WO2016157610A1 - ガス分析装置、燃焼設備の制御システム及び制御支援システム、並びに、ガス分析方法 - Google Patents

ガス分析装置、燃焼設備の制御システム及び制御支援システム、並びに、ガス分析方法 Download PDF

Info

Publication number
WO2016157610A1
WO2016157610A1 PCT/JP2015/083005 JP2015083005W WO2016157610A1 WO 2016157610 A1 WO2016157610 A1 WO 2016157610A1 JP 2015083005 W JP2015083005 W JP 2015083005W WO 2016157610 A1 WO2016157610 A1 WO 2016157610A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
combustion
distribution
measurement
temperature distribution
Prior art date
Application number
PCT/JP2015/083005
Other languages
English (en)
French (fr)
Inventor
裕貴 岡
西宮 立享
川添 浩平
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP15887752.2A priority Critical patent/EP3246694A4/en
Priority to US15/552,670 priority patent/US20180031233A1/en
Priority to CN201580067967.4A priority patent/CN107110777A/zh
Publication of WO2016157610A1 publication Critical patent/WO2016157610A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/022Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • G01K13/024Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow of moving gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2900/00Special features of, or arrangements for controlling combustion
    • F23N2900/05002Measuring CO2 content in flue gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2900/00Special features of, or arrangements for controlling combustion
    • F23N2900/05003Measuring NOx content in flue gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/178Methods for obtaining spatial resolution of the property being measured
    • G01N2021/1785Three dimensional
    • G01N2021/1787Tomographic, i.e. computerised reconstruction from projective measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N2021/3125Measuring the absorption by excited molecules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • G01N2021/396Type of laser source
    • G01N2021/399Diode laser

