WO2016157574A1 - 高剛性球状黒鉛鋳鉄 - Google Patents

高剛性球状黒鉛鋳鉄 Download PDF

Info

Publication number
WO2016157574A1
WO2016157574A1 PCT/JP2015/077143 JP2015077143W WO2016157574A1 WO 2016157574 A1 WO2016157574 A1 WO 2016157574A1 JP 2015077143 W JP2015077143 W JP 2015077143W WO 2016157574 A1 WO2016157574 A1 WO 2016157574A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
cast iron
content
modulus
young
Prior art date
Application number
PCT/JP2015/077143
Other languages
English (en)
French (fr)
Inventor
知行 飛田
忠昭 神林
Original Assignee
株式会社リケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US15/562,937 priority Critical patent/US10745784B2/en
Application filed by 株式会社リケン filed Critical 株式会社リケン
Priority to CN201580078299.5A priority patent/CN107406928A/zh
Publication of WO2016157574A1 publication Critical patent/WO2016157574A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/006Graphite

Definitions

  • the present invention relates to spheroidal graphite cast iron, for example, a high-rigidity spherical shape suitably applied to, for example, vehicle parts, such as suspension parts such as knuckles, suspension arms, and brake calipers, and engine parts such as crankshafts, camshafts, and piston rings. It relates to graphite cast iron.
  • spheroidal graphite cast iron has higher strength than flake graphite cast iron, so it is often used for vehicle parts. ing.
  • the eutectic spheroidal graphite cast iron generally used for vehicle parts has a Young's modulus of about 165 GPa, and the Young's modulus does not change even when the strength is increased. If it is decreased, rigidity cannot be maintained, and vibration characteristics and noise characteristics deteriorate.
  • cast steel having a higher Young's modulus than cast iron is used for vehicle parts that require high rigidity.
  • cast steel has a higher casting temperature than cast iron, and its flowability is not good, so that it is difficult to apply it to products with complicated shapes and thin walls.
  • cast steel is more likely to cause shrinkage than cast iron, and it is necessary to provide a large hot water in the casting plan to prevent shrinkage, resulting in an increase in manufacturing cost. Therefore, in order to reduce the weight of vehicle parts, it is required to increase the rigidity of spheroidal graphite cast iron.
  • the Young's modulus is affected by the shape and crystallization amount of graphite in the metal structure, and the shape of the graphite is spherical. The smaller the amount, the higher the Young's modulus.
  • the main factor affecting the Young's modulus is the amount of graphite crystallization, so the C content in the molten metal component affecting the amount of graphite crystallization, By reducing the Si content and the carbon equivalent (CE value), the amount of graphite crystallization is suppressed, and the Young's modulus is increased to increase the rigidity.
  • hypoeutectic spheroidal graphite cast iron with C: 1.5-3.0% and Si: 1.0-5.5% by mass is used, and by reducing the carbon content, the Young's modulus is increased and the rigidity is increased.
  • the present applicant has developed a high-rigidity spheroidal graphite cast iron having a graphite chain structure reduced and a Young's modulus of 170 GPa or more by defining the C content and the range of the CE value (Patent Document 2).
  • Non-Patent Document 3 a technique for reducing the weight of parts using spheroidal graphite cast iron such as FCD500 and FCD600 (based on JIS G 5502), which has higher strength than FCD450, has been proposed. Furthermore, the influence of spheroidal graphite cast iron on the toughness of C, Si, Mn, and P has been reported (Non-Patent Document 1).
  • the present invention solves the above-described problems, and aims to provide a high-rigid spheroidal graphite cast iron that achieves high rigidity of spheroidal graphite cast iron by increasing the Young's modulus and is excellent in strength and toughness. .
  • the present inventors have conducted intensive research. As a result, the carbon equivalent (CE value) is reduced to increase the Young's modulus, thereby achieving high rigidity of the spheroidal graphite cast iron, and P It has been found that the strength and toughness can be improved by making the content less than 0.03%. If the total content of Mn and Cu is further controlled, more excellent characteristics can be obtained.
  • CE value carbon equivalent
  • a Young's modulus becomes 170 GPa or more, and by making P less than 0.03%, a highly rigid spheroidal graphite cast iron with improved strength and toughness can be obtained.
  • the total content of Mn and Cu is preferably 0.45 to 0.70% by mass%. It is preferable that the ratio (P / (Mn + Cu)) of the P content and the total content of Mn and Cu is 0.050 or less.
  • spheroidal graphite cast iron having high rigidity and excellent strength and toughness can be obtained by increasing the Young's modulus.
  • % means “% by mass” unless otherwise specified.
  • the carbon equivalent (CE value) is CE: 3.6 to 4.3%, the Young's modulus is 170 GPa or more, the tensile strength is 550 MPa or more, and the impact value is 12 J / cm 2 or more.
  • C is an element that forms a graphite structure, and in order to increase the rigidity of spheroidal graphite cast iron and increase the Young's modulus, the C content is reduced from the eutectic composition and the amount of graphite crystallized is suppressed. There is a need.
  • the C content is less than 2.0%, the solidification start temperature becomes high, and it becomes difficult to crystallize graphite, so that the castability deteriorates. For example, a hot water flow defect occurs in a complicated shape or a thin-walled part, Thick nests tend to occur in thick products.
  • the C content is 3.6% or more
  • the amount of crystallization of graphite increases and the Young's modulus decreases.
  • the C content is in the range of 2.7% to 3.0%
  • the graphite chain structure significantly increases. Therefore, the C content is in the range of 2.0% or more and less than 2.7%, or more than 3.0% and less than 3.6%.
  • the C content is 2.0% or more and less than 2.7%, even if the contents of Mn and Cu, which are stabilizing elements of the pearlite structure, are kept low, the pearlite ratio of the base structure becomes high and the strength of mechanical properties is required. As a result, the desired impact value may not be obtained. Therefore, the C content is more than 3.0% and less than 3.6%.
  • Si is an element that promotes crystallization of graphite.
  • Si content is less than 1.5%, graphite is difficult to crystallize, free cementite (chill) is generated, and workability is remarkably lowered.
  • Si content exceeds 3.0%, the ferrite becomes brittle and the impact value of the mechanical properties decreases. Therefore, the Si content is set to 1.5% to 3.0%.
  • Mn is a stabilizing element of the pearlite structure. When the Mn content is increased, the pearlite ratio of the base structure is increased and the tensile strength is increased. Since this effect is saturated when the content exceeds 1.0%, the Mn content is set to 1.0% or less.
