WO2016152841A1 - Chemical solution injection device - Google Patents

Chemical solution injection device Download PDF

Info

Publication number
WO2016152841A1
WO2016152841A1 PCT/JP2016/058950 JP2016058950W WO2016152841A1 WO 2016152841 A1 WO2016152841 A1 WO 2016152841A1 JP 2016058950 W JP2016058950 W JP 2016058950W WO 2016152841 A1 WO2016152841 A1 WO 2016152841A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
amount
syringe
contrast
contrast agent
Prior art date
Application number
PCT/JP2016/058950
Other languages
French (fr)
Japanese (ja)
Inventor
朝之 座間味
栄光 ▲浜▼
昌幸 傳法
根本 茂
Original Assignee
株式会社根本杏林堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社根本杏林堂 filed Critical 株式会社根本杏林堂
Priority to JP2017508348A priority Critical patent/JPWO2016152841A1/en
Publication of WO2016152841A1 publication Critical patent/WO2016152841A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic

Definitions

  • the present invention relates to a chemical liquid injector that injects a contrast medium into a subject in order to obtain a good contrast effect when a fluoroscopic image of the subject is captured by an image diagnostic apparatus.
  • Examples of medical image diagnostic apparatuses include CT apparatus, MRI apparatus, PET apparatus, angio apparatus, MRA apparatus, and ultrasonic image diagnostic apparatus.
  • CT apparatus CT apparatus
  • MRI apparatus magnetic resonance imaging apparatus
  • PET apparatus PET apparatus
  • angio apparatus angio apparatus
  • MRA apparatus ultrasonic image diagnostic apparatus.
  • a chemical solution such as a contrast medium or physiological saline is often injected into the subject.
  • the contrast agent contains a contrast enhancing agent.
  • these chemical solutions are used by being filled in a syringe, and a chemical solution injection device is generally used to inject the chemical solution filled in the syringe.
  • the syringe has a cylinder and a piston.
  • the chemical injection device has a cylinder holding mechanism that holds the cylinder and a piston drive mechanism that moves the piston, and moves the piston forward by operating the piston drive mechanism while the cylinder is held by the cylinder holding mechanism.
  • injection conditions for the chemical solution are set so that a fluoroscopic image optimal for image diagnosis can be obtained.
  • the contrast agent injection amount is set so that the CT value proportional to the concentration of the contrast agent in blood remains at least a certain value during the imaging period.
  • CT value There is a proportional relationship between the CT value and the contrast agent injection amount, and between the CT value and the contrast agent injection rate.
  • the CT value also has a correlation with the irradiation intensity of the electromagnetic wave from the fluoroscopic imaging device, specifically, the tube voltage that is a voltage applied to the X-ray tube of the CT device, and the lower the tube voltage,
  • the obtained CT value is high. Therefore, an optimal CT value can be obtained with a smaller amount of contrast agent by lowering the set value of the tube voltage.
  • Patent Document 1 describes that the tube voltage of the CT apparatus is taken into account for calculating the injection amount of the contrast agent, and the tube voltage is stepped in accordance with the purpose of imaging, the symptom of the subject, and the like. It can be changed automatically.
  • Patent Document 1 Japanese Patent No. 5416761
  • the contrast agent is usually injected into the blood vessel via a needle punctured into the blood vessel of the subject, and reaches the target site (imaging site) on the blood flow of the subject.
  • the tube voltage is set to a low value and the amount of contrast medium injected is reduced, it is desirable not to change the injection time, so the injection speed is lowered. If the injection volume and injection speed are too low, the contrast medium bolus will not be maintained in the contrast medium until the contrast medium reaches the target site and will diffuse into the blood. CT values could not be obtained.
  • Such a phenomenon can occur in the following situations, for example.
  • the contrast agent is injected from the ulnar cutaneous vein of the arm and flows to the superior vena cava, for example.
  • the superior vena cava merges with the inferior vena cava just before reaching the right ventricle of the heart.
  • the injection amount of the contrast medium is too small or the injection speed is too low, it becomes difficult for the contrast medium to flow into the blood by losing the blood that joins from the inferior vena cava or the blood flow of the superior vena cava itself. It diffuses and the bolus property cannot be maintained.
  • the contrast enhancement agent amount of the contrast agent can be changed according to the irradiation intensity of the electromagnetic wave in the fluoroscopic imaging apparatus, and the contrast agent can reach the target site even with the changed contrast enhancement agent amount.
  • the purpose is to.
  • a chemical liquid injector for injecting a contrast medium prior to image capture when an image is captured using a fluoroscopic imaging apparatus having an electromagnetic wave irradiator.
  • An injection head to which a plurality of syringes are detachably mounted, the plurality of syringes including a contrast medium syringe and a physiological saline syringe, for operating a piston of the contrast medium syringe
  • An injection head comprising: a first piston drive mechanism; and a second piston drive mechanism for operating a piston of the physiological saline syringe; At least one data input interface for accepting data input; Using the data input via the data input interface, the injection amount and injection speed of the contrast medium and the physiological saline are obtained, and the first piston drive mechanism and the injection speed are determined according to the obtained injection amount and injection speed.
  • An injection control unit for controlling the operation of the second piston drive mechanism includes: The injection amount and injection speed of the contrast agent in the case of injecting only the contrast agent were obtained, and when the irradiation intensity value of the electromagnetic wave in the electromagnetic wave irradiator of the fluoroscopic imaging device was different from the specific irradiation intensity value at the time of imaging, it was obtained.
  • a medical solution configured to reduce the injection amount and injection speed of the contrast agent at a predetermined ratio determined according to the irradiation intensity value, and obtain the reduced amount as the injection amount and injection speed of the physiological saline.
  • An infusion device is provided.
  • the injection control unit may operate the first piston driving mechanism and the second piston driving mechanism at the same time according to the obtained injection amount and injection speed, and the injection control unit may further operate the first piston driving mechanism. After the mechanism and the second piston drive mechanism are operated simultaneously, the second piston drive is performed so that the physiological saline is injected at the injection speed determined as the contrast medium injection speed when only the contrast medium is injected. The mechanism may be operated.
  • the present invention also provides a fluoroscopic imaging system, the system comprising: A fluoroscopic imaging device having an electromagnetic wave irradiator; A plurality of syringes including a contrast agent syringe and a saline syringe; An injection head to which a plurality of syringes are detachably mounted, the first piston driving mechanism for operating the piston of the contrast medium syringe, and the piston of the physiological saline syringe An injection head comprising: a second piston drive mechanism; At least one data input interface for accepting data input; Using the data input via the data input interface, the injection amount and injection speed of the contrast medium and the physiological saline are obtained, and the first piston drive mechanism and the injection speed are determined according to the obtained injection amount and injection speed.
  • An injection control unit for controlling the operation of the second piston drive mechanism includes: The injection amount and the injection speed of the contrast agent in the case of injecting only the contrast agent are obtained, and the setting value for the irradiation intensity of the electromagnetic wave emitted from the electromagnetic wave irradiator of the fluoroscopic imaging device at the time of imaging is different from the specific setting value In this case, the obtained contrast medium injection amount and injection rate are reduced at a predetermined ratio determined in accordance with the set value, and the reduced amount is obtained as the physiological saline injection amount and injection rate. Has been.
  • a fluoroscopic imaging device having an electromagnetic wave irradiator, for injecting at least a contrast agent and a physiological saline prior to imaging the image.
  • a plurality of syringes including a contrast medium syringe and a saline syringe; and a first piston drive mechanism for operating a piston of the contrast medium syringe; and the physiological saline
  • a chemical injection device comprising: a second piston driving mechanism for operating a piston of a syringe for injection; and an injection control unit for controlling operations of the first piston driving mechanism and the second piston driving mechanism
  • the injection control unit obtaining an injection amount and an injection speed of the contrast agent when injecting only the contrast agent using predetermined data; and
  • the setting value for the irradiation intensity of the electromagnetic wave irradiated from the electromagnetic wave irradiator of the fluoroscopic imaging device is different from the specific setting value when the injection control unit is imaging, the
  • a plurality of syringes including a contrast medium syringe and a saline syringe; and a first piston drive mechanism for operating a piston of the contrast medium syringe; and the physiological saline
  • a second piston drive mechanism for operating a piston of a syringe for use with a chemical injection device comprising: Obtaining an injection amount and an injection speed of the contrast agent when injecting only the contrast agent using predetermined data; and When the set value for the irradiation intensity of the electromagnetic wave emitted from the electromagnetic wave irradiator of the fluoroscopic imaging device at the time of imaging is different from the specific set value, the determined contrast medium injection amount and injection speed are determined according to the set value. Reducing the amount at a predetermined rate, and determining the reduced
  • the “fluoroscopic imaging device” refers to a device that captures a fluoroscopic image using irradiation of electromagnetic waves, such as a CT device, an angio device, or an MRI device, and the “fluoroscopic imaging device” radiates electromagnetic waves. It has an electromagnetic wave irradiator.
  • the CT apparatus and the angio apparatus have an X-ray tube as an “electromagnetic wave irradiator”, and the MRI apparatus has a high frequency high frequency pulse transmitter that irradiates a high frequency pulse as an “electromagnetic wave irradiator”.
  • a “contrast agent” is administered to a subject when the fluoroscopic image of the subject is captured using a fluoroscopic imaging device in order to capture the image by giving contrast or emphasizing a specific tissue.
  • a fluoroscopic imaging device in order to capture the image by giving contrast or emphasizing a specific tissue.
  • the “contrast enhancer” include iodine (used when imaging an image using a CT apparatus and angio apparatus), gadolinium (used when imaging an image using an MRI apparatus), barium, carbonic acid. Gas etc. are mentioned.
  • the injection amount of the contrast agent is automatically set according to the changed setting value.
  • the contrast agent thus reduced can be appropriately injected into the subject so that a good imaging result by the fluoroscopic imaging apparatus can be obtained.
  • the amount of contrast medium injected is reduced by diluting the contrast medium with physiological saline, the bolus of the drug solution due to the reduction of the contrast medium can be kept good.
  • FIG. 1 is a layout diagram of a fluoroscopic imaging system according to an embodiment of the present invention.
  • FIG. It is a front view of the console shown in FIG. It is a perspective view of the injection head shown in FIG. It is a figure explaining the attachment procedure of the syringe to the injection
  • FIG. 9A It is a figure which shows one form of the extension tube connected to a syringe. It is a figure which shows an example of a setting screen. It is a figure which shows an example of the setting screen at the time of changing a tube voltage value from the state shown to FIG. 9A. It is a figure which shows an example of the setting screen at the time of changing a tube voltage value further from the state shown to FIG. 9B. It is a figure which shows an example of the mixing ratio setting screen in a mixing injection phase.
  • a fluoroscopic imaging system having a fluoroscopic imaging device 200 and a chemical liquid injector 100.
  • the fluoroscopic imaging device 200 and the chemical liquid injector 100 can be connected to each other so that data can be transmitted and received between them.
  • the connection between the fluoroscopic imaging device 200 and the chemical liquid injector 100 can be a wired connection or a wireless connection.
  • the fluoroscopic imaging apparatus 200 includes a scanner 201 that executes an imaging operation and an imaging control unit (not shown) that controls the operation of the scanner 201, and a tomographic image of a subject into which a chemical solution is injected by the chemical injection device 100. Can be obtained.
  • the scanner 201 has an electromagnetic wave irradiator 153 (see FIG. 6) that emits an electromagnetic wave, and the electromagnetic wave irradiator 153 can change the setting of the irradiation intensity of the electromagnetic wave.
  • the imaging control unit can include a display device such as a liquid crystal display capable of displaying imaging conditions and acquired tomographic images, and an input device such as a keyboard and / or mouse for inputting imaging conditions and the like.
  • the display device may have a touch screen that also serves as an input device.
  • the chemical injection device 100 includes, for example, an injection head 110 that is rotatably attached to the upper portion of the stand 121 via a turning arm 122 and various functions for controlling the operation of the chemical injection device 100 as a whole.
  • Console 101 The injection head 110 and the console 101 can be configured as a single housing, but in this embodiment, the injection head 110 and the console 101 are configured as separate units. In this case, the injection head 110 can be arranged in the examination room together with the scanner 201, and the console 101 can be arranged in the operation room together with the imaging control unit of the fluoroscopic imaging apparatus 200.
  • the stand 121 can be a stand with casters to facilitate the movement of the injection head 110.
  • the console 101 has a built-in AC / DC converter, and power converted from AC to DC is supplied to the console 101.
  • the console 101 includes a button group 102 including a stop button 102a for forcibly stopping injection, a home button 102b for displaying a home screen, and a power button 102c for power on / off;
  • the touch panel 103 also serves as an input unit and a display unit.
  • the injection head 110 can be detachably mounted with two syringes 800 as shown in FIGS.
  • one of the syringes 800 can be a contrast medium syringe and the other can be a physiological saline syringe.
  • Syringe 800 has a cylinder in which a chemical solution is stored and a conduit is formed at the tip, and a piston that is inserted into the cylinder so as to be capable of moving forward and backward.
  • the injection head 110 operates in the axial direction of the syringe 800 for operating (for example, pushing into the cylinder) the cylinder holding mechanism 111 that holds the cylinder and the piston of the syringe 800 that holds the cylinder in the cylinder holding mechanism 111. Two linear motion units to be moved are provided.
  • the linear motion unit includes a rod 113 that is moved forward and backward by an appropriate rotational motion conversion mechanism such as a lead screw mechanism or a rack and pinion mechanism that converts the rotational motion of the motor into a linear motion, and a presser 112 that is fixed to the tip of the rod 113. And having.
  • a mechanism having these motor, rotational motion converting mechanism, and linear motion unit (including the rod 113 and the presser 112 and moving linearly) for moving the piston forward and backward is referred to as a piston drive mechanism.
  • the injection head 110 includes two piston drive mechanisms.
  • the cylinder holding mechanism and the piston driving mechanism for the contrast agent syringe are referred to as a first cylinder holding mechanism and a first piston driving mechanism, respectively.
  • the piston drive mechanism is also referred to as a second cylinder holding mechanism and a second piston drive mechanism, respectively.
  • one contrast medium cylinder holding mechanism and one piston drive mechanism are arranged, but a plurality of contrast medium cylinder holding mechanisms and piston drive mechanisms may be provided. Similarly, there may be a plurality of physiological saline cylinder holding mechanisms and piston drive mechanisms.
  • a direct current motor can be used as a motor serving as a drive source of the piston drive mechanism, and a direct current brushless motor can be preferably used among them. Since a brushless motor does not have a brush, it is excellent in silence and durability. In addition, brushless motors can rotate at higher speeds. Therefore, if the external gear ratio is increased to reduce the torque applied to the motor, the current required for injecting the chemical solution at a desired injection pressure is higher than that of the brush motor. Can be made smaller. Or an ultrasonic motor can also be used as a drive source of a piston drive mechanism.
  • the injection head 110 is entirely covered with a synthetic resin casing 115 except for a part of the piston drive mechanism (for example, the presser 112).
  • Several operation buttons 116 are arranged on the upper surface of the housing 115 so that the piston drive mechanism can be operated by a user operation.
  • the injection head 110 includes, as the operation buttons 116, a check button 116a that is operated to make an injection possible state, a start button 116b that is operated when injection is started, and a presser 112 at an arbitrary distance.
  • the forward button 116c that is operated only when moving forward (for example, at a speed of 1.5 ml / sec), when accelerating the moving speed of the presser 112 (for example, adding 8 ml / sec to the current speed. Both buttons can be operated.)
  • the acceleration button 116d and the presser 112 are moved backward by an arbitrary distance (for example, at a speed of 1.5 ml / sec)
  • the backward button 116e and the presser 112 are moved back to the initialization position.
  • Auto-return button 116f that is operated when the operation is stopped manually Others may include a root switch 116h which is operated when advancing / retracting stop button 116 g, the 116h and repressor at a low speed (e.g., 0.7 ml / sec) which is operated to interrupt.
  • a root switch 116h which is operated when advancing / retracting stop button 116 g
  • the 116h and repressor at a low speed e.g., 0.7 ml / sec
  • two forward buttons 116c, two acceleration buttons 116d, one reverse button 116e, and two auto return buttons 116f are provided so that each piston drive mechanism can be operated independently.
  • the initialization position which is the retracted end that is retracted by the operation of the auto return button 116f, is the size of the syringe 800 when the syringe holding mechanism 111 is configured so that the syringe 800 of various sizes can be mounted as described below. It may be set at a different position for each and / or for each kind of chemical liquid filled. Further, when the syringe 800 is configured to be attached via the adapter 600, an initialization position may be set for each type of the adapter 600. The initialization position may be arbitrarily set by the operator according to the type of syringe 800 and / or the type of adapter 600, or may be automatically set by a fluoroscopic imaging system.
  • the initialization position can be set by the fluoroscopic imaging system, for example, as will be described in detail later, if the type of the syringe 800 can be specified using RFID technology, the initialization position is based on the result. Can be set. Further, if the injection head has an appropriate adapter sensor (not shown) capable of detecting the type of adapter 600, the initialization position can be set based on the detection result by the adapter sensor.
  • the most advanced position of the presser 112 may also be set to a position that is different for each size of the syringe 800 and / or for each type of medicinal liquid that is filled, and for each type of the adapter 600.
  • the setting of the most advanced position of the presser 112 may be set arbitrarily by the operator as in the initialization position, or the syringe 800 attached using the RFID technology or an appropriate detection sensor.
  • the type of the adapter 600 and the like can be specified, and the fluoroscopic imaging system can be automatically set according to the specified type of the syringe 800 and / or the adapter 600.
  • the cylinder holding mechanism 111 is configured such that the syringe 800 is attached via the adapter 600.
  • the adapter 600 is prepared for each size of the syringe 800.
  • the adapter 600 is configured so as to hold a cylinder flange 801 formed at the end of the cylinder of the syringe 800 to be fitted. It is detachably attached to the cylinder holding mechanism 111 of the head 110.
  • the syringe 800 is configured to be attached via the adapter 600, but the syringe 800 may be directly attached to the injection head 110 without the adapter 600 being interposed.
  • the syringe 800 can be attached to the injection head 110 by, for example, attaching the adapter 600 to the cylinder holding mechanism 111 of the injection head 110 and then holding the cylinder flange 801 of the syringe 800 on the adapter 600.
  • the adapter 600 has a groove for receiving the cylinder flange 801, and the syringe 800 is held by the adapter 600 when the cylinder flange 801 is inserted into the groove. Further, after the cylinder flange 801 is inserted into the groove of the adapter 600, it may have a lock mechanism that locks the cylinder by rotating the syringe 800 around the axis by a predetermined angle (for example, 90 degrees).
  • a predetermined angle for example, 90 degrees
  • the syringe 800 may be a prefilled type syringe provided from a pharmaceutical manufacturer in a state where the chemical solution is filled, or may be a field-filled type syringe filled with a chemical solution at a medical site.
  • the scanner 201 and the injection head 110 in the above-described configuration are installed in an examination room, and the imaging control unit of the fluoroscopic imaging device 200 and the console 101 of the drug solution injection apparatus 100 are connected to the examination room.
  • the console 101 and the injection head 110 can each include a wireless communication unit (not shown).
  • FIG. 6 shows only main functions of the control system in the fluoroscopic imaging system of the present embodiment, and the present invention is not limited to this.
  • the imaging control unit 152 can be incorporated in, for example, the imaging control unit of the fluoroscopic imaging device 200, and is configured to generally control operations of the fluoroscopic imaging device 200 such as a scanner 201 and a display device of the imaging control unit. .
  • the imaging control unit 152 can be configured as a so-called microcomputer, and can have an interface with a CPU, ROM, RAM, and other devices.
  • a computer program for controlling the fluoroscopic imaging apparatus 200 is installed in the ROM.
  • the CPU controls the operation of each part of the fluoroscopic imaging device 200 by executing various functions corresponding to the computer program.
  • the imaging control unit 152 can receive data and signals from the injection control unit 150, and uses the data and signals received from the injection control unit 150 for controlling the operation of each unit of the fluoroscopic imaging device 200. You can also.
  • the electromagnetic wave irradiator 153 is an apparatus provided in the fluoroscopic imaging device 200 (see FIG. 1), and is configured to irradiate an electromagnetic wave with an intensity corresponding to the applied voltage value when a voltage is applied. ing.
  • a fluoroscopic image of the subject can be taken by performing a predetermined process on a signal obtained by irradiating the subject with electromagnetic waves.
  • the injection control unit 150 can be incorporated into the console 101, for example, and is configured to generally control the operations of the console 101 and the injection head 110. More specifically, the injection control unit 150 controls the screen and data displayed on the display unit 154 in accordance with the input of data and information from the input unit 156 and the input of data and information from the RFID module 166. Alternatively, the injection speed of the chemical solution can be obtained using data input from the input unit 156, or the operation of the piston drive mechanism 140 can be controlled according to the obtained injection speed.
  • the injection control unit 150 can be configured as a so-called microcomputer, and can have an interface with a CPU, ROM, RAM, and other devices.
  • a computer program for controlling the chemical liquid injector 100 is mounted on the ROM.
  • the CPU controls the operation of each part of the chemical solution injector 100 by executing various functions corresponding to the computer program.
  • pouring control part 150 has the time measuring function using the clock which CPU has, for example, can count the present time and the elapsed time after starting injection
  • the injection control unit 150 can also receive data and signals from the imaging control unit 152, and can use the data and signals received from the imaging control unit 152 to control the operation of each unit of the injection imaging apparatus 100. it can.
  • the display unit 154 can be the touch panel 103 of the console 101.
  • the input unit 156 is a data input interface configured to accept a data input operation by an operator among the data input interfaces in the present invention.
  • the input unit 156 can include the touch panel 103, the button group 102 of the console 101, and the button group 116 of the injection head 110.
  • the touch panel 103 is generally a display that functions as the display unit 154, a touch screen that functions as an input unit, and a control circuit thereof.
  • any display including a liquid crystal display and an organic EL display can be used.
  • any touch screen such as a capacitance type and a pressure-sensitive type can be used.
  • the control circuit of the touch panel 103 displays a predetermined screen and data based on the signal transmitted from the injection control unit 150 on the display, and a signal generated from the touch screen when an operator or the like touches the touch screen. Is transmitted to the injection control unit 150.
  • the RFID module 166 has an RFID control circuit 164 and an antenna 165.
  • the RFID tag 802 that is a data carrier is attached to the outer peripheral surface of the cylinder of the syringe 800 (see FIG. 4), and the RFID module 166 uses the antenna 165 to transmit information recorded on the RFID tag 802 to the RFID tag.
  • the information read out from 802 is transmitted to the injection control unit 150.
  • the RFID module 166 may further have a function of writing information transmitted from the injection control circuit 150 to the RFID tag 802.
  • the RFID control circuit 164 controls information transmission / reception operations by the RFID module 166. That is, the RFID module 166 functions as a reader that reads information from the RFID tag 802 or a reader / writer that further writes information to the RFID tag 802.
  • the fluoroscopic imaging system can further include a memory card reader / writer 158 connected to the injection control unit 152 so as to be able to transmit and receive data.
  • the memory card reader / writer 158 can be built in, for example, the console 101 shown in FIG. 2. In this case, a memory card slot 104 is provided in the housing of the console 101 as shown in FIG.
  • the fluoroscopic imaging system may include the memory card reader / writer 158 as an independent unit.
  • the memory card reader / writer 158 writes data to a memory card (not shown) and reads data recorded on the memory card.
  • the injection protocol can be recorded as data in a memory card, and the recorded injection protocol can be read out via the memory card reader / writer 158 and transmitted to the injection controller 150, and vice versa.
  • the injection protocol set in the injection control unit 150 can be written to the memory card via the memory card reader / writer 158. By doing so, for example, an injection protocol set in a certain chemical solution injection device can be transmitted to another chemical solution injection device via the memory card.
  • control program of the chemical solution injection device is recorded on the memory card, and the control program is installed in the injection control unit 150 via the memory card reader / writer 158, or the installed control program is updated. You can also.
  • the memory card may be any memory card such as a CF memory card or an SD memory card, and the memory card reader / writer 158 can use any device suitable for reading and writing of the memory card.
  • the memory card reader / writer 158 can use any device suitable for reading and writing of the memory card.
  • a memory card reader or memory card writer that performs only one may be connected to the injection control unit 150.
  • the RFID module 166 receives data input from the RFID tag 802. In this sense, the RFID module 166, together with the input unit 156, constitutes a data input interface in the present invention.
  • Information recorded on the RFID tag 802 includes information on the chemical solution filled in the syringe 800, for example, the manufacturer, the type of the chemical solution, the product name, the product number, and the contained components (particularly, when the chemical solution is a contrast agent, the contrast medium In addition to the iodine content per unit dosage), filling amount, lot number, expiry date, etc., information on the syringe, for example, a unique identification number such as manufacturer, product name, product number, allowable pressure value, syringe capacity, Examples include piston stroke, required dimensions of each part, and lot number. At least a part of these pieces of information can be transmitted to the fluoroscopic imaging apparatus 200.
  • the RFID control circuit 164 can be installed at an arbitrary position, the antenna 165 is preferably installed at a position facing the RFID tag 802 in a state where the syringe 800 is normally held by the cylinder holding mechanism 111. .
  • the RFID tag 802 has a shape having a longitudinal direction, and is pasted with its longitudinal direction coinciding with the circumferential direction of the syringe 800.
  • the syringe 800 is normally held by being inserted into the cylinder holding mechanism 111, or after being inserted, the syringe 800 is normally held by rotating the syringe 800 in a specific direction, and the syringe 800 is normally held. In this state, the RFID tag 802 is designed to face downward.
  • the antenna 165 of the RFID module 166 has an FPC (flexible printed circuit board) on which a predetermined pattern (for example, one or a plurality of loop patterns) made of a conductor is formed.
  • FPC flexible printed circuit board
  • the syringe 800 is bent and arranged in a circular arc shape so as to be concentric with the syringe 800 at a position facing the RFID tag 802 of the syringe 800 in which the cylinder is normally held by the holding mechanism.
  • the detection range of the RFID tag 802 attached on the curved surface is expanded.
  • the antenna 165 has an area larger than that of the RFID tag 802 so that the RFID tag 802 can reliably face the antenna 165 even if there is a variation in the attachment position of the RFID tag 802. ing. Therefore, the size of the antenna 165 is preferably designed in consideration of variations in the position where the RFID tag 802 is attached to the syringe 800.
  • the antenna 165 preferably includes a ferrite sheet 165a on the surface opposite to the surface facing the RFID tag 802 of the FPC.
  • the output of the RFID module 166 can be set to 200 mW, for example. With such a weak output, it is possible to read data from the RFID tag 802 in a state where the syringe 800 is mounted in a normal position where the RFID tag 802 faces the antenna 165, and the syringe 800 is normal. If it is not attached to the position, it can be prevented from reading. Thereby, when data is not read from the RFID tag 802, the injection control unit 150 warns the operator by displaying on the display unit 154 that the syringe 800 may not be properly mounted. Can be urged.
  • the chemical solution injection device 100 and the fluoroscopic imaging device 200 are turned on, and the chemical solution injection device 100 and the fluoroscopic imaging device 200 are activated.
  • the syringe 800 filled with the chemical solution is attached to the injection head 110 in a predetermined procedure.
  • data / information regarding the syringe 800 and the chemical solution recorded in the RFID tag 802 by the RFID module 166 is read out.
  • two syringes 800 specifically, a contrast agent syringe filled with a contrast agent and a saline syringe filled with a saline solution will be described as being attached to the injection head 110. .
  • connection connectors 401 and 402 are attached to the ends of the tubes connected to the syringes 800C and 800P, and another form of connection connector 403 is attached to the end of the tube toward the subject.
  • connection connectors 401 and 402 may have a cylindrical portion with a thread portion formed at the tip, and may be connected to a conduit portion provided at the tip of the syringes 800C and 800P by a luer lock method.
  • connection connectors 401 and 402 at least the connection connector 402 connected to the physiological saline syringe 800P has a function as a one-way valve, for example, as described in International Publication WO2012 / 060365. It may be anything.
  • An indwelling needle or a catheter (not shown) is connected to the connection connector 403. By using such an extension tube 400, the contrast medium and physiological saline can be injected into the subject simultaneously or separately.
  • the injection control unit 150 displays at least a part of the data / information read from the RFID tag 802 on the display unit 154, or moves the presser 112 to the standby position.
  • the standby position is an arbitrary position between the position where the presser 112 abuts the end of the piston of the syringe 800 and the end position.
  • the injection control unit 150 obtains the end position of the piston based on the information read from the RFID tag 802, and the distance from the initial position, which is the end position of the movable range of the presser 112, to the end position of the piston. And the piston driving mechanism 140 is operated so that the presser 112 moves forward by the distance and an arbitrary offset value determined in advance. Thereby, the presser 112 is moved to the standby position of the piston.
  • the injection control unit 150 creates an injection protocol using the injection speed, the injection amount, the injection time, and the like as parameters based on the data / information acquired from the RFID tag 802 and the data input from the touch panel 103.
  • the created injection protocol is stored in the memory of the injection control unit 150 as control data at the time of drug injection, and the injection control unit 150 controls the operation of the piston drive mechanism 140 according to this control data at the time of drug injection operation.
  • the created injection protocol can be displayed on the touch panel 103 in a graphic or numerical data format. The operator can arbitrarily change the displayed injection protocol. When the operator presses the check button 116a of the injection head 110, preparation for injection is completed.
  • the injection protocol indicates what kind of chemical solution is injected under what conditions (amount, speed, time, etc.). Moreover, when inject
  • FIG. 9A shows an example of an injection condition setting screen displayed on the display unit 154 (for example, the touch panel 103).
  • Various data / information including an imaging region icon 301 and an injection graph thumbnail 302 are displayed on the setting screen 300 illustrated in FIG. 9A.
  • the display of “A” and “B” on the setting screen 300 means a contrast medium and physiological saline, respectively.
  • the imaging part icon 301 is used for display and input of an imaging part, and is displayed as an illustration of a human body image obtained by dividing a supine person into, for example, a head, a chest, an abdomen, and a leg.
  • the tapped section is selected as an imaging region.
  • the names or images of one or more organs included in the section are further displayed (for example, “Heart” and “Lung” when the section is “Chest”) and displayed.
  • the imaging region may be selected by tapping any of the organs.
  • the display of the selected imaging part is changed so that it can be visually distinguished from other parts.
  • FIG. 9A shows a state where the abdomen, in particular, the liver is selected as the imaging region.
  • the imaging region icon 301 is an image that illustrates the state of a person who is supine viewed from the side, but may be an image that represents a state of the person who is supine viewed from above.
  • the orientation of the human body image on the screen may be portrait or landscape.
  • the imaging part icon 301 does not need to be an image imitating a human body, and an arbitrary part such as an imaging part represented only by an image representing an organ, an imaging part represented only by characters, and a combination thereof. It may be.
  • the weight icon 305 is used for displaying and inputting the weight of the subject. For example, when the operator taps the weight icon 305, a numeric keypad is displayed in the vicinity of the weight icon 305, and when the displayed numeric keypad is tapped, or when the weight icon 305 is tapped, the weight icon 305 is displayed.
  • the subject's weight can be input by displaying an increase / decrease icon for increasing / decreasing the numerical value one by one and tapping the increase / decrease icon.
  • the injection time icon 307 is used for display and input of the contrast agent injection time
  • the iodine amount icon 308 is used for display and input of the required iodine amount per body weight of the subject.
  • the injection time is often the same as the imaging time by the fluoroscopic imaging device.
  • the operation for inputting the injection time and the amount of iodine can be the same as in the case of the weight icon 305.
  • default values of the subject's weight, injection time, and iodine amount are stored in the memory of the injection control unit 150, and the default values may be displayed on the respective icons in the initial setting.
  • At least one of these data may be transmitted from an external unit of the chemical solution injector 100 to the injection controller 150, and the transmitted data may be displayed as a corresponding icon and used for setting injection conditions.
  • the external unit include a fluoroscopic imaging device 200, RIS, PACKS, and HIS described later.
  • the pressure limit icon 309 is used for displaying and inputting the pressure limit value of the syringe 800 attached.
  • the pressure limit icon 309 allows the operator to input numerical values in the same manner as the weight icon 305, and when these data are not recorded in the RFID tag 802 or a syringe that does not have the RFID tag 802 When is attached, the operator can input respective numerical values in the same manner as in the case of the weight icon 305.
  • the syringe volume icon 110 displays the remaining volume of the drug solution in the syringe 800 calculated by the injection controller 150 (see FIG. 6) corresponding to the position of the presser 112 (see FIG. 3).
  • the contrast agent icon 311 a name or the like recorded on the RFID tag 802 of the contrast agent filled in the attached syringe 800 is displayed.
  • the timing icon 312 is an icon for causing the chemical injection device to execute test injection.
  • the test injection is an injection of a contrast agent that is performed to determine the imaging start timing of the tomographic image by the fluoroscopic imaging apparatus 200.
  • the injection control unit 150 displays a test injection setting screen on the display unit 154. The operator performs a predetermined setting for the test injection according to the displayed screen, and after the setting, performs a predetermined operation for starting the test injection, so that the injection control unit 150 operates the chemical injection device according to the setting. And thereby a test injection is performed.
  • the route icon 313 is an icon operated when causing the chemical injection device to execute a route test.
  • the route test is a test for confirming whether or not a drug solution distribution path from the syringe 800 to the subject is normally secured.
  • a route test while injecting physiological saline into a subject, a pressure acting on a syringe filled with the physiological saline is detected, and the detected pressure is within a predetermined range. If it is, it is determined that the chemical solution distribution channel is normally secured.
  • the pressure is lower than the predetermined range, liquid leakage or the like in the chemical liquid flow path is considered, and conversely, when the pressure is high, the chemical liquid flow path is clogged.
  • the tube voltage icon 306 is used to input a tube voltage value applied to the X-ray tube (electromagnetic wave irradiator) of the fluoroscopic imaging apparatus.
  • the irradiation intensity of X-rays irradiated from the X-ray tube changes according to the setting of the tube voltage value. That is, it can be said that the tube voltage value is a set value for the X-ray irradiation intensity.
  • the tube voltage value setting itself is performed on the fluoroscopic imaging device side, and the tube voltage value is input here by setting the tube voltage value set on the fluoroscopic imaging device side according to the injection conditions of the contrast medium and physiological saline. This is for use in calculation.
  • the tube voltage value is used when the injection protocol is changed in consideration of the tube voltage when imaging with a tube voltage lower than usual. Therefore, normally, the tube voltage icon 306 is not displayed. For example, the characters “LOW kV” are displayed, and the tube voltage icon 306 is displayed by tapping the portion of the characters “LOW kV”. can do.
  • the fluoroscopic imaging device When the fluoroscopic imaging device is configured to be able to change the setting of the tube voltage value, it is usually configured to select one from a plurality of tube voltage values. Therefore, it is preferable that a value selected from a plurality of tube voltage values is input to the tube voltage icon 306 accordingly. In this case, for example, when the tube voltage value is selected from three values of 120 kV, 100 kV, and 80 kV, the tube voltage icon 306 displays 120 kV, which is the highest value among the three values, as a default value. You can make it.
  • the reason for changing the tube voltage value is that imaging is usually performed with a smaller radiation exposure amount in consideration of the symptoms of the subject.
  • the display of the tube voltage icon 306 is switched in descending order so that the displayed tube voltage value is 100 kV or 80 kV each time the operator taps the tube voltage value icon 306, and the smallest value is displayed. Sometimes when the tube voltage icon 306 is tapped, the largest value can be displayed. In this way, a tube voltage value can be input by a simple operation of the tube voltage icon 306.
  • the injection control unit 150 displays the name of the contrast agent, the amount of iodine required per subject's body weight, the pressure limit value of the syringe 800, the remaining capacity of the drug solution in each syringe 800, the subject's weight, and the injection time of the contrast agent.
  • the name of the contrast agent and the pressure limit value of the syringe 800 are data read from the RFID tag 802 of each syringe 800 and temporarily stored in the memory of the injection control unit 150.
  • the body weight of the subject, the amount of iodine required per body weight of the subject, and the contrast agent injection time are default values stored in advance in the memory of the injection control unit 150, and these values are manipulated as necessary. Can be changed arbitrarily.
  • the memory of the injection control unit 150 also stores iodine content data per unit amount of contrast medium read from the RFID tag 802. At this stage, the tube voltage icon 306 is not displayed.
  • the injection control unit 150 calculates the injection amount L (mL) and the injection speed S (mL / sec) of the contrast agent using these data stored in the memory.
  • the contrast medium injection amount L (mL) is the weight of the subject W (kg), the amount of iodine per kg of the subject I (mgI / kg), and the iodine content per unit amount of contrast medium C (mgI / kg). mL), when the contrast agent injection time is T (sec),
  • the contrast agent injection amount L 120 from Equation (1).
  • ML is calculated
  • S 4.0 (mL / sec) is calculated from Equation (2).
  • the injection control unit 150 can display the calculation result on the setting screen 300 as the injection graph thumbnail 302.
  • the contrast medium injection amount L is calculated using the amount of iodine I required per subject's body weight, but depending on the imaging region (for example, the heart, etc.)
  • the injection amount can also be calculated using the iodine amount I ′ (mgI / kg / sec) required per time. In the calculation of the injection amount in this case, the following formula (1 ′) can be used.
  • the lower limit value of the contrast agent injection amount and injection rate is set in advance in the injection control unit 150, and the injection control unit 150 compares these values with the calculated injection amount and injection rate. A warning may be issued when at least one of the injection amount and the injection rate is smaller than a preset value.
  • the lower limit value of the contrast agent injection amount set in the injection control unit 150 can be preferably 30 ml, and more preferably 50 ml.
  • the lower limit value of the contrast agent injection speed set in the injection control unit 150 can be preferably 3 ml / sec, and more preferably 5 ml / sec. These lower limit values may be set for each imaging region, or may be arbitrarily changed by the operator.
  • the warning may be displayed on the display unit 154 (at least one of them if there is a second display unit as will be described later) with characters or graphics, or a sound generator such as a buzzer or a speaker. And a warning by sound from the sound generator may be used.
  • the injection control unit 150 uses this signal as a trigger to read various data stored in the memory.
  • the operation of the piston drive mechanism 140 is controlled so that the piston drive mechanism 140 operates according to the read and determined injection protocol. Thereby, the chemical
  • imaging may be performed with a lower tube voltage in order to suppress the exposure dose of the subject during imaging.
  • the injection protocol can be set in consideration of the tube voltage value.
  • the setting of the injection protocol in consideration of the tube voltage can be performed at a stage where all the data necessary for setting the injection protocol are input and the injection protocol has not been determined.
  • the operator taps the character portion of “LOW kV” displayed on the setting screen 300. Then, a tube voltage icon 306 is displayed below the characters “LOW kV”. In the initial state, the tube voltage icon 306 displays a normal tube voltage value at the time of imaging with the fluoroscopic imaging device to be used, for example, “120 kV”.
  • the tube voltage value displayed on the tube voltage icon 306 is changed to 100 kV (see FIG. 9B), and further tapped to 80 kV (see FIG. 9C).
  • the injection controller 150 sets an injection protocol according to this tube voltage value.
  • an injection protocol in which contrast medium and physiological saline are injected at the same time that is, the amount of contrast medium is reduced, and the amount of the contrast medium is reduced by physiological saline.
  • a diluted dilution injection protocol is set up.
  • the ratio of the contrast agent is increased as the tube voltage value is lower (in other words, the ratio of the contrast agent is lower). It may be stored in advance or may be calculated by the injection control unit 150.
  • the injection controller 150 calculates the ratio of the contrast agent and the physiological saline, for example, the ratio of the contrast agent injection amount to the total injection amount of the contrast agent and the physiological saline is changed after the change to the normal tube voltage value.
  • the ratio between the contrast agent and the physiological saline can be calculated so as to be approximately equal to the ratio of the tube voltage value.
  • the ratio of contrast medium and physiological saline is determined as shown in the following table according to the tube voltage value.
  • the calculated contrast agent injection amount and injection rate are reduced by a predetermined ratio determined in advance according to the tube voltage value. Is calculated as the amount of saline injected and the rate of injection.
  • the injection controller 150 determines the ratio of contrast medium 0.8 and physiological saline from the table.
  • the ratio 0.2 is read out.
  • the injection amount and injection speed of the contrast agent are calculated by the injection control unit 150 as values obtained by multiplying the injection amount and injection speed of the contrast agent when the contrast agent alone is injected by 0.8 times.
  • the injection amount and the injection speed of the physiological saline are calculated as values obtained by multiplying the injection amount and the injection speed of the contrast medium when the contrast medium alone is injected by 0.2 times.
  • the injection control unit 150 determines from the table that the ratio of the contrast medium is 0.6 and the ratio of the physiological saline is 0.4. Respectively.
  • the injection amount and injection speed of the contrast agent are calculated by the injection control unit 150 as values obtained by multiplying the injection amount and injection speed of the contrast agent when the contrast agent alone is injected by 0.6.
  • the injection amount and the injection speed of the physiological saline are calculated as values obtained by multiplying the injection amount and the injection speed of the contrast agent when the contrast agent alone is injected by 0.4 times.
  • Table 1 shows a case where the tube voltage value is changed from 80 kV to 120 kV with a change width of 20 kV, but the range and change width of the tube voltage value vary depending on the manufacturer and / or specification of the fluoroscopic imaging device.
  • the range of the tube voltage value can be set arbitrarily from 70 kV to 140 kV, or the change width can be set to 5 kV or 10 kV.
  • the range of the tube voltage value and the setting of the change width may be changed by the operator, or a value corresponding to the manufacturer and / or specification of the fluoroscopic imaging device is preset in the memory of the injection control unit 150. It may be automatically changed by the operator specifying the manufacturer and / or specifications.
  • the ratio between the contrast medium and the physiological saline according to the tube voltage value shown in Table 1 is also arbitrary depending on the manufacturer and / or specification of the fluoroscopic imaging device, as well as the range and change width of the tube voltage value. Can be changed.
  • a fluoroscopic imaging apparatus when imaging is performed with a low tube voltage value (low dose), the S / N ratio tends to be small and noise tends to increase.
  • a fluoroscopic imaging apparatus generally performs image processing using a successive approximation method or image processing using a successive approximation method during image reconstruction. This image processing is different for each manufacturer of the fluoroscopic imaging device, and even for the same manufacturer, it may be different for each grade of the fluoroscopic imaging device.
  • the image quality such as the sharpness of the image obtained when the chemical solution is injected under the same injection conditions differs depending on the image processing to be performed.
  • a table as shown in Table 1 is prepared for each manufacturer and / or specification of the fluoroscopic imaging device in the memory of the injection control unit 150, and the injection control unit 150 is provided by the operator.
  • the injection control unit 150 causes the display unit 154 to display a screen for accepting the input of the manufacturer and / or specification of the fluoroscopic imaging device.
  • the operator can specify the manufacturer and / or specification of the fluoroscopic imaging device.
  • the injection control unit 150 can specify the information by receiving information on the manufacturer and / or specifications from the fluoroscopic imaging device.
  • specific numerical values can be displayed on the injection graph thumbnail 302 of the setting screen 300 as the calculation result.
  • the operator confirms the displayed calculation result and taps the check icon 314 or operates the check button 116a of the injection head 110, whereby the injection protocol is set in the injection control unit 150 and the preparation for injection is completed. .
  • the injection protocol set in the injection control unit 150 may be transmitted to the fluoroscopic imaging apparatus 200.
  • the tube voltage value input to the injection control unit 150 may be input by transmitting the tube voltage value set by the fluoroscopic imaging device 200 from the fluoroscopic imaging device 200 to the injection control unit 150.
  • the injection control unit 150 calculates the injection amount and the injection speed of the contrast agent according to the tube voltage value transmitted from the fluoroscopic imaging device 200, and further, the injection amount and injection of the physiological saline as necessary. The speed can be calculated.
  • a desired CT value is secured by reducing the amount of contrast medium injected in accordance with the tube voltage value.
  • the physical load on the subject can be reduced.
  • the injection volume and injection speed of the entire drug solution including the contrast medium and physiological saline are constant regardless of the tube voltage value, the fluidity of the injected drug solution in the blood vessel of the subject greatly changes. None do. Therefore, since the injection amount has decreased, it is extremely unlikely that a problem such as the difficulty of reaching the desired site of the chemical solution or the time required to reach it will be possible, and a good image can be taken. .
  • the dilution ratio of the contrast medium with physiological saline is changed according to the imaging conditions such as the tube voltage value, it is not necessary to prepare syringes with various contrast medium concentrations.
  • the injection control unit 150 is for the physiological saline. Only the piston drive mechanism may be driven to inject only physiological saline, and the contrast medium may be boosted with physiological saline. At this time, it is preferable that the injection rate of the physiological saline is an injection rate that is equal to the injection rate of the contrast agent obtained when the contrast agent alone is injected.
  • the injection control unit 150 determines the amount of contrast medium calculated by the above-described formula (1), formula (1 ′), etc.
  • the iodine concentration in the calculated contrast agent amount is calculated from the diluted contrast agent amount diluted in step 1) and the iodine content per contrast agent unit amount, and the contrast agent amount and iodine concentration are displayed on the display unit 154, for example. be able to.
  • the operator then fills the empty syringe with the calculated amount of contrast medium mixed with physiological saline so as to obtain the calculated iodine concentration using an arbitrary chemical solution filling device.
  • a syringe filled with a contrast agent in this manner and injecting a chemical solution by a chemical solution injection device, it becomes possible to inject a contrast agent according to the tube voltage value.
  • the contrast medium amount and iodine concentration are transmitted from the injection control unit 150 to the drug solution filling device, and the drug solution filling device fills the syringe with the contrast agent amount and iodine concentration according to the transmitted data.
  • the contrast agent can be mixed with physiological saline and filled into a syringe.
  • the syringe filled with the contrast medium in the liquid medicine filling apparatus is attached to the liquid medicine injection apparatus, and the contrast medium (diluted contrast medium) in the attached syringe is injected, so that the contrast medium according to the tube voltage value is obtained. Can be injected.
  • the injection control unit 150 transfers the contrast agent to the memory card via the memory card reader / writer 158 described above.
  • the amount and the iodine concentration are recorded, and the chemical solution filling apparatus can be performed by reading the contrast agent amount and the iodine concentration from the memory card in which these data are recorded.
  • the injection control unit 150 and the chemical solution injection device are connected via an appropriate network so that data can be transmitted and received, the data can be transmitted via the network.
  • the contrast medium amount and iodine concentration can be recorded as data on the RFID tag.
  • a writer or reader / writer for the RFID tag can be used.
  • the writer or the reader / writer may be included in the chemical liquid filling device, or may be a separate unit from the chemical liquid filling device.
  • the injection controller 150 calculates the contrast agent amount and the iodine concentration, and then includes the manufacturer and the product name of the commercially available prefilled syringe in the contrast agent such as the iodine content and the iodine concentration per contrast agent unit amount.
  • the display unit 154 can display the manufacturer, product name, capacity, and the like of the closest prefilled syringe or syringes.
  • the injection controller 150 may have a database (or table) of prefilled syringes. It may be outside the injection control unit 150.
  • the phase (A) in which only the above-described contrast agent is injected and the physiological saline after the contrast agent injection phase Including an injection phase (A ⁇ B), a mixed injection phase (A + B) in which a contrast medium and a physiological saline solution are injected at the same time.
  • “ ⁇ ” means that the operation before and after the operation is continuously performed, and the injection before and after “ ⁇ ” is in a different phase.
  • “P” represents an interval operation that moves to the next step after an elapse of a set arbitrary time
  • “H” represents a pause operation that does not move to the next step until a predetermined operation is performed.
  • each injection mode includes an injection mode that includes a mixed injection phase of contrast medium and physiological saline.
  • the mixing ratio of the contrast medium and physiological saline is arbitrarily set.
  • FIG. 10 shows an example of the mixing ratio setting screen in the injection mode including the mixing injection phase.
  • the example shown in FIG. 10 shows the mixing ratio setting screen 350 in the injection mode “(13) A ⁇ (A + B)” among the above injection modes.
  • the injection mode is not limited to the above injection modes (1) to (15). Further, for example, after the injection of the physiological saline (B), any one of the above injection modes (1) to (15) can be executed with the interval (P) or the temporary stop (H) interposed therebetween. is there.
  • the mixing ratio setting screen 350 shown in FIG. 10 can include an injection graph 351, a mixing ratio icon 352, and an injection condition icon 353, and is currently displayed by a predetermined operation by the operator during the injection condition setting operation. It can be displayed on the screen.
  • the injection graph 251 is a graph in which the horizontal axis indicates the injection time and the vertical axis indicates the injection speed.
  • the injection of the chemical solution is performed simultaneously with the contrast agent and the physiological saline after the injection of the contrast agent (A). It is schematically shown that it consists of two phases of (A + B) to be injected.
  • the injection speed and the injection amount of the chemical solution in each phase are represented by numerical values.
  • the mixing ratio icon 352 displays the mixing ratios of the contrast medium (A) and the physiological saline (B). Each time one of the numerical values is tapped, the numerical value increases by one, and the other numerical value is displayed. Decreases by one.
  • the injection condition icon 353 indicates the injection speed and injection amount of the contrast medium and physiological saline when the contrast medium and physiological saline are injected at the mixing ratio displayed in the mixing ratio icon 352 in the mixed injection phase of this injection mode. Is displayed.
  • the injection control unit 150 controls these displays. The operator checks the numerical value of the mixing ratio displayed on the mixing ratio icon 352 and taps the approval icon 354 if the numerical value is acceptable.
  • the injection control unit 150 receives this approval input operation, and when an input is made, sets the numerical value displayed on the mixing ratio icon 352 as the mixing ratio of the contrast medium and the physiological saline.
  • the mixing ratio setting screen 350 can be turned off by a predetermined operation by the operator. Thereafter, other injection conditions can be set according to a normal injection condition setting procedure.
  • the contrast agent may be injected at a constant injection rate or may be injected at an injection rate that changes with time.
  • the contrast medium and physiological saline may be injected at a constant injection rate, respectively, or the contrast medium and the physiological saline are each changed over time during the mixed injection phase. It may be injected at a rate.
  • the change in infusion rate over time can be a linear change in which the infusion rate increases or decreases over time.
  • the linear change rate ie, the slope in the graph with the horizontal axis as the elapsed time and the vertical axis as the injection speed, may be constant during the injection phase or may change at least once. Good.
  • the total injection rate of the contrast agent injection rate and physiological saline injection rate is It is preferable that it is constant. Also, the total injection rate is preferably equal to the injection rate in those injection phases if there are other injection phases before and / or after the admixing injection phase.
  • the CT value can be increased more effectively and / or the high CT value can be maintained for a relatively long time. it can. Therefore, the injection phase including changing the injection speed of the contrast agent with time is particularly effective in examinations having a relatively long scan time, such as examination of blood vessels including the heart system.
  • the blended injection phase can also include multiple sub-phases, such as a sub-phase where the injection rate is constant and a sub-phase where the injection rate changes over time.
  • An example is shown in FIG. 10A.
  • the example shown in FIG. 10A is an example of the injection mode “(11) (A + B) ⁇ B” among the above injection modes.
  • the contrast medium and the physiological saline are injected at a constant rate.
  • the contrast agent is injected at a constant injection rate higher than that of physiological saline, and the physiological saline is injected at a constant injection rate lower than that of the contrast agent.
  • the contrast agent increases in injection rate at a constant rate over time, while saline decreases in injection rate at a constant rate over time Then, the contrast agent injection rate becomes zero at the end of the second subphase.
  • the sum of the contrast agent injection rate and the saline injection rate is constant, and the contrast agent injection rate and the saline injection rate in the first sub-phase are Equal to the sum of After the mixed injection phase including the first subphase and the second subphase, only the physiological saline is injected as the next injection phase.
  • the saline is injected at a constant injection rate equal to the total injection rate of the contrast agent injection rate and the saline injection rate in the blended injection phase.
  • the injection control unit 150 can also obtain an appropriate tube voltage value according to the mixing ratio of the contrast agent and physiological saline.
  • the tube voltage value corresponding to the mixing ratio for example, referring to the table shown in Table 1, the tube voltage value corresponding to the mixing ratio that is the same as or closest to the set mixing ratio is obtained as an appropriate tube voltage value. Or by referring to a table in which tube voltage values corresponding to the mixing ratio are determined.
  • the tube voltage value corresponding to the mixing ratio may be obtained using the expression.
  • the obtained tube voltage value may be transmitted from the injection control unit 150 to the imaging control unit 152 as a recommended tube voltage value regardless of the presence or absence of dilution and the presence or absence of mixing.
  • the imaging control unit 152 that has received the recommended tube voltage value can change the tube voltage value of the X-ray tube accordingly.
  • the tube voltage value may be changed by an operator's operation.
  • a contrast medium When a contrast medium is injected as a drug solution, the contrast effect of the contrast medium varies among subjects.
  • a test injection in which a chemical solution is injected with an injection amount smaller than the injection amount for the imaging prior to the injection for tomographic image acquisition by the fluoroscopic imaging device 200 And imaging timing is determined based on the result.
  • the injection operation of the chemical solution after the test injection can be started when the injection control unit 150 receives a command transmitted from the fluoroscopic imaging device 200 from the imaging control unit 152.
  • the fluoroscopic imaging device 200 takes a tomographic image displayed on the monitor of the fluoroscopic imaging device 200 with a CCD camera (not shown), monitors the brightness (whiteness) of the tomographic image in the ROI, and the brightness.
  • To start the injection operation when the signal intensity exceeds the predetermined threshold or when the signal strength from the cable connected to the monitor is measured and the measurement result exceeds the predetermined threshold Can be transmitted to the injection control unit 150.
  • the CT value and TDC Time Density Curve
  • the injection protocol is determined according to the result. Then, an optimal start of imaging suitable for it may be transmitted from the chemical injection device 100 to the fluoroscopic imaging device 200.
  • the fluoroscopic imaging apparatus 200 is an X-ray CT apparatus.
  • an angio apparatus MRI Any fluoroscopic imaging apparatus that uses irradiation of electromagnetic waves to acquire an image, such as an apparatus, an MRA apparatus, a PET apparatus, and an ultrasonic diagnostic imaging apparatus may be used.
  • the fluoroscopic imaging apparatus 200 is an apparatus other than the X-ray CT apparatus, the configuration, screen display, operation procedure, operation, and the like of the chemical solution injection apparatus 100 may be appropriately changed as necessary.
  • the MRI apparatus has a high-frequency pulse transmitter that irradiates a high-frequency pulse as an electromagnetic wave irradiator, and the high-frequency pulse transmitter changes the irradiation intensity of the high-frequency pulse by setting. can do.
  • the injection control unit 150 determines that the irradiation intensity of the high-frequency pulse set in the electromagnetic wave irradiator is higher than the specific irradiation intensity.
  • the contrast medium is diluted with physiological saline.
  • the specific procedure of this process can be the same as the procedure described above, except that the relationship between the intensity of electromagnetic wave irradiation intensity set in the electromagnetic wave irradiator is reversed from that in the case of the X-ray CT apparatus.
  • the imaging control unit 152 has been incorporated into the imaging control unit, and the injection control unit 150 has been incorporated into the console 101 of the chemical solution injector 100.
  • both the imaging control unit 152 and the injection control unit 150 may be incorporated in the imaging control unit, the imaging control unit 152 and the injection control unit 150 may be both incorporated in the console 101, or imaging may be performed.
  • Both the control unit 152 and the injection control unit 150 may be incorporated in a programmable computer device (not shown) different from the imaging control unit and the console 101. By doing so, the console 101 of the chemical injection device 100 or the console of the fluoroscopic imaging device 200 becomes unnecessary, and the entire system can be simplified.
  • a specific function of the injection control unit 150 can be incorporated in a unit different from the remaining other functions.
  • an injection protocol determination (calculation) function can be incorporated in the imaging control unit of the fluoroscopic imaging apparatus 200, and the remaining other functions can be incorporated in the console 101 of the chemical solution injection apparatus 100.
  • the function of the imaging control unit 152 and the function of the injection control unit 150 can be realized by using various hardware as required, but the main body is realized by the function of the CPU corresponding to the computer program.
  • the computer program is at least part of the procedure described above, for example, Obtaining an injection amount and an injection speed of the contrast agent when injecting only the contrast agent using predetermined data; and When the set value for the irradiation intensity of the electromagnetic wave emitted from the electromagnetic wave irradiator of the fluoroscopic imaging device at the time of imaging is different from the specific set value, the determined contrast medium injection amount and injection speed are determined according to the set value.
  • the injection head 110 and the console 101 can be configured integrally.
  • the console 101 and the injection head 110 are integrally formed, the console 101 is also arranged in the examination room. Therefore, the remote controller 102 (see FIG. 1) can be used to start and stop the injection operation. By using the remote controller 102, the operator can control the start and stop of the injection operation in the operation chamber.
  • the syringe may be as shown in (a) and (b) of FIG.
  • This syringe can be for example 100 ml.
  • This syringe includes a cylinder member 501 and a piston member 502.
  • a cylinder flange 501a formed at the end of the cylinder member 501 has an I-cut contour, and two notches are provided on the outer periphery of the flange 501a.
  • a portion 505 (only one is shown) is formed.
  • the conduit portion 501b at the tip of the cylinder member 501 may be for luer lock connection having two inner and outer cylindrical portions arranged coaxially.
  • a ring-shaped protrusion 501c may be formed on the rear surface of the cylinder flange 501a.
  • a syringe as shown in FIGS. 12A and 12B may be used, and this syringe can be for 200 ml, for example.
  • this syringe also includes a cylinder member 501 and a piston member 502, and a cylinder flange 501a formed at the end of the cylinder member 501 may have an I-cut contour.
  • Two notches 505 are formed on the outer periphery of the cylinder flange 501a.
  • the conduit portion 501b at the tip of the cylinder member 501 may be for luer lock connection having two inner and outer cylindrical portions arranged coaxially.
  • a ring-shaped protrusion 501c and a plurality of ribs 501d extending outward from the protrusion 501c may be formed on the rear surface of the cylinder flange 501a.
  • the cylinder flange 501a is shown with both the notch 505 and the rib 501d formed, but only one of them is formed (for example, the notch 505 is formed). May not be).
  • the rib 501d may have a shape in which only two upper and lower ribs are left out of the plurality of ribs arranged in the vertical direction in the figure, and the other ribs are omitted.
  • Such a rib group may be a syringe formed on only one of the left and right sides of the flange portion.
  • the adapter to which the syringe having the notch 505 is attached to the cylinder flange 501a has a groove into which the cylinder flange 501a is inserted from above with the cylinder flange 501a inserted.
  • a cylinder is hold
  • an uneven load due to the syringe being mounted obliquely hardly occurs, and liquid leakage due to a gap between the piston and the cylinder can be prevented.
  • 11 and 12 may also have an RFID tag on the outer peripheral surface of the cylinder, similar to the syringe 800 described above.
  • the chemical solution injection device may further include a load cell for detecting the injection pressure.
  • the load cell can be provided in the presser 112, for example. As shown in FIG. 3, when a plurality of pressers 112 are included, at least one of them may have a load cell.
  • the injection pressure can also be detected by measuring the motor current. When the load acting on the presser 112 increases, the motor current that is the drive source of the piston drive mechanism 140 increases in accordance with the magnitude of the load. This is used for detecting the injection pressure using the motor current.
  • the detection of the injection pressure may be either one of detection using a load cell and detection using a motor current, or both may be used in combination. When both are used together, the injection pressure is usually detected by the load cell, and the injection pressure can be measured using the measurement result of the motor current only when the load cell fails.
  • the extension tube is preferably equipped with a mixing device that allows the contrast agent and physiological saline to be mixed well.
  • a mixing device that allows the contrast agent and physiological saline to be mixed well.
  • the extension tube includes a first tube 231a that connects the syringe filled with the contrast medium and the mixing device 241; a second tube 231b that connects the syringe filled with the physiological saline and the mixing device 241; And a third tube 231c connected to a liquid outlet (detailed below) of the mixing device 241 and extending toward the patient.
  • the first and second tubes 231a and 231b may be connected to the conduit portion of the syringe via the connection connectors 239a and 239b, respectively.
  • the third tube 231c may be connected to a catheter or the like via the connection connector 239c.
  • priming for the purpose of air bleeding is performed before the chemical solution is injected by the chemical solution injector.
  • the extension tube is filled with either a physiological saline solution or a contrast medium. Specific examples include the following: (A) First, the contrast medium is pushed out from the contrast medium syringe, and the first tube up to the mixing device is filled with the contrast medium. Then, the physiological saline is pushed out from the physiological saline syringe, and the second tube, the mixing device, the third tube, and the catheter are filled with the physiological saline. As a result, the entire circuit is filled with the chemical solution and the air is removed.
  • the chemical injection device may have a function for automatically performing the priming operation as described above, and the trigger for starting the priming operation may be an input operation by an operator, for example.
  • the mixing device 241 includes a first chamber that is a swirl flow generation chamber 242a that generates a swirl flow, and a second chamber that is a constriction chamber 242b that concentrates the swirl flow in the axial direction.
  • a main body 242 is provided.
  • the swirl flow generation chamber 242a has a cylindrical inner space
  • the constriction chamber 242b has a conical inner space coaxial with the swirl flow generation chamber 242a.
  • the cross-sectional shape in the short direction of the swirl flow generating chamber may be various shapes formed from a circle, an ellipse, or other curves.
  • the swirl flow generation chamber can be configured to have a narrowed shape that narrows as it approaches the narrowed chamber.
  • a conduit portion 243a to which the first tube 231a is connected is provided on the upstream side of the main body portion 242 of the mixing device 241, and a conduit portion 243c to which the third tube 231c is connected is provided on the downstream side.
  • the conduit portion 243b to which the second tube 231b is connected is disposed at a position upstream from the center of the swirl flow generation chamber 242a (details below).
  • the contrast agent flows from the conduit portion 243a and the physiological saline flows from the conduit portion 243b, and both drug solutions are mixed in the mixing device. Thereafter, the mixed drug solution of the contrast medium and physiological saline flows out from the conduit portion 243c as a liquid outlet.
  • the conduit portion 243a into which a high specific gravity chemical solution flows is provided in the central portion of the upstream side wall surface of the swirl flow generation chamber 242a on the upstream side in the flow direction.
  • the conduit portion 243c serving as the liquid outlet is provided so that the center line of the conduit portion 243c and the center line of the conduit portion 243a coincide, that is, both are coaxial.
  • the conduit portion 243b into which the chemical liquid having a small specific gravity flows is arranged on the side surface of the swirl flow generation chamber 242a and extends in the tangential direction of the circumference of the swirl flow generation chamber 242a having a circular cross section.
  • the conduit portion 243b is provided at a position shifted to the peripheral side from the central axis of the cylindrical space included in the swirl flow generation chamber 242a, and thereby, the chemical liquid having a small specific gravity flowing from the conduit portion 243b.
  • the swirl flow is generated. More specifically, as shown in FIG.
  • the flow path 241fb is configured to extend in the circumferential tangential direction of the curved inner surface of the swirl flow generation chamber 242a, and thus flows from this flow path.
  • the chemical becomes a swirl flow.
  • the constriction chamber 242b has an inclined inner surface that swells toward the downstream side in the flow direction, so that the generated swirling flow is concentrated in the direction of the central axis of the vortex. Become.
  • the conduit portion 243a into which the contrast agent flows is in communication with the swirling flow generation chamber 242a through the flow path 241fa.
  • the chemical liquid having a large specific gravity can be introduced into the swirling flow generating chamber in a direction parallel to the central axis of the swirling flow of the chemical liquid having a small specific gravity. That is, the chemical liquid having a large specific gravity is introduced in a direction parallel to the central axis of the cylindrical space included in the swirl flow generation chamber.
  • the conduit part into which the physiological saline flows is in communication with the swirl flow generation chamber via the flow path 241fb.
  • the inner diameter of the flow path 241fb may be smaller than the inner diameter of the flow path 241fa into which the contrast agent flows.
  • the mixing device 241 configured as described above, for example, when a contrast medium and physiological saline are flowed into the device, the contrast medium that has flowed into the swirl flow generation chamber from the flow path 241fa flows toward the downstream side in the axial direction. Become.
  • the physiological saline flowing into the swirl flow generation chamber from the flow path 241fb becomes a swirl flow swirling along the curved inner surface of the same chamber, and the swirl flow of the physiological saline is guided to the stenosis chamber and swirls. Concentrate in the direction of the central axis of the flow.
  • a vortex is known as a Rankine vortex, and the inertial force of the swirling flow can be concentrated in the vicinity of the rotation axis of the vortex.
  • both chemicals will be mixed well. That is, in this example, it is possible to obtain a diluted contrast agent in which the contrast agent and physiological saline are well mixed, and as a result, there is no unevenness in the concentration of the contrast agent. Therefore, an excellent contrast effect can be expected.
  • the fluoroscopic imaging system can include a second display unit A151 as shown in FIGS. 14A and 14B separately from the display unit 154 (the touch panel 103 provided in the console 101).
  • the injection head 110 is arranged in the examination room together with the fluoroscopic imaging apparatus 200, and the console 101 is often arranged in an operation room adjacent to the examination room.
  • Various settings relating to the injection of the chemical solution are performed by the operator appropriately operating the console 101 disposed in the operation chamber.
  • the injection needle is inserted into the subject or the catheter is inserted, The operator performs various operations in the examination room for air removal and operation check of the injection head 110.
  • the second display unit A151 is preferably disposed in the examination room so that the operator can check the injection conditions without moving to the operation room.
  • the second display unit A151 displays various data relating to the injection of the chemical solution, for example, the imaging target site, the subject's weight, the injection rate of the chemical solution, the injection amount of the chemical solution, the type of the chemical solution to be injected, the injection protocol of the chemical solution, etc. can do.
  • These display formats may be arbitrary and may be displayed on the same screen as the touch panel 103 provided in the console 101 or may be displayed on a different screen.
  • the injection condition setting screen described with reference to FIGS. 9A to 9C can be displayed.
  • a message or an icon can be displayed.
  • the second display unit A151 is preferably a touch panel.
  • the second display unit A151 is used as a touch panel so that data input for setting injection conditions and the like, and operation of starting and stopping the operation of the injection head 110 can be performed from the second display unit A151.
  • the operator can change the injection condition on the spot without returning to the operation room.
  • changing the injection conditions or stopping the injection for example, when the subject's physical condition is not good and it is judged that the injection conditions should be relaxed rather than the normal injection conditions, For example, when leakage occurs.
  • the second display unit A151 is not a touch panel, if the second display unit A151 is provided with an appropriate operation switch, the injection condition is set and / or changed by operating the operation switch. be able to.
  • the second display unit A151 is preferably arranged in the vicinity of the injection head 110, particularly in the examination room.
  • the second display unit A151 can be provided integrally with the injection head 110 or provided on a member that supports the injection head.
  • FIG. 14A an example of the second display unit A151 provided integrally with the injection head 110 is shown.
  • FIG. 14B the injection head 110 and the second display unit A151 are supported by the head support structure A158.
  • the head support structure A158 may be a part of a known movable stand or a part of an articulated support arm assembly fixed to the ceiling. As shown in FIG.
  • the support arm assembly 160 can include, for example, a base portion 161 fixed to the ceiling and an articulated arm portion 163 extending from the base portion 161.
  • the second display unit A151 is attached to an intermediate portion of the arm portion 163 that extends in the vertical direction and to which the injection head 110 is attached at the lower end portion.
  • the second display unit A151 is connected to the head support structure A158 via the coupling mechanism A155.
  • the second display unit A151 may be positioned above the injection head 110 at a distance from the injection head 110.
  • the coupling mechanism A155 may hold the injection head 110 so that the injection head 110 can rotate around the vertical axis and / or the horizontal axis.
  • the connection between the second display unit A151 and the injection head 110 and / or the console 101 may be a wired connection via a cable or a wireless connection.
  • the orientation of the second display unit A151 can be adjusted in a wide range in the vertical and horizontal directions regardless of the orientation of the injection head 110, so that the operator can adjust the second display unit A151. Will be easier to see.
  • the second display unit A151 is disposed at an optimum position where the influence of noise on the injection head 110 and other devices is difficult. Can do.
  • the second display unit A151 wirelessly connected, noise propagation through the cable can be prevented.
  • the fluoroscopic imaging system in addition to the chemical solution injection device 100 and the fluoroscopic imaging device 200, a heater 900 that warms the syringe 800 before use to a predetermined temperature, and a used and discarded unit.
  • a disposal box 910 for storing the syringe 800 to be stored may be further included.
  • the warmer 900 and the disposal box 910 may be devices independent of the chemical solution injection device 100 and the fluoroscopic imaging device 200, or may be connected to at least one of them via a network so that data communication is possible. .
  • the heater 900 and the disposal box 910 may also be independent from each other or may be connected via a network so that data communication is possible.
  • Each of the heater 900 and the disposal box 910 can include reader / writers 902 and 912 for reading information recorded in the RFID tag 802 and writing information to the RFID tag 802.
  • Information indicating that the RFID tag 802 of the syringe 800 is heated by the reader / writer 902 is recorded in the syringe 800 by being heated by the heater 900.
  • information indicating that the syringe 800 is discarded is recorded in the RFID tag 802 by 912.
  • the fluoroscopic imaging system may further include a chemical filling device 920.
  • the chemical liquid filling device 920 is an apparatus that is equipped with an empty syringe that is not filled with a chemical liquid and that can be filled with the chemical liquid.
  • the chemical solution filling device 920 may also be an independent device from the chemical solution injection device 100, the fluoroscopic imaging device 200, the warmer 900, and the disposal box 910, or connected to at least one of these devices via a network so that data communication is possible. May be.
  • a chemical liquid container 930 such as a bag and a bottle containing a chemical liquid is connected so as to be in fluid communication with a tube or the like in a state where the piston is at the most advanced position.
  • the empty syringe can be filled with the chemical solution by retracting the piston by the chemical solution filling device 920. It is preferable that an RFID tag as a data carrier is attached to the empty syringe.
  • the empty syringe is described as being the syringe 800 before being filled with the chemical solution to which the RFID tag 802 is attached.
  • the chemical solution container 930 is also equipped with an RFID tag 932 as a data carrier.
  • the RFID tag 932 relates to a chemical solution such as the type, content, pharmaceutical manufacturer, product number, viscosity, expiration date, iodine content per unit contrast agent amount when the chemical solution is a contrast agent. Information is recorded as data.
  • the chemical filling device 920 includes a reader 922 a that can read data from the RFID tag 932 and a writer 922 b that can write data to the RFID tag 802 attached to the syringe 800.
  • the chemical liquid filling device 920 includes a storage device such as a memory, and the read data is temporarily stored in the storage device. Next, the operator sets a filling amount in the chemical liquid filling device 920 and operates the chemical liquid filling device 920.
  • the syringe 800 is filled with the set amount of the chemical solution.
  • the filling amount can be set according to a predetermined operation procedure of the chemical liquid filling device 920.
  • the writer 922b After filling the chemical solution, the writer 922b writes the filling amount and filling date / time of the chemical solution in the RFID tag 802 of the syringe 800 together with the data temporarily stored in the storage device.
  • the syringe 800 is filled with the chemical solution, and data related to the filled chemical solution is recorded in the RFID tag 802.
  • the RFID tag 802 may have data relating to the syringe as described above recorded in advance.
  • the reader 922a that reads data from the RFID tag 932 of the chemical container 930 can be a reader / writer that can also write data.
  • the current internal volume (remaining amount) obtained by subtracting the filling amount from the internal volume before filling stored in the chemical solution container 930 can be written in the RFID tag 932.
  • the remaining amount can be calculated by a CPU included in the chemical liquid filling device 920.
  • the injection control unit 150 has a current time counting function as described above. By using this, the filling date and time recorded in the RFID tag 802 is read by the RFID module 166 (see FIG. 6), and the current date and time measured by the time counting function and the read filling date and time are indicated by the injection control unit 150 ( As a result, if the current date and time is after a predetermined period from the filling date and time, that is, if the expiration date is exceeded, the injection control unit 150 performs processing for preventing injection of the chemical solution. Can be.
  • the process for preventing the injection of the chemical liquid includes, for example, disabling the operation of the piston drive mechanism 140 (see FIG. 6) and that the expiry date of the chemical liquid has exceeded the display unit 154 (see FIG. 6).
  • a warning by sound or voice from a sounding unit such as a buzzer.
  • Each medical device constituting the fluoroscopic imaging system such as the chemical liquid injection device 100, the fluoroscopic imaging device 200, the heater 900, the disposal box 910, and the chemical liquid filling device 920, may be connected to a medical network. Thereby, it is possible to easily store and track the history of treatments for the subject, the usage history of the drug solution, the usage history of the syringe and the like.
  • the drug solution injection device 100 and the fluoroscopic imaging device 200 may be connected to a medical network.
  • the injection result including the injection speed, the injection time, the injection amount, and the injection graph of the chemical injected by the chemical injection device 100, and the imaging conditions by the fluoroscopic imaging device 200 (imaging time, when the imaging device is a CT device) Tube voltage, etc.) can be stored as injection data in a fluoroscopic imaging device, RIS (radiology information system), PACS (medical image storage management system), HIS (hospital information system), etc. through a medical network.
  • the stored injection data is used for management of injection history.
  • the injection amount or the like can be recorded in the chart information as a used chemical solution or used for accounting.
  • RFID module 166 may be transmitted from the chemical injection device 100 to the RIS, PACKS, HIS, or the like via the fluoroscopic imaging device 200, or from the chemical injection device 100. It may be transmitted directly to RIS, PACKS, HIS or the like.
  • the filling amount of the chemical solution by the chemical solution filling device 920 can be an injection amount of the chemical solution to the subject.
  • the injection amount can be calculated using a calculation formula that takes into account factors such as physical characteristics such as the body weight of the subject, imaging region and imaging time, or a value can be directly determined by a doctor or the like.
  • the above-mentioned factors used for calculating the injection amount or the value of the injection amount determined by a doctor or the like can be input by the operator, or RIS, HIS, PACS, external server connected via a network or a direct line It can also be obtained from an external database such as a cloud. By obtaining the factor used for calculating the injection amount from an external database, it is possible to prevent an input error by the operator.
  • the function of the injection control unit 150 may be any of arbitrary computer devices such as various control circuits included in the chemical solution injection device, the fluoroscopic imaging device, and the chemical solution filling device. That is, the injection amount of the chemical liquid can be calculated by any other computer device, not the chemical liquid injection apparatus.
  • the function of the console control circuit is provided in any other computer device instead of the chemical solution injection device, so that not only the injection amount of the chemical solution but also the injection protocol with parameters such as injection speed and injection time as parameters Can be created on the device.
  • the filling of the chemical solution into the empty syringe can be substituted with the chemical solution injection device 100. Thereby, a chemical
  • the presser 112 is a claw or hook for detachably holding the flange formed at the piston end of the empty syringe attached to the injection head 110.

