WO2016153043A1 - 小クラスター水の製造方法 - Google Patents

小クラスター水の製造方法 Download PDF

Info

Publication number
WO2016153043A1
WO2016153043A1 PCT/JP2016/059647 JP2016059647W WO2016153043A1 WO 2016153043 A1 WO2016153043 A1 WO 2016153043A1 JP 2016059647 W JP2016059647 W JP 2016059647W WO 2016153043 A1 WO2016153043 A1 WO 2016153043A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
pressure
tank
low
pressurized
Prior art date
Application number
PCT/JP2016/059647
Other languages
English (en)
French (fr)
Inventor
皆川 光雄
Original Assignee
皆川 光雄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 皆川 光雄 filed Critical 皆川 光雄
Publication of WO2016153043A1 publication Critical patent/WO2016153043A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols

Definitions

  • the present invention relates to a method for producing small cluster water, and more particularly, to a method for producing small cluster water having a low pressure treatment step and a collision treatment step in a tank.
  • water molecules In water, water molecules (H 2 O) usually gather together through hydrogen bonds, and exist in a molecular assembly called a cluster.
  • This cluster is said to have a linear shape, a branched shape, a polygonal shape, a composite state thereof, and the like, and water is usually present in a mixture thereof.
  • the number of water molecules constituting one cluster is called the number of clusters, and this number of clusters is said to be 100 to 140 in ordinary tap water.
  • small cluster water Such water with a small number of clusters is called “small cluster water”, and unlike ordinary water, the surface tension is reduced, the pH is lowered, the density is increased, and the metal is in contact with a metal such as iron.
  • rust is hardly generated, the electric conductivity and taste are changed, and the permeability, water retention, detergency, bactericidal properties and the like to the cell membrane are improved.
  • water cluster water molecule aggregate
  • Water vapor does not form clusters, but when water vapor liquefies and cools to room temperature water, water molecules (H 2 O) gather together to form normal clusters, resulting in small cluster water with a small number of clusters. It is said not to be. Therefore, the following methods are known as a method for reducing the number of clusters, that is, a method for producing small cluster water by breaking hydrogen bonds between water molecules.
  • a method of vibrating water by irradiating ultrasonic waves A method of activating water molecules by stretching and bending vibration by irradiating far infrared rays. Method using electrolysis.
  • a method of applying various patterns of impact pressure to water Patent Document 1.
  • a method of passing water through a pipe through which a low-frequency current flows Patent Document 2.
  • a method of applying a magnetic field Patent Document 3
  • a method in which a decomposition reaction is performed on water in which ozone is dissolved using a catalyst Patent Document 4
  • a method of irradiating visible light to a system in which water and metal particles exist and utilizing plasmon resonance of metal particles Patent Document 5).
  • Patent Document 6 is a method of dispersing agglomerates of resin fine particles in an aqueous mixture, and is not a method for producing small cluster water, but Patent Document 6 describes an aqueous mixture obtained by low-pressure stirring. There has been reported a method of dispersing agglomerates of resin fine particles in an aqueous mixed liquid by applying high pressure by pressurization and injecting and colliding the aqueous mixed liquid imparted with high speed so as to face each other. .
  • the present invention has been made in view of the above-described background art, and its problem is to reliably produce small cluster water having a small number of clusters, and further to efficiently produce small cluster water that is stable over time at low cost. It is to provide a method for manufacturing a large amount of the product.
  • the present inventor has obtained a low-pressure treatment step for reducing the pressure in the tank to a predetermined pressure, and continuously collecting and pressurizing the low-pressure treated water,
  • a manufacturing method that includes a collision treatment process that injects the low-pressure treated water in the tank and a circulation treatment process that circulates the low-pressure treated water to increase the chance and number of collisions, stable small cluster water can be obtained.
  • the present invention has been completed by finding that it can be efficiently manufactured in large quantities at low cost.
  • the present invention contains the water contained in the water while maintaining the pressure in the tank at a pressure equal to or higher than the vapor pressure of water at the temperature T ° C. of the low-pressure treated water and lower than 1 atm.
  • Low pressure treatment process to remove dissolved air A part of the low-pressure treated water in the tank obtained through the low-pressure treatment step is continuously collected from the tank and pressurized with a pressurizing mechanism, and the obtained pressurized water of the low-pressure treated water is supplied from the pressurized water injection unit.
  • the present invention also provides small cluster water obtained by using the method for producing small cluster water described above.
  • the present invention is characterized by improving the dispersibility of the fine particles in water by using water in which the fine particles are dispersed as a raw material and using the above-described method for producing small cluster water for the water.
  • a method for improving the dispersibility of fine particles is provided.
  • the present invention also provides an aqueous emulsion obtained by using the above-described method for improving the dispersibility of fine particles.
  • the present invention also provides an aqueous paint characterized by containing the above-mentioned aqueous emulsion.
  • the present invention also provides a metal particle dispersion characterized in that metal particles having an average particle size of 1 ⁇ m or less are dispersed in the small cluster water produced by the method for producing small cluster water. To do.
  • the above problems and problems can be solved, and small cluster water with a small number of clusters can be produced. That is, according to the present invention, since air is removed from the water in the low-pressure treatment step, by colliding the low-pressure treated water obtained through the low-pressure treatment step with each other at ultra-high pressure and ultra-high speed, Small cluster water can be produced reliably. Further, the air in the cluster is removed by the collision, and the small cluster water can be produced more easily. In addition, because it has a permanent property that it does not contain impurities (air containing oxygen and nitrogen), it keeps the number of clusters small over time and produces stable small cluster water. can do.
  • the present invention it is possible to provide a method for producing small cluster water efficiently in a short time at a low cost. That is, in the production method of the present invention, water that has been subjected to low-pressure treatment in the tank is separately charged into a special collision device, and the treated water that has undergone the collision treatment is taken out as it is as a product, or the treated water is again removed from the tank. Rather than return to the inside and repeat the above operation once each time to make a product, the collision treatment is performed in the tank and the water is circulated, so that the collision is repeated continuously (without taking out in the middle). Can be processed. In this way, since it is not a batch type (batch type) but a continuous type, there is no need for input / extraction by repeating several times of processing, so there are few problems in terms of cost and processing capacity. A method for producing cluster water can be provided.
  • the treatment water When the device described in Patent Document 6 is used, if the number of collisions is increased, the treated water must be taken out many times. However, in the method of the present invention, the production capacity is increased by 2 times or more (6 times or more depending on the type of apparatus, injection pressure, processing time, etc.) compared to the case where the apparatus described in Patent Document 6 is used. Is possible. In addition, since a special collision device does not exist separately and independently, it is difficult to use the collision device for nuclear weapon development. None of the conventional techniques produce large amounts of small cluster water, but according to the present invention, a large amount of small cluster water can be produced efficiently and in a short time at low cost.
  • the method of the present invention removes the same “low pressure state,“ dissolved air containing dissolved oxygen, etc. ”under ultra-high pressure, in water from which“ dissolved air containing dissolved oxygen, etc. ”has been removed under low pressure. It is a method to make small clusters by collision energy, and water is considered to be extremely high pressure (for example, 500 atm) and high temperature (for example, close to 400 ° C.) locally. May be supercritical, near supercritical, or subcritical. However, as in the method of bringing all the water into a supercritical state, the same (or more) effects are obtained without requiring a large-scale apparatus, and the cost, safety, and productivity are excellent.
  • small cluster water of the present invention if fine particles of an emulsion resin or an inorganic substance are dispersed in water to be treated, that is, as a starting material (as a raw material), instead of pure water, small cluster water can be formed, and at the same time, the dispersibility of the fine particles is improved.
  • the aggregates of the emulsion resin dispersed in the aqueous emulsion can be sufficiently separated and refined, and the dispersibility of the aqueous emulsion can be improved. It can be further improved to a higher level.
  • small cluster water can be produced.
  • the dispersibility of the aqueous emulsion can be improved to a level higher than the conventional level.
  • the atmospheric pressure is not applied to the aqueous emulsion in the tank, it can be dispersed well and can be maintained even after the good dispersion state is returned to normal pressure (atmospheric pressure).
  • the method for producing small cluster water of the present invention is used, an aqueous emulsion having improved dispersibility can be provided. Further, the aqueous paint containing the aqueous emulsion thus obtained has a low surface tension and is excellent in rust prevention, antifouling, antifungal, insulation and the like.
  • a metal particle dispersion obtained by dispersing metal particles having an average particle diameter of 1 ⁇ m or less in the small cluster water produced by the above-mentioned “small cluster water production method” is easy to disperse and hardly aggregate. Even when stored as a metal particle dispersion for a long time (for example, for 2 months), the metal particles do not aggregate.
  • the above-mentioned effect can be exhibited more by charging the low-pressure treated water obtained by continuously collecting a part of the low-pressure treated water in the tank using the charging mechanism.
  • FIG. 1 It is a schematic diagram which shows the outline of an example (embodiment in which a pressurized water injection part exists in the side surface of a tank) used for the manufacturing method of the small cluster water of this invention.
  • An example of an apparatus used in the method for producing small cluster water according to the present invention (an embodiment in which two pressurized water injection portions are present in the recessed portion of the tank and the pressurized water injected from two directions collides with each other).
  • A Water-based emulsion or water-based paint in which agglomerates of fine particles are present
  • b Water-based emulsion or water-based emulsion having improved dispersibility (separated and refined agglomerates) using the method for producing small cluster water of the present invention paint
  • It is a schematic diagram of the cross section of the tank which shows an example of the injection method of pressurized water. It is the photograph which observed the mode of the difference in rust generation by dripping small cluster water and tap water obtained using the manufacturing method of small cluster water of the present invention on an iron plate.
  • A View from above
  • b View from diagonal side
  • Small cluster water refers to water having a smaller number of clusters than “normal water” such as tap water, well water, and river water.
  • the “number of clusters” refers to the number of water molecules (H 2 O) constituting one cluster.
  • the number of clusters of small cluster water produced by the “method for producing small cluster water” of the present invention is not particularly limited as long as it is smaller than the number of normal water clusters. The following is preferable, 50 or less is more preferable, 50 or less is more preferable, 30 or less is preferable, 30 or less is particularly preferable, 20 or less is preferable, and 20 or less is more preferable.
  • small cluster water was produced usually caused a decrease in surface tension, a change in conductivity, a change in density, a decrease in pH, no variation in pH depending on the lot of water, suppression of rust generation, and plasmon resonance of water on the gold surface.
  • the apparatus used in the method for producing small cluster water of the present invention includes a tank 10 to which a low-pressure mechanism 30 is connected, a pressurizing mechanism 20 and a pressurized water injection unit. 14.
  • the water to be treated is circulated through the tank 10 and the pressurizing mechanism 20 via the pressurized water injection unit 14 to convert normal water into small cluster water (hereinafter, simply referred to as “treatment”). Is performed continuously while circulating water.
  • the tank 10 is not essential, it preferably has a stirring mechanism 11 so that the water charged therein can be stirred, and normal water is charged into the tank 10 at the start of the treatment.
  • “normal water” refers to water that is not small cluster water.
  • the “normal water” charged into the tank 10 may be tap water, well water, etc., and is not particularly limited. However, water such as demineralized water, distilled water, and water obtained by combining these treatments may be used. Water from which dissolved impurities are removed is preferable. Further, the “normal water” may contain fine particles insoluble in water (dispersed fine particles or the like existing outside the water system).
  • organic fine particles such as emulsion resin
  • water in which fine particles not dissolved in water such as inorganic fine particles are dispersed means that the fine particles become finer as the water becomes small cluster water. Or dispersibility is improved, or the performance of dispersed water such as an emulsion is improved.
  • the tank 10 is connected to a low-pressure mechanism 30, and the inside of the tank 10 is set to a predetermined low pressure by the low-pressure mechanism 30 at least during low-pressure processing, preferably during low-pressure processing, collision processing, and circulation processing.
  • the pressure in the tank 10 is reduced to a pressure at which dissolved air contained in the water is removed.
  • nitrogen and oxygen dissolved in the water are removed, and small cluster water is easily formed in the subsequent collision treatment process. That is, in the collision treatment step described later, low-pressure treated water in which no dissolved gas exists collides with each other at an ultrahigh speed / ultrahigh pressure, whereby hydrogen bonds between water molecules are easily broken.
  • the small cluster water production apparatus 1 that is, water
  • the water containing fine particles is circulated using the small cluster water production apparatus 1 to reduce the number of clusters (manufacture small cluster water), or to disperse the fine particles using the obtained small cluster water. It improves the performance.
  • the present invention has a circulation treatment step in which the low-pressure treated water in the tank is circulated to increase the chance of collision (number of collisions) between the low-pressure treated water by continuously repeating the collision treatment step.
  • tank water water present in the tank 10 among the water
  • low pressure treated water water subjected to low pressure treatment in the tank 10
  • the water pressurized by the pressurizing mechanism 20 is referred to as “pressurized water”.
  • the “in-tank water E1” can include water that has undergone the low-pressure treatment process and normal water that has not undergone the low-pressure treatment process, and the water that has returned to the tank 10 through the collision treatment process has not yet been circulated. Water that has not undergone the collision treatment process can also be included.
  • Valves open / close valves
  • these valves are continuously opened during processing. These valves are closed when the raw material is charged or when the material is taken out after the processing is completed.
  • ⁇ Tank> In the tank 10, at the start of operation, demineralized water, distilled water, “normal water after removing dissolved impurities” such as water obtained by combining these treatments, organic fine particles such as emulsion resin; inorganic fine particles “Normal water” in which fine particles not dissolved in water (fine particles outside the water system) are dispersed is introduced.
  • the position and shape of the “normal water” charging portion are not particularly limited, and the position is preferably present in the upper portion of the tank 10 (not shown) for ease of charging.
  • the tank 10 may be stirred by injecting pressurized water into the tank as will be described later (for example, as shown in FIG. 7).
  • the tank 10 may have a stirring mechanism 11. preferable.
  • the kind of stirring mechanism 11 The thing which can stir the inside of the tank 10 uniformly can be selected suitably.
  • a form having a stirring blade in the central shaft portion is illustrated, but for example, a stirring mechanism 11 having a stirring blade outside the central shaft (near the inner wall of the tank 10) may be used.
  • a stirring mechanism 11 having both (double) stirring blades is also preferred.
  • the operating conditions such as the number of revolutions) of the stirring mechanism 11, and conditions that allow the tank to be uniformly stirred are appropriately selected.
  • stirring mechanism 11 not only can the composition and temperature of the in-bath water E1 be made uniform, but also excessive rise in the liquid level due to bumping of the in-bath water E1 and generation of bubbles during the low-pressure treatment step can be avoided.
  • Volume of the vessel 10 is not particularly limited, 300L (liter) or more 5 m 3 or less, and particularly preferably more than 2m 3 below 500L.
  • volume is not less than the above lower limit, a sufficient throughput can be achieved, and mass production and cost reduction, which are the effects of the present invention, can be achieved more (synergistically).
  • mass production and cost reduction which are the effects of the present invention, can be achieved more (synergistically).
  • the apparatus is not too large and advantageous in terms of cost, the workability is good, and the inside of the tank is easily stirred sufficiently uniformly.
  • the filling rate of the tank water E1 (the value obtained by dividing the volume of the tank water E1 existing inside the tank 10 by the volume of the tank 10) is usually 20% or more and 90% or less, 40% More than 80% is preferable.
  • the filling rate is within the above range, the inside of the tank 10 is easily and stably made low in pressure, and the liquid level rises and bubbles when the dissolved gas is removed from the tank water, and the tank water E1. Therefore, the inside of the tank can be stirred uniformly and the processing efficiency is improved.
  • the volume of the in-bath water E1 may decrease due to evaporation of the in-bath water E1 or the like by the low-pressure treatment step, it is preferable to maintain the above range even in that case.
  • the tank 10 is connected to the low pressure mechanism 30 in the exhaust part 12.
  • the position of the exhaust part 12 is not particularly limited as long as it is above the liquid level of the in-tank water E1, and the shape, size, etc. of the exhaust part 12 are not particularly limited.
