate constituting the chip, a metal resistor formed on the surface side of the semiconductor substrate via an insulating film or the like.
  • the Zener diode 6 is configured by arranging a plurality of p-type and n-type doped polysilicon in multiple stages through an insulating film or the like on the surface side of the semiconductor substrate constituting the chip.
  • the second gate resistor 7 and the Zener diode 6 may be configured by the same chip.
  • the second gate resistor 7 is also provided in the same chip, it is particularly preferable when the second gate resistor 7 is connected to the gate of the first switching device 2 as in the second embodiment. That is, when the second gate resistor 7 is connected to the gate of the first switching device 2, if the second gate resistor 7 is also connected to the external terminal connected to the gate of the first switching device 2, the second gate resistor 7. It is not necessary to provide an external terminal connected only to the terminal. Therefore, the number of external terminals can be reduced.
  • the Zener diode 6 when the Zener diode 6 is built in the same chip as the first and second switching devices 2 and 5 and the like, the withstand capability can be ensured without increasing the capacity of the Zener diode 6, and thus the increase in the chip area is suppressed. it can.
  • Such a configuration is particularly effective when the first and second switching devices 2 and 5 are configured by GaN-HEMTs that do not have an L load withstand capability. Even when GaN-HEMT is used, the withstand capability is ensured. However, an increase in chip area can be suppressed.
  • the first and second gate resistors 4 and 7 and the Zener diode 6 are used. All of these are composed of the same chip. Such a configuration can also be adopted.
  • the configuration can basically be the same as that of the fifth embodiment.
  • the first and second switching devices 2 and 5 are configured by horizontal elements.
  • the first gate resistor 4 may be constituted by a diffused resistor formed on the semiconductor substrate constituting the chip or a metal resistor formed on the surface side of the semiconductor substrate via an insulating film or the like.
  • all of the first and second gate resistors 4 and 7 and the Zener diode 6 may be configured on the same chip. Also in this case, since the second gate resistor 7 is provided in the same chip, the same effect as in the fifth embodiment can be obtained.
  • the numerical value of the gate voltage applied by the drive circuit 3 is an example, and may be appropriately determined based on the threshold voltage of the first switching device 2 or the like.
  • the three-phase motor etc. were mentioned as an example as an example of the load 1, another thing may be used.
  • 1 and 2 show the most simplified circuit configuration of the load driving device according to the first and second embodiments. However, other elements may be arranged in the circuit. .

Landscapes

  • Electronic Switches (AREA)

Abstract

Provided is a load driving apparatus having: a first switching device (2) for supplying current to a load (1); a first gate resistor (4) which is connected to the gate of the first switching device; a drive circuit (3) which is connected to the first gate resistor at the side thereof opposite from the side connected to the gate of the first switching device, and which applies a gate voltage; a second switching device (5) which permits current to flow between the drain and the source thereof when the gate voltage exceeds a voltage of a prescribed threshold value, such drain and source being connected between the gate and the drain of the first switching device; a second gate resistor (7) which is connected to the gate of the second switching device; and a zener diode (6) which is connected between the gate and the drain of the second switching device.