Definitions

  • the present disclosure relates to a gas analyzer that analyzes a gas concentration distribution and a temperature distribution in a combustion furnace, a control system and a control support system of a combustion facility equipped with the gas analyzer, and a gas analysis method implemented by the gas analyzer. About.
  • combustion air gas
  • gas gas
  • gas concentration distribution and temperature distribution in the combustion furnace are generally nonuniform in gas concentration and temperature, and when the scale of the combustion furnace is relatively small, measurement is made at several points in the combustion furnace. By doing this, it is possible to grasp with a certain degree of accuracy, but the measurement method is limited when the scale of the combustion furnace becomes large.
  • Patent Document 1 One solution to such a problem is disclosed in Patent Document 1.
  • Patent Document 1 a two-dimensional space in a combustion furnace subjected to laser measurement is divided into meshes, and a gas concentration value is calculated based on the amount of laser absorption in each mesh. Then, it is disclosed that the gas concentration distribution is determined by searching the solution by the Bayesian method under the assumption that the gas concentration distribution in each mesh is a continuous Gaussian process (GP). .
  • GP Gaussian process
  • the concentration measurement using laser light as in Patent Document 1 is based on the absorption amount depending on the electronic level transition corresponding to the component contained in the combustion air, but such a laser absorption amount can be determined only by the concentration. It also has characteristics that also depend on the temperature of the combustion air.
  • Patent Document 1 it is assumed that a concentration distribution close to actual can be determined by imposing the continuity condition on the concentration distribution determined based on the laser absorption amount.
  • the temperature dependency of the laser absorption amount is not taken into consideration, and there is a possibility that sufficient analysis accuracy can not be realized.
  • At least one embodiment of the present invention is a gas analyzer capable of accurately analyzing gas concentration distribution and temperature distribution in a system in which combustion gas in a combustion furnace is not uniformly mitigated. It is an object of the present invention to provide a control system and control support system of a combustion facility, and a gas analysis method.
  • a gas analyzer is a gas analyzer that analyzes concentration distribution and temperature distribution of combustion gas in a combustion furnace to solve the above-mentioned problem, wherein the combustion gas is The amount of absorption of the laser light by irradiating the laser light including absorption wavelengths corresponding to at least two electronic level transitions of the same component contained in the plurality of measurement paths provided to pass the combustion gas
  • a reference gas concentration distribution and a reference temperature distribution based on the measurement results of the measurement unit, the absorption amount measured by the measurement unit, the reference gas concentration distribution, and
  • the gas concentration distribution and the gas concentration distribution can be obtained by solving a function including the gas concentration distribution and the temperature distribution as variables such that the deviation from the reference absorption amount determined based on the reference temperature distribution is minimized.
  • an analysis unit for determining the temperature distribution is a gas analyzer that analyzes concentration distribution and temperature distribution of combustion gas in a combustion furnace to solve the above-mentioned problem, wherein the combustion gas is The amount of absorption of the laser light by irradiating the laser
  • the gas concentration distribution and the temperature distribution are obtained from the reference distribution set by the reference setting unit.
  • the gas concentration distribution and the temperature distribution are determined by numerically solving a function including the gas concentration distribution and the temperature distribution as variables so that the deviation between the reference absorption amount to be measured and the absorption amount measured by the measurement unit is minimized.
  • functions include concentration distribution and temperature distribution as common variables, they can reflect the real-world background that there is a correlation between concentration and temperature, and an analytical solution closer to the actual distribution can be obtained.
  • the function is set to correspond to the shape of the combustion furnace.
  • the function in the configuration of (2), includes at least one of central axis position, coordinate ellipticity, and circumferential distribution term as parameters with respect to a cylindrical coordinate system.
  • the reference setting unit corresponds to different electron level transitions included in the laser light in the plurality of measurement paths.
  • the reference concentration distribution and the reference temperature distribution are set based on the average temperature of the combustion gas determined based on the ratio of the amount of absorption at the target wavelength.
  • the average temperature in the combustion furnace is calculated based on the amount of laser absorption in a plurality of measurement paths, and the reference concentration distribution and the reference temperature distribution are set based on the average temperature.
  • the reference concentration distribution and the reference temperature distribution set in this way become appropriate initial values for efficiently searching for a final solution when the function is solved numerically.
  • the reference temperature distribution may be set to a state in which the temperature distribution in the combustion furnace is relaxed at the above-described average temperature, or in the case of using the Marquardt method or the like in the convergence analysis operation. It may be set to add a gradient.
  • the same component is H 2 O.
  • H 2 O exists in a range where absorption wavelength ranges corresponding to two adjacent electron level transitions are relatively close to each other as compared with, for example, O 2 , CO 2 and the like. Therefore, for example, when scanning the wavelength of the laser light by controlling the drive current of the wavelength scanning laser diode, covering two adjacent electron level transitions within the scanning range of a single laser diode Since it can be done, the device configuration can be simplified.
  • a control system of a combustion facility solves the above problems by providing a fuel supply unit configured to supply fuel to the combustion furnace, and air to the combustion furnace. Based on the gas concentration distribution and the temperature distribution analyzed by the gas analysis device and the gas analysis device according to any one of the above (1) to (5), the air supply means configured to supply, the gas analysis device according to any one of the above (1) to (5) And controlling means for controlling the amounts of fuel and air supplied to the combustion furnace by adjusting the fuel supply means and the air supply means.
  • the fuel and air are supplied to the combustion furnace by adjusting the fuel supply means and the air supply means based on the gas concentration distribution and the temperature distribution obtained by the gas analysis in the combustion furnace. You can control the amount. As a result, it is possible to realize the optimum operation in which the temperature imbalance of the combustion gas in the combustion furnace and the excess and deficiency of the oxygen supply are eliminated, and the efficiency of the power generation end can be improved and the increase of NO x generation due to the excess O 2 can be suppressed. .
  • a control support system for a combustion facility is a fuel supply unit configured to supply fuel to the combustion furnace to solve the above problems, and air to the combustion furnace.
  • the operator of the combustion facility can easily grasp the combustion state in the combustion furnace by displaying the analysis result of the gas analyzer on a display means such as a display for visualization. By doing this, it is possible to streamline the fuel adjustment operation by the operator.
  • a gas analysis method is a gas analysis method for analyzing concentration distribution and temperature distribution of combustion gas in a combustion furnace, in order to solve the above-mentioned problems,
  • the absorption corresponding to at least two electronic level transitions of the same component included is the absorption of the laser light by irradiating the laser light containing super on a plurality of measurement paths provided to pass through the combustion gas.
  • a measurement step of measuring the amount a reference setting step of setting a reference gas concentration distribution and a reference temperature distribution based on the measurement result of the measurement step, an absorption amount measured in the measurement step, the reference gas concentration distribution,
  • the gas can be obtained by solving a function including the gas concentration distribution and the temperature distribution as variables such that the deviation from the reference absorption amount determined based on the reference temperature distribution is minimized.
  • the method of (8) above can be suitably implemented by the above-described gas analyzer (including the above-described various configurations).
  • a gas analyzer capable of accurately analyzing gas concentration distribution and temperature distribution in a system in which combustion gas in a combustion furnace is not uniformly mitigated, control system and control support for combustion equipment Systems and methods of gas analysis can be provided.
  • FIG. 8 is a schematic view showing the configuration of a combustion apparatus according to another embodiment of the present invention.
  • the expression expressing a shape such as a quadrilateral shape or a cylindrical shape not only represents a shape such as a rectangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion The shape including a chamfer etc. shall also be expressed.
  • the expressions “comprising”, “having”, “having”, “including” or “having” one component are not exclusive expressions excluding the presence of other components.
  • FIG. 1 is a schematic view showing a configuration of a combustion facility 1 provided with a gas analyzer according to at least one embodiment of the present invention
  • FIG. 2 is a schematic view for explaining each region of the combustion furnace of FIG.
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG.
  • the combustion facility 1 includes a combustion furnace 2 for burning fuel, a flue 4 for guiding the combustion air generated in the combustion furnace 2, a reheater unit 6 for obtaining thermal energy from the combustion air, and the combustion furnace 2
  • a combustion control device 8 that controls the combustion state in the combustion furnace 2 by adjusting the supply of fuel and air to the inside, and a gas analysis device 10 that analyzes combustion air (gas) in the combustion furnace 2 .
  • the combustion furnace 2 is configured to be surrounded in a substantially box shape by a wall surface using a heat resistant material.
  • high temperature combustion air is generated by burning the fuel and air supplied from the combustion control device 8 described later.
  • the combustion furnace 2 is open at the upper side in the vertical direction, and the opened portion is connected to the flue 4.
  • the high temperature combustion air generated in the combustion furnace 2 forms a flow path so as to be guided to the flue 4.
  • the reheater unit 6 is composed of a plurality of reheaters, and is disposed on the flow path of the combustion air in the combustion furnace 2 and the flue 4.
  • the reheater consists of a tubular member in which liquid or gas is enclosed. The liquid or gas enclosed in the reheater obtains heat energy by heat exchange with the high temperature combustion air, and becomes a vapor.
  • the steam passes a predetermined path from the reheater unit 6 and rotationally drives a turbine (not shown) to convert thermal energy into electrical energy or mechanical energy for output.
  • the combustion equipment 1 functions as a generator and a drive machine, it is not limited to such a use, for example, used as a heater which heats an arbitrary substance by the heat energy acquired by the reheater unit 6 May be
  • the combustion control device 8 controls the combustion state in the combustion furnace 2 by adjusting the fuel and air supplied into the combustion furnace 2.
  • the combustion control device 8 includes fuel supply means 12 and air supply means 14 for supplying fuel and air to the combustion furnace 2 respectively.
  • the fuel supply means 12 generates a pulverized coal burner (hereinafter referred to as "burner" as appropriate) 16 for burning the fuel, a pulverized coal supply unit 18 for supplying pulverized coal which is the fuel, and a blast for transporting the fuel. And a flow control valve 22 for adjusting the flow rate of the fuel, and a pipe 24 connecting the two to each other.
  • the pulverized coal supply unit 18 is a mechanism configured to supply fuel to the pipe 24. Pulverized coal supplied to the pipe 24 is transported in the pipe 24 by the blower 20 and mixed with the air introduced from the main pipe 32 of the air supply means 14 through the flow rate adjusting valve 22 and then supplied to the burner 16 Ru.
  • the burner 16 is a combustor installed so that the injection port is exposed to the inside of the combustion furnace 2, injects the fuel supplied via the pipe 24, and burns the fuel in the combustion furnace 2.
  • the burners 16 are disposed at a plurality of locations in the combustion furnace 2, and are preferably laid out so that the air jetted from the respective burners 16 allows the swirling air flow in the combustion furnace 2.
  • the pulverized coal supply unit 18 may be a mechanism for pulverizing coal to generate pulverized coal, and supplying the generated pulverized coal to the pipe 24.
  • the pulverized coal generated in advance may be stored.
  • the stored pulverized coal may be supplied to the pipe 24.
  • the air supply means 14 includes a primary air supply unit 26 and a secondary air supply unit 28 for supplying the primary air and the secondary air to the combustion furnace 2 respectively, and the primary air supply unit 26 and the secondary air together with the fuel supply means 12 described above.
  • the air blower 30 which is a blower or a fan which sends air to the supply unit 28, and the main piping 32 which connects these are provided.
  • the primary air supply unit 26 includes a first pipe 36 disposed such that the blowout port 34 is exposed to the combustion furnace 2, and a flow control valve 38 configured to adjust the flow rate of air in the first pipe 36. Prepare.
  • the first pipe 36 is connected to the main pipe 32 via the flow rate adjustment valve 38, and is configured to be able to introduce the air taken into the main pipe 32 by the blower 30 into the outlet 34.
  • the blowout port 34 is provided downstream of the burner 16 in the flow path of the combustion air in the combustion furnace 2.
  • the flow rate adjustment valve 38 is disposed at the connection between the main pipe 32 and the first pipe 36, and adjusts the amount of air supplied from the main pipe 32 to the first pipe 36.
  • the secondary air supply unit 28 includes a second pipe 42 disposed so that the blowout port 40 is exposed to the combustion furnace 2, and a flow control valve 44 configured to adjust the flow rate of air in the second pipe 42.
  • the second pipe 42 is connected to the main pipe 32 via the flow rate adjustment valve 44, and is configured to be able to introduce the air taken into the main pipe 32 by the blower 30 into the outlet 40.
  • the blowout port 40 is provided downstream of the blowout port 34 in the flow path of the combustion air in the combustion furnace 2.
  • the flow rate adjustment valve 44 is disposed at the connection between the main pipe 32 and the second pipe 42, and adjusts the amount of air supplied from the main pipe 32 to the second pipe 42.
  • the distribution control means 46 adjusts the opening degree of the flow rate adjustment valves 22, 38 and 44 to send the air taken in by the blower 30 to the fuel supply means 12, the primary air supply unit 26 and the secondary air supply unit 28. Distribution at a predetermined rate.
  • the distribution control means 46 is configured to be automatically controlled based on a control signal from an infrared measurement and analysis unit installed in a control room.
  • the burner combustion zone 48, the unburned fuel presence reduction zone 50, and the combustion completion zone 52 are formed in the combustion furnace 2 from the upstream side to the downstream side, as shown in FIG. Ru.