  • the preferable pressure in the tank 10 is set to a pressure at which the amount of water in the tank is not easily reduced by evaporation or the like while maintaining a pressure lower than 1 atm so that dissolved air or the like can be easily removed.
  • the pressure in the tank 10 becomes lower than the saturated vapor pressure of water at the temperature T ° C. of the water in the tank due to the reduced pressure, the water E1 in the tank boils and hinders the achievement of the object of the present invention of circulating the water. Since there is a case, the pressure in the tank 10 is not less than the saturated vapor pressure at the water temperature T ° C.
  • the inside of the tank 10 is exhausted by the low-pressure mechanism 30, and even if the water in the tank water E1 evaporates to some extent, the “preferable pressure (low pressure), low-pressure processing time, Water temperature T (° C.) etc. ”.
  • “preferred” means that when the decompression process is started, that is, at the beginning of the low-pressure treatment process, the dissolved air flows out of the system, so that the in-bath water E1 bubbles or the liquid level rises. Although it is seen that they do not interfere with water circulation in each process, and when the water evaporates, the volume of the tank water E1 decreases or the heat of evaporation causes the water in the tank to evaporate. Although the temperature of E1 falls, they are not disturbing each process, especially the circulation of water.
  • the tank water E1 may contain fine particles insoluble in water. That is, it may be an aqueous emulsion in which an emulsion resin is dispersed or a dispersion of inorganic fine particles.
  • the “preferred” means that the concentration and viscosity of the fine particles increase when the water evaporates, but even at the increased concentration and viscosity of the fine particles, the pressurized water E3 is jetted to collide with the in-tank water E1. This means that there is no problem in reducing the number of clusters, and that the amount of the in-tank water E1 is reduced, so that the circulation of water is not hindered.
  • the temperature T ° C. of the water E1 in the tank 10 in operation is not particularly limited, but is preferably 0 ° C. or higher and 60 ° C. or lower, more preferably 1 ° C. or higher and 40 ° C. or lower, and particularly preferably 2 ° C. or higher and 30 ° C. or lower. It is preferably 4 ° C. or higher and 20 ° C. or lower.
  • the pressurized water E3 is injected into the tank 10 as the next stage, and the circulation operation is performed in the previous stage (dissolved air before injection / circulation). It is also preferable that the temperature of the in-bath water E1 in the removal stage) is higher by 0 ° C.
  • the apparatus used for temperature adjustment is not particularly limited, but a cooler or the like is preferable.
  • a cooler a “known device installed so as to be in contact with the outside of the tank 10” such as a jacket type or a cooling pipe type is used.
  • the pressure for preventing the in-bath water E1 from boiling that is, the saturated vapor pressure of water
  • the lower limit of the temperature of the in-bath water E1 is not less than the above, there is no possibility that the temperature further decreases due to the heat of evaporation and the water becomes solid (ice), and dissolved air (dissolved oxygen or the like) is easily removed. .
  • the time of the low-pressure treatment process is not particularly limited as long as the dissolved air contained in the water is sufficiently removed, and the volume of the tank 10, the displacement, the method of adjusting the exhaust speed, the low pressure level, etc.
  • the time from the start of low pressure (exhaust) to the circulation and injection of low pressure treated water is preferably 2 minutes or more and 60 minutes or less, more preferably 5 minutes or more and 40 minutes or less, and more preferably 10 minutes or more and 20 minutes or less. Particularly preferred.
  • the pressure reduction is started, and preferably the injection / circulation is started after the elapse of the time. However, the pressure reduction and the injection / circulation may be started simultaneously.
  • the pressure in the tank 10 is preferably equal to or higher than the saturated vapor pressure at the temperature T ° C. of the tank water E1 in order to prevent boiling, but “(described above) at the temperature T ° C. of the tank water E1.
  • 1) to 4 times or less of “(respective) vapor pressure of water”, preferably 1 to 2 times, more preferably 1 to 1.5 times, particularly preferably 1.1 to 1 times. .2 times or less is more preferable.
  • the temperature of the in-bath water E1 is 4 ° C.
  • 0.8 kPa (6 Torr) or more and 3.4 kPa or less is preferable, and more than 0.8 kPa and 1.2 kPa or less are particularly preferable.
  • the temperature of the water E1 in the tank is 20 ° C.
  • it is preferably 2.3 kPa (18 Torr) or more and 9.3 kPa or less, and more preferably 2.3 kPa or more and 3.5 kPa or less.
  • the tank 10 preferably includes means for measuring pressure and temperature (not shown). Furthermore, it is preferable that the position and state of the liquid level of the in-tank water E1 in the tank 10 (a state in which air is removed, a state in which water boils) can be visually monitored. During the treatment, it is necessary to adjust the pressure in the tank 10 to an appropriate pressure by means such as measuring the pressure and temperature in the tank 10 and adjusting the exhaust speed by the low-pressure mechanism 30, and the tank water E1. Care must be taken not to boil.
  • the liquid level of the tank water E1 rises once, and the air dissolved in the tank water E1 expands to generate bubbles, and the air is removed from the exhaust part 12 together with water vapor. .
  • the liquid level of the tank water E1 is lowered and becomes stationary for a fixed time, and then the tank water E1 may start boiling.
  • the operator checks the position of the liquid level, and immediately before starting boiling or immediately after starting boiling, the pressure can be adjusted by closing the valve between the exhaust unit 12 and the low pressure mechanism 30. preferable.
  • the tank 10 has an in-tank water collection unit 13 for collecting the in-tank water E1. A part of the tank water E1 is continuously collected in the pressurizing mechanism 20 and pressurized there.
  • the tank water collection part 13 is always below the liquid level of the tank water E1, the position thereof is not particularly limited, but the liquid level of the tank water E1 may be lowered by the low-pressure treatment. However, the tank water collection part 13 needs to be below the liquid level of the tank water E1.
  • only one in-tank water sampling unit 13 may exist in the tank 10, or a plurality of in-tank water collection units 13 may exist as shown in FIGS. 2 and 5.
  • a plurality of in-tank water sampling sections 13 may exist at different heights in the tank 10, and in such a case, depending on conditions such as the amount of in-tank water E ⁇ b> 1.
  • the tank water collection unit 13 used for collection can be changed by opening and closing a valve or the like.
  • the tank 10 includes a pressurized water ejecting unit 14 for ejecting the pressurized water E3 pressurized by the pressurizing mechanism 20.
  • Pressurized water E3 that is low-pressure treated water pressurized by the pressurizing mechanism 20 is ejected from the pressurized water ejecting unit 14 into the tank 10.
  • the low-pressure treated water is returned to the tank 10 so that the water circulates in the apparatus.
  • it has the circulation process process which circulates the low-pressure treated water in this tank and repeats a collision treatment process continuously, and increases the collision opportunity (number of times) of low-pressure treated water.
  • the small cluster water is produced by causing the pressurized water E3 to collide with the in-tank water E1, that is, by causing the low-pressure treated water to collide with each other. Further, the dispersibility of the fine particles in water is improved, that is, the fine particles are separated and refined into finer ones.
  • the pressurized water injection unit 14 has a nozzle shape.
  • the inner diameter of the nozzle tip is not particularly limited, but is preferably 0.03 mm or more and 0.3 mm or less, and particularly preferably 0.05 mm or more and 0.15 mm or less in order to obtain a sufficient “speed of pressurized water”.
  • the position of the pressurized water injection unit 14 is not particularly limited as long as it is below the level of the tank water E1 (if the injected pressurized water E3 can collide with the tank water E1).
  • the vertical position of the pressurized water injection unit 14 is shifted upward or downward from the vertical position of the stirring blade of the stirring mechanism 11. It is preferable because the impact of the jet is not easily applied to the stirring blade.
  • the vertical position of the pressurized water jetting unit 14 is provided substantially at the center of the two stirring blades as shown in FIG. Therefore, it is particularly preferable.
  • pressurized water injection parts 14 there is no limitation in particular about the number of the pressurized water injection parts 14, and as shown in FIG.1 and FIG.5, one pressurized water injection part 14 may exist in the tank 10, and as shown in FIG. Two pressurized water injection units 14 may exist in the tank 10, or three or more pressurized water injection units 14 may exist.
  • FIG. 1 shows an example of a relatively simple embodiment of the present invention, in which one in-tank water collection unit 13 and one pressurized water injection unit 14 are provided on the wall surface of a substantially cylindrical tank 10.
  • the tank water E1 is collected in the pressurization mechanism 20 from the tank water collection unit 13, and the pressurized water E3 pressurized by the pressurization mechanism 20 is injected from the pressurization water injection unit 14 into the tank 10.
  • the separation of the water molecules forming the cluster proceeds.
  • the tank 10 has a recessed portion 15, and pressurized water E ⁇ b> 3 is injected into the recessed portion 15.
  • the indented portion 15 may be present anywhere on the lower side or side surface of the tank 10, but is preferably present at the lower part of the tank 10 as shown in FIGS. 2 and 5.
  • the pressurized water E3 may be injected from one direction into the recessed portion 15 (although the pressurized water injection unit 14 may be one), As shown in FIG. 2, it is preferable for the production of small cluster water that the pressurized water E3 is injected from at least two directions into the hollow portion 15 and the pressurized water E3 injected from different directions collide with each other.
  • the number of directions in which the pressurized water E3 is injected is preferably one direction (one), two directions (two), three directions (three), or four directions (four). One) or two directions (two) is more preferable, and two directions (two) are particularly preferable. When there are too many directions to inject, an apparatus will become complicated and it will only lead to a raise of cost, and the efficiency of a process may not improve.
  • the separation of the agglomerates can be promoted more efficiently by causing the pressurized waters E ⁇ b> 3 injected from the respective pressurized water injection units 14 to collide with each other.
  • the tank 10 has the recessed portion 15, the distance between the pressurized water ejecting portions 14 can be shortened by providing the pressurized water ejecting portion 14 in the recessed portion 15, and the above-described effects of the present invention are easily exhibited. As shown in FIG.
  • the distance between the pressurized water injection units 14 is preferably 1 mm or more and 100 mm or less. Especially preferably, it is 2 mm or more and 50 mm or less.
  • the pressurized water E3 collides with each other, if the distance between the pressurized water injection portions 14 through which the pressurized water E3 is injected is short (below the upper limit), the pressurized water E3 is caused to collide with a large velocity energy. Can improve the efficiency of reducing the number of clusters.
  • the pressurized water E3 when the pressurized water E3 is jetted from the side surface of the tank 10 as shown in FIG. 1, the pressurized water E3 may be jetted while being shifted in the horizontal direction from the direction of the rotation axis of the stirring mechanism 11, that is, the central axis direction of the tank 10. preferable. If it injects toward the central axis direction of the tank 10, an impact may be given to the rotating shaft of the stirring mechanism 11. In particular, it is preferable to inject in such a direction from two places (or more) on the side surface of the tank 10 because it is easy to achieve symmetry. In FIG. 7, in the schematic cross-sectional view of the tank 10, the injection direction of the pressurized water E ⁇ b> 3 is indicated by an arrow.
  • the angle shifted from the central axis direction to the horizontal direction is not particularly limited as long as the above effect is obtained, but ⁇ is preferably 20 ° or more and 80 ° or less, and 35 ° or more and 75 ° or less. Is more preferable, and 50 ° to 70 ° is particularly preferable. If the angle ⁇ is within this range, the water E1 in the tank can be stirred without giving an impact to the rotating shaft of the stirring mechanism 11, and the hole in the tank 10 when the pressurized water injection unit 14 is installed in the tank 10 is also possible. Processing such as opening is easy.
  • the jetting direction is preferably substantially horizontal or obliquely downward with respect to the horizontal plane.
  • the angle in the horizontal direction or obliquely downward is not particularly limited, but is preferably 0 ° or more and 60 ° or less, more preferably 5 ° or more and 45 ° or less, and more preferably 10 ° or more and 30 ° or less. Is particularly preferred.
  • the pressurized water E3 may jump out of the surface of the tank water E1.
  • the injection direction is preferably a substantially horizontal direction or an obliquely upward direction with respect to the horizontal plane.
  • the angle in the horizontal direction or obliquely downward is not particularly limited, but is preferably 0 ° or more and 60 ° or less, more preferably 5 ° or more and 45 ° or less, and more preferably 10 ° or more and 30 ° or less. Is particularly preferred.
  • the water flow may hit the bottom of the recessed portion 15 or the takeout port 16 may be impacted.
  • the injection direction of the pressurized water E3 in the hollow portion 15 is substantially horizontal, or on a horizontal plane.
  • the direction is obliquely upward, but on the other hand, when pressurized water is injected in the substantially horizontal direction at the same height from two directions (that is, the angle is 0 °), the collision efficiency between the pressurized water E3 increases. preferable.
  • a collision plate preferably, a collision plate curved convexly downward (not shown) (not shown) is provided at the bottom of the stirring mechanism 11, the stirring mechanism 11 is not easily damaged by the injection, and the injection of the pressurized water E3 is performed. It is particularly preferable that the direction is obliquely upward with respect to the horizontal plane because the pressurized water E3 collides with the collision plate and promotes small clustering.
  • the takeout port 16 for taking out the water in the tank 10 may be present anywhere in the tank 10, but is preferably present in the lower part of the tank 10 for ease of removal.
  • ⁇ Low pressure mechanism> There is no particular limitation on the type of the low-pressure mechanism 30, as long as the inside of the tank 10 can be reduced to the appropriate pressure described above, and a known vacuum pump or the like can be used. It is preferable to provide a mechanism (not shown) for trapping water or the like before the low pressure mechanism 30 (between the low pressure mechanism 30 and the tank 10).
  • the pressure reduction (low pressure) in the tank 10 is performed to remove dissolved air contained in water and to reduce the pressure (external pressure) applied to the water in the event of a collision.
  • the degree (pressure in the tank 10), the pressure reduction time, etc. are as described above.
  • the pressurizing mechanism 20 pressurizes the low-pressure treated water E2 collected from the in-bath water sampling unit 13, and “pressurized water having kinetic energy necessary for advancing small clustering when colliding with the in-bath water E1. E3 ”, and the pressurized water E3 is injected into the tank 10 from the pressurized water injection unit 14 of the tank 10.
  • the pressurizing mechanism 20 may be anything as long as it can pressurize the low-pressure treated water E2, but as an example, as shown in FIG. 3, the pressurizing chamber structure is a cylinder 21 having a piston 22. Can be mentioned. In such a case as shown in FIG. 3, the low pressure treated water E2 is pressurized in the cylinder 21 by pressing the piston 22, and is injected as the pressurized water E3 from the pressurized water injection section 14 having a nozzle shape or the like.
  • the pressurizing mechanism 20 has two (or two or more) cylinders 21, which alternately press and move the piston 22, By opening and closing the valve on the non-pressurized side, it is preferable that the pressurized water E3 can be continuously injected from the pressurized water injection unit 14 continuously.
  • the pressure of the pressurized water E3 when ejected from the pressurized water ejecting section 14 is preferably 3 MPa (30 atm) or more and 250 MPa (2500 atm) or less, more preferably 10 MPa (100 atm) or more and 50 MPa (500 atm) or less, and 20 MPa (200 The pressure is particularly preferably not less than 25 MPa (250 atmospheres). If the pressure of the pressurized water E3 is in the above range, the kinetic energy at the time of collision is sufficient, so the efficiency of decomposition of the cluster into water molecules (H 2 O) is good. Since an excessive load is not applied, it is difficult for the apparatus to fail. Moreover, it is preferable that the pressure of the pressurized water is set to a relatively small pressure immediately after the start of circulation (injection), and is gradually raised to a steady state.
  • the speed of the pressurized water E3 immediately after being injected from the pressurized water injection unit 14 is not particularly limited, but is preferably 50 m / s or more and 1500 m / s or less, more preferably 100 m / s or more and 1000 m / s or less, and 200 m / s or more and 700 m. / S or less is particularly preferable. If the speed immediately after jetting is in the above range, the kinetic energy is sufficient, so that the efficiency of small clustering is good. On the other hand, it is difficult to apply an excessive load to the tank 10, the pressurized water jetting unit 14, and the like. When a collision occurs under the above conditions, the location of the collision locally becomes high temperature, but the in-tank water E1 is kept constant as a whole by a temperature adjusting mechanism (not shown) installed in the tank 10.
  • the piping from the tank water collection unit 13 to the pressurization mechanism 20 is not branched, but for example, the low pressure treatment collected from one common tank water collection unit 13
  • the water E2 may be branched into two in the middle and divided into two pressurizing mechanisms 20 and pressurized separately.
  • the pressurized water that has passed through one pressurizing mechanism 20 may be divided into two and ejected from the two pressurized water ejection units 14.
  • the temperature when the pressurized water E3 is jetted and circulated toward the tank 10 is not particularly limited as long as the clustering is sufficiently performed, but the preferable temperature range is as described above.
  • the time for which the pressurized water E3 obtained by continuously collecting the in-tank water E1 into the pressurizing mechanism 20 is jetted and circulated into the tank 10 is small.
  • clustering is sufficiently performed, and depending on the amount of treatment, it is preferably from 10 minutes to 5 hours, more preferably from 20 minutes to 3 hours, particularly preferably from 30 minutes to 2 hours.
  • the circulation treatment step is performed by continuously repeating the collision treatment step to circulate the low-pressure treatment water in the tank to increase the chance (number of times) of collision between the low-pressure treatment waters. Have.
