WO2016155270A1 - 一种电器设备的通风管道堵塞程度实时显示控制方法 - Google Patents
一种电器设备的通风管道堵塞程度实时显示控制方法 Download PDFInfo
- Publication number
- WO2016155270A1 WO2016155270A1 PCT/CN2015/090338 CN2015090338W WO2016155270A1 WO 2016155270 A1 WO2016155270 A1 WO 2016155270A1 CN 2015090338 W CN2015090338 W CN 2015090338W WO 2016155270 A1 WO2016155270 A1 WO 2016155270A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- microprocessor
- static pressure
- real
- time
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
- F24F11/74—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
- G05B19/0421—Multiprocessor system
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Definitions
- the invention relates to a real-time display control method for the degree of clogging of ventilation pipes of an electric appliance.
- Constant air volume control can provide users with a constant air volume under these conditions, thus maintaining comfortable ventilation, cooling or heating effects under a wide range of static pressure conditions, and making the system operation energy efficient.
- the object of the present invention is to provide a real-time display control method for the degree of clogging of ventilation pipes of an electrical equipment, which can intuitively and intuitively know the condition of the air passage blockage, timely clear the blockage inside the air passage, improve the performance of the product, and improve the cost performance of the product.
- a real-time display control method for ventilation pipe clogging degree of an electrical device characterized in that: the control method comprises the following steps:
- A) operating parameter detection circuit inputs the real-time operating parameters of the motor to the microprocessor
- the microprocessor estimates the current static pressure value in the current ventilation duct based on the real-time operating parameters of the motor PAR;
- the microprocessor calculates the real-time static pressure percentage by dividing the current static pressure value PAR by the designed maximum static pressure PARmax;
- the microprocessor uses the display device to display the real-time static pressure percentage to indicate the degree of clogging of the ventilation duct.
- the display device described above is composed of a plurality of LED diodes, and the real-time static pressure percentage is divided into multiple stages in the range of 0%-100% to cooperate with a plurality of LED diodes.
- the static pressure percentage of the first stage described above corresponds to that all LED diodes are not bright
- the static pressure percentage of the second stage corresponds to the first LED diode flashing
- the static pressure percentage of the third stage corresponds to the first LED diode and The second LED diode is flashing
- the fourth-stage static pressure percentage is corresponding to the first LED diode, the second LED diode, and the third LED diode.
- the fifth-stage static pressure percentage corresponds to the first LED.
- the diode, the second LED diode, the third LED diode, and the fourth LED are both flashing.
- the electrical equipment described above is a range hood or ducted air conditioner.
- the microprocessor described above is provided with a constant air volume control unit. According to the user's gear position air volume Q, the microprocessor drives the motor and the wind wheel to rotate, so that the air volume sucked or outputted to the ventilation duct is kept constant.
- the static pressure PARmin corresponding to the minimum input power Pmin of the constant air volume control unit and the static pressure PARmax corresponding to the maximum input power Pmax calculate the current static pressure value PAR according to the detection parameter of the current working constant air volume: the real-time input power P0:
- the electrical equipment described above comprises a ventilation duct, a motor, a wind wheel, a power supply part, a display device and a system controller.
- the system controller has a main control circuit board for realizing the function of the electric device itself, and the main control circuit board drives the motor to drive the wind wheel.
- the motor is a motor unit without a motor controller, including a rotating shaft, a permanent magnet rotor assembly, a stator assembly and a casing assembly, and a permanent magnet rotor assembly Mounting a permanent magnet, the permanent magnet rotor assembly and the stator assembly form a magnetic coupling, the stator assembly comprising a stator core and a coil winding wound on the stator core;
- the master control The system board is provided with a system microprocessor, an inverter circuit and a motor running parameter detecting circuit.
- the operating parameter detecting circuit inputs the real-time running parameters of the motor to the system microprocessor, and the output end of the system microprocessor controls the inverter circuit.
- the output of the variable circuit is connected to the coil winding; the microprocessor described in step A, step B, step C, and step D refers to the system microprocessor.
- the electrical equipment described above comprises a ventilation duct, a motor, a wind wheel, a power supply part, a display device and a system controller, the system controller has a main control circuit board for realizing the function of the electric device itself, and a system micro-processing is set on the main control circuit board.
- the motor includes a motor controller and a motor unit, and the motor unit includes a rotating shaft, a permanent magnet rotor assembly, a stator assembly and a casing assembly, and a permanent magnet, a permanent magnet rotor assembly and a stator are mounted on the permanent magnet rotor assembly.
- the assembly forms a magnetic coupling, and the stator assembly comprises a stator core and a coil winding wound on the stator core;
- the motor controller is provided with a motor microprocessor, an inverter circuit and a motor operating parameter detecting circuit, and operating parameters
- the detecting circuit inputs the real-time running parameter of the motor to the motor microprocessor, and the output end of the motor microprocessor controls the inverter circuit, and the output end of the inverter circuit is connected with the coil winding; the motor microprocessor and the system microprocessor are connected to each other for communication.
- the microprocessor described in step A, step B, step C, and step D refers to a motor microprocessor.
- the invention has the following effects:
- the invention uses the operating parameter detecting circuit to input the real-time running parameter of the motor to the microprocessor; the microprocessor estimates the current static pressure value PAR in the current ventilation pipe according to the real-time running parameter of the motor; the microprocessor divides the current static pressure value PAR
- the real-time static pressure percentage is calculated by designing the maximum static pressure PARmax; the microprocessor uses the display device to display the real-time static pressure percentage to indicate the degree of clogging of the ventilation duct. The user can intuitively know the condition of the air duct blockage in time, clean up the blockage in the air duct in time, improve the performance of the product, and improve the cost performance of the product.
- the display device described above is composed of a plurality of LED diodes, and the real-time static pressure percentage is divided into multiple stages in the range of 0%-100% to cooperate with a plurality of LED diodes, and the static pressure of the first stage described above is performed.
