WO2016157682A1 - 太陽電池モジュール - Google Patents
太陽電池モジュール Download PDFInfo
- Publication number
- WO2016157682A1 WO2016157682A1 PCT/JP2016/000658 JP2016000658W WO2016157682A1 WO 2016157682 A1 WO2016157682 A1 WO 2016157682A1 JP 2016000658 W JP2016000658 W JP 2016000658W WO 2016157682 A1 WO2016157682 A1 WO 2016157682A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar cell
- filler
- cell module
- solar
- surface side
- Prior art date
Links
- 239000000945 filler Substances 0.000 claims abstract description 46
- 230000008602 contraction Effects 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims description 30
- 230000001681 protective effect Effects 0.000 claims description 18
- 229920005989 resin Polymers 0.000 description 13
- 239000011347 resin Substances 0.000 description 13
- 239000000805 composite resin Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000005038 ethylene vinyl acetate Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- -1 polyethylenes Polymers 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 240000004050 Pentaglottis sempervirens Species 0.000 description 2
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000005341 toughened glass Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000009614 chemical analysis method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
- H01L31/0481—Encapsulation of modules characterised by the composition of the encapsulation material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
- H01L31/0488—Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
- H01L31/049—Protective back sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/05—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
- H01L31/0504—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a solar cell module.
- Solar cells are expected as a new energy source because they can directly convert clean and infinitely supplied solar energy into electrical energy.
- the output per solar cell is about several watts. Therefore, when a solar battery is used as a power source for a house or a building, a solar battery module whose output is increased by electrically connecting a plurality of solar battery cells is used.
- the solar cell module is configured as follows.
- a solar cell string in which a plurality of solar cells are electrically connected in series using a conductive wiring material is prepared, and the solar cell string is placed in a resin such as an ethylene vinyl acetate copolymer (EVA). Seal. Further, glass or a composite resin sheet for protecting from impacts is disposed outside as a protective member.
- a resin such as an ethylene vinyl acetate copolymer (EVA).
- EVA ethylene vinyl acetate copolymer
- glass or a composite resin sheet for protecting from impacts is disposed outside as a protective member.
- tempered glass is often used to protect the module from falling objects on the surface of the solar cell module.
- a thin and soft composite resin sheet is often used for the protective member on the back surface of the solar cell module that often faces the roofing material.
- the present invention provides a solar cell module with improved weather resistance.
- the present invention provides a solar cell in which a front-side protective plate, a first filler, a solar cell string, a second filler, and a back-side protective sheet, which are arranged on the light incident surface side, are laminated in this order.
- the solar battery string includes a plurality of solar cells and a wiring material that electrically connects the plurality of solar cells, and the viscoelasticity of the first filler is the second filling.
- the solar cell module is lower than the viscoelasticity of the material, and the length direction of the wiring material and the maximum expansion / contraction direction of the back surface side protection sheet are different.
- a solar cell module with improved weather resistance can be provided.
- FIG. 1 is a partial plan view of the front side of the solar cell module in the present embodiment.
- FIG. 2 is a cross-sectional view taken along line AA in FIG.
- FIG. 3 is a bird's-eye view showing a state before processing of the back-side protection sheet.
- FIG. 4 is an enlarged view of a broken line region in FIG.
- FIG. 5 is an exploded layout view of each member constituting the solar cell module in the present embodiment.
- FIG. 1 is a partial plan view of a front side of a solar cell module 100 according to an embodiment.
- FIG. 2 is a cross-sectional view taken along line AA in FIG.
- the solar cell module 100 includes a solar cell string composed of a plurality of solar cells 10 electrically connected using a wiring member 20, and the solar cell module 100 is surrounded by aluminum or the like.
- a frame 30 made of metal is provided. Using the coordinates in the drawing as a reference, the solar cell string extends in the x-axis direction.
- the solar cell string is configured by further connecting a plurality of minimum units in which two solar cells 10 are connected in series using one wiring member 20. For this reason, the wiring material 20 which connects the photovoltaic cells 10 is extended in the x-axis direction similarly to the photovoltaic string.
- Two adjacent solar cells that is, one solar cell and another solar cell each include a first main surface and a second main surface, and the first main surface and the second main surface.
- the polarity is different from the surface.
- the wiring member 20 is used to connect the first main surface of one solar cell 10 and the second main surface of another solar cell 10. Electrically connect to the surface.
- the solar cell 10 and the wiring member 20 are electrically connected via grid electrodes 40 formed on both surfaces of the solar cell 10. That is, the wiring member 20 is not flat in a sectional view but is bent as shown in FIG.