Description

負荷駆動装置Load drive device 関連出願の相互参照Cross-reference of related applications
 本出願は、2015年4月3日に出願された日本特許出願番号2015-76859号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2015-76859 filed on April 3, 2015, the contents of which are incorporated herein by reference.
 本開示は、負荷への電力供給を制御するスイッチングデバイス(半導体スイッチング素子)を有し、このスイッチングデバイスを駆動回路によって駆動することで負荷への電力供給を制御する負荷駆動装置に関するものである。 The present disclosure relates to a load driving apparatus that includes a switching device (semiconductor switching element) that controls power supply to a load, and controls the power supply to the load by driving the switching device with a drive circuit.
 従来より、負荷への電力供給をスイッチングデバイスを用いて行う負荷駆動装置が知られている。特に、窒化ガリウム(以下、GaNという)に代表される窒化物半導体は、その物性値(バンドギャップエネルギーEg=3.4eV、電子のドリフト速度2.7×107cm/s、絶縁破壊電界4.0×106V/cm)より、パワー系のスイッチングデバイスに適している。 2. Description of the Related Art Conventionally, a load driving apparatus that performs power supply to a load using a switching device is known. In particular, a nitride semiconductor represented by gallium nitride (hereinafter referred to as GaN) has physical properties (bandgap energy Eg = 3.4 eV, electron drift velocity 2.7 × 10 7 cm / s, dielectric breakdown electric field 4 .0 than × 10 6 V / cm), it is suitable for switching devices of the power system.
 例えば、非特許文献1において、その素材のもつ能力の高さから、窒化物半導体を代表する素子であるGaN-HEMT(窒化ガリウム高電子移動度トランジスタ)において、低オン抵抗化が実現されていることが記載されている。具体的には、オン抵抗、耐圧の素子リミットとして、200V耐圧をもつGaN-HEMTデバイスにおいて、Siを用いたMOSFET(金属―酸化膜―半導体電界効果トランジスタ)の1/10、IGBT(絶縁ゲート倍ポートトランジスタ)の1/3以下の低オン抵抗化が実現されている。 For example, in Non-Patent Document 1, a low on-resistance is realized in a GaN-HEMT (gallium nitride high electron mobility transistor), which is an element representative of a nitride semiconductor, due to the high capability of the material. It is described. Specifically, in a GaN-HEMT device having a 200V breakdown voltage as an on-resistance and breakdown voltage element limit, 1/10 of MOSFET (metal-oxide film-semiconductor field effect transistor) using Si, IGBT (insulated gate multiple) The on-resistance can be reduced to 1/3 or less of that of a port transistor.
 しかしながら、半導体スイッチング素子、特にGaN-HEMTを例えばインダクタ素子などの誘導負荷(以下、L負荷という)のある電源や、L負荷モータを有するインバータ等のスイッチとして適用する場合、L負荷耐量が無いという問題がある。このため、保護ダイオードを用いてL負荷耐量を得られるようにしている。これは、より大きなL負荷が用いられる場合に、Si-IGBTでも使われている方法である。 However, when a semiconductor switching element, particularly GaN-HEMT, is applied as a power source having an inductive load (hereinafter referred to as an L load) such as an inductor element, or a switch such as an inverter having an L load motor, it is said that there is no L load tolerance. There's a problem. For this reason, the L load withstand capability can be obtained by using a protection diode. This is a method also used in Si-IGBT when a larger L load is used.
 上記した保護ダイオードを用いる形態をGaN-HEMTに応用する場合のクランプ動作について、図7に示す負荷駆動装置の回路構成を参照して説明する。これは、ノーマリオフ型のGaN-HEMTがオフ、つまりゲート電圧VG=0Vのときの動作である。GaN-HEMTがオフの際に、ドレインに印加される高電圧、高エネルギーから、スイッチングデバイスを保護する機能を発揮する。 A clamp operation when the above-described embodiment using the protection diode is applied to a GaN-HEMT will be described with reference to the circuit configuration of the load driving device shown in FIG. This is an operation when the normally-off GaN-HEMT is off, that is, when the gate voltage VG = 0V. When the GaN-HEMT is off, it functions to protect the switching device from high voltage and high energy applied to the drain.
 図7に示すように、GaN-HEMT100のゲートに駆動回路101からゲート抵抗102を介してゲート電圧を印加することでGaN-HEMT100をオンさせ、GaN-HEMT100のドレインに接続されたL負荷103に電流供給を行う回路になっている。GaN-HEMT100のゲート-ドレイン間にはツェナーダイオード104が接続され、ゲート-ソース間にも高電圧保護用のツェナーダイオード105が接続されている。 As shown in FIG. 7, the gate voltage is applied to the gate of the GaN-HEMT 100 from the drive circuit 101 via the gate resistor 102 to turn on the GaN-HEMT 100, and the L load 103 connected to the drain of the GaN-HEMT 100 is applied. The circuit supplies current. A Zener diode 104 is connected between the gate and drain of the GaN-HEMT 100, and a Zener diode 105 for high voltage protection is also connected between the gate and source.
 このような回路において、GaN-HEMT100のドレイン電圧が、ツェナーダイオード104の動作電圧となるツェナー降伏電圧(以下、ブレイク電圧という)Vz以上になると、このツェナーダイオード104を通ってGaN-HEMT100のドレインからゲートを経てGNDに電流が流れる(図7中の経路(1)参照)。このときに流れる電流とゲート抵抗102により、ゲート電圧VGが発生し、この電流が所定の電流値以上になるとGaN-HEMT100が再びオンすることでL負荷103側から電流が流される(図7中の経路(2)参照)。 In such a circuit, when the drain voltage of the GaN-HEMT 100 becomes equal to or higher than a Zener breakdown voltage (hereinafter referred to as a break voltage) Vz, which is the operating voltage of the Zener diode 104, the drain voltage of the GaN-HEMT 100 passes through the Zener diode 104. A current flows to the GND through the gate (see the path (1) in FIG. 7). A gate voltage VG is generated by the current flowing at this time and the gate resistance 102. When this current exceeds a predetermined current value, the GaN-HEMT 100 is turned on again, and a current flows from the L load 103 side (in FIG. 7). Route (2)).
 この結果、ドレインに印加される高電圧、印加エネルギーは、GaN-HEMT100などが形成されたチップ全体で消費されることとなり、高エネルギー耐量を確保し易くなる。 As a result, the high voltage and applied energy applied to the drain are consumed by the entire chip on which the GaN-HEMT 100 or the like is formed, and it is easy to ensure a high energy resistance.
 したがって、GaN-HEMT100のしきい値電圧Vtとゲート抵抗102の関係から求まる電流値のときにゲート-ドレイン間のツェナーダイオード104のブレイク電圧Vzがドレイン・クランプ電圧となる。 Therefore, when the current value is obtained from the relationship between the threshold voltage Vt of the GaN-HEMT 100 and the gate resistance 102, the break voltage Vz of the Zener diode 104 between the gate and the drain becomes the drain clamp voltage.
 しかしながら、このような回路構成を用いたドレインに印加される高電圧、高エネルギーの耐量確保は、次に示すような問題が発生する。 However, securing the tolerance of high voltage and high energy applied to the drain using such a circuit configuration causes the following problems.
 すなわち、上記回路構成では、回路速度を決定するゲート抵抗102の抵抗値に依存して、経路(1)を流れる電流の電流値とそのときのゲート電圧VGが変化するので、ゲート抵抗102に対する汎用性がない。また、回路速度を高速化するために、ゲート抵抗102を低抵抗化すると、GaN-HEMT100をオンするゲート電圧VGにするための電流値が必要になり、ツェナーダイオード104の容量の増大を招く。ツェナーダイオード104の容量の増大は、GaN-HEMT100と同一チップ内にツェナーダイオード104を内蔵する形態ならばチップ面積の増大を招く。また、ツェナーダイオード104をGaN-HEMT100が形成されたチップに対して外付けする外付けツェナーダイオードとする形態ならば、同じツェナーダイオードを用いることができず、汎用性に欠ける。いずれにしてもコスト増大を招く。 That is, in the above circuit configuration, the current value of the current flowing through the path (1) and the gate voltage VG at that time change depending on the resistance value of the gate resistor 102 that determines the circuit speed. There is no sex. Further, when the resistance of the gate resistor 102 is reduced in order to increase the circuit speed, a current value for setting the gate voltage VG to turn on the GaN-HEMT 100 is required, and the capacity of the Zener diode 104 is increased. An increase in the capacitance of the Zener diode 104 causes an increase in chip area if the Zener diode 104 is built in the same chip as the GaN-HEMT 100. Further, if the Zener diode 104 is an external Zener diode that is externally attached to the chip on which the GaN-HEMT 100 is formed, the same Zener diode cannot be used and lacks versatility. In any case, the cost increases.
 なお、ここではスイッチングデバイスとしてGaN-HEMT100を用いた回路構成について説明したが、他のスイッチングデバイス、例えばMOSFETやIGBTについても、同様のことが言える。 Although the circuit configuration using the GaN-HEMT 100 as a switching device has been described here, the same can be said for other switching devices such as MOSFETs and IGBTs.
 本開示は、様々なゲート抵抗に対応して耐量確保を行える、ゲートに対してゲート抵抗を介して駆動回路からのゲート電圧が印加されるスイッチングデバイスを備えた負荷駆動装置を提供することを目的とする。 An object of the present disclosure is to provide a load driving device including a switching device capable of ensuring a withstand capability corresponding to various gate resistances, and applying a gate voltage from a driving circuit to the gate via the gate resistance. And