  • the tank 10 may be pressurized for a sufficient amount of time and then injected and circulated under low pressure.
  • the injection and circulation may be started simultaneously with the start of the low pressure, but the dissolved air is removed after the pressure is reduced.
  • a charging mechanism 40 is provided between the tank water collection unit 13 and the pressurizing mechanism 20, and the low pressure treated water E2 obtained by continuously collecting a part of the tank water E1 is charged into the charging mechanism. 40 is preferably used for charging.
  • a charging mechanism 40 is provided immediately before or at the bottom of the outlet 16 to charge the small cluster water as the final step, the pH is lowered to stabilize the state of the small cluster water and the dispersed state of the fine particles. It becomes possible to become.
  • the charging mechanism 40 By using the charging mechanism 40 to charge the low-pressure treated water E2, the fine particles in the low-pressure treated water, the surfactant around it, and the like, stable and small cluster water can be produced efficiently. Moreover, when water contains fine particles, aggregation of the fine particles can be suppressed by an electric repulsive force acting between the fine particles. As a result, the state of the small cluster water and the dispersed state of the fine particles can be favorably maintained over a long period. When dissolved air such as dissolved oxygen disappears from the water after passing through the low-pressure treatment process, the water molecules tend to be weakened due to collision, resulting in small clusters and the above phenomenon (generation of electric repulsion, etc.) And the dispersibility of the fine particles is further improved.
  • the charging mechanism 40 is not provided between the in-bath water collection unit 13 and the pressurization mechanism 20, but may be charged, for example, in small cluster water obtained after the completion of the processing. If charging is performed by providing a charging mechanism 40 between the pressure mechanism 20 and the pressure mechanism 20, charging is performed while circulating the aqueous emulsion, particularly when fine particles are dispersed in water (particularly in the case of an aqueous emulsion). As a result, the above-described effect due to charging is easily achieved.
  • the dispersibility of the fine particles in water can be improved by using the method for producing small cluster water in the water in which the fine particles are dispersed.
  • the method for producing small cluster water By using the above-described method for producing small cluster water, if the fine particles are dispersed in the starting material water (ordinary water to be treated), the small cluster water is produced. As a result, the dispersibility of the fine particles is improved.
  • the fine particles are aggregated to form aggregates, but the aggregates are separated and refined into individual fine particles (or small-sized aggregates) to improve dispersibility. To do.
  • the fine particles are fine particles insoluble in water (dispersed fine particles existing outside the water system).
  • emulsion fine particles resin fine particles obtained by emulsion polymerization, organic fine particles such as resin fine particles obtained by suspension polymerization; inorganic fine particles such as metal oxide fine particles, metal salt fine particles, and metal fine particles;
  • ordinary water as a raw material (starting material) contains other substances necessary for dispersion, polymerization, etc., such as a polymerization initiator, an emulsifier, a surfactant, and a pigment. Also good.
  • Aqueous emulsion The fine particles are fine particles of an aqueous emulsion resin. Since the aqueous emulsion resin is small and easily aggregated, the effect of the present invention is particularly easily exhibited.
  • the “aqueous emulsion” in the present invention is not limited to a liquid dispersed in a liquid (water) but refers to a liquid or solid dispersed in water as a dispersion medium. There is no limitation in particular in the kind of aqueous emulsion applied to this invention, According to the intended purpose, it selects suitably.
  • aqueous emulsion in the present invention examples include, for example, acrylic emulsion, methacrylic emulsion, styrene emulsion, vinyl acetate emulsion, (anhydrous) maleic acid emulsion, alkylene emulsion, urethane emulsion and the like.
  • polymer particles (resin fine particles) obtained by mixing at least a hydrophobic polymerizable monomer and an emulsifier (surfactant), blending a water-soluble polymerization initiator, and emulsion polymerization are water.
  • emulsifier surfactant
  • a polymerization initiator any of a cationic surfactant, an anionic surfactant, and a nonionic surfactant can be used.
  • the polymerization initiator a radical polymerization initiator is preferable, and a thermal polymerization initiator is particularly preferable.
  • the aqueous emulsion in the present invention is not limited to those obtained by simple emulsion polymerization, but may be those obtained by suspension polymerization, seed polymerization or the like. Moreover, what dispersed the microparticles
  • the aqueous emulsion improved in dispersibility by applying the method for producing small cluster water of the present invention is superior to conventional aqueous emulsions in terms of adhesion, toughness, weather resistance, heat resistance, etc. Yes.
  • the aqueous emulsion improved in dispersibility by applying the method for producing small cluster water of the present invention and improved in the dispersibility of fine particles is excellent as described above when used as an aqueous paint for the reasons described above. Demonstrate its properties.
  • the aqueous emulsion in the present invention is useful for applications such as water-based paints, adhesives, inks, cosmetics, and surface treatment agents. However, since the properties hardly change even after a long period of time, the aqueous emulsion in the present invention. Water-based paints containing are particularly useful.
  • the water-based paint containing the water-based emulsion of the present invention exhibits excellent properties as described above, specifically, for rust prevention, antifouling, mildew prevention, insulation, heat insulation, snow prevention, etc. used.
  • the method of the present invention that can separate agglomerates in an aqueous emulsion can also be applied to uses such as inks, adhesives, cosmetics, and surface treatment agents.
  • the present invention pressurizes “low-pressure treated water” and collides with “low-pressure treated water” in a tank in a low-pressure state, thereby collecting a cluster of a large number of water molecules (H 2 O). Is a small cluster of small groups of water molecules (H 2 O) (and / or up to water molecules (H 2 O) units).
  • the temperature at the location where the pressurized water is sprayed into the tank and collided with the water in the tank is locally extremely high (but not limited to, but in the range of 100 ° C. to 400 ° C. or higher). Further, as described above, a particularly preferable pressure of the pressurized water is 20.3 MPa (200 atm) or more and 25.3 MPa (250 atm). On the other hand, since the critical temperature and critical pressure of water are 374 ° C. and 22 MPa (218 atm), respectively, the water at the collision point may be locally supercritical or subcritical.
  • the water can be circulated in the apparatus, and the collision can be repeated many times without taking out the water that has undergone the collision treatment process (can be continuously treated).
  • the apparatuses and methods described in Patent Document 1 to Patent Document 6 even if it is assumed that small cluster water is produced, one treatment is not sufficient, and the treatment is repeated many times. It is necessary and time and labor are required for loading and unloading the liquid.
  • the processing since the processing can be continuously performed, the input and the extraction are only performed once. Therefore, by extending the processing time, the clusters can be sufficiently separated, and as a result, A large amount of small cluster water can be produced efficiently.
  • the aqueous emulsion in the tank removes dissolved air and bonds between the fine particles. Since the force is weak, it is considered that the agglomerates are separated and refined into individual fine particles (or agglomerates having a small size) by receiving a large collision energy under pressure of small cluster water.
  • Water-based emulsion, water-based paint >> Water-based paints containing aqueous emulsions with improved dispersibility (separated and refined agglomerates) by the method of the present invention exhibit excellent adhesion and toughness (coating film hardness), but this is because fine particles are aggregated When a lump is formed, it contacts the coating material surface in the form of large agglomerates (FIG. 6 (a)), whereas when separated into individual particles, the coating material surface is in the form of individual particles. This is considered to be because the contact area is large (see FIG. 6B).
  • the metal particle dispersion obtained by dispersing metal particles having an average particle diameter of 1 ⁇ m or less in the small cluster water produced by the method for producing small cluster water has good dispersibility and dispersion stability, Agglomerates are difficult to form during storage over time.
  • the average particle size of the metal particles is preferably less than 1 ⁇ m, more preferably 0.3 ⁇ m or less, and particularly preferably 0.1 ⁇ m or less.
  • the “average particle diameter” is a number average particle diameter measured using a laser diffraction / scattering particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., MT3300 type).
  • the metal is not particularly limited, and examples thereof include noble metals such as gold (Au), silver (Ag), platinum (Pt), and palladium (Pd).
  • the method for preliminarily setting the metal particles to have an average particle size of 1 ⁇ m or less is not particularly limited, and any known method can be used. That is, a wet method, a dry method, a vapor deposition method, a combination thereof, or a method of directly preparing (generating) metal particles to 1 ⁇ m or less may be used.
  • Example 1 As shown in FIG. 2, the pressurized water injection part 14 exists in the hollow part 15 of the tank 10, and uses the apparatus of the type which collides the pressurized water E3 injected from two directions, and is a low-pressure process process with respect to desalted water. The collision treatment process and the circulation treatment process were performed.
  • the pressurizing mechanism 20 was composed of two cylinders 21 having a piston 22 as shown in FIG.
  • the volume of the tank 10 is 1 m 3 , and 800 L of demineralized water obtained by a normal desalting treatment was put into the tank.
  • This demineralized water is referred to as “water (A)”.
  • pressure reduction in the tank 10 is started, the inside of the tank 10 is kept at about 20 Torr (2.6 kPa), and the temperature in the tank 10 is kept uniformly at 20 ° C. Then, stirring in the tank 10 was started. Since the saturated vapor pressure of water at 20 ° C. is 17.5 Torr (2.3 kPa), the pressure in the tank 10 is kept slightly higher than the saturated vapor pressure of water.
  • the liquid level of the in-bath water E1 temporarily increased and dissolved air (oxygen or the like) was removed as bubbles, but the in-bath water E1 did not boil.
  • the piping valve connecting the tank 10 and the pressurizing mechanism 20 was opened, and part of the tank water E1 was fed into the two pressurizing mechanisms 20, respectively.
  • the charging mechanism 40 was operated.
  • the pressure of the pressurized water E3 is set to 25.3 MPa (250 atm), and the pressurized water E3 is sprayed in the substantially horizontal direction from the two pressurized water spraying portions 14 provided in the hollow portion 15 in the tank 10, respectively. They collided each other and started collision processing and circulation processing.
  • the speed immediately after spraying from the nozzle of the pressurized water E3 was about 200 m / s.
  • the temperature of the liquid E1 in the tank in the tank 10 was kept at 20 degreeC as a whole with the cooler. In this state, the circulation processing step is performed for 1 hour, and then all the valves in the apparatus are closed, the vacuum pump, the pressurizing mechanism 20 and the charging mechanism 40 are stopped to complete the processing.
  • the treated water was collected from the outlet 16 at the bottom of 15. Let the obtained water be "water (B)."
  • Example 2 instead of the apparatus shown in FIG. 2, the apparatus shown in FIG. 1 (the apparatus of the type in which there is only one pressurized water injection part 14 on the side surface of the tank 10 and the pressurized water E3 collides with the in-tank water E1) is used. Except for setting the time to 3 hours, the low-pressure treatment process, the collision treatment process, and the circulation treatment process were performed on the desalted water in the same manner as in Example 1. Let the obtained water be "water (C)."
  • Evaluation Example 1 The surface of the iron plate was polished with a cleanser, washed with water and dried. On the surface, 1 mL each of “water (B) obtained in Example 1” and “tap water” was dropped. Then, it left still at 20 degreeC for 24 hours, and the change was visually observed.
  • FIG. 8 The photograph after leaving still at 20 degreeC for 24 hours is shown in FIG. As can be seen from FIG. 8, a difference in rust generation was observed. That is, the surface of the iron plate that was in contact with water (B) was not changed at all, but the surface of the iron plate that was in contact with tap water was changed to yellow brown (see FIG. 8 (a) seen from above. ), The color appears darker, and the color appears darker in FIG. 8 (b) as viewed obliquely), and iron red rust (oxide) is generated.
  • Example 1 Even when 1 mL of the same water (A) as the demineralized water used as the starting material (raw material) in Example 1 and Example 2 was dropped instead of tap water, as with tap water, it was allowed to stand still at 20 ° C. for 24 hours. After placing, iron red rust (oxide) was produced.
  • Evaluation example 2 The surface of the borosilicate glass plate was washed with a neutral detergent, washed with distilled water, and then dried in a desiccator containing silica gel.
  • the contact angle was measured according to JIS R3257: 1999 “Testing method for wettability of substrate glass surface”. That is, on the glass plate, the same water (A) used as the starting material in Example 1 and Example 2, the water obtained in Example 1 (B), and obtained in Example 2 The contact angle of water (C) was measured. As a result, the contact angle of water (A) was in the range of 60 ° to 90 °, while water (B) and water (C) were both in the range of 2 ° to 10 °. .
  • water (B), water (C), water (B ′) and water (C ′) are all water (A) and tap water used as raw materials.
  • water (B), water (C), water (B ′), water (C ′) It is concluded that all are small cluster water.
  • water (B), water (C), water (B ′), and water (C ′) did not contain dissolved air, and could maintain a stable state for a long period of time, for example, one month.
  • Example 3 The aqueous emulsion was processed using the apparatus shown in FIG.
  • the tank 10, the pressurizing mechanism 20, and the low pressure mechanism 30 were the same as those in Example 1.
  • 800 L of an acrylic emulsion (made by NSC Japan, AD157), which is an aqueous emulsion, was charged.
  • the vacuum in the tank 10 was started using a vacuum pump, the inside of the tank 10 was kept at about 20 Torr (2.6 kPa), and the temperature in the tank 10 was kept uniform at 20 ° C. Above, stirring in the tank 10 was started. Since the saturated vapor pressure of water at 20 ° C. is 17.5 Torr (2.3 kPa), the pressure in the tank 10 is kept slightly higher than the saturated vapor pressure of water.
  • the piping valve connecting the tank 10 and the pressurizing mechanism 20 was opened, and a part of the tank water E1 was fed into the two pressurizing mechanisms 20, respectively.
  • the charging mechanism 40 was operated to charge the low-pressure treated water fed into the pressurizing mechanism 20.
  • the pressure of the pressurized water E3 is set to 25.3 MPa (250 atm), and the pressurized water E3 is sprayed in the substantially horizontal direction from the two pressurized water spraying portions 14 provided in the hollow portion 15 in the tank 10, respectively. They collided each other and started collision processing and circulation processing.
  • a particle size distribution before and after the treatment was measured using a laser diffraction / scattering particle size distribution measuring apparatus (manufactured by Nikkiso Co., Ltd., MT3300 type).
  • the particle size distribution of the fine particles of the acrylic emulsion before the treatment was broad from 0.3 ⁇ m to 300 ⁇ m, but the particle size distribution of the fine particles of the aqueous emulsion after the treatment was in the range of 0.03 ⁇ m to 0.3 ⁇ m. Met.
  • the fine particles of the acrylic emulsion after the treatment by the method of the present invention were individual fine particles, fine particles having a particle size not reaching 1 ⁇ m, or extremely small aggregates.
  • Example 4 For the water (B) obtained in Example 1, “gold (Au) and silver (Ag) metal particles that have been refined in advance to a number average particle size of 1 ⁇ m or less as measured with the above apparatus” is usually used. As a result, the metal particles were dispersed in water (B) without agglomeration. On the other hand, metal particles (gold, silver) were added to water (A) and stirred in the same manner, but the metal particles were not well dispersed in water (A).
  • Comparative Example 1 The apparatus described in FIG. 1 of Patent Document 6 was used.
  • the step of stirring the aqueous mixed solution in a reduced pressure state and (b) the step of jetting and colliding the pressurized aqueous mixed solution are performed by separate mechanisms (devices).
  • the process is a batch device that is completely separated. Therefore, it is not possible to continuously perform the treatment by returning the aqueous mixed solution after the step (b) to the step (a).
  • the volume of the vacuum tank (corresponding to “tank 10” in the apparatus of the present invention) was almost the same as in Example 1. Stirring in the vacuum tank was started in the same manner as in Example 1 except for the amount of water to be added and the pressure and temperature of the vacuum tank.
  • Water (A) is fed from the vacuum tank to the pressurizing chamber (corresponding to the “pressurizing mechanism 20” in the apparatus of the present invention), and the pressurizing pressure is set to be the same as in the first embodiment.
  • the collision-treated water was stored in a storage container. It took 25 hours to accommodate all of the introduced water in the container.
  • Example 1 and Example 2 When the method for producing small cluster water (Example 1 and Example 2) of the present invention is used, continuous treatment is possible by circulating water, compared with the batch method as in Patent Document 6. As a result, collisions were possible many times during the operation hours, and small cluster water was efficiently produced. Specifically, the time from the introduction of the raw demineralized water into the apparatus to the removal of the treated water could be reduced to 1/25 of Example 1. Moreover, the direction of Example 1 and Example 2 produced small cluster water reliably.
  • small cluster water obtained using the method for producing small cluster water of the present invention has a low surface tension, a low pH, a stable pH, and is in contact with a metal such as iron.
  • a metal such as iron.
  • the metal particle dispersion obtained by dispersing metal particles in the small cluster water obtained by using the method for producing small cluster water of the present invention can be favorably one having a small average particle diameter, so that it can be used in the application field of metal fine particles. It is widely used.
  • an aqueous emulsion having improved dispersibility of the fine particles in water has adhesiveness, toughness, weather resistance, and the like. It is widely used in applications such as water-based paints, adhesives, inks, cosmetics, etc., especially as water-based paints. It is widely used in fields where insulation, heat insulation, snow prevention, etc. are required.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physical Water Treatments (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Abstract