Abstract

The purpose of the present invention is to enable the injection amount of a contrast agent to be changed in accordance with the setting of the emission intensity of electromagnetic waves emitted from an electromagnetic wave emitter of a fluoroscopic imaging device, and to enable the contrast agent to reach a target site even if a small injection amount is used. A chemical solution injection device of the present invention is provided with the following: two piston driving mechanisms 140 for operating the piston of a syringe; a data input interface (input unit 156, RFID module 166) which receives input of data; and an injection control unit 150 which calculates the injection amount and injection speed of a contrast agent and a physiological saline solution by using data received via the data input interface, and which controls the operation of the piston driving mechanisms 140 in accordance with the calculation results. In a case where a value which is lower than a specified value is set as the value of a tube voltage imparted to a fluoroscopic imaging device, the injection control unit 150 calculates the injection amount and the injection speed of the contrast agent and physiological saline solution so that the contrast agent is diluted by the physiological saline solution.

Description

薬液注入装置Chemical injection device
 本発明は、画像診断装置にて被検体の透視画像を撮像する際に、良好な造影効果を得るために被検体に造影剤を注入する薬液注入装置に関する。 The present invention relates to a chemical liquid injector that injects a contrast medium into a subject in order to obtain a good contrast effect when a fluoroscopic image of the subject is captured by an image diagnostic apparatus.
 医療用の画像診断装置としては、CT装置、MRI装置、PET装置、アンギオ装置、MRA装置および超音波画像診断装置などがある。これらの装置を使用する際は、造影効果を高めるために、造影剤や生理食塩水などの薬液を被験者に注入することが多い。造影剤は、造影増進剤を含んでいる。 Examples of medical image diagnostic apparatuses include CT apparatus, MRI apparatus, PET apparatus, angio apparatus, MRA apparatus, and ultrasonic image diagnostic apparatus. When using these devices, in order to enhance the contrast effect, a chemical solution such as a contrast medium or physiological saline is often injected into the subject. The contrast agent contains a contrast enhancing agent.
 通常、これらの薬液は、シリンジに充填されて使用され、シリンジに充填されている薬液を注入するのに薬液注入装置が一般に用いられる。シリンジは、シリンダとピストンとを有している。薬液注入装置は、シリンダを保持するシリンダ保持機構と、ピストンを移動させるピストン駆動機構とを有しており、シリンダがシリンダ保持機構に保持された状態でピストン駆動機構を動作させてピストンを前進させることによって、シリンジに充填されている薬液を被験者に注入することができる。 Usually, these chemical solutions are used by being filled in a syringe, and a chemical solution injection device is generally used to inject the chemical solution filled in the syringe. The syringe has a cylinder and a piston. The chemical injection device has a cylinder holding mechanism that holds the cylinder and a piston drive mechanism that moves the piston, and moves the piston forward by operating the piston drive mechanism while the cylinder is held by the cylinder holding mechanism. By this, the chemical | medical solution with which the syringe is filled can be inject | poured into a test subject.
 薬液の注入に際しては、画像診断に最適な透視画像が得られるように、薬液の注入条件が設定される。例えば、CT画像の撮像では、血液中の造影剤の濃度と比例関係にあるCT値が、少なくとも撮像の期間中、一定の値以上を保つように、造影剤の注入量が設定される。 When injecting a chemical solution, injection conditions for the chemical solution are set so that a fluoroscopic image optimal for image diagnosis can be obtained. For example, in CT image capturing, the contrast agent injection amount is set so that the CT value proportional to the concentration of the contrast agent in blood remains at least a certain value during the imaging period.
 CT値と造影剤の注入量との間、およびCT値と造影剤の注入速度との間には比例関係がある。また、CT値は、透視撮像装置からの電磁波の照射強度、具体的にはCT装置のX線管に印加される電圧である管電圧との間にも相関関係があり、管電圧が低いほど、得られるCT値は高くなる。よって、管電圧の設定値をより低くすることで、最適なCT値を、より少ない造影剤量で得ることができる。この関係を利用して、特許文献1には、造影剤の注入量を算出するのにCT装置の管電圧を考慮すること、および、撮像の目的や被験者の症状などに応じて管電圧を段階的に変更できることが記載されている。 There is a proportional relationship between the CT value and the contrast agent injection amount, and between the CT value and the contrast agent injection rate. The CT value also has a correlation with the irradiation intensity of the electromagnetic wave from the fluoroscopic imaging device, specifically, the tube voltage that is a voltage applied to the X-ray tube of the CT device, and the lower the tube voltage, The obtained CT value is high. Therefore, an optimal CT value can be obtained with a smaller amount of contrast agent by lowering the set value of the tube voltage. Using this relationship, Patent Document 1 describes that the tube voltage of the CT apparatus is taken into account for calculating the injection amount of the contrast agent, and the tube voltage is stepped in accordance with the purpose of imaging, the symptom of the subject, and the like. It can be changed automatically.
 特許文献1:特許第5416761号公報 Patent Document 1: Japanese Patent No. 5416761
 上述のように、より低い管電圧で透視画像を撮像することは、より少ない造影剤量での撮影を可能とし、結果的に、被験者への身体的負担を軽減することができる。造影剤は通常、被験者の血管に穿刺された針を介して血管内に注入され、被験者の血流に乗って目標とする部位(撮像部位)に到達する。しかし、管電圧を低い値に設定して造影剤の注入量を少なくした場合でも、注入時間は変更しないことが望ましいため、注入速度を下げることになる。注入量および注入速度が低すぎると、目標とする部位に造影剤が到達するまでの間に造影剤に造影剤のボーラス性が保てず、血液中に拡散してしまい、結果的に十分なCT値が得られないことがあった。 As described above, capturing a fluoroscopic image with a lower tube voltage enables imaging with a smaller amount of contrast agent, and as a result, reduces the physical burden on the subject. The contrast agent is usually injected into the blood vessel via a needle punctured into the blood vessel of the subject, and reaches the target site (imaging site) on the blood flow of the subject. However, even when the tube voltage is set to a low value and the amount of contrast medium injected is reduced, it is desirable not to change the injection time, so the injection speed is lowered. If the injection volume and injection speed are too low, the contrast medium bolus will not be maintained in the contrast medium until the contrast medium reaches the target site and will diffuse into the blood. CT values could not be obtained.
 このような現象は、例えば、以下のような状況で起こり得る。心臓のCT画像を撮像する場合、造影剤は例えば腕の尺側皮静脈から注入されて上大静脈へと流れていく。上大静脈は心臓の右心室に到達する手前で下大静脈と合流する。このとき、造影剤の注入量が少なすぎたり注入速度が低すぎたりすると、下大静脈から合流した血液や上大静脈そのものの血流に負けて流れにくくなり、それによって造影剤が血液中に拡散し、ボーラス性が保てなくなる。 Such a phenomenon can occur in the following situations, for example. When capturing a CT image of the heart, the contrast agent is injected from the ulnar cutaneous vein of the arm and flows to the superior vena cava, for example. The superior vena cava merges with the inferior vena cava just before reaching the right ventricle of the heart. At this time, if the injection amount of the contrast medium is too small or the injection speed is too low, it becomes difficult for the contrast medium to flow into the blood by losing the blood that joins from the inferior vena cava or the blood flow of the superior vena cava itself. It diffuses and the bolus property cannot be maintained.
 上記のように、少ない造影剤量で注入した場合に生じ得る上記の問題を解消するために、造影剤を注入した後に、最低限効果がある容量の生理食塩水を注入し、この生理食塩水によって造影剤と同等の速度で後押しすることで、造影剤を、血液中に拡散しにくくすることが行われている。 As described above, in order to solve the above-described problems that may occur when a small amount of contrast medium is injected, after the contrast medium is injected, a physiological saline solution having a minimum effect is injected. Thus, it is made difficult to diffuse the contrast medium into the blood by boosting at a speed equivalent to that of the contrast medium.
 本発明は、透視撮像装置における電磁波の照射強度に応じて造影剤の造影増進剤量を変更でき、かつ、変更された造影増進剤量であっても造影剤を目標とする部位へ到達できるようにすることを目的とする。 According to the present invention, the contrast enhancement agent amount of the contrast agent can be changed according to the irradiation intensity of the electromagnetic wave in the fluoroscopic imaging apparatus, and the contrast agent can reach the target site even with the changed contrast enhancement agent amount. The purpose is to.
 上記目的を達成する本発明の一態様によれば、電磁波照射器を有する透視撮像装置を用いて画像を撮像する際に、画像の撮像に先立って造影剤を注入するための薬液注入装置であって、
 複数のシリンジが着脱自在に装着される注入ヘッドであって、前記複数のシリンジは、造影剤用のシリンジおよび生理食塩水用のシリンジを含み、前記造影剤用のシリンジのピストンを操作するための第1のピストン駆動機構と、前記生理食塩水用のシリンジのピストンを操作するための第2のピストン駆動機構と、を備えた注入ヘッドと、
 データの入力を受け付ける少なくとも1つのデータ入力インターフェースと、
 前記データ入力インターフェースを介して入力されたデータを用いて前記造影剤および前記生理食塩水の注入量および注入速度を求め、求められた注入量および注入速度にしたがって前記第1のピストン駆動機構および前記第2のピストン駆動機構の動作を制御する注入制御部と、を有し、
 前記注入制御部は、
 前記造影剤のみを注入する場合の前記造影剤の注入量および注入速度を求め、撮像時に前記透視撮像装置の電磁波照射器における電磁波の照射強度値が特定の照射強度値と異なる場合は、求めた造影剤の注入量および注入速度を、前記照射強度値に応じて定められた所定の割合で減量し、減量した分を前記生理食塩水の注入量および注入速度として求めるように構成されている薬液注入装置が提供される。また、注入制御部は、求めた注入量および注入速度似従って第1のピストン駆動機構および第2のピストン駆動機構を同時に動作させてもよいし、さらに、注入制御部は、第1のピストン駆動機構および第2のピストン駆動機構を同時に作動させた後、造影剤のみを注入する場合の造影剤の注入速度として求められた注入速度で生理食塩水が注入されるように、第2のピストン駆動機構を動作させてもよい。
According to one aspect of the present invention for achieving the above object, there is provided a chemical liquid injector for injecting a contrast medium prior to image capture when an image is captured using a fluoroscopic imaging apparatus having an electromagnetic wave irradiator. And
An injection head to which a plurality of syringes are detachably mounted, the plurality of syringes including a contrast medium syringe and a physiological saline syringe, for operating a piston of the contrast medium syringe An injection head comprising: a first piston drive mechanism; and a second piston drive mechanism for operating a piston of the physiological saline syringe;
At least one data input interface for accepting data input;
Using the data input via the data input interface, the injection amount and injection speed of the contrast medium and the physiological saline are obtained, and the first piston drive mechanism and the injection speed are determined according to the obtained injection amount and injection speed. An injection control unit for controlling the operation of the second piston drive mechanism,
The injection control unit includes:
The injection amount and injection speed of the contrast agent in the case of injecting only the contrast agent were obtained, and when the irradiation intensity value of the electromagnetic wave in the electromagnetic wave irradiator of the fluoroscopic imaging device was different from the specific irradiation intensity value at the time of imaging, it was obtained A medical solution configured to reduce the injection amount and injection speed of the contrast agent at a predetermined ratio determined according to the irradiation intensity value, and obtain the reduced amount as the injection amount and injection speed of the physiological saline. An infusion device is provided. The injection control unit may operate the first piston driving mechanism and the second piston driving mechanism at the same time according to the obtained injection amount and injection speed, and the injection control unit may further operate the first piston driving mechanism. After the mechanism and the second piston drive mechanism are operated simultaneously, the second piston drive is performed so that the physiological saline is injected at the injection speed determined as the contrast medium injection speed when only the contrast medium is injected. The mechanism may be operated.
 また本発明は、透視撮像システムを提供し、該システムは、
 電磁波照射器を有する透視撮像装置と、
 造影剤用のシリンジおよび生理食塩水用のシリンジを含む複数のシリンジと、
 複数のシリンジが着脱自在に装着される注入ヘッドであって、前記造影剤用のシリンジのピストンを操作するための第1のピストン駆動機構と、前記生理食塩水用のシリンジのピストンを操作するための第2のピストン駆動機構と、を備えた注入ヘッドと、
 データの入力を受け付ける少なくとも1つのデータ入力インターフェースと、
 前記データ入力インターフェースを介して入力されたデータを用いて前記造影剤および前記生理食塩水の注入量および注入速度を求め、求められた注入量および注入速度にしたがって前記第1のピストン駆動機構および前記第2のピストン駆動機構の動作を制御する注入制御部と、を有し、
 前記注入制御部は、
 前記造影剤のみを注入する場合の前記造影剤の注入量および注入速度を求め、撮像時に前記透視撮像装置の電磁波照射器から照射される電磁波の照射強度についての設定値が特定の設定値と異なる場合は、求めた造影剤の注入量および注入速度を、前記設定値に応じて定められた所定の割合で減量し、減量した分を前記生理食塩水の注入量および注入速度として求めるように構成されている。
The present invention also provides a fluoroscopic imaging system, the system comprising:
A fluoroscopic imaging device having an electromagnetic wave irradiator;
A plurality of syringes including a contrast agent syringe and a saline syringe;
An injection head to which a plurality of syringes are detachably mounted, the first piston driving mechanism for operating the piston of the contrast medium syringe, and the piston of the physiological saline syringe An injection head comprising: a second piston drive mechanism;
At least one data input interface for accepting data input;
Using the data input via the data input interface, the injection amount and injection speed of the contrast medium and the physiological saline are obtained, and the first piston drive mechanism and the injection speed are determined according to the obtained injection amount and injection speed. An injection control unit for controlling the operation of the second piston drive mechanism,
The injection control unit includes:
The injection amount and the injection speed of the contrast agent in the case of injecting only the contrast agent are obtained, and the setting value for the irradiation intensity of the electromagnetic wave emitted from the electromagnetic wave irradiator of the fluoroscopic imaging device at the time of imaging is different from the specific setting value In this case, the obtained contrast medium injection amount and injection rate are reduced at a predetermined ratio determined in accordance with the set value, and the reduced amount is obtained as the physiological saline injection amount and injection rate. Has been.
 本発明のさらに他の態様によれば、電磁波照射器を有する透視撮像装置を用いて画像を撮像する際に、画像の撮像に先立って造影剤および生理食塩水の少なくとも造影剤を注入するための、造影剤用のシリンジおよび生理食塩水用のシリンジを含む複数のシリンジが着脱自在に装着され、前記造影剤用のシリンジのピストンを操作するための第1のピストン駆動機構と、前記生理食塩水用のシリンジのピストンを操作するための第2のピストン駆動機構と、前記第1のピストン駆動機構および前記第2のピストン駆動機構の動作を制御する注入制御部と、を備えた薬液注入装置の制御方法であって、
 前記注入制御部が、所定のデータを用いて前記造影剤のみを注入する場合の前記造影剤の注入量および注入速度を求めるステップと、
 前記注入制御部が、撮像時に前記透視撮像装置の電磁波照射器から照射される電磁波の照射強度についての設定値が特定の設定値と異なる場合は、求めた造影剤の注入量および注入速度を、前記設定値に応じて定められた所定の割合で減量し、減量した分を前記生理食塩水の注入量および注入速度として求めるステップと、
 を有する、薬液注入装置の制御方法が提供される。
According to still another aspect of the present invention, when imaging an image using a fluoroscopic imaging device having an electromagnetic wave irradiator, for injecting at least a contrast agent and a physiological saline prior to imaging the image. A plurality of syringes including a contrast medium syringe and a saline syringe; and a first piston drive mechanism for operating a piston of the contrast medium syringe; and the physiological saline Of a chemical injection device comprising: a second piston driving mechanism for operating a piston of a syringe for injection; and an injection control unit for controlling operations of the first piston driving mechanism and the second piston driving mechanism A control method,
The injection control unit obtaining an injection amount and an injection speed of the contrast agent when injecting only the contrast agent using predetermined data; and
When the setting value for the irradiation intensity of the electromagnetic wave irradiated from the electromagnetic wave irradiator of the fluoroscopic imaging device is different from the specific setting value when the injection control unit is imaging, the obtained injection amount and the injection speed of the contrast agent, The amount is reduced at a predetermined ratio determined according to the set value, and the reduced amount is obtained as an injection amount and an injection speed of the physiological saline,
There is provided a method for controlling a chemical liquid injector.
 本発明のさらに他の態様によれば、電磁波照射器を有する透視撮像装置を用いて画像を撮像する際に、画像の撮像に先立って造影剤および生理食塩水の少なくとも造影剤を注入するための、造影剤用のシリンジおよび生理食塩水用のシリンジを含む複数のシリンジが着脱自在に装着され、前記造影剤用のシリンジのピストンを操作するための第1のピストン駆動機構と、前記生理食塩水用のシリンジのピストンを操作するための第2のピストン駆動機構と、を備えた薬液注入装置のためのコンピュータプログラムであって、
 所定のデータを用いて前記造影剤のみを注入する場合の前記造影剤の注入量および注入速度を求めるステップと、
 撮像時に前記透視撮像装置の電磁波照射器から照射される電磁波の照射強度についての設定値が特定の設定値と異なる場合は、求めた造影剤の注入量および注入速度を、前記設定値に応じて定められた所定の割合で減量し、減量した分を前記生理食塩水の注入量および注入速度として求めるステップと、
 を薬液注入装置に実行させるためのコンピュータプログラムが提供される。
According to still another aspect of the present invention, when imaging an image using a fluoroscopic imaging device having an electromagnetic wave irradiator, for injecting at least a contrast agent and a physiological saline prior to imaging the image. A plurality of syringes including a contrast medium syringe and a saline syringe; and a first piston drive mechanism for operating a piston of the contrast medium syringe; and the physiological saline A second piston drive mechanism for operating a piston of a syringe for use with a chemical injection device comprising:
Obtaining an injection amount and an injection speed of the contrast agent when injecting only the contrast agent using predetermined data; and
When the set value for the irradiation intensity of the electromagnetic wave emitted from the electromagnetic wave irradiator of the fluoroscopic imaging device at the time of imaging is different from the specific set value, the determined contrast medium injection amount and injection speed are determined according to the set value. Reducing the amount at a predetermined rate, and determining the reduced amount as the amount and rate of injection of the physiological saline; and
Is provided with a computer program for causing a chemical injection device to execute.
 本発明において、「透視撮像装置」とは、CT装置、アンギオ装置、MRI装置など、電磁波の照射を利用して透視画像を撮像する装置を指し、「透視撮像装置」は、電磁波を照射する「電磁波照射器」を有している。CT装置およびアンギオ装置は、「電磁波照射器」としてX線管を有し、MRI装置は、「電磁波照射器」として、高周波パルスを照射する高周波高周波パルス送信器を有している。 In the present invention, the “fluoroscopic imaging device” refers to a device that captures a fluoroscopic image using irradiation of electromagnetic waves, such as a CT device, an angio device, or an MRI device, and the “fluoroscopic imaging device” radiates electromagnetic waves. It has an electromagnetic wave irradiator. The CT apparatus and the angio apparatus have an X-ray tube as an “electromagnetic wave irradiator”, and the MRI apparatus has a high frequency high frequency pulse transmitter that irradiates a high frequency pulse as an “electromagnetic wave irradiator”.
 本発明において、「造影剤」とは、透視撮像装置を用いて被験者の透視画像を撮像するとき、画像にコントラストを与えたり特定の組織を強調したりして撮像するために被験者に投与される薬液を指し、「造影増進剤」を含有している。「造影増進剤」としては、ヨード(CT装置およびアンギオ装置を用いて画像を撮像する場合に使用される)、ガドリニウム(MRI装置を用いて画像を撮像する場合に使用される)、バリウム、炭酸ガスなどが挙げられる。 In the present invention, a “contrast agent” is administered to a subject when the fluoroscopic image of the subject is captured using a fluoroscopic imaging device in order to capture the image by giving contrast or emphasizing a specific tissue. Refers to chemicals and contains “contrast enhancer”. Examples of the “contrast enhancer” include iodine (used when imaging an image using a CT apparatus and angio apparatus), gadolinium (used when imaging an image using an MRI apparatus), barium, carbonic acid. Gas etc. are mentioned.
 本発明によれば、透視撮像装置の電磁波照射器から照射される電磁波の照射強度についての設定値を変更する場合であっても、変更される設定値に応じて造影剤の注入量を自動的に減量し、減量された造影剤を、透視撮像装置による良好な撮像結果が得られるように被験者に適切に注入することができる。しかも、造影剤の注入量の減量は、造影剤を生理食塩水で希釈することによって行われるので、造影剤の減量による薬液のボーラス性を良好に保つことができる。 According to the present invention, even when the setting value for the irradiation intensity of the electromagnetic wave emitted from the electromagnetic wave irradiator of the fluoroscopic imaging device is changed, the injection amount of the contrast agent is automatically set according to the changed setting value. The contrast agent thus reduced can be appropriately injected into the subject so that a good imaging result by the fluoroscopic imaging apparatus can be obtained. In addition, since the amount of contrast medium injected is reduced by diluting the contrast medium with physiological saline, the bolus of the drug solution due to the reduction of the contrast medium can be kept good.
本発明の一実施形態による透視撮像システムの配置図である。1 is a layout diagram of a fluoroscopic imaging system according to an embodiment of the present invention. FIG. 図1に示すコンソールの正面図である。It is a front view of the console shown in FIG. 図1に示す注入ヘッドの斜視図である。It is a perspective view of the injection head shown in FIG. 図1に示す注入ヘッドへのシリンジの装着手順を説明する図である。It is a figure explaining the attachment procedure of the syringe to the injection | pouring head shown in FIG. 図1に示す注入ヘッドへのシリンジの装着手順を説明する図である。It is a figure explaining the attachment procedure of the syringe to the injection | pouring head shown in FIG. 図1に示す透視撮像システムにおける制御系の主要な機能を示すブロック図である。It is a block diagram which shows the main functions of the control system in the fluoroscopic imaging system shown in FIG. シリンダがシリンダ保持機構に正常に装着された状態での、RFIDタグとRFIDモジュールのアンテナとの位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of a RFID tag and the antenna of a RFID module in the state in which the cylinder was normally mounted | worn with the cylinder holding mechanism. シリンジに接続される延長チューブの一形態を示す図である。It is a figure which shows one form of the extension tube connected to a syringe. 設定画面の一例を示す図である。It is a figure which shows an example of a setting screen. 図9Aに示す状態から管電圧値を変更した場合の設定画面の一例を示す図である。It is a figure which shows an example of the setting screen at the time of changing a tube voltage value from the state shown to FIG. 9A. 図9Bに示す状態からさらに管電圧値を変更した場合の設定画面の一例を示す図である。It is a figure which shows an example of the setting screen at the time of changing a tube voltage value further from the state shown to FIG. 9B. 混和注入フェーズにおける混和比率設定画面の一例を示す図である。It is a figure which shows an example of the mixing ratio setting screen in a mixing injection phase. 混和注入フェーズを含む注入モードにおいて、混和注入フェーズが複数のサブフェーズを有する場合の一例の、注入時間と注入速度との関係を示すグラフである。It is a graph which shows the relationship between an injection | pouring time and an injection | pouring speed | velocity | rate of an example in case the mixing | pouring injection | pouring phase has a some subphase in the injection | pouring mode containing an admixture injection | pouring phase. 本発明で使用可能なシリンジの構造の一形態を示す斜視図である。It is a perspective view which shows one form of the structure of the syringe which can be used by this invention. 本発明で使用可能なシリンジの構造の他の形態を示す斜視図である。It is a perspective view which shows the other form of the structure of the syringe which can be used by this invention. シリンジに接続される延長チューブの他の形態を模式的に示す図である。It is a figure which shows typically the other form of the extension tube connected to a syringe. 図13Aに示す延長チューブに備えられるミキシングデバイスの斜視図である。It is a perspective view of the mixing device with which the extension tube shown in Drawing 13A is equipped. 図13Aに示す延長チューブに備えられるミキシングチューブの断面図である。It is sectional drawing of the mixing tube with which the extension tube shown to FIG. 13A is equipped. 本発明の透視撮像システムが備えることができる第2の表示ユニットの配置の一例を示す斜視図である。It is a perspective view which shows an example of arrangement | positioning of the 2nd display unit with which the fluoroscopic imaging system of this invention can be equipped. 本発明の透視撮像システムが備えることができる第2の表示ユニットの配置の他の例を示す斜視図である。It is a perspective view which shows the other example of arrangement | positioning of the 2nd display unit which can be equipped with the fluoroscopic imaging system of this invention. 本発明の他の形態による透視撮像システムのブロック図である。It is a block diagram of the fluoroscopic imaging system by the other form of this invention.
 図1を参照すると、透視撮像装置200と薬液注入装置100とを有する、本発明の一実施形態による透視撮像システムが示されている。透視撮像装置200と薬液注入装置100とは、相互間でデータの送受信を行えるように互いに接続されることができる。透視撮像装置200と薬液注入装置100との接続は、有線接続とすることもできるし、無線接続とすることもできる。 Referring to FIG. 1, there is shown a fluoroscopic imaging system according to an embodiment of the present invention having a fluoroscopic imaging device 200 and a chemical liquid injector 100. The fluoroscopic imaging device 200 and the chemical liquid injector 100 can be connected to each other so that data can be transmitted and received between them. The connection between the fluoroscopic imaging device 200 and the chemical liquid injector 100 can be a wired connection or a wireless connection.
 透視撮像装置200は、撮像動作を実行するスキャナ201と、スキャナ201の動作を制御する撮像制御ユニット(不図示)とを有しており、薬液注入装置100によって薬液が注入された被験者の断層画像を取得することができる。スキャナ201は、電磁波を照射する電磁波照射器153(図6参照)を有しており、この電磁波照射器153は、電磁波の照射強度の設定が変更可能とされている。撮像制御ユニットは、撮像条件や取得した断層画像などを表示できる液晶ディスプレイなどの表示装置、および撮像条件などを入力するための、キーボードおよび/またはマウスなどの入力装置を含むことができる。表示装置は、入力装置を兼ねるタッチスクリーンを有していてもよい。 The fluoroscopic imaging apparatus 200 includes a scanner 201 that executes an imaging operation and an imaging control unit (not shown) that controls the operation of the scanner 201, and a tomographic image of a subject into which a chemical solution is injected by the chemical injection device 100. Can be obtained. The scanner 201 has an electromagnetic wave irradiator 153 (see FIG. 6) that emits an electromagnetic wave, and the electromagnetic wave irradiator 153 can change the setting of the irradiation intensity of the electromagnetic wave. The imaging control unit can include a display device such as a liquid crystal display capable of displaying imaging conditions and acquired tomographic images, and an input device such as a keyboard and / or mouse for inputting imaging conditions and the like. The display device may have a touch screen that also serves as an input device.
 薬液注入装置100は、例えば、スタンド121の上部に旋回アーム122を介して上下方向に回動自在に取り付けられた注入ヘッド110と、薬液注入装置100全体の動作を制御するための各種機能を備えたコンソール101とを有している。注入ヘッド110とコンソール101とは一つの筐体に構成することもできるが、本実施形態では、注入ヘッド110とコンソール101とは別ユニットとして構成されている。この場合、注入ヘッド110はスキャナ201とともに検査室内に配置し、コンソール101は、透視撮像装置200の撮像制御ユニットとともに操作室内に配置することができる。スタンド121は、注入ヘッド110の移動を容易にするためにキャスター付きのスタンドとすることができる。 The chemical injection device 100 includes, for example, an injection head 110 that is rotatably attached to the upper portion of the stand 121 via a turning arm 122 and various functions for controlling the operation of the chemical injection device 100 as a whole. Console 101. The injection head 110 and the console 101 can be configured as a single housing, but in this embodiment, the injection head 110 and the console 101 are configured as separate units. In this case, the injection head 110 can be arranged in the examination room together with the scanner 201, and the console 101 can be arranged in the operation room together with the imaging control unit of the fluoroscopic imaging apparatus 200. The stand 121 can be a stand with casters to facilitate the movement of the injection head 110.
 コンソール101はAC/DCコンバータを内蔵しており、交流から直流に変換された電力がコンソール101に供給される。図2に示すように、コンソール101は、注入を強制停止させるためのストップボタン102a、ホーム画面を表示させるためのホームボタン102bおよび電源オン/オフのための電源ボタン102cを含むボタン群102と、入力ユニットおよび表示ユニットを兼ねたタッチパネル103とを有している。 The console 101 has a built-in AC / DC converter, and power converted from AC to DC is supplied to the console 101. As shown in FIG. 2, the console 101 includes a button group 102 including a stop button 102a for forcibly stopping injection, a home button 102b for displaying a home screen, and a power button 102c for power on / off; The touch panel 103 also serves as an input unit and a display unit.
 注入ヘッド110は、図3~5に示すように、2本のシリンジ800を着脱自在に装着することができる。シリンジ800は、例えば、一方を造影剤用のシリンジとし、他方を生理食塩水用のシリンジとすることができる。シリンジ800は、薬液を収容し先端に導管が形成されたシリンダと、シリンダ内に進退移動可能に挿入されたピストンとを有する。注入ヘッド110は、このシリンダを保持するシリンダ保持機構111と、シリンダ保持機構111にシリンダが保持されたシリンジ800のピストンを操作する(例えば、シリンダ内に押し込む)ための、シリンジ800の軸方向に移動される直動ユニットとを、2つずつ有する。 The injection head 110 can be detachably mounted with two syringes 800 as shown in FIGS. For example, one of the syringes 800 can be a contrast medium syringe and the other can be a physiological saline syringe. Syringe 800 has a cylinder in which a chemical solution is stored and a conduit is formed at the tip, and a piston that is inserted into the cylinder so as to be capable of moving forward and backward. The injection head 110 operates in the axial direction of the syringe 800 for operating (for example, pushing into the cylinder) the cylinder holding mechanism 111 that holds the cylinder and the piston of the syringe 800 that holds the cylinder in the cylinder holding mechanism 111. Two linear motion units to be moved are provided.
 直動ユニットは、モータの回転運動を直線運動に変換するリードスクリュー機構やラックピニオン機構等の適宜の回転運動変換機構によって進退移動させられるロッド113と、ロッド113の先端部に固定されたプレッサー112と、を有する。ピストンを進退移動させるための、これらモータ、回転運動変換機構、直動ユニット(ロッド113およびプレッサー112を含み、直進運動するユニット)を有する機構を、本発明ではピストン駆動機構という。本形態では、注入ヘッド110は2つのピストン駆動機構を備えている。 The linear motion unit includes a rod 113 that is moved forward and backward by an appropriate rotational motion conversion mechanism such as a lead screw mechanism or a rack and pinion mechanism that converts the rotational motion of the motor into a linear motion, and a presser 112 that is fixed to the tip of the rod 113. And having. In the present invention, a mechanism having these motor, rotational motion converting mechanism, and linear motion unit (including the rod 113 and the presser 112 and moving linearly) for moving the piston forward and backward is referred to as a piston drive mechanism. In this embodiment, the injection head 110 includes two piston drive mechanisms.
 なお、本明細書では、造影剤用のシリンジのためのシリンダ保持機構およびピストン駆動機構を、それぞれ第1のシリンダ保持機構および第1のピストン駆動機構といい、生理食塩水用のシリンダ保持機構およびピストン駆動機構を、それぞれ第2のシリンダ保持機構および第2のピストン駆動機構ともいう。また、図示した例では、造影剤用のシリンダ保持機構およびピストン駆動機構が1つずつ配置されているが、その数は複数ずつであってもよい。同様に、生理食塩水用のシリンダ保持機構およびピストン駆動機構も、複数ずつであってよい。 In the present specification, the cylinder holding mechanism and the piston driving mechanism for the contrast agent syringe are referred to as a first cylinder holding mechanism and a first piston driving mechanism, respectively. The piston drive mechanism is also referred to as a second cylinder holding mechanism and a second piston drive mechanism, respectively. In the illustrated example, one contrast medium cylinder holding mechanism and one piston drive mechanism are arranged, but a plurality of contrast medium cylinder holding mechanisms and piston drive mechanisms may be provided. Similarly, there may be a plurality of physiological saline cylinder holding mechanisms and piston drive mechanisms.
 ピストン駆動機構の駆動源となるモータとしては、直流モータを用いることができ、その中でも特に、直流ブラシレスモータを好ましく用いることができる。ブラシレスモータは、ブラシが無いことから、静音性および耐久性に優れている。また、ブラシレスモータは、より高速回転が可能であるため、外部ギア比を高くしてモータにかかるトルクを小さくすれば、所望の注入圧力で薬液を注入するのに必要な電流をブラシモータに比べて小さくすることができる。あるいは、超音波モータを、ピストン駆動機構の駆動源として用いることもできる。 A direct current motor can be used as a motor serving as a drive source of the piston drive mechanism, and a direct current brushless motor can be preferably used among them. Since a brushless motor does not have a brush, it is excellent in silence and durability. In addition, brushless motors can rotate at higher speeds. Therefore, if the external gear ratio is increased to reduce the torque applied to the motor, the current required for injecting the chemical solution at a desired injection pressure is higher than that of the brush motor. Can be made smaller. Or an ultrasonic motor can also be used as a drive source of a piston drive mechanism.
 注入ヘッド110は、ピストン駆動機構の一部(例えばプレッサー112)を除き、全体が合成樹脂製の筐体115で覆われている。筐体115の上面には、ユーザの操作によってピストン駆動機構を動作させることができるように、幾つかの操作ボタン116が配置されている。 The injection head 110 is entirely covered with a synthetic resin casing 115 except for a part of the piston drive mechanism (for example, the presser 112). Several operation buttons 116 are arranged on the upper surface of the housing 115 so that the piston drive mechanism can be operated by a user operation.
 例えば、本形態では、注入ヘッド110は、操作ボタン116として、注入可能な状態にするために操作されるチェックボタン116a、注入を開始する際に操作されるスタートボタン116b、プレッサー112を任意の距離だけ前進させる際(例えば、1.5ml/secの速度で)に操作される前進ボタン116c、プレッサー112の移動速度を加速する際(例えば、現在の速度にさらに8ml/sec加える。前進および後退のどちらも可。)に操作される加速ボタン116d、プレッサー112を任意の距離だけ後退させる際(例えば、1.5ml/secの速度で)に操作される後退ボタン116e、プレッサー112をイニシャライズ位置まで後退させる際に操作されるオートリターンボタン116f、動作を手動で停止または中断する際に操作されるストップボタン116g、116hおよびプレッサーを低速(例えば、0.7ml/sec)で前進/後退させる際に操作されるルートスイッチ116hと、を含むことができる。本形態では、各ピストン駆動機構を独立して動作させることができるように、前進ボタン116c、加速ボタン116d、後退ボタン116eおよびオートリターンボタン116fをそれぞれ2つずつ有している。 For example, in this embodiment, the injection head 110 includes, as the operation buttons 116, a check button 116a that is operated to make an injection possible state, a start button 116b that is operated when injection is started, and a presser 112 at an arbitrary distance. The forward button 116c that is operated only when moving forward (for example, at a speed of 1.5 ml / sec), when accelerating the moving speed of the presser 112 (for example, adding 8 ml / sec to the current speed. Both buttons can be operated.) When the acceleration button 116d and the presser 112 are moved backward by an arbitrary distance (for example, at a speed of 1.5 ml / sec), the backward button 116e and the presser 112 are moved back to the initialization position. Auto-return button 116f that is operated when the operation is stopped manually Others may include a root switch 116h which is operated when advancing / retracting stop button 116 g, the 116h and repressor at a low speed (e.g., 0.7 ml / sec) which is operated to interrupt. In this embodiment, two forward buttons 116c, two acceleration buttons 116d, one reverse button 116e, and two auto return buttons 116f are provided so that each piston drive mechanism can be operated independently.