- the wiring member 20 preferably has an uneven shape on the surface. Thereby, it is possible to scatter sunlight incident on the surface of the wiring member 20 and redistribute the light to the surface of the solar battery cell. Therefore, it is possible to reduce the light shielding loss due to the arrangement of the wiring member 20.
- the solar cell string is protected from both front and back surfaces by fillers 50a and 50b made of a resin sheet.
- the solar cell module 100 further protects the front-side protection plate 60 that further protects the filler 50a and the filler 50b.
- a back side protection sheet 70 In FIG. 2, an arrow S indicates a direction in which sunlight mainly enters when the solar cell module 100 is installed outdoors.
- the material of the fillers 50a and 50b is preferably selected from the group consisting of thermoplastic resins or thermosetting resins including polyolefins, polyethylenes, polyphenylenes and copolymers thereof.
- the fillers 50a and 50b are cured by thermocompression bonding, but the viscoelasticity of the front side filler 50a at a high temperature is lower than the viscoelasticity of the back side filler 50b.
- a polyolefin resin is used for the filler 50a
- EVA ethylene vinyl acetate copolymer
- a hard and highly weather-resistant glass material a resin sheet having high flexibility, heat resistance and water resistance, and a plurality of materials
- a composite resin sheet having a high weather resistance formed by laminating is used.
- a composite resin sheet is often used from the viewpoint of product weight and manufacturing cost.
- a composite resin sheet mainly composed of polyethylene terephthalate is used.
- FIG. 3 is a bird's-eye view showing the state of the back surface side protective sheet 70 before processing.
- the composite resin sheet is wound into a single roll while being pulled strongly in the final stage of the manufacturing process, and then processed into a desired size by cutting or punching.
- the winding direction is called MD (Machine Direction)
- TD Transverse Direction
- the stretching stress in the MD direction is inherent.
- the expansion / contraction rate in the MD direction becomes larger than the expansion / contraction rate in the TD direction. Therefore, in this specification, this MD direction is defined as the “maximum stretch direction” of the resin sheet.
- the winding direction of the resin sheet can also be measured by confirming the orientation of molecules in the resin using a chemical analysis technique.
- the back side protection sheet 70 of the solar cell module 100 When a composite resin sheet is used for the back side protection sheet 70 of the solar cell module 100, the back side protection sheet 70 is deformed or stretched due to a temperature cycle or the like when the solar cell module 100 is used.
- the solar cell string is sealed by combining resin sheets made of different materials, the inventors of the present application have a solar cell that constitutes the solar cell string by a thermal cycle when using the solar cell module 100 under specific conditions. I found that there is a possibility to move.
- FIG. 4 is an enlarged view of a broken line region R in FIG.
- the filler expands and the gap between the solar cells expands.
- the filler shrinks and the gap between the solar cells is reduced.
- the wiring member 20 is subjected to a load by changing the size of the gap between the solar cells. If a load is continuously applied to the wiring member 20 for a long period of time, the wiring member may be deteriorated due to metal fatigue. That is, the embodiment of the present invention is an embodiment for suppressing metal fatigue of the wiring member 20.
- FIG. 5 is an exploded view of each member constituting the solar cell module 100 according to the embodiment. As shown in FIG. 5, it arrange
- the wiring member 20 is arranged so that the length direction thereof is the X-axis direction
- the back surface side protective sheet 70 is arranged so that the maximum expansion / contraction direction is the Y-axis direction. That is, the length direction of the wiring member 20 and the maximum expansion / contraction direction of the back surface side protective sheet 70 are orthogonal to each other.
- the expansion stress in the X-axis direction of the back surface side protection sheet 70 with respect to the wiring material 20 can be reduced.
- the expansion and contraction stress of the back surface side protection sheet 70 it is possible to particularly reduce the load applied to the curved portion of the wiring member 20 shown in FIG.
- the length direction and the maximum expansion / contraction direction in the present embodiment are “orthogonal” indicates that the angle range formed by the length direction and the maximum expansion / contraction direction is a range of about 90 ° ⁇ 10 °.
- the length direction of the wiring member 20 and the maximum expansion / contraction direction of the back surface side protection sheet 70 are not aligned, the expansion / contraction stress in the X-axis direction can be reduced as compared with the case where they match. It can be effective.
- it is preferable that the angle range formed by the wiring member 20 and the maximum expansion / contraction direction of the back surface side protection sheet 70 is 90 ° ⁇ 45 °.