 本開示の態様において、負荷駆動装置は、ゲートに対してゲート電圧が印加されることによりドレイン-ソース間に電流を流すことで、負荷への電流供給を行う半導体スイッチング素子にて構成された第1スイッチングデバイスと、前記第1スイッチングデバイスのゲートに接続された第1ゲート抵抗と、前記第1ゲート抵抗のうち前記第1スイッチングデバイスのゲートと接続される側と反対側に接続され、前記ゲート電圧の印加を行う駆動回路と、ゲートの電圧が所定のしきい値電圧よりも高くなるとドレイン-ソース間に電流を流すと共に、該ドレイン-ソースが前記第1スイッチングデバイスのゲート-ドレイン間に接続され、半導体スイッチング素子にて構成された第2スイッチングデバイスと、前記第2スイッチングデバイスのゲートに対して接続された第2ゲート抵抗と、前記第2スイッチングデバイスのゲート-ドレイン間に接続されたツェナーダイオードとを有している。 In the aspect of the present disclosure, the load driving device includes a semiconductor switching element configured to supply a current to the load by causing a current to flow between the drain and the source by applying a gate voltage to the gate. A switching device; a first gate resistor connected to a gate of the first switching device; and a side of the first gate resistor connected to a side opposite to a side connected to the gate of the first switching device, A driving circuit for applying a voltage, and when a gate voltage exceeds a predetermined threshold voltage, a current flows between the drain and the source, and the drain and the source are connected between the gate and the drain of the first switching device. And a second switching device constituted by a semiconductor switching element, and the second switching device And a Zener diode connected between the drain - a second gate resistor connected to the gate, the gate of the second switching device.
 このように、第1スイッチングデバイスのゲート-ドレイン間に第2スイッチングデバイスを配置している。また、第2スイッチングデバイスのゲート-ドレイン間にツェナーダイオードを配置し、ゲートに第2ゲート抵抗を接続している。このような構成とすることで、ツェナーダイオードのブレイク電圧および第2ゲート抵抗の抵抗値とツェナーダイオードおよび第2ゲート抵抗に流れる電流に基づいて、第2スイッチングデバイスを動作させられる。そして、第2スイッチングデバイスをオンさせることで高い動作電流を得ることができることから、ツェナーダイオードの容量を増大させなくても、第1スイッチングデバイスをオンさせられる。 In this way, the second switching device is arranged between the gate and drain of the first switching device. Further, a Zener diode is disposed between the gate and the drain of the second switching device, and a second gate resistor is connected to the gate. With this configuration, the second switching device can be operated based on the break voltage of the Zener diode, the resistance value of the second gate resistor, and the current flowing through the Zener diode and the second gate resistor. Since a high operating current can be obtained by turning on the second switching device, the first switching device can be turned on without increasing the capacity of the Zener diode.
 したがって、第1ゲート抵抗の抵抗値が様々に変化したとしても、それに対応して耐量確保を行うことが可能となる。さらに、第1ゲート抵抗の抵抗値のレンジを広げられることから、回路速度の高速化のために第1ゲート抵抗の抵抗値を低抵抗化したとしても、ツェナーダイオードの容量を増大させることなく、耐量確保が行える。したがって、ツェナーダイオードを第1スイッチングデバイスなどと同一チップに内蔵する場合であればチップ面積増大を抑制できるし、外付けツェナーダイオードとする場合には同じものを用いることができて汎用性を高めることが可能となる。 Therefore, even if the resistance value of the first gate resistor changes variously, it is possible to ensure the withstand capability correspondingly. Furthermore, since the range of the resistance value of the first gate resistor can be expanded, even if the resistance value of the first gate resistor is lowered to increase the circuit speed, the capacitance of the Zener diode is not increased. It is possible to secure the tolerance. Therefore, if the Zener diode is built in the same chip as the first switching device or the like, an increase in the chip area can be suppressed, and when an external Zener diode is used, the same can be used to increase versatility. Is possible.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本開示の第1実施形態にかかる負荷駆動装置の回路構成を示した図であり、 図2は、本開示の第2実施形態にかかる負荷駆動装置の回路構成を示した図であり、 図3は、本開示の第3実施形態で説明する負荷駆動装置を構成する各部の実装構造の一例を示した図であり、 図4は、本開示の第4実施形態で説明する負荷駆動装置を構成する各部の実装構造の一例を示した図であり、 図5は、本開示の第5実施形態で説明する負荷駆動装置を構成する各部の実装構造の一例を示した図であり、 図6は、本開示の第6実施形態で説明する負荷駆動装置を構成する各部の実装構造の一例を示した図であり、 図7は、従来の負荷駆動装置の回路構成を示した図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a diagram illustrating a circuit configuration of the load driving device according to the first embodiment of the present disclosure. FIG. 2 is a diagram illustrating a circuit configuration of the load driving device according to the second embodiment of the present disclosure. FIG. 3 is a diagram illustrating an example of a mounting structure of each unit constituting the load driving device described in the third embodiment of the present disclosure. FIG. 4 is a diagram illustrating an example of a mounting structure of each unit included in the load driving device described in the fourth embodiment of the present disclosure. FIG. 5 is a diagram illustrating an example of a mounting structure of each part constituting the load driving device described in the fifth embodiment of the present disclosure. FIG. 6 is a diagram illustrating an example of a mounting structure of each unit included in the load driving device described in the sixth embodiment of the present disclosure. FIG. 7 is a diagram showing a circuit configuration of a conventional load driving device.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals.
 (第1実施形態)
 本開示の第1実施形態にかかる負荷駆動装置について、図1を参照して説明する。
(First embodiment)
A load driving device according to a first embodiment of the present disclosure will be described with reference to FIG.
 図1に示す負荷駆動装置は、負荷1に接続された第1スイッチングデバイス2と、第1スイッチングデバイス2をオンすることにより負荷1への電力供給を行う駆動回路3などを有するものである。
負荷1は、電力供給のオンオフによって駆動される装置であればどのようなものであってもよく、例えば第1スイッチングデバイス2を複数個備えることでインバータを構成すれば、三相モータなどとすることもできる。例えば、本実施形態の場合、負荷1を挟んで第1スイッチングデバイス2の反対側に図示しない電源が備えられており、第1スイッチングデバイス2がオンさせられると、電源からGNDへの電流経路が導通させられ、負荷1に対して電流供給が為される。
The load driving device shown in FIG. 1 includes a first switching device 2 connected to a load 1, a drive circuit 3 that supplies power to the load 1 by turning on the first switching device 2, and the like.
The load 1 may be any device as long as it is driven by turning on and off the power supply. For example, if an inverter is configured by providing a plurality of first switching devices 2, a three-phase motor or the like is provided. You can also For example, in the case of the present embodiment, a power source (not shown) is provided on the opposite side of the first switching device 2 across the load 1, and when the first switching device 2 is turned on, a current path from the power source to GND is established. Conducted, current is supplied to the load 1.
 第1スイッチングデバイス2は、GaN-HEMT、IGBTもしくはパワーMOSFETなどの半導体スイッチング素子によって構成される。なお、本実施形態では第1スイッチングデバイス2をGaN-HEMTで構成している場合を想定して説明する。第1スイッチングデバイス2のドレイン端子D1が負荷1に接続され、ソース端子S1がGND接地されている。なお、ここではソース端子S1をGND接地した場合について示してあるが、ソース端子S1側は基準電位点とされ、他の電位とされることもある。 The first switching device 2 is configured by a semiconductor switching element such as a GaN-HEMT, IGBT, or power MOSFET. In the present embodiment, the case where the first switching device 2 is composed of GaN-HEMT will be described. The drain terminal D1 of the first switching device 2 is connected to the load 1, and the source terminal S1 is grounded to GND. Here, although the case where the source terminal S1 is grounded is shown, the source terminal S1 side is set as a reference potential point and may be set to another potential.
 また、第1スイッチングデバイス2のゲートG1が第1ゲート抵抗4を介して駆動回路3に接続されており、駆動回路3から出力されるゲート電圧が第1ゲート抵抗4を介して第1スイッチングデバイス2のゲートG1に印加されるようになっている。 The gate G1 of the first switching device 2 is connected to the drive circuit 3 via the first gate resistor 4, and the gate voltage output from the drive circuit 3 is connected to the first switching device via the first gate resistor 4. 2 is applied to the second gate G1.
 さらに、第1スイッチングデバイス2のゲート-ドレイン間には、もう一つのスイッチングデバイスとなる第2スイッチングデバイス5がツェナーダイオード6および第2ゲート抵抗7と共に配置されている。 Furthermore, between the gate and drain of the first switching device 2, a second switching device 5 serving as another switching device is disposed together with a Zener diode 6 and a second gate resistor 7.