 なお、オートリターンボタン116fの操作により後退する後退端であるイニシャライズ位置は、以下で述べるように様々なサイズのシリンジ800を装着できるようにシリンジ保持機構111が構成されている場合、シリンジ800のサイズ毎および/または充填されている薬液の種類毎に、異なる位置に設定されていてもよい。さらに、シリンジ800がアダプタ600を介して装着されるように構成される場合は、アダプタ600の種類毎にイニシャライズ位置が設定されてもよい。このイニシャライズ位置は、シリンジ800の種類おおび/またはアダプタ600の種類に応じて操作者が任意に設定できるようにしてもよいし、透視撮像システムによって自動的に設定されるようにしてもよい。 Note that the initialization position, which is the retracted end that is retracted by the operation of the auto return button 116f, is the size of the syringe 800 when the syringe holding mechanism 111 is configured so that the syringe 800 of various sizes can be mounted as described below. It may be set at a different position for each and / or for each kind of chemical liquid filled. Further, when the syringe 800 is configured to be attached via the adapter 600, an initialization position may be set for each type of the adapter 600. The initialization position may be arbitrarily set by the operator according to the type of syringe 800 and / or the type of adapter 600, or may be automatically set by a fluoroscopic imaging system.
 透視撮像システムによってイニシャライズ位置を設定できるようにする場合は、例えば、詳しくは後述するように、RFID技術を利用してシリンジ800の種類等を特定できるようにすれば、その結果に基づいてイニシャライズ位置を設定することができる。また、アダプタ600の種類を検出可能な適宜のアダプタセンサ(不図示)を注入ヘッドが有していれば、このアダプタセンサによる検出結果に基づいてイニシャライズ位置を設定することもできる。 When the initialization position can be set by the fluoroscopic imaging system, for example, as will be described in detail later, if the type of the syringe 800 can be specified using RFID technology, the initialization position is based on the result. Can be set. Further, if the injection head has an appropriate adapter sensor (not shown) capable of detecting the type of adapter 600, the initialization position can be set based on the detection result by the adapter sensor.
 イニシャライズ位置と同様、プレッサー112の最前進位置も、シリンジ800のサイズ毎および/または充填されている薬液の種類毎、さらにはアダプタ600の種類毎に異なる位置に設定されてもよい。プレッサー112の最前進位置の設定についても、イニシャライズ位置と同様、操作者が任意に設定できるようにされていてもよいし、RFID技術や適宜の検出センサなどを利用して、装着されたシリンジ800および/またはアダプタ600の種類等を特定できるようにし、その特定されたシリンジ800/およびまたはアダプタ600の種類等に応じて透視撮像システムが自動的に設定するようにすることもできる。 Similarly to the initialization position, the most advanced position of the presser 112 may also be set to a position that is different for each size of the syringe 800 and / or for each type of medicinal liquid that is filled, and for each type of the adapter 600. The setting of the most advanced position of the presser 112 may be set arbitrarily by the operator as in the initialization position, or the syringe 800 attached using the RFID technology or an appropriate detection sensor. In addition, the type of the adapter 600 and the like can be specified, and the fluoroscopic imaging system can be automatically set according to the specified type of the syringe 800 and / or the adapter 600.
 シリンダ保持機構111は、アダプタ600を介してシリンジ800が装着されるように構成されている。シリンジ800には、充填可能な薬液の容量に応じて様々なサイズのものがある。アダプタ600は、シリンジ800のサイズごとに用意されており、図4に示すように、それぞれ適合するシリンジ800のシリンダの末端に形成されているシリンダフランジ801を保持できるように構成されており、注入ヘッド110のシリンダ保持機構111に着脱自在に装着される。本形態ではアダプタ600を介してシリンジ800が装着されるように構成されているが、アダプタ600を介さずにシリンジ800が注入ヘッド110に直接装着されるように構成されていてもよい。 The cylinder holding mechanism 111 is configured such that the syringe 800 is attached via the adapter 600. There are various sizes of syringes 800 depending on the volume of chemicals that can be filled. The adapter 600 is prepared for each size of the syringe 800. As shown in FIG. 4, the adapter 600 is configured so as to hold a cylinder flange 801 formed at the end of the cylinder of the syringe 800 to be fitted. It is detachably attached to the cylinder holding mechanism 111 of the head 110. In this embodiment, the syringe 800 is configured to be attached via the adapter 600, but the syringe 800 may be directly attached to the injection head 110 without the adapter 600 being interposed.
 注入ヘッド110へのシリンジ800の装着は、例えば、注入ヘッド110のシリンダ保持機構111にアダプタ600を装着し、次いで、シリンジ800のシリンダフランジ801をアダプタ600に保持させることによって行うことができる。アダプタ600は、シリンダフランジ801を受け入れる溝を有しており、シリンダフランジ801が溝に挿入されることによってシリンジ800がアダプタ600に保持される。また、シリンダフランジ801がアダプタ600の溝に挿入された後、シリンジ800をその軸周りに所定の角度(例えば90度)回転させることによってシリンダをロックするロック機構を有していてもよい。このように、シリンジ800のサイズに応じてアダプタ600を用意することによって、種々のサイズのシリンジ800を注入ヘッド110に装着することができる。 The syringe 800 can be attached to the injection head 110 by, for example, attaching the adapter 600 to the cylinder holding mechanism 111 of the injection head 110 and then holding the cylinder flange 801 of the syringe 800 on the adapter 600. The adapter 600 has a groove for receiving the cylinder flange 801, and the syringe 800 is held by the adapter 600 when the cylinder flange 801 is inserted into the groove. Further, after the cylinder flange 801 is inserted into the groove of the adapter 600, it may have a lock mechanism that locks the cylinder by rotating the syringe 800 around the axis by a predetermined angle (for example, 90 degrees). Thus, by preparing the adapter 600 according to the size of the syringe 800, the syringe 800 of various sizes can be attached to the injection head 110.
 シリンジ800は、薬液が充填された状態で製剤メーカーから提供されるプレフィルドタイプのシリンジであってもよいし、医療現場で薬液を充填した現場充填タイプのシリンジであってもよい。 The syringe 800 may be a prefilled type syringe provided from a pharmaceutical manufacturer in a state where the chemical solution is filled, or may be a field-filled type syringe filled with a chemical solution at a medical site.
 被験者への薬液注入および画像の撮像に際し、上述した構成のうちスキャナ201、注入ヘッド110は検査室に設置され、透視撮像装置200の撮像制御ユニットおよび薬液注入装置100のコンソール101は、検査室とは壁で隔てられた操作室に設置される。したがって、コンソール101と注入ヘッド110との間での信号およびデータの送受信をケーブルによる有線通信で行う場合は、検査室と操作室を隔てる壁にケーブル用の通路を形成し、この通路を通してケーブルが引き回される。コンソール101と注入ヘッド110との間での信号およびデータの送受信を無線通信により行うこともでき、その場合は、壁にケーブル用の通路を形成する必要がなくなる。無線通信のために、例えばコンソール101および注入ヘッド110はそれぞれ無線通信ユニット(不図示)を備えることができる。 When injecting a drug solution to a subject and capturing an image, the scanner 201 and the injection head 110 in the above-described configuration are installed in an examination room, and the imaging control unit of the fluoroscopic imaging device 200 and the console 101 of the drug solution injection apparatus 100 are connected to the examination room. Is installed in an operation room separated by walls. Therefore, when performing transmission and reception of signals and data between the console 101 and the injection head 110 by cable communication using a cable, a cable passage is formed in the wall separating the examination room and the operation room, and the cable is passed through this passage. Be drawn around. Signals and data can be transmitted and received between the console 101 and the injection head 110 by wireless communication. In this case, it is not necessary to form a cable passage on the wall. For wireless communication, for example, the console 101 and the injection head 110 can each include a wireless communication unit (not shown).
 以下、上述した透視撮像システムにおけるデータ等の流れについて、図6に示すブロック図を参照しつつ説明する。なお、図6は、本形態の透視撮像システムにおける制御系の主要な機能のみを示しており、本発明はこれに限定されるものではない。 Hereinafter, the flow of data and the like in the above-described fluoroscopic imaging system will be described with reference to the block diagram shown in FIG. FIG. 6 shows only main functions of the control system in the fluoroscopic imaging system of the present embodiment, and the present invention is not limited to this.
 撮像制御部152は、例えば透視撮像装置200の撮像制御ユニットに組み込まれることができ、スキャナ201、撮像制御ユニットの表示装置など透視撮像装置200の動作を全般的に制御するように構成されている。撮像制御部152は、いわゆるマイクロコンピュータとして構成することができ、CPU、ROM、RAM、他の機器とのインターフェースを有することができる。ROMには透視撮像装置200の制御用のコンピュータプログラムが実装されている。CPUは、このコンピュータプログラムに対応して各種機能を実行することで、透視撮像装置200の各部の動作を制御する。また、撮像制御部152は、注入制御部150からデータおよび信号等を受信することができ、注入制御部150から受信したデータおよび信号を、透視撮像装置200の各部の動作の制御に利用することもできる。 The imaging control unit 152 can be incorporated in, for example, the imaging control unit of the fluoroscopic imaging device 200, and is configured to generally control operations of the fluoroscopic imaging device 200 such as a scanner 201 and a display device of the imaging control unit. . The imaging control unit 152 can be configured as a so-called microcomputer, and can have an interface with a CPU, ROM, RAM, and other devices. A computer program for controlling the fluoroscopic imaging apparatus 200 is installed in the ROM. The CPU controls the operation of each part of the fluoroscopic imaging device 200 by executing various functions corresponding to the computer program. In addition, the imaging control unit 152 can receive data and signals from the injection control unit 150, and uses the data and signals received from the injection control unit 150 for controlling the operation of each unit of the fluoroscopic imaging device 200. You can also.
 電磁波照射器153は、透視撮像装置200(図1参照)に備えられている装置であり、電圧が印加されることにより、印加された電圧値に応じた強度で電磁波を照射するように構成されている。電磁波が被験者に照射されることで得られる信号に対して所定の処理を行うことで被験者の透視画像を撮像することができる。 The electromagnetic wave irradiator 153 is an apparatus provided in the fluoroscopic imaging device 200 (see FIG. 1), and is configured to irradiate an electromagnetic wave with an intensity corresponding to the applied voltage value when a voltage is applied. ing. A fluoroscopic image of the subject can be taken by performing a predetermined process on a signal obtained by irradiating the subject with electromagnetic waves.
 注入制御部150は、例えばコンソール101に組み込まれることができ、コンソール101および注入ヘッド110の動作を全般的に制御するように構成されている。より詳しくは、注入制御部150は、入力ユニット156からのデータおよび情報等の入力、およびRFIDモジュール166からのデータおよび情報の入力に応じて、表示ユニット154に表示させる画面およびデータ等を制御したり、入力ユニット156から入力されたデータ等を用いて薬液の注入速度を求めたり、求められた注入速度に従ってピストン駆動機構140の動作を制御したりすることができる。 The injection control unit 150 can be incorporated into the console 101, for example, and is configured to generally control the operations of the console 101 and the injection head 110. More specifically, the injection control unit 150 controls the screen and data displayed on the display unit 154 in accordance with the input of data and information from the input unit 156 and the input of data and information from the RFID module 166. Alternatively, the injection speed of the chemical solution can be obtained using data input from the input unit 156, or the operation of the piston drive mechanism 140 can be controlled according to the obtained injection speed.
 注入制御部150は、いわゆるマイクロコンピュータとして構成することができ、CPU、ROM、RAM、他の機器とのインターフェースを有することができる。ROMには薬液注入装置100の制御用のコンピュータプログラムが実装されている。CPUは、このコンピュータプログラムに対応して各種機能を実行することで、薬液注入装置100の各部の動作を制御する。また、注入制御部150は、CPUが持つクロックを利用した計時機能を有しており、例えば、現在時刻や、注入を開始してからの経過時間をカウントすることができる。注入制御部150は、撮像制御部152からもデータおよび信号等を受信することができ、撮像制御部152から受信したデータおよび信号を、注入撮像装置100の各部の動作の制御に利用することもできる。 The injection control unit 150 can be configured as a so-called microcomputer, and can have an interface with a CPU, ROM, RAM, and other devices. A computer program for controlling the chemical liquid injector 100 is mounted on the ROM. The CPU controls the operation of each part of the chemical solution injector 100 by executing various functions corresponding to the computer program. Moreover, the injection | pouring control part 150 has the time measuring function using the clock which CPU has, for example, can count the present time and the elapsed time after starting injection | pouring. The injection control unit 150 can also receive data and signals from the imaging control unit 152, and can use the data and signals received from the imaging control unit 152 to control the operation of each unit of the injection imaging apparatus 100. it can.
 表示ユニット154は、コンソール101のタッチパネル103であることができる。入力ユニット156は、本発明におけるデータ入力インターフェースのうち、操作者によるデータ入力操作を受け付けるように構成されたデータ入力インターフェースである。入力ユニット156としては、タッチパネル103や、コンソール101のボタン群102および注入ヘッド110のボタン群116を含むことができる。タッチパネル103は、通常、表示ユニット154として機能するディスプレイ、入力ユニットとして機能するタッチスクリーン、およびこれらの制御回路をモジュール化したものである。 The display unit 154 can be the touch panel 103 of the console 101. The input unit 156 is a data input interface configured to accept a data input operation by an operator among the data input interfaces in the present invention. The input unit 156 can include the touch panel 103, the button group 102 of the console 101, and the button group 116 of the injection head 110. The touch panel 103 is generally a display that functions as the display unit 154, a touch screen that functions as an input unit, and a control circuit thereof.
 ディスプレイとしては、液晶ディスプレイおよび有機ELディスプレイなどを含む任意のディスプレイを用いることができる。タッチスクリーンとしては、静電容量式および感圧式など、任意のタッチスクリーンを用いることができる。タッチパネル103の制御回路は、注入制御部150から伝送された信号に基づいた所定の画面およびデータをディスプレイに表示させ、また、操作者などがタッチスクリーンに接触することによってタッチスクリーンから生成された信号に基づく入力情報を注入制御部150に伝送する。 As the display, any display including a liquid crystal display and an organic EL display can be used. As the touch screen, any touch screen such as a capacitance type and a pressure-sensitive type can be used. The control circuit of the touch panel 103 displays a predetermined screen and data based on the signal transmitted from the injection control unit 150 on the display, and a signal generated from the touch screen when an operator or the like touches the touch screen. Is transmitted to the injection control unit 150.
 RFIDモジュール166は、RFID制御回路164およびアンテナ165を有している。本形態では、シリンジ800は、シリンダの外周面にデータキャリアであるRFIDタグ802が貼付されており(図4参照)、RFIDモジュール166は、RFIDタグ802に記録された情報をアンテナ165によってRFIDタグ802から読み出し、読み出した情報を注入制御部150に伝送する。RFIDモジュール166は、注入制御回路150から伝送された情報をRFIDタグ802に書き込む機能をさらに有していてもよい。RFID制御回路164は、このRFIDモジュール166による情報の送受信動作を制御する。すなわち、RFIDモジュール166は、RFIDタグ802から情報を読み出すリーダ、または、さらにRFIDタグ802に情報を書き込むリーダ/ライタとして機能する。 The RFID module 166 has an RFID control circuit 164 and an antenna 165. In this embodiment, the RFID tag 802 that is a data carrier is attached to the outer peripheral surface of the cylinder of the syringe 800 (see FIG. 4), and the RFID module 166 uses the antenna 165 to transmit information recorded on the RFID tag 802 to the RFID tag. The information read out from 802 is transmitted to the injection control unit 150. The RFID module 166 may further have a function of writing information transmitted from the injection control circuit 150 to the RFID tag 802. The RFID control circuit 164 controls information transmission / reception operations by the RFID module 166. That is, the RFID module 166 functions as a reader that reads information from the RFID tag 802 or a reader / writer that further writes information to the RFID tag 802.
 透視撮像システムは、注入制御部152にデータを送受信可能に接続されたメモリーカードリーダ/ライタ158をさらに有することができる。メモリーカードリーダ/ライタ158は、例えば、図2に示すコンソール101に内蔵することができ、その場合、図2に示すように、コンソール101の筐体にはメモリーカードスロット104が設けられる。もちろん、透視撮像システムは、メモリーカードリーダ/ライタ158を独立したユニットとして備えていてもよい。 The fluoroscopic imaging system can further include a memory card reader / writer 158 connected to the injection control unit 152 so as to be able to transmit and receive data. The memory card reader / writer 158 can be built in, for example, the console 101 shown in FIG. 2. In this case, a memory card slot 104 is provided in the housing of the console 101 as shown in FIG. Of course, the fluoroscopic imaging system may include the memory card reader / writer 158 as an independent unit.
 メモリーカードリーダ/ライタ158は、メモリーカード(不図示)にデータを書き込んだり、メモリーカードに記録されているデータを読み出したりするものである。例えば、メモリーカードに注入プロトコルをデータとして記録しておき、その記録された注入プロトコルを、メモリーカードリーダ/ライタ158を介して読み出し、注入制御部150へ送信することができるし、その逆に、注入制御部150に設定されている注入プロトコルを、メモリーカードリーダ/ライタ158を介してメモリーカードに書き込むこともできる。こうすることにより、例えば、ある薬液注入装置に設定されている注入プロトコルを、メモリーカードを介して他の薬液注入装置に伝送することができる。 The memory card reader / writer 158 writes data to a memory card (not shown) and reads data recorded on the memory card. For example, the injection protocol can be recorded as data in a memory card, and the recorded injection protocol can be read out via the memory card reader / writer 158 and transmitted to the injection controller 150, and vice versa. The injection protocol set in the injection control unit 150 can be written to the memory card via the memory card reader / writer 158. By doing so, for example, an injection protocol set in a certain chemical solution injection device can be transmitted to another chemical solution injection device via the memory card.
 このように、メモリーカードを介してデータの伝送を行うようにした場合、パスワード等の設定により、データの不正な送受信が行えないようにすることが好ましい。また、薬液注入装置の制御プログラムをメモリーカードに記録しておき、メモリーカードリーダ/ライタ158を介して注入制御部150に制御プログラムをインストールしたり、インストールされている制御プログラムを更新したりすることもできる。 Thus, when data is transmitted via a memory card, it is preferable to prevent unauthorized transmission / reception of data by setting a password or the like. In addition, the control program of the chemical solution injection device is recorded on the memory card, and the control program is installed in the injection control unit 150 via the memory card reader / writer 158, or the installed control program is updated. You can also.
 メモリーカードは、CFメモリーカードやSDメモリーカードなど任意のメモリーカードであってよく、メモリーカードリーダ/ライタ158は、メモリーカードの読み出しおよび書き込みに適合した任意の機器を用いることができる。なお、ここでは、メモリーカードと注入制御部150との間でのデータのやり取りについて、のデータの書き込みおよびデータの読み出しの双方を行うことを説明したが、データの書き込みまたはデータの読み出しの何れか一方のみを行うメモリーカードリーダまたはメモリーカードライタが注入制御部150に接続されていてもよい。 The memory card may be any memory card such as a CF memory card or an SD memory card, and the memory card reader / writer 158 can use any device suitable for reading and writing of the memory card. Here, it has been described that both data writing and data reading are performed for data exchange between the memory card and the injection control unit 150, but either data writing or data reading is performed. A memory card reader or memory card writer that performs only one may be connected to the injection control unit 150.
 上述のように、RFIDモジュール166は、RFIDタグ802からデータの入力を受け付けるものであり、その意味では、RFIDモジュール166は、入力ユニット156とともに、本発明におけるデータ入力インターフェースを構成する。 As described above, the RFID module 166 receives data input from the RFID tag 802. In this sense, the RFID module 166, together with the input unit 156, constitutes a data input interface in the present invention.
 RFIDタグ802に記録されている情報としては、シリンジ800に充填されている薬液に関する情報、例えば、製造メーカー、薬液の種類、製品名、品番、含有成分(特に、薬液が造影剤の場合は造影剤単位量当たりのヨード含有量など)、充填量、ロット番号、消費期限などの他に、シリンジに関する情報、例えば、製造メーカー、製品名、品番といった固有識別番号、許容圧力値、シリンジの容量、ピストンストローク、必要な各部の寸法、ロット番号などが挙げられる。これらの情報の少なくとも一部は、透視撮像装置200へ伝送することができる。 Information recorded on the RFID tag 802 includes information on the chemical solution filled in the syringe 800, for example, the manufacturer, the type of the chemical solution, the product name, the product number, and the contained components (particularly, when the chemical solution is a contrast agent, the contrast medium In addition to the iodine content per unit dosage), filling amount, lot number, expiry date, etc., information on the syringe, for example, a unique identification number such as manufacturer, product name, product number, allowable pressure value, syringe capacity, Examples include piston stroke, required dimensions of each part, and lot number. At least a part of these pieces of information can be transmitted to the fluoroscopic imaging apparatus 200.
 RFID制御回路164は、任意の位置に設置することができるが、アンテナ165は、シリンジ800がシリンダ保持機構111に正常に保持された状態においてRFIDタグ802と対向する位置に設置されることが望ましい。 Although the RFID control circuit 164 can be installed at an arbitrary position, the antenna 165 is preferably installed at a position facing the RFID tag 802 in a state where the syringe 800 is normally held by the cylinder holding mechanism 111. .
 特に本形態では、図4に示すように、RFIDタグ802は長手方向を有する形状とされ、その長手方向をシリンジ800の周方向と一致させて貼付されている。シリンジ800は、シリンダ保持機構111に挿入されることによって正常に保持され、あるいは、挿入された後、シリンジ800を特定の向きとなるように回転させることによって正常に保持され、その正常に保持された状態でRFIDタグ802が下向きとなるように設計されている。 Particularly in this embodiment, as shown in FIG. 4, the RFID tag 802 has a shape having a longitudinal direction, and is pasted with its longitudinal direction coinciding with the circumferential direction of the syringe 800. The syringe 800 is normally held by being inserted into the cylinder holding mechanism 111, or after being inserted, the syringe 800 is normally held by rotating the syringe 800 in a specific direction, and the syringe 800 is normally held. In this state, the RFID tag 802 is designed to face downward.
 そして、RFIDモジュール166のアンテナ165は、導体からなる所定のパターン(例えば、1つまたは複数のループ状パターン)を形成したFPC(フレキシブルプリント回路基板)を有し、図7に示すように、シリンダ保持機構にシリンダが正常に保持されたシリンジ800のRFIDタグ802と対向する位置に、シリンジ800と同心状となるように円弧状に曲げられて配置されている。これにより、曲面上に貼付されたRFIDタグ802の検出範囲の拡大を図っている。 The antenna 165 of the RFID module 166 has an FPC (flexible printed circuit board) on which a predetermined pattern (for example, one or a plurality of loop patterns) made of a conductor is formed. As shown in FIG. The syringe 800 is bent and arranged in a circular arc shape so as to be concentric with the syringe 800 at a position facing the RFID tag 802 of the syringe 800 in which the cylinder is normally held by the holding mechanism. Thus, the detection range of the RFID tag 802 attached on the curved surface is expanded.
 また本形態では、RFIDタグ802の貼付位置にばらつきがあったとしても、RFIDタグ802が確実にアンテナ165と対向することができるように、アンテナ165は、RFIDタグ802よりも大きな面積を有している。したがって、アンテナ165のサイズは、シリンジ800へのRFIDタグ802の貼付位置のばらつきを考慮して設計することが好ましい。 In this embodiment, the antenna 165 has an area larger than that of the RFID tag 802 so that the RFID tag 802 can reliably face the antenna 165 even if there is a variation in the attachment position of the RFID tag 802. ing. Therefore, the size of the antenna 165 is preferably designed in consideration of variations in the position where the RFID tag 802 is attached to the syringe 800.
 一方、アンテナ165を円弧状に曲げることにより、アンテナ165の曲率半径が小さくなるほど、また、アンテナ165の周方向での長さが長くなるほど、通信用の電波が干渉しやすくなり、通信感度が低下する傾向がある。そこで、電波の干渉を抑制するため、アンテナ165は、FPCのRFIDタグ802と対向する面と反対側の面に、フェライトシート165aを有することが好ましい。 On the other hand, by bending the antenna 165 in a circular arc shape, as the radius of curvature of the antenna 165 becomes smaller and the length in the circumferential direction of the antenna 165 becomes longer, radio waves for communication are more likely to interfere and communication sensitivity is lowered. Tend to. Therefore, in order to suppress radio wave interference, the antenna 165 preferably includes a ferrite sheet 165a on the surface opposite to the surface facing the RFID tag 802 of the FPC.
 RFIDモジュール166の出力は、例えば200mWとすることができる。このように微弱な出力とすることにより、RFIDタグ802がアンテナ165と正対する正常な位置にシリンジ800が装着された状態でRFIDタグ802からデータを良好に読み出すことができ、シリンジ800が正常な位置に装着されていない場合には読み出すことができないようにすることができる。これにより、RFIDタグ802からデータが読み出されない場合は、注入制御ユニット150は、シリンジ800が正常に装着されていない可能性がある旨、表示ユニット154へ表示させることなどにより操作者に注意を促すことができる。 The output of the RFID module 166 can be set to 200 mW, for example. With such a weak output, it is possible to read data from the RFID tag 802 in a state where the syringe 800 is mounted in a normal position where the RFID tag 802 faces the antenna 165, and the syringe 800 is normal. If it is not attached to the position, it can be prevented from reading. Thereby, when data is not read from the RFID tag 802, the injection control unit 150 warns the operator by displaying on the display unit 154 that the syringe 800 may not be properly mounted. Can be urged.
 次に、上述した透視撮像システムの動作などについて、透視撮像装置200がX線CT装置である場合を例に挙げて、薬液注入装置100の動作を中心により詳しく説明する。 Next, the operation of the above-described fluoroscopic imaging system and the like will be described in detail mainly with respect to the operation of the chemical solution injector 100, taking as an example the case where the fluoroscopic imaging device 200 is an X-ray CT apparatus.
 まず、薬液注入装置100および透視撮像装置200の電源が投入され、薬液注入装置100および透視撮像装置200が起動される。次いで、薬液が充填されているシリンジ800が所定の手順で注入ヘッド110に装着される。シリンジ800が装着されると、RFIDモジュール166によってRFIDタグ802記録されている、シリンジ800および薬液に関するデータ/情報が読み出される。ここでは、2本のシリンジ800、具体的には造影剤が充填された造影剤用のシリンジおよび生理食塩水が充填された生理食塩水用のシリンジが注入ヘッド110に装着されるものとして説明する。本明細書では、シリンジの符号を充填されている薬液の種類で区別する場合、造影剤が充填されているシリンジについては添え字Cを付してシリンジ800Cと表記し、生理食塩水が充填されているシリンジについては添え字Pを付してシリンジ800Pと表記することがある。 First, the chemical solution injection device 100 and the fluoroscopic imaging device 200 are turned on, and the chemical solution injection device 100 and the fluoroscopic imaging device 200 are activated. Next, the syringe 800 filled with the chemical solution is attached to the injection head 110 in a predetermined procedure. When the syringe 800 is attached, data / information regarding the syringe 800 and the chemical solution recorded in the RFID tag 802 by the RFID module 166 is read out. Here, two syringes 800, specifically, a contrast agent syringe filled with a contrast agent and a saline syringe filled with a saline solution will be described as being attached to the injection head 110. . In this specification, when distinguishing the code | symbol of a syringe with the kind of chemical | medical solution with which it fills, about the syringe with which the contrast agent was filled, the subscript C is attached | subjected and it describes with the syringe 800C, and the physiological saline is filled. About the syringe which is attached, the subscript P is attached | subjected and it may describe with the syringe 800P.
 注入ヘッド110への、造影剤が充填されているシリンジ800Cおよび生理食塩水が充填されているシリンジ800Pの装着が完了したら、操作者は、一例として図8に示すような延長チューブ400を各シリンジ800C、800Pに接続する。延長チューブ400は、T字コネクタを介して接続された3本のチューブを有している。各シリンジ800C、800Pに接続されるチューブの端部には接続コネクタ401、402が取り付けられており、被験者側に向かうチューブの端部には別の形態の接続コネクタ403が取り付けられている。各接続コネクタ401、402は、先端にねじ部が形成された円筒部を有し、ルアーロック方式でシリンジ800C、800Pの先端に設けられた導管部に接続されるものであってもよい。また、これらの接続コネクタ401、402のうち少なくとも生理食塩水用のシリンジ800Pに接続される接続コネクタ402は、一方弁としての機能を有するもの、例えば国際公開公報WO2012/060365号に記載されたようなものであってもよい。接続コネクタ403には、不図示の留置針またはカテーテルなどが接続される。このような延長チューブ400を用いることによって、造影剤および生理食塩水を同時または別々に被験者に注入することができる。 When the syringe 800C filled with the contrast medium and the syringe 800P filled with physiological saline are completely attached to the injection head 110, the operator installs the extension tube 400 as shown in FIG. 8 as an example. Connect to 800C, 800P. The extension tube 400 has three tubes connected via T-shaped connectors. Connection connectors 401 and 402 are attached to the ends of the tubes connected to the syringes 800C and 800P, and another form of connection connector 403 is attached to the end of the tube toward the subject. Each of the connection connectors 401 and 402 may have a cylindrical portion with a thread portion formed at the tip, and may be connected to a conduit portion provided at the tip of the syringes 800C and 800P by a luer lock method. Of these connection connectors 401 and 402, at least the connection connector 402 connected to the physiological saline syringe 800P has a function as a one-way valve, for example, as described in International Publication WO2012 / 060365. It may be anything. An indwelling needle or a catheter (not shown) is connected to the connection connector 403. By using such an extension tube 400, the contrast medium and physiological saline can be injected into the subject simultaneously or separately.
 造影剤用のシリンジ800が装着されると、そのRFIDタグ802から、少なくとも造影剤単位量当たりのヨード含有量のデータが読み出され、注入制御部150内のメモリに一時的に格納される。注入制御部150は、RFIDタグ802から読み出したデータ/情報の少なくとも一部を表示ユニット154に表示させたり、プレッサー112を待機位置へ移動させたりする。待機位置とは、プレッサー112がシリンジ800のピストンの末端に当接する位置から最後端位置までの間の任意の位置である。待機位置への移動は、注入制御部150が、RFIDタグ802から読み出した情報に基づいてピストンの末端位置を求め、プレッサー112の可動範囲の最後端位置である初期位置からピストン末端位置までの距離を求め、その距離と予め決められていた任意のオフセット値分だけプレッサー112が前進するようにピストン駆動機構140を動作させることによって行うことができる。これにより、プレッサー112はピストンの待機位置へ移動される。 When the contrast medium syringe 800 is attached, at least the iodine content data per contrast medium unit amount is read from the RFID tag 802 and temporarily stored in the memory within the injection control unit 150. The injection control unit 150 displays at least a part of the data / information read from the RFID tag 802 on the display unit 154, or moves the presser 112 to the standby position. The standby position is an arbitrary position between the position where the presser 112 abuts the end of the piston of the syringe 800 and the end position. For the movement to the standby position, the injection control unit 150 obtains the end position of the piston based on the information read from the RFID tag 802, and the distance from the initial position, which is the end position of the movable range of the presser 112, to the end position of the piston. And the piston driving mechanism 140 is operated so that the presser 112 moves forward by the distance and an arbitrary offset value determined in advance. Thereby, the presser 112 is moved to the standby position of the piston.
 また、注入制御部150は、RFIDタグ802から取得したデータ/情報およびタッチパネル103から入力されたデータ等に基づいて、注入速度、注入量および注入時間などをパラメータとした注入プロトコルを作成する。作成された注入プロトコルは、薬液注入時の制御データとして注入制御部150のメモリに格納され、薬液の注入動作時には、注入制御部150は、この制御データにしたがってピストン駆動機構140の動作を制御する。また、作成された注入プロトコルは、タッチパネル103上に、グラフィック的、あるいは数値データの形式で表示することができる。操作者は、表示された注入プロトコルを任意に変更することができる。操作者が注入ヘッド110のチェックボタン116aを押下することによって、注入準備が完了する。 In addition, the injection control unit 150 creates an injection protocol using the injection speed, the injection amount, the injection time, and the like as parameters based on the data / information acquired from the RFID tag 802 and the data input from the touch panel 103. The created injection protocol is stored in the memory of the injection control unit 150 as control data at the time of drug injection, and the injection control unit 150 controls the operation of the piston drive mechanism 140 according to this control data at the time of drug injection operation. . Further, the created injection protocol can be displayed on the touch panel 103 in a graphic or numerical data format. The operator can arbitrarily change the displayed injection protocol. When the operator presses the check button 116a of the injection head 110, preparation for injection is completed.
 注入プロトコルとは、どのような薬液をどのような条件(量、速度、時間など)で注入するかを示すものである。また、複数種の薬液、すなわち造影剤と生理食塩水とを注入する場合、それらの注入順序および各々の注入条件も注入プロトコルに含まれる。 The injection protocol indicates what kind of chemical solution is injected under what conditions (amount, speed, time, etc.). Moreover, when inject | pouring a multiple types of chemical | medical solution, ie, a contrast agent and physiological saline, those injection | pouring order and each injection | pouring conditions are also contained in an injection | pouring protocol.
 図9Aに、表示ユニット154(例えばタッチパネル103)に表示される、注入条件設定用画面の一例を示す。図9Aに示す設定画面300には、撮像部位アイコン301、注入グラフサムネイル302を含む、各種データ/情報が表示される。なお、設定画面300中における「A」および「B」の表示は、それぞれ造影剤および生理食塩水を意味する。 FIG. 9A shows an example of an injection condition setting screen displayed on the display unit 154 (for example, the touch panel 103). Various data / information including an imaging region icon 301 and an injection graph thumbnail 302 are displayed on the setting screen 300 illustrated in FIG. 9A. In addition, the display of “A” and “B” on the setting screen 300 means a contrast medium and physiological saline, respectively.
 撮像部位アイコン301は、撮像部位の表示および入力に用いられ、仰臥した人間を、例えば、頭部、胸部、腹部および脚部に区分してイラストレーション化した人体画像で表示される。操作者がこれらの区分のうち一つをタップすることなどによって、タップされた区分が撮像部位として選択される。あるいは、区分をタップすると、その区分に含まれる一つまたは複数の臓器の名称または画像がさらに表示され(例えば、区分が「胸部」の場合は「心臓」および「肺」など)、表示された臓器のいずれかをタップすることで、撮像部位が選択されるようにしてもよい。選択された撮像部位は、他の部位と視覚的に判別できるように表示が変更される。図9Aは、腹部の特に肝臓が撮像部位として選択されている状態を示す。 The imaging part icon 301 is used for display and input of an imaging part, and is displayed as an illustration of a human body image obtained by dividing a supine person into, for example, a head, a chest, an abdomen, and a leg. When the operator taps one of these sections, the tapped section is selected as an imaging region. Alternatively, when a section is tapped, the names or images of one or more organs included in the section are further displayed (for example, “Heart” and “Lung” when the section is “Chest”) and displayed. The imaging region may be selected by tapping any of the organs. The display of the selected imaging part is changed so that it can be visually distinguished from other parts. FIG. 9A shows a state where the abdomen, in particular, the liver is selected as the imaging region.
 図示した例では、撮像部位アイコン301は、仰臥した人間を側方から見た状態をイラスト的に表した画像であるが、仰臥した人間を上方から見た状態を表した画像であってもよいし、また、画面上での人体画像の向きは縦向きであっても横向きであってもよい。さらに、撮像部位アイコン301は、人体を模した画像である必要はなく、臓器を表した画像のみで撮像部位を表したもの、文字のみで撮像部位を表したもの、およびこれらの組み合わせなど、任意であってよい。 In the illustrated example, the imaging region icon 301 is an image that illustrates the state of a person who is supine viewed from the side, but may be an image that represents a state of the person who is supine viewed from above. In addition, the orientation of the human body image on the screen may be portrait or landscape. Furthermore, the imaging part icon 301 does not need to be an image imitating a human body, and an arbitrary part such as an imaging part represented only by an image representing an organ, an imaging part represented only by characters, and a combination thereof. It may be.
 体重アイコン305は、被験者の体重の表示および入力に用いられる。例えば、操作者が体重アイコン305をタップすると、体重アイコン305の近傍にテンキーを表示させるようにし、表示されたテンキーをタップしたり、あるいは、体重アイコン305をタップすると、体重アイコン305に表示されている数値を1つずつ増減させるための増減用アイコンを表示させるようにし、増減用アイコンをタップしたりすることなどによって、被験者の体重を入力することができる。 The weight icon 305 is used for displaying and inputting the weight of the subject. For example, when the operator taps the weight icon 305, a numeric keypad is displayed in the vicinity of the weight icon 305, and when the displayed numeric keypad is tapped, or when the weight icon 305 is tapped, the weight icon 305 is displayed. The subject's weight can be input by displaying an increase / decrease icon for increasing / decreasing the numerical value one by one and tapping the increase / decrease icon.