  • Cu is a stabilizing element of the pearlite structure. When the Cu content increases, the pearlite ratio of the base structure increases and the tensile strength increases. Since this effect is saturated when the content exceeds 1.0%, the Cu content is set to 1.0% or less.
  • Mg is an element that affects the spheroidization of graphite
  • the Mg content is an index for determining the spheroidization of graphite. If the Mg content is less than 0.02%, the graphite spheroidization rate decreases and the Young's modulus also decreases. On the other hand, if the Mg content exceeds 0.07%, shrinkage nests and chills are likely to occur. Therefore, the Mg content is 0.02 to 0.07%.
  • P is an element mixed as an impurity element, and the ductility (toughness) of spheroidal graphite cast iron decreases as the P content increases.
  • the decrease in impact value is saturated if P: 0.05% or less.
  • the impact value is greatly increased when P: 0.03% or more. It turned out to be reduced. This is considered to be because when the P content is 0.03% or more, the entire base structure is embrittled. In particular, the influence of embrittlement due to the inclusion of P in a region where the added amount of Mn and Cu is small tends to increase. Therefore, the P content is less than 0.03%.
  • the lower limit of the P content is not limited, but may be 0.010%, for example, in terms of manufacturing cost.
  • Controlling the total content of Mn and Cu to 0.45 to 0.70% is preferable because both strength and impact value are improved. This is considered to be due to increasing the pearlite of the base structure and improving the strength by containing a certain amount of Mn and Cu in the spheroidal graphite cast iron. When the total content of Mn and Cu is less than 0.45%, the strength may not be sufficiently improved. When the total content of Mn and Cu exceeds 0.70%, the strength is improved, but the elongation and impact value are lowered, and desired mechanical properties may not be obtained. More preferably, the total amount of Mn and Cu is 0.50 to 0.65%.
  • the ratio (P / (Mn + Cu)) of the P content and the total content of Mn and Cu is 0.050 or less because the strength and impact value can be improved in a well-balanced manner. This is considered to be because the ratio (P / (Mn + Cu)) is set to 0.050 or less so that the base structure is made pearlite and the entire structure is prevented from being brittle.
  • the ratio (P / (Mn + Cu)) is set to 0.050 or less so that the base structure is made pearlite and the entire structure is prevented from being brittle.
  • the total content of Mn and Cu is less than 0.45%, the content ratio of P is relatively increased, the above ratio exceeds 0.050, and the strength decreases.
  • the total content of Mn and Cu is 0.70% or more, a ratio exceeding 0.050 indicates that the content ratio of P is increased, and the strength is increased, but the toughness is decreased accordingly.
  • the highly rigid spheroidal graphite cast iron of the present invention has a hypoeutectic composition, chill is likely to occur as compared to spheroidal graphite cast iron having a eutectic composition. Therefore, in order to suppress the generation of chill, it is preferable to add an inoculum such as ferrosilicon during casting.
  • an inoculum such as ferrosilicon during casting.
  • ladle inoculation, pouring inoculation, or in-mold inoculation can be selected according to the product shape, product thickness, and the like.
  • the inoculum a commercially available ferrosilicon inoculum containing Si can be used.
  • the inoculum those containing Bi, Ba, Ca, RE (rare earth), etc., which are effective in suppressing chill and refining spherical graphite can be used.
  • an inoculant is added to the high-rigid spheroidal graphite cast iron of the present invention, no chill is generated without heat treatment after casting, and sufficient mechanical properties can be obtained. Therefore, productivity and manufacturing cost can be reduced as compared with spheroidal graphite cast iron having a eutectic composition that requires heat treatment after casting.
  • the range of the CE value is set to 3.6 to 4.3%. If the upper limit of the CE value is 4.2%, a hypoeutectic composition is preferable. As described above, by defining the C content and the range of the CE value, a highly rigid spheroidal graphite cast iron having a Young's modulus of 170 GPa or more can be obtained.
  • the Young's modulus is more preferably 175 GPa or more.
  • the ratio (P / (Mn + Cu)) is 0.050 or less in the range of CE: 3.8 to 4.2%, because the Young's modulus is improved to 170 GPa or more, the tensile strength is 550 MPa or more, and the impact value is 12 J / cm 2 or more. .
  • the present invention since the present invention has an excellent balance between strength and toughness and has high rigidity and stable mechanical properties as described above, it is suitable for weight reduction of vehicle parts. Therefore, for example, the present invention can be preferably used for suspension parts such as knuckles, suspension arms, and brake calipers, and engine parts such as crankshafts, camshafts, and piston rings.
  • suspension parts such as knuckles, suspension arms, and brake calipers
  • engine parts such as crankshafts, camshafts, and piston rings.
  • both strength and rigidity are improved compared to the case where a material with only improved strength is applied. Furthermore, the weight of the parts can be reduced.
  • the cavity shape of the beta set mold 10 is a shape in which a plurality of round bars 3 having a cross-sectional diameter of about 25 mm are installed assuming the thickness of the knuckle of the vehicle part.
  • symbol 1 of FIG. 1 shows a gate
  • symbol 2 shows a feeder.
  • Tensile strength and elongation at break Cut the round bar 3 of the cast product, make a tensile test piece in accordance with JIS Z 2241 by lathe processing, and perform a tensile test in accordance with JIS Z 2241 using an Amsler universal testing machine The tensile strength and elongation at break were measured.
  • Young's modulus A cube with a side of 10 mm was cut out from the round bar 3 of the cast product, and after measuring the density by Archimedes method, the longitudinal wave velocity and the transverse wave velocity were measured by the ultrasonic pulse method, and the Young's modulus was calculated from these values.
  • the ultrasonic pulse method measurement device uses “Digital Ultrasonic Flaw Detector UI-25” (product name) manufactured by Ryoden Shonan Electronics Co., Ltd. Was used.
  • Impact value Cut the round bar 3 of the cast product, make a U-notched impact test piece according to JIS Z 2242 by lathe processing, and conform to JIS Z 2242 using a Charpy impact tester (50J) at room temperature An impact test was performed and the impact value was measured. The obtained results are shown in Table 1.
  • the P content is less than 0.03%
  • the total content of Mn and Cu is 0.45 to 0.70%
  • the ratio of the P content and the total amount of Mn and Cu (P / (Mn + Cu)
  • the Young's modulus improved to 170 GPa or more
  • the tensile strength to 550 MPa or more
  • the impact value to 12 J / cm 2 or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