 具体的には、第1スイッチングデバイス2のゲートG1に対して第2スイッチングデバイス5のソース端子S2が接続され、第1スイッチングデバイス2と第2スイッチングデバイス5の各ドレイン端子D1、D2同士が接続されている。第1スイッチングデバイス2のサイズと比較して、第2スイッチングデバイス5のサイズが小さくされている。より詳しくは、第1スイッチングデバイス2のゲート幅をWg1とし、第2スイッチングデバイス5のゲート幅をWg2とすると、これらの関係はWg1>Wg2が成り立つように第1、第2スイッチングデバイス2、5の寸法設計が為されている。 Specifically, the source terminal S2 of the second switching device 5 is connected to the gate G1 of the first switching device 2, and the drain terminals D1 and D2 of the first switching device 2 and the second switching device 5 are connected to each other. Has been. Compared to the size of the first switching device 2, the size of the second switching device 5 is made smaller. More specifically, when the gate width of the first switching device 2 is Wg1, and the gate width of the second switching device 5 is Wg2, the relationship between the first and second switching devices 2, 5 is such that Wg1> Wg2. Dimensional design is made.
 ツェナーダイオード6は、第2スイッチングデバイス5のゲート-ドレイン間に接続されている。ツェナーダイオード6は、例えばp型およびn型にドープしたポリシリコンを複数個多段に並べることによって構成されている。ツェナーダイオード6は、第2スイッチングデバイス5のドレイン側から第2ゲート抵抗7の方向に対してもその逆方向に対しても、所定のツェナー降伏電圧をブレイク電圧Vzとして、ブレイク電圧Vz以上の電圧が掛かったときに電流が流れるようになっている。そして、第1スイッチングデバイス2を耐圧VB1、第2スイッチングデバイス5の耐圧をVB2とすると、ツェナーダイオード6のブレイク電圧Vzは耐圧VB1、VB2よりも低く設定してある。したがって、第1、第2スイッチングデバイス2、5が破壊される前にツェナーダイオード6のブレイク電圧Vzに達して、ツェナーダイオード6が導通させられるようになっている。 The zener diode 6 is connected between the gate and drain of the second switching device 5. The Zener diode 6 is configured by, for example, arranging a plurality of p-type and n-type doped polysilicon in multiple stages. The Zener diode 6 is a voltage equal to or higher than the break voltage Vz with a predetermined Zener breakdown voltage as the break voltage Vz from the drain side of the second switching device 5 to the direction of the second gate resistor 7 and in the opposite direction. When it is applied, current flows. When the first switching device 2 is set to withstand voltage VB1 and the second switching device 5 is set to withstand voltage VB2, the break voltage Vz of the Zener diode 6 is set lower than the withstand voltages VB1 and VB2. Therefore, before the first and second switching devices 2 and 5 are destroyed, the break voltage Vz of the Zener diode 6 is reached and the Zener diode 6 is made conductive.
 第2ゲート抵抗7は、第2スイッチングデバイス5のゲートに接続されており、本実施形態の場合、第2ゲート抵抗7のうち第2スイッチングデバイス5のゲートG2に接続される側とは反対側がGND接地されている。 The second gate resistor 7 is connected to the gate of the second switching device 5. In this embodiment, the second gate resistor 7 has a side opposite to the side connected to the gate G <b> 2 of the second switching device 5. GND is grounded.
 なお、第1スイッチングデバイス2のゲート-ソース間に備えられたツェナーダイオード8は、高電圧保護用ツェナーダイオードである。第1スイッチングデバイス2のゲート-ソース間電圧が高電圧になろうとしたときにツェナーダイオード8が導通させられることで、これらの間が所定電圧以上になることを防止し、第1スイッチングデバイス2が保護されるようにしてある。 The Zener diode 8 provided between the gate and the source of the first switching device 2 is a high voltage protection Zener diode. The Zener diode 8 is turned on when the gate-source voltage of the first switching device 2 is going to be a high voltage, thereby preventing the first switching device 2 from exceeding a predetermined voltage. It is designed to be protected.
 以上のようにして、本実施形態にかかる負荷駆動装置が構成されている。続いて、このように構成された本実施形態にかかる負荷駆動装置の作動について説明する。 As described above, the load driving device according to the present embodiment is configured. Next, the operation of the load driving device according to the present embodiment configured as described above will be described.
 まず、駆動回路3から例えばパルス状のゲート電圧(例えば20V)が印加されることによって第1スイッチングデバイス2がオンさせられる。これにより、第1スイッチングデバイス2のドレイン-ソース間が導通し、図示しない電源からの電流供給に基づいて負荷1を通じてGNDに電流Iが流れる電流経路が導通させられる。これにより、負荷1に対して電流供給が為され、負荷1が駆動させられる。 First, the first switching device 2 is turned on by applying, for example, a pulsed gate voltage (for example, 20 V) from the drive circuit 3. Thereby, the drain-source of the first switching device 2 becomes conductive, and the current path through which the current I flows to the GND through the load 1 is made conductive based on the current supply from the power source (not shown). As a result, current is supplied to the load 1 and the load 1 is driven.
 一方、駆動回路3からのゲート電圧の印加が停止させられると、第1スイッチングデバイス2はオフさせられる。このとき、第1、第2スイッチングデバイス2、5のドレイン電圧が負荷1のL負荷エネルギーによって上昇する。そして、第1、第2スイッチングデバイス2、5のドレイン電圧がツェナーダイオード6の動作電圧となるブレイク電圧Vz以上になると、ツェナーダイオード6が導通させられる。このため、ツェナーダイオード6を通じて第2スイッチングデバイス5のドレインからゲートおよび第2ゲート抵抗7を経て、GNDに電流が流れる(図1中の経路(1)参照)。このときに流れる電流の電流値は、ツェナーダイオード6および第2ゲート抵抗7によって決まる。 On the other hand, when the application of the gate voltage from the drive circuit 3 is stopped, the first switching device 2 is turned off. At this time, the drain voltages of the first and second switching devices 2 and 5 are increased by the L load energy of the load 1. When the drain voltage of the first and second switching devices 2 and 5 becomes equal to or higher than the break voltage Vz that is the operating voltage of the Zener diode 6, the Zener diode 6 is turned on. For this reason, a current flows from the drain of the second switching device 5 to the GND through the Zener diode 6 through the gate and the second gate resistor 7 (see the path (1) in FIG. 1). The current value of the current flowing at this time is determined by the Zener diode 6 and the second gate resistor 7.
 そして、第2ゲート抵抗7に対して電流が流れることで、第2スイッチングデバイス5のゲート電圧が第2スイッチングデバイス5のしきい値電圧よりも高くなり、第2スイッチングデバイス5がオンされてドレイン-ソース間に電流が流れる(図1中の経路(2)参照)。 Then, when a current flows through the second gate resistor 7, the gate voltage of the second switching device 5 becomes higher than the threshold voltage of the second switching device 5, and the second switching device 5 is turned on and drained. -A current flows between the sources (see path (2) in Fig. 1).
 このとき、第2スイッチングデバイス5がオンされていて駆動能力が高く、第2スイッチングデバイス5のドレイン-ソース間に電流を多く流すことができる。このため、第1スイッチングデバイス2のゲートや第1ゲート抵抗4側に流せる電流(以下、動作電流という)を多くすることができる。例えば、従来の回路構成のように第1スイッチングデバイス2のゲート-ドレイン間にツェナーダイオードのみを配置する構造である場合と比較して、本実施形態のツェナーダイオード6の寸法を小さくしても、従来と同様の駆動能力を得ることができる。具体的には、本実施形態の回路構成に備えられるツェナーダイオード6の幅を従来の構造のツェナーダイオードと同じ幅とした場合を想定すると、動作電流を1桁以上高くできる。 At this time, the second switching device 5 is turned on and the driving capability is high, and a large amount of current can flow between the drain and source of the second switching device 5. For this reason, the electric current (henceforth operating current) which can be sent through the gate of the 1st switching device 2 and the 1st gate resistance 4 side can be increased. For example, as compared with a case where only the Zener diode is arranged between the gate and drain of the first switching device 2 as in the conventional circuit configuration, even if the size of the Zener diode 6 of the present embodiment is reduced, A driving ability similar to the conventional one can be obtained. Specifically, assuming that the Zener diode 6 provided in the circuit configuration of the present embodiment has the same width as that of a Zener diode having a conventional structure, the operating current can be increased by one digit or more.
 したがって、第1ゲート抵抗4については、従来の回路構成の場合と比較して1/10の抵抗値であったとしても第1スイッチングデバイス2をオンさせることができ、L負荷エネルギーを放出させることが可能となる。また、第1ゲート抵抗4の抵抗値を従来の回路構成の場合と比較して1/10にしても良くなることから、第1ゲート抵抗4の抵抗値のレンジを従来の回路構成と比較して10倍に高めることが可能になる。よって、第1ゲート抵抗4の抵抗値が様々に変化したとしても、それに対応して耐量確保を行うことが可能となる。 Therefore, even if the first gate resistor 4 has a resistance value of 1/10 that of the conventional circuit configuration, the first switching device 2 can be turned on and the L load energy can be released. Is possible. In addition, since the resistance value of the first gate resistor 4 may be reduced to 1/10 compared with the conventional circuit configuration, the resistance value range of the first gate resistor 4 is compared with the conventional circuit configuration. Can be increased 10 times. Therefore, even if the resistance value of the first gate resistor 4 changes variously, it is possible to ensure the withstand amount correspondingly.