 注入時間アイコン307は、造影剤の注入時間の表示および入力に用いられ、ヨード量アイコン308は、被験者の体重当たりの必要とされるヨード量の表示および入力に用いられる。注入時間は、透視撮像装置による撮像時間と同じ時間とされることが多い。注入時間およびヨード量の入力のための操作も、体重アイコン305の場合と同様とすることができる。なお、被験者の体重、注入時間およびヨード量は、デフォルト値が注入制御部150のメモリに格納されており、初期設定ではこのデフォルト値がそれぞれのアイコンに表示されるようにしてもよい。あるいは、薬液注入装置100の外部のユニットからこれらのデータの少なくとも1つが注入制御部150に伝送され、これら伝送されたデータが、それぞれ対応するアイコン表示され、注入条件の設定に用いられてもよい。外部のユニットとしては、透視撮像装置200、後述するRIS、PACKS、HISなどが挙げられる。 The injection time icon 307 is used for display and input of the contrast agent injection time, and the iodine amount icon 308 is used for display and input of the required iodine amount per body weight of the subject. The injection time is often the same as the imaging time by the fluoroscopic imaging device. The operation for inputting the injection time and the amount of iodine can be the same as in the case of the weight icon 305. Note that default values of the subject's weight, injection time, and iodine amount are stored in the memory of the injection control unit 150, and the default values may be displayed on the respective icons in the initial setting. Alternatively, at least one of these data may be transmitted from an external unit of the chemical solution injector 100 to the injection controller 150, and the transmitted data may be displayed as a corresponding icon and used for setting injection conditions. . Examples of the external unit include a fluoroscopic imaging device 200, RIS, PACKS, and HIS described later.
 圧力リミットアイコン309は、装着されているシリンジ800の圧力リミット値の表示および入力に用いられる。圧力リミット値は、RFIDタグ802にそのデータが記録されている場合は、RFIDモジュール166によって読み出されたデータが、圧力リミットアイコン309に表示される。圧力リミットアイコン309は、体重アイコン305と同様にして操作者による数値の入力が可能とされており、RFIDタグ802にこれらのデータが記録されていない場合、あるいはRFIDタグ802を有していないシリンジが装着された場合は、体重アイコン305の場合と同様にして操作者がそれぞれの数値を入力することができる。シリンジ容量アイコン110には、プレッサー112(図3参照)の位置に対応して注入制御部150(図6参照)にて算出された、シリンジ800内の薬液の残容量が表示される。 The pressure limit icon 309 is used for displaying and inputting the pressure limit value of the syringe 800 attached. When the pressure limit value is recorded in the RFID tag 802, the data read by the RFID module 166 is displayed on the pressure limit icon 309. The pressure limit icon 309 allows the operator to input numerical values in the same manner as the weight icon 305, and when these data are not recorded in the RFID tag 802 or a syringe that does not have the RFID tag 802 When is attached, the operator can input respective numerical values in the same manner as in the case of the weight icon 305. The syringe volume icon 110 displays the remaining volume of the drug solution in the syringe 800 calculated by the injection controller 150 (see FIG. 6) corresponding to the position of the presser 112 (see FIG. 3).
 造影剤アイコン311には、装着されたシリンジ800に充填されている造影剤の、RFIDタグ802に記録されている名称等が表示される。タイミングアイコン312は、薬液注入装置にテスト注入を実行させるためのアイコンである。テスト注入とは、後述するように、透視撮像装置200による断層画像の撮像開始タイミングを決定するために行われる造影剤の注入である。操作者がタイミングアイコン312をタップすると、注入制御部150は、表示ユニット154にテスト注入設定用の画面を表示させる。操作者は、表示された画面に従って、テスト注入のための所定の設定を行い、設定後、テスト注入開始のための所定の操作を行うことにより、注入制御部150は設定に従って薬液注入装置の動作を制御し、これによってテスト注入が行われる。 In the contrast agent icon 311, a name or the like recorded on the RFID tag 802 of the contrast agent filled in the attached syringe 800 is displayed. The timing icon 312 is an icon for causing the chemical injection device to execute test injection. As will be described later, the test injection is an injection of a contrast agent that is performed to determine the imaging start timing of the tomographic image by the fluoroscopic imaging apparatus 200. When the operator taps the timing icon 312, the injection control unit 150 displays a test injection setting screen on the display unit 154. The operator performs a predetermined setting for the test injection according to the displayed screen, and after the setting, performs a predetermined operation for starting the test injection, so that the injection control unit 150 operates the chemical injection device according to the setting. And thereby a test injection is performed.
 ルートアイコン313は、薬液注入装置にルートテストを実行させる際に操作されるアイコンである。ルートテストとは、シリンジ800から被験者までの薬液流通経路が正常に確保されているかどうかを確認するためのテストである。一般的には、ルートテストでは、生理食塩水を被験者に注入しながら、その生理食塩水が充填されているシリンジに作用する圧力を検出し、検出された圧力が予め設定された所定の範囲内にある場合に、薬液流通経路が正常に確保されていると判断する。一方、圧力が所定の範囲よりも低い場合は、薬液流通経路での液漏れなどが考えられ、その逆に高い場合は、薬液流通経路の詰まりなどが考えられる。 The route icon 313 is an icon operated when causing the chemical injection device to execute a route test. The route test is a test for confirming whether or not a drug solution distribution path from the syringe 800 to the subject is normally secured. In general, in a route test, while injecting physiological saline into a subject, a pressure acting on a syringe filled with the physiological saline is detected, and the detected pressure is within a predetermined range. If it is, it is determined that the chemical solution distribution channel is normally secured. On the other hand, when the pressure is lower than the predetermined range, liquid leakage or the like in the chemical liquid flow path is considered, and conversely, when the pressure is high, the chemical liquid flow path is clogged.
 管電圧アイコン306は、透視撮像装置のX線管(電磁波照射器)に印加される管電圧値を入力するのに用いられる。X線管から照射されるX線の照射強度は、管電圧値の設定に応じて変化する。つまり、管電圧値は、X線の照射強度についての設定値であるということができる。管電圧値の設定そのものは透視撮像装置側で行われ、ここで管電圧値を入力するのは、透視撮像装置側で設定された管電圧の値を、造影剤および生理食塩水の注入条件の算出に利用するためである。なお、管電圧値は、通常よりも低い管電圧で撮像する場合に、管電圧を考慮して注入プロトコルを変更するときに利用される。したがって、通常は、管電圧アイコン306は表示されておらず、例えば「LOW kV」の文字が表示され、「LOW kV」の文字の部分をタップすることによって管電圧アイコン306が表示されるようにすることができる。 The tube voltage icon 306 is used to input a tube voltage value applied to the X-ray tube (electromagnetic wave irradiator) of the fluoroscopic imaging apparatus. The irradiation intensity of X-rays irradiated from the X-ray tube changes according to the setting of the tube voltage value. That is, it can be said that the tube voltage value is a set value for the X-ray irradiation intensity. The tube voltage value setting itself is performed on the fluoroscopic imaging device side, and the tube voltage value is input here by setting the tube voltage value set on the fluoroscopic imaging device side according to the injection conditions of the contrast medium and physiological saline. This is for use in calculation. The tube voltage value is used when the injection protocol is changed in consideration of the tube voltage when imaging with a tube voltage lower than usual. Therefore, normally, the tube voltage icon 306 is not displayed. For example, the characters “LOW kV” are displayed, and the tube voltage icon 306 is displayed by tapping the portion of the characters “LOW kV”. can do.
 透視撮像装置が管電圧値の設定を変更可能に構成される場合、通常は、複数の管電圧値から1つを選択するように構成されている。よって、管電圧アイコン306も、それに合わせて複数の管電圧値から選択された値が入力されるようにすることが好ましい。その場合、例えば、管電圧値を120kV、100kV、80kVの3つの値から選択するようにした場合、管電圧アイコン306にはデフォルト値として、3つの値のうち最も高い値である120kVが表示されるようにすることができる。管電圧値を変更するのは、通常、被験者の症状等を考慮して、より少ない放射線被曝量で撮像する場合が多いからである。 When the fluoroscopic imaging device is configured to be able to change the setting of the tube voltage value, it is usually configured to select one from a plurality of tube voltage values. Therefore, it is preferable that a value selected from a plurality of tube voltage values is input to the tube voltage icon 306 accordingly. In this case, for example, when the tube voltage value is selected from three values of 120 kV, 100 kV, and 80 kV, the tube voltage icon 306 displays 120 kV, which is the highest value among the three values, as a default value. You can make it. The reason for changing the tube voltage value is that imaging is usually performed with a smaller radiation exposure amount in consideration of the symptoms of the subject.
 そして、管電圧アイコン306の表示は、操作者が管電圧値アイコン306をタップする毎に、表示される管電圧値が100kV、80kVというように、降順に切り替わり、最も小さい値が表示されているときに管電圧アイコン306がタップされると、最も大きい値が表示されるようにすることができる。このようにすることにより、管電圧アイコン306の単純な操作だけで管電圧値を入力することができる。 The display of the tube voltage icon 306 is switched in descending order so that the displayed tube voltage value is 100 kV or 80 kV each time the operator taps the tube voltage value icon 306, and the smallest value is displayed. Sometimes when the tube voltage icon 306 is tapped, the largest value can be displayed. In this way, a tube voltage value can be input by a simple operation of the tube voltage icon 306.
 次に、上述した設定画面300を利用した、注入プロトコル設定手順の一例を、管電圧値として120kV、100kV、80kVの中から選択する場合について説明する。 Next, an example in which an injection protocol setting procedure using the setting screen 300 described above is selected from 120 kV, 100 kV, and 80 kV as a tube voltage value will be described.
 注入制御部150は、造影剤の名称、被験者の体重当たりの必要とされるヨード量、シリンジ800の圧力リミット値、各シリンジ800内の薬液の残容量、被験者の体重、造影剤の注入時間を、それぞれ造影剤アイコン311、ヨード量アイコン308,圧力リミットアイコン309、シリンジ容量アイコン310、体重アイコン305、注入時間アイコン307に表示させる。ここで、造影剤の名称、シリンジ800の圧力リミット値は、各シリンジ800のRFIDタグ802から読み出されて注入制御部150のメモリに一時的に格納されているデータである。被験者の体重、被験者の体重当たりの必要とされるヨード量、造影剤の注入時間は、注入制御部150のメモリに予め格納されているデフォルトの値であり、これらの値は必要に応じて操作者が任意に変更することができる。なお、設定画面300に表示はされないが、注入制御部150のメモリには、RFIDタグ802から読み出された、造影剤単位量当たりのヨード含有量のデータも格納されている。また、この段階では、管電圧アイコン306は表示されていない。 The injection control unit 150 displays the name of the contrast agent, the amount of iodine required per subject's body weight, the pressure limit value of the syringe 800, the remaining capacity of the drug solution in each syringe 800, the subject's weight, and the injection time of the contrast agent. , The contrast medium icon 311, the iodine amount icon 308, the pressure limit icon 309, the syringe volume icon 310, the weight icon 305, and the injection time icon 307, respectively. Here, the name of the contrast agent and the pressure limit value of the syringe 800 are data read from the RFID tag 802 of each syringe 800 and temporarily stored in the memory of the injection control unit 150. The body weight of the subject, the amount of iodine required per body weight of the subject, and the contrast agent injection time are default values stored in advance in the memory of the injection control unit 150, and these values are manipulated as necessary. Can be changed arbitrarily. Although not displayed on the setting screen 300, the memory of the injection control unit 150 also stores iodine content data per unit amount of contrast medium read from the RFID tag 802. At this stage, the tube voltage icon 306 is not displayed.
 注入制御部150は、メモリに格納されたこれらのデータを用いて、造影剤の注入量L(mL)および注入速度S(mL/sec)を算出する。造影剤の注入量L(mL)は、被験者の体重をW(kg)、被験者の体重1kg当たりのヨード量をI(mgI/kg)、造影剤単位量当たりのヨード含有量をC(mgI/mL)、造影剤の注入時間をT(sec)としたとき、 The injection control unit 150 calculates the injection amount L (mL) and the injection speed S (mL / sec) of the contrast agent using these data stored in the memory. The contrast medium injection amount L (mL) is the weight of the subject W (kg), the amount of iodine per kg of the subject I (mgI / kg), and the iodine content per unit amount of contrast medium C (mgI / kg). mL), when the contrast agent injection time is T (sec),
Figure JPOXMLDOC01-appb-M000001
で与えられ、造影剤の注入速度S(mL/sec)は、
S(mL/sec)=L(mL)/T(sec) ・・・式(2)
で与えられる。
Figure JPOXMLDOC01-appb-M000001
The contrast medium injection rate S (mL / sec) is given by
S (mL / sec) = L (mL) / T (sec) (2)
Given in.
 例えば、W=60(kg)、I=600(mgI/kg)、C=300(mgI/mL)、T=30(sec)とすると、式(1)より、造影剤の注入量L=120(mL)と算出され、式(2)より、造影剤の注入速度S=4.0(mL/sec)と算出される。注入制御部150は、算出結果を、注入グラフサムネイル302として設定画面300上に表示させることができる。 For example, when W = 60 (kg), I = 600 (mgI / kg), C = 300 (mgI / mL), and T = 30 (sec), the contrast agent injection amount L = 120 from Equation (1). (ML) is calculated, and the contrast medium injection rate S = 4.0 (mL / sec) is calculated from Equation (2). The injection control unit 150 can display the calculation result on the setting screen 300 as the injection graph thumbnail 302.
 上記式(1)では被験者の体重当たりに必要とされるヨード量Iを用いて造影剤の注入量Lを算出しているが、撮像部位(例えば、心臓など)によっては、被験者の体重当たりおよび時間当たりに必要とされるヨード量I’(mgI/kg/sec)を用いて注入量を算出することもできる。この場合の注入量の算出には、以下の式(1’)を用いることができる。 In the above formula (1), the contrast medium injection amount L is calculated using the amount of iodine I required per subject's body weight, but depending on the imaging region (for example, the heart, etc.) The injection amount can also be calculated using the iodine amount I ′ (mgI / kg / sec) required per time. In the calculation of the injection amount in this case, the following formula (1 ′) can be used.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、前述したように、造影剤の注入量が少なすぎたり、造影剤の注入速度が低すぎたりすると、造影剤が目的の部位に到達するまでの間に、血液中に拡散したり、周囲の組織に吸収されたりする現象が生じ得る。そこで、造影剤の注入量および注入速度の下限値を注入制御部150に予め設定しておき、注入制御部150は、それらの値を算出された注入量および注入速度と比較し、算出された注入量および注入速度の少なくとも一方が、予め設定されている値より小さい場合に、警告を発するようにしてもよい。注入制御部150に設定される造影剤の注入量の下限値は、好ましくは30mlとすることができ、より好ましくは50mlとすることができる。注入制御部150に設定される造影剤の注入速度の下限値は、好ましくは3ml/secとすることができ、より好ましくは5ml/secとすることができる。これらの下限値は、撮像部位毎に設定されてもよいし、操作者が任意に変更できるようにされていてもよい。また、警告は、表示ユニット154(後述するように第2の表示ユニットを有する場合は、これらの少なくとも一方)に文字やグラフィックなどで表示させるようにしてもよいし、ブザーやスピーカ等の発音器を設け、この発音器からの音声による警告であってもよい。 As mentioned above, if the amount of contrast medium injected is too small or the contrast medium injection speed is too low, the contrast medium may diffuse into the blood or reach the surroundings until it reaches the target site. The phenomenon of being absorbed by the tissue may occur. Therefore, the lower limit value of the contrast agent injection amount and injection rate is set in advance in the injection control unit 150, and the injection control unit 150 compares these values with the calculated injection amount and injection rate. A warning may be issued when at least one of the injection amount and the injection rate is smaller than a preset value. The lower limit value of the contrast agent injection amount set in the injection control unit 150 can be preferably 30 ml, and more preferably 50 ml. The lower limit value of the contrast agent injection speed set in the injection control unit 150 can be preferably 3 ml / sec, and more preferably 5 ml / sec. These lower limit values may be set for each imaging region, or may be arbitrarily changed by the operator. In addition, the warning may be displayed on the display unit 154 (at least one of them if there is a second display unit as will be described later) with characters or graphics, or a sound generator such as a buzzer or a speaker. And a warning by sound from the sound generator may be used.
 この状態で、操作者がチェックアイコン314をタップするか、または注入ヘッド110のチェックボタン116aを操作することによって、算出した注入量および注入速度が注入制御部150内のメモリに一時的に格納され、注入プロトコルが確定する。その後、操作者が注入ヘッド110のスタートボタン116bを操作すると、それに応じた信号が注入制御部150に送られ、注入制御部150は、この信号をトリガーとして、メモリに格納されている各種データを読み出し、確定した注入プロトコルにしたがってピストン駆動機構140が動作するようにピストン駆動機構140の動作を制御する。これによって、シリンジ800内に充填されている薬液を被験者に注入することができる。 In this state, when the operator taps the check icon 314 or operates the check button 116a of the injection head 110, the calculated injection amount and injection speed are temporarily stored in the memory in the injection control unit 150. The infusion protocol is finalized. Thereafter, when the operator operates the start button 116b of the injection head 110, a signal corresponding to the start button 116b is sent to the injection control unit 150. The injection control unit 150 uses this signal as a trigger to read various data stored in the memory. The operation of the piston drive mechanism 140 is controlled so that the piston drive mechanism 140 operates according to the read and determined injection protocol. Thereby, the chemical | medical solution with which the syringe 800 is filled can be inject | poured into a test subject.
 ここで、被験者の症状などによっては、撮像時の被験者の被曝量を抑制するために、より低い管電圧で撮像を行うことがある。その場合、管電圧値を考慮して注入プロトコルを設定することができる。管電圧を考慮した注入プロトコルの設定は、注入プロトコルの設定に必要な全てのデータが入力され、かつ、注入プロトコルが確定されていない段階で行うことができる。 Here, depending on the symptom of the subject, imaging may be performed with a lower tube voltage in order to suppress the exposure dose of the subject during imaging. In that case, the injection protocol can be set in consideration of the tube voltage value. The setting of the injection protocol in consideration of the tube voltage can be performed at a stage where all the data necessary for setting the injection protocol are input and the injection protocol has not been determined.
 管電圧を考慮した注入プロトコルを設定する場合、操作者は、設定画面300上に表示されている「LOW kV」の文字の部分をタップする。すると、「LOW kV」の文字の下方に管電圧アイコン306が表示される。管電圧アイコン306は、初期状態では、使用される透視撮像装置での撮像の際の通常の管電圧値、例えば「120kV」が表示されている。 When setting the injection protocol in consideration of the tube voltage, the operator taps the character portion of “LOW kV” displayed on the setting screen 300. Then, a tube voltage icon 306 is displayed below the characters “LOW kV”. In the initial state, the tube voltage icon 306 displays a normal tube voltage value at the time of imaging with the fluoroscopic imaging device to be used, for example, “120 kV”.
 この状態で操作者が管電圧アイコン306をタップすると、管電圧アイコン306に表示される管電圧値は100kV(図9B参照)に変更され、さらにタップすると80kV(図9C参照)に変更される。注入制御部150は、管電圧アイコン306がタップされる都度、この管電圧値に応じて注入プロトコルを設定する。 In this state, when the operator taps the tube voltage icon 306, the tube voltage value displayed on the tube voltage icon 306 is changed to 100 kV (see FIG. 9B), and further tapped to 80 kV (see FIG. 9C). Each time the tube voltage icon 306 is tapped, the injection controller 150 sets an injection protocol according to this tube voltage value.
 通常の管電圧よりも低い管電圧で撮像を行う場合、造影剤と生理食塩水とを同時に注入する注入プロトコル、すなわち、造影剤量が減量され、減量された分だけ造影剤が生理食塩水で希釈された希釈注入プロトコルが設定される。このときの造影剤の減量割合は、管電圧値が低ければ低いほど高くなる(別の言い方をすれば、造影剤の割合が低くなる)ように、例えば注入制御部150の適宜メモリにテーブルとして予め格納されていてもよいし、注入制御部150において算出されてもよい。造影剤と生理食塩水との割合を注入制御部150において算出する場合は、例えば、造影剤および生理食塩水の総注入量に対する造影剤の注入量の割合が、通常の管電圧値に対する変更後の管電圧値の割合にほぼ等しくなるように、造影剤と生理食塩水との割合を算出することができる。 When imaging is performed at a tube voltage lower than the normal tube voltage, an injection protocol in which contrast medium and physiological saline are injected at the same time, that is, the amount of contrast medium is reduced, and the amount of the contrast medium is reduced by physiological saline. A diluted dilution injection protocol is set up. In this case, for example, the ratio of the contrast agent is increased as the tube voltage value is lower (in other words, the ratio of the contrast agent is lower). It may be stored in advance or may be calculated by the injection control unit 150. When the injection controller 150 calculates the ratio of the contrast agent and the physiological saline, for example, the ratio of the contrast agent injection amount to the total injection amount of the contrast agent and the physiological saline is changed after the change to the normal tube voltage value. The ratio between the contrast agent and the physiological saline can be calculated so as to be approximately equal to the ratio of the tube voltage value.
 以下、造影剤の減量割合が管電圧値に応じて予め定められている場合の注入プロトコルの設定例について説明する。 Hereinafter, a setting example of the injection protocol when the reduction rate of the contrast medium is predetermined according to the tube voltage value will be described.
 例えば、造影剤と生理食塩水との割合が、管電圧値に応じて以下のテーブルに示すように定められているとする。 For example, it is assumed that the ratio of contrast medium and physiological saline is determined as shown in the following table according to the tube voltage value.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1において、管電圧値が120kVのときは、生理食塩水による造影剤の希釈は行わず、前述した式(1)で算出された注入量L(mL)および式(2)で算出された注入速度S(mL/sec)で造影剤のみを注入する注入プロトコルが得られる。 In Table 1, when the tube voltage value was 120 kV, the contrast medium was not diluted with physiological saline, and was calculated by the injection amount L (mL) calculated by the above-described equation (1) and the equation (2). An injection protocol for injecting only the contrast agent at an injection rate S (mL / sec) is obtained.
 ここで、管電圧値が120kVよりも低い値の場合は、算出された造影剤の注入量および注入速度は、管電圧値に応じて予め定められた所定の割合で減量され、減量された分が生理食塩水の注入量および注入速度として算出される。 Here, when the tube voltage value is lower than 120 kV, the calculated contrast agent injection amount and injection rate are reduced by a predetermined ratio determined in advance according to the tube voltage value. Is calculated as the amount of saline injected and the rate of injection.
 具体的には、管電圧値が100kVの場合は、造影剤と生理食塩水との割合が8:2とされ、注入制御部150は、テーブルから、造影剤の割合0.8および生理食塩水の割合0.2をそれぞれ読み出す。造影剤の注入量および注入速度は、注入制御部150において、造影剤のみを注入する場合の造影剤の注入量および注入速度をそれぞれ0.8倍した値として算出される。同様に、生理食塩水の注入量および注入速度が、造影剤のみを注入する場合の造影剤の注入量及び注入速度をそれぞれ0.2倍した値として算出される。 Specifically, when the tube voltage value is 100 kV, the ratio of contrast medium and physiological saline is set to 8: 2, and the injection controller 150 determines the ratio of contrast medium 0.8 and physiological saline from the table. The ratio 0.2 is read out. The injection amount and injection speed of the contrast agent are calculated by the injection control unit 150 as values obtained by multiplying the injection amount and injection speed of the contrast agent when the contrast agent alone is injected by 0.8 times. Similarly, the injection amount and the injection speed of the physiological saline are calculated as values obtained by multiplying the injection amount and the injection speed of the contrast medium when the contrast medium alone is injected by 0.2 times.
 管電圧値が80kVの場合は、造影剤と生理食塩水との割合が6:4とされ、注入制御部150は、テーブルから、造影剤の割合0.6および生理食塩水の割合0.4をそれぞれ読み出す。造影剤の注入量および注入速度は、注入制御部150において、造影剤のみを注入する場合の造影剤の注入量および注入速度をそれぞれ0.6倍した値として算出される。同様に、生理食塩水の注入量および注入速度が、造影剤のみを注入する場合の造影剤の注入量及び注入速度をそれぞれ0.4倍した値として算出される。 When the tube voltage value is 80 kV, the ratio of the contrast medium and the physiological saline is 6: 4, and the injection control unit 150 determines from the table that the ratio of the contrast medium is 0.6 and the ratio of the physiological saline is 0.4. Respectively. The injection amount and injection speed of the contrast agent are calculated by the injection control unit 150 as values obtained by multiplying the injection amount and injection speed of the contrast agent when the contrast agent alone is injected by 0.6. Similarly, the injection amount and the injection speed of the physiological saline are calculated as values obtained by multiplying the injection amount and the injection speed of the contrast agent when the contrast agent alone is injected by 0.4 times.
 なお、表1では管電圧値が80kVから120kVまで20kVの変化幅で変化させる場合を示しているが、管電圧値の範囲および変化幅は、透視撮像装置の製造メーカーおよび/または仕様によって異なることが多く、それらに応じて、例えば、管電圧値の範囲を70kVから140kVまでとしたり、変化幅を5kVあるいは10kVとしたりするなど、任意に設定することができる。管電圧値の範囲および変化幅の設定は、操作者が変更できるようにしてもよいし、透視撮像装置の製造メーカーおよび/または仕様に応じた値が注入制御部150のメモリ内にプリセットされており、操作者が製造メーカーおよび/または仕様を指定することにより自動的に変更されるようにしてもよい。 Table 1 shows a case where the tube voltage value is changed from 80 kV to 120 kV with a change width of 20 kV, but the range and change width of the tube voltage value vary depending on the manufacturer and / or specification of the fluoroscopic imaging device. According to these, for example, the range of the tube voltage value can be set arbitrarily from 70 kV to 140 kV, or the change width can be set to 5 kV or 10 kV. The range of the tube voltage value and the setting of the change width may be changed by the operator, or a value corresponding to the manufacturer and / or specification of the fluoroscopic imaging device is preset in the memory of the injection control unit 150. It may be automatically changed by the operator specifying the manufacturer and / or specifications.
 また、表1に示す管電圧値に応じた造影剤と生理食塩水との割合についても、管電圧値の範囲および変化幅と同様に、透視撮像装置の製造メーカーおよび/または仕様に応じて任意に変更することができる。 Further, the ratio between the contrast medium and the physiological saline according to the tube voltage value shown in Table 1 is also arbitrary depending on the manufacturer and / or specification of the fluoroscopic imaging device, as well as the range and change width of the tube voltage value. Can be changed.
 例えば、低い管電圧値(低線量)で撮像を行った場合、S/N比が小さくなりノイズが増加する傾向にある。このノイズを低減するために、透視撮像装置では、画像再構成時に逐次近似法による画像処理あるいは逐次近似法を利用した画像処理を行うのが一般的である。この画像処理は、透視撮像装置の製造メーカーごとに異なっており、さらには同じ製造メーカーであっても透視撮像装置のグレードごとに異なる場合もある。そして、どのような画像処理を行うかによって、同じ注入条件で薬液を注入したときに得られる画像の鮮明度等の画像品位が異なる。 For example, when imaging is performed with a low tube voltage value (low dose), the S / N ratio tends to be small and noise tends to increase. In order to reduce this noise, a fluoroscopic imaging apparatus generally performs image processing using a successive approximation method or image processing using a successive approximation method during image reconstruction. This image processing is different for each manufacturer of the fluoroscopic imaging device, and even for the same manufacturer, it may be different for each grade of the fluoroscopic imaging device. The image quality such as the sharpness of the image obtained when the chemical solution is injected under the same injection conditions differs depending on the image processing to be performed.
 よって、管電圧値に応じた造影剤と生理食塩水との割合を、透視撮像装置の製造メーカーおよび/または仕様(特に画像処理の仕様)に応じた値とすることにより、より良好な透視画像を取得することができる。 Therefore, by setting the ratio of contrast medium and physiological saline according to the tube voltage value to a value according to the manufacturer of the fluoroscopic imaging device and / or the specification (particularly the specification of image processing), a better fluoroscopic image Can be obtained.
 そのために、例えば、注入制御部150のメモリ内に、表1に示したようなテーブルを、透視撮像装置の製造メーカーおよび/または仕様ごとに用意しておき、注入制御部150は、操作者が管電圧アイコン306(図9A等参照)をタップして通常よりも低い管電圧が選択されたら、透視撮像装置の製造メーカーおよび/または仕様に対応したテーブルを参照して造影剤と生理食塩水との割合を決定することができる。透視撮像装置の製造メーカーおよび/または仕様は、例えば、低管電圧値の選択後、注入制御部150は、表示ユニット154に透視撮像装置の製造メーカーおよび/または仕様の入力を受け付ける画面を表示させ、操作者が透視撮像装置の製造メーカーおよび/または仕様を入力するようにして特定することができる。あるいは、注入制御部150が透視撮像装置からその製造メーカーおよび/または仕様に関する情報を受信することによって特定することもできる。 For this purpose, for example, a table as shown in Table 1 is prepared for each manufacturer and / or specification of the fluoroscopic imaging device in the memory of the injection control unit 150, and the injection control unit 150 is provided by the operator. When a tube voltage lower than normal is selected by tapping the tube voltage icon 306 (see FIG. 9A, etc.), the contrast medium, the physiological saline, The ratio of can be determined. For example, after the low tube voltage value is selected, the injection control unit 150 causes the display unit 154 to display a screen for accepting the input of the manufacturer and / or specification of the fluoroscopic imaging device. The operator can specify the manufacturer and / or specification of the fluoroscopic imaging device. Alternatively, the injection control unit 150 can specify the information by receiving information on the manufacturer and / or specifications from the fluoroscopic imaging device.
 算出結果は、図9Bおよび図9Cに示すように、設定画面300の注入グラフサムネイル302上に具体的な数値を表示させることができる。操作者は、表示された算出結果を確認し、チェックアイコン314をタップするか、または注入ヘッド110のチェックボタン116aを操作することによって注入プロトコルが注入制御部150に設定され、注入準備が完了する。 9B and 9C, specific numerical values can be displayed on the injection graph thumbnail 302 of the setting screen 300 as the calculation result. The operator confirms the displayed calculation result and taps the check icon 314 or operates the check button 116a of the injection head 110, whereby the injection protocol is set in the injection control unit 150 and the preparation for injection is completed. .
 注入制御部150に設定された注入プロトコルは、透視撮像装置200に伝送されてもよい。また、注入制御部150に入力される管電圧値は、透視撮像装置200で設定された管電圧値が透視撮像装置200から注入制御部150へ伝送され、入力されるようにしてもよい。この場合、注入制御部150は、透視撮像装置200から伝送された管電圧値に応じて、造影剤の注入量および注入速度を算出し、さらに、必要に応じて生理食塩水の注入量および注入速度を算出することができる。 The injection protocol set in the injection control unit 150 may be transmitted to the fluoroscopic imaging apparatus 200. The tube voltage value input to the injection control unit 150 may be input by transmitting the tube voltage value set by the fluoroscopic imaging device 200 from the fluoroscopic imaging device 200 to the injection control unit 150. In this case, the injection control unit 150 calculates the injection amount and the injection speed of the contrast agent according to the tube voltage value transmitted from the fluoroscopic imaging device 200, and further, the injection amount and injection of the physiological saline as necessary. The speed can be calculated.
 以上説明したように、被験者のX線被曝を少なくするためにより低い管電圧で撮像を行う場合、管電圧値に応じて造影剤の注入量を少なくすることで、所望のCT値を確保しつつ被験者への身体的負荷を軽減することができる。しかも、造影剤と生理食塩水とを合わせた薬液全体としての注入量および注入速度は管電圧値によらず一定であるので、注入された薬液の、被験者の血管内での流動性が大きく変化することはない。したがって、注入量が少なくなったために、薬液が所望の部位まで到達しにくくなったり、到達するのに時間を要したりといった問題が生じる可能性は極めて低く、良好な画像を撮像することができる。しかも、管電圧値といった撮像条件に応じて生理食塩水による造影剤の希釈比率が変更されるので、様々な造影剤濃度のシリンジを用意しておく必要はない。 As described above, when imaging is performed at a lower tube voltage in order to reduce the subject's X-ray exposure, a desired CT value is secured by reducing the amount of contrast medium injected in accordance with the tube voltage value. The physical load on the subject can be reduced. In addition, since the injection volume and injection speed of the entire drug solution including the contrast medium and physiological saline are constant regardless of the tube voltage value, the fluidity of the injected drug solution in the blood vessel of the subject greatly changes. Never do. Therefore, since the injection amount has decreased, it is extremely unlikely that a problem such as the difficulty of reaching the desired site of the chemical solution or the time required to reach it will be possible, and a good image can be taken. . Moreover, since the dilution ratio of the contrast medium with physiological saline is changed according to the imaging conditions such as the tube voltage value, it is not necessary to prepare syringes with various contrast medium concentrations.
 なお、以上のようにして、造影剤用および生理食塩水用の両方のピストン駆動機構を駆動して生理食塩水で希釈された造影剤を注入した後、注入制御部150は、生理食塩水用のピストン駆動機構のみを駆動して生理食塩水のみを注入し、造影剤を生理食塩水で後押しするようにしてもよい。このとき、生理食塩水の注入速度は、最初に求めた、造影剤のみを注入する場合の造影剤の注入速度と等しい注入速度とすることが好ましい。 In addition, after injecting the contrast medium diluted with physiological saline by driving both the contrast medium and physiological saline piston driving mechanisms as described above, the injection control unit 150 is for the physiological saline. Only the piston drive mechanism may be driven to inject only physiological saline, and the contrast medium may be boosted with physiological saline. At this time, it is preferable that the injection rate of the physiological saline is an injection rate that is equal to the injection rate of the contrast agent obtained when the contrast agent alone is injected.
 また、何らかの理由により造影剤を生理食塩水で希釈できない場合、注入制御部150は、上述した式(1)または式(1’)等により算出した造影剤量(従って、造影剤を生理食塩水で希釈した希釈造影剤量)と、造影剤単位量当たりのヨード含有量とから、算出した造影剤量中のヨード濃度を算出し、造影剤量およびヨード濃度を、例えば表示ユニット154に表示させることができる。そして操作者は、任意の薬液充填装置を用いて、空のシリンジに、算出された造影剤量の造影剤を、算出されたヨード濃度となるように生理食塩水と混合して充填する。そのようにして造影剤が充填されたシリンジを用い、薬液注入装置によって薬液を注入すれば、管電圧値に応じた造影剤の注入が可能となる。 In addition, when the contrast medium cannot be diluted with physiological saline for some reason, the injection control unit 150 determines the amount of contrast medium calculated by the above-described formula (1), formula (1 ′), etc. The iodine concentration in the calculated contrast agent amount is calculated from the diluted contrast agent amount diluted in step 1) and the iodine content per contrast agent unit amount, and the contrast agent amount and iodine concentration are displayed on the display unit 154, for example. be able to. The operator then fills the empty syringe with the calculated amount of contrast medium mixed with physiological saline so as to obtain the calculated iodine concentration using an arbitrary chemical solution filling device. By using a syringe filled with a contrast agent in this manner and injecting a chemical solution by a chemical solution injection device, it becomes possible to inject a contrast agent according to the tube voltage value.
 また、これら造影剤量およびヨード濃度を注入制御部150から薬液充填装置へデータ伝送し、薬液充填装置は、伝送されたデータに従った造影剤量およびヨード濃度で造影剤がシリンジに充填されるように、造影剤を生理食塩水と混合してシリンジに充填することができる。そして、この薬液充填装置で造影剤が充填されたシリンジを薬液注入装置に装着し、装着されたシリンジ内の造影剤(希釈済み造影剤)を注入することにより、管電圧値に応じた造影剤の注入が可能となる。注入制御部150から薬液充填装置へのデータ伝送は、薬液充填装置がメモリーカードリーダを備えている場合は、注入制御部150は、前述したメモリーカードリーダ/ライタ158を介してメモリーカードに造影剤量およびヨード濃度を記録し、薬液充填装置は、これらのデータが記録されたメモリーカードから造影剤量およびヨード濃度を読み出すことによって行うことができる。あるいは、注入制御部150と薬液注入装置とが適宜のネットワークによってデータの送受信可能に接続されていれば、そのネットワークを介してデータを伝送することができる。 Further, the contrast medium amount and iodine concentration are transmitted from the injection control unit 150 to the drug solution filling device, and the drug solution filling device fills the syringe with the contrast agent amount and iodine concentration according to the transmitted data. Thus, the contrast agent can be mixed with physiological saline and filled into a syringe. The syringe filled with the contrast medium in the liquid medicine filling apparatus is attached to the liquid medicine injection apparatus, and the contrast medium (diluted contrast medium) in the attached syringe is injected, so that the contrast medium according to the tube voltage value is obtained. Can be injected. In the data transmission from the injection control unit 150 to the chemical solution filling device, when the chemical solution filling device includes a memory card reader, the injection control unit 150 transfers the contrast agent to the memory card via the memory card reader / writer 158 described above. The amount and the iodine concentration are recorded, and the chemical solution filling apparatus can be performed by reading the contrast agent amount and the iodine concentration from the memory card in which these data are recorded. Alternatively, if the injection control unit 150 and the chemical solution injection device are connected via an appropriate network so that data can be transmitted and received, the data can be transmitted via the network.