- the back surface side protective sheet 70 expands and contracts due to the thermal cycle, and stress propagates to the filler 50b.
- the fillers 50a and 50b that are heat-cured and bonded to each other are sufficiently hard, they are difficult to expand and contract even when subjected to expansion and contraction stress from the back surface side protective sheet 70. Therefore, in this case, the stretching stress is small with respect to the solar cell string sealed with the fillers 50a and 50b, and the bending stress of the wiring member 20 is not easily stretched.
- the stretching stress of the back-side protection sheet 70 that has propagated to the filler 50b is not easily inhibited by the filler 50a. That is, when the filler 50b expands / contracts due to expansion / contraction of the back surface side protection sheet 70, the solar cell string bonded to the filler 50b receives expansion / contraction stress. At this time, if the filler 50a has fluidity, the solar cells constituting the solar cell string can move, so that the interval between the solar cells changes and a load is applied to the curved portion of the wiring material 20. is expected.
- the maximum expansion / contraction direction of the back-side protection sheet 70 and the length direction of the wiring member 20 are different. Rather than being the same, it is possible to relieve the stress that the expansion and contraction of the back surface side protection sheet 70 gives to the curved portion of the wiring member 20 by making both different. That is, the load on the curved portion of the wiring member 20 can be suppressed, and the reliability of the solar cell module 100 can be improved as compared with the related art.
- the method for connecting the wiring member 20 to the solar battery cell 10 is not particularly limited. Specifically, a copper wiring member having a structure in which a copper core wire is solder coated may be soldered and connected. In addition, a solder-coated copper wiring material or a copper wiring material without solder coating may be prepared, and the wiring material 20 may be connected to the solar battery cell 10 using a resin adhesive.
- wiring material 20 a material generally used for manufacturing a solar cell module may be arbitrarily used.
- the grid electrode 40 may be formed of a metal other than silver.
- the grid electrode 40 containing copper as a main component may be formed using electrolytic plating or the like.
- the fillers 50a and 50b for sealing the solar cell string are also resin sheets that are manufactured through a process similar to that of the back surface side protective sheet 70 and have a stretching stress in the MD direction. Therefore, it can be understood that the same effect can be obtained with respect to the relationship between the maximum expansion and contraction direction of the fillers 50 a and 50 b and the length direction of the wiring member 20. That is, by arranging the maximum expansion / contraction direction of the fillers 50a and 50b so as not to coincide with the length direction of the wiring member 20, the same effect as in the present embodiment can be obtained.
- the angle range formed by the maximum expansion / contraction direction of the fillers 50a and 50b and the length direction of the wiring member 20 is 90 degrees ⁇ as in the case of arranging the back-side protection sheet. It is preferably in the range of 45 degrees, and more preferably in the range of 90 degrees ⁇ 10 degrees.
- the external shape of the solar cell module 100 is a rectangle having a long side and a short side when the solar cell is viewed in plan (when viewed from the XY plane), and the direction of the long side and the wiring material
- the length direction of 20 may be the same.
- the length direction of the wiring member 20 is coincident with the long side of the solar cell module 100, the expansion / contraction stress due to the thermal history is increased.