 本発明は、ヤング率を高めることで剛性の高く、かつ強度と靱性に優れた球状黒鉛鋳鉄を提供する。本発明の高剛性球状黒鉛鋳鉄は、質量%で、C:3.0%を超えて3.6%未満、Si:1.5~3.0%、Mn:1.0%以下、Cu:1.0%以下、P:0.03%未満、Mg:0.02~0.07%を含有し、残部Fe及び不可避不純物からなり、CおよびSiの含有量から式(1):CE=C%+Si%/3で計算される炭素当量(CE値)が、CE:3.6~4.2%であり、ヤング率170GPa以上、引張り強度550MPa以上、衝撃値が12J/cm以上のものである。

Description

高剛性球状黒鉛鋳鉄
 本発明は、球状黒鉛鋳鉄に関し、例えば車両用部品として、特にナックル、サスペンションアーム、ブレーキキャリパー等の足廻り部品、クランクシャフト、カムシャフト、ピストンリング等のエンジン部品に好適に適用される高剛性球状黒鉛鋳鉄に関する。
 燃費向上及び環境対応を図るべく、車両用部品の軽量化の要求が高まっており、これら部品に用いられる材料の高剛性化が求められている。車両用部品には各種材料が使用されているが、鋳鉄は低コストで形状自由度に優れており、特に球状黒鉛鋳鉄は片状黒鉛鋳鉄よりも高い強度を有することから車両用部品に多用されている。しかしながら、一般に車両用部品に用いられている共晶組成の球状黒鉛鋳鉄は、ヤング率が165GPa程度であり、高強度化してもヤング率が変わらないため、軽量化のために部品の肉厚を減少させると剛性が保てなくなり、振動特性や騒音特性が低下する。このため、高剛性が求められる車両用部品には、鋳鉄よりもヤング率が高い鋳鋼が使用されている。しかし、鋳鋼は鋳鉄よりも鋳込み温度が高く、湯流れ性も良くないことから、複雑な形状や薄肉の製品への適用が難しい。また、鋳鋼は鋳鉄よりも引け巣が発生しやすく、引け巣防止のために鋳造方案に大きな押し湯を設ける必要があり、製造コストが高くなる。そこで、車両用部品の軽量化を図るため、球状黒鉛鋳鉄の高剛性化が求められている。
 球状黒鉛鋳鉄を高剛性化するためにはヤング率を高めることが必要であるが、ヤング率は金属組織中の黒鉛の形状と晶出量に影響され、黒鉛の形状が球状であり、晶出量が少ないほどヤング率は高くなる。また、球状黒鉛鋳鉄において球状化が十分に行われている場合、ヤング率に影響を与える主要因は黒鉛晶出量であるため、黒鉛晶出量に影響を与える溶湯成分中のC含有量、Si含有量および炭素当量(CE値)を低下させることで、黒鉛晶出量を抑制し、ヤング率を高めて高剛性化することが行われている。
 このような技術として、質量%でC:1.5~3.0%、Si:1.0~5.5%の亜共晶球状黒鉛鋳鉄とし、炭素含有量を少なくすることで、ヤング率を高めて高剛性化を図る技術が提案されている(特許文献1)。
 又、本出願人は、Cの含有量及びCE値の範囲を規定することで、黒鉛連鎖組織を少なくし、ヤング率が170GPa以上となる高剛性球状黒鉛鋳鉄を開発した(特許文献2)。
 一方、従来の球状黒鉛鋳鉄としては、上述のようにヤング率165GPa程度、引張り強度450MPa以上のFCD450(JIS G 5502に準拠)が多用されている。そこで、FCD450よりも強度の高いFCD500やFCD600(JIS G 5502に準拠)などの球状黒鉛鋳鉄を用い、部品の軽量化を図る技術が提案されている(特許文献3)。
 さらに、球状黒鉛鋳鉄のC,Si,Mn,Pの靭性への影響について報告がされている(非特許文献1)。
特開2001-3134号公報 特開2013-173969号公報 特開2002-194479号公報
西山ら、「球状黒鉛鋳鉄の衝撃値などについて」、日立評論 金属特集号 第2集、別冊第16号、1956年10月発行、P.85-95
 ところで、上述のように、球状黒鉛鋳鉄の高強度化のみを達成しても、剛性が保てない部分では、強度に余裕があっても肉厚を減少させることができない。そこで、車両用部品の軽量化を行うためには剛性と強度を共に向上させることが必要であるが、剛性と強度を向上させるために球状黒鉛鋳鉄の各種組成等を最適化した際、Pが0.03%以上になると衝撃値が大幅に低下することが判明した。特に、Mn、Cuの添加量が少ない領域でPを含有することによる脆化の影響は大きくなる傾向にある。