 さらに、薬液充填装置によって薬液が充填される空シリンジがRFIDタグを備えていれば、そのRFIDタグに造影剤量およびヨード濃度をデータとして記録することができる。RFIDタグへのデータの記録はRFIDタグ用のライタまたはリーダ/ライタを用いることができる。ライタまたはリーダ/ライタは、薬液充填装置が備えていてもよいし、薬液充填装置とは別個のユニットであってもよい。 Furthermore, if the empty syringe filled with the chemical solution by the chemical solution filling apparatus includes an RFID tag, the contrast medium amount and iodine concentration can be recorded as data on the RFID tag. For recording data in the RFID tag, a writer or reader / writer for the RFID tag can be used. The writer or the reader / writer may be included in the chemical liquid filling device, or may be a separate unit from the chemical liquid filling device.
 あるいは、注入制御部150は、造影剤量およびヨード濃度を算出した後、市販されているプレフィルドシリンジの製造メーカーおよび品名を、造影剤単位量当たりのヨード含有量やヨード濃度などその造影剤に含まれるヨードの量に関連するデータと対応付けたデータベース(またはテーブル)を参照し、造影剤単位量当たりのヨード含有量または算出したヨード濃度をデータベース(またはテーブル)のそれと比較し、値が同一または最も近い一つまたは複数のプレフィルドシリンジの製造メーカー、品名、容量などを、例えば表示ユニット154に表示させることもできる。この場合、操作者は、操作者は、表示されたプレフィルドシリンジを参考にして、必要に応じて適宜のプレフィルドシリンジを薬液注入装置に装着し、注入することができる。プレフィルドシリンジのデータベース(またはテーブル)は、注入制御部150が持っていてもよいし。注入制御部150の外部にあってもよい。 Alternatively, the injection controller 150 calculates the contrast agent amount and the iodine concentration, and then includes the manufacturer and the product name of the commercially available prefilled syringe in the contrast agent such as the iodine content and the iodine concentration per contrast agent unit amount. Refer to the database (or table) associated with the data related to the amount of iodine produced, compare the iodine content per unit amount of contrast agent or the calculated iodine concentration with that of the database (or table), and the values are the same or For example, the display unit 154 can display the manufacturer, product name, capacity, and the like of the closest prefilled syringe or syringes. In this case, the operator can inject by inserting an appropriate prefilled syringe into the chemical liquid injector as necessary with reference to the displayed prefilled syringe. The injection controller 150 may have a database (or table) of prefilled syringes. It may be outside the injection control unit 150.
 また、薬液注入装置100による薬液の注入モードとしては、造影剤をA、生理食塩水をBとしたとき、上述した造影剤のみを注入するフェーズ(A)、造影剤の注入フェーズ後に生理食塩水の注入フェーズを行うこと(A→B)、造影剤と生理食塩水とを同時に注入する混和注入フェーズ(A+B)を含め、例えば以下に示す、単一のフェーズまたは複数のフェーズを含む注入モードを有することができる。以下に示す注入モードにおいて、「→」は、その前後の動作が連続して行われ、「→」の前後の注入は異なるフェーズであることを意味する。また、「P」は、設定された任意の時間の経過後に次のステップへ移行するインターバル動作を表し、「H」は、所定の操作がなされるまで次のステップへは移行しない一時停止動作を表す。
(1)A
(2)A→B
(3)A→P→A→B
(4)A→(A+B)→B
(5)A→A→B
(6)(A+B)
(7)A→P→A
(8)A→A→A→A→A
(9)A→H→A
(10)B→A→(A+B)→B
(11)(A+B)→B
(12)A→A→A→A→B
(13)A→(A+B)
(14)A→B→P→(A+B)→B
(15)(A+B)→B→P→A→B
など。
Further, as the injection mode of the chemical solution by the chemical injection device 100, when the contrast agent is A and the physiological saline is B, the phase (A) in which only the above-described contrast agent is injected, and the physiological saline after the contrast agent injection phase Including an injection phase (A → B), a mixed injection phase (A + B) in which a contrast medium and a physiological saline solution are injected at the same time. Can have modes. In the injection mode shown below, “→” means that the operation before and after the operation is continuously performed, and the injection before and after “→” is in a different phase. In addition, “P” represents an interval operation that moves to the next step after an elapse of a set arbitrary time, and “H” represents a pause operation that does not move to the next step until a predetermined operation is performed. To express.
(1) A
(2) A → B
(3) A → P → A → B
(4) A → (A + B) → B
(5) A → A → B
(6) (A + B)
(7) A → P → A
(8) A → A → A → A → A
(9) A → H → A
(10) B → A → (A + B) → B
(11) (A + B) → B
(12) A → A → A → A → B
(13) A → (A + B)
(14) A → B → P → (A + B) → B
(15) (A + B) → B → P → A → B
Such.
 上記のように各注入モードの中には、造影剤と生理食塩水との混和注入フェーズを含む注入モードもあるが、混和注入フェーズでは、造影剤と生理食塩水との混和比率を任意に設定(変更)することができる。図10に、混和注入フェーズを含む注入モードでの、混和比率設定画面の一例を示す。図10に示す例は、上記の注入モードのうち、「(13)A→(A+B)」の注入モードにおける混和比率設定画面350を示す。なお、注入モードは上記の注入モード(1)~(15)に限定されるものではない。さらには、例えば、生理食塩水(B)の注入後、インターバル(P)または一時停止(H)を挟んで上記の注入モード(1)~(15)の何れかを実行するといったことも可能である。 As described above, each injection mode includes an injection mode that includes a mixed injection phase of contrast medium and physiological saline. In the mixed injection phase, the mixing ratio of the contrast medium and physiological saline is arbitrarily set. (Changed). FIG. 10 shows an example of the mixing ratio setting screen in the injection mode including the mixing injection phase. The example shown in FIG. 10 shows the mixing ratio setting screen 350 in the injection mode “(13) A → (A + B)” among the above injection modes. The injection mode is not limited to the above injection modes (1) to (15). Further, for example, after the injection of the physiological saline (B), any one of the above injection modes (1) to (15) can be executed with the interval (P) or the temporary stop (H) interposed therebetween. is there.
 図10に示す混和比率設定画面350は、注入グラフ351、混和比率アイコン352および注入条件アイコン353を含むことができ、注入条件の設定操作中に操作者による所定の操作により、現在表示されている画面上に重ねて表示されるようにすることができる。注入グラフ251は、横軸を注入時間、縦軸を注入速度で表したグラフであり、図示した例では、薬液の注入が、造影剤(A)の注入後、造影剤と生理食塩水が同時に注入される(A+B)という2つのフェーズからなることを模式的に表している。また、各フェーズにおける薬液の注入速度および注入量が数値で表されている。 The mixing ratio setting screen 350 shown in FIG. 10 can include an injection graph 351, a mixing ratio icon 352, and an injection condition icon 353, and is currently displayed by a predetermined operation by the operator during the injection condition setting operation. It can be displayed on the screen. The injection graph 251 is a graph in which the horizontal axis indicates the injection time and the vertical axis indicates the injection speed. In the illustrated example, the injection of the chemical solution is performed simultaneously with the contrast agent and the physiological saline after the injection of the contrast agent (A). It is schematically shown that it consists of two phases of (A + B) to be injected. In addition, the injection speed and the injection amount of the chemical solution in each phase are represented by numerical values.
 混和比率アイコン352は、造影剤(A)および生理食塩水(B)のそれぞれの混和比率が表示されており、一方の数値をタップする度に、その数値が1ずつ増加し、もう一方の数値が1ずつ減少するようになっている。注入条件アイコン353は、この注入モードの混和注入フェーズにおいて、造影剤および生理食塩水を混和比率アイコン352に表示された混和比率で注入する場合の、造影剤および生理食塩水の注入速度および注入量が表示される。注入制御部150は、これらの表示の制御を行う。操作者は、混和比率アイコン352に表示された混和比率の数値を確認し、その数値で良ければ承認アイコン354をタップする。注入制御部150は、この承認の入力操作を受け付け、入力がなされると、混和比率アイコン352に表示されている数値を、造影剤と生理食塩水との混和比率として設定する。混和比率設定画面350は、操作者による所定の操作によって表示を消すことができる。以降は、通常の注入条件設定手順に従って、他の注入条件を設定することができる。 The mixing ratio icon 352 displays the mixing ratios of the contrast medium (A) and the physiological saline (B). Each time one of the numerical values is tapped, the numerical value increases by one, and the other numerical value is displayed. Decreases by one. The injection condition icon 353 indicates the injection speed and injection amount of the contrast medium and physiological saline when the contrast medium and physiological saline are injected at the mixing ratio displayed in the mixing ratio icon 352 in the mixed injection phase of this injection mode. Is displayed. The injection control unit 150 controls these displays. The operator checks the numerical value of the mixing ratio displayed on the mixing ratio icon 352 and taps the approval icon 354 if the numerical value is acceptable. The injection control unit 150 receives this approval input operation, and when an input is made, sets the numerical value displayed on the mixing ratio icon 352 as the mixing ratio of the contrast medium and the physiological saline. The mixing ratio setting screen 350 can be turned off by a predetermined operation by the operator. Thereafter, other injection conditions can be set according to a normal injection condition setting procedure.
 なお、上述した造影剤のみの注入フェーズでは、造影剤が一定の注入速度で注入されてもよいし、経時的に変化する注入速度で注入されてもよい。同様に、上述した混和注入フェーズでは、造影剤および生理食塩水がそれぞれ一定の注入速度で注入されてもよいし、造影剤および生理食塩水がそれぞれ混和注入フェーズの間、経時的に変化する注入速度で注入されてもよい。いずれの場合であっても、注入速度の経時的な変化は、注入速度が経時的に増加または減少する線形的な変化であることができる。また、この線形的な変化の割合、すなわち横軸を経過時間とし、縦軸を注入速度としたグラフにおける傾きは、注入フェーズの間、一定であってもよいし、少なくとも1回変化してもよい。 In the above-described injection phase of only the contrast agent, the contrast agent may be injected at a constant injection rate or may be injected at an injection rate that changes with time. Similarly, in the above-described mixed injection phase, the contrast medium and physiological saline may be injected at a constant injection rate, respectively, or the contrast medium and the physiological saline are each changed over time during the mixed injection phase. It may be injected at a rate. In either case, the change in infusion rate over time can be a linear change in which the infusion rate increases or decreases over time. The linear change rate, ie, the slope in the graph with the horizontal axis as the elapsed time and the vertical axis as the injection speed, may be constant during the injection phase or may change at least once. Good.
 混和注入フェーズにおいて造影剤の注入速度および生理食塩水の注入速度を経時的に変化させる場合、造影剤の注入速度と生理食塩水の注入速度との合計の注入速度が、混和注中フェーズの間、一定であることが好ましい。また、合計の注入速度は、混和注入フェーズの前および/または後に他の注入フェーズがある場合、それらの注入フェーズでの注入速度と等しいことが好ましい。 When the contrast agent injection rate and physiological saline injection rate are changed over time in the mixed injection phase, the total injection rate of the contrast agent injection rate and physiological saline injection rate is It is preferable that it is constant. Also, the total injection rate is preferably equal to the injection rate in those injection phases if there are other injection phases before and / or after the admixing injection phase.
 このように混和注入フェーズにおいて造影剤の注入速度を経時的に変化させることにより、CT値をより効果的に上昇させることができ、かつ/またはその高いCT値を比較的長時間保持することができる。よって、造影剤の注入速度を経時的に変化させることを含む注入フェーズは、例えば心臓系を含む血管の検査のようにスキャン時間が比較的長い検査において特に効果的である。 Thus, by changing the injection speed of the contrast medium over time in the mixed injection phase, the CT value can be increased more effectively and / or the high CT value can be maintained for a relatively long time. it can. Therefore, the injection phase including changing the injection speed of the contrast agent with time is particularly effective in examinations having a relatively long scan time, such as examination of blood vessels including the heart system.
 上述した事項は任意に組み合わせられてもよい。したがって、混和注入フェーズは、注入速度が一定のサブフェーズおよび注入速度が経時的に変化するサブフェーズといった複数のサブフェーズを含むこともできる。その一例を図10Aに示す。図10Aに示す例は、上記の注入モードのうち、「(11)(A+B)→B」の注入モードの一例であり、混和注入フェーズは、造影剤および生理食塩水がそれぞれ一定の注入速度で注入される第1のサブモードと、造影剤および生理食塩水がそれぞれ経時的に変化する注入速度で注入される第2のサブフェーズとを有している。 The items described above may be arbitrarily combined. Thus, the blended injection phase can also include multiple sub-phases, such as a sub-phase where the injection rate is constant and a sub-phase where the injection rate changes over time. An example is shown in FIG. 10A. The example shown in FIG. 10A is an example of the injection mode “(11) (A + B) → B” among the above injection modes. In the mixed injection phase, the contrast medium and the physiological saline are injected at a constant rate. A first sub-mode that is injected at a rate and a second sub-phase that is injected at an injection rate at which the contrast agent and saline are each changed over time.
 第1のサブフェーズでは、造影剤は生理食塩水よりも高い一定の注入速度で注入され、生理食塩水は、造影剤よりも低い一定の注入速度で注入される。第2のサブフェーズでは、第1のサブフェーズでの注入の後、造影剤は注入速度が経時的に一定の割合で増加する一方、生理食塩水は注入速度が経時的に一定の割合で減少し、造影剤の注入速度は、第2のサブフェーズの終了時点でゼロとなる。また、第2のサブフェーズの間、造影剤の注入速度と生理食塩水の注入速度との合計は一定であり、第1のサブフェーズでの造影剤の注入速度と生理食塩水の注入速度との合計と等しい。第1のサブフェーズと第2のサブフェーズとを含む混和注入フェーズの後、次の注入フェーズとして、生理食塩水のみが注入される。このフェーズでは、生理食塩水は、混和注入フェーズでの造影剤の注入速度と生理食塩水の注入速度との合計の注入速度と等しい一定の注入速度で注入される。 In the first subphase, the contrast agent is injected at a constant injection rate higher than that of physiological saline, and the physiological saline is injected at a constant injection rate lower than that of the contrast agent. In the second sub-phase, after injection in the first sub-phase, the contrast agent increases in injection rate at a constant rate over time, while saline decreases in injection rate at a constant rate over time Then, the contrast agent injection rate becomes zero at the end of the second subphase. Further, during the second sub-phase, the sum of the contrast agent injection rate and the saline injection rate is constant, and the contrast agent injection rate and the saline injection rate in the first sub-phase are Equal to the sum of After the mixed injection phase including the first subphase and the second subphase, only the physiological saline is injected as the next injection phase. In this phase, the saline is injected at a constant injection rate equal to the total injection rate of the contrast agent injection rate and the saline injection rate in the blended injection phase.
 ところで、上記の注入モードにおける造影剤と生理食塩水との混和注入フェーズでは、X線管の管電圧値が通常の管電圧値である場合を前提にしている(上述した例では120kV)。しかしながら、被験者の放射線被曝量を低減するために、注入制御部150は、造影剤と生理食塩水との混和比率に応じて適切な管電圧値を求めることもできる。混和比率に応じた管電圧値は、例えば、表1に示したテーブルを参照し、設定された混和比率と同一または最も近い混和比率に対応する管電圧値を、適切な管電圧値として求めたり、混和比率に対応した管電圧値が定められたテーブルを参照して求めたりすることができる。あるいは、混和比率と管電圧値との関係を表す式が予め与えられている場合は、その式を用いて混和比率に対応した管電圧値を求めてもよい。 By the way, in the mixed injection phase of the contrast medium and physiological saline in the above injection mode, it is assumed that the tube voltage value of the X-ray tube is a normal tube voltage value (120 kV in the above example). However, in order to reduce the radiation exposure dose of the subject, the injection control unit 150 can also obtain an appropriate tube voltage value according to the mixing ratio of the contrast agent and physiological saline. For the tube voltage value corresponding to the mixing ratio, for example, referring to the table shown in Table 1, the tube voltage value corresponding to the mixing ratio that is the same as or closest to the set mixing ratio is obtained as an appropriate tube voltage value. Or by referring to a table in which tube voltage values corresponding to the mixing ratio are determined. Alternatively, when an expression representing the relationship between the mixing ratio and the tube voltage value is given in advance, the tube voltage value corresponding to the mixing ratio may be obtained using the expression.
 求めた管電圧値は、希釈の有無および混和の有無にかかわらず、お勧めの管電圧値として注入制御部150から撮像制御部152へ送信されてもよい。お勧めの管電圧値を受信した撮像制御部152は、それに応じてX線管の管電圧値を変更することができる。管電圧値の変更は、操作者の操作によって行ってもよい。 The obtained tube voltage value may be transmitted from the injection control unit 150 to the imaging control unit 152 as a recommended tube voltage value regardless of the presence or absence of dilution and the presence or absence of mixing. The imaging control unit 152 that has received the recommended tube voltage value can change the tube voltage value of the X-ray tube accordingly. The tube voltage value may be changed by an operator's operation.
 薬液として造影剤を注入する場合、造影剤による造影効果には被験者ごとの個人差がある。この造影効果の個人差の程度を把握するために、透視撮像装置200による断層画像の撮像のための注入に先立って、その撮像のための注入量よりも少ない注入量で薬液を注入するテスト注入を行い、その結果に基づいて、撮像タイミングを決定することなどが行われる。 When a contrast medium is injected as a drug solution, the contrast effect of the contrast medium varies among subjects. In order to grasp the degree of individual difference in the contrast effect, a test injection in which a chemical solution is injected with an injection amount smaller than the injection amount for the imaging prior to the injection for tomographic image acquisition by the fluoroscopic imaging device 200 And imaging timing is determined based on the result.
 このような場合、テスト注入後の薬液の注入動作は、透視撮像装置200から送信される指令を注入制御部150がその指令を撮像制御部152から受信することによって開始させることもできる。透視撮像装置200は、例えば、透視撮像装置200のモニタに表示されている断層画像をCCDカメラ(不図示)で撮影し、その断層画像のROIにおける明るさ(白さ)を監視し、明るさが予め定められた閾値以上となったとき、あるいは、モニタに接続されるケーブルからの信号強度を測定し、その測定結果が、予め定められた閾値以上となったときに、注入動作開始のための指令を注入制御部150へ送信することができる。また、断層画像の撮像のための注入(本注入)に先立ってテスト注入を実施する場合、テスト注入時のCT値およびTDC(Time Density Curve)をモニタし、その結果に応じて注入プロトコルを決定し、それに適した最適な撮像開始を薬液注入装置100から透視撮像装置200へ送信してもよい。 In such a case, the injection operation of the chemical solution after the test injection can be started when the injection control unit 150 receives a command transmitted from the fluoroscopic imaging device 200 from the imaging control unit 152. For example, the fluoroscopic imaging device 200 takes a tomographic image displayed on the monitor of the fluoroscopic imaging device 200 with a CCD camera (not shown), monitors the brightness (whiteness) of the tomographic image in the ROI, and the brightness. To start the injection operation when the signal intensity exceeds the predetermined threshold or when the signal strength from the cable connected to the monitor is measured and the measurement result exceeds the predetermined threshold Can be transmitted to the injection control unit 150. In addition, when performing test injection prior to injection for tomographic imaging (main injection), the CT value and TDC (Time Density Curve) at the time of test injection are monitored, and the injection protocol is determined according to the result. Then, an optimal start of imaging suitable for it may be transmitted from the chemical injection device 100 to the fluoroscopic imaging device 200.
 上述した実施形態は、透視撮像装置200がX線CT装置である場合を例に挙げて説明したが、本発明において、透視撮像装置200としては、X線CT装置の他に、アンギオ装置、MRI装置、MRA装置、PET装置および超音波画像診断装置など、画像を取得するのに電磁波の照射を利用する任意の透視撮像装置であってもよい。透視撮像装置200がX線CT装置以外の装置である場合、それに応じて、薬液注入装置100の構成、画面の表示、操作手順および動作などが必要に応じて適宜変更されてもよい。 In the above-described embodiment, the case where the fluoroscopic imaging apparatus 200 is an X-ray CT apparatus has been described as an example. However, in the present invention, as the fluoroscopic imaging apparatus 200, in addition to the X-ray CT apparatus, an angio apparatus, MRI Any fluoroscopic imaging apparatus that uses irradiation of electromagnetic waves to acquire an image, such as an apparatus, an MRA apparatus, a PET apparatus, and an ultrasonic diagnostic imaging apparatus may be used. When the fluoroscopic imaging apparatus 200 is an apparatus other than the X-ray CT apparatus, the configuration, screen display, operation procedure, operation, and the like of the chemical solution injection apparatus 100 may be appropriately changed as necessary.
 例えば、透視撮像装置200がMRI装置である場合、MRI装置は電磁波照射器として、高周波パルスを照射する高周波パルス送信器を有しており、高周波パルス送信器は設定により高周波パルスの照射強度を変更することができる。通常、高周波パルスは、照射強度が強いほど、造影剤による造影効果が増進されるため、注入制御部150は、電磁波照射器に設定される高周波パルスの照射強度が特定の照射強度よりも高い場合に、造影剤が生理食塩水で希釈するような処理を行う。この処理の具体的な手順は、電磁波照射器に設定される電磁波の照射強度の強弱の関係がX線CT装置の場合と逆になる他は、前述した手順と同様とすることができる。 For example, when the fluoroscopic imaging apparatus 200 is an MRI apparatus, the MRI apparatus has a high-frequency pulse transmitter that irradiates a high-frequency pulse as an electromagnetic wave irradiator, and the high-frequency pulse transmitter changes the irradiation intensity of the high-frequency pulse by setting. can do. Usually, the higher the irradiation intensity of the high-frequency pulse, the more the contrast effect by the contrast agent is enhanced. Therefore, the injection control unit 150 determines that the irradiation intensity of the high-frequency pulse set in the electromagnetic wave irradiator is higher than the specific irradiation intensity. In addition, the contrast medium is diluted with physiological saline. The specific procedure of this process can be the same as the procedure described above, except that the relationship between the intensity of electromagnetic wave irradiation intensity set in the electromagnetic wave irradiator is reversed from that in the case of the X-ray CT apparatus.
 また、上述した実施形態では、撮像制御部152が撮像制御ユニットに組み込まれ、注入制御部150が、薬液注入装置100のコンソール101に組み込まれたものとして説明した。しかし、撮像制御部152および注入制御部150がともに撮像制御ユニットに組み込まれていてもよいし、撮像制御部152および注入制御部150がともにコンソール101に組み込まれていてもよいし、あるいは、撮像制御部152および注入制御部150がともに、撮像制御ユニットおよびコンソール101とは別の、プログラム可能なコンピュータ装置(不図示)に組み込まれていてもよい。こうすることにより、薬液注入装置100のコンソール101または透視撮像装置200のコンソールが不要となり、システム全体を簡略化することができる。 In the above-described embodiment, the imaging control unit 152 has been incorporated into the imaging control unit, and the injection control unit 150 has been incorporated into the console 101 of the chemical solution injector 100. However, both the imaging control unit 152 and the injection control unit 150 may be incorporated in the imaging control unit, the imaging control unit 152 and the injection control unit 150 may be both incorporated in the console 101, or imaging may be performed. Both the control unit 152 and the injection control unit 150 may be incorporated in a programmable computer device (not shown) different from the imaging control unit and the console 101. By doing so, the console 101 of the chemical injection device 100 or the console of the fluoroscopic imaging device 200 becomes unnecessary, and the entire system can be simplified.
 さらには、注入制御部150の特定の機能を残りの他の機能とは別のユニットに組み込むこともできる。例えば、注入プロトコルの決定(演算)機能を透視撮像装置200の撮像制御ユニットに組み込み、残りの他の機能を薬液注入装置100のコンソール101に組み込むことができる。この場合は、撮像条件の設定および注入条件の設定に共通するデータを、透視撮像装置200および薬液注入装置100に重複して入力する必要がなくなる。注入条件の設定に際して不足するデータは、撮像制御ユニットから入力できるようにしてもよいし、薬液注入装置100のコンソール101から撮像制御ユニットに送信するようにしてもよい。 Furthermore, a specific function of the injection control unit 150 can be incorporated in a unit different from the remaining other functions. For example, an injection protocol determination (calculation) function can be incorporated in the imaging control unit of the fluoroscopic imaging apparatus 200, and the remaining other functions can be incorporated in the console 101 of the chemical solution injection apparatus 100. In this case, it is not necessary to input data common to the setting of the imaging condition and the setting of the injection condition to the fluoroscopic imaging device 200 and the chemical solution injection device 100 in duplicate. Data that is insufficient when setting the injection conditions may be input from the imaging control unit, or may be transmitted from the console 101 of the chemical injection device 100 to the imaging control unit.
 撮像制御部152の持つ機能および注入制御部150の持つ機能は、必要により各種ハードウェアを利用して実現し得るが、その主体はコンピュータプログラムに対応してCPUが機能することにより実現される。 The function of the imaging control unit 152 and the function of the injection control unit 150 can be realized by using various hardware as required, but the main body is realized by the function of the CPU corresponding to the computer program.
 そのコンピュータプログラムは、上述した手順の少なくとも一部、例えば、
 所定のデータを用いて前記造影剤のみを注入する場合の前記造影剤の注入量および注入速度を求めるステップと、
 撮像時に前記透視撮像装置の電磁波照射器から照射される電磁波の照射強度についての設定値が特定の設定値と異なる場合は、求めた造影剤の注入量および注入速度を、前記設定値に応じて定められた所定の割合で減量し、減量した分を前記生理食塩水の注入量および注入速度として求めるステップと、
 を透視撮像装置200、薬液注入装置100またはこれら透視撮像装置200および薬液注入装置100を備えた透視撮像システムに実行させるためのコンピュータプログラムとして実装されることができる。
The computer program is at least part of the procedure described above, for example,
Obtaining an injection amount and an injection speed of the contrast agent when injecting only the contrast agent using predetermined data; and
When the set value for the irradiation intensity of the electromagnetic wave emitted from the electromagnetic wave irradiator of the fluoroscopic imaging device at the time of imaging is different from the specific set value, the determined contrast medium injection amount and injection speed are determined according to the set value. Reducing the amount at a predetermined rate, and determining the reduced amount as the amount and rate of injection of the physiological saline; and
Can be implemented as a computer program for causing the fluoroscopic imaging apparatus 200, the chemical liquid injection apparatus 100, or the fluoroscopic imaging system including the fluoroscopic imaging apparatus 200 and the chemical liquid injection apparatus 100 to execute.
 また、構造的な点では、注入ヘッド110とコンソール101とを一体に構成することもできる。コンソール101と注入ヘッド110が一体に構成された場合、コンソール101も検査室に配置されることになる。そこで、注入動作の開始および停止には、リモートコントローラ102(図1参照)を用いることができる。リモートコントローラ102を用いることにより、操作者は、操作室内で注入動作の開始および停止を制御できる。 Also, in terms of structure, the injection head 110 and the console 101 can be configured integrally. When the console 101 and the injection head 110 are integrally formed, the console 101 is also arranged in the examination room. Therefore, the remote controller 102 (see FIG. 1) can be used to start and stop the injection operation. By using the remote controller 102, the operator can control the start and stop of the injection operation in the operation chamber.
 シリンジとしては具体的には図11の(a)および(b)に示すようなものであってもよい。このシリンジは、例えば100ml用のものであることができる。このシリンジは、シリンダ部材501とピストン部材502とを備え、シリンダ部材501の末端に形成されたシリンダフランジ501aはIカット形状の輪郭形状を有し、同フランジ501aの外周部には2つの切欠き部505(一方のみを示す)が形成されている。シリンダ部材501の先端の導管部501bは、同軸状に配置された内側および外側の2つの筒状部を有するルアーロック接続用のものであってもよい。図11の(b)に示すように、シリンダフランジ501aの後面には、リング状の突起部501cが形成されていてもよい。 Specifically, the syringe may be as shown in (a) and (b) of FIG. This syringe can be for example 100 ml. This syringe includes a cylinder member 501 and a piston member 502. A cylinder flange 501a formed at the end of the cylinder member 501 has an I-cut contour, and two notches are provided on the outer periphery of the flange 501a. A portion 505 (only one is shown) is formed. The conduit portion 501b at the tip of the cylinder member 501 may be for luer lock connection having two inner and outer cylindrical portions arranged coaxially. As shown in FIG. 11B, a ring-shaped protrusion 501c may be formed on the rear surface of the cylinder flange 501a.
 シリンジの他の例としては、図12の(a)、(b)に示すようなシリンジであってもよく、このシリンジは例えば200ml用のものであることができる。このシリンジも、上記シリンジと同様、シリンダ部材501とピストン部材502とを備え、シリンダ部材501の末端に形成されたシリンダフランジ501aはIカット形状の輪郭形状を有するものであってもよい。シリンダフランジ501aの外周部には2つの切欠き部505(一方のみを示す)が形成されている。シリンダ部材501の先端の導管部501bは、同軸状に配置された内側および外側の2つの筒状部を有するルアーロック接続用のものであってもよい。図12の(b)に示すように、シリンダフランジ501aの後面には、リング状の突起部501cと、その突起部501cから外側に向かって延びる複数のリブ501dが形成されていてもよい。 As another example of the syringe, a syringe as shown in FIGS. 12A and 12B may be used, and this syringe can be for 200 ml, for example. Similarly to the above syringe, this syringe also includes a cylinder member 501 and a piston member 502, and a cylinder flange 501a formed at the end of the cylinder member 501 may have an I-cut contour. Two notches 505 (only one is shown) are formed on the outer periphery of the cylinder flange 501a. The conduit portion 501b at the tip of the cylinder member 501 may be for luer lock connection having two inner and outer cylindrical portions arranged coaxially. As shown in FIG. 12B, a ring-shaped protrusion 501c and a plurality of ribs 501d extending outward from the protrusion 501c may be formed on the rear surface of the cylinder flange 501a.
 なお、図12ではシリンダフランジ501aに切欠き部505とリブ501dの両方が形成されたものが描かれているが、いずれか一方のみが形成されたもの(例えば、切欠き部505が形成されていないもの)であってもよい。また、リブ501dに関し、図示上下方向に並んだ複数のリブのうち上部と下部の2つのリブのみを残し、他のリブを省略したような形状としてもよい。このようなリブ群が、フランジ部の左右両側のいずれか一方のみに形成されたシリンジとしてもよい。 In FIG. 12, the cylinder flange 501a is shown with both the notch 505 and the rib 501d formed, but only one of them is formed (for example, the notch 505 is formed). May not be). The rib 501d may have a shape in which only two upper and lower ribs are left out of the plurality of ribs arranged in the vertical direction in the figure, and the other ribs are omitted. Such a rib group may be a syringe formed on only one of the left and right sides of the flange portion.
 図11および12に示すような、シリンダフランジ501aに切欠き部505を有するシリンジが装着されるアダプタは、図示した姿勢でシリンダフランジ501aが上方から挿入される溝を有し、シリンダフランジ501aが挿入され、さらに軸周りに90度回転した状態で切欠き部505に係合する突起を有することが好ましい。これにより、シリンダがより確実に保持される。したがって、仮に注入動作中に注入圧力制御に不具合が発生し、過剰な圧力がシリンジに作用した場合であってもシリンジはしっかりと保持されるため、シリンダフランジ501aが破損しにくくなっている。また、シリンジが斜めに装着されることに起因する偏荷重も生じにくく、ピストンとシリンダとの隙間による液漏れも防止できる。 As shown in FIGS. 11 and 12, the adapter to which the syringe having the notch 505 is attached to the cylinder flange 501a has a groove into which the cylinder flange 501a is inserted from above with the cylinder flange 501a inserted. In addition, it is preferable to have a protrusion that engages with the notch 505 in a state rotated 90 degrees around the axis. Thereby, a cylinder is hold | maintained more reliably. Therefore, if a malfunction occurs in the injection pressure control during the injection operation, and the excessive pressure acts on the syringe, the syringe is firmly held, so that the cylinder flange 501a is not easily damaged. In addition, an uneven load due to the syringe being mounted obliquely hardly occurs, and liquid leakage due to a gap between the piston and the cylinder can be prevented.
 図11および12に示したシリンジも、前述したシリンジ800と同様、シリンダの外周面にRFIDタグを有していてもよい。 11 and 12 may also have an RFID tag on the outer peripheral surface of the cylinder, similar to the syringe 800 described above.
 薬液注入装置は、注入圧力を検出するためのロードセルをさらに有していてもよい。ロードセルは、例えばプレッサー112に備えることができる。図3に示したように複数のプレッサー112を有する場合は、それらの中のいずれか少なくとも1つにロードセルを有していてもよい。注入圧力は、モータ電流を測定することによって検出することもできる。プレッサー112に作用する負荷が大きくなると、その負荷の大きさに応じて、ピストン駆動機構140の駆動源であるモータ電流が大きくなる。モータ電流を利用した注入圧力の検出には、そのことが利用される。注入圧力の検出は、ロードセルを用いた検出およびモータ電流を利用した検出のいずれか一方のみであってもよいし、両者を併用してもよい。両者を併用する場合、通常はロードセルによって注入圧力を検出し、ロードセルが故障したときのみモータ電流の測定結果を利用して注入圧力を測定することができる。 The chemical solution injection device may further include a load cell for detecting the injection pressure. The load cell can be provided in the presser 112, for example. As shown in FIG. 3, when a plurality of pressers 112 are included, at least one of them may have a load cell. The injection pressure can also be detected by measuring the motor current. When the load acting on the presser 112 increases, the motor current that is the drive source of the piston drive mechanism 140 increases in accordance with the magnitude of the load. This is used for detecting the injection pressure using the motor current. The detection of the injection pressure may be either one of detection using a load cell and detection using a motor current, or both may be used in combination. When both are used together, the injection pressure is usually detected by the load cell, and the injection pressure can be measured using the measurement result of the motor current only when the load cell fails.
 延長チューブは、造影剤と生理食塩水が良好に混合されるようにするミキシングデバイスを備えていることが好ましい。ミキシングデバイスを備えた延長チューブの一例を、図13A、図13Bおよび図13Cを参照して説明する。 The extension tube is preferably equipped with a mixing device that allows the contrast agent and physiological saline to be mixed well. An example of the extension tube provided with the mixing device will be described with reference to FIGS. 13A, 13B, and 13C.
 この延長チューブは、造影剤が充填されるシリンジとミキシングデバイス241とを接続する第1のチューブ231aと、生理食塩水が充填されるシリンジとミキシングデバイス241とを接続する第2のチューブ231bと、ミキシングデバイス241の液体出口(詳細下記)に接続され患者側へと延びる第3のチューブ231cとを有している。特に限定されるものではないが、第1および第2のチューブ231a、231bはそれぞれ接続コネクタ239a、239bを介してシリンジの導管部に接続されるようになっていてもよい。同様に、第3のチューブ231cも、接続コネクタ239cを介してカテーテル等に接続されるようになっていてもよい。 The extension tube includes a first tube 231a that connects the syringe filled with the contrast medium and the mixing device 241; a second tube 231b that connects the syringe filled with the physiological saline and the mixing device 241; And a third tube 231c connected to a liquid outlet (detailed below) of the mixing device 241 and extending toward the patient. Although not particularly limited, the first and second tubes 231a and 231b may be connected to the conduit portion of the syringe via the connection connectors 239a and 239b, respectively. Similarly, the third tube 231c may be connected to a catheter or the like via the connection connector 239c.
 なお、薬液注入装置による薬液の注入前には、エア抜きを目的としたプライミングが行われる。このプライミングにはいくつかの方法があり、延長チューブ内が生理食塩水、造影剤のいずれかの薬液で満たされる。具体的な一例としては、次のようなものがある:
(a)まず造影剤シリンジから造影剤を押し出し、ミキシングデバイスまでの第1のチューブを造影剤で満たす。次いで、生理食塩水シリンジから生理食塩水を押し出して、第2のチューブ、ミキシングデバイス、第3のチューブ、および、カテーテルまでを生理食塩水で満たす。これにより回路全体が薬液で満たされ、エアが抜かれた状態となる。他にも、
(b)まず、造影剤シリンジから造影剤を押し出し、次いで生理食塩水シリンジから生理食塩水を押し出した後に、両シリンジから同時に薬液を押し出す方法や、
(c)まず生理食塩水シリンジから生理食塩水を押し出し、次いで造影剤シリンジから造影剤を押し出して薬液の回路全体を薬液で満たす方法などもある。