 クラスター数の小さい小クラスター水を確実に製造する方法、更には、経時でも安定な小クラスター水を低コストで効率的に大量に製造する方法を提供することを課題とし、槽内を、該槽内において低圧処理される水の温度T℃における水の蒸気圧以上の圧力で、かつ1気圧より低い圧力に保ちつつ、該水の中に含有されている溶存空気を除去する低圧処理工程、該低圧処理工程を経て得られた該槽内の低圧処理水の一部を、該槽から連続的に採取して加圧機構で加圧し、得られた低圧処理水の加圧水を加圧水噴射部から該槽内の低圧処理水に向けて噴射して、低圧処理水同士を衝突させる衝突処理工程、及び、該衝突処理工程を連続的に繰り返すことによって、該槽内の低圧処理水を循環させて低圧処理水同士の衝突機会を増易循環処理工程、を含むことを特徴とする小クラスター水の製造方法により上記課題を解決した。

Description

小クラスター水の製造方法
 本発明は、小クラスター水の製造方法に関し、更に詳しくは、槽内で低圧処理工程と衝突処理工程とを有する小クラスター水の製造方法に関する。
 水は、通常、水分子(HO)同士が水素結合によって集合し、クラスターという分子集合体で存在する。このクラスターとしては、直鎖状、分岐状、多角形状、その複合状態等があると言われており、通常、水は、それらの混合物で存在する。
 1個のクラスターを構成する水分子の数をクラスター数と言い、このクラスター数は、通常の水道水では100~140と言われている。
 かかるクラスター数の小さい水は、「小クラスター水」と呼ばれており、通常の水と異なって、表面張力が小さくなり、pHが低下し、密度が上昇し、鉄等の金属に接していても錆を発生させ難くなり、電導度や味が変化し、細胞膜に対する浸透性、保水性、洗浄性、殺菌性等が向上することが実証されている。
 また、水のクラスター(水分子集合体)の分解技術は、化学工学、環境工学、食品科学、医学等の分野で注目されている。
 水蒸気はクラスターを形成していないが、水蒸気が液化し冷却して室温の水になると、水分子(HO)同士が集合して通常のクラスターを形成し、クラスター数の小さい小クラスター水にはならないと言われている。
 そこで、クラスター数を小さくする方法、すなわち、水分子同士の水素結合を切断して小クラスター水を製造する方法として、次のようなものが知られている。
 超音波を照射して水を振動させる方法。
 遠赤外線を照射して水分子を伸縮・変角振動で活性化する方法。
 電気分解を利用する方法。
 水に種々のパターンの衝撃圧力を加える方法(特許文献1)。
 低周波電流を流したパイプ中に水を通過させる方法(特許文献2)。
 磁場を印加する方法(特許文献3)。
 オゾンが溶解した水に対して、触媒を用いて分解反応をさせる方法(特許文献4)。
 水と金属粒子が存在する系に可視光を照射して、金属粒子のプラズモン共鳴を利用する方法(特許文献5)。
 しかしながら、上記の方法は、何れも小クラスター水ができ難かったり(水分子同士の水素結合を切断し難かったり)、クラスター数が十分に小さい小クラスター水ができ難かったり、小クラスター水ができても直ぐに通常の水に戻り易かったりしていた。
 更に、超音波照射、遠赤外線照射、電気分解方法では、大規模設備を要し、ランニングコストが高くなる等の問題があった。また、オゾンを溶解させる方法、金属粒子を混在又は分散させる方法では、小クラスター水ができた後も、それらを取り除く費用と手間がかかると言った問題があった。
 一方、特許文献6は、水性混合液中の樹脂微粒子の凝集塊を分散させる方法であり、小クラスター水の製造方法ではないが、特許文献6には、低圧撹拌により得られた水性混合液を加圧することにより高速度を付与し、高速度を付与した水性混合液同士を互いに向かい合うように噴射し衝突させることにより、水性混合液中の樹脂微粒子の凝集塊を分散させる方法が報告されている。
 しかしながら、特許文献6の方法やそれに使用される装置では、減圧状態で水性混合液を撹拌する工程と、加圧した水性混合液同士を噴射し衝突させる工程は、別々の反応器で行われ、両工程は完全に分離されたものであり、低コストで効率的に大量処理することは不可能であった。すなわち、特許文献6に記載の方法は回分式であり、処理が済んだ収容液を再度装置に投入し、数度の処理の繰り返しを要し、投入・取り出しの手間がかかり、コストや処理能力の点で問題があり、低コストで効率的に大量の小クラスター水を製造する方法に応用できるものではなかった。
 そこで、よりクラスター数の小さい小クラスター水を、確実に安定的に、更には低コストで効率的に大量に製造する技術が要望されているが、前記公知技術では不十分であり、更なる改善の余地があった。
特開平05-345179号公報 特開2001-096277号公報 特開2003-117344号公報 特開2005-230663号公報 特開2015-016466号公報 特許第4568792号公報
 本発明は上記背景技術に鑑みてなされたものであり、その課題は、クラスター数の小さい小クラスター水を確実に製造する方法、更には、経時でも安定な小クラスター水を、低コストで、効率的に大量に製造する方法を提供することにある。
 本発明者は、上記の課題を解決すべく鋭意検討を重ねた結果、槽内を所定の圧力に減圧しておく低圧処理工程と、該低圧処理水を連続的に採取して加圧し、該槽内の低圧処理水に向けて噴射する衝突処理工程と、該低圧処理水を循環させて衝突機会・回数を増やす循環処理工程とを含む製造方法を使用することで、安定な小クラスター水を、低コストで、効率的に大量に製造できることを見出して、本発明を完成するに至った。
 すなわち本発明は、槽内を、該槽内において低圧処理される水の温度T℃における水の蒸気圧以上の圧力で、かつ1気圧より低い圧力に保ちつつ、該水の中に含有されている溶存空気を除去する低圧処理工程、
 該低圧処理工程を経て得られた該槽内の低圧処理水の一部を、該槽から連続的に採取して加圧機構で加圧し、得られた低圧処理水の加圧水を加圧水噴射部から該槽内の低圧処理水に向けて噴射して、低圧処理水同士を衝突させる衝突処理工程、及び、
 該衝突処理工程を連続的に繰り返すことによって、該槽内の低圧処理水を循環させて低圧処理水同士の衝突機会を増やす循環処理工程、
を含むことを特徴とする小クラスター水の製造方法を提供するものである。
 また本発明は、上記の小クラスター水の製造方法を使用して得られたものであることを特徴とする小クラスター水を提供するものである。
 また本発明は、微粒子が分散している水を原料として、該水に対して上記の小クラスター水の製造方法を使用することによって、該微粒子の水中での分散性を向上させることを特徴とする微粒子の分散性向上方法を提供するものである。
 また本発明は、上記の微粒子の分散性向上方法を使用して得られたものであることを特徴とする水性エマルジョンを提供するものである。
 また本発明は、上記の水性エマルジョンを含有するものであることを特徴とする水性塗料を提供するものである。
 また本発明は、上記の小クラスター水の製造方法で製造された小クラスター水に、平均粒径が1μm以下の金属粒子を分散させてなるものであることを特徴とする金属粒子分散液を提供するものである。
 本発明の小クラスター水の製造方法によれば、前記問題点や課題を解決し、クラスター数の小さい小クラスター水を製造することができる。
 すなわち、本発明によれば、低圧処理工程において、水の中から空気が除かれているので、該低圧処理工程を経て得られた低圧処理水同士を超高圧・超高速で衝突させることによって、小クラスター水を確実に製造することができる。また、衝突によって、クラスター内の空気が除かれ、更に容易に小クラスター水を製造することができる。
 また、不純物(酸素と窒素を含有する空気)が含有されていないと言う恒久的に不変の性質を有している等のために、経時でもクラスター数を小さく保ち、安定な小クラスター水を製造することができる。
 更に、本発明によれば、低コストで、効率的に短時間で大量に小クラスター水を製造する方法を提供することができる。
 すなわち、本発明の製造方法は、槽内で低圧処理が済んだ水を、別途特殊な衝突装置に投入し、衝突処理が済んだ処理水をそのまま製品として取り出したり、該処理水を再度、槽内に戻して、上記操作を1回ずつ繰り返して製品としたりするのではなく、槽内で衝突処理をし、水を循環させることによって、連続的に(途中で取り出しをせずに)繰り返し衝突処理をすることができる。
 このように、回分式(バッチ式)ではなく連続式であるので、数度の処理を繰り返す等して投入・取り出しの手間がかかることもないため、コストや処理能力の点で問題が少ない小クラスター水の製造方法を提供することができる。
 特許文献6に記載の装置を用いた場合、衝突回数を増やそうとしたら、処理水の取り出しを何度も繰り返さざるを得ない。しかし、本発明の方法では、特許文献6に記載の装置を用いた場合に比較して、2倍以上(装置の種類、噴射圧、処理時間等によっては6倍以上)も生産能力を上げることが可能である。また、特殊な衝突装置が別途独立で存在しないので、該衝突装置が核兵器開発に利用され難い。
 従来技術は何れも、大量に小クラスター水を製造するものではなかったが、本発明によれば、低コストで、効率的に、短時間で、大量の小クラスター水を製造できる。
 本発明の方法は、低圧状態にして「溶存酸素等を含む溶存空気」が除かれた水に、超高圧に加圧した同様の「低圧状態にして『溶存酸素等を含む溶存空気』が除かれた水」を衝突させ、衝突のエネルギーにより小クラスター化する方法であり、水は局部的には、超高圧(例えば500気圧)で、かつ高温(例えば400℃近く)になっていると考えられ、超臨界、超臨界に近い状態、又は亜臨界になっている可能性がある。
 しかしながら、全部の水を超臨界状態にする方法のように、大掛かりな装置を必要とせずに同等(以上)の効果を奏し、更に、コスト面・安全面・生産性において優れている。
 また、本発明の小クラスター水の製造方法によれば、処理対象である水にエマルジョン樹脂や無機物質の微粒子を分散させておけば、すなわち、出発物質として(原料として)、純水の代わりに「微粒子が分散している水」を用いれば、小クラスター水ができるのと同時に、微粒子の分散性が向上する。
 特に、該「微粒子が分散している水」が水性エマルジョンの場合、該水性エマルジョンに分散しているエマルジョン樹脂の凝集塊を、十分に分離・微細化することができ、水性エマルジョンの分散性を更に高いレベルにまで向上させることができる。
 すなわち、水性エマルジョンを投入した槽内を低圧にして、水性エマルジョン中の「溶存酸素等を含む溶存空気」を除去し、得られた低圧処理水同士を衝突させることによって、小クラスター水ができるのと共に、エマルジョン樹脂の凝集塊の分離を促進させることが可能となり、その結果として、従来のレベルより高いレベルにまで水性エマルジョンの分散性を改良することができる。また、槽内の水性エマルジョンには大気圧がかかっていないために良好な分散が可能であり、その良好な分散状態が常圧(大気圧)に戻した後も維持できる。
 従って、本発明の小クラスター水の製造方法を使用すれば、分散性が向上した水性エマルジョンを提供することができる。また、そうして得られた水性エマルジョンを含有する水性塗料は、表面張力が低く、防錆性、防汚性、防カビ性、絶縁性等に優れる。
 また、前記の「小クラスター水の製造方法」で製造された小クラスター水に、平均粒径が1μm以下の金属粒子を分散させてなる金属粒子分散液は、分散が容易で凝集が起こり難く、金属粒子分散液として長期間(例えば2カ月間)保管しても、金属粒子が凝集することがない。
 更に、上記槽の中の低圧処理水の一部を該槽から連続的に採取した低圧処理水を、帯電機構を使用して帯電させることによって、前記効果をより発揮させることができる。
本発明の小クラスター水の製造方法に使用される装置の一例(加圧水噴射部が槽の側面に存在する実施形態)の概略を示す模式図である。 本発明の小クラスター水の製造方法に使用される装置の一例(加圧水噴射部が槽の窪み部分に2個存在し、二方向から噴射された低圧処理水の加圧水同士を衝突させる実施形態)の概略を示す模式図である。 加圧機構の一例(ピストン)の概略を示す模式図である。 交互に作動するピストンが複数あって、途切れることなく加圧水を槽内に向けて噴射できる加圧機構の一例の概略を示す模式図である。 本発明の小クラスター水の製造方法に使用される装置の一例(帯電機構を使用して低圧処理水を帯電させる実施形態)の概略を示す模式図である。 本発明の小クラスター水の製造方法を使用して分散性を向上させた水性エマルジョン中及び該水性エマルジョンを含有する水性塗料中の微粒子の状態を示す拡大説明図である。 (a)微粒子の凝集塊が多く存在する水性エマルジョン又は水性塗料 (b)本発明の小クラスター水の製造方法を使用して分散性を改良(凝集塊を分離・微細化)した水性エマルジョン又は水性塗料 加圧水の噴射方法の一例を示す槽の横断面の概略模式図である。 本発明の小クラスター水の製造方法を使用して得られた小クラスター水と水道水とを鉄板の上に滴下して錆発生の違いの様子を観察した写真である。 (a)上から見た図 (b)斜め横から見た図
 以下、本発明について説明するが、本発明は以下の実施の形態に限定されるものではなく、任意に変形して実施することができる。
<小クラスター水>
 水は、通常、水分子(HO)同士が水素結合によって集合し、クラスターという分子集合体で存在する。
 本発明において、「小クラスター水」とは、水道水、井戸水、河川の水等の「通常の水」よりクラスター数の小さい水のことを言う。ここで、「クラスター数」とは、1個のクラスターを構成する水分子(HO)の数のこと言う。
 本発明の「小クラスター水の製造方法」によって製造された小クラスター水のクラスター数は、通常の水のクラスター数より小さければ特に限定はないが、本発明によれば、100以下にできるので100以下が好ましく、50以下にできるので50以下がより好ましく、30以下にできるので30以下が特に好ましく、20以下にできるので20以下が更に好ましい。
 小クラスター水ができたことは、通常、表面張力の低下、電導度変化、密度変化、pHの低下、水のロットによるpHのばらつきの無さ、錆発生の抑制、金表面の水のプラズモン共鳴をラマンスペクトルで観察、FTIR(フーリエ変換赤外スペクトル)で水のOH振動を観察、気化速度の変化、無機塩又は有機物の溶解度の変化、ポリエチレングリコールに対する水の溶解度の変化、飽和蒸気圧の変化、有機フリーラジカル又はOH・(OHラジカル)の除去能力の差をESRで測定、身体の免疫系が微生物又はその分泌物で刺激された時に放出されるNOの放出量の変化、味の変化、17O-NMRで半値幅のpH依存性を観察、17O-NMRで緩和時間又は緩和時間のpH依存性を観察、物質の水での抽出能力の変化、リンゴ等の断面の酸化防止能力を観察、皮膚の水分の減少から皮膚透過性を観察等によって確かめられる。
<処理対象及び装置全体の構成の概要>
 本発明の小クラスター水の製造方法について、装置の構成を示しつつ説明する。本発明の小クラスター水の製造方法に使用する装置の例を、図1~図5、図7に示す。
 本発明の小クラスター水の製造方法に使用される装置(以下、単に「装置」と略記する場合がある。)は、低圧機構30が接続された槽10と、加圧機構20と加圧水噴射部14を有している。
 被処理物である水は、槽10と加圧機構20を、加圧水噴射部14を介して循環しており、通常の水を小クラスター水にする処理(以下、単に「処理」と書く場合がある。)は、水を循環させつつ連続的に行われる。
<<処理対象>>
 槽10は、必須ではないが好ましくは撹拌機構11を有し、内部に投入した水を撹拌できるようになっており、処理の開始時には槽10内には通常の水が投入される。