- the length direction of the wiring member 20 and the maximum expansion / contraction direction of the back surface side protection sheet 70 are different, the load on the curved portion of the wiring member 20 is suppressed, and the reliability of the solar cell module 100 is improved. Can be improved as compared with the prior art.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Photovoltaic Devices (AREA)
Abstract
太陽電池モジュール(100)は、太陽電池ストリング、第1の充填材(50a)、第1の充填材(50a)よりも粘弾性の高い第2の充填材(50b)、表面側保護板(60)、及び裏面側保護シート(70)を備え、当該太陽電池ストリングは、複数の太陽電池セル(10)と、複数の太陽電池セル(10)を電気的に接続する配線材(20)とを含み、配線材(20)の長さ方向と裏面側保護シート(70)の最大伸縮方向とが異なる。
Description
本発明は、太陽電池モジュールに関する。
太陽電池は、クリーンで無尽蔵に供給される太陽光エネルギーを直接電気エネルギーに変換することができるため、新しいエネルギー源として期待されている。
一般に、太陽電池セルの1枚当たりの出力は数ワット程度である。そのため、家屋やビル等の電源として太陽電池を用いる場合には、複数の太陽電池セルを電気的に接続することによって出力を増大させた太陽電池モジュールが用いられる。太陽電池モジュールは以下のように構成される。
まず、導電性を有する配線材を用いて複数の太陽電池セルを電気的に直列に接続した太陽電池ストリングを準備し、その太陽電池ストリングをエチレン酢酸ビニル共重合体(EVA)等の樹脂中に封止する。更にその外部に、衝撃から保護するためのガラスや複合樹脂シートを保護部材として配置する。
光入射面側の保護部材は、太陽電池モジュール表面への落下物からモジュールを保護するために強化ガラスが用いられることが多い。一方、主に屋根材と向かい合うことが多い太陽電池モジュールの裏面の保護部材は、薄く軟質な複合樹脂シートを用いることが多い。
太陽電池ストリングを封止する充填材は、近年、太陽電池モジュールの耐候性を高めるために、異なる材料の樹脂シートを組み合わせて用いる例が提示されている。
本発明は、耐候性を高めた太陽電池モジュールを提供する。
本発明は、光入射面側に配置された表面側保護板と、第1の充填材と、太陽電池ストリングと、第2の充填材と、裏面側保護シートと、をこの順に積層した太陽電池モジュールであって、太陽電池ストリングは、複数の太陽電池セルと、複数の太陽電池セルを電気的に接続する配線材と、を含み、第1の充填材の粘弾性は、前記第2の充填材の粘弾性よりも低く、配線材の長さ方向と裏面側保護シートの最大伸縮方向と、が異なっている太陽電池モジュールである。
本発明によれば、耐候性が向上した太陽電池モジュールを提供することができる。
本発明に係る実施形態について図面を用いて説明する。以下の図面の記載において、同一又は類似の部分には、同一または類似の符号を付している。ただし、図面は模式的なものであって、各寸法の比率等は現実のものとは異なることに留意すべきである。従って、具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
(太陽電池モジュールの構成)
本実施形態に係る太陽電池モジュール100の概略構成について、図1~図2を参照しながら説明する。
本実施形態に係る太陽電池モジュール100の概略構成について、図1~図2を参照しながら説明する。
図1は、実施形態に係る太陽電池モジュール100の表側の部分平面図である。図2は、図1中のA-A線における断面図である。図1に示すように、太陽電池モジュール100は、配線材20を用いて電気的に接続された複数の太陽電池セル10からなる太陽電池ストリングを備え、太陽電池モジュール100の周囲にはアルミニウム等の金属からなるフレーム30を備える。図中の座標を基準とすると、太陽電池ストリングはx軸方向に延在している。
図2に示すように、太陽電池ストリングは、1本の配線材20を用いて2枚の太陽電池セル10を直列に接続した最小単位を、更に複数接続して構成されている。このため、太陽電池セル10同士を接続する配線材20は、太陽電池ストリングと同様にx軸方向に延在している。
隣接する2枚の太陽電池セル、すなわち、一の太陽電池セル及び他の太陽電池セルは、いずれも、第1主面と第2主面とを備えており、第1主面と第2主面とは極性が異なっている。このような2枚の太陽電池セル10を電気的に直列に接続するために、配線材20を用いて、一の太陽電池セル10の第1主面と他の太陽電池セル10の第2主面とを電気的に接続する。このとき、太陽電池セル10と配線材20とは、太陽電池セル10の両面に形成されたグリッド電極40を介して電気的に接続されている。すなわち、配線材20は、断面視において平坦ではなく、図2に示すように曲がっている。
なお、配線材20は、表面に凹凸形状を有していることが好ましい。これにより、配線材20の表面に入射した太陽光を散乱させて、太陽電池セルの表面に再配光させることが可能となる。よって、配線材20の配置による遮光ロスを低減することが可能となる。