 以上説明したように、本実施形態にかかる負荷駆動装置では、第1スイッチングデバイス2のゲート-ドレイン間に第2スイッチングデバイス5を配置している。また、第2スイッチングデバイス5のゲート-ドレイン間にツェナーダイオード6を配置し、ゲートに第2ゲート抵抗7を接続している。このような構成とすることで、ツェナーダイオード6のブレイク電圧Vzと第2ゲート抵抗7の抵抗値およびツェナーダイオード6および第2ゲート抵抗7に流れる電流に基づいて、第2スイッチングデバイス5を動作させられる。そして、第2スイッチングデバイス5をオンさせることで高い動作電流を得ることができることから、ツェナーダイオード6の容量を増大させなくても、第1スイッチングデバイス5をオンさせられる。 As described above, in the load driving device according to the present embodiment, the second switching device 5 is arranged between the gate and the drain of the first switching device 2. Further, a Zener diode 6 is disposed between the gate and drain of the second switching device 5, and a second gate resistor 7 is connected to the gate. With this configuration, the second switching device 5 is operated based on the break voltage Vz of the Zener diode 6, the resistance value of the second gate resistor 7, and the current flowing through the Zener diode 6 and the second gate resistor 7. It is done. Since a high operating current can be obtained by turning on the second switching device 5, the first switching device 5 can be turned on without increasing the capacity of the Zener diode 6.
 したがって、第1ゲート抵抗4の抵抗値が様々に変化したとしても、それに対応して耐量確保を行うことが可能となる。さらに、第1ゲート抵抗4の抵抗値のレンジを広げられることから、回路速度の高速化のために第1ゲート抵抗4の抵抗値を低抵抗化したとしても、ツェナーダイオード6の容量を増大させることなく、耐量確保が行える。したがって、ツェナーダイオード6を第1スイッチングデバイス2などと同一チップに内蔵する場合であればチップ面積増大を抑制できるし、外付けツェナーダイオードとする場合には同じものを用いることができて汎用性を高めることが可能となる。 Therefore, even if the resistance value of the first gate resistor 4 changes variously, it is possible to ensure the withstand capability correspondingly. Further, since the range of the resistance value of the first gate resistor 4 can be expanded, even if the resistance value of the first gate resistor 4 is lowered to increase the circuit speed, the capacitance of the Zener diode 6 is increased. Without having to do so, it is possible to ensure the tolerance. Therefore, if the Zener diode 6 is built in the same chip as the first switching device 2 or the like, an increase in the chip area can be suppressed. It becomes possible to raise.
 例えば、第1ゲート抵抗4の抵抗値Rg1=100Ωの場合、ゲート電圧G1を5Vに持ち上げるためには、50mAの動作電流を要する。従来構造において、ツェナーダイオードにブレイク電圧Vzが加わっているときに発生させられる動作電流が50mAであるとする場合、例えば厚さ250nmのポリシリコンでツェナーダイオードを構成すると100mm以上の幅を必要とする。このポリシリコンを設置する面積がチップ面積増大要因になる。 For example, when the resistance value Rg1 of the first gate resistor 4 is 100Ω, an operating current of 50 mA is required to raise the gate voltage G1 to 5V. In the conventional structure, when the operating current generated when the break voltage Vz is applied to the Zener diode is 50 mA, for example, if the Zener diode is composed of polysilicon having a thickness of 250 nm, a width of 100 mm or more is required. . The area where the polysilicon is installed becomes a factor for increasing the chip area.
 これに対して、本実施形態の構造の場合、第2ゲート抵抗7が駆動回路3から切り離されていて第2ゲート抵抗7の抵抗値Rg2を任意に設定できる。このため、動作電流として50mAを発生させるために、ゲート幅Wg2=250μm程度とされる第2スイッチングデバイス5を備えると共に第2ゲート抵抗7の抵抗値Rg2を10000Ωとすれば、ツェナーダイオード6を構成するポリシリコンの幅は従来構造の1/100、つまり1mmにできる。したがって、本実施形態の構造の場合、ツェナーダイオード6を第1スイッチングデバイス2などと同一チップに内蔵する場合であればチップ面積増大を抑制できるし、外付けツェナーダイオードとする場合には同じものを用いることができて汎用性を高めることが可能となる。 On the other hand, in the case of the structure of this embodiment, the second gate resistor 7 is disconnected from the drive circuit 3, and the resistance value Rg2 of the second gate resistor 7 can be arbitrarily set. For this reason, in order to generate 50 mA as an operating current, if the second switching device 5 having a gate width Wg2 = about 250 μm is provided and the resistance value Rg2 of the second gate resistor 7 is 10000Ω, the Zener diode 6 is configured. The width of the polysilicon to be formed can be 1/100 of the conventional structure, that is, 1 mm. Therefore, in the case of the structure of this embodiment, if the Zener diode 6 is built in the same chip as the first switching device 2 or the like, an increase in the chip area can be suppressed. It can be used and versatility can be improved.
 (第2実施形態)
 本開示の第2実施形態について説明する。本実施形態は、第1実施形態に対して第2ゲート抵抗7の接続先を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Second Embodiment)
A second embodiment of the present disclosure will be described. In this embodiment, the connection destination of the second gate resistor 7 is changed with respect to the first embodiment, and the other parts are the same as those in the first embodiment. Therefore, only the parts different from the first embodiment will be described. To do.
 図2に示すように、本実施形態にかかる負荷駆動装置は、基本的な回路構成については第1実施形態と同様である。ただし、第2ゲート抵抗7のうち第2スイッチングデバイス5のゲートに接続される側とは反対側が第1スイッチングデバイス2のゲートと第1ゲート抵抗4との間に接続されるようにしている。 As shown in FIG. 2, the load driving device according to the present embodiment is the same as the first embodiment in terms of the basic circuit configuration. However, the side of the second gate resistor 7 opposite to the side connected to the gate of the second switching device 5 is connected between the gate of the first switching device 2 and the first gate resistor 4.
 このような構成とされる場合、第1スイッチングデバイス2をオンさせるときは、第2スイッチングデバイス5におけるゲート-ソース間の電位が同じであることから、第2スイッチングデバイス5はオフの状態のままとなる。このため、第2スイッチングデバイス5やツェナーダイオード6および第2ゲート抵抗7は特に作用せず、駆動回路3は第1ゲート抵抗4を介して第1スイッチングデバイス2を制御できる。 In the case of such a configuration, when the first switching device 2 is turned on, the second switching device 5 remains off because the potential between the gate and the source in the second switching device 5 is the same. It becomes. For this reason, the second switching device 5, the Zener diode 6 and the second gate resistor 7 do not particularly act, and the drive circuit 3 can control the first switching device 2 via the first gate resistor 4.
 一方、駆動回路3からのゲート電圧の印加が停止させられて第1スイッチングデバイス2がオフさせられるときには、第1、第2スイッチングデバイス2、5のドレイン電圧が負荷1のL負荷エネルギーによって上昇する。そして、第1、第2スイッチングデバイス2、5のドレイン電圧がツェナーダイオード6の動作電圧となるブレイク電圧Vz以上になると、ツェナーダイオード6が導通させられる。このため、ツェナーダイオード6を通じて第2スイッチングデバイス5のドレインからゲート、さらには第2ゲート抵抗7および第1ゲート抵抗4を経て、GNDに電流が流れる(図2中の経路(1)参照)。これにより、第1実施形態と同様の動作が行われ、L負荷エネルギーを放出させることが可能となる。 On the other hand, when the application of the gate voltage from the drive circuit 3 is stopped and the first switching device 2 is turned off, the drain voltages of the first and second switching devices 2 and 5 are increased by the L load energy of the load 1. . When the drain voltage of the first and second switching devices 2 and 5 becomes equal to or higher than the break voltage Vz that is the operating voltage of the Zener diode 6, the Zener diode 6 is turned on. Therefore, a current flows through the Zener diode 6 from the drain of the second switching device 5 to the gate, and further through the second gate resistor 7 and the first gate resistor 4 (see the route (1) in FIG. 2). Thereby, the same operation as in the first embodiment is performed, and it becomes possible to release L load energy.
 このように、第2ゲート抵抗7の接続先を第1スイッチングデバイス2のゲートと第1ゲート抵抗4との間としても、第1実施形態と同様の効果を得ることができる。また、このような構成の場合、駆動回路3より第1スイッチングデバイス2に印加するゲート電圧を正電圧だけでなく負電圧とすることも可能となる。例えば、ゲート電圧を±20Vに制御できる。すなわち、負荷1から第1スイッチングデバイス2のゲートと第1ゲート抵抗4との接続点までの間にツェナーダイオード6が備えられていることから、第1スイッチングデバイス2のゲート電圧が負電圧となっても、ツェナーダイオード6によって負荷1側に電流が流れない。このように、第1スイッチングデバイス2に印加するゲート電圧を正電圧だけでなく負電圧にもできるようにすることで、ターンオフ時の速度を早くすることが可能となり、スイッチング損失の低減を図ることが可能となる。 Thus, even when the connection destination of the second gate resistor 7 is between the gate of the first switching device 2 and the first gate resistor 4, the same effect as in the first embodiment can be obtained. In the case of such a configuration, the gate voltage applied from the drive circuit 3 to the first switching device 2 can be a negative voltage as well as a positive voltage. For example, the gate voltage can be controlled to ± 20V. That is, since the Zener diode 6 is provided between the load 1 and the connection point between the gate of the first switching device 2 and the first gate resistor 4, the gate voltage of the first switching device 2 becomes a negative voltage. However, no current flows to the load 1 side due to the Zener diode 6. In this way, by making the gate voltage applied to the first switching device 2 not only a positive voltage but also a negative voltage, it is possible to increase the speed at the turn-off time and to reduce the switching loss. Is possible.
 (第3実施形態)
 本実施形態では、第1、第2実施形態で説明した負荷駆動装置の実装構造について説明する。