 ここで、「通常の水」とは、小クラスター水ではない水のことを言う。槽10に投入される「通常の水」は、水道水、井戸水等でもよく特に限定されるわけではないが、脱塩水、蒸留水、これらの処理を組み合わせて得られた水等の、水に溶解した不純物を除去した水であることが好ましい。
 また、該「通常の水」には、水に不溶の微粒子(水の系外に存在する分散微粒子等)が含有されていてもよい。すなわち、エマルジョン樹脂等の有機微粒子;無機微粒子等の水に溶解していない微粒子が分散している水であることは、水が小クラスター水になることに伴って、該微粒子が更に微細になったり、分散性が向上したり、エマルジョン等の分散水の性能が向上する等のために好ましい。
<<低圧処理工程の概要>>
 槽10は、低圧機構30に接続されており、槽10内は、少なくとも低圧処理の間、好ましくは、低圧処理、衝突処理及び循環処理の間、低圧機構30により所定の低圧にされる。該低圧処理の間、槽10内の圧力は、水中に含有されている溶存空気が除去される圧力に減圧される。
 槽10内を減圧して低圧にすることにより、水中に溶存されている窒素や酸素が除去され、その後の衝突処理工程で小クラスター水ができ易くなる。すなわち、後述する衝突処理工程で、溶存気体が存在しない低圧処理水同士を超高速・超高圧で衝突させることによって、水分子同士の水素結合が切れ易くなる。
<<衝突処理工程と循環処理工程の概要>>
 上記低圧処理を経験した水の一部は、槽10から採取され、加圧機構20内に入り、そこで加圧された状態で、槽10内に向けて噴射される。すなわち、本発明では、槽10内で、低圧処理後の水同士を衝突させる。
 このように、溶存空気が存在しない低圧処理後の低圧処理水同士を衝突させることにより、該衝突のエネルギーが効率的に作用し、クラスターが好適に水分子(HO)にまで解集合する。また、溶解不純物(空気)が含有されていないと言う恒久的に不変の性質を有していること等のために、経時でも安定な小クラスター水ができる。
 本発明では、槽10内の減圧、低圧処理水の加圧機構20への採取、加圧した低圧処理水の噴射衝突を、小クラスター水製造装置1の中で連続して行う、すなわち、水又は微粒子を含んでいる水を、小クラスター水製造装置1を用いて循環させながら、クラスター数を小さくする(小クラスター水を製造する)、又は、得られた小クラスター水を用いて微粒子の分散性を向上させるものである。
 本発明は、衝突処理工程を連続的に繰り返すことによって、該槽内の低圧処理水を循環させて低圧処理水同士の衝突機会(衝突回数)を増やす循環処理工程を有している。
 本発明においては、水のうち、槽10内に存在する水を「槽内水」と言い、槽10内で低圧処理された水(低圧処理工程を経た水)を「低圧処理水」と言い、低圧処理水のうち加圧機構20で加圧された水を「加圧水」という。
 「槽内水E1」には、低圧処理工程を経た水も低圧処理工程を経ていない通常の水も含まれ得るし、衝突処理工程を経て槽10に戻ってきた水も、まだ循環しておらず衝突処理工程を経ていない水も含まれ得る。
 槽10と低圧機構30との間、槽10と加圧機構20の間の配管には、適宜、バルブ(開閉弁)が設けられ、処理中は、原則としてこれらのバルブを開くことで連続的な処理が行われ、原料投入時や、処理完了後の取り出し時には、これらのバルブは閉じられる。
<槽>
 槽10内には、操作開始時に、脱塩水、蒸留水、これらの処理を組み合わせて得られた水等の「溶解不純物を除去した後の通常の水」、エマルジョン樹脂等の有機微粒子;無機微粒子等の水に溶解していない微粒子(水の系外にある微粒子)が分散している「通常の水」が投入される。該「通常の水」の投入部は、その位置や形状に特に限定はなく、位置については、投入のし易さから槽10の上部に存在していることが好ましい(図示せず)。
 槽10は、加圧水を、後述するように(例えば図7のように)、該槽内に向けて噴射することで撹拌してもよく、必須ではないがその内部に撹拌機構11を有することも好ましい。撹拌機構11の種類について特に限定はなく、槽10の槽内を均一に撹拌できるものを適宜選択する。図では、中心軸部分に撹拌翼を有する形態を例示したが、例えば、中心軸より外側に(槽10の内壁近傍に)撹拌翼が存在する撹拌機構11を用いてもよい。両方の(二重の)撹拌翼を有する撹拌機構11も好ましい。
 撹拌機構11の作動条件(回転数等)についても、特に限定はなく、槽内を均一に撹拌できる条件を適宜選択する。撹拌機構11があると、槽内水E1の組成や温度を均一にできるだけではなく、低圧処理工程時に槽内水E1の突沸や泡の発生による過度の液面上昇を避けることができる。
 槽10の容積は、特に限定はないが、300L(リットル)以上5m以下が好ましく、500L以上2m以下が特に好ましい。
 容積が上記の下限以上であると、十分な処理量を達成することができ、本発明の効果である大量生産、コストダウン等がより(相乗的に)図れる。また、上記の上限以下であると、装置が大き過ぎずコスト的に有利であり、作業性がよく、槽内を十分均一に撹拌し易い。
 処理の間、槽内水E1の充填率(槽10の内部に存在する槽内水E1の体積を、槽10の容積で除した値)は、通常20%以上90%以下であり、40%以上80%以下が好ましい。
 充填率が上記範囲内にあることにより、槽10の内部を十分に安定的に低圧にさせ易く、また、槽内水から溶存気体が除去される際の液面上昇や泡立ち、槽内水E1の突沸等による飛び散りも少なく、槽内を均一に撹拌することができ、処理の効率が向上する。低圧処理工程によって、槽内水E1の蒸発等で槽内水E1の体積は減少する場合があるが、その場合でも上記範囲を保持することが好ましい。
<<低圧処理工程>>
 槽10は、排気部12において低圧機構30と接続されている。排気部12の位置は、槽内水E1の液面より上であれば特に限定はなく、排気部12の形状、大きさ等についても、特に限定はない。
 槽10内を後述する適切な圧力、すなわち、該槽内において減圧処理される水の温度(以下、「T℃」と略記する場合がある。)における水の蒸気圧以上の圧力、かつ1気圧より低い圧力で、槽内水E1中の溶存空気を十分に除去できる圧力に安定的に保持できるようになっていればよい。
 槽10内の好ましい圧力は、溶存空気等を除去でき易いように、1気圧より低い圧力に保ちつつ、かつ蒸発等により槽内水の量が減り難い圧力にする。
 減圧により槽10内の圧力が、槽内水の温度T℃における水の飽和蒸気圧よりも低くなると、槽内水E1は沸騰し、水を循環させるという本発明の目的の達成の妨げになる場合があるので、槽10内の圧力は、水の温度T℃における飽和蒸気圧以上にする。
 水の蒸気圧を以下に示す。
 水の温度T(℃) T℃における水の蒸気圧(kPa)
    0        0.611
    4        0.841
    5        0.873
   10        1.23
   20        2.33
   30        4.24
   40        7.37
   50       12.3
   60       19.9
   70       31.2
   80       47.5
  100      101.3
 槽10内は、低圧機構30によって排気し、槽内水E1中の水が幾らか蒸発したとしても、本発明の前記効果を維持する「好適な、圧力(低圧)、低圧処理時間、槽内水の温度T(℃)等」に設定する。
 ここで、「好適な」とは、減圧処理を開始すると、すなわち低圧処理工程の初期は、溶存空気が系外に出ていくために、槽内水E1が泡立ったり、その液面の上昇が見られたりするが、それらが、各工程に、特に水の循環に支障をきたさないことであり、また、水が蒸発すると、槽内水E1の体積が減少したり、蒸発熱で槽内水E1の温度が低下するが、それらが、各工程に、特に水の循環に支障をきたさないことである。
 また、槽内水E1には、水に不溶の微粒子が含有されていてもよい。すなわち、エマルジョン樹脂が分散している水性エマルジョンであったり、無機微粒子の分散液であったりしてもよい。その場合、上記「好適な」とは、水が蒸発すると該微粒子濃度や粘度が上昇するが、上昇した該微粒子濃度や該粘度においても、加圧水E3を噴射して槽内水E1に衝突させてクラスター数を減少させることに支障がないことであり、また、槽内水E1の液量が少なくなって水の循環に支障をきたさないことである。
 運転中の槽10中の槽内水E1の温度T℃は、特に限定はないが、0℃以上60℃以下が好ましく、1℃以上40℃以下がより好ましく、2℃以上30℃以下が特に好ましく、4℃以上20℃以下が更に好ましい。
 ただし、まず一旦、槽10内を低圧にして溶存空気を除去した後、次の段階として加圧水E3を槽10内に噴射させ循環運転をする場合には、前段階(噴射・循環前の溶存空気除去段階)における槽内水E1の温度は、上記の上限温度と下限温度より0℃以上20℃以下だけ高いことも好ましい。
 温度調節に用いられる装置は、特に限定はないが、冷却器等が好ましい。該冷却器は、ジャケット型、クーリングパイプ型等の「槽10の外側に接するように設置される公知の装置」が用いられる。
 槽内水E1の温度の上限が上記以下であると、槽内水E1を沸騰させないための圧力(すなわち、水の飽和蒸気圧)が低く抑えられ、そのため槽内水E1に圧力(外圧)がかからないので、小クラスター化が好適に進行する。また、水の蒸発が抑制されて槽内水E1の液量を一定に保てる。また、槽内水E1に微粒子が分散している場合は、水性エマルジョン等の粒子濃度や粘度の上昇が抑えられる。
 一方、槽内水E1の温度の下限が上記以上であると、蒸発熱で更に温度低下して水が固体(氷)になるおそれがなく、また溶存空気(溶存酸素等)が除去され易くなる。
 低圧処理工程の時間に関しては、水中に含有される溶存空気が十分に除去される時間であれば特に限定はなく、また、槽10の容積、排気量、排気速度の調節方法、低圧度等に依存するが、低圧(排気)開始から、低圧処理水を循環させ噴射させるまでの時間は、2分以上60分以下が好ましく、5分以上40分以下がより好ましく、10分以上20分以下が特に好ましい。
 減圧を開始して、好ましくは上記時間経過してから噴射・循環を開始するが、減圧と噴射・循環を同時に開始してもよい。
 槽10内の圧力は、前記した通り、槽内水E1の温度T℃における飽和蒸気圧以上であることが、沸騰をさせないために好ましいが、槽内水E1の温度T℃における「(前記した)水の(各)蒸気圧」の1倍以上4倍以下が好ましく、1倍以上2倍以下がより好ましく、1倍より大きく1.5倍以下であること特に好ましく、1.1倍以上1.2倍以下が更に好ましい。
 すなわち具体的には、例えば、槽内水E1の温度が4℃の場合は、0.8kPa(6Torr)以上3.4kPa以下が好ましく、0.8kPaより大きく1.2kPa以下が特に好ましい。また、例えば、槽内水E1の温度が20℃の場合は、2.3kPa(18Torr)以上9.3kPa以下が好ましく、2.3kPaより大きく3.5kPa以下が特に好ましい。
 槽10は、圧力や温度を計測する手段を備えていることが好ましい(図示せず)。
 更に、槽10内の槽内水E1の液面の位置や状態(空気が除去される状態、水が沸騰する状態)等を目視で監視できるようになっていることが好ましい。
 処理の間は、槽10内の圧力や温度を計測し、低圧機構30による排気速度を調整する等の手段で、槽10内を適正な圧力に調整する必要があり、また、槽内水E1が沸騰しないように注意を払う必要がある。
 槽10内の減圧を開始すると、槽内水E1の液面が一旦上昇すると共に、槽内水E1に溶け込んでいた空気が膨張し泡が発生し、空気が水蒸気と共に排気部12から除去される。
 この状態で、槽10内をなおも排気し続けると、槽内水E1の液面が下降し、一定時間だけ静止状態となり、その後、槽内水E1が沸騰を開始することがある。その際、作業者が液面の位置をチェックし、沸騰を開始する直前又は沸騰を開始した直後には、排気部12と低圧機構30の間のバルブを閉める等して圧力を調整することが好ましい。
<<衝突処理工程、循環処理工程>>
 槽10は、槽内水E1を循環させるために採取する槽内水採取部13を有する。槽内水E1の一部は、連続的に加圧機構20内に採取され、そこで加圧される。
 槽内水採取部13は、槽内水E1の液面より常に下であれば、その位置に特に限定はないが、低圧処理によって槽内水E1の液面は下降する場合があり、その場合でも槽内水採取部13は、槽内水E1の液面より下にある必要がある。
 図1に示すように、槽10内に槽内水採取部13は1個だけ存在していてもよいし、図2及び図5に示すように、複数個存在していてもよい。
 図2及び図5に示すように、槽10内の異なる高さに複数の槽内水採取部13が存在してもよく、このような場合、槽内水E1の量等の条件に応じて、バルブ等の開閉により、採取のために使用する槽内水採取部13を変更することができる。
 槽10は、加圧機構20で加圧された加圧水E3を噴射するための加圧水噴射部14を有する。加圧機構20で加圧した低圧処理水である加圧水E3は、加圧水噴射部14から槽10内に向けて噴射される。同時に、低圧処理水は槽10内に戻されることで、水は装置内を循環する。本発明では、衝突処理工程を連続的に繰り返すことによって、該槽内の低圧処理水を循環させて低圧処理水同士の衝突機会(回数)を増やす循環処理工程を有している。
 本発明では、加圧水E3を槽10内に向けて噴射する際に、加圧水E3を槽内水E1に衝突させることにより、すなわち低圧処理水同士を衝突させることにより、小クラスター水を製造する。また、水中の微粒子の分散性を改良する、すなわち微粒子の凝集塊をより細かいものに分離・微細化する。
 衝突処理工程の間中、槽10内を、前記低圧処理工程において記載した前記温度や前記圧力に保っておくことが、大気圧がかかっていない状態で、低圧処理水同士を衝突させることができるので、本発明の前記効果が得易く好ましい。
 加圧水E3を槽10内に向けて噴射し、加圧水E3を槽内水E1に高速で衝突させるため、加圧水噴射部14は、ノズル形状になっていることが好ましい。
 ノズルの先端の内径は、特に限定はないが、十分な「加圧水の速度」を得るために、0.03mm以上0.3mm以下が好ましく、0.05mm以上0.15mm以下が特に好ましい。
 加圧水噴射部14の位置については、槽内水E1の液面より下であれば(噴射した加圧水E3を槽内水E1と衝突させることができれば)、特に限定はない。図1に示すように、加圧水噴射部14が槽10の側面に設けられている場合、加圧水噴射部14の縦位置は、撹拌機構11の撹拌翼の縦位置から上方向又は下方向にずらすと、撹拌翼に噴射の衝撃が加わり難いために好ましい。図1のように撹拌翼が2枚(以上)ある場合、加圧水噴射部14の縦位置は、図1のように2枚の撹拌翼の略中央に設けることが、撹拌翼に衝撃を与えないために特に好ましい。
 また、加圧水噴射部14の個数については特に限定はなく、図1及び図5に示すように、槽10内に加圧水噴射部14が1個存在していてもよいし、図2に示すように、槽10内に加圧水噴射部14が2個存在していてもよいし、3個以上の加圧水噴射部14が存在していてもよい。
 図1は、比較的単純な本発明の実施形態の一例を示したものであり、略円筒形状の槽10の壁面に、1個の槽内水採取部13と1個の加圧水噴射部14が存在する。
 槽内水E1は、槽内水採取部13より、加圧機構20内に採取され、加圧機構20で加圧された加圧水E3は、加圧水噴射部14から噴射されることで槽10内に戻り、槽10内の槽内水E1と衝突することで、クラスターを形成する水分子の分離が進む。
 図2及び図5は、本発明の実施形態の別の一例を示したものであり、より好ましい実施形態である。すなわち、槽10は窪み部分15を有し、窪み部分15の中に加圧水E3が噴射される。
 窪み部分15は、槽10の下部、側面のどこに存在していてもよいが、図2及び図5に示したように槽10の下部に存在していることが好ましい。
 槽10は、窪み部分15を有する場合、図5に示す通り、加圧水E3を一方向から窪み部分15の中に向けて噴射してもよいが(加圧水噴射部14は1個でもよいが)、図2に示す通り、加圧水E3を少なくとも二方向から窪み部分15の中に向けて噴射し、異なる方向から噴射された加圧水E3同士を衝突させることが、小クラスター水の製造のためには好ましい。
 加圧水E3を噴射する方向の数(加圧水噴射部の数)は、一方向(1個)、二方向(2個)、三方向(3個)又は四方向(4個)が好ましく、一方向(1個)又は二方向(2個)がより好ましく、二方向(2個)が特に好ましい。噴射する方向が多過ぎると、装置が複雑になり、コストの上昇につながるだけで、処理の効率が向上しない場合がある。
 加圧水噴射部14が複数個存在する場合、図2のように、それぞれの加圧水噴射部14から噴射された加圧水E3同士を衝突させることで、より効率的に凝集塊の分離を進めることができる。槽10が窪み部分15を有する場合、窪み部分15に加圧水噴射部14を設けることによって、加圧水噴射部14の間の距離を短くすることができ、前記した本発明の効果を発揮し易い。
 図2のように加圧水噴射部14が窪み部分15に2個設置されている場合、該加圧水噴射部14の間の距離(2個のノズルの先端間の距離)は、好ましくは1mm以上100mm以下、特に好ましくは2mm以上50mm以下である。加圧水E3同士を衝突させる場合、それぞれの加圧水E3が噴射される加圧水噴射部14の間の距離が短いと(上記上限以下であると)、大きい速度エネルギーを持ったまま加圧水E3同士を衝突させることができ、クラスター数を減らす効率が向上する。
 また、図1に示したように加圧水E3を槽10の側面から噴射させる場合、撹拌機構11の回転軸の方向、すなわち槽10の中心軸方向から水平方向にずらして加圧水E3を噴射することが好ましい。槽10の中心軸方向に向けて噴射すると、撹拌機構11の回転軸に衝撃を与える場合がある。
 特に槽10の側面の2か所(以上)からこのような方向に噴射することが、対称性がとり易く好ましい。
 図7に、槽10の横断面概略模式図において、加圧水E3の噴射方向を矢印で示した。中心軸方向から水平方向にずらす角度、すなわち図7に示した角度αは、上記効果を奏すれば特に限定はないが、αは、20°以上80°以下が好ましく、35°以上75°以下がより好ましく、50°以上70°以下が特に好ましい。
 角度αがこの範囲であれば、撹拌機構11の回転軸に衝撃を与えず、槽内水E1を撹拌することも可能であり、槽10に加圧水噴射部14を設置する際の槽10の穴開け等の加工が容易である。
 図1に示したように、加圧水E3を槽10の側面から噴射させるときには、噴射方向は、略水平方向であるか、又は、水平面に対して斜め下方向であることが好ましい。
 水平方向又は斜め下方向の角度(水平面と噴射方向のなす角度)は、特に限定はないが、0°以上60°以下が好ましく、5°以上45°以下がより好ましく、10°以上30°以下が特に好ましい。上に噴射すると槽内水E1の液面から加圧水E3が飛び出る場合がある。
 図5に示したように、加圧水E3を槽10の窪み部分15に一方向から噴射させるときには、噴射方向は、略水平方向であるか、又は、水平面に対して斜め上方向であることが好ましい。
 水平方向又は斜め下方向の角度(水平面と噴射方向のなす角度)は、特に限定はないが、0°以上60°以下が好ましく、5°以上45°以下がより好ましく、10°以上30°以下が特に好ましい。下に噴射すると窪み部分15の底に当たり水流が乱れたり、取り出し口16に衝撃を与えたりする場合がある。
 図2に示したように、窪み部分15において異なる二方向から噴射された加圧水E3同士を衝突させる場合も、窪み部分15における加圧水E3の噴射方向は、略水平方向であるか、又は、水平面に対して斜め上方向であることが好ましいが、一方、二方向から同じ高さで略水平方向に加圧水を噴射すると(すなわち上記角度が0°であると)、加圧水E3同士の衝突効率が高くなり好ましい。
 また、撹拌機構11の底部に、衝突板(好ましくは、下に凸に湾曲した衝突板)(図示せず)を設けると、噴射によって撹拌機構11が損傷を受け難く、また、加圧水E3の噴射方向が水平面に対して斜め上方向であると、加圧水E3が衝突板に衝突して、小クラスター化が促進するために特に好ましい。
 処理完了後に、槽10内の水を取り出すための取り出し口16は、槽10のどこに存在していてもよいが、取り出しのし易さから槽10の下部に存在していることが好ましい。
<低圧機構>
 低圧機構30の種類に特に限定はなく、槽10内を前記した適正な圧力に低圧できればよく、公知の真空ポンプ等が使用できる。低圧機構30の前に(低圧機構30と槽10との間に)、水等をトラップする機構(図示せず)を設けることが好ましい。
 本発明では、槽10内の減圧(低圧化)は、水中に含有される溶存空気を除去するため、また、衝突の際に水にかかる圧力(外圧)を下げるために行うものであり、低圧の程度(槽10内の圧力)、減圧時間等は前述した通りである。
<加圧機構>
 加圧機構20は、槽内水採取部13から採取された低圧処理水E2を加圧し、「槽内水E1に衝突させた際に小クラスター化を進めるために必要な運動エネルギーを持った加圧水E3」とするための機構であり、加圧水E3は、槽10の加圧水噴射部14から槽10内に噴射される。
 加圧機構20は、低圧処理水E2を加圧できれば、どのようなものでもよいが、一例として、図3に示すような、加圧室の構造がピストン22を備えたシリンダ21であるものが挙げられる。
 図3のような場合、ピストン22を押圧運動させることにより、シリンダ21内で低圧処理水E2は加圧され、加圧水E3として、ノズル形状等を持った加圧水噴射部14から噴射される。
 加圧機構20は、図4に示したように2個(又は2個以上)のシリンダ21を有していることが、交互にピストン22を押圧運動させ、加圧されている側のバルブを開け、加圧されていない側のバルブを閉めることによって、連続して常に、加圧水E3を加圧水噴射部14から噴射させられるので好ましい。
 本発明の小クラスター水の製造方法は、槽内で低圧処理が済んだ水を、別途衝突装置に投入し、衝突処理がなされた水を再度上記槽内に戻して、上記操作を繰り返して製品とするのではなく、槽内で衝突処理をして水を循環させることによって、連続的に(途中で取り出しをせずに)衝突処理をすることができるので、コストや処理能力の点で優れている。2個以上のシリンダ21を有している加圧機構20は、噴射を中断することなく、常に加圧水E3を加圧水噴射部14から槽10内に噴射できるので、本発明の連続的に(途中で取り出しをせずに)衝突処理をすることができるという上記特長を更に生かすことができる。
 加圧水噴射部14から噴射される際の加圧水E3の圧力は、3MPa(30気圧)以上250MPa(2500気圧)以下が好ましく、10MPa(100気圧)以上50MPa(500気圧)以下がより好ましく、20MPa(200気圧)以上25MPa(250気圧)以下が特に好ましい。
 加圧水E3の圧力が上記範囲であると、衝突時の運動エネルギーが十分であるため、クラスターの水分子(HO)への分解の効率がよく、また、槽10、加圧水噴射部14等に過大な負荷がかからないので、装置の故障が発生し難い。
 また、加圧水の圧力は、循環(噴射)開始直後は比較的小さな圧力に設定し、徐々に上げて定常状態にすることが好ましい。
 加圧水噴射部14から噴射された直後の加圧水E3の速度は、特に限定はないが、50m/s以上1500m/s以下が好ましく、100m/s以上1000m/s以下がより好ましく、200m/s以上700m/s以下が特に好ましい。
 噴射された直後の速度が上記範囲であると、運動エネルギーが十分であるため、小クラスター化の効率がよく、一方で、槽10、加圧水噴射部14等に過大な負荷がかかり難い。
 上記条件で衝突が起こると衝突箇所が局部的に高温になるが、槽10に設置された温度調節機構(図示せず)によって、槽内水E1は全体として一定に保たれる。
 図1、図2、図5では、槽内水採取部13から加圧機構20に至る配管は分岐していないが、例えば、共通した1個の槽内水採取部13から採取された低圧処理水E2を途中で2本に分岐させて、2つの加圧機構20に分けて別々に加圧してもよい。また、1つの加圧機構20を通過した加圧水を2つに分けて、2個の加圧水噴射部14から噴射させてもよい。
 低圧処理工程後、加圧水E3を槽10内に向けて噴射し循環させる際の温度は、小クラスター化が十分に行われれば特に限定はないが、好ましい温度範囲は前記した通りである。
 低圧処理工程後又は低圧処理工程中に、槽内水E1を連続的に加圧機構20内に採取して得られた加圧水E3を槽10内に向けて噴射し循環させておく時間は、小クラスター化が十分に行われれば特に限定はなく、処理量にも依存するが、10分以上5時間以下が好ましく、20分以上3時間以下がより好ましく、30分以上2時間以下が特に好ましい。
 時間が上記下限以上であると、1個のクラスターを見ると、噴射・衝突の機会が何度もあるため小クラスター化が十分に行われ、また、噴射・衝突が1回だけの回分式装置に比較して特に有利となる。
 一方、上記上限以下であると、生産性、コスト面等で有利である。
 本発明の小クラスター水の製造方法においては、衝突処理工程を連続的に繰り返すことによって、該槽内の低圧処理水を循環させて低圧処理水同士の衝突機会(回数)を増やす循環処理工程を有している。これによって、大量の小クラスター水が、容易に効率よく安価に製造できる。
 十分な時間、槽10内を低圧にしてから、低圧下に噴射・循環をしてもよく、低圧開始と同時に噴射・循環を開始してもよいが、低圧にして溶存空気を除去してから、好ましくは上記時間、低圧下に噴射・循環することが望ましい。すなわち、衝突処理工程中も、低圧処理工程を継続することが小クラスター化のために好ましい。
<帯電機構40>
 図5に示すように、槽内水採取部13と加圧機構20の間に、帯電機構40を設けて、槽内水E1の一部を連続的に採取した低圧処理水E2を、帯電機構40を使用して帯電させることが好ましい。
 また、取り出し口16の直前又は取り出し口16の下部に帯電機構40を設けて、最終工程として、小クラスター水を帯電させると、pHが低下して小クラスター水の状態や微粒子の分散状態を安定化できるようになる。
 帯電機構40を使用して、低圧処理水E2や該低圧処理水中の微粒子やその周りの界面活性剤等を帯電させることにより、効率よく安定な小クラスター水を製造できる。
 また、水が微粒子を含有する場合、該微粒子間に作用する電気的反発力により微粒子の凝集を抑制することができる。その結果、小クラスター水の状態や、微粒子の分散状態を長期間に亘って良好に維持できるようになる。
 低圧処理工程を経て、水中から溶存酸素等の溶存空気がなくなると、衝突により水分子同士の結合が弱まり易くなり、小クラスター化が起こり易くなると共に、上記現象(電気的反発力の発生等)が起こり、微粒子の分散性がより向上する。
 帯電機構40を、槽内水採取部13と加圧機構20の間に設けるのではなく、例えば、処理完了後に得られた小クラスター水に帯電を施してもよいが、槽内水採取部13と加圧機構20の間に帯電機構40を設けて帯電を施せば、特に水に微粒子が分散している場合(特に水性エマルジョンの場合)に、水性エマルジョンを循環させながら帯電を施すことになるので、帯電による上記効果を奏し易くなる。
<微粒子の分散性向上方法>
 本発明においては、微粒子が分散している水に、前記の小クラスター水の製造方法を使用することによって、該微粒子の水中での分散性を向上させることができる。
 前記の小クラスター水の製造方法を使用することによって、出発物質である水(処理対象である通常の水)に微粒子を分散させておくと、小クラスター水ができるのに伴い、該小クラスター水ができることによって、該微粒子の分散性が向上する。通常は、微粒子の分散液中では、該微粒子が凝集して凝集塊ができているが、その凝集塊が個々の微粒子(又はサイズの小さい凝集塊)に分離・微細化されて分散性が向上する。
 ここで、微粒子とは、水に不溶の微粒子(水の系外に存在する分散微粒子等)である。具体的には、エマルジョン樹脂微粒子、乳化重合で得られた樹脂微粒子、懸濁重合で得られた樹脂微粒子等の有機微粒子;金属酸化物微粒子、金属塩微粒子、金属微粒子等の無機微粒子;等が挙げられる。
 原料(出発物質)となる「通常の水」には、上記した微粒子以外に、重合開始剤、乳化剤、界面活性剤、顔料等の、分散、重合等に必要な他の物質が含有されていてもよい。
<<水性エマルジョン>>
 上記微粒子は、水性エマルジョン樹脂の微粒子であることが、水性エマルジョン樹脂は小さく凝集もし易いので、特に本発明の前記効果を発揮し易い。
 本発明における「水性エマルジョン」とは、液体が液体(水)中に分散したものに限らず、分散媒である水の中に液体又は固体が微粒子状となって分散したものをいう。
 本発明に適用される水性エマルジョンの種類には特に限定はなく、使用目的に応じて、適宜選択される。
 本発明における水性エマルジョンの一例として、例えば、アクリル系エマルジョン、メタクリル系エマルジョン、スチレン系エマルジョン、酢酸ビニル系エマルジョン、(無水)マレイン酸系エマルジョン、アルキレン系エマルジョン、ウレタン系エマルジョン等が挙げられる。これらは、少なくとも、疎水性の重合性のモノマーと乳化剤(界面活性剤)を混合し、水に可溶な重合開始剤を配合し、乳化重合することにより得られるポリマー粒子(樹脂微粒子)が水に分散した水性エマルジョンである。
 乳化剤(界面活性剤)や重合開始剤の種類について特に限定はなく、公知のものが使用できる。
 乳化剤(界面活性剤)については、カチオン性界面活性剤、アニオン性界面活性剤、ノニオン性界面活性剤の何れも使用することができる。
 重合開始剤については、ラジカル重合開始剤が好ましく、熱重合開始剤が特に好ましい。
 また、本発明における水性エマルジョンとしては、単純に乳化重合されたものに限らず、懸濁重合、シード重合等により重合されたものが挙げられる。また、予め調製した微粒子を水に分散させたものも挙げられる。
 本発明の小クラスター水の製造方法を適用させて、分散性を改良した水性エマルジョンは、接着性、強靭性、対候性、耐熱性等の点において、従来の水性エマルジョンと比較して優れている。
<<水性塗料>>
 本発明の前記した小クラスター水の製造方法を適用し、微粒子の分散性向上方法により、分散性を改良した水性エマルジョンは、前記した理由から、水性塗料として使用する場合に、前記したような優れた性質を発揮する。
 本発明における水性エマルジョンは、水性塗料、接着剤、インク、化粧品、表面処理剤等の用途として有用であるが、長期間経過してもその性質に変化が生じ難いことから、本発明における水性エマルジョンを含有する水性塗料は特に有用である。
 本発明の水性エマルジョンを含有する水性塗料は、上記のような優れた特性を示すことから、具体的には、防錆、防汚、防カビ、絶縁、遮熱、着雪防止等のために使用される。
 水性エマルジョン中の凝集塊を分離できる本発明の方法は、例えば、インク、接着剤、化粧品、表面処理剤等の用途にも適用することができる。
<作用・原理>
 本発明の技術的範囲は、以下の記載内容の及ぶ範囲に限定されるものではないが、本発明の作用・原理については以下が考えられる。
<<小クラスター水>>
 本発明は、「低圧処理をした水」を加圧して、低圧状態になっている槽内の「低圧処理をした水」に衝突させることによって、水分子(HO)の多数集合したクラスターを、(水分子(HO)単位にまでした及び/又は)水分子(HO)の少数集合した小クラスターにする。
 加圧水を槽内に向けて噴射して槽内水と衝突させた箇所の温度は、局部的に極めて高温(限定はされないが、100℃~400℃の範囲又はそれ以上)になる。また、該加圧水の特に好ましい圧力は上記した通り、20.3MPa(200気圧)以上25.3MPa(250気圧)である。
 一方、水の臨界温度と臨界圧力は、それぞれ374℃と22MPa(218気圧)であるから、衝突箇所の水は局部的に超臨界又は亜臨界になっている可能性がある。
 超臨界又は少なくとも超臨界に近くなるため、気体(水蒸気)の性質に近づき、水素結合が切れて、1つのクラスターを形成する水の分子数が減少して、小クラスター水が生成したと考えられる。
 また、水(クラスター)を衝突させる際、その水中に空気が溶解していると、超高圧・超高速衝突の運動エネルギーが空気の影響を受けて無駄に使われ、全て有効に水素結合の切断、小クラスター水の生成(クラスターを形成する水の分子数の減少)に使えないと考えられる。
 また、超高圧・超高速の衝突によって、クラスター内の空気が除かれ、更に容易に小クラスター水ができたと考えられる。
 低圧処理工程を経て溶存空気を除去すると、水の臨界温度が低くなることが本発明者によって確かめられている。そのため、本発明における「一旦、低圧処理された加圧水」の衝突処理では、より容易に超臨界又は亜臨界に達し、水素結合が切れて、小クラスター水の生成が起こったと考えらえる。
 更に、衝突する水には、大気圧(1気圧)がかかっていないので、より容易に小クラスター水の生成が起こったと考えらえる。
 本発明では、装置内で水を循環させて、衝突処理工程を経た水を一旦取り出すことなしに、何度も衝突を繰り返すことができる(連続的に処理ができる)。
 特許文献1~特許文献6(特に特許文献1又は6)に記載の装置や方法では、たとえ小クラスター水ができたと仮定しても、1度の処理では十分ではなく、何度も処理を繰り返す必要があり、液の投入・取出に手間が発生する。
 この点、本発明の方法では、連続的に処理を行うことができるため、投入と取出は1度だけで、従って処理時間を延ばすことにより、十分にクラスターを分離させることができ、この結果、効率よく大量に小クラスター水の製造が可能となる。
 また、水性エマルジョン中等に含有される微粒子の凝集塊を、個々の微粒子(又はサイズの小さい凝集塊)に分離・微細化する際、槽内の水性エマルジョンは、溶存空気が除去され微粒子間の結合力が弱くなっているため、小クラスター水の加圧した大きな衝突エネルギーを受けることにより、凝集塊が個々の微粒子(又はサイズの小さい凝集塊)に分離・微細化されると考えられる。
<<水性エマルジョン、水性塗料>>
 本発明の方法により分散性を改良(凝集塊を分離・微細化)した水性エマルジョンを含有する水性塗料は、優れた接着性や強靭性(塗膜硬度)を示すが、これは、微粒子が凝集塊を形成している場合、大きな凝集塊の形で塗布素材面と接触するのに対し(図6(a))、個々の微粒子に分離している場合、個々の微粒子の形で塗布素材面と接触するため(図6(b))、接触面積が大きいためと考えられる。
 また、微粒子が凝集塊を形成している場合は、紫外線等により塗装表面の劣化が進むと、凝集塊の下部(塗布素材面)まで劣化が連鎖するのに対して、個々の微粒子に分離している場合は、塗装表面の微粒子が劣化したとしても、凝集塊を形成していないため、劣化は連鎖し難く、凝集塊の下部(塗布素材面)は劣化しないと考えられ、このため本発明の水性塗料は対候性に優れる。
<<金属粒子分散液>>
 前記の小クラスター水の製造方法で製造された小クラスター水に、平均粒径が1μm以下の金属粒子を分散させてなる金属粒子分散液は、分散性・分散安定性が良好で、分散中や経時保存中に凝集塊ができ難い。平均粒径が小さい程、凝集塊が生成し易い方向であるが、本発明の前記の小クラスター水を用いれば、平均粒径が1μm以下の金属粒子でも均一に凝集塊なく分散可能である。
 分散性改良幅が大きい点から、金属粒子の平均粒径は、1μm未満が好ましく、0.3μm以下がより好ましく、0.1μm以下が特に好ましい。
 ここで、「平均粒径」は、レーザ回折/散乱式粒度分布測定装置(日機装株式会社製、MT3300型)を使用して測定した数平均粒子径である。
 金属としては、特に限定はないが、金(Au)、銀(Ag)、白金(Pt)、パラジウム(Pd)等の貴金属が挙げられる。
 金属粒子を予め平均粒径1μm以下にしておく方法は、特に限定されず、公知の方法が何れも用いられる。すなわち、湿式法でも乾式法でも蒸着法でもよく、それらの併用でもよく、直接1μm以下に金属粒子を調製(生成)させる方法でもよい。
 以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例及び比較例に限定されるものではない。
実施例1
 図2に示すような、加圧水噴射部14が槽10の窪み部分15に存在し、二方向から噴射された加圧水E3同士を衝突させるタイプの装置を使用し、脱塩水に対して、低圧処理工程、衝突処理工程及び循環処理工程を行った。
 加圧機構20は、図4に示すような、ピストン22を備えたシリンダ21状のもの2個からなるものを使用した。
 槽10の容積は1mであり、槽の中に、通常の脱塩処理で得られた脱塩水を800L投入した。この脱塩水を「水(A)」とする。
 低圧機構30として真空ポンプを用いて、槽10内の減圧を開始し、槽10内が約20Torr(2.6kPa)になるように保ち、槽10内の温度は20℃で均一に保った上で、槽10内の撹拌を開始した。
 20℃における水の飽和蒸気圧は17.5Torr(2.3kPa)であるから、槽10内の圧力は、水の飽和蒸気圧より少し高い程度に保たれている。
 低圧処理に伴い、槽内水E1の液面が一旦上昇し、溶存空気(酸素等)が泡となって除去される様子を確認したが、槽内水E1の沸騰は起こらなかった。
 その低圧状態のまま、槽10と加圧機構20とをつなぐ配管のバルブを開き、槽内水E1の一部を2つの加圧機構20内にそれぞれ送り込んだ。その際、帯電機構40を作動させた。
 加圧水E3の圧力を25.3MPa(250気圧)に設定し、槽10内の窪み部分15に設けられた2か所の加圧水噴射部14から、それぞれ加圧水E3を略水平方向に噴射し、加圧水E3同士を衝突させ、衝突処理と循環処理を開始した。加圧水E3のノズルから噴射した直後の速度は、約200m/sであった。
 衝突箇所の水温は100℃を超えている可能性があるが、槽10内の槽内液E1の温度は、冷却器によって全体として20℃に保った。
 この状態で循環処理工程を1時間行った後、装置内の全てのバルブを閉じ、真空ポンプ、加圧機構20、及び、帯電機構40を停止して処理を完了し、槽10内の窪み部分15の下部にある取り出し口16から、処理後の水を採取した。得られた水を「水(B)」とする。
実施例2
 図2に示す装置に代えて、図1に示す装置(加圧水噴射部14が槽10の側面に1個だけ存在し、加圧水E3を槽内水E1に衝突させるタイプの装置)を使用し、処理時間を3時間とした以外は、実施例1と同様に、脱塩水に対して、低圧処理工程、衝突処理工程及び循環処理工程を行った。得られた水を「水(C)」とする。
評価例1
 鉄板の表面をクレンザーで研摩した後に水洗し乾燥させた。その表面に、「実施例1で得られた水(B)」と「水道水」とを、それぞれ1mL滴下した。その後、20℃で24時間静置し、変化を目視観察した。
 20℃で24時間静置した後の写真を図8に示す。
 図8から分かる通り、錆発生の違いが観察された。すなわち、水(B)の接触していた鉄板の表面は全く変化が見られなかったが、水道水の接触していた鉄板の表面は、黄褐色に変化し(上から見た図8(a)では色が濃く映り、斜めから見た図8(b)では色が薄く映っている)、鉄の赤錆(酸化物)が生成した。
 水道水に代えて、実施例1及び実施例2で出発物質(原料)として使用した脱塩水と同一の水(A)を1mL滴下した場合でも、水道水と同様に、20℃で24時間静置した後に鉄の赤錆(酸化物)が生成した。
評価例2
 ホウケイ酸ガラスの板の表面を中性洗剤で洗浄し、蒸留水で洗浄した後、シリカゲルの入ったデシケーター中で乾燥した。JIS R3257:1999「基板ガラス表面のぬれ性試験方法」に従い、接触角を測定した。すなわち、そのガラス板上に、実施例1及び実施例2で出発物質として使用したものと同一の水(A)、実施例1で得られた水(B)、及び、実施例2で得られた水(C)の接触角を測定した。
 その結果、水(A)の接触角は、60°~90°の範囲であったのに対し、水(B)と水(C)は、何れも、2°~10°の範囲であった。
評価例3
 5人のパネルに、実施例で出発物質として使用したものと同一の水(A)、実施例1で得られた水(B)、及び、実施例2で得られた水(C)を、それぞれ100mL渡し、味わってもらった。
 その結果、水(B)と水(C)は、水(A)に比べて甘いと答えた人が多かった。
評価例4
 実施例1及び実施例2で原料として使用した水(A)のロットを変えて、それらのpHを15℃で測定したところ、pH=6.0~7.5の範囲に広がっていた。すなわち、pH=7近傍の「通常の水」は、ばらつきが大きい。
 一方、取り出し口16の下部に帯電機構40を設けた以外は、実施例1及び実施例2と同様にして得られた水(B’)及び水(C’)の15℃でのpHを、複数のロットで測定したところ、何れもpHが低下して、pH=5.5~5.8の範囲に入っていた。しかも、pHの範囲にばらつきがなくなった。
 次いで、上記水を、191時間(約1カ月)、11℃~18℃に保存したが、何れのロットも、pHの値はpH=5.5~5.8の範囲に入ったままであった。
 更に、取り出し口16の下部に帯電機構40を設けない実施例1及び実施例2で得られた水(B)及び水(C)でも、若干、「pHの低下」と「pHのばらつき解消」が減少したが、ほぼ上記結果と同様の結果が得られた。
<小括>
 実施例1、2及び評価例1~4より、水(B)、水(C)、水(B’)、水(C’)は、何れも、原料として用いた水(A)や水道水と比較して、一般に小クラスター水の物性として知られている項目において小クラスター水の物性を示したことから、水(B)、水(C)、水(B’)、水(C’)は、何れも小クラスター水であると結論される。
 更に、水(B)、水(C)、水(B’)、水(C’)には、溶存空気が含有されておらず、例えば1カ月という長期間安定状態を維持できた。
実施例3
 図2に示す装置を使用して、水性エマルジョンに処理を施した。槽10、加圧機構20及び低圧機構30は、実施例1と同一のものを使用した。
 槽10の中に、水性エマルジョンであるアクリルエマルジョン(日本エヌエスシー株式会社製、AD157)を800L投入した。
 低圧機構30として、真空ポンプを用いて、槽10内の減圧を開始し、槽10内が約20Torr(2.6kPa)になるように保ち、槽10内の温度は20℃で均一に保った上で、槽10内の撹拌を開始した。
 20℃における水の飽和蒸気圧は17.5Torr(2.3kPa)であるから、槽10内の圧力は、水の飽和蒸気圧より少し高い程度に保たれている。
 減圧に伴い、水性エマルジョン(槽内水E1)の液面が一旦上昇し、溶存空気(酸素)が泡となって除去される様子を確認したが、水性エマルジョン(槽内水E1)の沸騰は起こらなかった。
 低圧状態のまま、槽10と加圧機構20とをつなぐ配管のバルブを開き、槽内水E1の一部を2つの加圧機構20内にそれぞれ送り込んだ。
 その際、帯電機構40を作動させ、加圧機構20内に送り込まれる低圧処理水に帯電を施した。
 加圧水E3の圧力を25.3MPa(250気圧)に設定し、槽10内の窪み部分15に設けられた2か所の加圧水噴射部14から、それぞれ加圧水E3を略水平方向に噴射し、加圧水E3同士を衝突させ、衝突処理と循環処理を開始した。
 1時間後、装置内の全てのバルブを閉じ、真空ポンプ、加圧機構20、帯電機構40を停止して、処理を完了し、槽10内の窪み部分15の下部にある取り出し口16から、処理後の水性エマルジョンを採取した。
 レーザ回折/散乱式粒度分布測定装置(日機装株式会社製、MT3300型)を使用して、処理の前後の粒子径分布を測定した。
 処理前のアクリルエマルジョンの微粒子の粒子径分布は、0.3μmから300μmまでブロードであったが、処理後の水性エマルジョンの微粒子の粒子径分布は、0.03μmから0.3μmの範囲でありシャープであった。
 本発明の方法による処理後のアクリルエマルジョンの微粒子は、個々の微粒子や粒子径が1μmに達しないサイズの微粒子又は極めて小さい凝集塊となっていた。
実施例4
 実施例1で得られた水(B)に対して、「上記装置で測定した個数平均粒径が1μm以下にまで予め微細化した金(Au)及び銀(Ag)の金属粒子」を、通常の撹拌によって分散させたところ、水(B)にそれぞれの金属粒子が凝集することなく分散した。
 一方、金属粒子(金、銀)を、水(A)に投入して同様に通常の撹拌をしたが、金属粒子は水(A)には良好に分散しなかった。
比較例1
 特許文献6の図1に記載の装置を使用した。特許文献6の装置は、(a)減圧状態で水性混合液を撹拌する工程と、(b)加圧した水性混合液同士を噴射し衝突させる工程が別々の機構(装置)で行われ、両工程は完全に分離されている回分式の装置である。従って、(b)工程を終えた水性混合液を、(a)工程に戻すことで連続的に処理を行うことはできない。
 真空タンク(本発明の装置では、「槽10」に相当する。)の容積は、実施例1とほぼ同じであった。投入する水の量、真空タンクの圧力と温度を実施例1と同様にして、真空タンク内の撹拌を開始した。
 真空タンクから加圧室(本発明の装置では、「加圧機構20」に相当する。)に、水(A)を送り込み、加圧圧力を実施例1と同一に設定し、衝突室の中で水を衝突させた。衝突処理をした水は収容容器に収容した。
 投入した水を全て収容容器に収容するのに、25時間の時間を要した。
 本発明の小クラスター水の製造方法(実施例1及び実施例2)を用いた場合、水を循環させることで連続的な処理が可能であり、特許文献6のような回分式の方法に比べて、運転時間中に何度も衝突が可能で、効率よく小クラスター水ができた。
 具体的には、原料の脱塩水を装置に投入してから、処理後の水を取り出すまでの時間を、実施例1の1/25にすることができた。
 また、実施例1及び実施例2の方が、確実に小クラスター水ができた。
 本発明の小クラスター水の製造方法を用いて得られた小クラスター水は、通常の水と異なって、表面張力が小さくなり、pHが低下し、pHが安定し、鉄等の金属に接していても錆を発生させ難くなり、電導度や味が変化するので、かかる小クラスター水は、化学工学、分散科学、環境工学、食品科学、医学、化粧品科学等の分野に広く利用されるものである。本発明の小クラスター水の製造方法を用いて得られた小クラスター水に金属粒子を分散させてなる金属粒子分散液は、平均粒子径が小さいものが良好にできるので、金属微粒子の応用分野に広く利用されるものである。
 また、微粒子が分散している水に、本発明の小クラスター水の製造方法を使用することによって、該微粒子の水中での分散性を向上させた水性エマルジョンは、接着性、強靭性、対候性、耐熱性、臭気性等の点において優れているため、水性塗料、接着剤、インク、化粧品等の用途に広く利用されるものであり、特に水性塗料として、防錆、防汚、防カビ、絶縁、遮熱、着雪防止等が要求される分野に広く利用されるものである。
 1  小クラスター水製造装置
10  槽
11  撹拌機構
12  排気部
13  槽内水採取部
14  加圧水噴射部
15  窪み部分
16  取り出し口
20  加圧機構
21  シリンダ
22  ピストン
30  低圧機構
40  帯電機構
E1  槽内水
E2  低圧処理水
E3  加圧水
 α  水平面上での加圧水の噴射方向

Claims (14)

  1.  槽内を、該槽内において低圧処理される水の温度T℃における水の蒸気圧以上の圧力で、かつ1気圧より低い圧力に保ちつつ、該水の中に含有されている溶存空気を除去する低圧処理工程、
     該低圧処理工程を経て得られた該槽内の低圧処理水の一部を、該槽から連続的に採取して加圧機構で加圧し、得られた低圧処理水の加圧水を先端の内径が0.03mm以上0.3mm以下のノズル形状の加圧水噴射部から該槽内の低圧処理水に向けて噴射して、低圧処理水同士を衝突させる衝突処理工程、及び、
     該衝突処理工程を連続的に繰り返すことによって、該槽内の低圧処理水を循環させて低圧処理水同士の衝突機会を増やす循環処理工程、
    を含み、衝突処理工程中も、低圧処理工程を継続する
    ことを特徴とする小クラスター水の製造方法。
  2.  上記衝突処理工程において、上記加圧機構で加圧された加圧水にかかっている圧力が、3MPa以上250MPa以下である請求項1に記載の小クラスター水の製造方法。
  3.  上記衝突処理工程において、上記加圧水を槽内の低圧処理水に向けてノズルから噴射した直後の加圧水の速度が、50m/s以上1500m/s以下である請求項1又は請求項2に記載の小クラスター水の製造方法。
  4.  上記低圧処理工程において、低圧処理される水の温度T℃が、0℃以上60℃以下である請求項1ないし請求項3の何れかの請求項に記載の小クラスター水の製造方法。
  5.  上記低圧処理工程において、上記槽内の圧力を、低圧処理される水の温度T℃における水の蒸気圧の1倍以上で4倍以下に保つ請求項1ないし請求項4の何れかの請求項に記載の小クラスター水の製造方法。
  6.  上記槽が窪み部分を有し、該窪み部分の中の低圧処理水に向けて、上記加圧水噴射部から上記加圧水を噴射する請求項1ないし請求項5の何れかの請求項に記載の小クラスター水の製造方法。
  7.  上記槽の中の低圧処理水に向けて、上記槽の側面に設けられた加圧水噴射部から、上記加圧水を噴射する請求項1ないし請求項5の何れかの請求項に記載の小クラスター水の製造方法。
  8.  上記槽が上記加圧水噴射部を2個以上有している請求項1ないし請求項7の何れかの請求項に記載の小クラスター水の製造方法。
  9.  上記槽の中の低圧処理水の一部を該槽から連続的に採取した低圧処理水を、帯電機構を使用して帯電させる請求項1ないし請求項8の何れかの請求項に記載の小クラスター水の製造方法。
  10.  微粒子が分散している水を原料として、該水に対して請求項1ないし請求項9の何れかの請求項に記載の小クラスター水の製造方法を使用することによって、該微粒子の水中での分散性を向上させることを特徴とする微粒子の分散性向上方法。
  11.  上記微粒子が水性エマルジョン樹脂の微粒子である請求項10に記載の微粒子の分散性向上方法。
  12.  請求項11に記載の微粒子の分散性向上方法を使用して得られたものであることを特徴とする水性エマルジョン。
  13.  請求項12に記載の水性エマルジョンを含有するものであることを特徴とする水性塗料。
  14.  請求項1ないし請求項8の何れかの請求項に記載の小クラスター水の製造方法で製造された小クラスター水に、平均粒径が1μm以下の金属粒子を分散させてなるものであることを特徴とする金属粒子分散液。
PCT/JP2016/059647 2015-03-26 2016-03-25 小クラスター水の製造方法 WO2016153043A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-063536 2015-03-26
JP2015063536A JP5913670B1 (ja) 2015-03-26 2015-03-26 水の処理方法

Publications (1)

Publication Number Publication Date
WO2016153043A1 true WO2016153043A1 (ja) 2016-09-29

Family

ID=55808316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059647 WO2016153043A1 (ja) 2015-03-26 2016-03-25 小クラスター水の製造方法

Country Status (2)

Country Link
JP (1) JP5913670B1 (ja)
WO (1) WO2016153043A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI640466B (zh) * 2017-01-25 2018-11-11 大陸商廣州天露生物科技有限公司 循環水系統、水泵設備及具有該循環水系統與該水泵設備之桶裝式飲水裝置
WO2019088046A1 (ja) * 2017-10-30 2019-05-09 株式会社Fig 活性処理水、活性処理水の製造方法、活性処理媒体の製造方法、活性処理水の製造装置、食品保存方法、及び、活性処理媒体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7104908B2 (ja) * 2020-01-27 2022-07-22 貢 深堀 超高濃度活性水素イオン水製造装置および超高濃度活性水素イオン水製造方法
WO2023281754A1 (ja) * 2021-07-09 2023-01-12 Miracle Connection TEN合同会社 水処置装置および水処理方法
JP7402392B2 (ja) 2022-04-28 2023-12-21 株式会社Sosui 水、その製造方法および製造システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759620A (en) * 1980-09-26 1982-04-10 Fuji Photo Film Co Ltd Manufacture of emulsion
JPH11128951A (ja) * 1997-10-30 1999-05-18 Toshimitsu Hattori 油脂類の分散性に優れた水
JP2004189765A (ja) * 2002-12-06 2004-07-08 Fuji Xerox Co Ltd 超微粒子樹脂エマルジョン及びその製造方法並びに製造装置
JP2004285139A (ja) * 2003-03-20 2004-10-14 Toyo Ink Mfg Co Ltd 水性樹脂分散体の製造方法及びその利用
JP4568792B1 (ja) * 2010-01-29 2010-10-27 光雄 皆川 水性樹脂微粒子混合液の製造方法及び製造装置
JP2011144421A (ja) * 2010-01-14 2011-07-28 Toyota Central R&D Labs Inc 貴金属系コロイド溶液およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759620A (en) * 1980-09-26 1982-04-10 Fuji Photo Film Co Ltd Manufacture of emulsion
JPH11128951A (ja) * 1997-10-30 1999-05-18 Toshimitsu Hattori 油脂類の分散性に優れた水
JP2004189765A (ja) * 2002-12-06 2004-07-08 Fuji Xerox Co Ltd 超微粒子樹脂エマルジョン及びその製造方法並びに製造装置
JP2004285139A (ja) * 2003-03-20 2004-10-14 Toyo Ink Mfg Co Ltd 水性樹脂分散体の製造方法及びその利用
JP2011144421A (ja) * 2010-01-14 2011-07-28 Toyota Central R&D Labs Inc 貴金属系コロイド溶液およびその製造方法
JP4568792B1 (ja) * 2010-01-29 2010-10-27 光雄 皆川 水性樹脂微粒子混合液の製造方法及び製造装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI640466B (zh) * 2017-01-25 2018-11-11 大陸商廣州天露生物科技有限公司 循環水系統、水泵設備及具有該循環水系統與該水泵設備之桶裝式飲水裝置
WO2019088046A1 (ja) * 2017-10-30 2019-05-09 株式会社Fig 活性処理水、活性処理水の製造方法、活性処理媒体の製造方法、活性処理水の製造装置、食品保存方法、及び、活性処理媒体
JPWO2019088046A1 (ja) * 2017-10-30 2019-12-26 株式会社Fig 活性処理水、活性処理水の製造方法、活性処理媒体の製造方法、活性処理水の製造装置、食品保存方法、及び、活性処理媒体
CN111655632A (zh) * 2017-10-30 2020-09-11 株式会社Fig 活性处理水、活性处理水的制造方法、活性处理介质的制造方法、活性处理水的制造装置、食品保存方法以及活性处理介质
CN111655632B (zh) * 2017-10-30 2022-08-30 株式会社Fig 活性处理水、活性处理水的制造方法、活性处理介质的制造方法、活性处理水的制造装置、食品保存方法以及活性处理介质
TWI794319B (zh) * 2017-10-30 2023-03-01 日商Fig股份有限公司 活性處理水、活性處理水的製造方法、活性處理媒介的製造方法、活性處理水的製造裝置、食品保存方法及活性處理媒介

Also Published As

Publication number Publication date
JP5913670B1 (ja) 2016-04-27
JP2016182550A (ja) 2016-10-20

Similar Documents

Publication Publication Date Title
WO2016153043A1 (ja) 小クラスター水の製造方法
CN1854210B (zh) 微囊化金属粒子及制造方法、水性分散液、及喷墨用油墨
WO2016088731A1 (ja) マイクロ・ナノバブルによる洗浄方法及び洗浄装置
Kim et al. Effect of solvent type on the nanoparticle formation of atorvastatin calcium by the supercritical antisolvent process
US9249266B2 (en) Supercritical fluid treatment of high molecular weight biopolymers
Zhang et al. High-gravity-assisted emulsification for continuous preparation of waterborne polyurethane nanodispersion with high solids content
Ouyang et al. Preparation and properties of poly (MMA-co-TMPTA)/fragrance microcapsules
CN110124548B (zh) 一种纳米粒子水分散液的制备方法
Daradmare et al. Preparation of eco-friendly alginate-based Pickering stabilizers using a dual ultrasonic nebulizer spray method
US11498980B2 (en) Method for producing cellulose nanofiber and apparatus for producing cellulose nanofiber
JP5813259B1 (ja) 水性エマルジョンの分散性改良方法及び分散性を改良した水性エマルジョン
CN102407028A (zh) 一种连续式超临界流体快速膨胀技术制备聚合物或药物颗粒的方法
US11617718B2 (en) Process for producing a nano-CBD microemulsion system
JP5668209B2 (ja) 複合粒子の粉砕及び分散方法
Cai et al. Effects of processing conditions on the properties of epoxy resin microcapsule
JP5040878B2 (ja) スラリーの製造方法及び製造装置
Prosapio et al. Control of powders morphology in the supercritical antisolvent technique using solvent mixtures
CN113234239A (zh) 一种透明质酸的超临界纳米颗粒制备工艺
JP4568792B1 (ja) 水性樹脂微粒子混合液の製造方法及び製造装置
Gupta et al. Crystal growth and kinetic behaviour of Pseudoalteromonas espejiana assisted biosynthesized gold nanoparticles
JP2004263152A (ja) 超微小気泡を利用したガスハイドレートの製造方法及びこの製造方法により得られる微粒子状のガスハイドレート
JP2022187054A (ja) 低粘度水の製造方法
Cristini et al. Elaboration of ibuprofen microcomposites in supercritical CO2
Iftekhar et al. Methods for synthesis of nanobiopolymers
CN108159001A (zh) 一种超临界压缩流体沉淀法制备雷公藤红素纳米颗粒的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768946

Country of ref document: EP

Kind code of ref document: A1