 本発明は、上記問題を解決するものであり、ヤング率を高めることで球状黒鉛鋳鉄の高剛性化を実現し、かつ強度と靱性に優れた高剛性球状黒鉛鋳鉄を提供することを目的とする。
 上記課題を解決するために、本発明者らは鋭意研究を行った結果、炭素当量(CE値)を低下させてヤング率を高めることで球状黒鉛鋳鉄の高剛性化を実現すると共に、Pを0.03%未満とすることで強度と靱性を向上できることを見出した。なお、更にMnとCuの合計含有量を管理すると、より優れた特性が得られる。
 すなわち、本発明の高剛性球状黒鉛鋳鉄は、質量%で、C:3.0%を超えて3.6%未満、Si:1.5~3.0%、Mn:1.0%以下、Cu:1.0%以下、P:0.03%未満、Mg:0.02~0.07%を含有し、残部Fe及び不可避不純物からなり、CおよびSiの含有量から式(1):CE=C(%)+Si(%)/3で計算される炭素当量(CE値)が、CE:3.6~4.3%であり、かつヤング率が170GPa以上、引張り強度550MPa以上、衝撃値が12J/cm以上である。
 このように、Cの含有量及びCE値の範囲を規定することで、ヤング率が170GPa以上となり、Pを0.03%未満とすることで強度と靱性が向上した高剛性球状黒鉛鋳鉄が得られる。
 質量%で、MnとCuの含有量の合計が0.45~0.70%であることが好ましい。
 質量%で、Pの含有量と、MnとCuの含有量の合計との比(P/(Mn+Cu))が0.050以下であることが好ましい。
 本発明によれば、ヤング率を高めることで剛性が高く、かつ強度と靱性に優れた球状黒鉛鋳鉄が得られる。
実施例を作成するためのキャビティ形状のベータセット鋳型を示す上面図である。 実施例および比較例の引張強度と衝撃値の関係を示す図である。
 以下、本発明の実施形態について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。
 本発明の実施形態に係る高剛性球状黒鉛鋳鉄は、質量%で、C: 3.0%を超えて3.6%未満、Si:1.5~3.0%、Mn:1.0%以下、Cu:1.0%以下、P:0.03%未満、Mg:0.02~0.07%を含有し、残部Fe及び不可避不純物からなり、CおよびSiの含有量から式(1):CE=C(%)+Si(%)/3で計算される炭素当量(CE値)が、CE:3.6~4.3%であり、かつヤング率が170GPa以上、引張り強度550MPa以上、衝撃値が12J/cm以上である。
<組成>
 C(炭素)は、黒鉛組織となる元素であり、球状黒鉛鋳鉄の高剛性化を図りヤング率を高めるためには、C含有量を共晶組成より低下させて黒鉛の晶出量を抑制する必要がある。しかしながら、C含有量が2.0%未満になると、凝固開始温度が高くなり、黒鉛の晶出も難しくなるため鋳造性が悪化し、例えば複雑な形状や薄肉形状の部品で湯流れ不良が発生し、厚肉の製品では引け巣が発生しやすくなる。一方、C含有量が3.6%以上になると黒鉛の晶出量が多くなり、ヤング率が小さくなる。さらに、C含有量が2.7%以上3.0%以下の範囲では黒鉛連鎖組織が著しく増加する。従って、C含有量は2.0%以上2.7%未満、又は3.0%を超えて3.6%未満の範囲となる。ところが、C含有量が2.0%以上2.7%未満では、パーライト組織の安定化元素であるMnとCuの含有量を低く抑えても、基地組織のパーライト率が高くなり、機械的特性の強度が必要以上に上昇し、所望の衝撃値が得られないことがある。このため、C含有量を3.0%を超えて3.6%未満とする。
 Siは、黒鉛の晶出を促進させる元素である。Si含有量が1.5%未満であると黒鉛が晶出しにくくなり、遊離セメンタイト(チル)が発生して加工性を著しく低下させる。一方、Si含有量が3.0%を超えるとフェライトが脆化し、機械特性の衝撃値が低下する。このため、Si含有量を1.5%~3.0%とする。
 Mnは、パーライト組織の安定化元素であり、Mn含有量が高くなると基地組織のパーライト率が高くなり、引張り強度は上昇する。この効果は含有量が1.0%を超えると飽和するため、Mn含有量を1.0%以下とする。
 Cuは、パーライト組織の安定化元素であり、Cu含有量が高くなると基地組織のパーライト率が高くなり、引張り強度は上昇する。この効果は含有量が1.0%を超えると飽和するため、Cu含有量を1.0%以下とする。