  • the burner combustion area 48 is an area where the fuel injected from the burner 16 is burned, and is an area up to the outlet 34.
  • the unburned fuel presence reduction zone 50 is an area where the unreacted fuel reacts with the air supplied from the air outlet 34 and the air outlet 40 by supplying the air from the air outlet 34 and the air outlet 40, It is an area between the air outlet 34 and the air outlet 40, that is, an area where secondary air is supplied.
  • the combustion completion area 52 is an area where the remaining fuel and air react with each other, and is an area from the downstream side of the blowout port 40 to the connection portion of the combustion furnace 2 and the flue 4.
  • the gas analyzer 10 performs measurement by receiving the emitted laser light and a measurement laser control device 54 that controls the laser light emitted to the combustion air of the combustion furnace 2 for measurement.
  • the infrared measurement and analysis unit 56 that analyzes the result and controls the distribution control unit 46 based on the analysis result, and a two-dimensional measurement result display unit 58 that displays the analysis result.
  • the laser light emitted from the measurement laser light transmission system 60 is received by the measurement laser light reception system 62 after passing through the combustion air in the combustion furnace 2.
  • the measurement laser light transmission system 60 and the measurement laser light reception system 62 are provided on the two-dimensional plane along the substantially horizontal direction on the downstream side of the blowout port 40, whereby the combustion air in the combustion completion area 52 It is configured to be able to analyze.
  • the measurement laser light transmission system 60 includes a laser diode capable of transmitting a laser beam having a wavelength band of an infrared region.
  • the laser diode is a wavelength scanning laser diode capable of adjusting the wavelength of the laser light output by the drive current, and is configured to be capable of wavelength sweep based on a command from the measurement laser control device 54.
  • the wavelength scanning range of the measurement laser light transmission system 60 is selected so as to include wavelengths corresponding to at least two electron level transitions of the same gas type contained in the combustion air.
  • the laser diode is selected such that the wavelength corresponding to the electronic level transition of H 2 O 2 which is a kind of gas contained in the combustion air is included. This is because H 2 O is present in a relatively close range as compared to O 2 , CO 2, etc., which are also contained in combustion air, corresponding to two adjacent electron level transitions.
  • a plurality of measurement laser light transmission systems 60 and measurement laser light reception systems 62 are provided in the combustion furnace 2.
  • the combustion furnace 2 has a substantially rectangular two-dimensional cross section as viewed from above in the vertical direction.
  • the measurement laser light transmission system 60 and the measurement laser light reception system 62 are provided on sides facing each other in the two-dimensional cross section.
  • the pair of the measurement laser light transmission system 60 and the measurement laser light reception system 62 has n (n is 2 or more, respectively) along the vertical direction and the horizontal direction on the paper surface so that the measurement paths cross each other vertically. Natural numbers of) are provided. That is, in the present embodiment, a total of 2n pairs of measurement laser light transmission systems 60 and measurement laser light reception systems 62 are provided. A total of 2n measurement paths P are formed by the measurement laser light transmission system 60 and the measurement laser light reception system 62 thus arranged.
  • the infrared measurement and analysis unit 56 acquires the measurement result in the measurement laser light receiving system 62, and performs gas analysis using a two-dimensional solution analysis method (tomography) based on the measurement result.
  • a specific method of the gas analysis will be described step by step with reference to FIGS. 4 to 7.
  • 4 is a block diagram showing the configuration of the infrared measurement and analysis unit 56 of FIG. 1
  • FIG. 5 is a flowchart showing the gas analysis method implemented by the infrared measurement and analysis unit 56 of FIG.
  • An example of the absorption spectrum measured by the measurement laser light receiving system 62 is shown in FIG. 7.
  • FIG. 7 is a flowchart showing the control method of the distribution control means 46 implemented by the infrared measurement and analysis unit 56 of FIG.
  • the infrared measurement and analysis unit 56 measures the measurement result of the measurement laser light receiving system 62, and the reference setting unit sets the reference gas concentration distribution and the reference temperature distribution as a two-dimensional distribution function. And an analysis unit which obtains the gas concentration distribution and the temperature distribution by convergence calculation so as to minimize the deviation between the absorption amount and the reference absorption amount.
  • the reference setting unit 66 sets the reference gas concentration distribution Dcr and the reference temperature distribution Dtr based on the measurement result acquired by the measurement unit 64 (step S101).
  • the reference gas concentration distribution Dcr and the reference temperature distribution Dtr function as initial values when performing the convergence operation with the gas concentration distribution Dc and the temperature distribution Dt as variables in the analysis performed by the analysis unit 68.
  • the reference gas concentration distribution Dcr and the reference temperature distribution Dtr are laser light including absorption wavelengths corresponding to at least two electronic level transitions of the same gas type contained in combustion air by the measurement laser light transmission system 60 as combustion air
  • the irradiation is set based on the amount of absorption (absorption spectrum) measured by the measurement laser light receiving system 62.
  • FIG. 6 shows an example of an absorption spectrum measured by the measurement laser light receiving system 62, and three patterns of combustion air temperatures T1, T2 and T3 (T1>T2> T3) are shown.
  • absorption spectra S1 and S2 appear in wavelength regions corresponding to two adjacent electron level transitions of H 2 O contained in combustion air.
  • S1 is an absorption spectrum corresponding to the first level transition
  • S2 is an absorption spectrum corresponding to the second level.
  • the peak ratio of S1 to the absorption spectrum S2 has a property of changing depending on the temperature of combustion air. That is, by determining in advance the correlation between the peak ratio of S1 to the absorption spectrum S2 and the temperature of the combustion air, the temperature of the combustion air corresponding to the peak ratio of S1 to the absorption spectrum S2 based on the measured value can be determined. it can. The temperature of the combustion air thus determined corresponds to the average temperature on the measurement path where the absorption spectrum measurement was performed.
  • the reference setting unit 66 obtains the average temperature in each measurement path based on the absorption wavelength spectra S1 and S2 measured in each measurement path P using such temperature dependency of the peak ratio.
  • the average temperature of the combustion air in the combustion furnace 2 is calculated by further averaging the average temperature in each measurement path.
  • the reference setting unit 66 sets the reference gas concentration distribution Dcr and the reference temperature distribution Dtr as a temperature distribution that is constant at the average temperature thus calculated on the plane where the plurality of measurement paths P exist.
  • the analysis unit 68 prepares an increment variable k used for control when performing the following analysis, and sets the initial value to “1” (step S102). Then, the measurement laser control device 54 emits a laser beam to the combustion air by sending a command to the measurement laser light transmission system 60 (step S103). On the other hand, the measurement laser light receiving system 62 receives the laser light from the measurement laser light transmission system 60, and the infrared measurement analysis unit 56 obtains absorption spectra S in a plurality of measurement paths from the measurement results (step S104). In the following description, in the case where the absorption spectra S corresponding to the 2n measurement paths P are individually indicated, they are indicated by “S 1 , S 2 ,... S 2n ”, respectively.
  • Analyzing unit 68 the absorption spectrum S 1 corresponding to a plurality of measurement paths, S 2, S 3, based on ⁇ ⁇ ⁇ S 2n, reconstructs the gas concentration distribution Dc k and temperature distribution Dt k is a two-dimensional distribution To estimate (step S105).
  • the estimation calculation step S105 the analysis unit 68 is defined as a function including as a variable parameter in common respectively gas concentration distribution Dc k and temperature distribution Dt k.
  • the function is based on, for example, a general cylindrical coordinate system (for example, low-order Fourier series expansion in radial direction, Gaussian distribution, etc.) so as to correspond to the shape of the combustion furnace 2 in which the combustion air to be analyzed exists. It is set by appropriately using a two-dimensional distribution function including the central axis position of the cylindrical coordinate system, the ellipticity of coordinates, and the circumferential distribution term as parameters.
  • each parameter in the equation (1) is A: physical value central value
  • B and C radial distribution coefficient
  • D k and E k circumferential distribution coefficient
  • widx and widy coordinate ellipticity
  • xc and yc It is a central axis position of a cylindrical coordinate system.
  • the parameters (A, B i , C i , D k , E k , and so on) are reduced so that the deviation between the acquired absorption spectrum S and the analytical absorption spectrum Sr becomes small using the Marquardt method. Update widx, widy, xc, yc).
  • reference absorption spectra Sr in a plurality of measurement paths are determined based on the reference gas concentration distribution Dcr and the reference temperature distribution Dtr set in step S101 (step S106), and the deviation ⁇ k from the absorption spectrum S acquired in step S104.
  • ⁇ k
  • delta k obtained in step S107 is equal to or delta k-1 or more (step S108). If delta k is less than ⁇ k-1 (step S108: NO), since the deviation in comparison to the previous control loop is reduced, relative to the gas concentration distribution Dc k and temperature distribution Dt k estimated in step S105 The gas concentration distribution Dcr and the reference temperature distribution Dtr are updated (step S109). Then, the increment variable is added (step S110), and the process returns to step S107.
  • step S108 the analysis unit 68 determines that the solution has converged, and the gas concentration distribution estimated in step S105 and it outputs the Dc k and temperature distribution Dt k as an analysis result (step S111).
  • Dc k the gas concentration distribution estimated in step S105
  • Dt k the gas concentration distribution estimated in step S105
  • the gas concentration distribution Dc k and temperature distribution Dt k is a solution that has been derived as is transmitted to the distribution control unit 46 and two-dimensional measurement result display unit 58 as an analysis result.
  • Distribution control means 46 based on the gas concentration distribution Dc k and temperature distribution Dt k analyzed by the gas analyzer 10, by adjusting the flow regulating valve 22,38,44, fuel supply means 12, primary air supply
  • the unit 26 controls the secondary air supply unit 28.
  • Distribution control means 46 first, based on the gas concentration distribution Dc k, determines the total amount of O 2 concentration in the combustion furnace 2 to or less than the upper limit target value (step S201). If the total amount of O 2 concentration is larger than the upper limit target value (step S 201: NO), the distribution control means 46 sets the burner 16 and the flow control valves 22, 38, 44 to reduce the total amount of primary air and secondary air. It controls (step S202). On the other hand, if the total amount of O 2 concentration is less than or equal to the upper limit target value (step S 201: YES), the distribution control means 46 further determines whether the total amount of CO 2 concentration is less than or equal to the upper limit target value (step S 203). ). When the total amount of CO 2 concentration is larger than the upper limit target value (step S203: NO), the burner 16 and the flow control valves 22, 38, 44 are controlled to reduce the total amount of primary air and secondary air (step S204) .
  • step S203 if the total amount of CO 2 concentration is less than the upper limit target value (step S203: YES), the allocation control unit 46, the burner 16 based on the bias in the gas concentration distribution Dc k and temperature distribution Dt k, the flow rate adjusting valve 22 , 38 and 44 are feedback controlled (step S204). During such feedback control, it is determined whether the combustion equipment 1 is stopped (step S205). When the combustion equipment 1 is in operation (step S205: NO), the process is returned to step S201, and the above control is repeated. On the other hand, when the combustion equipment 1 has stopped (step S205: YES), a series of processing is ended (END).
  • the distribution control means 46 is an optimum in which the temperature imbalance in the combustion furnace 2 and the excess / lack of oxygen supply have been eliminated by controlling the amounts of fuel, primary air and secondary air supplied to the combustion furnace 2. It is possible to realize the operation and to improve the efficiency of the power generation end and to suppress the increase of NO x generation due to the excess O 2 . Also in the two-dimensional measurement result display unit 58, the gas concentration distribution Dc k and temperature distribution Dt k, for example by being visible to the operator by the display means such as a display, facilitate monitoring of the combustion condition in the combustion furnace 2 Make it
  • FIG. 8 is a schematic view showing the configuration of the combustion equipment 1 according to another embodiment of the present invention.
  • a control panel 70 that can be operated by an operator is provided in the control room.
  • the control panel 70 operates the distribution control means 46 by transmitting a control signal according to the input operation content to the distribution control means 46.
  • the control signal transmitted from the control panel 70 to the distribution control means 46 is equivalent to the control signal transmitted to the distribution control means 46 by the infrared measurement analysis unit 56 in FIG. 1, and the fuel supply means 12 and the primary air supply
  • the unit 26 controls the secondary air supply unit 28. That is, in the present embodiment, when the operator operates the control panel 70, the distribution control means 46 can be manually adjusted to adjust the combustion state manually.
  • a two-dimensional measurement result display unit 58 on which an analysis result in the infrared measurement and analysis unit 56 is displayed is provided.
  • the two-dimensional measurement result display unit 58 is a means for visualizing the analysis result on a display means such as a display for the operator in the control room.
  • the operator of the control panel 70 grasps the combustion state in the combustion furnace 2 by referring to the analysis result displayed on the two-dimensional measurement result display unit 58 which is a display means such as a display, for example, and according to the result Control panel 70 is operated. As described above, in the present embodiment, the operator can perform the work efficiently while easily grasping the combustion state of the combustion furnace 2.
  • a gas analyzer capable of accurately analyzing gas concentration distribution and temperature distribution in a system in which combustion gas in the combustion furnace is not uniformly mitigated, control system and control of combustion equipment A support system as well as a gas analysis method can be provided.
  • the present disclosure relates to a gas analyzer that analyzes a gas concentration distribution and a temperature distribution in a combustion furnace, a control system and a control support system of a combustion facility equipped with the gas analyzer, and a gas analysis method implemented by the gas analyzer.
  • a gas analyzer that analyzes a gas concentration distribution and a temperature distribution in a combustion furnace, a control system and a control support system of a combustion facility equipped with the gas analyzer, and a gas analysis method implemented by the gas analyzer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Abstract