- the percentage corresponds to all the LED diodes are not bright
- the second level of static pressure corresponds to the first LED diode flashing
- the third level of static pressure corresponds to the first LED diode and the second LED diode are shining
- the first The four-stage static pressure percentage corresponds to the first LED diode, the second LED diode, and the first All three LED diodes are flashing
- the static pressure percentage of the fifth stage is corresponding to the first LED diode, the second LED diode, the third LED diode, and the fourth LED.
- the microprocessor has a constant air volume control unit. According to the user's gear position air volume Q, the microprocessor drives the motor and the wind wheel to rotate, so that the air volume sucked or outputted to the ventilation duct is kept constant, and the above constant air volume control is controlled.
- the static pressure PARmin corresponding to the minimum input power Pmin of the unit and the static pressure PARmax corresponding to the maximum input power Pmax calculate the current static pressure value PAR according to the detection parameter of the current working constant air volume: real-time input power P0:
- the calculation accuracy can be basically guaranteed, the algorithm is simple, easy to implement, and the cost is reduced.
- the motor is a motor unit without a motor controller, and the main control circuit board is provided with a system microprocessor, an inverter circuit and a motor running parameter detecting circuit, and the operating parameter detecting circuit takes the motor in real time.
- the operation parameter is input to the system microprocessor, and the output end of the system microprocessor controls the inverter circuit, and the output end of the inverter circuit is connected with the coil winding; the steps described in step A, step B, step C, and step D are micro
- a processor is a system microprocessor that minimizes product cost.
- FIG. 1 is a schematic structural view of a first embodiment of the present invention
- FIG. 2 is a schematic view showing the installation of an air conditioner application according to Embodiment 1 of the present invention.
- Figure 3 is a perspective view of the motor unit of the present invention.
- Figure 4 is a cross-sectional view of the motor unit of the present invention.
- FIG. 5 is a circuit block diagram of Embodiment 1 of the present invention.
- Figure 6 is a block diagram of a corresponding implementation circuit of Figure 5;
- FIG. 8 is a schematic structural diagram of a display device according to Embodiment 1 of the present invention.
- FIG. 9 is a schematic structural diagram of a second embodiment of the present invention.
- Figure 10 is a perspective view of the motor of the second embodiment of the present invention.
- Figure 11 is a cross-sectional view showing the structure of a motor according to a second embodiment of the present invention.
- Embodiment 1 is a diagrammatic representation of Embodiment 1:
- an air blowing system such as an air conditioner
- the figure is replaced by "motor unit + wind wheel”.
- the air filter When the motor starts, the air blows. Since the number of air outlets and air inlets is related to the number of rooms, there is no uniform standard for the design of the pipeline. At the same time, the air filter may have different pressure drops. The air volume must have a good technical solution.
- a real-time display control method for the degree of clogging of an air conditioning duct of an electric appliance of the present invention comprising a motor, a wind wheel, a power supply part and a system controller, the system controller having a function of realizing the function of the electric device itself Control circuit board, the main control circuit board drive motor drives the wind wheel to rotate, wherein: the motor unit is a motor unit without a controller, including a rotating shaft, a permanent magnet rotor assembly, a stator assembly and a casing assembly, forever A permanent magnet is mounted on the magnetic rotor assembly, the permanent magnet rotor assembly and the stator assembly form a magnetic coupling, and the stator assembly includes a stator core and a coil winding wound on the stator core; the main control circuit board is arranged with a system micro The processor, the inverter circuit and the motor operating parameter detecting circuit, the operating parameter detecting circuit inputs the real-time running parameter of the motor to the system microprocessor, the output end of the system microprocessor controls the in
- the motor is a motor unit 1, and the motor unit 1 includes a stator assembly 12, a rotor assembly 13 and a casing assembly 11, and the stator assembly 13 is mounted on the casing assembly 11, the motor
- the unit 1 is equipped with a Hall sensor 14 (rotor position measuring circuit) for detecting the position of the rotor.
- the rotor assembly 13 is assembled inside or outside the stator assembly 12, and the rotor position measuring circuit detects the rotor position signal and inputs it to the system microprocessor.
- the bus current detecting circuit inputs the detected bus circuit to the system microprocessor, the bus voltage detecting circuit inputs the DC bus voltage to the system microprocessor, the system microprocessor controls the inverter circuit, and the inverter circuit controls the phases of the stator assembly 12.
- the coil winding is turned off and on.
- the rotor position measuring circuit, the bus current detecting circuit and the bus voltage detecting circuit are motor operating parameter detecting circuits a part of.
- the PM motor is a 3-phase brushless DC permanent magnet synchronous motor
- the rotor position measuring circuit 14 generally adopts three Hall sensors, and the three Hall sensors respectively detect a 360-degree electrical angular period.
- the rotor position changes the energization of each phase coil winding of the stator assembly 12 every 120 degrees of electrical angle to form a 3-phase 6-step control mode.
- the AC INPUT passes through the full-wave rectifier circuit consisting of diodes D7, D8, D9, and D10, the DC bus voltage Vbus is output at one end of the capacitor C1.
- the inverter circuit is composed of electronic switch tubes Q1, Q2, Q3, Q4, Q5, Q6, and the control terminals of the electronic switch tubes Q1, Q2, Q3, Q4, Q5, Q6 are respectively controlled by microprocessor
- the output 6 PWM signals (P1, P2, P3, P4, P5, P6) are controlled
- the inverter circuit is also connected with a resistor R1 for detecting the bus current Ibus, and the bus current detecting circuit converts the detected bus current Ibus of the resistor R1 and then transmitted.
- the system microprocessor To the system microprocessor.
- the motor input power control is controlled by the electronic switch tube Q7, and the PWM signal output by the microprocessor, P0, is used to control the on-time of the electronic switch tube Q7 to control the motor input power.
- the motor input power is equal to the DC bus current Ibus multiplied by the DC bus voltage Vbus.
- the motor's speed V Hall sensor detects the signal separately.