(Third embodiment)
In the present embodiment, the mounting structure of the load driving device described in the first and second embodiments will be described.
 第1、第2実施形態で示した負荷駆動装置について、図3に示すように、第1スイッチングデバイス2と第2スイッチングデバイス5およびツェナーダイオード6などをすべてディスクリート素子(外付け素子)としてプリント基板10上に実装することで構成している。このように、例えば、すべての素子をディスクリート素子として組むことができる。 As for the load driving apparatus shown in the first and second embodiments, as shown in FIG. 3, the first switching device 2, the second switching device 5, the Zener diode 6, and the like are all discrete elements (external elements). 10 is mounted. Thus, for example, all elements can be assembled as discrete elements.
 (第4実施形態)
 本実施形態も、第1、第2実施形態で説明した負荷駆動装置の実装構造について説明する。
(Fourth embodiment)
In this embodiment, the mounting structure of the load driving device described in the first and second embodiments will be described.
 第1、第2実施形態で示した負荷駆動装置について、図4に示すように、第1スイッチングデバイス2と第2スイッチングデバイス5とを同一チップで構成しつつ、ツェナーダイオード6をディスクリート素子としてプリント基板10上に実装することで構成することもできる。このように、例えば、すべての素子をディスクリート素子とするのではなく、一部の素子をディスクリート素子として組むことができる。 In the load driving device shown in the first and second embodiments, as shown in FIG. 4, the first switching device 2 and the second switching device 5 are configured on the same chip, and the Zener diode 6 is printed as a discrete element. It can also be configured by mounting on the substrate 10. Thus, for example, not all elements are discrete elements, but some elements can be assembled as discrete elements.
 第1、第2スイッチングデバイス2、5を同一チップで形成する場合、これらを横型素子によって構成すれば良く、例えばLDMOS(Laterally Diffused Metal Oxide Semiconductor)や横型のGaN-HEMTによって構成すればよい。 When the first and second switching devices 2 and 5 are formed on the same chip, these may be formed by lateral elements, for example, by LDMOS (Laterally Diffused Metal Oxide Semiconductor) or lateral GaN-HEMT.
 (第5実施形態)
 本実施形態も、第1、第2実施形態で説明した負荷駆動装置の実装構造について説明する。
(Fifth embodiment)
In this embodiment, the mounting structure of the load driving device described in the first and second embodiments will be described.
 第1、第2実施形態で示した負荷駆動装置について、図5に示すように、第1、第2スイッチングデバイス2、5に加えて、第2ゲート抵抗7やツェナーダイオード6についても同一チップで構成している。そして、図示していないが、第1ゲート抵抗4のみをディスクリート素子としている。このような構成とすることもできる。 In the load driving device shown in the first and second embodiments, as shown in FIG. 5, in addition to the first and second switching devices 2 and 5, the second gate resistor 7 and the Zener diode 6 are also formed on the same chip. It is composed. Although not shown, only the first gate resistor 4 is a discrete element. Such a configuration can also be adopted.
 このような構成とする場合、例えば第1、第2スイッチングデバイス2、5については横型素子によって構成される。第2ゲート抵抗7については、チップを構成する半導体基板に形成される拡散抵抗や半導体基板の表面側に絶縁膜などを介して形成されるメタル抵抗などによって構成される。また、ツェナーダイオード6については、チップを構成する半導体基板の表面側に絶縁膜などを介して、p型およびn型にドープしたポリシリコンを複数個多段に並べることによって構成される。 In the case of such a configuration, for example, the first and second switching devices 2 and 5 are configured by horizontal elements. The second gate resistor 7 is constituted by a diffusion resistor formed on the semiconductor substrate constituting the chip, a metal resistor formed on the surface side of the semiconductor substrate via an insulating film or the like. Further, the Zener diode 6 is configured by arranging a plurality of p-type and n-type doped polysilicon in multiple stages through an insulating film or the like on the surface side of the semiconductor substrate constituting the chip.
 このように、第1スイッチングデバイス2と第2スイッチングデバイス5とに加えて、第2ゲート抵抗7やツェナーダイオード6についても同一チップで構成しても良い。この場合、第2ゲート抵抗7についても同一チップに備えていることから、第2実施形態のように第2ゲート抵抗7を第1スイッチングデバイス2のゲートに接続した構成とする場合に特に好ましい。すなわち、第2ゲート抵抗7を第1スイッチングデバイス2のゲートに接続する場合、第1スイッチングデバイス2のゲートに繋がる外部端子に第2ゲート抵抗7も繋がるようにしておけば、第2ゲート抵抗7にのみに繋がる外部端子を備えなくても済む。したがって、外部端子の数を減少することが可能となる。 As described above, in addition to the first switching device 2 and the second switching device 5, the second gate resistor 7 and the Zener diode 6 may be configured by the same chip. In this case, since the second gate resistor 7 is also provided in the same chip, it is particularly preferable when the second gate resistor 7 is connected to the gate of the first switching device 2 as in the second embodiment. That is, when the second gate resistor 7 is connected to the gate of the first switching device 2, if the second gate resistor 7 is also connected to the external terminal connected to the gate of the first switching device 2, the second gate resistor 7. It is not necessary to provide an external terminal connected only to the terminal. Therefore, the number of external terminals can be reduced.
 また、ツェナーダイオード6を第1、第2スイッチングデバイス2、5などと同一チップに内蔵する場合、ツェナーダイオード6の容量を増大させなくても耐量確保が可能であることから、チップ面積増大を抑制できる。このような構成は、L負荷耐量のないGaN-HEMTによって第1、第2スイッチングデバイス2、5を構成する場合に特に有効であり、GaN-HEMTを用いる場合であっても、耐量確保を行いつつ、チップ面積の増大を抑制することが可能となる。 Further, when the Zener diode 6 is built in the same chip as the first and second switching devices 2 and 5 and the like, the withstand capability can be ensured without increasing the capacity of the Zener diode 6, and thus the increase in the chip area is suppressed. it can. Such a configuration is particularly effective when the first and second switching devices 2 and 5 are configured by GaN-HEMTs that do not have an L load withstand capability. Even when GaN-HEMT is used, the withstand capability is ensured. However, an increase in chip area can be suppressed.
 (第6実施形態)
 本実施形態も、第1、第2実施形態で説明した負荷駆動装置の実装構造について説明する。
(Sixth embodiment)
In this embodiment, the mounting structure of the load driving device described in the first and second embodiments will be described.
 第1、第2実施形態で示した負荷駆動装置について、図6に示すように、第1、第2スイッチングデバイス2、5に加えて、第1、第2ゲート抵抗4、7やツェナーダイオード6のすべてを同一チップで構成している。このような構成とすることもできる。 In the load driving device shown in the first and second embodiments, as shown in FIG. 6, in addition to the first and second switching devices 2 and 5, the first and second gate resistors 4 and 7 and the Zener diode 6 are used. All of these are composed of the same chip. Such a configuration can also be adopted.
 このような構成とする場合、基本的には第5実施形態と同様の構成とすることができる。また、例えば第1、第2スイッチングデバイス2、5については横型素子によって構成される。第1ゲート抵抗4については、チップを構成する半導体基板に形成される拡散抵抗や半導体基板の表面側に絶縁膜などを介して形成されるメタル抵抗などによって構成すれば良い。 In the case of such a configuration, the configuration can basically be the same as that of the fifth embodiment. Further, for example, the first and second switching devices 2 and 5 are configured by horizontal elements. The first gate resistor 4 may be constituted by a diffused resistor formed on the semiconductor substrate constituting the chip or a metal resistor formed on the surface side of the semiconductor substrate via an insulating film or the like.
 このように、第1、第2スイッチングデバイス2、5に加えて、第1、第2ゲート抵抗4、7やツェナーダイオード6のすべてを同一チップで構成しても良い。この場合にも、第2ゲート抵抗7についても同一チップに備えていることから、第5実施形態と同様の効果を得ることができる。 As described above, in addition to the first and second switching devices 2 and 5, all of the first and second gate resistors 4 and 7 and the Zener diode 6 may be configured on the same chip. Also in this case, since the second gate resistor 7 is provided in the same chip, the same effect as in the fifth embodiment can be obtained.
 (他の実施形態)
 例えば、駆動回路3が印加するゲート電圧の数値などは一例であり、第1スイッチングデバイス2のしきい値電圧などに基づいて適宜決めれば良い。また、負荷1の一例として三相モータなどを例に挙げたが、他のものであっても構わない。さらに、図1および図2では、第1、第2実施形態にかかる負荷駆動装置の回路構成を最も簡素化したものを示してあるが、回路中に他の素子が配置されていても構わない。
(Other embodiments)
For example, the numerical value of the gate voltage applied by the drive circuit 3 is an example, and may be appropriately determined based on the threshold voltage of the first switching device 2 or the like. Moreover, although the three-phase motor etc. were mentioned as an example as an example of the load 1, another thing may be used. 1 and 2 show the most simplified circuit configuration of the load driving device according to the first and second embodiments. However, other elements may be arranged in the circuit. .
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (7)