太陽電池ストリングは、樹脂シートからなる充填材50a及び50bによって表裏両面から保護されており、太陽電池モジュール100は、充填材50aを更に保護する表面側保護板60と、充填材50bを更に保護する裏面側保護シート70と、を備えている。なお、図2において矢印Sは、太陽電池モジュール100を屋外に設置した際に、太陽光が主に入射する向きを示している。
充填材50a及び50bの材料は、ポリオレフィン類、ポリエチレン類、ポリフェニレン類及びそれらの共重合体を始めとした熱可塑性樹脂又は熱硬化性樹脂からなる群より選択するのが好ましい。充填材50a及び50bは、加熱圧着によって硬化させるが、表側の充填材50aの高温時における粘弾性が、裏側の充填材50bの粘弾性よりも低い。本実施形態では一例として、充填材50aにポリオレフィン系樹脂、充填材50bにエチレン酢酸ビニル共重合体(EVA)を用いている。
充填材50aの上から太陽電池モジュール100を更に保護する表面側保護板60としては、ガラス板、アクリル樹脂板など、光透過性が高く、かつ太陽電池モジュール100の表面を落下物等から保護できる程度に硬い材料を用いるのが望ましい。更に、硬化後の充填材50aよりも硬い材料であることが好ましく、本実施形態では強化ガラス板を用いている。
また、充填材50bの上から太陽電池モジュール100を更に保護する裏面側保護シート70としては、硬くて耐侯性の高いガラス材料、柔軟性、熱耐性及び耐水性が高い樹脂シート、並びに複数の材料を積層してなる耐侯性の高い複合樹脂シートが一般に用いられる。とりわけ、製品重量及び製造コストの観点から、複合樹脂シートが使用されることが多く、本実施形態ではポリエチレンテレフタラートを主とした複合樹脂シートを用いている。
図3は、裏面側保護シート70の加工前の状態を示す俯瞰図である。複合樹脂シートは、製造工程の最終段階において強く引っ張りながら一本のロール状に巻き取られ、その後、切断又は打ち抜き成型等によって所望の大きさに加工される。このとき、巻き取りの方向はMD(Machine Direction)と呼ばれ、MDと垂直の方向はTD(Transverse Direction)と呼ばれる。
こういった方法で製造された樹脂シートには、MD方向の伸縮応力が内在している。このような樹脂シートが熱サイクルによって伸縮する場合には、MD方向の伸縮率のほうがTD方向の伸縮率よりも大きくなる。このことから、本明細書中では、このMD方向を樹脂シートの「最大伸縮方向」と定義する。なお樹脂シートの巻き取り方向は、化学分析の手法を用いて樹脂中の分子の配向を確認することによっても測定することができる。
太陽電池モジュール100の裏面側保護シート70に複合樹脂シートを用いた場合、太陽電池モジュール100使用時の温度サイクル等によって、裏面側保護シート70に変形や伸縮が生じる。本願発明者らは、材料の異なる樹脂シートを組み合わせて太陽電池ストリングを封止する際、特定の条件下において、太陽電池モジュール100使用時の熱サイクルにより、太陽電池ストリングを構成する太陽電池セルが移動する可能性があることを見出した。
図4は、図2における破線領域Rの拡大図である。太陽電池モジュール100が加熱されると充填材が伸び、太陽電池セル同士の隙間が拡大する。太陽電池モジュール100が冷却されると充填材が縮み、太陽電池セル同士の隙間が縮小する。このように太陽電池セル同士の隙間の大きさが変化することによって、配線材20に負荷がかかることが予想される。長期間にわたって配線材20に負荷がかかり続けると、配線材が金属疲労により劣化する可能性がある。すなわち本願発明の実施形態は、配線材20の金属疲労を抑制するための実施形態である。
(裏面側保護シート70の配置形態)
図5は、実施形態に係る太陽電池モジュール100を構成する各部材の分解配置図である。図5に示すように、配線材20の長さ方向と裏面側保護シート70の最大伸縮方向とを一致させないように配置している。具体的には、配線材20の長さ方向がX軸方向となるように配置し、裏面側保護シート70の最大伸縮方向がY軸方向となるように配置した。つまり、配線材20の長さ方向と裏面側保護シート70の最大伸縮方向とが直交している。
図5は、実施形態に係る太陽電池モジュール100を構成する各部材の分解配置図である。図5に示すように、配線材20の長さ方向と裏面側保護シート70の最大伸縮方向とを一致させないように配置している。具体的には、配線材20の長さ方向がX軸方向となるように配置し、裏面側保護シート70の最大伸縮方向がY軸方向となるように配置した。つまり、配線材20の長さ方向と裏面側保護シート70の最大伸縮方向とが直交している。
裏面側保護シート70の最大伸縮方向が配線材20の長さ方向と直交することにより、配線材20に対する裏面側保護シート70のX軸方向の伸縮応力を減少させることができる。裏面側保護シート70の伸縮応力が減少することにより、特に、図4に示される配線材20の曲部へとかかる負荷を低減させることができる。
なお、本実施形態における長さ方向と最大伸縮方向とが“直交”とは、長さ方向と最大伸縮方向とのなす角度範囲が、90度±10度程度の範囲であることを示す。しかしながら、配線材20の長さ方向と裏面側保護シート70の最大伸縮方向とが一致しないように配置されていれば、一致している場合と比較してX軸方向の伸縮応力を減じることができるため効果がある。一定の効果を持たせるためには、配線材20と裏面側保護シート70の最大伸縮方向とのなす角度範囲が、90度±45度の範囲となるように配置されていることが好ましい。
ここまで説明した太陽電池モジュール100の構成により、配線材20の曲部の負荷を抑制できる理由は以下の通りであると考えられる。