 ガス分析装置は、燃焼炉内の燃焼ガスに含まれる同一成分の少なくとも2つの電子準位遷移に対応する吸収波長を含むレーザ光の吸収量を複数の計測パス上で測定する測定部と、基準ガス濃度分布及び基準温度分布を設定する基準設定部と、実測された吸収量と基準吸収量との偏差が最小となるように、ガス濃度分布及び温度分布を変数として含む二次元分布関数を解くことにより、ガス濃度分布及び温度分布を求める解析部と、を備える。

Description

ガス分析装置、燃焼設備の制御システム及び制御支援システム、並びに、ガス分析方法
 本開示は、燃焼炉内のガス濃度分布及び温度分布を分析するガス分析装置、該ガス分析装置を備える燃焼設備の制御システム及び制御支援システム、並びに、該ガス分析装置によって実施されるガス分析方法に関する。
 燃料を燃焼させるボイラやゴミを燃焼させるゴミ焼却炉のような燃焼設備では、燃焼炉内で物質が燃焼されることで高温の燃焼空気(ガス)が生成される。燃焼設備では、燃焼状態を最適化又はモニタリングするために、燃焼炉内におけるガス濃度分布や温度分布を計測することが望まれている。このような燃焼炉内のガス濃度分布や温度分布は、一般的にガス濃度や温度が不均一であり、燃焼炉の規模が比較的小さい場合には、燃焼炉内のいくつかのポイントで実測することで、ある程度の精度で把握可能であるが、燃焼炉の規模が大きくなると計測手法は限られる。この種の計測手法の一つとして、燃焼炉に設けられた複数のレーザポートから燃焼炉内の燃焼空気を通過するようにレーザ光が照射される複数の計測パスにおいて、レーザ光の吸収量の積算値をコンピュータのような演算処理装置で解析することにより、ガス濃度及び温度を二次元分布として算出することが知られている。
 このような手法では、レーザ照射が行われる計測パス毎に解析パラメータが設定される。そのため解析精度を向上するためには、レーザポート数を十分多く設けることが必要である。しかしながら、ボイラのような実際の燃焼設備では、燃焼炉の内壁には燃焼炉内の燃焼空気によって加熱される液体(冷却水)が流れる配管が敷設されているため、設置可能なレーザポートの数が限られている。
 このような問題に対する解決策の一つが特許文献1に開示されている。特許文献1では、レーザ計測される燃焼炉内の二次元空間をメッシュ分割し、各メッシュにおけるレーザ吸収量に基づいてガス濃度値を算出する。そして、各メッシュにおけるガス濃度の分布が連続的なガウシアンプロセス(GP:Gaussian Process)であるとの仮定のもと、ベイジアン手法で解を探索することでガス濃度分布を求めることが開示されている。このように特許文献1では、連続性条件を満たすことを条件とすることで、解析パラメータ数が比較的少ない場合であっても信頼性のある解析結果を得られるとされている。
特表2006-522938
 特許文献1のようなレーザ光を用いた濃度計測は、燃焼空気に含まれる成分に対応する電子準位遷移に依存する吸収量に基づくものであるが、このようなレーザ吸収量は濃度だけでなく燃焼空気の温度にも依存する特性を有する。特許文献1では、レーザ吸収量に基づいて求められる濃度分布に連続性条件を課すことによって実際に近い濃度分布を求められるとしている。しかしながら、レーザ吸収量から濃度を導き出す過程において、レーザ吸収量の温度依存性が加味されておらず、十分な解析精度を実現できないおそれがある。
 本発明の少なくとも1実施形態は上述の問題点に鑑みたものであり、燃焼炉内の燃焼ガスが均一に緩和されていない系におけるガス濃度分布及び温度分布を精度よく分析可能なガス分析装置、燃焼設備の制御システム及び制御支援システム、並びに、ガス分析方法を提供することを目的とする。
(1)本発明の少なくとも1実施形態に係るガス分析装置は上記課題を解決するために、燃焼炉内の燃焼ガスの濃度分布及び温度分布を分析するガス分析装置であって、前記燃焼ガスに含まれる同一成分の少なくとも2つの電子準位遷移に対応する吸収波長を含むレーザ光を、前記燃焼ガスを通過するように設けられた複数の計測パス上で照射することにより前記レーザ光の吸収量を測定する測定部と、前記測定部の計測結果に基づいて基準ガス濃度分布及び基準温度分布を設定する基準設定部と、前記計測部で計測された吸収量と、前記基準ガス濃度分布及び前記基準温度分布に基づいて求められる基準吸収量との偏差が最小となるように、前記ガス濃度分布及び前記温度分布を変数として含む関数を解くことにより、前記ガス濃度分布及び前記温度分布を求める解析部と、を備える。
 上記(1)の構成によれば、燃焼空気を通過する複数の計測パスにおけるレーザ光の吸収量に基づいてガス濃度分布及び温度分布を求める際に、基準設定部で設定された基準分布から求められる基準吸収量と計測部で計測された吸収量との偏差が最小になるように、ガス濃度分布及び温度分布を変数として含む関数を数値解析的に解くことによりガス濃度分布及び温度分布を求める。このような関数は濃度分布及び温度分布を共通の変数として含むため、濃度及び温度間に相関関係があるという実現象的背景を反映することができ、より実際の分布に近い解析解が得えられると共に、ガス濃度と温度が吸収量に与える影響の切り分けが可能になる(例えば温度上昇による吸収量減少と、ガス濃度低下による吸収量減少の切り分けることができる)。このように本実施形態によれば、燃焼炉に設置可能なレーザポート数が限られている状況下においても、レーザ光の吸収量の温度依存性が加味された、より実際の系に近いガス濃度分布及び温度分布を効率的に求めることができる。
(2)幾つかの実施形態では、上記(1)の構成において、前記関数は前記燃焼炉の形状に対応するように設定される。
 上記(2)の構成によれば、分析対象である燃焼ガスのある燃焼炉の形状に応じた関数を採用することにより、解析時に関数を解く際により実際に近い解を効率的に探索できる。
(3)幾つかの実施形態では、上記(2)の構成において、前記関数は、円柱座標系に対し、中心軸位置、座標の楕円化率、周方向分布項の少なくとも1をパラメータとして含むように設定される。
 上記(3)の構成によれば、これらのパラメータによって燃焼炉の形状を規定することで、より少ないパラメータ数でガス濃度分布及び温度分布を表現することができる。これにより、関数を解く際の演算負担が軽減されると共に、実際の系に近い解を効率的に探索することができる。
(4)幾つかの実施形態では、上記(1)から(3)のいずれか1構成において、前記基準設定部は、前記複数の計測パスにおける前記レーザ光に含まれる異なる電子準位遷移に対応する波長における吸収量の比に基づいて求められた前記燃焼ガスの平均温度に基づいて、前記基準濃度分布及び前記基準温度分布を設定する。
 上記(4)の構成によれば、複数の計測パスにおけるレーザ吸収量に基づいて燃焼炉内の平均温度を算出し、当該平均温度に基づいて基準濃度分布及び基準温度分布を設定する。このように設定された基準濃度分布及び基準温度分布は、関数を数値解析的に解く際に、最終的な解を効率的に探索するのに適切な初期値となる。例えば、基準温度分布は、燃焼炉内の温度分布が上記求めた平均温度で緩和している状態であると設定してもよいし、収束解析演算においてマルカート法等を用いる場合には当該分布に勾配を付加するように設定してもよい。
(5)幾つかの実施形態では、上記(4)の構成において、前記同一成分はHOである。
 上記(5)の構成によれば、HOは例えばO、CO等に比べて隣り合う2つの電子準位遷移に対応する吸収波長域が比較的近い範囲に存在する。そのため、例えば波長走査型のレーザダイオードの駆動電流を制御することでレーザ光の波長を走査する場合に、単一のレーザダイオードの走査範囲内で隣り合う2つの電子準位遷移をカバーすることができるため、装置構成を単純にすることができる。
(6)本発明の少なくとも1実施形態にかかる燃焼設備の制御システムは上記課題を解決するために、前記燃焼炉に燃料を供給するように構成された燃料供給手段と、前記燃焼炉に空気を供給するように構成された空気供給手段と、上記(1)から(5)のいずれか1構成のガス分析装置と、前記ガス分析装置によって分析された前記ガス濃度分布及び前記温度分布に基づいて、前記燃料供給手段及び前記空気供給手段を調整することにより、前記燃焼炉への前記燃料及び前記空気の供給量を制御する制御手段と、を備える。
 上記(6)の構成によれば、燃焼炉におけるガス分析によって得られたガス濃度分布及び温度分布に基づいて燃料供給手段及び空気供給手段を調整することにより、燃焼炉への燃料及び空気の供給量を制御できる。これにより、燃焼炉における燃焼ガスの温度アンバランスや酸素供給の過多・不足を解消した最適な運転を実現し、発電端効率の向上や、O過多によるNO生成の増加を抑えることができる。
(7)本発明の少なくとも1実施形態にかかる燃焼設備の制御支援システムは上記課題を解決するために、前記燃焼炉に燃料を供給するように構成された燃料供給手段と、前記燃焼炉に空気を供給するように構成された空気供給手段と、請求項1から5のいずれか1項に記載のガス分析装置と、前記ガス分析装置によって分析された前記ガス濃度分布及び前記温度分布を表示するように構成された表示手段と、を備える。
 上記(7)の構成によれば、上記ガス分析装置の分析結果をディスプレイのような表示手段に表示して可視化することで、燃焼設備のオペレータが燃焼炉内の燃焼状態を容易に把握可能とすることで、オペレータによる燃料状態の調整作業を効率化することができる。
(8)本発明の少なくとも1実施形態にかかるガス分析方法は上記課題を解決するために、燃焼炉内の燃焼ガスの濃度分布及び温度分布を分析するガス分析方法であって、前記燃焼ガスに含まれる同一成分の少なくとも2つの電子準位遷移に対応する吸収は超を含むレーザ光を、前記燃焼ガスを通過するように設けられた複数の計測パス上で照射することにより前記レーザ光の吸収量を測定する測定工程と、前記測定工程の計測結果に基づいて基準ガス濃度分布及び基準温度分布を設定する基準設定工程と、前記計測工程で計測された吸収量と、前記基準ガス濃度分布及び前記基準温度分布に基づいて求められる基準吸収量との偏差が最小となるように、前記ガス濃度分布及び前記温度分布を変数として含む関数を解くことにより、前記ガス濃度分布及び前記温度分布を求める解析工程と、を備える。
 上記(8)の方法は、上述のガス分析装置(上記各種構成を含む)により好適に実施可能である。
 本発明の少なくとも1実施形態によれば、燃焼炉内の燃焼ガスが均一に緩和されていない系におけるガス濃度分布及び温度分布を精度よく分析可能なガス分析装置、燃焼設備の制御システム及び制御支援システム、並びに、ガス分析方法を提供できる。
本発明の少なくとも1実施形態に係るガス分析装置を備える燃焼設備の構成を示す模式図である。 図1の燃焼炉の各領域を説明するための模式図である。 図1のA-A線の断面図である。 図1の赤外線計測解析ユニットの構成を示すブロック図である。 図4の赤外線計測解析ユニットによって実施されるガス分析方法を工程毎に示すフローチャートである。 計測レーザ受光系で測定される吸収スペクトルの一例である。 図4の赤外線計測解析ユニットによって実施される配分制御手段の制御方法を工程毎に示すフローチャートである。 図8は本発明の他の実施形態に係る燃焼装置の構成を示す模式図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 また例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 まず図1乃至図3を参照して、本発明の少なくとも1実施形態に係るガス分析装置を備える燃焼設備1の全体構成について説明する。図1は本発明の少なくとも1実施形態に係るガス分析装置を備える燃焼設備1の構成を示す模式図であり、図2は図1の燃焼炉の各領域を説明するための模式図であり、図3は図1のA-A線の断面図である。
 燃焼設備1は、燃料を燃焼させる燃焼炉2と、該燃焼炉2で生成された燃焼空気を案内する煙道4と、燃焼空気から熱エネルギを取得する再熱器ユニット6と、燃焼炉2内への燃料及び空気の供給を調整することで燃焼炉2内における燃焼状態を制御する燃焼制御装置8と、燃焼炉2内の燃焼空気(ガス)を分析するガス分析装置10と、を備える。
 燃焼炉2は、耐熱性材料が用いられた壁面で略箱形状に囲まれるように構成される。燃焼炉2では、後述する燃焼制御装置8から供給される燃料及び空気が燃焼されることで高温の燃焼空気が生成される。燃焼炉2は鉛直方向上側が開放されており、当該開放された箇所が煙道4に接続されている。燃焼炉2で生成された高温の燃焼空気は、煙道4に案内されるように流路を形成する。