- the motor is in constant speed control, and the air volume is kept as the target air volume by adjusting the motor speed n and the real-time input power of the motor Pi, and the steady state speed n of the motor and the corresponding real-time input power of the motor Pi and the step-down data are recorded.
- the microprocessor obtains the current real-time rotational speed n0 and the real-time input power P0; and substitutes the above parameters into the above formula to obtain the current static pressure value PAR in the current ventilation duct.
- A) operating parameter detection circuit inputs the real-time operating parameters of the motor to the system microprocessor
- the system microprocessor estimates the current static pressure value PAR in the current ventilation duct according to the real-time operating parameters of the motor;
- the system microprocessor calculates the real-time static pressure percentage by dividing the current static pressure value PAR by the designed maximum static pressure PARmax;
- the system microprocessor uses the display device to display the real-time static pressure percentage to indicate the degree of clogging of the ventilation duct.
- the display device is composed of a plurality of LED diodes, and the real-time static pressure percentage is divided into multiple stages in the range of 0%-100% to cooperate with a plurality of LED diodes.
- the real-time static pressure percentage can be used as the first level from 0%-20%, the real-time static pressure percentage is 20%-40% as the second level, and the real-time static pressure percentage is 40%-60% as the third level.
- the real-time static pressure percentage is 6%-80% as the fourth level, and the real-time static pressure percentage is 80%-100% as the fifth level.
- the first-stage static pressure percentage corresponds to all the LED diodes are not bright, the second level
- the percentage of static pressure corresponds to the flashing of the first LED diode.
- the percentage of static pressure in the third stage is corresponding to the first LED diode and the second LED diode.
- the static pressure percentage of the fourth stage corresponds to the first LED diode.
- the second LED diode and the third LED diode are both flashing, and the static pressure percentage of the fifth stage is corresponding to the first LED diode, the second LED diode, the third LED diode, and the fourth LED diode. .
- Embodiment 2 is a diagrammatic representation of Embodiment 1:
- the range hood of the present invention comprises a ventilation duct, a motor, a wind wheel, a power supply part, a display device and a system controller, and the system controller has a main control for realizing the function of the electric device itself.
- a circuit board, a main control circuit board is provided with a system microprocessor, wherein: the motor comprises a motor controller and a motor unit, and the motor unit comprises a rotating shaft, a permanent magnet rotor assembly, a stator assembly and a casing assembly, and a permanent magnet rotor a permanent magnet is mounted on the assembly, the permanent magnet rotor assembly and the stator assembly form a magnetic coupling, and the stator assembly includes a stator core and a coil winding wound on the stator core; the motor controller is provided with a motor microprocessor The inverter circuit and the motor operating parameter detecting circuit, the operating parameter detecting circuit inputs the real-time running parameter of the motor to the motor microprocessor, the output end of the motor microprocessor controls the inverter circuit, and the output end of the inverter circuit is connected with the coil winding; the motor The microprocessor communicates with the system microprocessor to communicate with each other.
- the motor is composed of a motor controller 2 and a motor unit 1, and the motor unit 1 includes a stator assembly 12, a rotor assembly 13 and a casing assembly 11, and the stator assembly 13 is mounted on the casing assembly 11, and the motor unit 1 is mounted A Hall sensor 14 for detecting the position of the rotor, the rotor assembly 13 being assembled inside or outside the stator assembly 12, the motor controller 2 comprising a control box 22 and a control circuit board 21 mounted inside the control box 22, the control circuit board 21 generally comprising Motor microprocessor, bus current detection circuit, bus voltage detection circuit, inverter circuit and rotor position measurement circuit 14 (ie Hall sensor), rotor position measurement circuit detects rotor position signal and inputs to motor microprocessor, bus current detection The circuit inputs the detected bus circuit to the motor microprocessor, the bus voltage detecting circuit inputs the DC bus voltage to the motor microprocessor, the motor microprocessor controls the inverter circuit, and the inverter circuit controls the coil windings of the phases of the stator assembly 12 Power off.
- the real-time display control method for the degree of clogging of the ventilation duct of the range hood of the invention is characterized in that: the control method comprises the following steps:
- A) operating parameter detection circuit inputs the real-time operating parameters of the motor to the motor microprocessor
- the motor microprocessor estimates the current static pressure value PAR in the current ventilation duct according to the real-time operating parameters of the motor;
- the motor microprocessor calculates the real-time static pressure percentage by dividing the current static pressure value PAR by the designed maximum static pressure PARmax;
- the motor microprocessor sends the real-time static pressure percentage to the system microprocessor, which uses the display device to display the real-time static pressure percentage to indicate the degree of clogging of the ventilation duct.
- the above display device is composed of a plurality of LED diodes, and the real-time static pressure percentage is divided into multiple stages in the range of 0%-100% to cooperate with a plurality of LED diodes, and the static pressure percentage of the first stage corresponds to that all the LED diodes are not bright.
- the second-stage static pressure percentage corresponds to the first LED diode flashing
- the third-stage static pressure percentage corresponds to the first LED diode and the second LED diode are flashing
- the fourth-stage static pressure percentage corresponds to the first The LED diode, the second LED diode and the third LED diode are all flashing
- the static pressure percentage of the fifth stage corresponds to the first LED diode, the second LED diode, the third LED diode, and the fourth LED II. Extremely shiny.
- the motor is in constant speed control, and the air volume is kept as the target air volume by adjusting the motor speed n and the real-time input power of the motor Pi, and the steady state speed n of the motor and the corresponding real-time input power of the motor Pi and the step-down data are recorded.