まず、充填材50a及び50bに、いずれも加熱硬化後の粘弾性が高く硬い材料を用いた場合を説明する。太陽電池モジュール100を屋外で使用する際に、熱サイクルによって裏面側保護シート70が伸縮し、充填材50bに応力が伝播する。しかし、加熱硬化されて互いに接着している充填材50a及び50bはどちらも十分に硬いため、裏面側保護シート70からの伸縮応力を受けても伸縮しにくくなる。従って、この場合には、充填材50aと50bとで封止されている太陽電池ストリングに対して、かかる伸縮応力は少なく、配線材20の屈曲部にも伸縮応力が及びにくい。
一方、充填材50a及び50bの粘弾性に差があり、かつ充填材50aの粘弾性が低い場合、充填材50bに伝播した裏面側保護シート70の伸縮応力は、充填材50aによって阻害されにくい。すなわち、裏面側保護シート70の伸縮によって充填材50bが伸縮すると、充填材50bに接着された太陽電池ストリングが伸縮応力を受ける。このとき、充填材50aに流動性があると、太陽電池ストリングを構成する太陽電池セルが移動することができるため、太陽電池セルの間隔が変化し、配線材20の曲部に負荷がかかると予測される。
このような理由から、充填材50a及び50bの粘弾性に差があり、かつ充填材50aの粘弾性が低い場合、裏面側保護シート70の最大伸縮方向と、配線材20の長さ方向とが同じであるよりも、両者を異ならせるほうが、裏面側保護シート70の伸縮が配線材20の曲部へと与える応力を緩和することができる。すなわち、配線材20の曲部に対する負荷を抑制し、太陽電池モジュール100の信頼性を従来よりも向上させることができる。
なお、本実施形態において、太陽電池セル10に配線材20を接続する方法は特に限定されない。具体的には、銅の芯線をはんだコートした構造の銅製配線材を用いて、はんだづけして接続してもよい。この他、はんだコートした銅製配線材、又ははんだコートのない銅製配線材等を準備し、樹脂接着剤を用いて配線材20を太陽電池セル10に接続してもよい。
また、配線材20については、一般に太陽電池モジュール製造に用いられるものを任意に使用してよい。
また、グリッド電極40は銀以外の金属によって形成されてもよい。具体的には、電解メッキ等を用いて、銅を主成分とするグリッド電極40を形成してもよい。
なお、本実施形態においては、配線材20の長さ方向と裏面側保護シート70の最大伸縮方向との関係について説明した。しかし、太陽電池ストリングを封止する充填材50a及び50bも、裏面側保護シート70と類似の工程を経て製造された、MD方向の伸縮応力が内在する樹脂シートである。そのため、充填材50a及び50bの最大伸縮方向と配線材20の長さ方向との関係についても同様の効果があることは理解可能である。つまり、充填材50a及び50bの最大伸縮方向を、配線材20の長さ方向と一致しないように配置することにより、本実施形態と同様の効果が得られる。ここで、充填材を配置する角度については、裏面側保護シートを配置する場合と同様に、充填材50a及び50bの最大伸縮方向と配線材20の長さ方向とがなす角度範囲が90度±45度の範囲となることが好ましく、90度±10度の範囲となることが更に好ましい。
なお、本実施形態に係る太陽電池モジュール100の外形は、太陽電池セルを平面視した(XY平面を見た)場合、長辺及び短辺を有する矩形であり、当該長辺の方向と配線材20の長さ方向とが、同じであってもよい。配線材20の長さ方向が、太陽電池モジュール100の長辺と一致している場合には、熱履歴による伸縮応力が大きくなる。しかしながら、この場合であっても、配線材20の長さ方向と裏面側保護シート70の最大伸縮方向とが異なることにより、配線材20の曲部に対する負荷を抑制し、太陽電池モジュール100の信頼性を従来よりも向上させることができる。
10 太陽電池セル
20 配線材
30 フレーム
40 グリッド電極
50a、50b 充填材
60 表面側保護板
70 裏面側保護シート
100 太陽電池モジュール
20 配線材
30 フレーム
40 グリッド電極
50a、50b 充填材
60 表面側保護板
70 裏面側保護シート
100 太陽電池モジュール
Claims (4)
- 光入射面側に配置された表面側保護板と、
第1の充填材と、
太陽電池ストリングと、
第2の充填材と、
裏面側保護シートと、を備え、
前記表面側保護板、前記第1の充填材、前記太陽電池ストリング、前記第2の充填材、及び前記裏面側保護シートが、この順に積層された太陽電池モジュールであって、
前記太陽電池ストリングは、
複数の太陽電池セルと、
前記複数の太陽電池セルを電気的に接続する配線材と、を含み、
前記第1の充填材の粘弾性は、前記第2の充填材の粘弾性よりも低く、
前記配線材の長さ方向と前記裏面側保護シートの最大伸縮方向とが異なる、
太陽電池モジュール。 - 前記複数の太陽電池セルの配列方向と前記裏面側保護シートの最大伸縮方向とが直交している、
請求項1に記載の太陽電池モジュール。 - 前記配線材は、表面に凹凸形状を有している、
請求項1または2に記載の太陽電池モジュール。 - 前記太陽電池モジュールの形状は、前記複数の太陽電池セルを平面視した場合、長辺と短辺とを有する矩形であり、
前記長辺の方向と前記配線材の長さ方向とが同じである、
請求項1~3のいずれか1項に記載の太陽電池モジュール。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680016146.2A CN107454983B (zh) | 2015-03-30 | 2016-02-09 | 太阳能电池组件 |
JP2017509194A JP6315225B2 (ja) | 2015-03-30 | 2016-02-09 | 太陽電池モジュール |
US15/702,346 US20180006178A1 (en) | 2015-03-30 | 2017-09-12 | Solar cell module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015067869 | 2015-03-30 | ||
JP2015-067869 | 2015-03-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/702,346 Continuation US20180006178A1 (en) | 2015-03-30 | 2017-09-12 | Solar cell module |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016157682A1 true WO2016157682A1 (ja) | 2016-10-06 |
Family
ID=57005501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/000658 WO2016157682A1 (ja) | 2015-03-30 | 2016-02-09 | 太陽電池モジュール |
Country Status (4)
Country | Link |
---|---|
US (1) | US20180006178A1 (ja) |
JP (1) | JP6315225B2 (ja) |
CN (1) | CN107454983B (ja) |
WO (1) | WO2016157682A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109273610A (zh) * | 2018-11-07 | 2019-01-25 | 东华大学 | 一种可拉伸钙钛矿太阳能电池及其制备方法和应用 |
NL2028006B1 (en) | 2021-04-18 | 2022-10-31 | Atlas Technologies Holding Bv | Method for laminating solar cells. |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006013406A (ja) * | 2004-06-29 | 2006-01-12 | Sanyo Electric Co Ltd | 太陽電池モジュール |
JP2009071339A (ja) * | 2009-01-07 | 2009-04-02 | Sharp Corp | 太陽電池セルおよび太陽電池モジュール |
WO2009069415A1 (ja) * | 2007-11-30 | 2009-06-04 | Sharp Kabushiki Kaisha | 太陽電池モジュール及び太陽電池モジュールの製造方法 |
WO2011083790A1 (ja) * | 2010-01-06 | 2011-07-14 | 大日本印刷株式会社 | 太陽電池用集電シート |
WO2013121549A1 (ja) * | 2012-02-16 | 2013-08-22 | 三洋電機株式会社 | 太陽電池モジュール及びその製造方法 |
JP2013191647A (ja) * | 2012-03-13 | 2013-09-26 | Dainippon Printing Co Ltd | 太陽電池用集電シート |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009081205A (ja) * | 2007-09-25 | 2009-04-16 | Sanyo Electric Co Ltd | 太陽電池モジュール |
JP4838827B2 (ja) * | 2008-07-02 | 2011-12-14 | シャープ株式会社 | 太陽電池モジュールおよびその製造方法 |
CN101740643B (zh) * | 2009-12-22 | 2011-11-30 | 广州鹿山新材料股份有限公司 | 一种太阳能电池封装用低收缩高阻隔背膜及其制备方法 |
JP2011159711A (ja) * | 2010-01-29 | 2011-08-18 | Sanyo Electric Co Ltd | 太陽電池モジュール |
JP2012019059A (ja) * | 2010-07-08 | 2012-01-26 | Mitsubishi Plastics Inc | 太陽電池モジュール用裏面保護シート |
CN103053029B (zh) * | 2010-08-05 | 2016-08-03 | 三菱电机株式会社 | 太阳能电池模块以及太阳能电池模块的制造方法 |
KR101218900B1 (ko) * | 2010-11-23 | 2013-01-21 | (주)엘지하우시스 | 태양 전지의 밀봉재용 시트 및 그 제조 방법 |
WO2013135349A1 (en) * | 2012-03-12 | 2013-09-19 | Renolit Belgium N.V. | Backsheet and photovoltaic modules comprising it |
JP6141223B2 (ja) * | 2013-06-14 | 2017-06-07 | 三菱電機株式会社 | 受光素子モジュールおよびその製造方法 |
-
2016
- 2016-02-09 JP JP2017509194A patent/JP6315225B2/ja not_active Expired - Fee Related
- 2016-02-09 CN CN201680016146.2A patent/CN107454983B/zh not_active Expired - Fee Related
- 2016-02-09 WO PCT/JP2016/000658 patent/WO2016157682A1/ja active Application Filing
-
2017
- 2017-09-12 US US15/702,346 patent/US20180006178A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006013406A (ja) * | 2004-06-29 | 2006-01-12 | Sanyo Electric Co Ltd | 太陽電池モジュール |
WO2009069415A1 (ja) * | 2007-11-30 | 2009-06-04 | Sharp Kabushiki Kaisha | 太陽電池モジュール及び太陽電池モジュールの製造方法 |
JP2009071339A (ja) * | 2009-01-07 | 2009-04-02 | Sharp Corp | 太陽電池セルおよび太陽電池モジュール |
WO2011083790A1 (ja) * | 2010-01-06 | 2011-07-14 | 大日本印刷株式会社 | 太陽電池用集電シート |
WO2013121549A1 (ja) * | 2012-02-16 | 2013-08-22 | 三洋電機株式会社 | 太陽電池モジュール及びその製造方法 |
JP2013191647A (ja) * | 2012-03-13 | 2013-09-26 | Dainippon Printing Co Ltd | 太陽電池用集電シート |
Also Published As
Publication number | Publication date |
---|---|
JP6315225B2 (ja) | 2018-04-25 |
CN107454983A (zh) | 2017-12-08 |
CN107454983B (zh) | 2019-08-09 |
US20180006178A1 (en) | 2018-01-04 |
JPWO2016157682A1 (ja) | 2017-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015133633A1 (ja) | 太陽電池モジュール用封止シートおよび太陽電池モジュール | |
JP6532046B2 (ja) | 太陽電池モジュール | |
JP6286736B2 (ja) | バックコンタクトタイプ太陽電池モジュール | |
US20110139225A1 (en) | Shaped photovoltaic module | |
US20190123229A1 (en) | Solar cell module | |
WO2012015031A1 (ja) | 太陽電池モジュール | |
US10115852B2 (en) | Solar cell module | |
JP6893330B2 (ja) | 太陽電池モジュール | |
US10483419B2 (en) | Solar cell module and method of manufacturing the solar cell module | |
US20130125951A1 (en) | Solar cell module and method of manufacturing solar cell module | |
JPWO2018051658A1 (ja) | 太陽電池モジュール | |
JP6315225B2 (ja) | 太陽電池モジュール | |
US20150263196A1 (en) | Photovoltaic module and process for manufacture thereof | |
JP2012079838A (ja) | 太陽電池モジュールとその製造方法 | |
WO2012165001A1 (ja) | 太陽電池モジュール及びその製造方法 | |
JP2008235819A (ja) | 太陽電池モジュール | |
WO2016002721A1 (ja) | 太陽電池モジュール、太陽電池モジュール用導電部材および封止フィルム | |
JP2016225446A (ja) | 太陽電池モジュール用封止シートおよび太陽電池モジュール | |
JP6134918B2 (ja) | 太陽電池モジュール | |
JP2012033545A (ja) | 太陽電池モジュール、およびその製造方法 | |
WO2018003865A1 (ja) | 封止体、太陽電池モジュールおよび封止体の製造方法 | |
JP2016021467A (ja) | 太陽電池モジュール用配線構造、および太陽電池モジュール用配線構造の製造方法 | |
JP5919494B2 (ja) | 太陽電池モジュール | |
JP2011160008A (ja) | 太陽電池モジュール | |
US20170207359A1 (en) | Solar cell module including wiring layer overlappingly disposed on solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16771579 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017509194 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16771579 Country of ref document: EP Kind code of ref document: A1 |