 再熱器ユニット6は複数の再熱器から構成されており、燃焼炉2及び煙道4における燃焼空気の流路上に配置されている。再熱器は内部に液体又は気体が封入された管状の部材からなる。再熱器に封入されている液体又は気体は、高温の燃焼空気と熱交換することにより熱エネルギを取得し、蒸気となる。この蒸気は再熱器ユニット6から所定の経路を通り、不図示のタービンを回転駆動させることで、熱エネルギを電気エネルギ又は機械的エネルギに変換して出力可能に構成されている。
 このように燃焼設備1は発電機、駆動機として機能するが、このような用途に限定されず、例えば、再熱器ユニット6で取得した熱エネルギにより任意の物質を加熱する加熱機として用いられてもよい。
 燃焼制御装置8は、燃焼炉2内に供給される燃料及び空気を調整することにより、燃焼炉2内における燃焼状態を制御する。燃焼制御装置8は、燃焼炉2にそれぞれ燃料及び空気を供給する燃料供給手段12及び空気供給手段14を備える。
 燃料供給手段12は、燃料を燃焼させる微粉炭バーナ(以下、適宜「バーナ」と称する)16と、燃料である微粉炭を供給する微粉炭供給部18と、燃料を搬送するための送風を発生させる送風機20と、燃料の流量を調整するための流量調整弁22と、これらを互いに接続する配管24と、を備える。
 微粉炭供給部18は燃料を配管24に供給するように構成された機構である。配管24に供給された微粉炭は送風機20によって配管24中を搬送され、流量調整弁22を介して空気供給手段14の主配管32から導入された空気と混合された後、バーナ16に供給される。バーナ16は、噴射口が燃焼炉2の内側に露出するように設置された燃焼機であり、配管24を介して供給された燃料を噴射し、燃焼炉2内で燃焼させる。
 尚、バーナ16は、燃焼炉2内の複数箇所に配置されており、好ましくは各バーナ16から噴射される空気により燃焼炉2内に渦状の空気の流れができるようにレイアウトされるとよい。
 尚、微粉炭供給部18は、石炭を粉砕して微粉炭を生成し、該生成した微粉炭を配管24に供給する機構であってもよいし、予め生成された微粉炭を貯留しておき、該貯留された微粉炭を配管24に供給する機構であってもよい。
 空気供給手段14は、燃焼炉2に一次空気及び二次空気をそれぞれ供給する一次空気供給ユニット26及び二次空気供給ユニット28と、上述の燃料供給手段12と共に一次空気供給ユニット26及び二次空気供給ユニット28に空気を送るブロア又はファンである送風機30と、これらを接続する主配管32とを備える。
 一次空気供給ユニット26は、吹出口34が燃焼炉2に露出するように配置された第1配管36と、該第1配管36における空気の流量を調整に構成された流量調整弁38と、を備える。第1配管36は、流量調整弁38を介して主配管32に接続されており、送風機30によって主配管32に取り込まれた空気を吹出口34に導入可能に構成されている。吹出口34は、燃焼炉2内の燃焼空気の流路のうち、バーナ16より下流側に設けられている。流量調整弁38は、主配管32と第1配管36との接続部に配置されており、主配管32から第1配管36に供給される空気の量を調整する。
 二次空気供給ユニット28は、吹出口40が燃焼炉2に露出するように配置された第2配管42と、該第2配管42における空気の流量を調整可能に構成された流量調整弁44と、を備える。第2配管42は、流量調整弁44を介して主配管32に接続されており、送風機30によって主配管32に取り込まれた空気を吹出口40に導入可能に構成されている。吹出口40は、燃焼炉2内の燃焼空気の流路のうち、吹出口34より下流側に設けられている。流量調整弁44は、主配管32と第2配管42との接続部に配置されており、主配管32から第2配管42に供給される空気の量を調整する。
 配分制御手段46は、流量調整弁22,38,44の開度を調整することにより、送風機30によって取り込まれた空気を燃料供給手段12、一次空気供給ユニット26及び二次空気供給ユニット28に対して所定比率で振り分ける。本実施形態では、配分制御手段46は制御室に設置された赤外線計測解析ユニットからの制御信号に基づいて自動的に制御されるように構成されている。
 上記構成によって燃焼炉2の内部には、図2に示されるように、上流側から下流側に向けて、バーナ燃焼域48、未燃燃料存在還元域50、燃焼完結域52の領域が形成される。ここで、バーナ燃焼域48は、バーナ16から噴射される燃料が燃焼される領域であり、吹出口34より上流までの領域である。未燃燃料存在還元域50は、吹出口34及び吹出口40から空気が供給されることにより、未反応の燃料と吹出口34及び吹出口40から供給された空気とが反応する領域であり、吹出口34及び吹出口40間の領域、つまり、二次空気が供給される領域である。燃焼完結域52は、残っている燃料と空気とが反応する領域であり、吹出口40より下流側から、燃焼炉2及び煙道4の接続部までの領域である。
 再び図1に戻って、ガス分析装置10は、燃焼炉2の燃焼空気に計測用に照射されるレーザ光を制御する計測レーザ制御装置54と、該照射されたレーザ光を受光することにより計測結果を解析するとともに解析結果に基づいて配分制御手段46を制御する赤外線計測解析ユニット56と、該解析結果を表示する二次元計測結果表示部58と、を備える。
 計測レーザ送光系60及び計測レーザ受光系62は、計測レーザ送光系60から照射されたレーザ光が、燃焼炉2内の燃焼空気を通過した後、計測レーザ受光系62にて受光されるように、燃焼炉2の互いに対向する位置に設置されている。本実施形態では特に、計測レーザ送光系60及び計測レーザ受光系62が吹出口40より下流側に略水平方向に沿った二次元平面上に設けられることにより、燃焼完結域52にある燃焼空気を分析可能に構成されている。
 計測レーザ送光系60には、赤外線領域の波長帯を有するレーザ光を発信可能なレーザダイオードが含まれる。当該レーザダイオードは、駆動電流によって出力されるレーザ光の波長を調整可能な波長走査型のレーザダイオードであり、計測レーザ制御装置54からの指令に基づいて波長スイープ可能に構成されている。ここで計測レーザ送光系60の波長走査範囲は、燃焼空気に含まれる同一ガス種の少なくとも2つの電子準位遷移に対応する波長が含まれるように選択される。本実施形態では特に、燃焼空気に含まれるガスの一種であるHO2つの電子準位遷移に対応する波長が含まれるようにレーザダイオードが選択されている。これは、HOが同じく燃焼空気に含まれるO、CO等に比べて、隣り合う2つの電子準位遷移に対応する波長域が比較的近い範囲に存在するためである。
 ここで図3に示されるように、計測レーザ送光系60及び計測レーザ受光系62は、燃焼炉2に複数設けられている。燃焼炉2は鉛直方向上方から見て、略矩形状の二次元断面を有する。本実施形態では、計測レーザ送光系60及び計測レーザ受光系62は、当該二次元断面において、互いに対向する辺上に設けられている。このような計測レーザ送光系60及び計測レーザ受光系62のペアは、互いの計測パスが垂直に交差するように紙面上において垂直方向と水平方向とに沿って、それぞれn(nは2以上の自然数)個設けられている。すなわち、本実施形態では、合計で2n個の計測レーザ送光系60及び計測レーザ受光系62のペアが設けられている。そして、このように配置された計測レーザ送光系60及び計測レーザ受光系62によって、合計2n本の計測パスPが形成されている。
 赤外線計測解析ユニット56は、計測レーザ受光系62における計測結果を取得し、当該計測結果に基づいて二次元解分析手法(トモグラフィ)を利用したガス分析を実施する。ここで図4乃至図7を参照して、当該ガス分析の具体的に方法を工程毎に説明する。図4は図1の赤外線計測解析ユニット56の構成を示すブロック図であり、図5は図4の赤外線計測解析ユニット56によって実施されるガス分析方法を工程毎に示すフローチャートであり、図6は計測レーザ受光系62で測定される吸収スペクトルの一例であり、図7は図4の赤外線計測解析ユニット56によって実施される配分制御手段46の制御方法を工程毎に示すフローチャートである。
 図4に示されるように、赤外線計測解析ユニット56は、計測レーザ受光系62の計測結果を取得する計測部64と、基準ガス濃度分布及び基準温度分布を二次元分布関数として設定する基準設定部66と、前記吸収量と前記基準吸収量との偏差が最小となるように、前記ガス濃度分布及び前記温度分布を収束計算により求める解析部68とを備える。
 まず基準設定部66は、計測部64によって取得された計測結果に基づいて基準ガス濃度分布Dcr及び基準温度分布Dtrを設定する(ステップS101)。基準ガス濃度分布Dcr及び基準温度分布Dtrは、解析部68で実施される解析において、ガス濃度分布Dc及び温度分布Dtを変数として収束演算する際の初期値として機能するものである。
 ここで基準ガス濃度分布Dcr及び基準温度分布Dtrは、計測レーザ送光系60によって燃焼空気に含まれる同一ガス種の少なくとも2つの電子準位遷移に対応する吸収波長を含むレーザ光を燃焼空気に照射し、計測レーザ受光系62で計測される吸収量(吸収スペクトル)に基づいて設定される。図6には、計測レーザ受光系62で計測された吸収スペクトルの一例が示されており、燃焼空気の温度がT1、T2、T3(T1>T2>T3)の3パターンが表されている。このスペクトルには、燃焼空気に含まれるHOの隣り合う2つの電子準位遷移に対応する波長域において吸収スペクトルS1及びS2が現れている。S1は第1準位遷移に対応する吸収スペクトルであり、S2は第2準位に対応する吸収スペクトルである。
 ここで吸収スペクトルS2に対するS1のピーク比は、燃焼空気の温度に依存して変化する性質を有する。すなわち、吸収スペクトルS2に対するS1のピーク比と燃焼空気の温度との相関を予め特定しておくことで、実測値に基づく吸収スペクトルS2に対するS1のピーク比に対応する燃焼空気の温度を求めることができる。このようにして求められる燃焼空気の温度は、当該吸収スペクトル測定が行われた計測パス上における平均温度に相当する。基準設定部66は、このようなピーク比の温度依存性を利用して、各計測パスPで計測される吸収波長スペクトルS1及びS2に基づいて各計測パスにおける平均温度を求める。そして、各計測パスにおける平均温度を更に平均化することにより、燃焼炉2における燃焼空気の平均温度を算出する。そして、基準設定部66は、複数の計測パスPが存在する平面上が、このように算出された平均温度で一定である温度分布として、基準ガス濃度分布Dcr及び基準温度分布Dtrを設定する。
 再び図5に戻って、続いて解析部68は、以下の解析を行う際に制御上用いられるインクリメント変数kを用意し、その初期値を「1」に設定する(ステップS102)。そして計測レーザ制御装置54は、計測レーザ送光系60に対して指令を送ることで、燃焼空気に対してレーザ光を照射する(ステップS103)。一方で、計測レーザ受光系62は計測レーザ送光系60からのレーザ光を受信し、赤外線計測解析ユニット56によりその計測結果から複数の計測パスにおける吸収スペクトルSを求める(ステップS104)。
 尚、以下の説明において、2n本の計測パスPに対応する吸収スペクトルSを個別に示す場合には、それぞれ「S、S、・・・S2n」で示すこととする。
 解析部68は、複数の計測パスに対応する吸収スペクトルS、S、S、・・・S2nに基づいて、二次元分布であるガス濃度分布Dc及び温度分布Dtを再構成することにより推定する(ステップS105)。ステップS105の推定演算では、解析部68はガス濃度分布Dc及び温度分布Dtをそれぞれ共通する変数パラメータとして含む関数として規定する。当該関数は、解析対象となる燃焼空気が存在する燃焼炉2の形状に対応するように、例えば一般的な円柱座標系(例えば径方向の低次のフーリエ級数展開や、ガウシアン分布など)を基本とし、これに円柱座標系の中心軸位置、座標の楕円化率、周方向分布項をパラメータとして含む二次元分布関数を適宜用いることによって設定される。
 本実施形態では特に、ガス濃度分布Dc及び温度分布Dtに相関があることに鑑み、少なくとも円柱座標系の中心軸位置、座標の楕円化率のパラメータをガス濃度分布Dc及び温度分布Dtを示す関数が共有するように関数が設定される。これにより、ガス濃度分布を算出される際に燃焼空気の温度分布による影響が加味され、より実際の分布に近い解析結果を得ることができる。以下は、このような技術的思想から導き出される関数の一例である。
Figure JPOXMLDOC01-appb-I000001
 