 Mgは、黒鉛の球状化に影響する元素であり、Mg含有量が黒鉛の球状化を判断する指標となる。Mgの含有量が0.02%未満であると黒鉛球状化率が低下し、ヤング率も低くなる。一方、Mgの含有量が0.07%を超えると、引け巣やチルが発生しやすくなることがある。このため、Mg含有量を0.02~0.07%とする。
 Pは不純物元素として混入する元素であり、P含有量が高くなると球状黒鉛鋳鉄の延性(靭性)が低下する。通常の球状黒鉛鋳鉄では、P:0.05%以下とすれば衝撃値の低下は飽和すると考えられるが、上述の組成の高剛性球状黒鉛鋳鉄の場合、P:0.03%以上になると衝撃値が大幅に低下することが判明した。これは、Pを0.03%以上含有させると基地組織全体を脆化させるためと考えられる。特に、Mn、Cuの添加量が少ない領域でPを含有することによる脆化の影響は大きくなる傾向にある。
 このため、P含有量を0.03%未満とする。P含有量の下限は限定されないが、製造コスト上、例えば0.010%とすることができる。
 MnとCuの含有量の合計を0.45~0.70%に管理すると、強度と衝撃値が共に向上するので好ましい。これは、球状黒鉛鋳鉄中にMnとCuを一定量含有させることにより、基地組織のパーライトを増加させて強度を向上させるためと考えられる。
 MnとCuの合計含有量が0.45%未満の場合、強度が十分向上しないことがある。
 MnとCuの合計含有量が0.70%を超えると、強度は向上するが、伸び及び衝撃値が低下して所望の機械的性質が得られないことがある。
 MnとCuを合計量で0.50~0.65%含有するとより好ましい。
 Pの含有量と、MnとCuの含有量の合計との比(P/(Mn+Cu))が0.050以下であると、強度と衝撃値をバランス良く向上させることができるので好ましい。これは、比(P/(Mn+Cu))を0.050以下とすることで、基地組織のパーライト化と、組織全体の脆化防止をバランスよく実現するためと考えられる。
 ここで、MnとCuの合計含有量が0.45%未満の場合、Pの含有割合が相対的に多くなって上記比が0.050を超え、強度が低下する。一方、MnとCuの合計含有量が0.70%以上の場合、上記比が0.050を超えることは、Pの含有割合も多くなったことを表し、強度は高くなるが、その分靭性が低下する。
 本発明の高剛性球状黒鉛鋳鉄は亜共晶組成としているため、共晶組成の球状黒鉛鋳鉄と比べてチルが発生しやすい。そこで、チルの発生を抑えるため、鋳造時にフェロシリコン等の接種剤を添加することが好ましい。接種方法は、製品形状や製品肉厚等により取鍋接種や注湯流接種、鋳型内接種を選択することができる。接種剤は、一般的に市販されている、Siを含むフェロシリコン接種剤を用いることができる。上記接種剤としては、チルの抑制、球状黒鉛の微細化に効果のあるBi、Ba、Ca、RE(レアアース)等を含むものを用いることもできる。
 また、本発明の高剛性球状黒鉛鋳鉄に接種剤を添加すると、鋳造後に熱処理を施さなくてもチルの発生がなく、十分な機械特性を得ることができる。従って、鋳造後に熱処理を要する共晶組成の球状黒鉛鋳鉄と比較して生産性や製造コストも低減することができる。
<CE値>
 上述のように、共晶組成よりもC含有量及びCE値を低下させると、凝固時に初晶がオーステナイトとなり、この初晶オーステナイトはC含有量及びCE値が低下するほど増加する。このため、その後に晶出する黒鉛連鎖組織もC含有量及びCE値が低下するほど広範囲に生じる。そして、黒鉛連鎖組織が一定の割合を超えると引張破断の起点となり、材料本来の引張り強度になる前に破断が起こり、引張り強度や伸びが著しく低下し、かつ安定した材料特性が得られない。
 具体的には、CE値を共晶組成(約4.3%)から低下させていくと、CE: 3.2%を超え3.8%未満で黒鉛連鎖組織が引張試験片の破断面に認められる。
 黒鉛連鎖組織の面積率が50%を超えると、材料本来の引張り強度や伸びに達する前に、黒鉛連鎖組織を起点とした破断が起こり、引張り強度や伸びが著しく低下する。
 そのため、黒鉛連鎖組織の面積率を50%以下として引張り強度と伸びへの影響を無くすため、CE値の範囲を、3.6~4.3%とする。CE値の上限が4.2%であると亜共晶組成となり好ましい。
 以上のように、Cの含有量及びCE値の範囲を規定することで、ヤング率が170GPa以上の高剛性球状黒鉛鋳鉄が得られる。ヤング率が高いほど軽量化を行いやすいことから、ヤング率が175GPa以上であるとより好ましい。
 又、黒鉛連鎖組織が出現しない範囲であるCE:3.8~4.2%の範囲で鋳造することが望ましい。特にCE:3.8~4.2%の範囲で、比(P/(Mn+Cu))を0.050以下とすることで、ヤング率が170GPa以上、引張り強度550MPa以上、衝撃値が12J/cm2以上に向上するので望ましい。
 なお、本発明は上述のように強度と靱性のバランスに優れ、高剛性でかつ安定した機械的性質を有するため、車両用部品の軽量化に好適である。従って、例えば、ナックル、サスペンションアーム、ブレーキキャリパー等の足廻り部品や、クランクシャフト、カムシャフト、ピストンリング等のエンジン部品等に本発明を好ましく用いることができる。特に、これらの車両用部品の中でも、高い軽量化を求められるナックルやサスペンションアームに適用すると、強度だけを向上させた材料を適用させた場合と比べ、強度と剛性を両方向上させているため、更に部品を軽量化することができる。
 高周波電気炉を用いてFeーSiーMg系溶湯を溶解し、さらに球状化剤(Fe-45%Si-5%Mg)を重量%で1.0%程度添加して球状化処理を施し、次いで接種としてフェロシリコン接種剤(Fe-75%Si)を重量%で0.2%程度添加し、表1に示す組成とした。
 この溶湯を、図1に示すキャビティ形状のベータセット鋳型10に注湯し、常温まで鋳型内冷却した後、鋳型内より鋳造品を取り出した。注湯温度は1400℃とした。ベータセット鋳型10のキャビティ形状は、車両用部品のナックルの肉厚を想定し、断面の直径が25mm程度の丸棒3を複数本設置した形状としている。なお、図1の符号1は湯口を示し、符号2は押湯を示す。
 得られた鋳造品につき、以下の評価を行った。
 引張り強度と破断伸び:鋳造品の丸棒3を切断し、旋盤加工によりJIS Z 2241 に準拠した引張試験片を作製し、アムスラー万能試験機を用いてJIS Z 2241 に準拠して引張試験を行い、引張り強度と破断伸びを測定した。
 ヤング率:鋳造品の丸棒3から一辺10mmの立方体を切り出し、アルキメデス法で密度を測定した後、超音波パルス法で縦波音速と横波音速を測定し、これら値からヤング率を算出した。超音波パルス法の測定装置には、菱電湘南エレクトロニクス社製の「デジタル超音波探傷器UI-25」(製品名)を用い、振動子としては栄進化学社製の縦波及び横波用振動子を用いた。
 衝撃値:鋳造品の丸棒3を切断し、旋盤加工によりJIS Z 2242に準拠したUノッチ付き衝撃試験片を作製し、常温でシャルピー衝撃試験機(50J)を用いてJIS Z 2242に準拠した衝撃試験を行い、衝撃値を測定した。
 得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、Pの含有量を0.03%未満とし、MnとCuを合計0.45~0.70%含有し、かつPの含有量とMnとCuの合計量の比(P/(Mn+Cu))が0.050以下を満たす各実施例の場合、ヤング率が170GPa以上、引張り強度550MPa以上、衝撃値が12J/cm以上に向上した。
 一方、Pの含有量が0.03%を超えた比較例1、2の場合、引張り強度が550MPa未満に低下した。これは、比較例1、2の場合、MnとCuの合計含有量が0.45%未満となり、強度に寄与する基地組織のパーライトが低下したためと考えられる。
 同様に、Pの含有量が0.03%を超えた比較例3~7の場合、衝撃値が12J/cm未満に低下した。これは、比較例3~7の場合、MnとCuの合計含有量が0.45%以上のために強度は高くなったが、Pの含有量が0.03%を超えた影響で分靭性が低下したためと考えられる。
 比(P/(Mn+Cu))が0.050を超えた比較例8の場合、引張り強度が550MPa未満に低下した。
 MnとCuの含有量の合計が0.70%を超えた比較例9の場合、衝撃値が12J/cm未満に低下した。
 MnとCuの含有量の合計が0.45%未満の比較例10の場合、引張り強度が550MPa未満に低下した。
 なお、図2は、表1の各実施例及び比較例の衝撃値を横軸にプロットし、引張り強度を縦軸にプロットしたものである。
3 鋳造試験片の採取部(丸棒)

Claims (3)

  1.  質量%で、C:3.0%を超えて3.6%未満、Si:1.5~3.0%、Mn:1.0%以下、Cu:1.0%以下、P:0.03%未満、Mg:0.02~0.07%を含有し、残部Fe及び不可避不純物からなり、
     CおよびSiの含有量から式(1):CE=C%+Si%/3で計算される炭素当量(CE値)が、CE:3.6~4.3%であり、ヤング率170GPa以上、引張り強度550MPa以上、衝撃値が12J/cm以上である高剛性球状黒鉛鋳鉄。
  2.  質量%で、MnとCuの含有量の合計が0.45~0.70%である請求項1に記載の高剛性球状黒鉛鋳鉄。
  3.  質量%で、Pの含有量と、MnとCuの含有量の合計との比(P/(Mn+Cu))が0.050以下である請求項1又は2に記載の高剛性球状黒鉛鋳鉄。
PCT/JP2015/077143 2015-03-30 2015-09-25 高剛性球状黒鉛鋳鉄 WO2016157574A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/562,937 US10745784B2 (en) 2015-03-30 2015-09-15 High rigid spheroidal graphite cast iron
CN201580078299.5A CN107406928A (zh) 2015-03-30 2015-09-25 高刚性球墨铸铁

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-068954 2015-03-30
JP2015068954A JP5952455B1 (ja) 2015-03-30 2015-03-30 高剛性球状黒鉛鋳鉄

Publications (1)

Publication Number Publication Date
WO2016157574A1 true WO2016157574A1 (ja) 2016-10-06

Family

ID=56375247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077143 WO2016157574A1 (ja) 2015-03-30 2015-09-25 高剛性球状黒鉛鋳鉄

Country Status (4)

Country Link
US (1) US10745784B2 (ja)
JP (1) JP5952455B1 (ja)
CN (1) CN107406928A (ja)
WO (1) WO2016157574A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110257581A (zh) * 2019-06-06 2019-09-20 郑石竹 一种球墨铸件生产系统及制备工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096041A (ja) * 1996-09-20 1998-04-14 Toyota Motor Corp 高剛性・高疲労強度球状黒鉛鋳鉄及びその製造方法
JPH10317093A (ja) * 1997-05-19 1998-12-02 Toyota Motor Corp 高剛性球状黒鉛鋳鉄及びその製造方法
JP2000017372A (ja) * 1998-07-06 2000-01-18 Toyota Motor Corp 高剛性球状黒鉛鋳鉄
JP2001220640A (ja) * 2000-02-07 2001-08-14 Hitachi Metals Ltd 球状黒鉛鋳鉄とその製造方法及びその球状黒鉛鋳鉄からなるクランクシャフト
JP2002285220A (ja) * 2001-03-27 2002-10-03 Iwate Prefecture 鋳鉄溶湯からの脱リン方法
WO2013125464A1 (ja) * 2012-02-24 2013-08-29 株式会社リケン 高剛性球状黒鉛鋳鉄
WO2014208240A1 (ja) * 2013-06-28 2014-12-31 株式会社リケン 球状黒鉛鋳鉄

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3964675B2 (ja) * 1999-06-08 2007-08-22 旭テック株式会社 非オーステンパー処理球状黒鉛鋳鉄
DE102004056331A1 (de) * 2004-11-22 2006-05-24 Georg Fischer Fahrzeugtechnik Ag Sphärogusslegierung und Verfahren zur Herstellung von Gussteilen aus der Sphärogusslegierung
JP4835424B2 (ja) 2006-12-22 2011-12-14 Jfeスチール株式会社 高強度球状黒鉛鋳鉄
JP5012231B2 (ja) 2007-06-08 2012-08-29 Jfeスチール株式会社 耐摩耗性に優れた高強度球状黒鉛鋳鉄品
CN102392178B (zh) * 2011-11-16 2013-05-08 天津重型装备工程研究有限公司 离心复合铸造轧辊
US10087509B2 (en) * 2011-12-28 2018-10-02 Hitachi Metals, Ltd. Spheroidal graphite cast iron having excellent strength and toughness and its production method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096041A (ja) * 1996-09-20 1998-04-14 Toyota Motor Corp 高剛性・高疲労強度球状黒鉛鋳鉄及びその製造方法
JPH10317093A (ja) * 1997-05-19 1998-12-02 Toyota Motor Corp 高剛性球状黒鉛鋳鉄及びその製造方法
JP2000017372A (ja) * 1998-07-06 2000-01-18 Toyota Motor Corp 高剛性球状黒鉛鋳鉄
JP2001220640A (ja) * 2000-02-07 2001-08-14 Hitachi Metals Ltd 球状黒鉛鋳鉄とその製造方法及びその球状黒鉛鋳鉄からなるクランクシャフト
JP2002285220A (ja) * 2001-03-27 2002-10-03 Iwate Prefecture 鋳鉄溶湯からの脱リン方法
WO2013125464A1 (ja) * 2012-02-24 2013-08-29 株式会社リケン 高剛性球状黒鉛鋳鉄
WO2014208240A1 (ja) * 2013-06-28 2014-12-31 株式会社リケン 球状黒鉛鋳鉄

Also Published As

Publication number Publication date
JP2016188410A (ja) 2016-11-04
US20180112294A1 (en) 2018-04-26
US10745784B2 (en) 2020-08-18
CN107406928A (zh) 2017-11-28
JP5952455B1 (ja) 2016-07-13

Similar Documents

Publication Publication Date Title
JP4835424B2 (ja) 高強度球状黒鉛鋳鉄
JP6162364B2 (ja) 高剛性球状黒鉛鋳鉄
US9822433B2 (en) Spheroidal graphite cast iron
JP2008303434A (ja) 耐摩耗性に優れた高強度球状黒鉛鋳鉄品
JP4825886B2 (ja) フェライト系球状黒鉛鋳鉄
JPWO2015034062A1 (ja) 球状黒鉛鋳鉄の溶湯の球状化処理方法
KR101605905B1 (ko) Cgi 주철 및 그 제조방법
WO2017017989A1 (ja) 鋳鋼部材
JP5268344B2 (ja) 高剛性高減衰能鋳鉄
JP7443502B2 (ja) 合金構造用鋼及びその製造方法
JP5618466B2 (ja) 高剛性高減衰能鋳鉄
KR20130087213A (ko) 희토류 원소를 이용한 고강도 편상 흑연 주철 및 그 제조방법
JP5952455B1 (ja) 高剛性球状黒鉛鋳鉄
JP5282546B2 (ja) 耐摩耗性に優れた高強度厚肉球状黒鉛鋳鉄品
JP5282547B2 (ja) 耐摩耗性に優れた高強度厚肉球状黒鉛鋳鉄品
JP4213901B2 (ja) 常温での硬度および強度に優れた鋳造時の割れ感受性が小さい低熱膨張鋳造合金およびその製造方法
JP5475380B2 (ja) オーステナイト系鋳鉄とその製造方法およびオーステナイト系鋳鉄鋳物
KR102539284B1 (ko) 내가스 결함성에 우수한 구상흑연주철
JP2016172918A (ja) 亜共晶球状黒鉛鋳鉄
JP2006316341A (ja) 鋳造用アルミニウム合金および同アルミニウム合金鋳物
KR20130073811A (ko) 고강도 편상 흑연 주철의 제조방법 및 그 방법에 의해 제조된 편상 흑연 주철, 상기 주철을 포함하는 내연기관용 엔진바디
JP2006057139A (ja) 被削性及び機械的性質に優れた球状黒鉛鋳鉄
KR20230025184A (ko) 제조성이 우수한 cgi 주철 및 그 제조방법
JPH0873978A (ja) 鋳鉄材料
JP2001073068A (ja) 機械構造用高剛性鋼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887716

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15562937

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887716

Country of ref document: EP

Kind code of ref document: A1