  1.  ゲートに対してゲート電圧が印加されることによりドレイン-ソース間に電流を流すことで、負荷(1)への電流供給を行う半導体スイッチング素子にて構成された第1スイッチングデバイス(2)と、
     前記第1スイッチングデバイスのゲートに接続された第1ゲート抵抗(4)と、
     前記第1ゲート抵抗のうち前記第1スイッチングデバイスのゲートと接続される側と反対側に接続され、前記ゲート電圧の印加を行う駆動回路(3)と、
     ゲートの電圧が所定のしきい値電圧よりも高くなるとドレイン-ソース間に電流を流すと共に、該ドレイン-ソースが前記第1スイッチングデバイスのゲート-ドレイン間に接続され、半導体スイッチング素子にて構成された第2スイッチングデバイス(5)と、
     前記第2スイッチングデバイスのゲートに対して接続された第2ゲート抵抗(7)と、
     前記第2スイッチングデバイスのゲート-ドレイン間に接続されたツェナーダイオード(6)と、を有している負荷駆動装置。
    A first switching device (2) composed of a semiconductor switching element for supplying a current to the load (1) by flowing a current between the drain and source by applying a gate voltage to the gate;
    A first gate resistor (4) connected to the gate of the first switching device;
    A drive circuit (3) connected to the opposite side of the first gate resistor to the side connected to the gate of the first switching device, and applying the gate voltage;
    When the gate voltage becomes higher than a predetermined threshold voltage, a current flows between the drain and the source, and the drain and the source are connected between the gate and the drain of the first switching device. A second switching device (5),
    A second gate resistor (7) connected to the gate of the second switching device;
    And a Zener diode (6) connected between the gate and drain of the second switching device.
  2.  前記第2ゲート抵抗のうち前記第2スイッチングデバイスのゲートと接続される側と反対側は、前記第1スイッチングデバイスのゲートと前記第1ゲート抵抗との間に接続されている請求項1に記載の負荷駆動装置。 2. The side of the second gate resistor opposite to the side connected to the gate of the second switching device is connected between the gate of the first switching device and the first gate resistor. Load drive device.
  3.  前記第1スイッチングデバイス、前記第2スイッチングデバイス、前記ツェナーダイオードは、それぞれ別々のチップに形成されている請求項1または2に記載の負荷駆動装置。 The load driving device according to claim 1 or 2, wherein the first switching device, the second switching device, and the Zener diode are formed on separate chips, respectively.
  4.  前記第1スイッチングデバイスおよび前記第2スイッチングデバイスは横型素子によって構成されていると共に同一チップに形成されており、
     前記ツェナーダイオードは、前記第1スイッチングデバイスおよび前記第2スイッチングデバイスが形成されたチップとは別のチップに形成されている請求項1または2に記載の負荷駆動装置。
    The first switching device and the second switching device are constituted by lateral elements and formed on the same chip,
    The load driving device according to claim 1, wherein the Zener diode is formed on a chip different from a chip on which the first switching device and the second switching device are formed.
  5.  前記第1スイッチングデバイス、前記第2スイッチングデバイス、前記ツェナーダイオードおよび前記第2ゲート抵抗が同一チップに形成されている請求項1または2に記載の負荷駆動装置。 The load driving device according to claim 1 or 2, wherein the first switching device, the second switching device, the Zener diode, and the second gate resistor are formed on the same chip.
  6.  前記第1ゲート抵抗も、前記第1スイッチングデバイス、前記第2スイッチングデバイス、前記ツェナーダイオードおよび前記第2ゲート抵抗が形成されたチップと同一チップに形成されている請求項5に記載の負荷駆動装置。 The load driving device according to claim 5, wherein the first gate resistor is also formed on the same chip as the chip on which the first switching device, the second switching device, the Zener diode, and the second gate resistor are formed. .
  7.  前記第1スイッチングデバイスおよび前記第2スイッチングデバイスは、GaN-HEMTである請求項1ないし6のいずれか1つに記載の負荷駆動装置。
     