In addition, priming for the purpose of air bleeding is performed before the chemical solution is injected by the chemical solution injector. There are several methods for this priming, and the extension tube is filled with either a physiological saline solution or a contrast medium. Specific examples include the following:
(A) First, the contrast medium is pushed out from the contrast medium syringe, and the first tube up to the mixing device is filled with the contrast medium. Then, the physiological saline is pushed out from the physiological saline syringe, and the second tube, the mixing device, the third tube, and the catheter are filled with the physiological saline. As a result, the entire circuit is filled with the chemical solution and the air is removed. Other,
(B) First, the contrast agent is pushed out from the contrast agent syringe, and then the physiological solution is pushed out from both syringes after the saline solution is pushed out from the saline syringe.
(C) There is also a method in which the physiological saline is first pushed out from the physiological saline syringe, and then the contrast agent is pushed out from the contrast medium syringe to fill the entire circuit of the chemical with the chemical.
 なお、薬液注入装置には上記のようなプライミング動作を自動的に行わせる機能が備わっていてもよく、また、プライミング動作開始のトリガとなるものは例えば操作者による入力操作であってもよい。 The chemical injection device may have a function for automatically performing the priming operation as described above, and the trigger for starting the priming operation may be an input operation by an operator, for example.
 続いて、ミキシングデバイス241について、詳しく説明する。ミキシングデバイス241は、図13A、図13Bに示すように、旋回流を生成する旋回流生成室242aである第1室と、旋回流を軸方向に集中させる狭窄室242bである第2室と有する本体部242を備えている。この例では、旋回流生成室242aは円柱状の内部空間を有し、狭窄室242bは旋回流生成室242aと共軸の円錐状の内部空間を有する。なお、旋回流生成室の短手方向の断面形状は、円、楕円、その他の曲線から形成される種々の形状が考えられる。また、旋回流生成室は、狭窄室に近づくにつれて先が狭まる狭窄形状を有するように構成することもできる。 Subsequently, the mixing device 241 will be described in detail. As shown in FIGS. 13A and 13B, the mixing device 241 includes a first chamber that is a swirl flow generation chamber 242a that generates a swirl flow, and a second chamber that is a constriction chamber 242b that concentrates the swirl flow in the axial direction. A main body 242 is provided. In this example, the swirl flow generation chamber 242a has a cylindrical inner space, and the constriction chamber 242b has a conical inner space coaxial with the swirl flow generation chamber 242a. The cross-sectional shape in the short direction of the swirl flow generating chamber may be various shapes formed from a circle, an ellipse, or other curves. In addition, the swirl flow generation chamber can be configured to have a narrowed shape that narrows as it approaches the narrowed chamber.
 ミキシングデバイス241の本体部242の流れ上流側には第1のチューブ231aが接続される導管部243aが設けられ、下流側には第3のチューブ231cが接続される導管部243cが設けられている。第2のチューブ231bが接続される導管部243bは、旋回流生成室242aの中央から上流側の位置に配置されている(詳細下記)。 A conduit portion 243a to which the first tube 231a is connected is provided on the upstream side of the main body portion 242 of the mixing device 241, and a conduit portion 243c to which the third tube 231c is connected is provided on the downstream side. . The conduit portion 243b to which the second tube 231b is connected is disposed at a position upstream from the center of the swirl flow generation chamber 242a (details below).
 この例では、導管部243aから造影剤が流入するとともに導管部243bから生理食塩水が流入し、ミキシングデバイス内で両薬液が混合される。その後、造影剤及び生理食塩水の混合薬液は、液体出口としての導管部243cから流出する。 In this example, the contrast agent flows from the conduit portion 243a and the physiological saline flows from the conduit portion 243b, and both drug solutions are mixed in the mixing device. Thereafter, the mixed drug solution of the contrast medium and physiological saline flows out from the conduit portion 243c as a liquid outlet.
 比重の大きい薬液が流入する導管部243aは、流れ方向の上流側において、旋回流生成室242a上流側壁面の中央部に設けられている。液体出口である導管部243cは、この導管部243cの中心線と導管部243aの中心線とが一致するように、すなわち両者が共軸となるように設けられている。各部が共軸を有するように配置することにより、ミキシングデバイス内において発生する渦の等方性を高めることができる。つまり、渦を空間内で淀みなく均一に発生させ,混合効率を向上させることができる。 The conduit portion 243a into which a high specific gravity chemical solution flows is provided in the central portion of the upstream side wall surface of the swirl flow generation chamber 242a on the upstream side in the flow direction. The conduit portion 243c serving as the liquid outlet is provided so that the center line of the conduit portion 243c and the center line of the conduit portion 243a coincide, that is, both are coaxial. By arranging each part so as to have a coaxial axis, it is possible to increase the isotropic property of the vortex generated in the mixing device. That is, vortices can be generated uniformly in the space without stagnation, and the mixing efficiency can be improved.
 他方、比重の小さい薬液が流入する導管部243bは、は、旋回流生成室242aの側面に配置され、断面円形である旋回流生成室242aの円周の接線方向に延在する。別の言い方をすれば、導管部243bは、旋回流生成室242aが有する円柱状空間の中心軸線からの周縁側にずれた位置に設けられ、これにより、導管部243bから流入した比重の小さい薬液の旋回流が生成されるようになっている。より詳しくは、図13Cに示すように、流路241fbが、旋回流生成室242aの湾曲した内面の円周接線方向に延在するように構成されており、これにより、この流路から流入した薬液が旋回流となる。さらに狭窄室242bは、図面からも明らかなように、流れ方向下流側に向かってすぼまる傾斜した内面を有しているので、発生した旋回流は、渦の中心軸方向に集中することになる。 On the other hand, the conduit portion 243b into which the chemical liquid having a small specific gravity flows is arranged on the side surface of the swirl flow generation chamber 242a and extends in the tangential direction of the circumference of the swirl flow generation chamber 242a having a circular cross section. In other words, the conduit portion 243b is provided at a position shifted to the peripheral side from the central axis of the cylindrical space included in the swirl flow generation chamber 242a, and thereby, the chemical liquid having a small specific gravity flowing from the conduit portion 243b. The swirl flow is generated. More specifically, as shown in FIG. 13C, the flow path 241fb is configured to extend in the circumferential tangential direction of the curved inner surface of the swirl flow generation chamber 242a, and thus flows from this flow path. The chemical becomes a swirl flow. Further, as is clear from the drawing, the constriction chamber 242b has an inclined inner surface that swells toward the downstream side in the flow direction, so that the generated swirling flow is concentrated in the direction of the central axis of the vortex. Become.
 また、造影剤が流入する導管部243aは、流路241faを介して旋回流生成室242aと連通している。これにより、比重の大きい薬液を、比重の小さい薬液の旋回流の中心軸と平行な方向で旋回流生成室に導入することができる。つまり、比重の大きい薬液は、旋回流生成室が有する円柱状空間の中心軸線と平行な方向に導入される。また、生理食塩水が流入する導管部は、流路241fbを介して旋回流生成室と連通している。一例で、流路241fbの内径は、造影剤が流入する流路241faの内径よりも小さく形成されていてもよい。こうした構成によれば、所定の圧力で薬液を注入する場合、断面積が相対的に小さい流路241fbから流入する比重の小さい薬液の流速が、比重の大きい薬液の流速よりも速くなる。したがって、比重の小さい薬液の流速が遅い場合に生じうる、旋回流の慣性力の減衰やそれに伴う旋回強度の不足に起因する、薬液どうしの混合効率の低下を回避することができる。 Also, the conduit portion 243a into which the contrast agent flows is in communication with the swirling flow generation chamber 242a through the flow path 241fa. Thereby, the chemical liquid having a large specific gravity can be introduced into the swirling flow generating chamber in a direction parallel to the central axis of the swirling flow of the chemical liquid having a small specific gravity. That is, the chemical liquid having a large specific gravity is introduced in a direction parallel to the central axis of the cylindrical space included in the swirl flow generation chamber. Further, the conduit part into which the physiological saline flows is in communication with the swirl flow generation chamber via the flow path 241fb. For example, the inner diameter of the flow path 241fb may be smaller than the inner diameter of the flow path 241fa into which the contrast agent flows. According to such a configuration, when a chemical solution is injected at a predetermined pressure, the flow rate of the chemical solution having a small specific gravity flowing from the flow path 241fb having a relatively small cross-sectional area becomes faster than the flow rate of the chemical solution having a large specific gravity. Therefore, it is possible to avoid a decrease in the mixing efficiency between the chemical solutions due to the attenuation of the inertial force of the swirling flow and the accompanying lack of swirling strength, which can occur when the flow rate of the chemical solution having a small specific gravity is low.
 上記のように構成されたミキシングデバイス241では、例えば造影剤および生理食塩水を同デバイス内に流入させると、流路241faから旋回流生成室に流入した造影剤は軸方向下流側に向かう流れとなる。一方、流路241fbから旋回流生成室に流入した生理食塩水は、同室内の湾曲した内面に沿って旋回する旋回流となり、そして、生理食塩水の旋回流は、狭窄室に導かれて旋回流の中心軸方向に集中する。このような渦はランキン渦として知られ、旋回流のもつ慣性力を渦の回転軸の近傍に集中させることができる。 In the mixing device 241 configured as described above, for example, when a contrast medium and physiological saline are flowed into the device, the contrast medium that has flowed into the swirl flow generation chamber from the flow path 241fa flows toward the downstream side in the axial direction. Become. On the other hand, the physiological saline flowing into the swirl flow generation chamber from the flow path 241fb becomes a swirl flow swirling along the curved inner surface of the same chamber, and the swirl flow of the physiological saline is guided to the stenosis chamber and swirls. Concentrate in the direction of the central axis of the flow. Such a vortex is known as a Rankine vortex, and the inertial force of the swirling flow can be concentrated in the vicinity of the rotation axis of the vortex.
 そしてこのようなミキシングデバイス241を有する延長チューブで2つの薬液の同時注入を行う場合、両薬液が良好に混合されることとなる。すなわち、この例では、造影剤と生理食塩水とが良好に混合された希釈造影剤を得ることができ、その結果、造影剤の濃度のムラ等が無くなるので一般的な分岐チューブの場合と比較して優れた造影効果が期待できる。 And when performing the simultaneous injection of two chemicals with an extension tube having such a mixing device 241, both chemicals will be mixed well. That is, in this example, it is possible to obtain a diluted contrast agent in which the contrast agent and physiological saline are well mixed, and as a result, there is no unevenness in the concentration of the contrast agent. Therefore, an excellent contrast effect can be expected.
 透視撮像システムは、前述した表示ユニット154(コンソール101に備えられたタッチパネル103)とは別に、図14Aおよび図14Bに示すように、第2の表示ユニットA151を備えることができる。通常、注入ヘッド110は、透視撮像装置200とともに検査室に配置され、コンソール101は、検査室に隣接する操作室に配置されることが多い。薬液の注入に関する各種設定は、操作室内に配置されたコンソール101を操作者が適宜操作することによって行われるが、注入の準備段階では、被験者への注入針の穿刺あるいはカテーテルの挿入、チューブ内のエア抜き、および注入ヘッド110の動作確認などのため、操作者は検査室内で様々な作業を行う。この準備段階で、操作者が操作室に移動することなく注入条件などを確認することができるようにするために、第2の表示ユニットA151は、検査室内に配置されることが好ましい。 The fluoroscopic imaging system can include a second display unit A151 as shown in FIGS. 14A and 14B separately from the display unit 154 (the touch panel 103 provided in the console 101). Usually, the injection head 110 is arranged in the examination room together with the fluoroscopic imaging apparatus 200, and the console 101 is often arranged in an operation room adjacent to the examination room. Various settings relating to the injection of the chemical solution are performed by the operator appropriately operating the console 101 disposed in the operation chamber. In the preparation stage of the injection, the injection needle is inserted into the subject or the catheter is inserted, The operator performs various operations in the examination room for air removal and operation check of the injection head 110. In this preparation stage, the second display unit A151 is preferably disposed in the examination room so that the operator can check the injection conditions without moving to the operation room.
 第2の表示ユニットA151には、薬液の注入に関する種々のデータ、例えば、撮像対象部位、被験者の体重、薬液の注入速度、薬液の注入量、注入する薬液の種類、薬液の注入プロトコルなどを表示することができる。これらの表示形式は任意であってよく、コンソール101に備えられたタッチパネル103と同一の画面上に表示されてもよいし、異なる画面上に表示されてもよい。また、図9A~図9Cを用いて説明した注入条件設定用画面を表示させることもできる。併せて、準備動作および注入動作において、ピストン押圧部の動作を停止させたとき、その旨をメッセージやアイコンなどで表示表示させるようにすることもできる。 The second display unit A151 displays various data relating to the injection of the chemical solution, for example, the imaging target site, the subject's weight, the injection rate of the chemical solution, the injection amount of the chemical solution, the type of the chemical solution to be injected, the injection protocol of the chemical solution, etc. can do. These display formats may be arbitrary and may be displayed on the same screen as the touch panel 103 provided in the console 101 or may be displayed on a different screen. Also, the injection condition setting screen described with reference to FIGS. 9A to 9C can be displayed. At the same time, when the operation of the piston pressing portion is stopped in the preparation operation and the injection operation, a message or an icon can be displayed.
 第2の表示ユニットA151は、タッチパネルであることが好ましい。第2の表示ユニットA151をタッチパネルとし、注入条件等の設定のためのデータ入力、注入ヘッド110の動作の開始および停止の操作などを第2の表示ユニットA151からも行えるようにすることで、準備段階および注入の初期段階において注入条件を変更したり注入を停止したりする場合が生じたときに、操作者は操作室に戻ることなくその場で注入条件を変更することができるようになる。注入条件を変更したり注入を停止したりする場合としては、例えば、被験者の体調が思わしくなく、正規の注入条件よりも注入条件を緩和したほうが良いと判断される場合や、血管からの薬液の漏れが生じた場合などが挙げられる。なお、第2の表示ユニットA151がタッチパネルでない場合であっても、第2の表示ユニットA151が適宜の操作スイッチを備える構成とすれば、操作スイッチの操作によって注入条件の設定および/または変更を行うことができる。 The second display unit A151 is preferably a touch panel. The second display unit A151 is used as a touch panel so that data input for setting injection conditions and the like, and operation of starting and stopping the operation of the injection head 110 can be performed from the second display unit A151. When the injection condition is changed or the injection is stopped in the stage and the initial stage of the injection, the operator can change the injection condition on the spot without returning to the operation room. When changing the injection conditions or stopping the injection, for example, when the subject's physical condition is not good and it is judged that the injection conditions should be relaxed rather than the normal injection conditions, For example, when leakage occurs. Even when the second display unit A151 is not a touch panel, if the second display unit A151 is provided with an appropriate operation switch, the injection condition is set and / or changed by operating the operation switch. be able to.
  第2の表示ユニットA151は、検査室内でも特に、注入ヘッド110の近傍に配置することが好ましく、例えば、注入ヘッド110に一体に設けたり、注入ヘッドを支持する部材に設けたりすることができる。図14Aを参照すると、注入ヘッド110に一体に設けられた第2の表示ユニットA151の一例が示される。一方、図14Bに示す例では、ヘッド支持構造A158に、注入ヘッド110と第2の表示ユニットA151とが支持されている。ヘッド支持構造A158は、公知の可動式スタンドの一部であってもよいし、天井に固定される多関節の支持アームアセンブリの一部であってもよい。図14Bに示すように、支持アームアセンブリ160は、例えば、天井に固定されるベース部161と、ベース部161から延びる多関節のアーム部163を有するものとすることができる。図14Bに示す例では、第2の表示ユニットA151は、アーム部163の、鉛直方向に延びて下端部に注入ヘッド110が取り付けられるアームの中間部に取り付けられている。 The second display unit A151 is preferably arranged in the vicinity of the injection head 110, particularly in the examination room. For example, the second display unit A151 can be provided integrally with the injection head 110 or provided on a member that supports the injection head. Referring to FIG. 14A, an example of the second display unit A151 provided integrally with the injection head 110 is shown. On the other hand, in the example shown in FIG. 14B, the injection head 110 and the second display unit A151 are supported by the head support structure A158. The head support structure A158 may be a part of a known movable stand or a part of an articulated support arm assembly fixed to the ceiling. As shown in FIG. 14B, the support arm assembly 160 can include, for example, a base portion 161 fixed to the ceiling and an articulated arm portion 163 extending from the base portion 161. In the example shown in FIG. 14B, the second display unit A151 is attached to an intermediate portion of the arm portion 163 that extends in the vertical direction and to which the injection head 110 is attached at the lower end portion.
  第2の表示ユニットA151は、連結機構A155を介してヘッド支持構造A158に接続されている。特に限定されるものではないが、第2の表示ユニットA151が、注入ヘッド110と間隔をあけて、注入ヘッド110の上方に位置してもよい。連結機構A155は、例えば、鉛直軸周りおよび/または水平軸周りに注入ヘッド110が回動できるように注入ヘッド110を保持するものであってもよい。第2の表示ユニットA151と注入ヘッド110および/またはコンソール101との接続は、ケーブルを介した有線接続であってもよいし、無線接続であってもよい。 The second display unit A151 is connected to the head support structure A158 via the coupling mechanism A155. Although not particularly limited, the second display unit A151 may be positioned above the injection head 110 at a distance from the injection head 110. For example, the coupling mechanism A155 may hold the injection head 110 so that the injection head 110 can rotate around the vertical axis and / or the horizontal axis. The connection between the second display unit A151 and the injection head 110 and / or the console 101 may be a wired connection via a cable or a wireless connection.
 上述のような構成によれば、第2の表示ユニットA151の向きを、注入ヘッド110の向きとは無関係に、上下方向および左右方向に広範囲で調整できるので、操作者が第2の表示ユニットA151をより視認しやすいものとなる。また、第2の表示ユニットA151を注入ヘッド110と間隔をあけて配置することにより、第2の表示ユニットA151を、注入ヘッド110やその他の装置にノイズの影響を与えにくい最適位置に配置することができる。さらに、第2の表示ユニットA151を無線接続とすることにより、ケーブルを介してのノイズの伝播を防止することができる。 According to the configuration as described above, the orientation of the second display unit A151 can be adjusted in a wide range in the vertical and horizontal directions regardless of the orientation of the injection head 110, so that the operator can adjust the second display unit A151. Will be easier to see. In addition, by disposing the second display unit A151 at a distance from the injection head 110, the second display unit A151 is disposed at an optimum position where the influence of noise on the injection head 110 and other devices is difficult. Can do. Furthermore, by making the second display unit A151 wirelessly connected, noise propagation through the cable can be prevented.
 透視撮像システムは、図15に示すように、薬液注入装置100および透視撮像装置200の他に、使用前のシリンジ800を所定の温度に加温する加温器900および使用済みであり廃棄されるべきシリンジ800を収納する廃棄ボックス910をさらに含んでいてもよい。加温器900および廃棄ボックス910は、薬液注入装置100および透視撮像装置200とは独立した装置であってもよいし、これらの少なくとも1つとネットワークを介してデータ通信可能に接続されていてもよい。加温器900と廃棄ボックス910との間についても、互いに独立していてもよいし、ネットワークを介してデータ通信可能に接続されていてもよい。加温器900および廃棄ボックス910はそれぞれ、RFIDタグ802に記録されている情報を読み出したり、情報をRFIDタグ802に書き込んだりするためのリーダ/ライタ902、912を備えることができる。シリンジ800には、加温器900により加温されることにより、リーダ/ライタ902によりシリンジ800のRFIDタグ802に加温された旨の情報が記録される。また、使用済みのシリンジ800は、廃棄ボックス910に収納される際に、廃棄されたシリンジ800である旨の情報が、912によってRFIDタグ802に記録される。 As shown in FIG. 15, the fluoroscopic imaging system, in addition to the chemical solution injection device 100 and the fluoroscopic imaging device 200, a heater 900 that warms the syringe 800 before use to a predetermined temperature, and a used and discarded unit. A disposal box 910 for storing the syringe 800 to be stored may be further included. The warmer 900 and the disposal box 910 may be devices independent of the chemical solution injection device 100 and the fluoroscopic imaging device 200, or may be connected to at least one of them via a network so that data communication is possible. . The heater 900 and the disposal box 910 may also be independent from each other or may be connected via a network so that data communication is possible. Each of the heater 900 and the disposal box 910 can include reader / writers 902 and 912 for reading information recorded in the RFID tag 802 and writing information to the RFID tag 802. Information indicating that the RFID tag 802 of the syringe 800 is heated by the reader / writer 902 is recorded in the syringe 800 by being heated by the heater 900. In addition, when the used syringe 800 is stored in the disposal box 910, information indicating that the syringe 800 is discarded is recorded in the RFID tag 802 by 912.
 透視撮像システムは、薬液充填装置920をさらに備えることもできる。薬液充填装置920は、薬液が充填されていない空のシリンジを搭載し、この空シリンジに薬液を充填することのできる装置である。薬液充填装置920も、薬液注入装置100、透視撮像装置200、加温器900および廃棄ボックス910とは独立した装置であってもよいし、これらの少なくとも1つとネットワークを介してデータ通信可能に接続されていてもよい。空シリンジには、ピストンが最前進位置にある状態で、薬液が収容されている袋およびボトルといった任意の形態の薬液容器930が、チューブなどによって流体連通するように接続される。空シリンジと薬液容器930との接続後、薬液充填装置920によってピストンを後退させることで、空シリンジに薬液を充填することができる。空シリンジにはデータキャリアであるRFIDタグが装着されていることが好ましい。以下の説明では、空シリンジは、RFIDタグ802が装着された薬液が充填される前のシリンジ800であるものとして説明する。 The fluoroscopic imaging system may further include a chemical filling device 920. The chemical liquid filling device 920 is an apparatus that is equipped with an empty syringe that is not filled with a chemical liquid and that can be filled with the chemical liquid. The chemical solution filling device 920 may also be an independent device from the chemical solution injection device 100, the fluoroscopic imaging device 200, the warmer 900, and the disposal box 910, or connected to at least one of these devices via a network so that data communication is possible. May be. To the empty syringe, a chemical liquid container 930 such as a bag and a bottle containing a chemical liquid is connected so as to be in fluid communication with a tube or the like in a state where the piston is at the most advanced position. After the empty syringe and the chemical solution container 930 are connected, the empty syringe can be filled with the chemical solution by retracting the piston by the chemical solution filling device 920. It is preferable that an RFID tag as a data carrier is attached to the empty syringe. In the following description, the empty syringe is described as being the syringe 800 before being filled with the chemical solution to which the RFID tag 802 is attached.
 薬液容器930にもデータキャリアであるRFIDタグ932が装着されている。RFIDタグ932には、例えば、収容されている薬液の種類、内容量、製薬メーカー、品番、粘度、消費期限、薬液が造影剤の場合はその単位造影剤量当たりのヨード含有量など、薬液に関する情報がデータとして記録されている。薬液充填装置920は、RFIDタグ932からデータを読み出すことのできるリーダ922aと、シリンジ800に装着されているRFIDタグ802にデータを書き込むことのできるライタ922bと、を備えている。 The chemical solution container 930 is also equipped with an RFID tag 932 as a data carrier. The RFID tag 932 relates to a chemical solution such as the type, content, pharmaceutical manufacturer, product number, viscosity, expiration date, iodine content per unit contrast agent amount when the chemical solution is a contrast agent. Information is recorded as data. The chemical filling device 920 includes a reader 922 a that can read data from the RFID tag 932 and a writer 922 b that can write data to the RFID tag 802 attached to the syringe 800.
 以上のような構成において、薬液充填装置920を用いて薬液容器930からシリンジ800に薬液を充填するとき、薬液容器930に装着されたRFIDタグ932に記録されたデータが、リーダ922aによって読み出される。薬液充填装置920は、メモリなどの記憶装置を備えており、読み出されたデータは、この記憶装置に一時的に記憶される。次いで、操作者は、薬液充填装置920に充填量を設定し、薬液充填装置920を動作させる。 In the configuration as described above, when the chemical solution is filled into the syringe 800 from the chemical solution container 930 using the chemical solution filling device 920, the data recorded in the RFID tag 932 attached to the chemical solution container 930 is read by the reader 922a. The chemical liquid filling device 920 includes a storage device such as a memory, and the read data is temporarily stored in the storage device. Next, the operator sets a filling amount in the chemical liquid filling device 920 and operates the chemical liquid filling device 920.
 これによって、設定された量の薬液がシリンジ800内に充填される。充填量は、薬液充填装置920の所定の操作手順に従って設定することができる。薬液の充填後、ライタ922bは、記憶装置に一時的に記憶されたデータとともに、薬液の充填量および充填日時をシリンジ800のRFIDタグ802に書き込む。以上により、シリンジ800には、薬液が充填され、充填された薬液に関するデータがRFIDタグ802に記録されることになる。 Thus, the syringe 800 is filled with the set amount of the chemical solution. The filling amount can be set according to a predetermined operation procedure of the chemical liquid filling device 920. After filling the chemical solution, the writer 922b writes the filling amount and filling date / time of the chemical solution in the RFID tag 802 of the syringe 800 together with the data temporarily stored in the storage device. As described above, the syringe 800 is filled with the chemical solution, and data related to the filled chemical solution is recorded in the RFID tag 802.
 なお、RFIDタグ802には、前述したような、シリンジに関するデータが予め記録されていてもよい。また、薬液容器930のRFIDタグ932からデータを読み出すリーダ922aを、データの書き込みも行えるリーダ/ライタとすることもできる。この場合、薬液容器930に収容されていた充填前の内容量から充填量を減算した現在の内容量(残量)をRFIDタグ932に書き込むようにすることもできる。残量の計算は、薬液充填装置920が有するCPUにて行うことができる。 Note that the RFID tag 802 may have data relating to the syringe as described above recorded in advance. In addition, the reader 922a that reads data from the RFID tag 932 of the chemical container 930 can be a reader / writer that can also write data. In this case, the current internal volume (remaining amount) obtained by subtracting the filling amount from the internal volume before filling stored in the chemical solution container 930 can be written in the RFID tag 932. The remaining amount can be calculated by a CPU included in the chemical liquid filling device 920.
 注入制御部150は、前述したように、現在時刻の計時機能を有している。これを利用し、RFIDタグ802に記録された充填日時をRFIDモジュール166(図6参照)にて読み出し、上記計時機能により計時された現在日時と、読み出した充填日時とを、注入制御部150(図6参照)にて比較し、その結果、現在日時が充填日時から所定の期間経過後、すなわち使用期限超過であれば、注入制御部150は、この薬液の注入防止のための処理を行うようにすることができる。薬液の注入防止のための処理とは、例えば、ピストン駆動機構140(図6参照)の動作を不能とすること、表示ユニット154(図6参照)に、薬液の使用期限が超過していることを表示させること、およびブザー等の発音ユニット(不図示)から音または音声による警告を発することなどが挙げられる。薬液の使用期限は、注入制御部150に予め設定されているが、設定された使用期限は操作者が任意に変更することもできる。このように、薬液の充填日時を管理することによって、注入される造影剤の安全性を確保することができる。 The injection control unit 150 has a current time counting function as described above. By using this, the filling date and time recorded in the RFID tag 802 is read by the RFID module 166 (see FIG. 6), and the current date and time measured by the time counting function and the read filling date and time are indicated by the injection control unit 150 ( As a result, if the current date and time is after a predetermined period from the filling date and time, that is, if the expiration date is exceeded, the injection control unit 150 performs processing for preventing injection of the chemical solution. Can be. The process for preventing the injection of the chemical liquid includes, for example, disabling the operation of the piston drive mechanism 140 (see FIG. 6) and that the expiry date of the chemical liquid has exceeded the display unit 154 (see FIG. 6). And a warning by sound or voice from a sounding unit (not shown) such as a buzzer. Although the expiration date of the chemical solution is set in advance in the injection control unit 150, the operator can arbitrarily change the set expiration date. Thus, the safety of the injected contrast agent can be ensured by managing the filling date and time of the drug solution.
 薬液注入装置100、透視撮像装置200、加温器900、廃棄ボックス910および薬液充填装置920等の、透視撮像システムを構成する各医療機器は、医療ネットワークに接続されていてもよい。これにより、被験者に対する処置の履歴、薬液の使用履歴、シリンジの使用履歴等を簡単に保存および追跡することができる。 Each medical device constituting the fluoroscopic imaging system, such as the chemical liquid injection device 100, the fluoroscopic imaging device 200, the heater 900, the disposal box 910, and the chemical liquid filling device 920, may be connected to a medical network. Thereby, it is possible to easily store and track the history of treatments for the subject, the usage history of the drug solution, the usage history of the syringe and the like.
 また、少なくとも薬液注入装置100および透視撮像装置200が医療ネットワークに接続されていてもよい。これによって、薬液注入装置100により注入された薬液の注入速度、注入時間、注入量、注入グラフを含む注入結果、さらに、透視撮像装置200による撮像条件(撮像時間、撮像装置がCT装置の場合は管電圧、などを含む)は、医療ネットワークを通じて透視撮像装置、RIS(放射線科情報システム)、PACS(医用画像保管管理システム)、HIS(病院情報システム)などに注入データとして保存できる。これにより、保存した注入データは、注入履歴の管理に利用される。特に注入量などは、使用済薬液としてカルテ情報に記録したり、会計処理に利用したりすることができる。また、被験者の体重等の身体的情報、ID、氏名、検査部位、検査手法を、RIS、PACS、HISなどから取得して薬液注入装置に表示し、それにあった注入を実施することもできる。これらの情報、およびRFIDモジュール166によってRFIDタグ802から取得したデータは、薬液注入装置100から透視撮像装置200を経由してRIS、PACKS、HISなどに送信されてもよいし、薬液注入装置100から直接、RIS、PACKS、HISなどに送信されてもよい。 In addition, at least the drug solution injection device 100 and the fluoroscopic imaging device 200 may be connected to a medical network. Thereby, the injection result including the injection speed, the injection time, the injection amount, and the injection graph of the chemical injected by the chemical injection device 100, and the imaging conditions by the fluoroscopic imaging device 200 (imaging time, when the imaging device is a CT device) Tube voltage, etc.) can be stored as injection data in a fluoroscopic imaging device, RIS (radiology information system), PACS (medical image storage management system), HIS (hospital information system), etc. through a medical network. Thereby, the stored injection data is used for management of injection history. In particular, the injection amount or the like can be recorded in the chart information as a used chemical solution or used for accounting. In addition, physical information such as the body weight of the subject, ID, name, examination site, and examination method can be acquired from RIS, PACS, HIS, etc., and displayed on the drug solution injector, and injection can be performed accordingly. Such information and data acquired from the RFID tag 802 by the RFID module 166 may be transmitted from the chemical injection device 100 to the RIS, PACKS, HIS, or the like via the fluoroscopic imaging device 200, or from the chemical injection device 100. It may be transmitted directly to RIS, PACKS, HIS or the like.
 また、薬液充填装置920による薬液の充填量は、その薬液の被験者への注入量とすることができる。そうすることにより、充填した薬液を無駄なく使用できる。注入量は、被験者の体重といった身体的特徴、撮像部位および撮像時間などのファクターを考慮した計算式を用いて算出することもできるし、医師等が値を直接決定することもできる。注入量の算出に用いられる上記のファクター、あるいは医師等が決定した注入量の値は、操作者が入力することもできるし、ネットワーク経由あるいはダイレクト回線で接続されたRIS、HIS、PACS、外部サーバ、クラウドなどの外部データベースから入手することもできる。注入量の計算に用いるファクターを外部データベースから入手することで、操作者による入力ミスを防止することができる。 Moreover, the filling amount of the chemical solution by the chemical solution filling device 920 can be an injection amount of the chemical solution to the subject. By doing so, the filled chemical can be used without waste. The injection amount can be calculated using a calculation formula that takes into account factors such as physical characteristics such as the body weight of the subject, imaging region and imaging time, or a value can be directly determined by a doctor or the like. The above-mentioned factors used for calculating the injection amount or the value of the injection amount determined by a doctor or the like can be input by the operator, or RIS, HIS, PACS, external server connected via a network or a direct line It can also be obtained from an external database such as a cloud. By obtaining the factor used for calculating the injection amount from an external database, it is possible to prevent an input error by the operator.
 計算式を用いた注入量の計算は、注入制御部150で実行される。注入制御部150の機能は、薬液注入装置、透視撮像装置および薬液充填装置が含む各種制御回路など任意のコンピュータ装置の何れが有していてもよい。すなわち、薬液の注入量は、薬液注入装置ではなく、他の任意のコンピュータ装置の何れかが計算するように構成することができる。また、コンソール制御回路の機能を薬液注入装置ではなく他の任意のコンピュータ装置が有することで、薬液の注入量だけでなく、注入速度および注入時間などをパラメータとした注入プロトコルも、その任意のコンピュータ装置で作成することができる。 Calculation of the injection amount using the calculation formula is executed by the injection control unit 150. The function of the injection control unit 150 may be any of arbitrary computer devices such as various control circuits included in the chemical solution injection device, the fluoroscopic imaging device, and the chemical solution filling device. That is, the injection amount of the chemical liquid can be calculated by any other computer device, not the chemical liquid injection apparatus. In addition, the function of the console control circuit is provided in any other computer device instead of the chemical solution injection device, so that not only the injection amount of the chemical solution but also the injection protocol with parameters such as injection speed and injection time as parameters Can be created on the device.
 空シリンジへの薬液の充填は、薬液注入装置100で代用することができる。これにより、薬液充填装置は不要とすることができる。薬液注入装置100を用いて空シリンジに薬液を充填する場合は、プレッサー112は、注入ヘッド110に装着された空シリンジのピストン末端に形成されたフランジを着脱可能に保持するための、爪またはフックなどのフランジ保持構造を有する。このフランジ保持構造によってピストンのフランジが保持され、かつ、シリンジが薬液容器930に連結された状態でプレッサー112を後退させることで、薬液容器930内の薬液をシリンジに充填することができる。 The filling of the chemical solution into the empty syringe can be substituted with the chemical solution injection device 100. Thereby, a chemical | medical solution filling apparatus can be made unnecessary. When the empty syringe is filled with the drug solution using the drug solution injection device 100, the presser 112 is a claw or hook for detachably holding the flange formed at the piston end of the empty syringe attached to the injection head 110. Has a flange holding structure. The flange holding structure holds the flange of the piston, and the syringe 112 is retracted while the syringe is connected to the chemical solution container 930, whereby the chemical solution in the chemical solution container 930 can be filled into the syringe.
 100  薬液注入装置
 101  コンソール
 103  タッチパネル
 112  プレッサー
 110  注入ヘッド
 121  スタンド
 140  ピストン駆動機構
 150  注入制御部
 152  撮像制御部
 153  電磁波照射器
 154  表示ユニット
 156  入力ユニット
 164  RFID制御回路
 165  アンテナ
 166  RFIDモジュール
 200  透視撮像装置
 600  アダプタ
 800  シリンジ
 802  RFIDタグ
DESCRIPTION OF SYMBOLS 100 Chemical solution injection device 101 Console 103 Touch panel 112 Presser 110 Injection head 121 Stand 140 Piston drive mechanism 150 Injection control part 152 Imaging control part 153 Electromagnetic wave irradiation device 154 Display unit 156 Input unit 164 RFID control circuit 165 Antenna 166 RFID module 200 Transparent imaging device 600 Adapter 800 Syringe 802 RFID tag