ここで(1)式において、xはガス濃度分布Dcであり、yは温度分布Dtであり、
Figure JPOXMLDOC01-appb-I000002
である。また(1)式における各パラメータは、A:物理量中心値、B及びC:径方向分布係数、D及びE:周方向分布係数、widx及びwidy:座標の楕円化率、xc及びyc:円柱座標系の中心軸位置である。
 尚、繰り返し計算では例えばマルカート法を用いて、取得した吸収スペクトルSと、解析上の吸収スペクトルSrとの偏差が小さくなるように各パラメータ(A,B,C,D,E,widx,widy,xc,yc)の更新を行う。
 続いてステップS101で設定された基準ガス濃度分布Dcr及び基準温度分布Dtrに基づいて複数の計測パスにおける基準吸収スペクトルSrを求め(ステップS106)、ステップS104で取得した吸収スペクトルSとの偏差Δを次式
Δ=|S-Sr|
により求める(ステップS107)。
 続いて解析部68は、ステップS107で求められたΔがΔk-1以上であるか否かを判定する(ステップS108)。ΔがΔk-1未満である場合(ステップS108:NO)、前回制御ループに比べて偏差が縮小しているため、ステップS105で推定されたガス濃度分布Dc及び温度分布Dtを基準ガス濃度分布Dcr及び基準温度分布Dtrとして更新する(ステップS109)。そして、インクリメント変数を加算し(ステップS110)、処理をステップS107に戻す。
 ステップS107~S110の処理が繰り返された結果、ΔがΔk-1以上となると(ステップS108:NO)、解析部68は解が収束したと判断し、ステップS105で推定されたガス濃度分布Dc及び温度分布Dtを解析結果として出力する(ステップS111)。このように本実施形態では、ガス濃度の二次元分布を算出する際、ガス濃度分布Dc及び温度分布Dtを同時に変数として扱い、偏差Δが最小になるように解が探索される。
 このように導き出された解であるガス濃度分布Dc及び温度分布Dtは、解析結果として配分制御手段46及び二次元計測結果表示部58に送信される。配分制御手段46は、ガス分析装置10によって分析されたガス濃度分布Dc及び温度分布Dtに基づいて、流量調整弁22,38,44を調整することにより、燃料供給手段12、一次空気供給ユニット26、二次空気供給ユニット28を制御する。
 ここで図7を参照して、配分制御手段46の制御例について具体的に説明する。この例では、ガス濃度分布Dcとして燃焼空気に含まれるO及びCOの濃度分布が分析結果として得られる場合について説明する。
 まず配分制御手段46は、ガス濃度分布Dcに基づいて、燃焼炉2におけるO濃度の総量が上限目標値以下であるか否かを判定する(ステップS201)。O濃度の総量が上限目標値より大きい場合(ステップS201:NO)、配分制御手段46は、一次空気及び二次空気の総量を低下させるようにバーナ16、流量調整弁22、38、44を制御する(ステップS202)。
 一方、O濃度の総量が上限目標値以下である場合(ステップS201:YES)、配分制御手段46は更に、CO濃度の総量が上限目標値以下であるか否かを判定する(ステップS203)。CO濃度の総量が上限目標値より大きい場合(ステップS203:NO)、一次空気及び二次空気の総量を低下させるようにバーナ16、流量調整弁22、38、44を制御する(ステップS204)。
 一方、CO濃度の総量が上限目標値以下である場合(ステップS203:YES)、配分制御手段46は、ガス濃度分布Dc及び温度分布Dtにおける偏りに基づいてバーナ16、流量調整弁22、38、44のバランスをフィードバック制御する(ステップS204)。このようなフィードバック制御中には、燃焼設備1が停止しているか否かが判定される(ステップS205)。燃焼設備1が稼働中である場合には(ステップS205:NO)、処理をステップS201に戻し、上記制御を繰り返す。一方、燃焼設備1が停止した場合(ステップS205:YES)、一連の処理は終了される(END)。
 このように配分制御手段46は、燃焼炉2への燃料、一次空気及び二次空気の供給量を制御することにより、燃焼炉2における温度アンバランスや酸素供給の過多・不足を解消した最適な運転を実現し、発電端効率の向上や、O過多によるNO生成の増加を抑制できる。また二次元計測結果表示部58では、ガス濃度分布Dc及び温度分布Dtは、例えばディスプレイのような表示手段によってオペレータに対して可視化されることにより、燃焼炉2における燃焼状態の監視を容易にする。
 図8は本発明の他の実施形態に係る燃焼設備1の構成を示す模式図である。本実施形態は、制御室にオペレータが操作可能な制御盤70が設けられている。制御盤70は、入力された操作内容に応じた制御信号を配分制御手段46に送信することにより、配分制御手段46を操作する。ここで、制御盤70から配分制御手段46に送信される制御信号は、図1において赤外線計測解析ユニット56が配分制御手段46に送信する制御信号と同等であり、燃料供給手段12、一次空気供給ユニット26、二次空気供給ユニット28を制御する。すなわち、本実施形態では、オペレータが制御盤70を操作することにより、配分制御手段46をマニュアル手動して燃焼状態を調整可能に構成されている。
 制御室内には、赤外線計測解析ユニット56における解析結果が表示される二次元計測結果表示部58が設けられている。二次元計測結果表示部58は例えばディスプレイのような表示手段に解析結果を、制御室内にいるオペレータに対して可視化する手段である。
制御盤70のオペレータは、例えばディスプレイのような表示手段である二次元計測結果表示部58に表示された解析結果を参照することにより、燃焼炉2内の燃焼状態を把握し、その結果に応じて制御盤70を操作する。このように本実施形態では、オペレータが燃焼炉2の燃焼状態を容易に把握しながら効率的に作業を行うことができる。
 以上説明したように本実施形態によれば、燃焼炉内の燃焼ガスが均一に緩和されていない系におけるガス濃度分布及び温度分布を精度よく分析可能なガス分析装置、燃焼設備の制御システム及び制御支援システム、並びに、ガス分析方法を提供できる。
 本開示は、燃焼炉内のガス濃度分布及び温度分布を分析するガス分析装置、該ガス分析装置を備える燃焼設備の制御システム及び制御支援システム、並びに、該ガス分析装置によって実施されるガス分析方法に利用可能である。
  1 燃焼設備
  2 燃焼炉
  4 煙道
  6 再熱器ユニット
  8 燃焼制御装置
 10 ガス分析装置
 12 燃料供給手段
 14 空気供給手段
 16 微粉炭バーナ
 18 微粉炭供給部
 20,30 送風機
 22,38,44 流量調整弁
 24 配管
 26 一次空気供給ユニット
 28 二次空気供給ユニット
 32 主配管
 34,40 吹出口
 36 第1配管
 42 第2配管
 46 配分制御手段
 48 バーナ燃焼域
 50 未燃燃料存在還元域
 52 燃焼完結域
 54 計測レーザ制御部
 56 赤外線計測解析ユニット
 58 二次元計測結果表示部
 60 計測レーザ送光系
 62 計測レーザ受光系
 64 計測部
 66 基準設定部
 68 解析部
 70 制御盤