     
    The load driving apparatus according to claim 1, wherein the first switching device and the second switching device are GaN-HEMTs.

PCT/JP2016/001618 2015-04-03 2016-03-21 Load driving apparatus WO2016157813A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015076859A JP2016197808A (en) 2015-04-03 2015-04-03 Load drive device
JP2015-076859 2015-04-03

Publications (1)

Publication Number Publication Date
WO2016157813A1 true WO2016157813A1 (en) 2016-10-06

Family

ID=57006650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001618 WO2016157813A1 (en) 2015-04-03 2016-03-21 Load driving apparatus

Country Status (2)

Country Link
JP (1) JP2016197808A (en)
WO (1) WO2016157813A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6122542B1 (en) * 2016-12-01 2017-04-26 イサハヤ電子株式会社 Active clamp circuit
US20220302818A1 (en) * 2021-03-17 2022-09-22 Sharp Kabushiki Kaisha Semiconductor power device and switching power supply apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044291A (en) * 1999-07-26 2001-02-16 Denso Corp Protection device for semiconductor device
JP2012124565A (en) * 2010-12-06 2012-06-28 Sanken Electric Co Ltd Gate drive circuit and semiconductor device
JP2013026838A (en) * 2011-07-21 2013-02-04 Toshiba Corp Active clamp circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044291A (en) * 1999-07-26 2001-02-16 Denso Corp Protection device for semiconductor device
JP2012124565A (en) * 2010-12-06 2012-06-28 Sanken Electric Co Ltd Gate drive circuit and semiconductor device
JP2013026838A (en) * 2011-07-21 2013-02-04 Toshiba Corp Active clamp circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6122542B1 (en) * 2016-12-01 2017-04-26 イサハヤ電子株式会社 Active clamp circuit
JP2018093344A (en) * 2016-12-01 2018-06-14 イサハヤ電子株式会社 Active Clamp Circuit
US20220302818A1 (en) * 2021-03-17 2022-09-22 Sharp Kabushiki Kaisha Semiconductor power device and switching power supply apparatus

Also Published As

Publication number Publication date
JP2016197808A (en) 2016-11-24

Similar Documents

Publication Publication Date Title
US9007117B2 (en) Solid-state switching device having a high-voltage switching transistor and a low-voltage driver transistor
US10396651B2 (en) Power conversion apparatus
US9362903B2 (en) Gate drivers for circuits based on semiconductor devices
EP2787641B1 (en) Cascoded semiconductor devices
JP5592598B2 (en) Gate driver for wide band gap semiconductor devices
US10290623B2 (en) Gate input protection for devices and systems comprising high power E-mode GaN transistors
JP6626267B2 (en) Semiconductor device
JP5600875B2 (en) Bidirectional switch and switching element
US10050553B2 (en) Rectifier circuit including a self-clamping transistor
JPWO2014155959A1 (en) Power semiconductor element
US11196415B2 (en) System for providing bi-directional power flow and power conditioning for low to high-voltage applications
US20160248422A1 (en) Switching circuit, semiconductor switching arrangement and method
CN107833885B (en) Power switching device
US10128829B2 (en) Composite semiconductor device
US9705488B2 (en) Semiconductor device
JP5630484B2 (en) Semiconductor device
WO2014128942A1 (en) Device for driving semiconductor element
WO2016157813A1 (en) Load driving apparatus
US20170069622A1 (en) Power semiconductor device
US9966947B2 (en) Gate driving circuit for insulated gate-type power semiconductor element
US11190181B2 (en) Power transistor module and controlling method thereof
JP7088041B2 (en) Power converter
EP3425668A1 (en) Electrostatic discharge protection device
US20160233209A1 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771706

Country of ref document: EP

Kind code of ref document: A1