Claims (18)

  1.  電磁波照射器を有する透視撮像装置を用いて画像を撮像する際に、画像の撮像に先立って造影剤を注入するための薬液注入装置であって、
     複数のシリンジが着脱自在に装着される注入ヘッドであって、前記複数のシリンジは、造影剤用のシリンジおよび生理食塩水用のシリンジを含み、前記造影剤用のシリンジのピストンを操作するための第1のピストン駆動機構と、前記生理食塩水用のシリンジのピストンを操作するための第2のピストン駆動機構と、を備えた注入ヘッドと、
     データの入力を受け付ける少なくとも1つのデータ入力インターフェースと、
     前記データ入力インターフェースを介して入力されたデータを用いて前記造影剤および前記生理食塩水の注入量および注入速度を求め、求められた注入量および注入速度にしたがって前記第1のピストン駆動機構および前記第2のピストン駆動機構の動作を制御する注入制御部と、を有し、
     前記注入制御部は、
     前記造影剤のみを注入する場合の前記造影剤の注入量および注入速度を求め、撮像時に前記透視撮像装置の電磁波照射器から照射される電磁波の照射強度についての設定値が特定の設定値と異なる場合は、求めた造影剤の注入量および注入速度を、前記設定値に応じて定められた所定の割合で減量し、減量した分を前記生理食塩水の注入量および注入速度として求めるように構成されている薬液注入装置。
    When imaging an image using a fluoroscopic imaging device having an electromagnetic wave irradiator, a chemical solution injection device for injecting a contrast medium prior to imaging an image,
    An injection head to which a plurality of syringes are detachably mounted, the plurality of syringes including a contrast medium syringe and a physiological saline syringe, for operating a piston of the contrast medium syringe An injection head comprising: a first piston drive mechanism; and a second piston drive mechanism for operating a piston of the physiological saline syringe;
    At least one data input interface for accepting data input;
    Using the data input via the data input interface, the injection amount and injection speed of the contrast medium and the physiological saline are obtained, and the first piston drive mechanism and the injection speed are determined according to the obtained injection amount and injection speed. An injection control unit for controlling the operation of the second piston drive mechanism,
    The injection control unit includes:
    The injection amount and the injection speed of the contrast agent in the case of injecting only the contrast agent are obtained, and the setting value for the irradiation intensity of the electromagnetic wave emitted from the electromagnetic wave irradiator of the fluoroscopic imaging device at the time of imaging is different from the specific setting value In this case, the obtained contrast medium injection amount and injection rate are reduced at a predetermined ratio determined in accordance with the set value, and the reduced amount is obtained as the physiological saline injection amount and injection rate. The chemical injection device.
  2.  前記注入制御部は、前記求めた注入量および注入速度似従って、前記第1のピストン駆動機構および第2のピストン駆動機構を同時に動作させるように構成されている請求項1に記載の薬液注入装置。 2. The chemical injection device according to claim 1, wherein the injection control unit is configured to simultaneously operate the first piston drive mechanism and the second piston drive mechanism in accordance with the obtained injection amount and injection speed. .
  3.  前記注入制御部は、被験者の体重、造影剤単位量当たりの造影増進剤含有量、被験者の体重当たりの造影増進剤量および注入時間をデータとして用いて前記造影剤の注入量および注入速度を求める請求項1または2に記載の薬液注入装置。 The injection control unit obtains the injection amount and the injection speed of the contrast agent by using the body weight of the subject, the contrast enhancer content per unit amount of the contrast agent, the contrast enhancer amount per body weight of the subject and the injection time as data. The chemical | medical solution injection device of Claim 1 or 2.
  4.  前記造影剤用のシリンジには、少なくとも前記造影剤単位量当たりの造影増進剤含有量および前記被験者の体重当たりの造影増進剤量がデータとして記録されたRFIDタグ装着されており、
     前記注入ヘッドは、前記データ入力インターフェースの一つとして、前記RFIDタグからデータを取得するRFIDリーダをさらに有する請求項1から3のいずれか一項に記載の薬液注入装置。
    The contrast agent syringe is equipped with an RFID tag in which at least the contrast enhancer content per unit amount of the contrast agent and the contrast enhancer amount per body weight of the subject are recorded as data,
    The chemical injection device according to any one of claims 1 to 3, wherein the injection head further includes an RFID reader that acquires data from the RFID tag as one of the data input interfaces.
  5.  前記データ入力インターフェースの一つとして、操作者による入力操作を受け付けるように構成された入力ユニットを有し、
     前記注入制御部は、
     複数の前記設定値およびそれぞれの設定値に対応する前記造影剤と前記生理食塩水との割合が格納されたテーブルをさらに有し、
     前記複数の設定値の中から一つが選択されるように前記入力ユニットにデータ入力を受け付けさせ、
     選択された前記設定値に対応する前記割合を前記テーブルから読み出し、読み出した割合を用いて、前記造影剤の注入量および注入速度を減量し、前記生理食塩水の注入量および注入速度を算出する、
     請求項1から4のいずれか一項に記載の薬液注入装置。
    One of the data input interfaces has an input unit configured to accept an input operation by an operator,
    The injection controller is
    A plurality of set values and a table storing a ratio of the contrast medium and the physiological saline corresponding to each set value;
    Allowing the input unit to accept data input so that one of the set values is selected;
    The ratio corresponding to the selected set value is read from the table, and using the read ratio, the injection amount and injection speed of the contrast medium are reduced, and the injection amount and injection speed of the physiological saline are calculated. ,
    The chemical injection device according to any one of claims 1 to 4.
  6.  電磁波照射器を有する透視撮像装置と、
     造影剤用のシリンジおよび生理食塩水用のシリンジを含む複数のシリンジと、
     複数のシリンジが着脱自在に装着される注入ヘッドであって、前記造影剤用のシリンジのピストンを操作するための第1のピストン駆動機構と、前記生理食塩水用のシリンジのピストンを操作するための第2のピストン駆動機構と、を備えた注入ヘッドと、
     データの入力を受け付ける少なくとも1つのデータ入力インターフェースと、
     前記データ入力インターフェースを介して入力されたデータを用いて前記造影剤および前記生理食塩水の注入量および注入速度を求め、求められた注入量および注入速度にしたがって前記第1のピストン駆動機構および前記第2のピストン駆動機構の動作を制御する注入制御部と、を有し、
     前記注入制御部は、
     前記造影剤のみを注入する場合の前記造影剤の注入量および注入速度を求め、撮像時に前記透視撮像装置の電磁波照射器から照射される電磁波の照射強度についての設定値が特定の設定値と異なる場合は、求めた造影剤の注入量および注入速度を、前記設定値に応じて定められた所定の割合で減量し、減量した分を前記生理食塩水の注入量および注入速度として求めるように構成されている透視撮像システム。
    A fluoroscopic imaging device having an electromagnetic wave irradiator;
    A plurality of syringes including a contrast agent syringe and a saline syringe;
    An injection head to which a plurality of syringes are detachably mounted, the first piston driving mechanism for operating the piston of the contrast medium syringe, and the piston of the physiological saline syringe An injection head comprising: a second piston drive mechanism;
    At least one data input interface for accepting data input;
    Using the data input via the data input interface, the injection amount and injection speed of the contrast medium and the physiological saline are obtained, and the first piston drive mechanism and the injection speed are determined according to the obtained injection amount and injection speed. An injection control unit for controlling the operation of the second piston drive mechanism,
    The injection controller is
    The injection amount and the injection speed of the contrast agent in the case of injecting only the contrast agent are obtained, and the setting value for the irradiation intensity of the electromagnetic wave emitted from the electromagnetic wave irradiator of the fluoroscopic imaging device at the time of imaging is different from the specific setting value In this case, the obtained contrast medium injection amount and injection rate are reduced at a predetermined ratio determined in accordance with the set value, and the reduced amount is obtained as the physiological saline injection amount and injection rate. A fluoroscopic imaging system.
  7.  前記注入制御部は、前記求めた注入量および注入速度に従って、前記第1のピストン駆動機構および第2のピストン駆動機構を同時に動作させるように構成されている請求項6に記載の透視撮像システム。 The fluoroscopic imaging system according to claim 6, wherein the injection control unit is configured to simultaneously operate the first piston drive mechanism and the second piston drive mechanism in accordance with the obtained injection amount and injection speed.
  8.  前記注入制御部は、被験者の体重、造影剤単位量当たりの造影増進剤含有量、被験者の体重当たりの造影増進剤量および注入時間をデータとして用いて前記造影剤の注入量および注入速度を求める請求項6または7に記載の透視撮像システム。 The injection control unit obtains the injection amount and the injection speed of the contrast agent by using the body weight of the subject, the contrast enhancer content per unit amount of the contrast agent, the contrast enhancer amount per body weight of the subject and the injection time as data. The fluoroscopic imaging system according to claim 6 or 7.
  9.  前記造影剤用のシリンジには、少なくとも前記造影剤単位量当たりの造影増進剤含有量および前記被験者の体重当たりの造影増進剤量がデータとして記録されたRFIDタグ装着されており、
     前記注入ヘッドは、前記データ入力インターフェースの一つとして、前記RFIDタグからデータを取得するRFIDリーダをさらに有する請求項6から8のいずれか一項に記載の透視撮像システム。
    The contrast agent syringe is equipped with an RFID tag in which at least the contrast enhancer content per unit amount of the contrast agent and the contrast enhancer amount per body weight of the subject are recorded as data,
    The fluoroscopic imaging system according to any one of claims 6 to 8, wherein the injection head further includes an RFID reader that acquires data from the RFID tag as one of the data input interfaces.
  10.  前記データ入力インターフェースの一つとして、操作者による入力操作を受け付けるように構成された入力ユニットを有し、
     前記注入制御部は、
     複数の前記設定値およびそれぞれの設定値に対応する前記造影剤と前記生理食塩水との割合が格納されたテーブルをさらに有し、
     前記複数の設定値の中から一つが選択されるように前記入力ユニットにデータ入力を受け付けさせ、
     選択された前記設定値に対応する前記割合を前記テーブルから読み出し、読み出した割合を用いて、前記造影剤の注入量および注入速度を減量し、前記生理食塩水の注入量および注入速度を算出する、
     請求項6から9のいずれか一項に記載の透視撮像システム。
    One of the data input interfaces has an input unit configured to accept an input operation by an operator,
    The injection control unit includes:
    A plurality of set values and a table storing a ratio of the contrast medium and the physiological saline corresponding to each set value;
    Allowing the input unit to accept data input so that one of the set values is selected;
    The ratio corresponding to the selected set value is read from the table, and using the read ratio, the injection amount and injection speed of the contrast medium are reduced, and the injection amount and injection speed of the physiological saline are calculated. ,
    The fluoroscopic imaging system according to any one of claims 6 to 9.
  11.  前記シリンジは、プレフィルドタイプまたは現場充填タイプのシリンジである請求項6から10のいずれか一項に記載の透視撮像システム。 The fluoroscopic imaging system according to any one of claims 6 to 10, wherein the syringe is a prefilled type or a field filling type syringe.
  12.  前記シリンジは、シリンダの末端にフランジが形成され、該フランジの外周に切り欠き部を有する請求項6から11のいずれか一項に記載の透視撮像システム。 The fluoroscopic imaging system according to any one of claims 6 to 11, wherein the syringe has a flange formed at an end of a cylinder and has a notch on an outer periphery of the flange.
  13.  電磁波照射器を有する透視撮像装置を用いて画像を撮像する際に、画像の撮像に先立って造影剤および生理食塩水の少なくとも造影剤を注入するための、造影剤用のシリンジおよび生理食塩水用のシリンジを含む複数のシリンジが着脱自在に装着され、前記造影剤用のシリンジのピストンを操作するための第1のピストン駆動機構と、前記生理食塩水用のシリンジのピストンを操作するための第2のピストン駆動機構と、前記第1のピストン駆動機構および前記第2のピストン駆動機構の動作を制御する注入制御部と、を備えた薬液注入装置の制御方法であって、
     前記注入制御部が、所定のデータを用いて前記造影剤のみを注入する場合の前記造影剤の注入量および注入速度を求めるステップと、
     前記注入制御部が、撮像時に前記透視撮像装置の電磁照射生器から照射される電磁波の照射強度についての設定値が特定の設定値と異なる場合は、求めた造影剤の注入量および注入速度を、前記設定値に応じて定められた所定の割合で減量し、減量した分を前記生理食塩水の注入量および注入速度として求めるステップと、
     を有する、薬液注入装置の制御方法。
    When imaging an image using a fluoroscopic imaging apparatus having an electromagnetic wave irradiator, a contrast medium syringe and a physiological saline solution are used to inject at least a contrast medium and a physiological saline prior to image capture. A plurality of syringes including a first syringe drive mechanism, a first piston drive mechanism for operating a piston of the contrast medium syringe, and a first piston for operating the piston of the saline syringe. 2 is a control method of a chemical liquid injection device comprising: a piston drive mechanism; and an injection control unit that controls operations of the first piston drive mechanism and the second piston drive mechanism,
    The injection control unit obtaining an injection amount and an injection speed of the contrast agent when injecting only the contrast agent using predetermined data; and
    When the setting value for the irradiation intensity of the electromagnetic wave irradiated from the electromagnetic irradiation generator of the fluoroscopic imaging device at the time of imaging is different from the specific setting value, the injection control unit calculates the determined contrast agent injection amount and injection speed. , Reducing the amount at a predetermined ratio determined according to the set value, and obtaining the reduced amount as the infusion amount and infusion rate of the physiological saline;
    A method for controlling a chemical liquid injector.
  14.  前記注入制御部が、求められた前記造影剤および生理食塩水の前記注入量および注入速度に従って、前記造影剤のみを注入する場合は前記第1のピストン駆動機構を動作させ、前記設定値が特定の照射強度値と異なる場合は、前記第1のピストン駆動機構および第2のピストン駆動機構を同時に動作させるステップをさらに有する、請求項13に記載の薬液注入装置の制御方法。 When the injection control unit injects only the contrast agent according to the obtained injection amount and injection speed of the contrast agent and physiological saline, the first piston drive mechanism is operated, and the set value is specified. 14. The method for controlling a chemical injection device according to claim 13, further comprising the step of simultaneously operating the first piston driving mechanism and the second piston driving mechanism when the irradiation intensity value is different from the irradiation intensity value.
  15.  前記所定のデータは、被験者の体重、造影剤単位量当たりの造影増進剤含有量、被験者の体重当たりの造影増進剤量および注入時間を含む、請求項13または14に記載の薬液注入装置の制御方法。 The control of the chemical injection device according to claim 13 or 14, wherein the predetermined data includes a subject's body weight, a contrast enhancer content per unit amount of contrast agent, a contrast enhancer amount per subject weight, and an injection time. Method.
  16.  電磁波照射器を有する透視撮像装置を用いて画像を撮像する際に、画像の撮像に先立って造影剤および生理食塩水の少なくとも造影剤を注入するための、造影剤用のシリンジおよび生理食塩水用のシリンジを含む複数のシリンジが着脱自在に装着され、前記造影剤用のシリンジのピストンを操作するための第1のピストン駆動機構と、前記生理食塩水用のシリンジのピストンを操作するための第2のピストン駆動機構と、を備えた薬液注入装置のためのコンピュータプログラムであって、
     所定のデータを用いて前記造影剤のみを注入する場合の前記造影剤の注入量および注入速度を求めるステップと、
     撮像時に前記透視撮像装置の電磁波照射器から照射される電磁波の照射強度についての設定値が特定の照射強度値と異なる場合は、求めた造影剤の注入量および注入速度を、前記設定値に応じて定められた所定の割合で減量し、減量した分を前記生理食塩水の注入量および注入速度として求めるステップと、
     を薬液注入装置に実行させるためのコンピュータプログラム。
    When imaging an image using a fluoroscopic imaging apparatus having an electromagnetic wave irradiator, a contrast medium syringe and a physiological saline solution are used to inject at least a contrast medium and a physiological saline prior to image capture. A plurality of syringes including a first syringe drive mechanism, a first piston drive mechanism for operating a piston of the contrast medium syringe, and a first piston for operating the piston of the saline syringe. A computer program for a chemical injection device comprising two piston drive mechanisms,
    Obtaining an injection amount and an injection speed of the contrast agent when injecting only the contrast agent using predetermined data; and
    When the setting value for the irradiation intensity of the electromagnetic wave emitted from the electromagnetic wave irradiator of the fluoroscopic imaging device at the time of imaging is different from the specific irradiation intensity value, the determined contrast medium injection amount and injection speed are determined according to the setting value. Reducing the amount at a predetermined ratio determined, and determining the reduced amount as the infusion amount and infusion rate of the physiological saline;
    A computer program for causing a chemical injection device to execute.
  17.  求められた前記造影剤および生理食塩水の前記注入量および注入速度にしたがって、前記造影剤のみを注入する場合は前記第1のピストン駆動機構を動作させ、前記設定値が特定の設定値と異なる場合は、前記第1のピストン駆動機構および第2のピストン駆動機構を同時に動作させるステップをさらに有する、請求項16に記載の薬液注入装置に実行させるためのコンピュータプログラム。 When only the contrast medium is injected according to the determined injection amount and injection speed of the contrast medium and physiological saline, the first piston drive mechanism is operated, and the set value is different from the specific set value. The computer program for making the chemical injection device of Claim 16 perform further in the case further having the step which operates the said 1st piston drive mechanism and a 2nd piston drive mechanism simultaneously.
  18.  前記所定のデータは、被験者の体重、造影剤単位量当たりの造影増進剤含有量、被験者の体重当たりの造影増進剤量および注入時間を含む、請求項16または17に記載の薬液注入装置のコンピュータプログラム。 The computer of the chemical injection device according to claim 16 or 17, wherein the predetermined data includes a subject's body weight, a contrast enhancer content per unit amount of contrast medium, a contrast enhancer amount per body weight of the subject, and an injection time. program.
PCT/JP2016/058950 2015-03-24 2016-03-22 Chemical solution injection device WO2016152841A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017508348A JPWO2016152841A1 (en) 2015-03-24 2016-03-22 Chemical injection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015060718 2015-03-24
JP2015-060718 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016152841A1 true WO2016152841A1 (en) 2016-09-29

Family

ID=56978143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058950 WO2016152841A1 (en) 2015-03-24 2016-03-22 Chemical solution injection device

Country Status (2)

Country Link
JP (1) JPWO2016152841A1 (en)
WO (1) WO2016152841A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019000591A (en) * 2017-06-20 2019-01-10 株式会社根本杏林堂 Generation device, injection device, and injection amount determination method
JP2020065783A (en) * 2018-10-25 2020-04-30 国立大学法人広島大学 Simulator, injection device including simulator or imaging system and simulation program
JP2021520876A (en) * 2018-04-10 2021-08-26 バイエル・ヘルスケア・エルエルシーBayer HealthCare LLC Prefilling the contrast injection protocol into the dosing line
JP7296654B2 (en) 2017-02-14 2023-06-23 株式会社根本杏林堂 Injection protocol generation device, injection device and imaging device including the generation device, injection protocol generation method, and injection protocol generation program
WO2023227686A1 (en) * 2022-05-25 2023-11-30 B. Braun Melsungen Ag Inflation device for inflating a balloon catheter
WO2024034633A1 (en) * 2022-08-09 2024-02-15 株式会社根本杏林堂 Syringe outer cylinder, syringe, and syringe holder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136218A1 (en) * 2010-04-27 2011-11-03 株式会社根本杏林堂 Chemical injection device and ct device
JP2012232029A (en) * 2011-05-06 2012-11-29 Nemoto Kyorindo:Kk Chemical dosing apparatus, and imaging apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003310592A (en) * 2002-04-22 2003-11-05 Toshiba Corp Remote radiographing method, remote radiographing system, simulation method for medical image diagnostic apparatus, information processing service method, and modality simulator system
WO2010101184A1 (en) * 2009-03-04 2010-09-10 株式会社根本杏林堂 Chemical injection device and x-ray ct system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136218A1 (en) * 2010-04-27 2011-11-03 株式会社根本杏林堂 Chemical injection device and ct device
JP2012232029A (en) * 2011-05-06 2012-11-29 Nemoto Kyorindo:Kk Chemical dosing apparatus, and imaging apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7296654B2 (en) 2017-02-14 2023-06-23 株式会社根本杏林堂 Injection protocol generation device, injection device and imaging device including the generation device, injection protocol generation method, and injection protocol generation program
JP2019000591A (en) * 2017-06-20 2019-01-10 株式会社根本杏林堂 Generation device, injection device, and injection amount determination method
JP7023482B2 (en) 2017-06-20 2022-02-22 株式会社根本杏林堂 Generation device, injection device, and injection amount determination method
JP2021520876A (en) * 2018-04-10 2021-08-26 バイエル・ヘルスケア・エルエルシーBayer HealthCare LLC Prefilling the contrast injection protocol into the dosing line
JP2020065783A (en) * 2018-10-25 2020-04-30 国立大学法人広島大学 Simulator, injection device including simulator or imaging system and simulation program
JP7243973B2 (en) 2018-10-25 2023-03-22 国立大学法人広島大学 Simulator, Injection Device or Imaging System Equipped with Simulator, and Simulation Program
WO2023227686A1 (en) * 2022-05-25 2023-11-30 B. Braun Melsungen Ag Inflation device for inflating a balloon catheter
WO2024034633A1 (en) * 2022-08-09 2024-02-15 株式会社根本杏林堂 Syringe outer cylinder, syringe, and syringe holder

Also Published As

Publication number Publication date
JPWO2016152841A1 (en) 2018-02-08

Similar Documents

Publication Publication Date Title
WO2016152841A1 (en) Chemical solution injection device
JP6382248B2 (en) CT system, CT system operating method, and one or more computer programs for executing the CT system operating method
JP2024040279A (en) Chemical injection device
CN110753562B (en) Chemical liquid injection device
JP6952357B2 (en) Data processing equipment, medical testing systems, and computer programs
JP6338190B2 (en) Chemical injection device
JP6298811B2 (en) Chemical injection device
JP2022113830A (en) Contrast medium injection system
JP6792104B2 (en) Chemical injection device
JP6348722B2 (en) Chemical injection device and control method thereof
JP6570812B2 (en) Blood vessel state analysis apparatus and system including the same
JP6327632B2 (en) Chemical injection device
JP6618673B2 (en) Injection protocol setting device, chemical solution injection device, and medical system
JP7350284B2 (en) Chemical injection device and injection protocol setting program
JP2020124598A (en) Chemical injection device
KR20210073925A (en) Combination injector apparatus for medical imaging equipment
JP2018108498A (en) Chemical injection device
JP2019195702A (en) Blood vessel state analyzer and system equipped with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508348

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768744

Country of ref document: EP

Kind code of ref document: A1