Claims (8)

  1.  燃焼炉内の燃焼ガスの濃度分布及び温度分布を分析するガス分析装置であって、
     前記燃焼ガスに含まれる同一成分の少なくとも2つの電子準位遷移に対応する吸収波長を含むレーザ光を、前記燃焼ガスを通過するように設けられた複数の計測パス上で照射することにより前記レーザ光の吸収量を測定する測定部と、
     前記測定部の計測結果に基づいて基準ガス濃度分布及び基準温度分布を設定する基準設定部と、
     前記計測部で計測された吸収量と、前記基準ガス濃度分布及び前記基準温度分布に基づいて求められる基準吸収量との偏差が最小となるように、前記ガス濃度分布及び前記温度分布を変数として含む関数を解くことにより、前記ガス濃度分布及び前記温度分布を求める解析部と、
    を備えることを特徴とするガス分析装置。
  2.  前記関数は、前記燃焼炉の形状に対応するように設定されることを特徴とする請求項1に記載のガス分析装置。
  3.  前記関数は、円柱座標系に対し、中心軸位置、座標の楕円化率、周方向分布項の少なくとも1をパラメータとして含むように設定されることを特徴とする請求項2に記載のガス分析装置。
  4.  前記基準設定部は、前記複数の計測パスにおける前記レーザ光に含まれる異なる電子準位遷移に対応する波長における吸収量の比に基づいて求められた前記燃焼ガスの平均温度に基づいて、前記基準濃度分布及び前記基準温度分布を設定することを特徴とする請求項1から3のいずれか1項に記載のガス分析装置。
  5.  前記同一成分はHOであることを特徴とする請求項4に記載のガス分析装置。
  6.  前記燃焼炉に燃料を供給するように構成された燃料供給手段と、
     前記燃焼炉に空気を供給するように構成された空気供給手段と、
     請求項1から5のいずれか1項に記載のガス分析装置と、
     前記ガス分析装置によって分析された前記ガス濃度分布及び前記温度分布に基づいて、前記燃料供給手段及び前記空気供給手段を調整することにより、前記燃焼炉への前記燃料及び前記空気の供給量を制御する制御手段と、
    を備えることを特徴とする燃焼設備の制御システム。
  7.  前記燃焼炉に燃料を供給するように構成された燃料供給手段と、
     前記燃焼炉に空気を供給するように構成された空気供給手段と、
     請求項1から5のいずれか1項に記載のガス分析装置と、
     前記ガス分析装置によって分析された前記ガス濃度分布及び前記温度分布を表示するように構成された表示手段と、
    を備えることを特徴とする燃焼設備の制御支援システム。
  8.  燃焼炉内の燃焼ガスの濃度分布及び温度分布を分析するガス分析方法であって、
     前記燃焼ガスに含まれる同一成分の少なくとも2つの電子準位遷移に対応する吸収は超を含むレーザ光を、前記燃焼ガスを通過するように設けられた複数の計測パス上で照射することにより前記レーザ光の吸収量を測定する測定工程と、
     前記測定工程の計測結果に基づいて基準ガス濃度分布及び基準温度分布を設定する基準設定工程と、
     前記計測工程で計測された吸収量と、前記基準ガス濃度分布及び前記基準温度分布に基づいて求められる基準吸収量との偏差が最小となるように、前記ガス濃度分布及び前記温度分布を変数として含む関数を解くことにより、前記ガス濃度分布及び前記温度分布を求める解析工程と、
    を備えることを特徴とするガス分析工程。
PCT/JP2015/083005 2015-03-27 2015-11-25 ガス分析装置、燃焼設備の制御システム及び制御支援システム、並びに、ガス分析方法 WO2016157610A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15887752.2A EP3246694A4 (en) 2015-03-27 2015-11-25 Gas analysis device, control system and control assistance system for combustion equipment, and gas analysis method
US15/552,670 US20180031233A1 (en) 2015-03-27 2015-11-25 Gas analysis device, control system and control assistance system for combustion facility, and gas analysis method
CN201580067967.4A CN107110777A (zh) 2015-03-27 2015-11-25 气体分析装置、燃烧设备的控制系统以及控制辅助系统、以及气体分析方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-066847 2015-03-27
JP2015066847A JP2016186464A (ja) 2015-03-27 2015-03-27 ガス分析装置、燃焼設備の制御システム及び制御支援システム、並びに、ガス分析方法