- the rotor position measuring circuit, the bus current detecting circuit and the bus voltage detecting circuit send signals to the motor microprocessor to obtain the current real-time rotational speed n0 and the real-time input power P0; the above parameters are substituted into the above formula, Obtain the current static pressure value PAR inside the current ventilation duct.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Control Of Ac Motors In General (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Ventilation (AREA)
- Control Of Multiple Motors (AREA)
Abstract
一种电器设备的通风管道堵塞程度实时显示控制方法,包括如下步骤:A)运行参数检测电路将电机实时运行参数输入到微处理器;B)微处理器根据电机实时运行参数估算当前通风管道里面的当前静压值PAR;C)微处理器将当前静压值PAR除以设计最大静压PARmax计算出实时静压百分比;D)微处理器利用显示装置显示实时静压百分比,以表示通风管道的堵塞程度。该方法能直观地表示风道堵塞情况,及时清理风道内的堵塞物。
Description
本发明涉及一种电器设备的通风管道堵塞程度实时显示控制方法。
在家用空调的室内通风管道里,静压往往随着时间的流逝而变化,比如因为管道积灰或者过滤器堵塞。静压也因为管道的安装不同而往往高于厂商实验室的标称系统时的标准静压。恒风量控制可以在这些情况下给用户带来恒定的风量,从而在广泛的静压条件下维持舒适的通风,制冷或制热的效果,并使系统运行达到高效节能。
另外,在抽油烟机的领域同样存在恒风量控制的问题,因为随着楼层的不同或者油路的积压,外部静压是不同的,如何在不同的静压下给用户带来恒定的风量,从而在广泛的静压条件下维持舒适的通风,这对我们提出了更高的要求,随着风道的堆积的油的增多,风道会慢慢堵塞。
随着外部静压不断增大,当外部静压大于设计最大静压,输出的风量就不再恒定,这是客户不需要的。所以有必要及时反映风道静压状况,以便用户能及时知道风道状况,及时清理风道堵塞物,维持恒风量控制。
发明内容:
本发明的目的是提供一种电器设备的通风管道堵塞程度实时显示控制方法,能及时直观知道风道堵塞的状况,及时清理风道里面的堵塞物,完善产品的性能,提高产品的性价比。
本发明的目的是通过下述技术方案予以实现的。
一种电器设备的通风管道堵塞程度实时显示控制方法,其特征在于:所述的控制方法包括如下步骤:
A)运行参数检测电路将电机实时运行参数输入到微处理器;
B)微处理器根据电机实时运行参数估算当前通风管道里面的当前静压值
PAR;
C)微处理器将当前静压值PAR除以设计最大静压PARmax计算出实时静压百分比;
D)微处理器利用显示装置显示实时静压百分比,以表示通风管道的堵塞程度。
上述所述的显示装置由多个LED二极管组成,将实时静压百分比在0%-100%的范围内分成多级以配合多个LED二极管工作。
上述所述的第一级的静压百分比对应所有的LED二极管都不亮,第二级的静压百分比对应第一个LED二极管闪亮,第三级的静压百分比对应第一个LED二极管和第二个LED二极管都闪亮,第四级的静压百分比对应第一个LED二极管、第二个LED二极管和第三个LED二极管都闪亮,第五级的静压百分比对应第一个LED二极管、第二个LED二极管、第三个LED二极管、第四个LED二极都闪亮。
上述所述的电器设备是吸油烟机或者管道空调。
上述所述的微处理器带有一个恒风量控制单元,根据用户选者的档位风量Q,微处理器驱动电机和风轮转动,使到通风管道吸入或者输出的风量保持恒定。
上述所述恒风量控制单元的最小输入功率Pmin对应的静压PARmin,最大输入功率Pmax对应的静压PARmax,根据当前工作在恒风量的检测参数:实时输入功率P0计算出当前静压值PAR:
PAR=(P0-Pmin)÷(Pmax-Pmin)×(PARmax-PARmin)
上述所述的电器设备包括通风管道、电机、风轮、电源部分、显示装置和系统控制器,系统控制器带有实现电器设备本身功能的主控制线路板,主控制线路板驱动电机带动风轮转动,风轮的转动带动通风管道的空气流动,其中:所述的电机是一个不带电机控制器的电机单体,包括转轴、永磁转子组件、定子组件和机壳组件,永磁转子组件上安装永磁体,永磁转子组件和定子组件形成磁藕合,定子组件包括定子铁芯和卷绕在定子铁芯上的线圈绕组;所述的主控
制线路板上布局有系统微处理器、逆变电路和电机运行参数检测电路,运行参数检测电路将电机实时运行参数输入到系统微处理器,系统微处理器的输出端控制逆变电路,逆变电路的输出端与线圈绕组连接;所述的步骤A、步骤B、步骤C、步骤D所述的微处理器是指系统微处理器。
上述所述的电器设备包括通风管道、电机、风轮、电源部分、显示装置和系统控制器,系统控制器带有实现电器设备本身功能的主控制线路板,主控制线路板上设置系统微处理器,其中:所述的电机包括电机控制器和电机单体,电机单体包括转轴、永磁转子组件、定子组件和机壳组件,永磁转子组件上安装永磁体,永磁转子组件和定子组件形成磁藕合,定子组件包括定子铁芯和卷绕在定子铁芯上的线圈绕组;所述的电机控制器上布局有电机微处理器、逆变电路和电机运行参数检测电路,运行参数检测电路将电机实时运行参数输入到电机微处理器,电机微处理器的输出端控制逆变电路,逆变电路的输出端与线圈绕组连接;电机微处理器与系统微处理器连接相互通信,所述的步骤A、步骤B、步骤C、步骤D所述的微处理器是指电机微处理器。
本发明与现有技术相比,具有如下效果:
1)本发明利用运行参数检测电路将电机实时运行参数输入到微处理器;微处理器根据电机实时运行参数估算当前通风管道里面的当前静压值PAR;微处理器将当前静压值PAR除以设计最大静压PARmax计算出实时静压百分比;微处理器利用显示装置显示实时静压百分比,以表示通风管道的堵塞程度。用户能及时直观知道风道堵塞的状况,及时清理风道里面的堵塞物,完善产品的性能,提高产品的性价比。
2)上述所述的显示装置由多个LED二极管组成,将实时静压百分比在0%-100%的范围内分成多级以配合多个LED二极管工作,上述所述的第一级的静压百分比对应所有的LED二极管都不亮,第二级的静压百分比对应第一个LED二极管闪亮,第三级的静压百分比对应第一个LED二极管和第二个LED二极管都闪亮,第四级的静压百分比对应第一个LED二极管、第二个LED二极管和第
三个LED二极管都闪亮,第五级的静压百分比对应第一个LED二极管、第二个LED二极管、第三个LED二极管、第四个LED二极都闪亮。方案简单,容易实现,成本低。
3)微处理器带有一个恒风量控制单元,根据用户选者的档位风量Q,微处理器驱动电机和风轮转动,使到通风管道吸入或者输出的风量保持恒定,上述所述恒风量控制单元的最小输入功率Pmin对应的静压PARmin,最大输入功率Pmax对应的静压PARmax,根据当前工作在恒风量的检测参数:实时输入功率P0计算出当前静压值PAR:
PAR=(P0-Pmin)÷(Pmax-Pmin)×(PARmax-PARmin)
利用上述公式计算,基本能保证计算精度,算法简单,容易实现,降低成本。
4)所述的电机是一个不带电机控制器的电机单体,所述的主控制线路板上布局有系统微处理器、逆变电路和电机运行参数检测电路,运行参数检测电路将电机实时运行参数输入到系统微处理器,系统微处理器的输出端控制逆变电路,逆变电路的输出端与线圈绕组连接;所述的步骤A、步骤B、步骤C、步骤D所述的微处理器是指系统微处理器,可以最大限度降低产品成本。
图1是本发明的实施例一原理结构示意图;
图2本发明实施例一在空调应用的安装示意图;
图3是本发明电机单体的立体图;
图4是本发明电机单体的剖视图;
图5是本发明实施例一的电路方框图;
图6是图5是对应的实施电路方框图;
图7是本发明实施例一通过实验测得到得一族恒风量拟合曲线;
图8是本发明实施例一的显示装置的结构示意图;
图9是本发明实施例二的原理结构示意图;
图10是本发明实施例二的电机的立体图;
图11是本发明实施例二的电机的结构剖视图。
下面通过具体实施例并结合附图对本发明作进一步详细的描述。
实施例一:
如图1、图2所示,在一个典型的通风管道(简称风道)里,安装了一个鼓风系统(如空调机),图中以“电机单体+风轮”代替,管道里还有空气过滤网,电机启动时开始鼓风,由于出风口和入风口的数量与房间数有关,管道的设计也没有统一的标准,同时空气过滤网也可能有不同的压降,如果要获得恒定的风量必需有一个好的技术方案。
本发明的一种电器设备的(空调)通风管道堵塞程度实时显示控制方法,所述的电器设备包括电机、风轮、电源部分和系统控制器,系统控制器带有实现电器设备本身功能的主控制线路板,主控制线路板驱动电机带动风轮转动,其中:所述的电机单体是一个不带控制器的电机单体,包括转轴、永磁转子组件、定子组件和机壳组件,永磁转子组件上安装永磁体,永磁转子组件和定子组件形成磁藕合,定子组件包括定子铁芯和卷绕在定子铁芯上的线圈绕组;所述的主控制线路板上布局有系统微处理器、逆变电路和电机运行参数检测电路,运行参数检测电路将电机实时运行参数输入到系统微处理器,系统微处理器的输出端控制逆变电路,逆变电路的输出端与线圈绕组连接。
如图3、图4所示,上述电机是电机单体1,所述的电机单体1包括定子组件12、转子组件13和机壳组件11,定子组件13安装在机壳组件11上,电机单体1安装有检测转子位置的霍尔传感器14(转子位置测量电路),转子组件13套装在定子组件12的内侧或者外侧组成,转子位置测量电路检测转子位置信号并输入到系统微处理器,母线电流检测电路将检测的母线电路输入到系统微处理器,母线电压检测电路将直流母线电压输入到系统微处理器,系统微处理器控制逆变电路,逆变电路控制定子组件12的各相线圈绕组的通断电。转子位置测量电路、母线电流检测电路、母线电压检测电路是电机运行参数检测电路
的一部分。
如图5、图6所示,假设PM电机是3相无刷直流永磁同步电机,转子位置测量电路14一般采用3个霍尔传感器,3个霍尔传感器分别检测一个360度电角度周期的转子位置,每转过120度电角度改变一次定子组件12的各相线圈绕组的通电,形成3相6步控制模式。交流输入(AC INPUT)经过由二级管D7、D8、D9、D10组成的全波整流电路后,在电容C1的一端输出直流母线电压Vbus,直流母线电压Vbus与输入交流电压有关,交流输入(AC INPUT)的电压确定后,3相绕组的线电压UP是PWM斩波输出电压,UP=Vbus*w,w是系统微处理器输入到逆变电路的PWM信号的占空比,改变线电压UP可以改变直流母线电流Ibus,逆变电路由电子开关管Q1、Q2、Q3、Q4、Q5、Q6组成,电子开关管Q1、Q2、Q3、Q4、Q5、Q6的控制端分别由微处理器输出的6路PWM信号(P1、P2、P3、P4、P5、P6)控制,逆变电路还连接电阻R1用于检测母线电流Ibus,母线电流检测电路将电阻R1的检测母线电流Ibus转换后传送到系统微处理器。电机输入功率控制由电子开关管Q7控制,微处理器输出的1路PWM信号--即P0,来控制电子开关管Q7的导通时间,以控制电机输入功率。电机输入功率等于直流母线电流Ibus乘以直流母线电压Vbus。电机的转速V霍尔传感器分别检测的信号计算得到。
假设在系统微处理器建立恒风量控制单元,恒风量控制单元设置恒风量的控制函数P=f(n),其中P是电机输入功率,n是电机运行转速,恒风量的控制函数P=f(n)是这样获得的:先采集原始数据,针对若至少1个目标风量,从低静压一直调节到高静压,这个静压要能涵盖应用的实际静压范围,在调节静压的过程中,让电机处于恒转速控制,并通过调节电机转速n和电机实时输入功率Pi保持风量为目标风量,并记录此时的电机稳态转速n和对应的电机实时输入功率Pi和降压数据PAR,这样,针对某干个目标风量,都产生了一组转速n和电机实时输入功率Pi,然后通过曲线拟合的方法产生若干个目标风量中每一个目标风量对应一个函数P=f(n)。恒风量控制函数关系式P=f(n)可以是一
个二阶函数:P=C1+C2×n+C3×n2,具体推导过程可以见我公司于2014年申请的专利公告号CN104180858A、名称:一种风机电机测量风量的方法,里面有详细的介绍如何建立恒风量的控制函数P=f(n)。只要控制转速n和电机实时输入功率Pi两个参数就可以实现恒风量控制。
下表示我们测试输出风量是1200CFM的实验数据。
利用上述的表建立如图7的曲线拟合图。得到恒风量的控制函数P=f(n)。
假设恒风量控制单元的最小输入功率Pmin对应的静压PARmin,最大输入功率Pmax对应的静压PARmax,根据当前工作在恒风量的检测参数:实时输入功率P0
计算出当前静压值PAR:
PAR=(P0-Pmin)÷(Pmax-Pmin)×(PARmax-PARmin)
图7中最小输入功率Pmin=90.2对应的静压PARmin=0;最大输入功率Pmax=128.6对应的静压PARmax=40,转子位置测量电路、母线电流检测电路、母线电压检测电路将信号送到系统微处理器,得到当前实时的转速n0和实时的输入功率P0;将以上参数代入上述公式,得到当前通风管道里面的当前静压值PAR。
本发明的一种电器设备的通风管道堵塞程度实时显示控制方法,其特征在于:所述的控制方法包括如下步骤:
A)运行参数检测电路将电机实时运行参数输入到系统微处理器;
B)系统微处理器根据电机实时运行参数估算当前通风管道里面的当前静压值PAR;
C)系统微处理器将当前静压值PAR除以设计最大静压PARmax计算出实时静压百分比;
D)系统微处理器利用显示装置显示实时静压百分比,以表示通风管道的堵塞程度。
如图8所示,显示装置由多个LED二极管组成,将实时静压百分比在0%-100%的范围内分成多级以配合多个LED二极管工作。可以将实时静压百分比在0%-20%作为第一级,将实时静压百分比在20%-40%作为第二级,将实时静压百分比在40%-60%作为第三级,将实时静压百分比在6%-80%作为第四级,将实时静压百分比在80%-100%作为第五级,第一级的静压百分比对应所有的LED二极管都不亮,第二级的静压百分比对应第一个LED二极管闪亮,第三级的静压百分比对应第一个LED二极管和第二个LED二极管都闪亮,第四级的静压百分比对应第一个LED二极管、第二个LED二极管和第三个LED二极管都闪亮,第五级的静压百分比对应第一个LED二极管、第二个LED二极管、第三个LED二极管、第四个LED二极都闪亮。
实施例二:
如图9、图10、图11所示,本发明的抽油烟机包括通风管道、电机、风轮、电源部分、显示装置和系统控制器,系统控制器带有实现电器设备本身功能的主控制线路板,主控制线路板上设置系统微处理器,其中:所述的电机包括电机控制器和电机单体,电机单体包括转轴、永磁转子组件、定子组件和机壳组件,永磁转子组件上安装永磁体,永磁转子组件和定子组件形成磁藕合,定子组件包括定子铁芯和卷绕在定子铁芯上的线圈绕组;所述的电机控制器上布局有电机微处理器、逆变电路和电机运行参数检测电路,运行参数检测电路将电机实时运行参数输入到电机微处理器,电机微处理器的输出端控制逆变电路,逆变电路的输出端与线圈绕组连接;电机微处理器与系统微处理器连接相互通信。
电机由电机控制器2和电机单体1,所述的电机单体1包括定子组件12、转子组件13和机壳组件11,定子组件13安装在机壳组件11上,电机单体1安装有检测转子位置的霍尔传感器14,转子组件13套装在定子组件12的内侧或者外侧组成,电机控制器2包括控制盒22和安装在控制盒22里面的控制线路板21,控制线路板21一般包括电机微处理器、母线电流检测电路、母线电压检测电路、逆变电路和转子位置测量电路14(即霍尔传感器),转子位置测量电路检测转子位置信号并输入到电机微处理器,母线电流检测电路将检测的母线电路输入到电机微处理器,母线电压检测电路将直流母线电压输入到电机微处理器,电机微处理器控制逆变电路,逆变电路控制定子组件12的各相线圈绕组的通断电。
本发明抽油烟机的通风管道堵塞程度实时显示控制方法,其特征在于:所述的控制方法包括如下步骤:
A)运行参数检测电路将电机实时运行参数输入到电机微处理器;
B)电机微处理器根据电机实时运行参数估算当前通风管道里面的当前静压值PAR;
C)电机微处理器将当前静压值PAR除以设计最大静压PARmax计算出实时静压百分比;
D)电机微处理器将实时静压百分比送到系统微处理器,系统微处理器利用显示装置显示实时静压百分比,以表示通风管道的堵塞程度。
上述显示装置由多个LED二极管组成,将实时静压百分比在0%-100%的范围内分成多级以配合多个LED二极管工作,第一级的静压百分比对应所有的LED二极管都不亮,第二级的静压百分比对应第一个LED二极管闪亮,第三级的静压百分比对应第一个LED二极管和第二个LED二极管都闪亮,第四级的静压百分比对应第一个LED二极管、第二个LED二极管和第三个LED二极管都闪亮,第五级的静压百分比对应第一个LED二极管、第二个LED二极管、第三个LED二极管、第四个LED二极都闪亮。
假设在电机微处理器建立恒风量控制单元,恒风量控制单元设置恒风量的控制函数P=f(n),其中P是电机输入功率,n是电机运行转速,恒风量的控制函数P=f(n)是这样获得的:先采集原始数据,针对若至少1个目标风量,从低静压一直调节到高静压,这个静压要能涵盖应用的实际静压范围,在调节静压的过程中,让电机处于恒转速控制,并通过调节电机转速n和电机实时输入功率Pi保持风量为目标风量,并记录此时的电机稳态转速n和对应的电机实时输入功率Pi和降压数据PAR,这样,针对某干个目标风量,都产生了一组转速n和电机实时输入功率Pi,然后通过曲线拟合的方法产生若干个目标风量中每一个目标风量对应一个函数P=f(n)。
假设恒风量控制单元的最小输入功率Pmin对应的静压PARmin,最大输入功率Pmax对应的静压PARmax,根据当前工作在恒风量的检测参数:实时输入功率P0计算出当前静压值PAR:
PAR=(P0-Pmin)÷(Pmax-Pmin)×(PARmax-PARmin)
转子位置测量电路、母线电流检测电路、母线电压检测电路将信号送到电机微处理器,得到当前实时的转速n0和实时的输入功率P0;将以上参数代入上述公式,
得到当前通风管道里面的当前静压值PAR。
Claims (8)
- 一种电器设备的通风管道堵塞程度实时显示控制方法,其特征在于:所述的控制方法包括如下步骤:A)运行参数检测电路将电机实时运行参数输入到微处理器;B)微处理器根据电机实时运行参数估算当前通风管道里面的当前静压值PAR;C)微处理器将当前静压值PAR除以设计最大静压PARmax计算出实时静压百分比;D)微处理器利用显示装置显示实时静压百分比,以表示通风管道的堵塞程度。
- 根据权利要求1所述的一种电器设备的通风管道堵塞程度实时显示控制方法,其特征在于:显示装置由多个LED二极管组成,将实时静压百分比在0%-100%的范围内分成多级以配合多个LED二极管工作。
- 根据权利要求2所述的一种电器设备的通风管道堵塞程度实时显示控制方法,其特征在于:第一级的静压百分比对应所有的LED二极管都不亮,第二级的静压百分比对应第一个LED二极管闪亮,第三级的静压百分比对应第一个LED二极管和第二个LED二极管都闪亮,第四级的静压百分比对应第一个LED二极管、第二个LED二极管和第三个LED二极管都闪亮,第五级的静压百分比对应第一个LED二极管、第二个LED二极管、第三个LED二极管、第四个LED二极都闪亮。
- 根据权利要求1或2或3所述的一种电器设备的通风管道堵塞程度实时显示控制方法,其特征在于:所述的电器设备是吸油烟机或者管道空调。
- 根据权利要求1或2或3所述的一种电器设备的通风管道堵塞程度实时显示控制方法,其特征在于:微处理器带有一个恒风量控制单元,根据用户选者的档位风量Q,微处理器驱动电机和风轮转动,使到通风管道吸入或者输出的风量保持恒定。
- 根据权利要求1或2或3所述的一种电器设备的通风管道堵塞程度实时显示控制方法,其特征在于:恒风量控制单元的最小输入功率Pmin对应的静压PARmin,最大输入功率Pmax对应的静压PARmax,根据当前工作在恒风量的检测参数:实时输入功率P0计算出当前静压值PAR:PAR=(P0-Pmin)÷(Pmax-Pmin)×(PARmax-PARmin)
- 根据权利要求1或2或3所述的一种电器设备的通风管道堵塞程度实时显示控制方法,其特征在于:所述的电器设备包括通风管道、电机、风轮、电源部分、显示装置和系统控制器,系统控制器带有实现电器设备本身功能的主控制线路板,主控制线路板驱动电机带动风轮转动,风轮的转动带动通风管道的空气流动,其中:所述的电机是一个不带电机控制器的电机单体,包括转轴、永磁转子组件、定子组件和机壳组件,永磁转子组件上安装永磁体,永磁转子组件和定子组件形成磁藕合,定子组件包括定子铁芯和卷绕在定子铁芯上的线圈绕组;所述的主控制线路板上布局有系统微处理器、逆变电路和电机运行参数检测电路,运行参数检测电路将电机实时运行参数输入到系统微处理器,系统微处理器的输出端控制逆变电路,逆变电路的输出端与线圈绕组连接;所述的步骤A、步骤B、步骤C、步骤D所述的微处理器是指系统微处理器。
- 根据权利要求1或2或3所述的一种电器设备的通风管道堵塞程度实时显示控制方法,其特征在于:所述的电器设备包括通风管道、电机、风轮、电源部分、显示装置和系统控制器,系统控制器带有实现电器设备本身功能的主控制线路板,主控制线路板上设置系统微处理器,其中:所述的电机包括电机控制器和电机单体,电机单体包括转轴、永磁转子组件、定子组件和机壳组件,永磁转子组件上安装永磁体,永磁转子组件和定子组件形成磁藕合,定子组件包括定子铁芯和卷绕在定子铁芯上的线圈绕组;所述的电机控制器上布局有电机微处理器、逆变电路和电机运行参数检测电路,运行参数检测电路将电机实时运行参数输入到电机微处理器,电机微处理器的输出端控制逆变电路,逆变电路的输出端与线圈绕组连接;电机微处理器与系统微处理器连接相互通信, 所述的步骤A、步骤B、步骤C、步骤D所述的微处理器是指电机微处理器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510152342.XA CN106154871B (zh) | 2015-03-31 | 2015-03-31 | 一种电器设备的通风管道堵塞程度实时显示控制方法 |
CN201510152342.X | 2015-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016155270A1 true WO2016155270A1 (zh) | 2016-10-06 |
Family
ID=57004695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/090338 WO2016155270A1 (zh) | 2015-03-31 | 2015-09-23 | 一种电器设备的通风管道堵塞程度实时显示控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106154871B (zh) |
WO (1) | WO2016155270A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107044671B (zh) * | 2017-03-24 | 2023-09-12 | 欧派家居集团股份有限公司 | 压力感应增速控制方法及高静压风机系统、吸油烟机 |
CN109357360A (zh) * | 2018-09-27 | 2019-02-19 | 四川长虹空调有限公司 | 空调滤网脏堵情况检测与风量控制方法 |
CN109357382A (zh) * | 2018-09-27 | 2019-02-19 | 四川长虹空调有限公司 | 空调恒风量控制方法 |
CN110657476A (zh) * | 2019-09-30 | 2020-01-07 | 佛山市顺德区美的洗涤电器制造有限公司 | 油烟机的风道参数的估计方法和油烟机 |
CN112168065B (zh) * | 2020-09-29 | 2023-04-28 | 追觅创新科技(苏州)有限公司 | 清洁设备中风道的堵塞确定方法、设备、装置及存储介质 |
CN113405220A (zh) * | 2021-06-18 | 2021-09-17 | 佛山市顺德区美的电子科技有限公司 | 一种出风设备及其风道检测方法 |
CN115508630A (zh) * | 2021-06-23 | 2022-12-23 | 芜湖美的智能厨电制造有限公司 | 抽油烟机检测方法、装置及抽油烟机 |
CN113864999A (zh) * | 2021-09-22 | 2021-12-31 | 珠海格力电器股份有限公司 | 空调系统能耗预测方法、装置及空调系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61114043A (ja) * | 1984-11-08 | 1986-05-31 | Daikin Ind Ltd | 空気調和装置 |
US20090134827A1 (en) * | 2007-11-28 | 2009-05-28 | Young-Chun Jeung | Compensation of motor control using current-rpm relation for a ventilation system |
CN102748843A (zh) * | 2012-07-24 | 2012-10-24 | 海信(山东)空调有限公司 | 风管式空调室内机恒风量控制系统及方法 |
CN103423843A (zh) * | 2013-08-13 | 2013-12-04 | 青岛海信日立空调系统有限公司 | 风管式室内机及控制风管式室内机容量的方法 |
CN204026789U (zh) * | 2014-08-12 | 2014-12-17 | 中山大洋电机股份有限公司 | 一种抽油烟机系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6994620B2 (en) * | 2003-04-30 | 2006-02-07 | Carrier Corporation | Method of determining static pressure in a ducted air delivery system using a variable speed blower motor |
US6993414B2 (en) * | 2003-12-18 | 2006-01-31 | Carrier Corporation | Detection of clogged filter in an HVAC system |
US8587233B2 (en) * | 2010-01-25 | 2013-11-19 | Sntech, Inc. | Speed-defined torque control |
CN202772066U (zh) * | 2012-09-12 | 2013-03-06 | 常熟开关制造有限公司(原常熟开关厂) | 一种带显示的智能控制器 |
CN103423837B (zh) * | 2013-07-25 | 2015-09-30 | 青岛海信日立空调系统有限公司 | 自由静压风管机 |
CN104174238B (zh) * | 2014-07-23 | 2016-01-27 | 中山大洋电机股份有限公司 | 一种送风设备的滤网堵塞检测方法及其应用的送风设备 |
-
2015
- 2015-03-31 CN CN201510152342.XA patent/CN106154871B/zh active Active
- 2015-09-23 WO PCT/CN2015/090338 patent/WO2016155270A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61114043A (ja) * | 1984-11-08 | 1986-05-31 | Daikin Ind Ltd | 空気調和装置 |
US20090134827A1 (en) * | 2007-11-28 | 2009-05-28 | Young-Chun Jeung | Compensation of motor control using current-rpm relation for a ventilation system |
CN102748843A (zh) * | 2012-07-24 | 2012-10-24 | 海信(山东)空调有限公司 | 风管式空调室内机恒风量控制系统及方法 |
CN103423843A (zh) * | 2013-08-13 | 2013-12-04 | 青岛海信日立空调系统有限公司 | 风管式室内机及控制风管式室内机容量的方法 |
CN204026789U (zh) * | 2014-08-12 | 2014-12-17 | 中山大洋电机股份有限公司 | 一种抽油烟机系统 |
Also Published As
Publication number | Publication date |
---|---|
CN106154871A (zh) | 2016-11-23 |
CN106154871B (zh) | 2019-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016155270A1 (zh) | 一种电器设备的通风管道堵塞程度实时显示控制方法 | |
WO2016029531A1 (zh) | 一种带滤网堵塞检测功能的电器设备 | |
JP6254276B2 (ja) | ファン・モータ風量の検出法 | |
KR102009450B1 (ko) | Pm 모터의 직접 전력 제어에 의한 일정한 공기 볼륨 제어를 위한 방법 및 상기 방법을 적용하는 hvac 시스템 | |
CN105378390B (zh) | 一种应用在hvac系统中的ecm电机的恒风量控制方法 | |
WO2016065874A1 (zh) | 一种具有抽风或者送风功能的电器设备的恒风量控制方法 | |
JP2017500470A5 (zh) | ||
CN104174238A (zh) | 一种送风设备的滤网堵塞检测方法及其应用的送风设备 | |
CN104180858A (zh) | 一种风机电机测量风量的方法 | |
CN106160587B (zh) | 一种电机的控制方法及应用其的带有风道的电器设备的控制方法 | |
CA2824610C (en) | Fan motor | |
WO2023231228A1 (zh) | 气流输送管道的外部静压估算方法及空调系统的控制方法 | |
WO2016011617A1 (zh) | 一种送风设备的滤网堵塞检测方法及其应用的送风设备 | |
CN105762986A (zh) | 一种自动调速的ecm电机及其应用的冰柜 | |
CN102828975B (zh) | 一种小功率通风机 | |
JP6324187B2 (ja) | 送風機 | |
CN103339384B (zh) | 电动机和装载有这种电动机的电设备 | |
WO2016029532A1 (zh) | 一种空调系统 | |
CN106152385B (zh) | 一种风机电机的控制方法及一种空调的控制方法 | |
JP2012161125A (ja) | 電動機およびそれを搭載した電気機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15887224 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15887224 Country of ref document: EP Kind code of ref document: A1 |