Publications (1)

Publication Number Publication Date
WO2016157610A1 true WO2016157610A1 (ja) 2016-10-06

Family

ID=57004100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083005 WO2016157610A1 (ja) 2015-03-27 2015-11-25 ガス分析装置、燃焼設備の制御システム及び制御支援システム、並びに、ガス分析方法

Country Status (5)

Country Link
US (1) US20180031233A1 (ja)
EP (1) EP3246694A4 (ja)
JP (1) JP2016186464A (ja)
CN (1) CN107110777A (ja)
WO (1) WO2016157610A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107560754A (zh) * 2017-07-12 2018-01-09 北京航空航天大学 一种基于调制锯齿波信号的激光光线偏折校正装置及方法
WO2018123308A1 (ja) * 2016-12-28 2018-07-05 三菱日立パワーシステムズ株式会社 燃焼装置及びそれを備えたボイラ

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6761431B2 (ja) 2016-01-06 2020-09-23 国立大学法人徳島大学 レーザ光を用いたガス分析装置及びガス分析方法
CN107688009A (zh) * 2017-11-10 2018-02-13 华北电力大学 基于自动扫描系统的tdlas锅炉炉内气体二维浓度分布检测方法及装置
CN109324019B (zh) * 2018-12-11 2022-04-12 北京航空航天大学 一种用于轴对称燃烧场监测的激光吸收光谱层析成像系统
KR102118280B1 (ko) * 2019-02-15 2020-06-02 동아대학교 산학협력단 토모그래피 기반 가스의 2차원 온도 및 농도 분포 동시 측정에 이용되는 최적 파라미터 결정 방법 및 장치
CN110514622B (zh) * 2019-08-23 2020-07-31 北京航空航天大学 一种基于直方图信息的二维温度和浓度重建系统与方法
JP7401768B2 (ja) 2020-03-26 2023-12-20 日本製鉄株式会社 ガス分析方法及びガス分析装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116225A (ja) * 1985-11-15 1987-05-27 Mitsubishi Heavy Ind Ltd ガス温度分布測定方法
US6271522B1 (en) * 1998-05-16 2001-08-07 Deutsches Zentrum Fur Luft-Und Raumfahrt E.V. Process for the quantitative analysis of gas volumes, specifically exhaust and waste gases from combustion systems or incineration plants, as well as systems for performing these processes
JP2011137467A (ja) * 2009-12-31 2011-07-14 General Electric Co <Ge> 選択的触媒還元プロセスの監視及び制御に関するシステム及び装置
JP2015040747A (ja) * 2013-08-21 2015-03-02 国立大学法人徳島大学 レーザ光を用いたガス分析装置及びガス分析方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6389330B1 (en) * 1997-12-18 2002-05-14 Reuter-Stokes, Inc. Combustion diagnostics method and system
JP2004060910A (ja) * 2002-07-25 2004-02-26 Nippon Soken Inc 火炎燃焼状態の制御
US20110045420A1 (en) * 2009-08-21 2011-02-24 Alstom Technology Ltd Burner monitor and control
JP5455528B2 (ja) * 2009-09-29 2014-03-26 三菱重工業株式会社 燃焼制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116225A (ja) * 1985-11-15 1987-05-27 Mitsubishi Heavy Ind Ltd ガス温度分布測定方法
US6271522B1 (en) * 1998-05-16 2001-08-07 Deutsches Zentrum Fur Luft-Und Raumfahrt E.V. Process for the quantitative analysis of gas volumes, specifically exhaust and waste gases from combustion systems or incineration plants, as well as systems for performing these processes
JP2011137467A (ja) * 2009-12-31 2011-07-14 General Electric Co <Ge> 選択的触媒還元プロセスの監視及び制御に関するシステム及び装置
JP2015040747A (ja) * 2013-08-21 2015-03-02 国立大学法人徳島大学 レーザ光を用いたガス分析装置及びガス分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3246694A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123308A1 (ja) * 2016-12-28 2018-07-05 三菱日立パワーシステムズ株式会社 燃焼装置及びそれを備えたボイラ
JP2018105594A (ja) * 2016-12-28 2018-07-05 三菱日立パワーシステムズ株式会社 燃焼装置及びそれを備えたボイラ
CN110140013A (zh) * 2016-12-28 2019-08-16 三菱日立电力系统株式会社 燃烧装置以及具备该燃烧装置的锅炉
CN110140013B (zh) * 2016-12-28 2020-10-16 三菱日立电力系统株式会社 燃烧装置以及具备该燃烧装置的锅炉
CN107560754A (zh) * 2017-07-12 2018-01-09 北京航空航天大学 一种基于调制锯齿波信号的激光光线偏折校正装置及方法
CN107560754B (zh) * 2017-07-12 2019-07-12 北京航空航天大学 一种基于调制锯齿波信号的激光光线偏折校正装置及方法

Also Published As

Publication number Publication date
JP2016186464A (ja) 2016-10-27
EP3246694A1 (en) 2017-11-22
EP3246694A4 (en) 2018-04-25
US20180031233A1 (en) 2018-02-01
CN107110777A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
WO2016157610A1 (ja) ガス分析装置、燃焼設備の制御システム及び制御支援システム、並びに、ガス分析方法
Modliński et al. A validation of computational fluid dynamics temperature distribution prediction in a pulverized coal boiler with acoustic temperature measurement
Kangwanpongpan et al. New correlations for the weighted-sum-of-gray-gases model in oxy-fuel conditions based on HITEMP 2010 database
Mueller et al. Experimental and computational study of soot evolution in a turbulent nonpremixed bluff body ethylene flame
Rajhi et al. Evaluation of gas radiation models in CFD modeling of oxy-combustion
Graça et al. Numerical simulation of a reversed flow small-scale combustor
Xuan et al. Two-dimensional flow effects on soot formation in laminar premixed flames
WO2012093518A1 (ja) プラントの制御装置及び火力発電プラントの制御装置
JP2008171152A (ja) プラント制御装置
JP2008305194A (ja) プラントの制御装置
Alekseev et al. Laminar premixed flat non-stretched lean flames of hydrogen in air
KR20120058552A (ko) 노에서의 개별 버너 모니터링 및 제어
Funke et al. Experimental and numerical study on optimizing the DLN micromix hydrogen combustion principle for industrial gas turbine applications
Abdul-Sater et al. An assessment of radiation modeling strategies in simulations of laminar to transitional, oxy-methane, diffusion flames
Mayr et al. Computational analysis of a semi-industrial furnace fired by a flat flame burner under different O2/N2 ratios using the steady laminar flamelet approach
Eckart et al. Experimental and numerical investigations on extinction strain rates in non-premixed counterflow methane and propane flames in an oxygen reduced environment
Yang et al. Evaluation of the non-gray weighted sum of gray gases models for radiative heat transfer in realistic non-isothermal and non-homogeneous flames using decoupled and coupled calculations
JP5277064B2 (ja) プラントの制御装置、火力発電プラントの制御装置及び火力発電プラント
Hamel et al. A method for measurement of spatially resolved radiation intensity and radiative fraction of laminar flames of gaseous and solid fuels
Zhao et al. Rapid online tomograph in non-uniform complex combustion fields based on laser absorption spectroscopy
US20150019181A1 (en) Estimation of NOx Generation in A Commercial Pulverized Coal Burner using a Dynamic Chemical Reactor Network Model
Abdul-Sater et al. Predicting radiative heat transfer in oxy-methane flame simulations: an examination of its sensitivities to chemistry and radiative property models
Nevrlý et al. TDLAS-based in situ diagnostics for the combustion of preheated ultra–lean dimethyl ether/air mixtures
Centeno et al. Numerical simulations of the radiative transfer in a 2D axisymmetric turbulent non-premixed methane–air flame using up-to-date WSGG and gray-gas models
JP2010146068A (ja) プラントの制御装置及び火力発電プラントの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887752

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015887752

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE