WO2016152817A1 - 封止フィルム及び封止フィルムで封止された機能素子 - Google Patents

封止フィルム及び封止フィルムで封止された機能素子 Download PDF

Info

Publication number
WO2016152817A1
WO2016152817A1 PCT/JP2016/058874 JP2016058874W WO2016152817A1 WO 2016152817 A1 WO2016152817 A1 WO 2016152817A1 JP 2016058874 W JP2016058874 W JP 2016058874W WO 2016152817 A1 WO2016152817 A1 WO 2016152817A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
sealing film
film
gas barrier
Prior art date
Application number
PCT/JP2016/058874
Other languages
English (en)
French (fr)
Inventor
▲高▼向 保彦
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017508338A priority Critical patent/JPWO2016152817A1/ja
Publication of WO2016152817A1 publication Critical patent/WO2016152817A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a sealing film and a functional element sealed with the sealing film.
  • Functional elements made of organic materials such as organic EL (Electroluminescence) elements and organic thin-film solar cells are extremely vulnerable to oxygen and moisture.
  • organic EL Electrode
  • the organic material itself is deteriorated by oxygen or moisture, and there is a drawback that the luminance is lowered or the light is not emitted. Sex is necessary.
  • the organic thin film solar cell Even in the organic thin film solar cell, the organic material itself is denatured by oxygen and moisture, and the photoelectric conversion efficiency is lowered. As a result, power generation is not possible, and barrier properties against oxygen and moisture are necessary.
  • organic EL elements and organic thin-film solar cells are expected to be able to bend or make flexible elements that can be made into scrolls.
  • a barrier film having a plastic substrate and a barrier layer has been used (see, for example, Patent Document 1 and Patent Document 2).
  • an object of the present invention is to provide a sealing film in which moisture permeability resistance does not deteriorate even when bending and winding are repeated for a long period of time and a functional element sealed with the sealing film.
  • the present inventor has conducted intensive research to solve the above problems. As a result, it has been found that the above problem can be solved by including a transition metal compound in the gas barrier layer constituting the sealing film, and the present invention has been completed.
  • the present invention comprises a flexible substrate, a gas barrier layer formed on one surface of the substrate, and an adhesive layer in this order, and the gas barrier layer contains a transition metal compound. It is a functional element sealed with a stop film and the sealing film.
  • the present invention comprises a flexible substrate, a gas barrier layer formed on one surface of the substrate, and an adhesive layer in this order, and the gas barrier layer contains a transition metal compound. It is a sealing film.
  • the sealing film of the present invention having such a configuration can maintain high moisture permeation resistance even after repeated long-term bending and winding. Furthermore, by sealing the functional element main body with the sealing film having the above-described configuration, it is possible to provide a functional element that is hardly deteriorated in bending resistance even after repeated bending and winding for a long period of time and has excellent moisture resistance. .
  • a transition metal compound in the example, a group V oxide, which is one kind thereof
  • the gas barrier layer constituting the sealing film resistance to repeated bending at a small radius (2 mm or less) is ensured.
  • a transition metal compound in the example, a group V oxide, which is one kind thereof
  • the surface of the element-side substrate becomes a surface having irregularities of about several ⁇ m because of the provision of elements.
  • a gas barrier layer constituting a barrier film for imparting barrier properties to a flexible functional element is usually an inorganic film, and is hard and brittle because it is necessary to impart barrier properties.
  • the sealing material when sealing the element side substrate with the uneven surface as described above with a barrier film, if the sealing material is thin, the gas barrier layer is affected by the stress applied when filling the unevenness on the element substrate (the above properties are Therefore, when a very fine crack is generated in the gas barrier layer and further bending stress is applied, this crack expands and moisture resistance deteriorates (allows moisture and oxygen to enter through the expanded crack). It is.
  • the transition metal compound contained in the gas barrier layer including the Group V oxides used in the examples, are all transition metal oxides and the like and can take a plurality of oxidation numbers. It is considered that when an electron is added, electrons are moved flexibly to change the interatomic distance, the stress is relieved to prevent the generation of cracks, and the moisture permeability resistance does not deteriorate.
  • the barrier property is usually improved by increasing the thickness of the sealing film (gas barrier layer or adhesive layer).
  • the flexibility is usually improved by reducing the thickness of the sealing film (gas barrier layer or adhesive layer).
  • the barrier property and the flexibility are in a trade-off relationship (a trade-off relationship).
  • the adhesive layer constituting the sealing film which has flexibility in addition to the adhesion to the element-side substrate and the sealing function
  • the thin adhesive layer is not the element.
  • FIG. 1 is a schematic cross-sectional view showing the basic structure of a sealing film according to the present invention.
  • a sealing film 10 in FIG. 1 includes a base material 11 having flexibility, a gas barrier layer 14 formed on one surface of the base material 11, a layer (B) 12 not containing a transition metal compound, and a transition A layer (A) 13 containing a metal compound is disposed in this order, and an adhesive layer 15 is disposed on the gas barrier layer 14.
  • FIG. 2 is a schematic cross-sectional view showing another basic configuration of the sealing film according to the present invention. 2 includes a base material 11 having flexibility, a gas barrier layer 14 formed on one surface of the base material 11, a layer (A) 13 containing a transition metal compound, and a transition metal.
  • a layer (B) 12 not containing a compound is disposed in this order, and an adhesive layer 15 is disposed on the gas barrier layer 14.
  • the layer (A) containing a transition metal compound is also simply referred to as a layer (A).
  • the layer (B) not containing the transition metal compound is also simply referred to as a layer (B).
  • the layer (B) 12 that does not contain a transition metal compound as shown in FIGS.
  • a layer (A) 13 containing a transition metal compound is desirable.
  • the layer (A) 13 and the layer (B) 12 constituting such a suitable gas barrier layer 14 are arranged adjacent to each other, the layer (A) 13 and the layer (B) 12 are in this order from the substrate 11 side.
  • the order of the layer (B) 12 and the layer (A) 13 may be used.
  • another layer may be disposed between the substrate and each layer or on each layer.
  • the transition metal compound may be contained in at least one layer constituting the gas barrier layer 14.
  • the gas barrier layer 14 may be a single layer, but preferably includes a layer (A) 13 containing a transition metal compound and a layer (B) 12 not containing a transition metal compound, as shown in FIGS. Two or more layers are preferable. In the case of three or more layers, for example, the layer (A) and the layer (B) shown in FIGS. 1 and 2 are sequentially laminated to form a layer (A), a layer (B), a layer (A), and a layer (B).
  • the plurality of stacked layers (A) may have the same configuration (same composition) or different configurations (for example, compositions having different transition metal compounds).
  • a plurality of stacked layers (B) may have the same configuration (same composition) or different configurations (for example, compositions having different inorganic materials constituting the inorganic film constituting the layer (B)).
  • the layer (A) containing the transition metal compound is disposed on the layer (B) on the surface facing the substrate (that is, the layer (A) and the layer (B) are disposed adjacent to each other).
  • the effect of the invention by the above mechanism can be expressed more effectively. That is, in the gas barrier layer having a structure in which the layer (A) and the layer (B) are in contact with each other, the transition metal compound included in the layer (A) can take a plurality of oxidation numbers, so that electrons are flexibly applied when stress is applied. By changing the distance between atoms by moving, the stress can be relaxed, the occurrence of cracks in the gas barrier layer can be prevented, and high moisture permeation resistance can be maintained for a long time.
  • the layer (A) containing the transition metal compound is more likely to be oxidized (easy to change the interatomic distance by flexibly moving electrons when stress is applied), and the layer (A) of the layer (B) Protection (effect of relaxing stress and preventing generation of cracks not only in the layer (A) but also in the layer (B) and maintaining high moisture permeability for a long period of time) is more remarkably exhibited. Therefore, it is preferable that the base material, the layer (B), the layer (A), and the adhesive layer shown in FIG. 1 in which the layer (A) is arranged on the adhesive layer side close to the stress generation source are arranged in this order.
  • this invention is not restrict
  • the sealing film of the present invention preferably has a layer (A) containing a transition metal compound as a gas barrier layer, and has a layer (A) containing a transition metal compound formed by a vapor deposition method. Is more preferable. Since the layer (A) contains a transition metal compound, the layer (A) is more easily electrochemically oxidized than the layer (B), and suppresses generation of cracks (and further deterioration due to oxidation) of the layer (B).
  • the transition metal compound contained in the layer (A) is not limited to the mechanism estimated above when the gas barrier layer is subjected to stress, but at least the stress is mitigated to prevent the occurrence of cracks in the gas barrier layer. It is not particularly limited as long as the function to be obtained can be effectively expressed. Examples thereof include transition metal oxides, nitrides, carbides, oxynitrides, and oxycarbides. Among them, it is possible to take a plurality of oxidation numbers, and when stress is applied, electrons can be moved flexibly to change the interatomic distance (and further, deterioration due to oxidation of the layer (B) can be suppressed).
  • the transition metal compound is preferably a transition metal oxide.
  • the transition metal compounds may be used alone or in combination of two or more.
  • the layer (A) preferably contains a metal oxide MO x1 where x1 ⁇ x2, where M is the transition metal and MO x2 is the stoichiometrically obtained transition metal oxide.
  • Nb can take the composition of niobium trioxide, but x2 in the present invention means x2 of a stoichiometric compound having the highest degree of oxidation.
  • the inclusion of the metal oxide MO x1 where x1 ⁇ x2 means that when the composition profile in the thickness direction is measured by a composition analysis method such as X-ray Photoelectron Spectroscopy (XPS), x1 ⁇ It means that a measurement point that is x2 is obtained, and in the case of Nb, it means that a measurement point that is x1 ⁇ 2.5 is obtained. Even when the layer (A) contains a plurality of kinds of metals, the stoichiometric x2 can be calculated from the ratio of each metal and the total thereof.
  • XPS X-ray Photoelectron Spectroscopy
  • the x1 / x2 ratio is improved because the gas barrier performance under high temperature and high humidity is further improved by improving the moisture permeability. It is preferably 99 or less, more preferably 0.9 or less, and even more preferably 0.8 or less.
  • the smaller the x1 / x2 ratio the higher the oxidation suppression effect, but the higher the absorption with visible light. Accordingly, when used in applications where transparency is desired, it is preferably 0.2 or more. .3 or more is more preferable.
  • the ratio in the thickness direction of the layer (A) in the region where x1 ⁇ x2 is preferably 1 to 100% with respect to the thickness of the layer (A) from the viewpoint of barrier properties. More preferably, it is 50 to 100%.
  • the x1 / x2 ratio can be adjusted by using a metal or a transition metal oxide that is stoichiometrically deficient in oxygen as a target when the layer (A) is formed by sputtering. This can be done by appropriately adjusting the amount of oxygen to be introduced.
  • x1 can be determined by the atomic ratio of O to M using XPS analysis in the thickness direction. If the minimum value of x1 is x1 ⁇ x2, it can be said that the metal oxide MO x1 where x1 ⁇ x2 is included.
  • ⁇ XPS analysis conditions >> ⁇ Device: QUANTERASXM manufactured by ULVAC-PHI ⁇ X-ray source: Monochromatic Al-K ⁇ ⁇ Measurement area: Si2p, C1s, N1s, O1s, etc., set by a regular method according to the metal to be measured ⁇ Sputtering ion: Ar (2 keV) Depth profile: repeats measurement after sputtering for a certain time. In one measurement, the sputtering time is adjusted so that the thickness is about 2.5 nm in terms of SiO 2. ⁇ Quantification: The background is obtained by the Shirley method, and the relative sensitivity coefficient method is calculated from the obtained peak area. And quantified. Data processing uses MultiPak manufactured by ULVAC-PHI.
  • the transition metal refers to a Group 3 element to a Group 12 element, and as the transition metal, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, etc. are mentioned.
  • the transition metal in the transition metal compound is preferably a metal having a lower redox potential than silicon.
  • the metal having a lower redox potential than silicon include niobium, tantalum, vanadium, zirconium, titanium, hafnium, yttrium, lanthanum, cerium, and the like. These metals may be used alone or in combination of two or more.
  • niobium, tantalum, and vanadium which are Group 5 elements, are particularly preferable because they have a high oxidation-inhibiting effect on the layer (B) (preferably the layer (B) composed of the polysilazane modified barrier layer).
  • a preferred embodiment of the present invention is a sealing film in which the transition metal is at least one metal selected from the group consisting of vanadium, niobium, and tantalum (Group 5 element).
  • the transition metal in the transition metal compound is particularly preferably niobium or tantalum from which a compound with good transparency can be obtained.
  • transition metal compound it is possible to change the interatomic distance by moving electrons flexibly when stress is applied (further, deterioration due to oxidation of the layer (B) can be suppressed).
  • transition metal oxides are preferred. From the viewpoint of high oxidation suppression effect in addition to the above effects, transition metal oxides that are at least one transition metal selected from Group 5 elements are more preferable. Further, from the viewpoint of excellent optical characteristics in addition to the above effects, a transition metal oxide in which the transition metal is at least one of niobium and tantalum is more preferable. Furthermore, in addition to the above-described effects, the transition metal compound contains niobium oxide (among other Group 5 element oxides) from the viewpoint of high moisture permeability resistance even after repeated bending and winding for a long period of time. Particularly preferred.
  • the content of the transition metal compound in the layer (A) is not particularly limited as long as the effects of the present invention are exhibited, but the content of the transition metal compound is 50% by mass or more based on the total mass of the layer (A). It is preferably 80% by mass or more, more preferably 95% by mass or more, particularly preferably 98% by mass or more, and 100% by mass (that is, the layer (A) is Most preferably, it comprises a transition metal compound.
  • the formation method of the layer (A) is preferably a vapor deposition method from the viewpoint of easy adjustment of the composition ratio between the metal element and oxygen.
  • the vapor deposition method is not particularly limited, and examples thereof include physical vapor deposition (PVD) methods such as sputtering, vapor deposition, and ion plating, plasma CVD (chemical vapor deposition), and ALD (Atomic Layer Deposition). ) And the like. Among them, it is preferable to form by sputtering since film formation is possible without damaging the lower layer and high productivity is obtained.
  • bipolar sputtering, magnetron sputtering, dual magnetron (DMS) sputtering using an intermediate frequency region, ion beam sputtering, ECR sputtering, or the like can be used alone or in combination of two or more.
  • the target application method is appropriately selected according to the target type, and either DC (direct current) sputtering or RF (high frequency) sputtering may be used.
  • RF high frequency
  • a reactive sputtering method using a transition mode that is intermediate between the metal mode and the oxide mode can also be used.
  • a metal oxide film can be formed at a high film formation speed.
  • a transition metal oxide thin film can be formed by using a transition metal for the target and further introducing oxygen into the process gas.
  • a transition metal oxide target can be used.
  • the inert gas used for the process gas He, Ne, Ar, Kr, Xe, or the like can be used, and Ar is preferably used.
  • a transition metal compound thin film such as a transition metal oxide, nitride, nitride oxide, or carbonate can be formed.
  • film formation conditions in the sputtering method include applied power, discharge current, discharge voltage, time, and the like, which can be appropriately selected according to the sputtering apparatus, film material, film thickness, and the like.
  • a sputtering method using a transition metal oxide as a target is preferable because it has a higher film formation rate and higher productivity.
  • the layer (A) may be a single layer or a laminated structure of two or more layers.
  • the transition metal compounds contained in the layer (A) may be the same or different.
  • the layer (A) is considered to be a layer having a function of suppressing the oxidation of the layer (B) and maintaining the gas barrier property as described above, the layer (A) is not necessarily a single layer ( The layer (A) only) does not require sufficient gas barrier properties. Therefore, even if the layer (A) is a relatively thin layer, the effect can be exhibited. Furthermore, it is preferable that the flexible performance can be enhanced by making the layer (A) a relatively thin layer.
  • the thickness of the layer (A) (in the case of a laminated structure of two or more layers) Is preferably 1 to 200 nm, more preferably 2 to 100 nm, and even more preferably 3 to 50 nm from the viewpoint of in-plane uniformity of barrier properties.
  • the productivity of forming the layer (A) is further improved.
  • the thickness of the layer (A) (in the case of a laminated structure of two or more layers, the total The thickness is preferably from 1 to 200 nm, more preferably from 2 to 150 nm, and even more preferably from 20 to 150 nm from the viewpoint of in-plane uniformity of the barrier property.
  • the sealing film which concerns on this invention has a layer (B) which does not contain a transition metal compound as a gas barrier layer.
  • the layer (B) which does not contain a transition metal compound is more preferably a single layer having sufficient gas barrier properties, and more preferably vacuum ultraviolet rays are applied to a coating film obtained by applying and drying a coating liquid containing polysilazane. It is a layer (B) formed by irradiation. In this case, the layer (B) exhibits gas barrier properties by irradiation with vacuum ultraviolet rays.
  • the layer (B) constituting the gas barrier layer is not limited to that obtained by the above production method, and any other production method can be used as long as it has a sufficient gas barrier property with a single layer. It may be formed using.
  • the structure of the layer (B) will be described.
  • a coating layer obtained by applying and drying a coating liquid containing polysilazane, which is a suitable layer (B) is formed by irradiating with vacuum ultraviolet rays. The method for producing the layer (B) thus formed will be described as an example.
  • the layer (B) may be a single layer or a laminated structure of two or more layers.
  • each layer (B) is preferably 10 to 500 nm from the viewpoint of gas barrier performance.
  • the total thickness is preferably 1000 nm or less from the viewpoint of crack suppression.
  • the thickness per layer of the layer (B) is 50 to 300 nm from the viewpoint of gas barrier performance.
  • the inorganic material constituting the layer (B), particularly the polysilazane constituting the suitable layer (B) is preferably formed on the interface side between the layer (A) and the layer (B).
  • vacuum ultraviolet irradiation treatment when a suitable layer (B) is formed, it is preferable that vacuum ultraviolet light is transmitted to the vicinity of the interface between the layer (A) and the layer (B). This is because the polysilazane modified region exhibiting barrier properties is formed in contact with the layer (A), thereby improving the oxidation resistance.
  • the polysilazane coating layer is relatively thin so that the vacuum ultraviolet light is transmitted to the vicinity of the interface between the layer (A) and the layer (B). For this reason, in the case of the layer constitution of the gas barrier layer arranged in the order of the layer (A) and the layer (B) on the substrate, the gas barrier arranged in the order of the layer (B) and the layer (A) on the substrate.
  • the preferred range of the thickness per layer of the layer (B) is a thinner range than in the case of the layer configuration of the layers, and the flexible performance can be enhanced.
  • the thickness per layer of the layer (B) is 10 to 150 nm. It is more preferable.
  • the thickness of the layer (B) can be measured by observation with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the layer (B) may be formed using any method as described above, but is preferably formed by applying vacuum ultraviolet rays to a coating film obtained by applying and drying a coating liquid containing polysilazane.
  • polysilazane is a polymer having a silicon-nitrogen bond, SiO 2 having a bond such as Si—N, Si—H, N—H, etc., Si 3 N 4 , and both intermediate solid solutions SiO x N y.
  • Such as a ceramic precursor inorganic polymer is preferably formed by applying vacuum ultraviolet rays to a coating film obtained by applying and drying a coating liquid containing polysilazane.
  • polysilazane is a polymer having a silicon-nitrogen bond, SiO 2 having a bond such as Si—N, Si—H, N—H, etc., Si 3 N 4 , and both intermediate solid solutions SiO x N y.
  • Such as a ceramic precursor inorganic polymer is preferably formed by applying vacuum ultraviolet rays to a
  • the polysilazane preferably has the following structure.
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. . At this time, R 1 , R 2 and R 3 may be the same or different.
  • n is an integer
  • the polysilazane having the structure represented by the general formula (I) is determined to have a number average molecular weight of 150 to 150,000 g / mol. Is preferred.
  • one of preferred embodiments is perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms.
  • polysilazane has a structure represented by the following general formula (II).
  • R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, An aryl group, a vinyl group or a (trialkoxysilyl) alkyl group.
  • R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ may be the same or different.
  • n ′ and p are integers, and the polysilazane having the structure represented by the general formula (II) is determined to have a number average molecular weight of 150 to 150,000 g / mol. It is preferred that Note that n ′ and p may be the same or different.
  • R 1 ′ , R 3 ′ and R 6 ′ each represent a hydrogen atom, and R 2 ′ , R 4 ′ and R 5 ′ each represent a methyl group;
  • R 1 ' , R 3' and R 6 ' each represents a hydrogen atom, R 2' , R 4 ' each represents a methyl group, and R 5' represents a vinyl group;
  • R 1 ' , R 3' , R 4 A compound in which ' and R 6' each represent a hydrogen atom and R 2 ' and R 5' each represents a methyl group is preferred.
  • polysilazane has a structure represented by the following general formula (III).
  • R 1 ′′ , R 2 ′′ , R 3 ′′ , R 4 ′′ , R 5 ′′ , R 6 ′′ , R 7 ′′ , R 8 ′′ and R 9 ′′ are each independently A hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group, wherein R 1 ′′ , R 2 ′′ , R 3 ′′ , R 4 ′′ , R 5 ′′ , R 6 ′′ , R 7 ′′ , R 8 ′′ and R 9 ′′ may be the same or different.
  • n ′′, p ′′ and q are integers, and the polysilazane having the structure represented by the general formula (III) has a number average molecular weight of 150 to 150,000 g / mol. It is preferable to be determined as follows. Note that n ′′, p ′′ and q may be the same or different.
  • R 1 ′′ , R 3 ′′ and R 6 ′′ each represent a hydrogen atom
  • R 2 ′′ , R 4 ′′ , R 5 ′′ and R 8 ′′ each represent a methyl group.
  • R 9 ′′ represents a (triethoxysilyl) propyl group
  • R 7 ′′ represents an alkyl group or a hydrogen atom.
  • the organopolysilazane in which a part of the hydrogen atom portion bonded to Si is substituted with an alkyl group or the like has improved adhesion to the base material as a base by having an alkyl group such as a methyl group and is hard.
  • an inorganic film (ceramic film) made of brittle polysilazane can be toughened, and there is an advantage that the occurrence of cracks can be suppressed even when the (average) film thickness is increased as long as the flexibility is not impaired. For this reason, these perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings.
  • the number average molecular weight (Mn) is about 600 to 2000 (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight.
  • Polysilazane is commercially available in the form of a solution dissolved in an organic solvent, and the commercially available product can be used as it is as the coating solution for forming the layer (B).
  • Examples of commercially available polysilazane solutions include NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials Co., Ltd. Is mentioned. These polysilazane solutions can be used alone or in combination of two or more.
  • polysilazane examples include, but are not limited to, for example, a silicon alkoxide-added polysilazane obtained by reacting the polysilazane with a silicon alkoxide (Japanese Patent Laid-Open No. 5-23827), and a glycidol reaction.
  • examples thereof include polysilazanes that are made into ceramics at low temperatures, such as glycidol-added polysilazanes (Japanese Patent Laid-Open No. 6-122852) obtained by the above and alcohol-added polysilazanes obtained by reacting alcohol (Japanese Patent Laid-Open No. 6-240208).
  • the content of polysilazane in the coating film of the layer (B) before irradiation with vacuum ultraviolet rays is 100 mass when the total mass of the coating film (solid content) of the layer (B) is 100 mass%. %.
  • the content rate of the polysilazane in the coating film of a layer (B) is 10 to 99 mass%. 40 mass% or more and 95 mass% or less is more preferable, and 70 mass% or more and 95 mass% or less is especially preferable.
  • the solvent for preparing a suitable polysilazane-containing coating solution (hereinafter referred to as a layer (B) forming coating solution) used for forming the layer (B) is not particularly limited as long as it can dissolve polysilazane.
  • An organic solvent that does not contain water and reactive groups (for example, hydroxyl group or amine group) that easily react with polysilazane and is inert to polysilazane is preferable, and an aprotic organic solvent is more preferable. .
  • the solvent is an aprotic solvent; for example, carbon such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, terpenes, etc.
  • aprotic solvent for example, carbon such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, terpenes, etc.
  • Hydrogen solvents Halogen hydrocarbon solvents such as methylene chloride and trichloroethane; Esters such as ethyl acetate and butyl acetate; Ketones such as acetone and methyl ethyl ketone; Aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran; Alicyclic ethers and the like Ethers: Examples include tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes), and the like.
  • the solvent is selected according to purposes such as the solubility of polysilazane and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more.
  • the concentration of polysilazane in the coating solution for forming the layer (B) is not particularly limited and varies depending on the layer thickness and the pot life of the coating solution, but is preferably 1 to 80% by mass, more preferably 5 to 50% by mass. More preferably, it is 10 to 40% by mass.
  • the coating liquid for forming the layer (B) preferably contains a catalyst in order to promote reforming.
  • a basic catalyst is preferable, and in particular, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, Amine catalysts such as N ′, N′-tetramethyl-1,3-diaminopropane, N, N, N ′, N′-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, propion Examples thereof include metal catalysts such as Pd compounds such as acid Pd, Rh compounds such as Rh acetylacetonate, and N-heterocyclic compounds.
  • the concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, based on the coating solution for forming the layer (B).
  • concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, based on the coating solution for forming the layer (B).
  • the following additives can be used as necessary.
  • cellulose ethers, cellulose esters for example, ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate, etc.
  • natural resins for example, rubber, rosin resin, etc., synthetic resins
  • Aminoplasts particularly urea resins, melamine formaldehyde resins, alkyd resins, acrylic resins, polyester resins or modified polyester resins, epoxy resins, polyisocyanates or blocked polyisocyanates, polysiloxanes, and the like.
  • Method of applying the layer (B) forming coating solution As a method of applying the layer (B) forming coating solution, a conventionally known appropriate wet coating method may be employed. Specific examples include spin coating method, roll coating method, flow coating method, ink jet method, spray coating method, printing method, dip coating method, casting film forming method, bar coating method, die coating method, gravure printing method and the like. It is done.
  • the coating thickness can be appropriately set according to the preferred thickness and purpose.
  • the coating film After applying the coating solution, it is preferable to dry the coating film.
  • the organic solvent contained in the coating film can be removed. At this time, all of the organic solvent contained in the coating film may be dried or may be partially left. Even when a part of the organic solvent is left, a suitable layer (B) can be obtained. The remaining solvent can be removed later.
  • the drying temperature of the coating film varies depending on the substrate to be applied, but is preferably 50 to 200 ° C.
  • the drying temperature is preferably set to 150 ° C. or lower in consideration of deformation of the base material due to heat.
  • the temperature can be set by using a hot plate, oven, furnace or the like.
  • the drying time is preferably set to a short time. For example, when the drying temperature is 150 ° C., the drying time is preferably set within 30 minutes.
  • the drying atmosphere may be any condition such as an air atmosphere, a nitrogen atmosphere, an argon atmosphere, a vacuum atmosphere, or a reduced pressure atmosphere with a controlled oxygen concentration.
  • the coating film obtained by applying the coating solution for forming the layer (B) may include a step of removing moisture before irradiation with vacuum ultraviolet rays or during irradiation with vacuum ultraviolet rays.
  • a method for removing moisture a form of dehumidification while maintaining a low humidity environment is preferable. Since humidity in a low-humidity environment varies depending on temperature, a preferable form is shown for the relationship between temperature and humidity by defining the dew point temperature.
  • the preferred dew point temperature is 4 ° C. or less (temperature 25 ° C./humidity 25% RH), the more preferred dew point temperature is ⁇ 5 ° C.
  • the dew point temperature is ⁇ 5 ° C. or lower and the maintaining time is 1 minute or longer.
  • the lower limit of the dew point temperature is not particularly limited, but is usually ⁇ 50 ° C. or higher, and preferably ⁇ 40 ° C. or higher. From the viewpoint of promoting the dehydration reaction of the layer (B) converted to silanol by removing moisture before irradiation with vacuum ultraviolet rays (modification treatment) or during irradiation with vacuum ultraviolet rays (modification treatment). .
  • the coating film formed as described above is irradiated with vacuum ultraviolet rays to perform conversion reaction of polysilazane to silicon oxynitride or the like, and the layer (B) constituting the gas barrier layer exhibits gas barrier properties. Modification to a possible inorganic thin film is performed.
  • Vacuum ultraviolet irradiation can be adapted to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate used.
  • it can be processed in an ultraviolet baking furnace equipped with a vacuum ultraviolet ray generation source.
  • the ultraviolet baking furnace itself is generally known.
  • an ultraviolet baking furnace manufactured by I-Graphics Co., Ltd. can be used.
  • the object is a long film, it can be converted into ceramics by continuously irradiating it with vacuum ultraviolet rays in a drying zone equipped with a vacuum ultraviolet ray generation source as described above while being conveyed.
  • the time required for the vacuum ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the composition and concentration of the base material and layer (B) used.
  • the modification by vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy with a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the polysilazane compound, and bonds the atoms only to photons called photon processes.
  • the oxidation reaction with active oxygen or ozone proceeds while cutting directly, thereby forming the layer (B) (inorganic thin film containing silicon oxynitride) at a relatively low temperature (about 200 ° C. or less). Is the method.
  • the vacuum ultraviolet ray source in the present invention may be any source that generates light having a wavelength of 100 to 200 nm, preferably 100 to 180 nm, but is preferably an excimer radiator having a maximum emission at about 172 nm (for example, a Xe excimer lamp). ), Low pressure mercury vapor lamps having an emission line at about 185 nm, and medium and high pressure mercury vapor lamps having a wavelength component of 230 nm or less, and excimer lamps having a maximum emission at about 222 nm.
  • the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.
  • the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds. Due to the high energy possessed by the active oxygen, ozone and ultraviolet radiation, the polysilazane coating can be modified in a short time.
  • ⁇ Excimer lamps have high light generation efficiency and can be lit with low power.
  • light having a long wavelength that causes a temperature increase due to light is not emitted, and energy is irradiated in the ultraviolet region, that is, in a short wavelength, so that the increase in the surface temperature of the irradiation object is suppressed.
  • it is suitable for flexible film materials such as PET that are easily affected by heat.
  • Oxygen is required for the reaction at the time of vacuum ultraviolet irradiation, but since vacuum ultraviolet rays are absorbed by oxygen, the efficiency in the ultraviolet irradiation process tends to decrease.
  • it is preferably performed in a state where the water vapor concentration is low. That is, the oxygen concentration at the time of irradiation with vacuum ultraviolet rays is preferably 10 to 20,000 volume ppm (0.001 to 2 volume%), and preferably 50 to 10,000 volume ppm (0.005 to 1 volume%). More preferably.
  • the water vapor concentration at the time of vacuum ultraviolet irradiation (during the conversion process) is preferably in the range of 1000 to 4000 ppm by volume.
  • the gas satisfying the irradiation atmosphere used at the time of irradiation with vacuum ultraviolet rays is preferably a dry inert gas, and particularly preferably dry nitrogen gas from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rates of oxygen gas and inert gas introduced into the irradiation chamber (irradiation device) and changing the flow rate ratio.
  • the illuminance of the vacuum ultraviolet light on the coating surface received by the polysilazane coating is preferably 1 mW / cm 2 to 10 W / cm 2 , more preferably 30 mW / cm 2 to 200 mW / cm 2. preferably, further preferably at 50mW / cm 2 ⁇ 160mW / cm 2. If it is 1 mW / cm 2 or more, the reforming efficiency is improved, and if it is 10 W / cm 2 or less, ablation that can occur in the coating film and damage to the substrate can be reduced.
  • the irradiation energy amount (irradiation amount) of vacuum ultraviolet rays on the surface of the coating film is 1 J / cm 2 or more.
  • the irradiation energy amount is 1 J / cm 2 or more, the storage stability of the gas barrier property of the layer (B) is improved, and sufficient gas barrier property in storage under high temperature and high humidity conditions can be expressed.
  • the irradiation energy amount is preferably 1.5 J / cm 2 or more from the viewpoint of manufacturing stability (characteristics in which the gas barrier performance does not decrease or is small even in the storage environment after forming the layer (B)). , more preferably 2.0 J / cm 2 or more, more preferably 2.5 J / cm 2 or more, 4.0 J / cm 2 or more is particularly preferable.
  • the upper limit value of the irradiation energy amount is not particularly limited, but is preferably 10 J / cm 2 or less, and more preferably 8 J / cm 2 or less. If it is this range, generation
  • the vacuum ultraviolet ray used may be generated by plasma formed of a gas containing at least one of CO, CO 2 and CH 4 .
  • the gas containing at least one of CO, CO 2 and CH 4 hereinafter also referred to as carbon-containing gas
  • the carbon-containing gas may be used alone, but carbon containing rare gas or H 2 as the main gas. It is preferable to add a small amount of the contained gas. Examples of plasma generation methods include capacitively coupled plasma.
  • the adhesive layer 15 according to the present invention is located on the uppermost layer of the sealing film 10 by being disposed on the gas barrier layer 14, and bonds the sealing film 10 and the functional element (element-side substrate provided with the element). (See FIGS. 1 and 2).
  • the adhesive including the pressure-sensitive adhesive
  • a known adhesive such as an ultraviolet (UV) curable resin or a thermosetting resin
  • thermosetting resins that are excellent in terms of humidity resistance are preferable.
  • an adhesive including a pressure-sensitive adhesive
  • the adhesive layer according to the present invention contains a homopolymer resin or a copolymer resin containing at least one selected from the group consisting of isoprene, isobutene, and butadiene as a polymerization component in order to improve moisture resistance.
  • adhesives such as thermosetting resins (for example, epoxy resins) are excellent in terms of humidity resistance, but it is necessary to make them harder to improve humidity resistance, and the viewpoint of improving flexibility From that, it is preferable to contain a resin having the above isoprene or the like, which has adhesiveness in addition to flexibility, and excellent moisture permeability, as a polymerization component.
  • the adhesive layer may contain a hygroscopic metal oxide, an ionic liquid, an inorganic filler, a curing accelerator, and the like from the viewpoint of moisture permeability resistance.
  • the homopolymer resin or copolymer resin having at least one selected from the group consisting of isoprene, isobutene, and butadiene as a polymerization component is from the group consisting of isoprene, isobutene and butadiene. It is a polymer mainly composed of at least one selected.
  • Polymers mainly composed of at least one selected from the group consisting of isoprene, isobutene, and butadiene include polyisoprene resin (IR), polyisobutene resin, and polybutadiene resin (BR) that are respective homopolymers. There are copolymers (eg, polyisobutene-isoprene copolymer (IIR)).
  • a copolymer comprising at least one selected from the group consisting of isoprene, isobutene, and butadiene and other monomer components may be used.
  • monomer components other than those selected from the group consisting of isoprene, isobutene, and butadiene include styrene, ethylene, propylene, acrylonitrile, vinyl chloride, vinyl bromide, hydrogenated styrene, pentadiene, cyclopentadiene, and dicyclopentadiene. Etc., and one or more of these can be used.
  • copolymer comprising at least one member selected from the group consisting of isoprene, isobutene, and butadiene and other monomer components
  • examples of the copolymer comprising at least one member selected from the group consisting of isoprene, isobutene, and butadiene and other monomer components include, for example, polystyrene-butadiene copolymer (SBR) and polybutadiene-acrylonitrile copolymer ( NBR).
  • SBR polystyrene-butadiene copolymer
  • NBR polybutadiene-acrylonitrile copolymer
  • the proportion of at least one selected from the group consisting of isoprene, isobutene, and butadiene in the copolymer is preferably 50% by mass or more of the whole polymer, more preferably 60% by mass or more, and still more preferably 80% by mass. Above, especially preferably 90% by mass or more.
  • the polymer mainly composed of at least one selected from the group consisting of isoprene, isobutene and butadiene is preferably a polymer mainly composed of isobutene.
  • Polymers mainly composed of at least one selected from the group consisting of isoprene, isobutene and butadiene are commercially available products such as Opanol B12, B15, B50, B80, B100, B120, B150, B220 (manufactured by BASF), JSR.
  • Butyl 065, 268, 365 (manufactured by JSR), Vistanex LM-MS, MH, H, MML-80, 100, 120, 140 (manufactured by Exxon Chemical), HYCAR (manufactured by Goodrich), SIBSTAR T102 ( Kaneka Co., Ltd.), Tetrax 3T (manufactured by Nippon Oil Corporation), Claprene LIR-50 (manufactured by Kuraray Co., Ltd.), and the like. These may be used alone or in combination of two or more.
  • the viscosity average molecular weight of a polymer mainly composed of at least one selected from the group consisting of isoprene, isobutene and butadiene has a range suitable for exhibiting the effects of the present invention, and the upper limit is 1,200,000.
  • the following is preferable, 1,100,000 or less is more preferable, and 1,000,000 or less is still more preferable.
  • the lower limit is preferably 100,000 or more, more preferably 200,000 or more, and still more preferably 300,000 or more.
  • the viscosity average molecular weight in this invention is calculated
  • the homopolymer resin or copolymer resin containing at least one selected from the group consisting of isoprene, isobutene, and butadiene of the present invention as a polymerization component further has a functional group capable of reacting with an epoxy group, isoprene, isobutene.
  • a homopolymer resin or a copolymer resin containing at least one selected from the group consisting of butadiene and butadiene as a polymerization component may be contained.
  • resins such as terpene resins, modified terpene resins (hydrogenated terpene resins, terpene phenol copolymer resins, aromatic modified terpene resins, etc.), coumarone resins, indene resins, petroleum resins (aliphatic petroleum resins, hydrogenated)
  • a resin such as alicyclic petroleum resin, aromatic petroleum resin, aliphatic aromatic copolymer petroleum resin, alicyclic petroleum resin, dicyclopentadiene petroleum resin and hydride thereof
  • commercially available products may be used.
  • terpene resins examples include YS resin PX and YS resin PXN (both manufactured by Yasuhara Chemical Co., Ltd.), and examples of aromatic modified terpene resins include YS resin TO and TR series (any Are Yasuhara Chemical Co., Ltd.), and hydrogenated terpene resins include Clearon P, Clearon M, Clearon K series (all manufactured by Yasuhara Chemical Co., Ltd.), and terpene phenol copolymer resins are YS Polystar 2000, Polystar U.
  • the functional group capable of reacting with the epoxy group is preferably one having a polar group, such as an acid anhydride group [—C (O) —O—C (O) —], a carboxy group, an epoxy group, an amino group. Hydroxy group, mercapto group, sulfide group, isocyanate group, blocked isocyanate group, oxazoline group, oxetane group, cyanate group, phenol group [-Ph-OH], hydrazide group, amide group, imidazole group, etc. Any one type or two or more types may be used. An acid anhydride group is preferred as the functional group capable of reacting with the epoxy group.
  • the homopolymer resin or copolymer resin having at least one selected from the group consisting of isoprene, isobutene, and butadiene having a functional group capable of reacting with an epoxy group as a polymerization component include maleic anhydride-modified Polyisobutene, phthalic anhydride modified polyisobutene, mercapto group modified polyisobutene, maleic anhydride modified polyisoprene, epoxy modified polyisoprene, hydroxy group modified polyisoprene, allyl modified polyisoprene, maleic anhydride modified polybutadiene, epoxy modified polybutadiene, hydroxy group modified polybutadiene Among them, maleic anhydride-modified polyisobutene, maleic anhydride-modified polyisoprene, and maleic anhydride-modified polybutadiene are preferable. These may be used alone or in combination of two or more.
  • the number average molecular weight of the homopolymer resin or copolymer resin containing at least one selected from the group consisting of isoprene, isobutene, and butadiene having a functional group capable of reacting with an epoxy group as a polymerization component is the effect of the present invention.
  • the upper limit is preferably 100,000 or less, more preferably 50,000 or less, and the lower limit is preferably 300 or more, more preferably 700 or more.
  • the number average molecular weight in this invention is measured by the gel permeation chromatography (GPC) method (polystyrene conversion).
  • GPC gel permeation chromatography
  • the number average molecular weight by the GPC method is LC-9A / RID-6A manufactured by Shimadzu Corporation as a measuring device, and Shodex K-800P / K-804L / K-804L manufactured by Showa Denko KK as a column. Measured at a column temperature of 40 ° C. using chloroform or the like as a mobile phase, and can be calculated using a standard polystyrene calibration curve.
  • the content of the homopolymer resin or copolymer resin containing at least one selected from the group consisting of isoprene, isobutene, and butadiene having a functional group capable of reacting with an epoxy group as a polymerization component is the nonvolatile content in the adhesive layer.
  • the upper limit is preferably 50% by mass or less, more preferably 10% by mass or less, and the lower limit is preferably 0.1% by mass or more, and more preferably 3% by mass or more with respect to 100% by mass.
  • UV curable resin is a resin that is cured through a crosslinking reaction or the like by ultraviolet irradiation, and a component containing a monomer having an ethylenically unsaturated double bond is preferably used.
  • various UV curable resins such as acrylic urethane resin, polyester acrylate resin, epoxy acrylate resin, polyol acrylate resin and the like can be mentioned.
  • an adhesive resin composition containing an ultraviolet curable resin
  • an acrylic or acrylic urethane UV curable resin is a main component.
  • Acrylic urethane resins generally include 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter referred to as acrylates including methacrylates) in addition to products obtained by reacting polyester polyols with isocyanate monomers or prepolymers. Can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate.
  • acrylates including methacrylates can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate.
  • those described in JP-A-59-151110 can be used.
  • a mixture of 100 parts of Unidic 17-806 (Dainippon Ink Co., Ltd.) and 1 part of Coronate (registered trademark) L (Nihon Polyurethane Co., Ltd.) is preferably used.
  • UV curable polyester acrylate resins include those that are easily formed by reacting polyester polyols with 2-hydroxyethyl acrylate and 2-hydroxy acrylate monomers, generally as disclosed in JP-A-59-151112. Can be used.
  • ultraviolet curable epoxy acrylate resin examples include those produced by reacting epoxy acrylate with an oligomer, a reactive diluent and a photoinitiator added thereto, and reacting them. Those described in US Pat. No. 105738 can be used.
  • UV curable polyol acrylate resins include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, alkyl-modified dipentaerythritol pentaacrylate, etc. Can be mentioned.
  • the resin monomer for example, as a monomer having one unsaturated double bond, methyl acrylate, ethyl acrylate, butyl acrylate, benzyl acrylate, cyclohexyl acrylate, vinyl acetate, Common monomers such as styrene can be listed.
  • Monomers having two or more unsaturated double bonds include ethylene glycol diacrylate, propylene glycol diacrylate, divinylbenzene, 1,4-cyclohexane diacrylate, 1,4-cyclohexyldimethyl adiacrylate, and the above-mentioned trimethylolpropane. Examples thereof include triacrylate and pentaerythritol tetraacryl ester.
  • An acrylic ultraviolet curable resin selected from 1,2,3-cyclohexanetetra (meth) acrylate, polyurethane poly (meth) acrylate, and polyester poly (meth) acrylate is preferred.
  • the photoinitiator of these ultraviolet curable resins include benzoin and its derivatives, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone, and derivatives thereof. You may use with a photosensitizer.
  • the photoinitiator can also be used as a photosensitizer.
  • a sensitizer such as n-butylamine, triethylamine, or tri-n-butylphosphine can be used.
  • the photoreaction initiator or photosensitizer used in the resin composition containing an ultraviolet curable resin is 0.1 to 15 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the composition. .
  • the functional element sealed with the sealing film can be obtained by bonding (bonding) the sealing film and the functional element body and irradiating ultraviolet rays or the like to cure the adhesive.
  • the bonding method is not particularly limited and can be performed by a sheet press, a roll press or the like, but is preferably performed using a roll press machine.
  • the roll press is a method in which a film to be bonded is sandwiched between the rolls, and the rolls are rotated.
  • the roll press is uniformly applied with pressure, and has a higher productivity than the sheet press and can be used preferably.
  • thermosetting resin there are no particular restrictions on the thermosetting resin, and specific examples include various thermosetting resins such as epoxy resins, cyanate ester resins, phenol resins, bismaleimide-triazine resins, polyimide resins, acrylic resins, and vinylbenzyl resins. Can be mentioned. Among these, an epoxy resin is preferable from the viewpoint of low-temperature curability and adhesiveness.
  • the epoxy resin has only to have two or more epoxy groups per molecule on average, and specifically, a bisphenol A type epoxy resin (for example, liquid bisphenol A type epoxy resin: manufactured by Japan Epoxy Resin Co., Ltd.) “828EL”), biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin (for example, “NC3000” manufactured by Nippon Kayaku Co., Ltd.), naphthol type epoxy resin, naphthalene type epoxy resin, bisphenol F type epoxy resin, phosphorus containing epoxy resin, bisphenol S-type epoxy resin, aromatic glycidylamine-type epoxy resin (specifically, tetraglycidyldiaminodiphenylmethane, triglycidyl-p-aminophenol, diglycidyltoluidine, diglycidylaniline, etc., for example, orthotoluidine jig Sidylamine: Nippon Kayaku Co., Ltd.
  • a bisphenol A type epoxy resin
  • GATE alicyclic epoxy resin, aliphatic chain epoxy resin, phenol novolac epoxy resin, cresol novolac epoxy resin, bisphenol A novolac epoxy resin, epoxy resin having butadiene structure , Phenol aralkyl type epoxy resins, epoxy resins having a dicyclopentadiene structure, diglycidyl etherified products of bisphenol, diglycidyl etherified products of naphthalenediol, glycidyl etherified products of phenols, and diglycidyl etherified products of alcohols, and these Examples include alkyl-substituted products, halides, and hydrogenated products of epoxy resins. These may be used alone or in combination of two or more.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, phenol novolac type epoxy resin, biphenyl aralkyl type epoxy resin from the viewpoint of maintaining high heat resistance and low moisture permeability of the resin composition constituting the adhesive layer.
  • Phenol aralkyl type epoxy resins aromatic glycidyl amine type epoxy resins, epoxy resins having a dicyclopentadiene structure, and the like are preferable.
  • the epoxy resin may be liquid, solid, or both liquid and solid.
  • “liquid” and “solid” are states of the epoxy resin at 25 ° C. From the viewpoints of coatability, processability, adhesiveness, and the like, it is preferable that 10% by mass or more of the entire epoxy resin to be used is liquid.
  • the epoxy resin preferably has an epoxy equivalent in the range of 100 to 1000, more preferably in the range of 120 to 1000, from the viewpoint of reactivity.
  • the epoxy equivalent is the gram number (g / eq) of a resin containing 1 gram equivalent of an epoxy group, and is measured according to the method defined in JIS K-7236: 2009.
  • the curing agent for the epoxy resin is not particularly limited as long as it has a function of curing the epoxy resin, but from the viewpoint of suppressing thermal deterioration of the element (particularly the organic EL element) during the curing treatment of the resin composition.
  • the curing treatment of the composition is preferably performed at 140 ° C. or lower, more preferably 120 ° C. or lower, and the curing agent preferably has an epoxy resin curing action in such a temperature range.
  • amine adduct-based compounds Amicure PN-23, Amicure MY-24, Amicure PN-D, Amicure MY-D, Amicure PN-H, Amicure MY-H, Amicure PN-31, Amicure PN-40, Amicure PN-40J (solid dispersion type curing agent) Etc.
  • organic acid dihydrazide (both manufactured by Ajinomoto Fine Techno Co., Ltd.)
  • organic acid dihydrazide (Amicure VDH-J (solid dispersion type curing agent), Amicure UDH, Amicure LDH (all manufactured by Ajinomoto Fine Techno Co., Ltd.)) and the like are preferable. These may be used alone or in combination of two or more.
  • the adhesive layer has a homopolymer resin or a copolymer having at least one selected from the group consisting of isoprene, isobutene, and butadiene having a functional group capable of reacting with the above epoxy resin and the above-described epoxy group as a polymerization component. It is preferable to contain a polymerization resin.
  • the adhesive layer of the present invention can contain a thermoplastic resin from the viewpoint of imparting flexibility to the cured product.
  • the thermoplastic resin include phenoxy resin, polyvinyl acetal resin, polyimide resin, polyamideimide resin, polyethersulfone resin, and polysulfone resin. Any one of these thermoplastic resins may be used, or two or more thereof may be mixed and used.
  • the thermoplastic resin preferably has a weight average molecular weight of 30,000 or more, more preferably 50,000 or more, from the viewpoint of imparting flexibility. However, if the weight average molecular weight is too large, the compatibility with the epoxy resin tends to be reduced. Therefore, the weight average molecular weight is preferably 1,000,000 or less, more preferably 800,000 or less. .
  • the weight average molecular weight of a thermoplastic resin here is measured by a gel permeation chromatography (GPC) method (polystyrene conversion).
  • GPC gel permeation chromatography
  • the weight average molecular weight by the GPC method is LC-9A / RID-6A manufactured by Shimadzu Corporation as a measuring device, and Shodex K-800P / K-804L / K- manufactured by Showa Denko KK as a column.
  • 804 L can be measured at a column temperature of 40 ° C. using chloroform or the like as a mobile phase, and can be calculated using a standard polystyrene calibration curve.
  • the phenoxy resin is particularly preferable as the thermoplastic resin.
  • the phenoxy resin include bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenol acetophenone skeleton, novolac skeleton, biphenyl skeleton, fluorene skeleton, dicyclopentadiene skeleton, norbornene skeleton, naphthalene skeleton, anthracene skeleton, adamantane skeleton, terpene skeleton, Examples thereof include those having one or more skeletons selected from a trimethylcyclohexane skeleton. Two or more phenoxy resins may be mixed and used.
  • phenoxy resins examples include 1256, 4250 (bisphenol A skeleton-containing phenoxy resin) manufactured by Japan Epoxy Resin Co., Ltd., YX8100 (bisphenol S skeleton-containing phenoxy resin) manufactured by Japan Epoxy Resin Co., Ltd., Japan Epoxy Resin ( YX6954 (bisphenol acetophenone skeleton-containing phenoxy resin), Union Carbide PKHH (weight average molecular weight (Mw) 42600, number average molecular weight (Mn) 11200) and the like are suitable, and FX280, FX293 manufactured by Toto Kasei Co., Ltd. YL7553BH30, YL6794, YL7213, YL7290, YL7482 etc. manufactured by Japan Epoxy Resins Co., Ltd. can also be mentioned.
  • the content of the thermoplastic resin is preferably 1 to 50% by mass, preferably 3 to 25% by mass with respect to 100% by mass of the nonvolatile content in the resin composition. More preferred. If it is 1 mass% or more, the effect by mix
  • the adhesive layer according to the present invention preferably contains a hygroscopic metal oxide from the viewpoint of adjusting moisture permeability.
  • the “hygroscopic metal oxide” as used in the present invention is a metal oxide that has the ability to absorb moisture and chemically reacts with moisture that has been absorbed to become a hydroxide.
  • calcium oxide Magnesium oxide, strontium oxide, aluminum oxide and barium oxide, or a mixture or solid solution of two or more metal oxides selected from these.
  • a mixture or solid solution of two or more metal oxides specifically, calcined dolomite (a mixture containing calcium oxide and magnesium oxide), calcined hydrotalcite (solid solution of calcium oxide and aluminum oxide) ) And the like.
  • a hygroscopic metal oxide is known as a hygroscopic material in various technical fields, and a commercially available product can be used.
  • calcined dolomite such as “KT” manufactured by Yoshizawa Lime Company
  • calcium oxide such as “Moystop # 10” manufactured by Sankyo Flour Mills
  • magnesium oxide (“Kyowa Mag (registered trademark) MF-” manufactured by Kyowa Chemical Industry Co., Ltd.) 150 ”,“ Kyowa Mag (registered trademark) MF-30 ”,“ Pure Mag (registered trademark) FNMG ”manufactured by Tateho Chemical Industry Co., Ltd., etc.), light-burned magnesium oxide (“ # 500 ”,“ # 1000 ”manufactured by Tateho Chemical Industry Co., Ltd.) , “# 5000” and the like.
  • the average particle diameter of the hygroscopic metal oxide is not particularly limited, but is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 1 ⁇ m or less.
  • the hygroscopic metal oxide may be a surface treated with a higher fatty acid such as stearic acid, or a surface treatment agent such as a known alkylsilane or silane coupling agent. By performing such surface treatment, it is possible to prevent the moisture in the resin from reacting with the hygroscopic metal oxide.
  • the content of the hygroscopic metal oxide in the adhesive layer is preferably in the range of 1 to 40% by mass with respect to 100% by mass of the nonvolatile content in the resin composition constituting the adhesive layer.
  • the ionic liquid in the present invention is an additive having a function as a curing agent for a thermoplastic resin.
  • the ionic liquid is a salt that can be melted in a temperature range of 140 ° C. or lower (preferably 120 ° C. or lower).
  • a salt having a curing action of the epoxy resin which is the thermosetting resin described above, is particularly preferably used, which advantageously works to improve the moisture resistance of the cured adhesive layer.
  • the ionic liquid is preferably used in a state where the ionic liquid is uniformly dissolved in the epoxy resin.
  • Examples of cations constituting such an ionic liquid include imidazolium ions, pyrimidinium ions, pyridinium ions, pyrrolidinium ions, piperidinium ions, pyrazonium ions, guanidinium ions and other ammonium cations; tetraalkylphosphonium cations (for example, Phosphonium cations such as tetrabutylphosphonium ion and tributylhexylphosphonium ion; sulfonium cations such as triethylsulfonium ion and the like.
  • ammonium cation examples include, for example, 1,3-dimethylimidazolium cation, 1,3-diethylimidazolium cation, 1-ethyl-3-methylimidazolium cation, 1-propyl-3-methylimidazolium ion.
  • the cation is preferably an ammonium cation or a phosphonium cation, and more preferably an imidazolium ion or a phosphonium ion.
  • anion constituting the ionic liquid examples include halide anions such as fluoride ion, chloride ion, bromide ion and iodide ion; alkyl sulfate anions such as methanesulfonate ion; trifluoromethanesulfonate ion, Fluorine-containing compound anions such as hexafluorophosphonate ion, trifluorotris (pentafluoroethyl) phosphonate ion, bis (trifluoromethanesulfonyl) imide ion, trifluoroacetate ion, tetrafluoroborate ion; phenol ion, 2-methoxy Phenolic anions such as phenol ion and 2,6-di-tert-butylphenol ion; acidic amino acid ions such as aspartate ion and glutamate ion; glycine ion, alan
  • R—CO— is an acyl group derived from a linear or branched fatty acid having 1 to 5 carbon atoms, or a substituted or unsubstituted benzoyl group
  • —NH— CHX—CO 2 — is an acidic amino acid ion such as aspartic acid or glutamic acid, or a neutral amino acid ion such as glycine, alanine or phenylalanine.
  • the anion is preferably an N-acylamino acid ion represented by the general formula (1) or a carboxylic acid anion.
  • carboxylate anion examples include acetate ion, decanoate ion, 2-pyrrolidone-5-carboxylate ion, formate ion, ⁇ -lipoic acid ion, lactate ion, tartaric acid ion, hippuric acid ion, and N-methyl horse.
  • Uric acid ions and the like are mentioned.
  • acetate ion, 2-pyrrolidone-5-carboxylate ion, formate ion, lactate ion, tartrate ion, hippurate ion, N-methyl hippurate ion are preferable
  • acetate ion, N-methyl Hippurate ion and formate ion are more preferable.
  • N-acylamino acid ion represented by the general formula (1) examples include N-benzoylalanine ion, N-acetylphenylalanine ion, aspartate ion, glycine ion, N-acetylglycine ion, and the like. Of these, N-benzoylalanine ion, N-acetylphenylalanine ion, and N-acetylglycine ion are preferable, and N-acetylglycine ion is more preferable.
  • Specific ionic liquids include, for example, 1-butyl-3-methylimidazolium lactate, tetrabutylphosphonium-2-pyrrolidone-5-carboxylate, tetrabutylphosphonium acetate, tetrabutylphosphonium decanoate, tetrabutylphosphonium tri Fluoroacetate, tetrabutylphosphonium ⁇ -lipoate, tetrabutylphosphonium formate, tetrabutylphosphonium lactate, bis (tetrabutylphosphonium) tartrate, tetrabutylphosphonium hippurate, tetrabutylphosphonium N-methylhippurate, benzoyl-DL -Alanine tetrabutylphosphonium salt, N-acetylphenylalanine tetrabutylphosphonium salt, 2,6-di-tert-butylphenoltetrabutylphospho Um salt,
  • a precursor composed of a cation moiety such as an alkylimidazolium, alkylpyridinium, alkylammonium and alkylsulfonium ions and an anion moiety containing a halogen is added to NaBF 4 , NaPF 6 , CF 3 SO 3
  • the content of the ionic liquid used in the present invention is preferably in the range of 0.1 to 50% by mass with respect to the total amount (nonvolatile content) of the resin composition including the thermosetting resin constituting the adhesive layer, and preferably 0.5 to The range of 25% by mass is more preferable. Within this range, the storage stability of the adhesive layer is not impaired.
  • the resin composition constituting the adhesive layer can further contain a flat inorganic filler having a particle form such as talc, clay, mica, boehmite, etc., and the moisture resistance of the adhesive layer can be further enhanced. .
  • the resin composition constituting the adhesive layer can further contain rubber particles.
  • the rubber particles By including the rubber particles, the mechanical strength of the adhesive layer can be improved, stress can be relieved, and the like.
  • core-shell type rubber particles are preferably used. Specific examples include staphyloid AC3832, AC3816N (manufactured by Aika Kogyo Co., Ltd.), methabrene KW-4426 (manufactured by Mitsubishi Rayon Co., Ltd.), F351 (Nippon Zeon Corporation). Manufactured) and the like.
  • Specific examples of acrylonitrile butadiene rubber (NBR) particles include XER-91 (manufactured by JSR).
  • SBR styrene butadiene rubber
  • acrylic rubber particles include Methbrene W300A and W450A (manufactured by Mitsubishi Rayon Co., Ltd.).
  • the resin composition constituting the adhesive layer according to the present invention may further contain a curing accelerator for adjusting the curing temperature, the curing time, and the like.
  • a curing accelerator for adjusting the curing temperature, the curing time, and the like.
  • the curing accelerator include quaternary ammonium salts such as tetramethylammonium bromide and tetrabutylammonium bromide, quaternary sulfonium salts such as tetraphenylphosphonium bromide and tetrabutylphosphonium bromide, DBU (1,8-diazabicyclo (5.4.0).
  • the content is in the range of 0.01 to 7% by mass with respect to the total amount of the resin composition including the thermosetting resin constituting the adhesive layer.
  • the adhesive layer according to the present invention is preferably formed by preparing a resin liquid in which the resin composition constituting the adhesive layer is dissolved, and applying and drying on the above-described gas barrier layer.
  • the adhesive layer is preferably formed by applying and drying a resin liquid containing a homopolymer resin or a copolymer resin containing at least one of isoprene, isobutene or butadiene as a polymerization component on the gas barrier layer.
  • a resin constituting the adhesive layer on the peelable separator film An adhesive layer formed by applying and drying a resin solution in which the composition is dissolved may be bonded to the gas barrier layer.
  • organic solvent used for preparing the resin liquid examples include acetone, methyl ethyl ketone (hereinafter also abbreviated as “MEK”), ketones such as cyclohexanone, ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether.
  • ketones such as cyclohexanone, ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether.
  • examples thereof include acetates such as acetate and carbitol acetate, carbitols such as cellosolve and butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, and N-methylpyrrolidone.
  • an aromatic mixed solvent that is a combination of two or more aromatic hydrocarbons: Ipsol 150 (manufactured by Idemitsu Kosan Co
  • any appropriate method can be adopted as a coating method.
  • a coating method includes a roller coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
  • the drying conditions are not particularly limited, but 3 to 15 minutes at 50 to 100 ° C. is preferable.
  • the thickness of the adhesive layer according to the present invention is not particularly limited, but from the viewpoint of blocking moisture by sufficiently filling the unevenness on the element substrate and further reducing the contact area with the outside air.
  • the range of 100 ⁇ m is preferable, but from the viewpoint of imparting further flexibility, the range of 1 to 50 ⁇ m is more preferable, and the range of 1 to 5 ⁇ m is more preferable.
  • a separator film that can be peeled off from the adhesive layer as a protective film on the sealing film of the present invention so that the adhesive layer does not unnecessarily contact other portions.
  • a known film such as a PET (polyethylene terephthalate) film can be used.
  • the flexible substrate according to the present invention include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, and polyamide resin.
  • substrates containing thermoplastic resins such as ring-modified polycarbonate resins, alicyclic modified polycarbonate resins, fluorene ring-modified polyester resins, and acryloyl compounds. These flexible substrates can be used singly or in combination of two or more.
  • the flexible substrate is made of a heat-resistant material.
  • a base material made of a heat-resistant material having a linear expansion coefficient of 15 ppm / K or more and 100 ppm / K or less and a glass transition temperature (Tg) of 100 ° C. or more and 300 ° C. or less is used.
  • a sealing film may be exposed to the process of 150 degreeC or more.
  • the linear expansion coefficient of the base material in the sealing film is 100 ppm / K or less, the base material dimensions are stabilized even when the sealing film is passed through the temperature process as described above, and thermal expansion and contraction are caused. Accordingly, it is possible to effectively prevent the shut-off performance from being deteriorated, and it is excellent in that it can sufficiently withstand a heat process at 150 ° C. or higher. If it is 15 ppm / K or more, the sealing film is not broken like glass, and high flexibility can be maintained.
  • the Tg and linear expansion coefficient of the flexible base material can be adjusted with an additive or the like. More preferable specific examples of the thermoplastic resin that can be used as the base material include, for example, polyethylene terephthalate (PET: 70 ° C.), polyethylene naphthalate (PEN: 120 ° C.), polycarbonate (PC: 140 ° C.), and alicyclic ring.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • alicyclic ring alicyclic ring
  • Polyolefin for example, ZEONOR (registered trademark) 1600: 160 ° C) manufactured by Nippon Zeon Co., Ltd., polyarylate (PAr: 210 ° C), polyethersulfone (PES: 220 ° C), polysulfone (PSF: 190 ° C), cycloolefin Copolymer (COC: Compound described in JP-A No. 2001-150584: 162 ° C.), polyimide (for example, Neoprim (registered trademark): 260 ° C. manufactured by Mitsubishi Gas Chemical Co., Ltd.), fluorene ring-modified polycarbonate (BCF-PC: special Kai 2000-227603 Compound described in JP-A No.
  • the sealing film according to the present invention is used for a flexible functional element that can be bent or formed into a scroll shape, for example, an electronic device such as an organic EL element, an organic thin film solar cell, and the like.
  • the material is preferably transparent. That is, the light transmittance is usually 80% or more, preferably 85% or more, and more preferably 90% or more.
  • the light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS K7375: 2008, that is, using an integrating sphere light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. can do.
  • an opaque material can also be used as a flexible substrate (plastic film).
  • the opaque material include polyimide, polyacrylonitrile, and known liquid crystal polymers.
  • the flexible substrate mentioned above may be an unstretched film or a stretched film.
  • the flexible substrate can be produced by a conventionally known general method. Regarding the method for producing these base materials, the items described in paragraphs “0051” to “0055” of International Publication No. 2013/002026 can be appropriately employed.
  • the surface of the flexible substrate may be subjected to various known treatments for improving adhesion, such as corona discharge treatment, flame treatment, oxidation treatment, plasma treatment, etc. You may perform combining a process. Moreover, you may perform an easily bonding process to the base material which has flexibility.
  • the flexible substrate may be a single layer or a laminated structure of two or more layers.
  • the flexible substrates may be of the same type or different types.
  • the thickness of the flexible substrate according to the present invention (the total thickness in the case of a laminated structure of two or more layers) is preferably 10 to 200 ⁇ m, and more preferably 20 to 150 ⁇ m.
  • layers having various functions can be provided in addition to the above-described flexible substrate, gas barrier layer, and adhesive layer.
  • An anchor coat layer A flexible base material and a gas barrier layer are formed on the surface of the flexible base material on the side on which the gas barrier layer according to the present invention (layer (A) and layer (B) described above) is formed.
  • An anchor coat layer may be formed for the purpose of improving the adhesion to the layer (A) or the layer (B).
  • polyester resins As anchor coating agents used for the anchor coat layer, polyester resins, isocyanate resins, urethane resins, acrylic resins, ethylene vinyl alcohol resins, vinyl modified resins, epoxy resins, modified styrene resins, modified silicon resins, alkyl titanates, etc. are used alone Or in combination of two or more.
  • the above-mentioned anchor coating agent is coated on a support (base material having flexibility) by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, solvent, diluent, etc. It is possible to carry out anchor coating by drying and removing.
  • the application amount of the anchor coating agent is preferably about 0.1 to 5.0 g / m 2 (dry state).
  • the anchor coat layer can be formed by a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like.
  • an anchor coat layer as described in Japanese Patent Application Laid-Open No. 2004-314626, inorganic thin films (the layers (A) and (B) described above) are formed thereon by a vapor phase method.
  • the anchor coat layer can be formed for the purpose of controlling the composition of the inorganic thin film (the above-described layers (A) and (B)) by blocking the gas generated from the substrate side to some extent.
  • the thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10 ⁇ m.
  • a hard coat layer may be provided on the surface (one side or both sides) of the flexible substrate.
  • the material contained in the hard coat layer include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because it is easy to mold.
  • Such curable resins can be used singly or in combination of two or more.
  • the active energy ray-curable resin is a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays or electron beams.
  • active energy ray curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and cured by irradiating an active energy ray such as an ultraviolet ray or an electron beam to cure the active energy ray.
  • a layer containing a cured product of the functional resin, that is, a hard coat layer is formed.
  • Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is preferable.
  • a commercially available flexible base material on which a hard coat layer is formed in advance may be used.
  • the thickness of the hard coat layer is preferably 0.1 to 15 ⁇ m and more preferably 1 to 5 ⁇ m from the viewpoint of smoothness and bending resistance.
  • smooth layer In the sealing film of this invention, you may have a smooth layer between the base material which has flexibility, and a gas barrier layer (above-mentioned layer (A) and layer (B)).
  • the smooth layer used in the present invention flattens the rough surface of a flexible substrate having protrusions or the like, or the transparent inorganic compound layer (the above-described layer by protrusions existing on the flexible substrate). (B) etc.) are provided to fill and flatten the irregularities and pinholes.
  • Such a smooth layer is basically produced by curing a photosensitive material or a thermosetting material.
  • a resin composition containing an acrylate compound having a radical reactive unsaturated compound for example, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, urethane acrylate, examples thereof include a resin composition in which a polyfunctional acrylate monomer such as polyester acrylate, polyether acrylate, polyethylene glycol acrylate, or glycerol methacrylate is dissolved.
  • a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) series manufactured by JSR Corporation can be used. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.
  • thermosetting material for the smooth layer Tutprom series (Organic polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid silicone manufactured by ADEKA, manufactured by DIC Corporation Unidic (registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistant epoxy resin), various silicon resins manufactured by Shin-Etsu Chemical Co., Ltd., inorganic and organic nano manufactured by Nittobo Co., Ltd.
  • Examples include composite material SSG coat, thermosetting urethane resin composed of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, silicon resin and the like. Among these, an epoxy resin-based material having heat resistance is particularly preferable.
  • the method for forming the smooth layer is not particularly limited, but is preferably formed by a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as an evaporation method.
  • a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as an evaporation method.
  • additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described photosensitive resin as necessary.
  • an appropriate resin or additive may be used for improving the film formability and preventing the generation of pinholes in the film.
  • the thickness of the smooth layer is preferably from 1 to 10 ⁇ m, more preferably from 2 to 7 ⁇ m, from the viewpoint of improving the heat resistance of the sealing film and facilitating the balance adjustment of the optical properties of the sealing film. It is preferable to make it into a range.
  • the smoothness of the smooth layer is a value expressed by the surface roughness defined by JIS B 0601: 2001, and the 10-point average roughness Rz is preferably 10 nm or more and 30 nm or less. Within this range, even when the coating means is in contact with the surface of the smooth layer by a coating method such as a wire bar or a wireless bar when the layer (B) constituting the gas barrier layer is applied in a coating form. The applicability is hardly impaired, and it is easy to smooth the unevenness after application.
  • the sealing film of the present invention can be preferably applied to flexible elements that can be bent or formed into a scroll shape, for example, electronic devices such as organic EL elements, organic thin-film solar cells, and the like.
  • the sealing film of this invention is preferably applicable to the said flexible element with which barrier performance deteriorates with the chemical component (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air. That is, the functional element of the present invention, which is a flexible element, is sealed with the sealing film (having flexibility) of the present invention.
  • This (flexible) functional element has a configuration including the sealing film (having flexibility) of the present invention and a functional element body (substrate on which the element is mounted) sealed with the sealing film. Is.
  • Examples of the functional element body used for the functional element of the present invention which is a flexible element include, for example, an organic electroluminescence element (organic EL element), a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, and an organic thin film solar.
  • organic EL element organic electroluminescence element
  • LCD liquid crystal display element
  • PV thin film transistor
  • touch panel electronic paper
  • organic thin film solar organic thin film solar.
  • a battery (PV) etc. can be mentioned.
  • the functional element body is preferably an organic EL element or a solar cell, and more preferably an organic EL element.
  • the functional element of the present invention which is a flexible element
  • the functional element body In order to satisfy the performance required for the functional element of the present invention which is a flexible element, the functional element itself needs to be thinner and the functional element body also needs to be thinner.
  • the functional element body (element-side substrate) has a surface with irregularities of about several ⁇ m for the convenience of providing elements. For this reason, the thickness of the functional element body (element-side substrate) is the thickness of a recess (that is, a substrate) in which various elements (electronic devices) are not provided.
  • the evaluation that the functional element sealed with the sealing film of the present invention has moisture permeability resistance even after repeated bending and winding for a long period of time is based on the “evaluation of bending resistance” described in the examples.
  • the number of bendings when it is determined that it has been lost can be evaluated as a scale.
  • a method for evaluating durability against repeated bending with a radius of curvature fixed can be adopted.
  • a repeated bending test method defined in the mechanical stress test (IEC62715-6-1, Ed. 1) of the flexible display element This is a test method in which a functional element is bent in a U-shape so as to have a constant radius of curvature, and repeatedly bent by sliding both ends of the element back and forth repeatedly.
  • An example of the apparatus is a U-shaped folding tester manufactured by Yuasa System Equipment Co., Ltd.
  • Other test conditions include bending speed, but in the present invention, the test is performed at a repetition rate of 60 times per minute in consideration of the test period and the actual use site.
  • the bending resistance can be evaluated by performing the above test at a curvature radius of 2.0 mm and then leaving it in an environment of, for example, 85 ° C. and 85% RH for 24 hours and then performing a light emission test.
  • the details are as described in “Evaluation of bending resistance” in Examples.
  • the curvature radius is 2.0 mm in the embodiment, the curvature radius may be changed (for example, 3.0 mm or 4.0 mm) according to the actual usage.
  • the stage temperature for installing the sample was set to 80 ° C.
  • the clear hard coat (hard coat layer) is arranged between the base material and the gas barrier layer 1 (layer (B)).
  • the obtained varnish-like coating solution is uniformly applied on the gas barrier layer 1 obtained above by an applicator so that the thickness of the adhesive layer 1 (thermosetting resin layer) after drying is 10 ⁇ m.
  • the adhesive film 1 was formed by drying at -80 ° C. for 6 minutes to obtain the sealing film 1 of Comparative Example 1.
  • the conditions of the composition were determined by adjusting the oxygen partial pressure by film formation using a glass substrate in advance, and the conditions were found such that the composition near the depth of 1 nm from the surface layer was TaO 1.5 . By applying these conditions, a tantalum oxide film was formed with a thickness of 10 nm.
  • the coating layer prepared in the same manner as “Formation of the adhesive layer 1” of the sealing film 1 of Comparative Example 1 was dried.
  • the adhesive layer 1 is formed.
  • Film 2 was obtained.
  • a sealing film 3 of this example was obtained in the same manner as in the manufacturing of the sealing film 2 except that the thickness of the adhesive layer 1 (thermosetting resin layer) was changed to 5 ⁇ m.
  • Example 3 Manufacture of sealing film 4 >> A sealing film 4 of this example was obtained in the same manner as in the manufacturing of the sealing film 3 except that the adhesive layer was provided as described in “Formation of the adhesive layer 2” below.
  • the obtained coating solution is uniformly applied on the gas barrier layer 2 (layer (A-1)) obtained above with an applicator so that the thickness of the adhesive layer 2 (polyisobutene pressure-sensitive adhesive layer) after drying becomes 5 ⁇ m.
  • the sealing film 4 of the present Example was obtained by forming the contact bonding layer 2 by apply
  • Example 4 Manufacture of sealing film 5 >> A sealing film 5 of this example was obtained in the same manner as in the manufacture of the sealing film 4 except that the thickness of the adhesive layer 2 (polyisobutene-based pressure-sensitive adhesive layer) was changed to 2 ⁇ m.
  • the thickness of the adhesive layer 2 polyisobutene-based pressure-sensitive adhesive layer
  • Example 5 Manufacture of sealing film 6 >> A sealing film 6 of this example was obtained in the same manner as in the manufacturing of the sealing film 4 except that the gas barrier layer 2 (layer (A-1)) was changed to the following gas barrier layer 3 (layer (A-2)). It was.
  • a niobium oxide film (NbO x ) is formed as the gas barrier layer 3 (layer (A-2)) on the film having the gas barrier layer 1 (layer (B)) produced in the same manner as the production of the sealing film 1). did.
  • the condition of the composition was determined by adjusting the oxygen partial pressure by film formation using a glass substrate in advance, and the condition was found that the composition near the depth of 2 nm from the surface layer was NbO 1.5 . Applying these conditions, a niobium oxide film was formed with a thickness of 30 nm.
  • a sealing film 7 of Comparative Example 2 was obtained in the same manner as in the production of the sealing film 4 except that the gas barrier layer 2 (layer (A-1)) was changed to the following gas barrier layer 1 (layer (B)). That is, in the sealing film 7 of Comparative Example 2, two layers of the gas barrier layer 1 (layer (B)) having a thickness of 300 nm are laminated on the base material (total thickness of the layer (B): 600 nm). The adhesive layer 2 (polyisobutene pressure-sensitive adhesive layer) having a thickness of 5 ⁇ m is formed.
  • This first polysilazane coating film was subjected to a vacuum ultraviolet ray irradiation treatment of 6000 mJ / cm 2 using a Xe excimer lamp having a wavelength of 172 nm to form a first barrier layer. Further, the coating solution is formed on the first barrier layer by spin coating so that the thickness after drying becomes 300 nm, left for 2 minutes, and then heat-treated for 1 minute on an 80 ° C. hot plate, A second-layer polysilazane coating film was formed.
  • This second polysilazane coating film was subjected to a vacuum ultraviolet ray irradiation treatment of 6000 mJ / cm 2 with a Xe excimer lamp having a wavelength of 172 nm to form a second barrier layer, and the gas barrier layer 1 (layer ( B)) was formed.
  • the irradiation atmosphere was replaced with nitrogen, and the oxygen concentration was set to 0.1% by volume.
  • the stage temperature for installing the sample was set to 80 ° C.
  • the cleaning surface modification treatment of the resin substrate on which the first electrode is formed is performed using a low-pressure mercury lamp having a wavelength of 184.9 nm and an irradiation intensity of 15 mW / cm 2. The distance was 10 mm.
  • the charge removal treatment was performed using a static eliminator with weak X-rays.
  • the following hole transport layer forming coating solution is applied by a spin coater in an environment of 25 ° C. and 50% RH, and then the following: Drying and heat treatment were performed under the conditions described above to form a hole transport layer.
  • the coating solution for forming the hole transport layer was applied so that the thickness after drying was 50 nm.
  • PEDOT / PSS polystyrene sulfonate
  • Baytron P AI 4083 manufactured by Bayer
  • ⁇ Drying and heat treatment conditions After applying the hole transport layer forming coating solution, the solvent is removed at a height of 100 mm toward the film formation surface, a discharge air velocity of 1 m / s, a wide air velocity distribution of 5%, and a temperature of 100 ° C., followed by heat treatment.
  • the back surface heat transfer type heat treatment was performed at a temperature of 150 ° C. using an apparatus to form a hole transport layer.
  • the following coating solution for forming a white light emitting layer was applied with a spin coater under the following conditions, followed by drying and heat treatment under the following conditions to form a light emitting layer. .
  • the white light emitting layer forming coating solution was applied so that the thickness after drying was 40 nm.
  • ⁇ White luminescent layer forming coating solution 1.0 g of a compound represented by the following chemical formula HA as a host material, 100 mg of a compound represented by the following chemical formula DA as a luminescent dopant, and 0. 2 mg of a compound represented by the following chemical formula DC as a light-emitting dopant was dissolved in 0.2 mg and 100 g of toluene to prepare a coating solution for forming a white light-emitting layer.
  • ⁇ Application conditions> The coating process was performed in an atmosphere having a nitrogen gas concentration of 99% by volume or more, and the coating temperature was 25 ° C.
  • ⁇ Drying and heat treatment conditions> After applying the white light emitting layer forming coating solution, the solvent was removed at a height of 100 mm toward the film formation surface, a discharge wind speed of 1 m / s, a wide wind speed distribution of 5%, and a temperature of 60 ° C., and then a temperature of 130 ° C. A heat treatment was performed to form a light emitting layer.
  • the following coating liquid for forming an electron transport layer was applied with a spin coater under the following conditions, and then dried and heated under the following conditions to form an electron transport layer.
  • the coating solution for forming an electron transport layer was applied so that the thickness after drying was 30 nm.
  • the coating process was performed in an atmosphere having a nitrogen gas concentration of 99% by volume or more, and the coating temperature of the electron transport layer forming coating solution was 25 ° C.
  • the electron transport layer was prepared by dissolving a compound represented by the following chemical formula EA in 2,2,3,3-tetrafluoro-1-propanol to obtain a 0.5 mass% solution as a coating solution for forming an electron transport layer.
  • An electron injection layer was formed on the electron transport layer formed above. First, the substrate was put into a vacuum chamber and the pressure was reduced to 5 ⁇ 10 ⁇ 4 Pa. In advance, cesium fluoride prepared in a tantalum vapor deposition boat was heated in a vacuum chamber to form an electron injection layer having a thickness of 3 nm.
  • Formation of second electrode Using the aluminum as the second electrode forming material under the vacuum of 5 ⁇ 10 ⁇ 4 Pa on the portion of the electron injection layer formed above except for the portion that becomes the extraction electrode of the first electrode, the extraction is performed A mask pattern was formed by a vapor deposition method so as to have an electrode so that the light emission area was a rectangle of 40 mm ⁇ 30 mm, and a second electrode having a thickness of 100 nm was laminated to produce an electronic device.
  • the sealing film 1 produced above was cut out to 50 mm ⁇ 100 mm and used.
  • the sealing film is closely attached and arranged so as to cover the joint between the take-out electrode and the electrode lead, and pressure bonding conditions using a pressure roller are as follows: pressure roller temperature 120 ° C., pressure 0.5 MPa, apparatus speed 0.3 m / Sealed tightly with min.
  • pressure roller temperature 120 ° C. pressure 0.5 MPa
  • apparatus speed 0.3 m / Sealed tightly with min the organic EL element 1 of Comparative Example 1 was produced.
  • organic EL elements 2 to 7 were prepared in the same manner as the organic EL element 1 except that the sealing film 1 was changed to the sealing films 2 to 7. Thus, organic EL elements 2 to 7 of Examples 1 to 5 and Comparative Example 2 were produced.
  • the bending resistance of the organic EL devices 1 to 7 produced as described above was evaluated according to the mechanical stress test (IEC62715-6-1 Ed.1) of the flexible display device. Specifically, using a U-shaped folding tester manufactured by Yuasa System Equipment Co., Ltd. in an environment of 23 ° C. and 50% RH, the curvature radius is set to 2.0 mm and the sealing film side is set to the outside, and the bending speed is set. Bending was repeated up to 300,000 times at 60 times / minute. Here, when it can be bent 10,000 times or more, the following luminescence intensity was measured every 10,000 times. On the other hand, when the bendability was lost by 10,000 times, the following luminescence intensity was measured every 1,000 times.
  • the mechanical stress test IEC62715-6-1 Ed.1
  • the maximum number of flexions was obtained by leaving it in an RH environment for 24 hours.
  • the durability is determined by determining that the bendability is lost when the emission intensity after the test is less than 50% with respect to the emission intensity at a constant voltage (10 V) before the stress test. The number of bendings was taken as a scale.
  • the organic EL elements 2 to 6 using the sealing films 2 to 6 of Examples 1 to 5 are the organic EL elements 1 and 7 using the sealing films 1 and 7 of Comparative Examples 1 and 2, respectively.
  • the maximum number of bends is significantly improved (100 times to 200 times or more), so that bending resistance is hardly deteriorated even if bending or winding is repeated for a long time, and moisture permeability (gas barrier property) is improved. It turns out that it is especially excellent.
  • the organic EL elements 4 to 6 using the sealing films 4 to 6 using the adhesive for the adhesive layer are Compared with the organic EL elements 2 to 3 using the sealing films 2 to 3 using the thermosetting agent for the adhesive layer, the maximum number of bending times is greatly improved, so that the bending resistance is not particularly deteriorated. It can be seen that the moisture permeability resistance (gas barrier property) is more excellent.
  • the sealing film 3 in which the thickness of the adhesive layer is reduced by comparing the organic EL elements 2 to 3 using the same adhesive agent for the adhesive layer and the sealing films 2 to 3 having different thicknesses Since the maximum number of bendings is further improved in the organic EL element 3 using the above, it can be seen that the bending resistance is not easily deteriorated and the moisture permeability (gas barrier property) is excellent.
  • the thickness of the adhesive layer can be reduced by comparing the organic EL elements 4 to 5 using the same adhesive agent for the adhesive layer and using the sealing films 4 to 5 whose thickness is changed to be thinner. Since the organic EL element 5 using the thinner sealing film 5 has a higher maximum number of bendings, it can be seen that bending resistance is less likely to deteriorate and moisture permeability (gas barrier properties) is excellent.
  • the adhesive layers are the same (thin adhesive), and sealing films 4 and 6 are used in which the transition metal compound (particularly preferred Group 5 element oxide) contained in the gas barrier layer (layer (A)) is changed.
  • the organic EL elements 4 and 6 By contrasting the organic EL elements 4 and 6, the organic EL element 6 using the sealing film 6 using niobium oxide rather than tantalum oxide has the highest number of bending times, so that the bending resistance is extremely deteriorated. It is difficult to see, and it is understood that the moisture permeability resistance (gas barrier property) is the most excellent.

Abstract

長期間折り曲げや巻き付けを繰り返しても耐透湿性が劣化しない封止フィルムを提供する。 可撓性を有する基材と、前記基材の片方の表面上に形成されたガスバリア層と、接着層とをこの順に備える封止フィルムであって、前記ガスバリア層に遷移金属化合物を含有していることを特徴とする封止フィルム。

Description

封止フィルム及び封止フィルムで封止された機能素子
 本発明は、封止フィルム及び封止フィルムで封止された機能素子に関する。
 有機EL(Electroluminescence)素子や有機薄膜太陽電池等の有機材料からなる機能素子は酸素や水分に極めて弱い。例えば、有機EL素子を用いてディスプレイや照明装置を構成する場合に、有機材料自体が酸素や水分によって変質して、輝度が低下したり、ひいては、発光しなくなるといった欠点があり酸素や水分に対するバリア性が必要である。有機薄膜太陽電池でも有機材料自体が酸素や水分によって変質して、光電変換効率が低下したり、ひいては、発電しなくなるといった欠点があり酸素や水分に対するバリア性が必要である。
 一方で、有機EL素子や有機薄膜太陽電池等は、折り曲げたり、巻物形状にしたりできる等、新たな用途を目指したフレキシブルな素子を作れることが期待されており、そのためガラス基材ではなく変形可能なプラスチック基材とバリア層とを有するバリアフィルムが使用されるようになってきている(例えば、特許文献1及び特許文献2参照)。
国際公開第2011/016408号 国際公開第2011/102465号
 ところが、上記用途(フレキシブルな素子)に求められる性能を満たすためには機能素子自体をより薄くする必要があり、機能素子本体をバリアフィルムを用いて封止する際の封止材の厚みも薄くしていかなければならない。しかしながら、封止材の厚みを薄くしていくと、封止時や折り曲げ時に、バリアフィルムに設けられたバリア層にダメージをもたらしてしまうという新たな課題が生じることを見出した。
 そこで本発明は、長期間折り曲げや巻き付けを繰り返しても耐透湿性が劣化しない封止フィルム及び該封止フィルムで封止された機能素子を提供することを目的とする。
 本発明者は、上記の課題を解決すべく、鋭意研究を行った。その結果、封止フィルムを構成するガスバリア層に遷移金属化合物を含有させることにより、上記課題が解決することを見出し、本発明を完成させるに至った。
 すなわち、本発明は、可撓性を有する基材と、前記基材の片方の表面上に形成されたガスバリア層と、接着層とをこの順に備え、前記ガスバリア層に遷移金属化合物を含有する封止フィルムおよび該封止フィルムで封止された機能素子である。
本発明に係る封止フィルムの基本構成を示す断面模式図である。 本発明に係る封止フィルムの他の基本構成を示す断面模式図である。
 本発明は、可撓性を有する基材と、前記基材の片方の表面上に形成されたガスバリア層と、接着層とをこの順に備え、前記ガスバリア層に遷移金属化合物を含有することを特徴とする封止フィルムである。このような構成を有する本発明の封止フィルムは、長期間の折り曲げや巻き付けを繰り返しても高い耐透湿性を保持することができる。更に、上記構成を有する封止フィルムで機能素子本体を封止することで、長期間折り曲げや巻き付けを繰り返しても折り曲げ耐性が極めて劣化し難く、耐透湿性に優れる機能素子を提供することができる。
 なぜ、本発明の封止フィルムにより上記効果が得られるのか、詳細は不明であるが、下記のようなメカニズムが考えられる。なお、下記のメカニズムは推測によるものであり、本発明は下記メカニズムに何ら拘泥されるものではない。
 本発明では、封止フィルムを構成するガスバリア層に遷移金属化合物(実施例では、その1種であるV族の酸化物)を含有させることによって小半径(2mm以下)での繰り返し折り曲げ耐性を確保できた(実施例参照)。そのメカニズムは明らかではないが、素子側基板は素子を設ける都合上その表面は数μm程度の凹凸をもった表面になってしまう。一方、フレキシブルな機能素子にバリア性を付与する為のバリアフィルムを構成するガスバリア層は、通常、無機膜であり、バリア性を付与する必要上、硬くて脆い性質である。そのため、上記したような凹凸表面の素子側基板をバリアフィルムで封止する際に、封止材が薄いと素子基板上の凸凹を埋める際に加わる応力の影響をガスバリア層が受け(上記性質が故に)ガスバリア層に極微細なクラックが発生し、さらに折り曲げ応力が加わった際にこのクラックが拡大して耐透湿性が劣化する(拡大したクラックを通じて水分や酸素の侵入を許してしまう)と思われる。本発明ではガスバリア層に含有させた遷移金属化合物は、実施例で用いたV族の酸化物も含め、いずれも遷移金属の酸化物等であり複数の酸化数を取ることができるので、上記応力が加わった際に柔軟に電子を移動させて原子間距離を変化させ、上記応力を緩和してクラックの発生を防止し耐透湿性が劣化しないと考えられる。
 即ち、バリア性は、通常、封止フィルム(ガスバリア層や接着層)の厚みを厚くしていくことで性能が向上する。一方、フレキシブル性は、通常、封止フィルム(ガスバリア層や接着層)の厚みを薄くしていくことで性能が向上する。この点においてバリア性とフレキシブル性とは、トレードオフの関係(二律背反の関係)にある。しかるに、本発明では、封止フィルムを構成する接着層(素子側基板への接着及び封止機能に加え可撓性を持つ)を薄くしてフレキシブル性を高めても、薄くした接着層が素子基板上の凸凹を埋める際に加わる応力の影響をガスバリア層が受けた際に上記メカニズムにより、該応力を緩和してクラックの発生を防止することができる。その結果、長期間折り曲げや巻き付けを繰り返しても耐透湿性が劣化しない封止フィルムを提供できると考えられる。
 以下、本発明の好ましい実施形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。また、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 本明細書において、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で測定する。
 図1は本発明に係る封止フィルムの基本構成を示す断面模式図である。図1の封止フィルム10は、可撓性を有する基材11、前記基材11の片方の表面上に形成されたガスバリア層14として、遷移金属化合物を含まない層(B)12、および遷移金属化合物を含有する層(A)13がこの順に配置され、該ガスバリア層14上に接着層15が配置されている。また、図2は本発明に係る封止フィルムの他の基本構成を示す断面模式図である。図2の封止フィルム10は、可撓性を有する基材11、前記基材11の片方の表面上に形成されたガスバリア層14として、遷移金属化合物を含有する層(A)13および遷移金属化合物を含まない層(B)12がこの順に配置され、該ガスバリア層14上に接着層15が配置されている。以下、遷移金属化合物を含有する層(A)を単に層(A)ともいう。また遷移金属化合物を含まない層(B)を単に層(B)ともいう。
 [ガスバリア層]
 基材11の片方の表面上に形成されたガスバリア層14は、遷移金属化合物を含有するものであればよいが、図1、2に示すように、遷移金属化合物を含まない層(B)12、および遷移金属化合物を含有する層(A)13を有するのが望ましい。こうした好適なガスバリア層14を構成する層(A)13および層(B)12は隣接して配置される限り、基材11側から層(A)13、層(B)12の順であっても、層(B)12、層(A)13の順であってもよい。さらに、基材と各層との間、または、各層上には他の層が配置されていてもよい。上記したように、本発明のガスバリア層14では、該ガスバリア層14を構成する少なくとも1つの層に遷移金属化合物が含まれていればよい。なお、ガスバリア層14は、単層でもよいが、好ましくは図1、2に示すように、遷移金属化合物を含有する層(A)13と、遷移金属化合物を含まない層(B)12を含む2層以上の層構成とするのが良い。3層以上とする場合には、例えば、図1、2に示す層(A)及び層(B)を順に積層して層(A)、層(B)、層(A)、層(B)のような層構成とすることもできる。あるいは、層(A)及び層(B)ごとに積層して層(A)、層(A)、層(B)、層(B)のような層構成とすることもできる。この場合、複数積層された層(A)は、同じ構成(同一組成)でもよいし、異なる構成(例えば、遷移金属化合物が異なる組成)であってもよい。同様に、複数積層された層(B)も、同じ構成(同一組成)でもよいし、異なる構成(例えば、層(B)を構成する無機膜を構成する無機材料が異なる組成)であってもよい。フレキシブル性を高める観点からは、図1、2に示す2層構成とするのが望ましい。バリア性の観点からは、上記したような4層構成のような3層以上の多層構成とするのが望ましい。
 遷移金属化合物を含有する層(A)が基材と相対する面の層(B)に配置される(即ち、層(A)と層(B)が隣接して配置される構造とする)ことで、上記メカニズムによる発明の効果をより有効に発現することができるものである。すなわち、層(A)と層(B)が接する構造のガスバリア層では、層(A)が含む遷移金属化合物が複数の酸化数を取ることができるので、応力が加わった際に柔軟に電子を移動させて原子間距離を変化させることで、該応力を緩和して、ガスバリア層のクラック発生を防止し、高い耐透湿性を長期間保持することができるものである。さらに、遷移金属化合物を含有する層(A)がより酸化されやすく(応力が加わった際に柔軟に電子を移動させて原子間距離を変化させやすく)、層(A)による層(B)の保護(応力を緩和して層(A)だけでなく、層(B)に対してもクラックの発生を防止し、高い耐透湿性を長期間保持する効果)がより顕著に発揮される。こうしたことから、応力発生源に近い接着層側に層(A)を配置した図1に示す、基材、層(B)、層(A)、接着層の順に配置されることが好ましい。以下、ガスバリア層として好適な構成である図1、2に示す層(A)、(B)を有するガスバリア層の各構成につき説明する。但し、本発明はこれらに何ら制限されるものではなく、ガスバリア層に遷移金属化合物を含有する構成であればよい。
 [(A)遷移金属化合物を含有する層]
 本発明の封止フィルムは、ガスバリア層として、遷移金属化合物を含有する層(A)を有するのが好ましく、気相成膜法により形成される遷移金属化合物を含有する層(A)を有するのがより好ましいものである。層(A)は、遷移金属化合物を含有することから、電気化学的に層(B)よりも酸化されやすく、層(B)のクラックの発生(更には酸化による劣化)を抑制する。
 層(A)に含まれる遷移金属化合物としては、ガスバリア層が応力を受けた際に、上記に推測したメカニズムに限られないが、少なくとも該応力を緩和してガスバリア層のクラックの発生を防止し得る機能を有効に発現し得るものであればよく、特に限定されない。例えば、遷移金属の酸化物、窒化物、炭化物、酸窒化物、または酸炭化物が挙げられる。中でも複数の酸化数を取ることができ、応力が加わった際に柔軟に電子を移動させて原子間距離を変化させることができる(更には層(B)の酸化による劣化も抑制できる)という観点からは、遷移金属化合物が遷移金属酸化物であることが好ましい。遷移金属化合物は1種単独であっても2種以上併用してもよい。
 また、層(A)は、遷移金属をM、化学量論的に得られる遷移金属酸化物をMOx2とした場合に、x1<x2である金属酸化物MOx1を含むことが好ましい。かような金属酸化物を含むことで、上記応力が加わった際に柔軟に電子を移動させて原子間距離を変化させ、上記応力を緩和してクラックの発生を防止し耐透湿性を付与することができる。かように封止フィルムのガスバリア性能(耐透湿性)が向上することで、高温高湿条件下であっても高いガスバリア性能が維持される点で優れている。x1<x2である金属酸化物MOx1を含むことによって、化学量論的な酸化度よりも低い酸化度である領域、つまりはさらなる酸化の余地がある領域が存在する(複数の酸化数をとる余地ができ、応力が加わった際に柔軟に電子を移動させて原子間距離を変化できる)こととなるため、より高いガスバリア性能(耐透湿性)が発揮されると考えられる。
 例えば、Nb(ニオブ)の酸化物を例に挙げると、Nbの化学量論的に得られる酸化物は五酸化二ニオブであり、これはNbO2.5であるため、x2=2.5である。Nbは三酸化二ニオブの組成も取り得るが、本発明においてのx2は、酸化度の最も大きい化学量論的な化合物のx2を意味する。x1<x2である金属酸化物MOx1を含むとは、X線光電子分光分析法(X-ray Photoelectron Spectroscopy;XPS)等の組成分析方法で厚さ方向の組成プロファイルを測定した際に、x1<x2である測定点が得られるということ、Nbの場合は、x1<2.5である測定点が得られることを意味する。層(A)が複数種の金属を含有する場合であっても、それぞれの金属の比率とその合計から化学量論的なx2を計算して用いることができる。
 x1<x2の関係を酸化度の指標としてx1/x2比で表すと、x1/x2比は、耐透湿性が向上することで高温高湿下でのガスバリア性能がより向上することから、0.99以下であることが好ましく、0.9以下であることがより好ましく、0.8以下であることがさらに好ましい。x1/x2比が小さくなるほど酸化抑制効果は高くなるが、それにつれて可視光での吸収も高くなるため、透明性が望まれる用途に使用する場合は、0.2以上であることが好ましく、0.3以上であることがより好ましい。
 x1<x2である領域の層(A)における厚さ方向の割合は、バリア性の観点から、層(A)の厚さに対して、1~100%であることが好ましく、10~100%であることがより好ましく、50~100%であることがさらに好ましい。
 x1/x2比の調整は、層(A)の形成をスパッタで行う場合を例に挙げると、ターゲットとして金属、もしくは、化学量論的に酸素が欠損した遷移金属酸化物を用い、スパッタの際に導入する酸素の量を適宜調整することで行うことができる。
 x1は、厚さ方向のXPSの分析を用いてMに対するOの原子比により求めることができる。x1の最小値がx1<x2となれば、x1<x2である金属酸化物MOx1を含むと言える。
 《XPSの分析条件》
 ・装置:アルバックファイ社製QUANTERASXM
 ・X線源:単色化Al-Kα
 ・測定領域:Si2p、C1s、N1s、O1s、その他測定する金属に応じて定法により設定
 ・スパッタイオン:Ar(2keV)
 ・デプスプロファイル:一定時間スパッタ後、測定を繰り返す。1回の測定は、SiO換算で、約2.5nmの厚さ分となるようにスパッタ時間を調整する
 ・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。データ処理は、アルバックファイ社製のMultiPakを用いる。
 遷移金属とは、第3族元素から第12族元素を指し、遷移金属としては、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、およびAuなどが挙げられる。
 中でも、遷移金属化合物中の遷移金属は、ケイ素よりも酸化還元電位が低い金属であることが好ましい。ケイ素よりも酸化還元電位の低い遷移金属の化合物を含む層とすることで、より良好なバリア性が得られる。ケイ素よりも酸化還元電位が低い金属の具体例としては、例えば、ニオブ、タンタル、バナジウム、ジルコニウム、チタン、ハフニウム、イットリウム、ランタン、セリウム等が挙げられる。これら金属は、単独でもまたは2種以上混合して用いてもよい。これらの中でも特に第5族元素であるニオブ、タンタル、バナジウムが、層(B)(好ましくは、ポリシラザン改質バリア層で構成される層(B))の酸化抑制効果が高いため、好ましく用いることができる。すなわち、本発明の好適な一実施形態は、遷移金属がバナジウム、ニオブおよびタンタルからなる群(第5族元素)より選択される少なくとも1種の金属である、封止フィルムである。さらに、光学特性の観点から、遷移金属化合物中の遷移金属は、透明性が良好な化合物が得られるニオブ、タンタルが特に好ましい。
 以上のことから、遷移金属化合物としては、応力が加わった際に柔軟に電子を移動させて原子間距離を変化させることができる(更には層(B)の酸化による劣化も抑制できる)という観点から遷移金属酸化物が好ましい。上記効果に加え酸化抑制効果が高いという観点から遷移金属が第5族元素より選択される少なくとも1種である遷移金属酸化物がより好ましい。更に上記した各効果に加え光学特性に優れるという観点から、遷移金属がニオブおよびタンタルの少なくとも1種である遷移金属酸化物がさらに好ましい。更に上記した各効果に加え長期間折り曲げや巻き付けを繰り返しても耐透湿性が高いという観点から、遷移金属化合物が、(第5族元素の酸化物の中でも)酸化ニオブを含有していることが特に好ましいものである。
 主要な遷移金属の標準酸化還元電位およびx2を下表に示す。
Figure JPOXMLDOC01-appb-T000001
 層(A)中における遷移金属化合物の含有量は、本発明の効果を奏する限り特に限定されないが、遷移金属化合物の含有量が、層(A)の全質量に対して50質量%以上であることが好ましく、80質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、98質量%以上であることが特に好ましく、100質量%である(すなわち、層(A)は遷移金属化合物からなる)ことが最も好ましい。
 層(A)の形成方法は、金属元素と酸素との組成比を調整しやすいという観点から、気相成膜法が好適である。気相成膜法としては、特に制限されず、例えば、スパッタ法、蒸着法、イオンプレーティング法等の物理気相成長(PVD)法、プラズマCVD(chemical vapor deposition)法、ALD(Atomic Layer Deposition)などの化学気相成長法が挙げられる。中でも、下層へのダメージを与えることなく成膜が可能となり、高い生産性を有することから、スパッタ法により形成することが好ましい。
 スパッタ法による成膜は、2極スパッタリング、マグネトロンスパッタリング、中間的な周波数領域を用いたデュアルマグネトロン(DMS)スパッタリング、イオンビームスパッタリング、ECRスパッタリングなどを単独でまたは2種以上組み合わせて用いることができる。また、ターゲットの印加方式はターゲット種に応じて適宜選択され、DC(直流)スパッタリング、およびRF(高周波)スパッタリングのいずれを用いてもよい。また、金属モードと、酸化物モードの中間である遷移モードを利用した反応性スパッタ法も用いることができる。遷移モード(領域)となるようにスパッタ現象を制御することにより、高い成膜スピードで金属酸化物を成膜することが可能となるため好ましい。DCスパッタリングやDMSスパッタリングを行なう際には、そのターゲットに遷移金属を用い、さらに、プロセスガス中に酸素を導入することで、遷移金属酸化物の薄膜を形成することができる。また、RF(高周波)スパッタリングで成膜する場合は、遷移金属の酸化物のターゲットを用いることができる。プロセスガスに用いられる不活性ガスとしては、He、Ne、Ar、Kr、Xe等を用いることができ、Arを用いることが好ましい。さらに、プロセスガス中に酸素、窒素、二酸化炭素、一酸化炭素を導入することで、遷移金属の酸化物、窒化物、窒酸化物、炭酸化物等の遷移金属化合物薄膜を作ることができる。スパッタ法における成膜条件としては、印加電力、放電電流、放電電圧、時間等が挙げられるが、これらは、スパッタ装置や、膜の材料、膜厚等に応じて適宜選択することができる。中でも、成膜レートがより高く、より高い生産性を有することから、遷移金属の酸化物をターゲットとして用いるスパッタ法が好ましい。
 層(A)は、単層でもよいし2層以上の積層構造であってもよい。層(A)が2層以上の積層構造である場合、層(A)に含まれる遷移金属化合物は同じものであってもよいし、異なるものであってもよい。
 層(A)は、上記したように層(B)の酸化を抑制しガスバリア性を維持する機能を有する層であると考えられるため、層(B)と併用する場合には、必ずしも単層(層(A)のみ)で十分なガスバリア性は必要ではない。したがって、層(A)は比較的薄い層でも効果を発揮し得る。更に層(A)を比較的薄い層とすることでフレキシブル性能を高めることができる点でも好ましい。具体的には、基材上に層(B)、層(A)の順に配置されたガスバリア層の層構成の場合には、層(A)の厚さ(2層以上の積層構造である場合はその総厚)は、バリア性の面内均一性の観点から、1~200nmであることが好ましく、2~100nmであることがより好ましく、3~50nmであることがさらに好ましい。特に50nm以下であれば、層(A)の成膜の生産性がより向上する。また、基材上に層(A)、層(B)の順に配置されたガスバリア層の層構成の場合には、層(A)の厚さ(2層以上の積層構造である場合はその総厚)は、バリア性の面内均一性の観点から、1~200nmであることが好ましく、2~150nmであることがより好ましく、20~150nmであることがさらに好ましい。
 [(B)遷移金属化合物を含まない層]
 本発明に係る封止フィルムは、ガスバリア層として、遷移金属化合物を含まない層(B)を有するのが好ましい。遷移金属化合物を含まない層(B)は、単層で十分なガスバリア性を有するものがより好ましく、さらに好ましくは、ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜に真空紫外線を照射して形成されてなる層(B)である。この場合、真空紫外線の照射により、層(B)はガスバリア性を発現する。また、気相成膜法で形成される場合とは異なり、成膜時にパーティクル等の異物混入がないため、欠陥の非常に少ないガスバリア層となる。但し、本発明の封止フィルムでは、ガスバリア層を構成する層(B)は、上記製法により得られるものに制限されず、単層で十分なガスバリア性を奏するものであれば、他のいかなる製法を用いて形成されたものであってもよい。以下、層(B)の構成につき説明するが、製法に関しては、好適な層(B)である、ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜に真空紫外線を照射して形成されてなる層(B)の製法を例にとり説明する。
 層(B)は、単層でもよいし2層以上の積層構造であってもよい。
 層(B)の1層あたりの厚さは、ガスバリア性能の観点から、10~500nmであることが好ましい。2層以上の積層構造である場合、その総厚は、クラック抑制の観点から、1000nm以下であることが好ましい。基材上に層(B)、層(A)の順に配置されたガスバリア層の層構成の場合には、ガスバリア性能の観点から、層(B)の1層あたりの厚さは、50~300nmであることがより好ましい。基材上に層(A)、層(B)の順に配置されたガスバリア層の層構成の場合には、層(B)を構成する無機材料、特に好適な層(B)を構成するポリシラザンの改質領域が層(A)と層(B)との界面側に形成されることが好ましい。このため、真空紫外線照射処理の場合(好適な層(B)を形成する場合)には、真空紫外光が層(A)と層(B)との界面近傍にまで透過することが好ましい。これは、バリア性を発現するポリシラザン改質領域が、層(A)と接して形成されることで、耐酸化性が向上するためである。真空紫外光は、ポリシラザン層によって吸収されるため、真空紫外光が層(A)と層(B)との界面近傍にまで透過するためには、ポリシラザン塗布層が比較的薄い方が好ましい。このため、基材上に層(A)、層(B)の順に配置されたガスバリア層の層構成の場合には、基材上に層(B)、層(A)の順に配置されたガスバリア層の層構成の場合よりも、層(B)の1層あたりの厚さの好適な範囲は薄い範囲となり、フレキシブル性能を高めることができる。かかる観点から、基材上に層(A)、層(B)の順に配置されたガスバリア層の層構成の場合には、層(B)の1層あたりの厚さは、10~150nmであることがより好ましい。
 層(B)の厚さは、透過型電子顕微鏡(Transmission Electron Microscope;TEM)観察により測定することができる。
 層(B)は、上記したように如何なる製法を用いて形成してもよいが、好ましくはポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜に真空紫外線を照射して形成されるものである。ここで、ポリシラザンとは、ケイ素-窒素結合を有するポリマーであり、Si-N、Si-H、N-H等の結合を有するSiO、Si、および両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。
 具体的には、ポリシラザンは、好ましくは下記の構造を有する。
Figure JPOXMLDOC01-appb-C000002
 上記一般式(I)において、R、RおよびRは、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R、RおよびRは、それぞれ、同じであってもあるいは異なるものであってもよい。
 また、上記一般式(I)において、nは、整数であり、上記一般式(I)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。
 上記一般式(I)で表される構造を有する化合物において、好ましい態様の一つは、R、RおよびRのすべてが水素原子であるパーヒドロポリシラザンである。
 または、ポリシラザンとしては、下記一般式(II)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000003
 上記一般式(II)において、R1’、R2’、R3’、R4’、R5’およびR6’は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1’、R2’、R3’、R4’、R5’およびR6’は、それぞれ、同じであってもあるいは異なるものであってもよい。また、上記一般式(II)において、n’およびpは、整数であり、一般式(II)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n’およびpは、同じであってもあるいは異なるものであってもよい。
 上記一般式(II)のポリシラザンのうち、R1’、R3’およびR6’が各々水素原子を表し、R2’、R4’およびR5’が各々メチル基を表す化合物;R1’、R3’およびR6’が各々水素原子を表し、R2’、R4’が各々メチル基を表し、R5’がビニル基を表す化合物;R1’、R3’、R4’およびR6’が各々水素原子を表し、R2’およびR5’が各々メチル基を表す化合物が好ましい。
 または、ポリシラザンとしては、下記一般式(III)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(III)において、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”およびR9”は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”およびR9”は、それぞれ、同じであってもあるいは異なるものであってもよい。
 また、上記一般式(III)において、n”、p”およびqは、整数であり、一般式(III)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n”、pおよびqは、同じであってもあるいは異なるものであってもよい。
 上記一般式(III)のポリシラザンのうち、R1”、R3”およびR6”が各々水素原子を表し、R2”、R4”、R5”およびR8”が各々メチル基を表し、R9”が(トリエトキシシリル)プロピル基を表し、R7”がアルキル基または水素原子を表す化合物が好ましい。
 一方、そのSiと結合する水素原子部分の一部がアルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地である基材との接着性が改善され、かつ硬くて脆いポリシラザンによる無機膜(セラミック膜)に靭性を持たせることができ、フレキシブル性を損なわない範囲で、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。このため、用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンとを選択してよく、混合して使用することもできる。
 パーヒドロポリシラザンは、直鎖構造と6および8員環を中心とする環構造とが存在する構造と推定されている。その分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)で、液体または固体の物質があり、その状態は分子量により異なる。
 ポリシラザンは有機溶媒に溶解した溶液状態で市販されており、市販品をそのまま層(B)形成用塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のNN120-10、NN120-20、NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL120-20、NL150A、NP110、NP140、SP140等が挙げられる。これらポリシラザン溶液は、単独でもまたは2種以上組み合わせても用いることができる。
 本発明で使用できるポリシラザンの別の例としては、以下に制限されないが、例えば、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6-240208号公報)等の、低温でセラミック化するポリシラザンが挙げられる。
 ポリシラザンを用いる場合、真空紫外線照射前の層(B)の塗膜中におけるポリシラザンの含有率としては、層(B)の塗膜(固形分)の全質量を100質量%としたとき、100質量%でありうる。また、真空紫外線照射前の層(B)がポリシラザン以外のものを含む場合には、層(B)の塗膜中におけるポリシラザンの含有率は、10質量%以上99質量%以下であることが好ましく、40質量%以上95質量%以下であることがより好ましく、特に好ましくは70質量%以上95質量%以下である。
 (層(B)形成用塗布液)
 層(B)の形成に用いられる好適なポリシラザン含有塗布液(以下、層(B)形成用塗布液)という)を調製するための溶剤としては、ポリシラザンを溶解できるものであれば特に制限されないが、ポリシラザンと容易に反応してしまう水および反応性基(例えば、ヒドロキシル基、あるいはアミン基等)を含まず、ポリシラザンに対して不活性の有機溶剤が好ましく、非プロトン性の有機溶剤がより好ましい。具体的には、溶剤としては、非プロトン性溶剤;例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターペン等の、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類:例えば、テトラヒドロフラン、ジブチルエーテル、モノ-およびポリアルキレングリコールジアルキルエーテル(ジグライム類)などを挙げることができる。上記溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度等の目的にあわせて選択され、単独で使用されてもまたは2種以上の混合物の形態で使用されてもよい。
 層(B)形成用塗布液におけるポリシラザンの濃度は、特に制限されず、層の膜厚や塗布液のポットライフによっても異なるが、好ましくは1~80質量%、より好ましくは5~50質量%、さらに好ましくは10~40質量%である。
 層(B)形成用塗布液は、改質を促進するために、触媒を含有することが好ましい。本発明に適用可能な触媒としては、塩基性触媒が好ましく、特に、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン、N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N-複素環式化合物が挙げられる。これらのうち、アミン触媒を用いることが好ましい。この際添加する触媒の濃度としては、層(B)形成用塗布液を基準としたとき、好ましくは0.1~10質量%、より好ましくは0.5~7質量%の範囲である。触媒添加量をこの範囲とすることで、反応の急激な進行による過剰なシラノール形成、および膜密度の低下、膜欠陥の増大などを避けることができる。
 層(B)形成用塗布液には、必要に応じて下記に挙げる添加剤を用いることができる。例えば、セルロースエーテル類、セルロースエステル類;例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート等、天然樹脂;例えば、ゴム、ロジン樹脂等、合成樹脂;例えば、重合樹脂等、縮合樹脂;例えば、アミノプラスト、特に尿素樹脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステル樹脂もしくは変性ポリエステル樹脂、エポキシ樹脂、ポリイソシアネートもしくはブロック化ポリイソシアネート、ポリシロキサン等である。
 (層(B)形成用塗布液を塗布する方法)
 層(B)形成用塗布液を塗布する方法としては、従来公知の適切な湿式塗布方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、ダイコート法、グラビア印刷法等が挙げられる。
 塗布厚さは、好ましい厚さや目的に応じて適切に設定され得る。
 塗布液を塗布した後は、塗膜を乾燥させることが好ましい。塗膜を乾燥することによって、塗膜中に含有される有機溶媒を除去することができる。この際、塗膜に含有される有機溶媒は、すべてを乾燥させてもよいが、一部残存させていてもよい。一部の有機溶媒を残存させる場合であっても、好適な層(B)が得られうる。なお、残存する溶媒は後に除去されうる。
 塗膜の乾燥温度は、適用する基材によっても異なるが、50~200℃であることが好ましい。例えば、ガラス転移温度(Tg)が70℃のポリエチレンテレフタレート基材を基材として用いる場合には、乾燥温度は、熱による基材の変形等を考慮して150℃以下に設定することが好ましい。上記温度は、ホットプレート、オーブン、ファーネスなどを使用することによって設定されうる。乾燥時間は短時間に設定することが好ましく、例えば、乾燥温度が150℃である場合には30分以内に設定することが好ましい。また、乾燥雰囲気は、大気雰囲気下、窒素雰囲気下、アルゴン雰囲気下、真空雰囲気下、酸素濃度をコントロールした減圧雰囲気下等のいずれの条件であってもよい。
 層(B)形成用塗布液を塗布して得られた塗膜は、真空紫外線の照射前または真空紫外線の照射中に水分を除去する工程を含んでいてもよい。水分を除去する方法としては、低湿度環境を維持して除湿する形態が好ましい。低湿度環境における湿度は温度により変化するので、温度と湿度の関係は露点温度の規定により好ましい形態が示される。好ましい露点温度は4℃以下(温度25℃/湿度25%RH)で、より好ましい露点温度は-5℃以下(温度25℃/湿度10%RH)であり、維持される時間は層(B)の膜厚によって適宜設定することが好ましい。具体的には、露点温度は-5℃以下で、維持される時間は1分以上であることが好ましい。なお、露点温度の下限は特に制限されないが、通常、-50℃以上であり、-40℃以上であることが好ましい。真空紫外線の照射(改質処理)前、あるいは真空紫外線の照射(改質処理)中に水分を除去することによって、シラノールに転化した層(B)の脱水反応を促進する観点から好ましい形態である。
 <真空紫外線照射>
 続いて、上記のようにして形成された塗膜に対して、真空紫外線を照射し、ポリシラザンの酸窒化ケイ素等への転化反応を行い、ガスバリア層を構成する層(B)がガスバリア性を発現しうる無機薄膜への改質を行う。
 真空紫外線照射は、バッチ処理にも連続処理にも適合可能であり、使用する基材の形状によって適宜選定することができる。例えば、バッチ処理の場合には、真空紫外線発生源を具備した紫外線焼成炉で処理することができる。紫外線焼成炉自体は一般に知られており、例えば、アイグラフィクス株式会社製の紫外線焼成炉を使用することができる。また、対象が長尺フィルム状である場合には、これを搬送させながら上記のような真空紫外線発生源を具備した乾燥ゾーンで連続的に真空紫外線を照射することによりセラミックス化することができる。真空紫外線照射に要する時間は、使用する基材や層(B)の組成、濃度にもよるが、一般に0.1秒~10分であり、好ましくは0.5秒~3分である。
 (真空紫外線照射処理:エキシマ照射処理)
 真空紫外線照射による改質は、ポリシラザン化合物内の原子間結合力より大きい100~200nmの光エネルギーを用い、好ましくは100~180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温(約200℃以下)で、層(B)(酸窒化ケイ素等を含む無機薄膜)の形成を行う方法である。なお、真空紫外線照射処理(エキシマ照射処理)を行う際は、熱処理を併用することが好ましい。
 本発明においての真空紫外線源は、100~200nm、好ましくは100~180nmの波長の光を発生させるものであればよいが、好適には約172nmに最大放射を有するエキシマラジエータ(例えば、Xeエキシマランプ)、約185nmに輝線を有する低圧水銀蒸気ランプ、並びに230nm以下の波長成分を有する中圧および高圧水銀蒸気ランプ、および約222nmに最大放射を有するエキシマランプである。
 このうち、Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから、発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。
 また、波長の短い172nmの光のエネルギーは、有機物の結合を解離させる能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン塗膜の改質を実現できる。
 エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で、すなわち短い波長でエネルギーを照射するため、照射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。
 真空紫外線照射時の反応には、酸素が必要であるが、真空紫外線は、酸素による吸収があるため紫外線照射工程での効率が低下しやすいことから、真空紫外線の照射は、可能な限り酸素濃度および水蒸気濃度の低い状態で行うことが好ましい。すなわち、真空紫外線照射時の酸素濃度は、10~20,000体積ppm(0.001~2体積%)とすることが好ましく、50~10,000体積ppm(0.005~1体積%)とすることがより好ましい。また、真空紫外線照射時(転化プロセスの間)の水蒸気濃度は、好ましくは1000~4000体積ppmの範囲である。
 真空紫外線照射時に用いられる、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫(照射装置)内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。
 真空紫外線照射工程において、ポリシラザン塗膜が受ける塗膜面での該真空紫外線の照度は1mW/cm~10W/cmであると好ましく、30mW/cm~200mW/cmであることがより好ましく、50mW/cm~160mW/cmであるとさらに好ましい。1mW/cm以上であれば、改質効率が向上し、10W/cm以下であれば、塗膜に生じ得るアブレーションや、基材へのダメージを低減することができる。
 本発明においては、塗膜の表面における真空紫外線の照射エネルギー量(照射量)は、1J/cm以上である。照射エネルギー量が1J/cm以上であれば、層(B)のガスバリア性の保存安定性が向上し、高温高湿条件下の保存での十分なガスバリア性が発現できる。該照射エネルギー量は、製造安定性(層(B)を形成した後の保管環境下でも、ガスバリア性能の低下がおきない、または少ない特性)の観点からは、1.5J/cm以上が好ましく、2.0J/cm以上がより好ましく、2.5J/cm以上がさらに好ましく、4.0J/cm以上が特に好ましい。一方、照射エネルギー量の上限値は、特に制限されないが、10J/cm以下であることが好ましく、8J/cm以下であることがより好ましい。この範囲であれば、過剰改質によるクラックの発生や、基材の熱変形を抑制することができ、また生産性が向上する。
 用いられる真空紫外線は、CO、COおよびCHの少なくとも一種を含むガスで形成されたプラズマにより発生させてもよい。さらに、CO、COおよびCHの少なくとも一種を含むガス(以下、炭素含有ガスとも称する)は、炭素含有ガスを単独で使用してもよいが、希ガスまたはHを主ガスとして、炭素含有ガスを少量添加することが好ましい。プラズマの生成方式としては容量結合プラズマなどが挙げられる。
 [接着層]
 本発明に係る接着層15は、ガスバリア層14上に配置されることで、封止フィルム10の最上層に位置し、封止フィルム10と機能素子(素子を設けた素子側基板)とを接着させる機能を有している(図1、2参照)。
 接着層の形成に使用できる接着剤(粘着剤を含む)は、紫外線(UV)硬化型樹脂や熱硬化型樹脂等、公知の接着剤を使用することができる。硬化型樹脂の中では、湿度耐性の点で優れる熱硬化型樹脂が好ましい。更に、接着層の形成に使用できる接着剤(粘着剤を含む)としては、以下に説明するイソプレン、イソブテン、及びブタジエンよりなる群から選ばれた少なくとも1種を重合成分とする単独重合体樹脂又は共重合体樹脂を含有する粘着剤(例えば、ポリイソブテン系粘着剤等)を使用するのがより好ましい(ポリイソブテン系粘着剤を用いた実施例3~5と熱硬化型樹脂接着剤を用いた実施例1~2とを対比参照のこと)。
 本発明に係る接着層は、イソプレン、イソブテン、及びブタジエンよりなる群から選ばれた少なくとも1種を重合成分とする単独重合体樹脂又は共重合体樹脂を含有することが耐透湿性を向上させる上で好ましい。また、熱硬化型樹脂(例えば、エポキシ系樹脂)等の接着剤は、湿度耐性の点で優れるものであるが、湿度耐性を向上するにはより硬くする必要があり、フレキシブル性を向上する観点からは、柔軟性に加え粘着性があり、耐透湿性に優れる上記イソプレン等を重合成分とする樹脂を含有するものがよい。
 また、前記接着層は、耐透湿性の観点から吸湿性金属酸化物、イオン液体、無機充填剤及び硬化促進剤等を含有してもよい。
 〔イソプレン、イソブテン、及びブタジエンよりなる群から選ばれた少なくとも1種を重合成分とする単独重合体樹脂又は共重合体樹脂〕
 本発明において好ましく使用されるイソプレン、イソブテン、及びブタジエンよりなる群から選ばれた少なくとも1種を重合成分とする単独重合体樹脂又は共重合体樹脂とは、イソプレン、イソブテン、及びブタジエンよりなる群から選ばれた少なくとも1種を主体とするポリマーである。
 イソプレン、イソブテン、及びブタジエンよりなる群から選ばれた少なくとも1種を主体とするポリマーには、それぞれの単独重合体であるポリイソプレン樹脂(IR)、ポリイソブテン樹脂、ポリブタジエン樹脂(BR)があり、これらの共重合体(例えばポリイソブテン-イソプレン共重合体(IIR))がある。
 またイソプレン、イソブテン、及びブタジエンよりなる群から選ばれた少なくとも1種とそれ以外の単量体成分からなる共重合体でもよい。イソプレン、イソブテン、及びブタジエンよりなる群から選ばれたもの以外の単量体成分としては、スチレン、エチレン、プロピレン、アクリロニトリル、塩化ビニル、臭化ビニル、水添スチレン、ペンタジエン、シクロペンタジエン、ジシクロペンタジエン等が例示でき、これらは1種又は2種以上を使用することができる。イソプレン、イソブテン、及びブタジエンよりなる群から選ばれた少なくとも1種とそれ以外の単量体成分からなる共重合体としては、例えばポリスチレン-ブタジエン共重合体(SBR)やポリブタジエン-アクリロニトリル共重合体(NBR)がある。
 上記共重合体においてイソプレン、イソブテン、及びブタジエンよりなる群から選ばれた少なくとも1種の占める割合は、ポリマー全体の50質量%以上が好ましく、より好ましくは60質量%以上、さらに好ましくは80質量%以上、とりわけ好ましくは90質量%以上である。
 上記イソプレン、イソブテン、及びブタジエンよりなる群から選ばれた少なくとも1種を主体とするポリマーはイソブテンを主体とする重合体が好ましい。
 上記イソプレン、イソブテン、及びブタジエンよりなる群から選ばれた少なくとも1種を主体とするポリマーは市販品として、オパノールB12、B15、B50、B80、B100、B120、B150、B220(BASF社製)、JSRブチル065、268、365(JSR社製)、ビスタネックスLM-MS,MH,H、MML-80,100,120,140(エクソン・ケミカル社製)、HYCAR(グッドリッチ社製)、SIBSTAR T102(カネカ社製)、Tetrax3T(新日本石油社製)、クラプレンLIR-50(クラレ社製)、などが挙げられる。これらは1種または2種以上を組み合わせて使用してもよい。
 上記イソプレン、イソブテン、及びブタジエンよりなる群から選ばれた少なくとも1種を主体とするポリマーの粘度平均分子量には本発明の効果を発現させるために適する範囲があり、上限は、1,200,000以下が好ましく、1,100,000以下がより好ましく、1,000,000以下が更に好ましい。下限は100,000以上が好ましく、200,000以上がより好ましく、300,000以上が更に好ましい。また、室温(25℃)で固体状であるのが好ましい。なお本発明における粘度平均分子量は、常法に従って、所定温度でのポリマー希薄溶液の粘度を測定し得られた極限粘度の値から粘度式を用いて求められる。または、樹脂の溶融粘度からフローリーの溶融粘度式によっても求められる。
 また本発明のイソプレン、イソブテン、及びブタジエンよりなる群から選ばれた少なくとも1種を重合成分とする単独重合体樹脂又は共重合体樹脂にはさらにエポキシ基と反応し得る官能基を有するイソプレン、イソブテン、及びブタジエンよりなる群から選ばれた少なくとも1種を重合成分とする単独重合体樹脂又は共重合体樹脂を含有させても良い。更に他の樹脂、例えば、テルペン樹脂、変性テルペン樹脂(水素添加テルペン樹脂、テルペンフェノール共重合樹脂、芳香族変性テルペン樹脂等)、クマロン樹脂、インデン樹脂、石油樹脂(脂肪族系石油樹脂、水添脂環式石油樹脂、芳香族系石油樹脂、脂肪族芳香族共重合系石油樹脂、脂環族系石油樹脂、ジシクロペンタジエン系石油樹脂およびその水素化物等)等の樹脂を含有させてもよい。他の樹脂は市販品を用いてもよく、テルペン樹脂として、YSレジンPX、YSレジンPXN(いずれもヤスハラケミカル社製)等が挙げられ、芳香族変性テルペン樹脂として、YSレジンTO、TRシリーズ(いずれもヤスハラケミカル社製)等が挙げられ、水素添加テルペン樹脂として、クリアロンP、クリアロンM、クリアロンKシリーズ(いずれもヤスハラケミカル社製)等が挙げられ、テルペンフェノール共重合樹脂として、YSポリスター2000、ポリスターU、ポリスターT、ポリスターS、マイティエースG(いずれもヤスハラケミカル社製)等が挙げられ、水添脂環式石油樹脂として、Escorez(登録商標)5300シリーズ、5600シリーズ(いずれもエクソンモービル社製)、芳香族系石油樹脂としてENDEX(登録商標)155(イーストマン社製)、脂肪族芳香族共重合系石油樹脂としてQuintoneD100(日本ゼオン社製)、脂環族系石油樹脂としてQuintone1345(日本ゼオン社製)などが挙げられる。
 上記のエポキシ基と反応し得る官能基としては極性基を有するものが好ましく、例えば、酸無水物基[-C(O)-O-C(O)-]、カルボキシ基、エポキシ基、アミノ基、ヒドロキシ基、メルカプト基、スルフィド基、イソシアネート基、ブロックイソシアネート基、オキサゾリン基、オキセタン基、シアネート基、フェノール基[-Ph-OH]、ヒドラジド基、アミド基、イミダゾール基等が挙げられ、これらはいずれか1種であっても、2種以上であってもよい。上記のエポキシ基と反応し得る官能基としては酸無水物基が好ましい。
 エポキシ基と反応し得る官能基を持つイソプレン、イソブテン、及びブタジエンよりなる群から選ばれた少なくとも1種を重合成分とする単独重合体樹脂又は共重合体樹脂の具体例としては、無水マレイン酸変性ポリイソブテン、無水フタル酸変性ポリイソブテン、メルカプト基変性ポリイソブテン、無水マレイン酸変性ポリイソプレン、エポキシ変性ポリイソプレン、ヒドロキシ基変性ポリイソプレン、アリル変性ポリイソプレン、無水マレイン酸変性ポリブタジエン、エポキシ変性ポリブタジエン、ヒドロキシ基変性ポリブタジエン等が挙げられ、なかでも、無水マレイン酸変性ポリイソブテン、無水マレイン酸変性ポリイソプレン、無水マレイン酸変性ポリブタジエンが好ましい。これらは1種又は2種以上組み合わせて使用してもよい。
 エポキシ基と反応し得る官能基を持つイソプレン、イソブテン、及びブタジエンよりなる群から選ばれた少なくとも1種を重合成分とする単独重合体樹脂又は共重合体樹脂の数平均分子量は、本発明の効果を発現させるために適する範囲があり、上限は100,000以下が好ましく、50,000以下が更に好ましく、下限は300以上が好ましく、700以上が更に好ましい。
 なお、本発明における数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレン換算)で測定される。GPC法による数平均分子量は、具体的には、測定装置として(株)島津製作所製LC-9A/RID-6Aを、カラムとして昭和電工社製Shodex K-800P/K-804L/K-804Lを、移動相としてクロロホルム等を用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。
 エポキシ基と反応し得る官能基を持つイソプレン、イソブテン、及びブタジエンよりなる群から選ばれた少なくとも1種を重合成分とする単独重合体樹脂又は共重合体樹脂として使用できる市販品としては、無水マレイン酸変性ポリイソブテン:HV-100M、HV-300M(以上、新日本石油社製)、無水マレイン酸変性ポリイソプレン:クラプレンLIR-403、LIR-410(以上、クラレ社製)、ヒドロキシ基変性ポリイソプレン:クラプレンLIR-506(クラレ社製)、アリル変性ポリイソプレン:クラプレンUC-203、UC-102(以上、クラレ社製)、エポキシ変性イソプレン共重合ポリマー:クラプレンKLP L-207(クラレ社製)、無水マレイン酸変性ブタジエン:Ricon130MA8、Ricon131MA5(以上、クレイバレー社製)、無水マレイン酸変性ブタジエン-スチレン共重合ポリマー:Ricon184MA6(クレイバレー社製)、エポキシ変性ポリブタジエン:Ricon657(クレイバレー社製)などが挙げられる。
 エポキシ基と反応し得る官能基を持つイソプレン、イソブテン、及びブタジエンよりなる群から選ばれた少なくとも1種を重合成分とする単独重合体樹脂又は共重合体樹脂の含有量は、接着層中の不揮発分100質量%に対し、上限としては50質量%以下が好ましく、10質量%以下がさらに好ましく、下限としては0.1質量%以上が好ましく、3質量%以上が更に好ましい。
 〔紫外線(UV)硬化型樹脂〕
 紫外線(UV)硬化型樹脂は、紫外線照射により架橋反応等を経て硬化する樹脂で、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられる。例えば、アクリルウレタン系樹脂、ポリエステルアクリレート系樹脂、エポキシアクリレート系樹脂、ポリオールアクリレート系樹脂等の種々のUV硬化性樹脂が挙げられる。中でも、接着層の形成に使用できる接着剤(紫外線硬化型樹脂を含む樹脂組成物)として、アクリル系、アクリルウレタン系のUV硬化型樹脂を主成分とすることが好ましい。
 アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、またはプレポリマーを反応させて得られた生成物にさらに2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2-ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。例えば、特開昭59-151110号に記載のものを用いることができる。例えば、ユニディック17-806(大日本インキ(株)製)100部とコロネート(登録商標)L(日本ポリウレタン(株)製)1部との混合物等が好ましく用いられる。
 紫外線硬化型ポリエステルアクリレート系樹脂としては、一般にポリエステルポリオールに2-ヒドロキシエチルアクリレート、2-ヒドロキシアクリレート系のモノマーを反応させると容易に形成されるものを挙げることができ、特開昭59-151112号に記載のものを用いることができる。
 紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光反応開始剤を添加し、反応させて生成するものを挙げることができ、特開平1-105738号に記載のものを用いることができる。
 紫外線硬化型ポリオールアクリレート系樹脂の具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。
 樹脂モノマー(上記エチレン性不飽和二重結合を有するモノマー)としては、例えば、不飽和二重結合を一つ持つモノマーとして、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、酢酸ビニル、スチレン等の一般的なモノマーを挙げることができる。また不飽和二重結合を二つ以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4-シクロヘキサンジアクリレート、1,4-シクロヘキシルジメチルアジアクリレート、前出のトリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることができる。
 これらの中で、接着層の形成に使用できる接着剤(紫外線硬化型樹脂を含む樹脂組成物)の主成分として、1,4-シクロヘキサンジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート、トリメチロールエタン(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3-シクロヘキサンテトラ(メタ)アクリレート、ポリウレタンポリ(メタ)アクリレート、ポリエステルポリ(メタ)アクリレートから選択されるアクリル系の紫外線硬化樹脂が好ましい。
 これら紫外線硬化型樹脂の光反応開始剤としては、具体的には、ベンゾイン及びその誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α-アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。光増感剤と共に使用してもよい。上記光反応開始剤も光増感剤として使用できる。また、エポキシアクリレート系の光反応開始剤の使用の際、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン等の増感剤を用いることができる。紫外線硬化型樹脂を含む樹脂組成物に用いられる光反応開始剤また光増感剤は該組成物100質量部に対して0.1~15質量部であり、好ましくは1~10質量部である。
 封止フィルムと機能素子本体とを接着(貼合)し、紫外線等を照射して接着剤を硬化することにより、封止フィルムで封止された機能素子を得ることができる。ここで、接着方法は特に限定されることなく、シートプレス、ロールプレス等により行うことができるが、ロールプレス機を用いて行うことが好ましい。ロールプレスは、ロールとロールの間に接着すべきフィルムを挟んで圧着し、ロールを回転させる方法である。ロールプレスは均一に圧力がかけられ、シートプレスよりも生産性が良く好適に用いることができる。
 〔熱硬化性樹脂〕
 熱硬化性樹脂は、特に制限はなく、具体的には、エポキシ樹脂、シアネートエステル樹脂、フェノール樹脂、ビスマレイミド-トリアジン樹脂、ポリイミド樹脂、アクリル樹脂、ビニルベンジル樹脂等の種々の熱硬化性樹脂が挙げられる。中でも、低温硬化性や接着性等の観点から、エポキシ樹脂が好ましい。
 エポキシ樹脂としては、平均して1分子当り2個以上のエポキシ基を有するものであればよく、具体的には、ビスフェノールA型エポキシ樹脂(例えば、液状ビスフェノールA型エポキシ樹脂:ジャパンエポキシレジン社製「828EL」)、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂(例えば、日本化薬社製「NC3000」)、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、リン含有エポキシ樹脂、ビスフェノールS型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂(具体的には、テトラグリシジルジアミノジフェニルメタン、トリグリシジル-p-アミノフェノール、ジグリシジルトルイジン、ジグリシジルアニリン等、例えば、オルソトルイジンジグリシジルアミン:日本化薬社製「GOT」)、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ジシクロペンタジエン構造を有するエポキシ樹脂、ビスフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノール類のグリシジルエーテル化物、及びアルコール類のジグリシジルエーテル化物、並びにこれらのエポキシ樹脂のアルキル置換体、ハロゲン化物及び水素添加物等が挙げられる。これらは1種又は2種以上を組み合わせて使用してもよい。
 これらの中でも、接着層を構成する樹脂組成物の高い耐熱性及び低い透湿性を保つ等の観点から、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂、ジシクロペンタジエン構造を有するエポキシ樹脂等が好ましい。
 また、エポキシ樹脂は、液状であっても、固形状であっても、液状と固形状の両方を用いてもよい。ここで、「液状」及び「固形状」とは、25℃でのエポキシ樹脂の状態である。塗工性、加工性、接着性等の観点から、使用するエポキシ樹脂全体の10質量%以上が液状であるのが好ましい。
 また、エポキシ樹脂は反応性の観点から、エポキシ当量が100~1000の範囲のものが好ましく、より好ましくは120~1000の範囲のものである。ここでエポキシ当量とは1グラム当量のエポキシ基を含む樹脂のグラム数(g/eq)であり、JIS K-7236:2009に規定された方法に従って測定されるものである。
 [硬化剤]
 エポキシ樹脂の硬化剤としては、エポキシ樹脂を硬化する機能を有するものであれば特に限定されないが、樹脂組成物の硬化処理時における素子(特に有機EL素子)の熱劣化を抑制する観点から、樹脂組成物の硬化処理は好ましくは140℃以下、より好ましくは120℃以下で行うのが好ましく、硬化剤はかかる温度領域にてエポキシ樹脂の硬化作用を有するものが好ましい。
 具体的には、一級アミン、二級アミン、三級アミン系硬化剤、ポリアミノアミド系硬化剤、ジシアンジアミド、有機酸ジヒドラジド等が挙げられるが、中でも、速硬化性の観点から、アミンアダクト系化合物(アミキュアPN-23、アミキュアMY-24、アミキュアPN-D、アミキュアMY-D、アミキュアPN-H、アミキュアMY-H、アミキュアPN-31、アミキュアPN-40、アミキュアPN-40J(固体分散型硬化剤)等(いずれも味の素ファインテクノ社製))、有機酸ジヒドラジド(アミキュアVDH-J(固体分散型硬化剤)、アミキュアUDH、アミキュアLDH等(いずれも味の素ファインテクノ社製))等が好ましい。これらは1種又は2種以上組み合わせて使用してもよい。
 また、接着層が、上記エポキシ樹脂と、前記したエポキシ基と反応し得る官能基を持つ、イソプレン、イソブテン、及びブタジエンよりなる群から選ばれた少なくとも1種を重合成分とする単独重合樹脂又は共重合樹脂と、を含有することが好ましい。接着層をこのような構成とすることで、封止フィルムの耐透湿性を上げるとともに、封止フィルムのポアソン比を上げる効果も見られ、折り曲げ耐性を向上させることができる。
 [熱可塑性樹脂]
 本発明の接着層には、硬化物へのフレキシブル性の付与等の観点から、熱可塑性樹脂を含有させることができる。熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂等を挙げることができる。これらの熱可塑性樹脂はいずれか1種を使用しても2種以上を混合して用いてもよい。熱可塑性樹脂は可撓性の付与の点から、重量平均分子量は30,000以上が好ましく、50,000以上がより好ましい。しかし、重量平均分子量が大きすぎると、エポキシ樹脂との相溶性が低下する等の傾向があることから、重量平均分子量は1,000,000以下であるのが好ましく、800,000以下がより好ましい。
 なお、ここでいう「熱可塑性樹脂の重量平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレン換算)で測定される。GPC法による重量平均分子量は、具体的には、測定装置として(株)島津製作所製LC-9A/RID-6Aを、カラムとして昭和電工(株)製Shodex K-800P/K-804L/K-804Lを、移動相としてクロロホルム等を用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。
 熱可塑性樹脂は上述した例示物の中でもフェノキシ樹脂が特に好ましい。フェノキシ樹脂としては、ビスフェノールA骨格、ビスフェノールF骨格、ビスフェノールS骨格、ビスフェノールアセトフェノン骨格、ノボラック骨格、ビフェニル骨格、フルオレン骨格、ジシクロペンタジエン骨格、ノルボルネン骨格、ナフタレン骨格、アントラセン骨格、アダマンタン骨格、テルペン骨格、トリメチルシクロヘキサン骨格から選択される1種以上の骨格を有するものが挙げられる。フェノキシ樹脂は2種以上を混合して用いてもよい。
 フェノキシ樹脂の市販品としては、例えば、ジャパンエポキシレジン(株)製1256、4250(ビスフェノールA骨格含有フェノキシ樹脂)、ジャパンエポキシレジン(株)製YX8100(ビスフェノールS骨格含有フェノキシ樹脂)、ジャパンエポキシレジン(株)製YX6954(ビスフェノールアセトフェノン骨格含有フェノキシ樹脂)、ユニオンカーバイド社製PKHH(重量平均分子量(Mw)42600、数平均分子量(Mn)11200)等が好適であり、東都化成(株)製FX280、FX293、ジャパンエポキシレジン(株)製YL7553BH30、YL6794、YL7213、YL7290、YL7482等も挙げることができる。
 本発明の接着層において、熱可塑性樹脂を使用する場合、熱可塑性樹脂の含有量は、樹脂組成物中の不揮発分100質量%に対し、1~50質量%が好ましく、3~25質量%がより好ましい。1質量%以上であれば、熱可塑性樹脂を配合することによる効果が十分に得られ、50質量%以下であれば、硬化物の透湿性などが低下するのを効果的に防止することができる。
 〔吸湿性金属酸化物〕
 本発明に係る接着層は、透湿性を調整する観点から吸湿性の金属酸化物を含有することも好ましい。
 本発明でいう「吸湿性金属酸化物」とは、水分を吸収する能力をもち、吸湿した水分と化学反応して水酸化物になる金属酸化物のことであり、具体的には、酸化カルシウム、酸化マグネシウム、酸化ストロンチウム、酸化アルミニウム及び酸化バリウムから選ばれる1種か、又は、これらから選ばれる2種以上の金属酸化物の混合物若しくは固溶物である。2種以上の金属酸化物の混合物若しくは固溶物の例としては、具体的には、焼成ドロマイト(酸化カルシウム及び酸化マグネシウムを含む混合物)、焼成ハイドロタルサイト(酸化カルシウムと酸化アルミニウムの固溶物)等が挙げられる。このような吸湿性金属酸化物は、種々の技術分野において吸湿材として公知であり、市販品を使用することができる。具体的には、焼成ドロマイト(吉澤石灰社製「KT」等)、酸化カルシウム(三共製粉社製「モイストップ#10」等)、酸化マグネシウム(協和化学工業社製「キョーワマグ(登録商標)MF-150」、「キョーワマグ(登録商標)MF-30」、タテホ化学工業社製「ピュアマグ(登録商標)FNMG」等)、軽焼酸化マグネシウム(タテホ化学工業社製の「#500」、「#1000」、「#5000」等)等が挙げられる。
 吸湿性金属酸化物の平均粒径は特に限定はされないが、10μm以下が好ましく、5μm以下がより好ましく、1μm以下が更に好ましい。
 また、吸湿性金属酸化物は、ステアリン酸等の高級脂肪酸、公知のアルキルシラン類やシランカップリング剤等の表面処理剤で表面処理したものを用いることができる。このような表面処理を行うことで、樹脂中の水分と吸湿性金属酸化物が反応してしまうことを防止できる。
 接着層中の吸湿性金属酸化物の含有量は、接着層を構成する樹脂組成物中の不揮発分100質量%に対して1~40質量%の範囲が好ましい。
 〔イオン液体〕
 本発明におけるイオン液体は、熱可塑性樹脂の硬化剤としての機能を有する添加剤である。
 当該イオン液体は、140℃以下(好ましくは120℃以下)の温度領域で融解しうる塩である。イオン液体は、例えば上述した熱硬化性樹脂であるエポキシ樹脂の硬化作用を有する塩が特に好適に使用され、接着層の硬化物の耐透湿性向上に有利に作用する。なお、イオン液体は上記エポキシ樹脂に当該イオン液体を均一に溶解している状態で使用されるのが望ましい。
 かかるイオン液体を構成するカチオンとしては、イミダゾリウムイオン、ピリミジニウムイオン、ピリジニウムイオン、ピロリジニウムイオン、ピペリジニウムイオン、ピラゾニウムイオン、グアニジニウムイオン等のアンモニウム系カチオン;テトラアルキルホスホニウムカチオン(例えば、テトラブチルホスホニウムイオン、トリブチルヘキシルホスホニウムイオン等)等のホスホニウム系カチオン;トリエチルスルホニウムイオン等のスルホニウム系カチオン等が挙げられる。
 アンモニウム系カチオンの具体例としては、例えば、1,3-ジメチルイミダゾリウムカチオン、1,3-ジエチルイミダゾリウムカチオン、1-エチル-3-メチルイミダゾリウムカチオン、1-プロピル-3-メチルイミダゾリウムイオン、1-ブチル-3-メチルイミダゾリウムカチオン、1-ヘキシル-3-メチルイミダゾリウムカチオン、1-オクチル-3-メチルイミダゾリウムカチオン、1-デシル-3-メチルイミダゾリウムカチオン、1-ドデシル-3-メチルイミダゾリウムカチオン、1-テトラデシル-3-メチルイミダゾリウムカチオン、1,2-ジメチル-3-プロピルイミダゾリウムカチオン、1-エチル-2,3-ジメチルイミダゾリウムカチオン、1-ブチル-2,3-ジメチルイミダゾリウムカチオン、1-ヘキシル-2,3-ジメチルイミダゾリウムカチオン、1,3-ジメチル-1,4,5,6-テトラヒドロピリミジニウムカチオン、1,2,3-トリメチル-1,4,5,6-テトラヒドロピリミジニウムカチオン、1,2,3,4-テトラメチル-1,4,5,6-テトラヒドロピリミジニウムカチオン、1,2,3,5-テトラメチル-1,4,5,6-テトラヒドロピリミジニウムカチオン、1,3-ジメチル-1,4-ジヒドロピリミジニウムカチオン、1,3-ジメチル-1,6-ジヒドロピリミジニウムカチオン、1,2,3-トリメチル-1,4-ジヒドロピリミジニウムカチオン、1,2,3-トリメチル-1,6-ジヒドロピリミジニウムカチオン、1,2,3,4-テトラメチル-1,4-ジヒドロピリミジニウムカチオン、1,2,3,4-テトラメチル-1,6-ジヒドロピリミジニウムカチオン、1-エチルピリジニウムカチオン、1-ブチルピリジニウムカチオン、1-ヘキシルピリジニウムカチオン、1-ブチル-3-メチルピリジニウムカチオン、1-ブチル-4-メチルピリジニウムカチオン、1-ヘキシル-3-メチルピリジニウムカチオン、1-ブチル-3,4-ジメチルピリジニウムカチオン、1,1-ジメチルピロリジニウムカチオン、1-エチル-1-メチルピロリジニウムカチオン、1-メチル-1-プロピルピロリジニウムカチオン、1-メチル-1-ブチルピロリジニウムカチオン、1-メチル-1-ペンチルピロリジニウムカチオン、1-メチル-1-ヘキシルピロリジニウムカチオン、1-メチル-1-ヘプチルピロリジニウムカチオン、1-エチル-1-プロピルピロリジニウムカチオン、1-エチル-1-ブチルピロリジニウムカチオン、1-エチル-1-ペンチルピロリジニウムカチオン、1-エチル-1-ヘキシルピロリジニウムカチオン、1-エチル-1-ヘプチルピロリジニウムカチオン、1,1-ジプロピルピロリジニウムカチオン、1-プロピル-1-ブチルピロリジニウムカチオン、1,1-ジブチルピロリジニウムカチオン、1-プロピルピペリジニウムカチオン、1-ペンチルピペリジニウムカチオン、1,1-ジメチルピペリジニウムカチオン、1-メチル-1-エチルピペリジニウムカチオン、1-メチル-1-プロピルピペリジニウムカチオン、1-メチル-1-ブチルピペリジニウムカチオン、1-メチル-1-ペンチルピペリジニウムカチオン、1-メチル-1-ヘキシルピペリジニウムカチオン、1-メチル-1-ヘプチルピペリジニウムカチオン、1-エチル-1-プロピルピペリジニウムカチオン、1-エチル-1-ブチルピペリジニウムカチオン、1-エチル-1-ペンチルピペリジニウムカチオン、1-エチル-1-ヘキシルピペリジニウムカチオン、1-エチル-1-ヘプチルピペリジニウムカチオン、1,1-ジプロピルピペリジニウムカチオン、1-プロピル-1-ブチルピペリジニウムカチオン、1,1-ジブチルピペリジニウムカチオン、1-メチルピラゾリウムカチオン、3-メチルピラゾリウムカチオン、1-エチル-2-メチルピラゾリニウムカチオン、1-エチル-2,3,5-トリメチルピラゾリウムカチオン、1-プロピル-2,3,5-トリメチルピラゾリウムカチオン、1-ブチル-2,3,5-トリメチルピラゾリウムカチオン、1-エチル-2,3,5-トリメチルピラゾリニウムカチオン、1-プロピル-2,3,5-トリメチルピラゾリニウムカチオン、1-ブチル-2,3,5-トリメチルピラゾリニウムカチオンなどが挙げられる。
 上述の中でも、カチオンは、アンモニウム系カチオン、ホスホニウム系カチオンが好ましく、イミダゾリウムイオン、ホスホニウムイオンがより好ましい。
 また、かかるイオン液体を構成するアニオンとしては、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等のハロゲン化物系アニオン;メタンスルホン酸イオン等のアルキル硫酸系アニオン;トリフルオロメタンスルホン酸イオン、ヘキサフルオロホスホン酸イオン、トリフルオロトリス(ペンタフルオロエチル)ホスホン酸イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、トリフルオロ酢酸イオン、テトラフルオロホウ酸イオン等の含フッ素化合物系アニオン;フェノールイオン、2-メトキシフェノールイオン、2,6-ジ-tert-ブチルフェノールイオン等のフェノール系アニオン;アスパラギン酸イオン、グルタミン酸イオン等の酸性アミノ酸イオン;グリシンイオン、アラニンイオン、フェニルアラニンイオン等の中性アミノ酸イオン;N-ベンゾイルアラニンイオン、N-アセチルフェニルアラニンイオン、N-アセチルグリシンイオン等の下記一般式(1)で示されるN-アシルアミノ酸イオン;ギ酸イオン、酢酸イオン、デカン酸イオン、2-ピロリドン-5-カルボン酸イオン、α-リポ酸イオン、乳酸イオン、酒石酸イオン、馬尿酸イオン、N-メチル馬尿酸イオン、安息香酸イオン等のカルボン酸系アニオンが挙げられる。
Figure JPOXMLDOC01-appb-C000005
 ここで、上記一般式(1)中、R-CO-は、炭素数1~5の直鎖又は分岐鎖の脂肪酸より誘導されるアシル基、又は置換又は無置換ベンゾイル基であり、-NH-CHX-CO は、アスパラギン酸、グルタミン酸等の酸性アミノ酸イオン、又はグリシン、アラニン、フェニルアラニン等の中性アミノ酸イオンである。
 また、アニオンは、一般式(1)で示されるN-アシルアミノ酸イオン又はカルボン酸系アニオンが好ましい。
 カルボン酸系アニオンの具体例としては、酢酸イオン、デカン酸イオン、2-ピロリドン-5-カルボン酸イオン、ギ酸イオン、α-リポ酸イオン、乳酸イオン、酒石酸イオン、馬尿酸イオン、N-メチル馬尿酸イオン等が挙げられ、中でも、酢酸イオン、2-ピロリドン-5-カルボン酸イオン、ギ酸イオン、乳酸イオン、酒石酸イオン、馬尿酸イオン、N-メチル馬尿酸イオンが好ましく、酢酸イオン、N-メチル馬尿酸イオン、ギ酸イオンがより好ましい。また、一般式(1)で示されるN-アシルアミノ酸イオンの具体例としては、N-ベンゾイルアラニンイオン、N-アセチルフェニルアラニンイオン、アスパラギン酸イオン、グリシンイオン、N-アセチルグリシンイオン等が挙げられ、中でも、N-ベンゾイルアラニンイオン、N-アセチルフェニルアラニンイオン、N-アセチルグリシンイオンが好ましく、N-アセチルグリシンイオンがより好ましい。
 具体的なイオン液体としては、例えば、1-ブチル-3-メチルイミダゾリウムラクテート、テトラブチルホスホニウム-2-ピロリドン-5-カルボキシレート、テトラブチルホスホニウムアセテート、テトラブチルホスホニウムデカノエート、テトラブチルホスホニウムトリフルオロアセテート、テトラブチルホスホニウムα-リポエート、ギ酸テトラブチルホスホニウム塩、テトラブチルホスホニウムラクテート、酒石酸ビス(テトラブチルホスホニウム)塩、馬尿酸テトラブチルホスホニウム塩、N-メチル馬尿酸テトラブチルホスホニウム塩、ベンゾイル-DL-アラニンテトラブチルホスホニウム塩、N-アセチルフェニルアラニンテトラブチルホスホニウム塩、2,6-ジ-tert-ブチルフェノールテトラブチルホスホニウム塩、L-アスパラギン酸モノテトラブチルホスホニウム塩、グリシンテトラブチルホスホニウム塩、N-アセチルグリシンテトラブチルホスホニウム塩、1-エチル-3-メチルイミダゾリウムラクテート、1-エチル-3-メチルイミダゾリウムアセテート、ギ酸1-エチル-3-メチルイミダゾリウム塩、馬尿酸1-エチル-3-メチルイミダゾリウム塩、N-メチル馬尿酸1-エチル-3-メチルイミダゾリウム塩、酒石酸ビス(1-エチル-3-メチルイミダゾリウム)塩、N-アセチルグリシン1-エチル-3-メチルイミダゾリウム塩が好ましく、N-アセチルグリシンテトラブチルホスホニウム塩、1-エチル-3-メチルイミダゾリウムアセテート、ギ酸1-エチル-3-メチルイミダゾリウム塩、馬尿酸1-エチル-3-メチルイミダゾリウム塩、N-メチル馬尿酸1-エチル-3-メチルイミダゾリウム塩がより好ましい。
 上記イオン液体の合成法としては、アルキルイミダゾリウム、アルキルピリジニウム、アルキルアンモニウム及びアルキルスルホニウムイオン等のカチオン部位と、ハロゲンを含むアニオン部位から構成される前駆体に、NaBF、NaPF、CFSONaやLiN(SOCF等を反応させるアニオン交換法、アミン系物質と酸エステルとを反応させてアルキル基を導入しつつ、有機酸残基が対アニオンになるような酸エステル法、及びアミン類を有機酸で中和して塩を得る中和法等があるがこれらに限定されない。アニオンとカチオンと溶媒による中和法では、アニオンとカチオンとを等量使用し、得られた反応液中の溶媒を留去して、そのまま用いることも可能であるし、更に有機溶媒(メタノール、トルエン、酢酸エチル、アセトン等)を差し液濃縮しても構わない。
 本発明に用いられるイオン液体の含有量は、接着層を構成する熱硬化性樹脂を含む樹脂組成物の総量(不揮発分)に対し0.1~50質量%の範囲が好ましく、0.5~25質量%の範囲がより好ましい。この範囲内であれば、接着層の保存安定性が損なわれない。
 〔無機充填剤〕
 接着層を構成する樹脂組成物には、更にタルク、クレー、マイカ、ベーマイト等の粒子形態が平板状の無機充填剤を含有させることができ、接着層の耐透湿性をより一層高めることができる。
 [ゴム粒子]
 接着層を構成する樹脂組成物には、さらにゴム粒子を含有させることができ、ゴム粒子を含有させることにより、接着層の機械強度の向上や応力緩和等を図ることができる。当該ゴム粒子は、コアシェル型ゴム粒子を用いることが好ましく、具体例としては、スタフィロイドAC3832、AC3816N(以上、アイカ工業社製)、メタブレンKW-4426(三菱レイヨン社製)、F351(日本ゼオン社製)等が挙げられる。アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、XER-91(JSR社製)などが挙げられる。スチレンブタジエンゴム(SBR)粒子の具体例としては、XSK-500(JSR社製)などが挙げられる。アクリルゴム粒子の具体例としては、メタブレンW300A、W450A(以上、三菱レイヨン社製)を挙げることができる。
 〔硬化促進剤〕
 本発明に係る接着層を構成する樹脂組成物においては、硬化温度、硬化時間等の調整のため、さらに硬化促進剤を含んでいても良い。硬化促進剤としてはテトラメチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド等の4級アンモニウム塩、テトラフェニルホスホニウムブロマイド、テトラブチルホスホニウムブロマイド等の4級スルホニウム塩、DBU(1,8-ジアザビシクロ(5.4.0)ウンデセン-7)、DBN(1,5-ジアザビシクロ(4.3.0)ノネン-5)、DBU-フェノール塩、DBU-オクチル酸塩、DBU-p-トルエンスルホン酸塩、DBU-ギ酸塩、DBU-フェノールノボラック樹脂塩等のジアザビシクロ化合物、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール化合物、トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン等の3級アミン、芳香族ジメチルウレア、脂肪族ジメチルウレア、芳香族ジメチルウレア等のジメチルウレア化合物等が挙げられる。
 硬化促進剤を使用する場合の含有量は、接着層を構成する熱硬化性樹脂を含む樹脂組成物の総量に対し、0.01~7質量%の範囲である。
 〔接着層の形成方法〕
 本発明に係る接着層は、当該接着層を構成する樹脂組成物を溶解した樹脂液を調製して、上述したガスバリア層上に塗布、乾燥して形成することが好ましい。具体的には、ガスバリア層上にイソプレン、イソブテン又はブタジエンの少なくとも1種を重合成分とする単独重合樹脂又は共重合樹脂を含有する樹脂液を塗布、乾燥して接着層を形成することが好ましい。
 また、接着層のガスバリア層とは反対側の面に剥離可能なセパレーターフィルムのような層(後述する保護フィルム)を設ける場合には、該剥離可能なセパレーターフィルム上に当該接着層を構成する樹脂組成物を溶解した樹脂液を塗布、乾燥して形成した接着層をガスバリア層上に貼り合わせて形成してもよい。
 樹脂液の調製に使用する有機溶媒としては、具体的には、アセトン、メチルエチルケトン(以下、「MEK」とも略称する)、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等を挙げることができる。これらは1種又は2種以上組み合わせて使用してもよい。例えば、芳香族炭化水素類を2種以上組み合わせたものである芳香族系混合溶媒:イプゾール150(出光興産株式会社製)などを使用することができる。
 塗布方法としては、任意の適切な方法が採用され得る。具体例としては、ローラーコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
 乾燥条件は特に制限はないが、50~100℃で3~15分が好適である。
 本発明に係る接着層の厚さは特に限定されないが、素子基板上の凸凹を十分に埋めることができ、更に外気との接触面積を小さくすることで、水分を遮断するという観点から、1~100μmの範囲が好ましいが、更にフレキシブル性をも付与させる観点からは、1~50μmの範囲がより好ましく、1~5μmの範囲が更に好ましい。
 また、接着層が不必要に他の部分に接触しないように、接着層から剥離可能なセパレーターフィルムを保護フィルムとして本発明の封止フィルム上に用いることが好ましい。セパレーターフィルムは、PET(ポリエチレンテレフタレート)フィルムなど公知のものを使用することができる。
 [可撓性を有する基材]
 本発明に係る可撓性を有する基材としては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂を含む基材が挙げられる。こうした可撓性を有する基材は、単独でもまたは2種以上組み合わせても用いることができる。
 可撓性を有する基材は耐熱性を有する素材からなることが好ましい。具体的には、線膨張係数が15ppm/K以上100ppm/K以下で、かつガラス転移温度(Tg)が100℃以上300℃以下の耐熱性を有する素材からなる基材が使用される。耐熱性及び可撓性を備えた基材は、折り曲げたり、巻物形状にしたりできるフレキシブルな機能素子(電子デバイス)を搭載した基板側(=機能素子本体)を封止するための封止フィルム(電子部品用途、ディスプレイ用積層フィルムに適用し得るもの)の基材としての必要条件を満たしている。即ち、これらの用途に本発明に係る封止フィルムを用いる場合、封止フィルムは、150℃以上の工程に曝されることがある。この場合、封止フィルムにおける基材の線膨張係数が100ppm/K以下であれば、封止フィルムを前記のような温度の工程に流す際にも基材寸法が安定化し、熱膨張および収縮に伴い遮断性能が劣化するのを効果的に防止することができ、150℃以上の熱工程にも十分に耐えられる点で優れている。15ppm/K以上であれば、封止フィルムがガラスのように割れることもなく高いフレキシビリティを保持することができる。
 可撓性を有する基材のTgや線膨張係数は、添加剤などによって調整することができる。上記基材として用いることができる熱可塑性樹脂のより好ましい具体例としては、例えば、ポリエチレンテレフタレート(PET:70℃)、ポリエチレンナフタレート(PEN:120℃)、ポリカーボネート(PC:140℃)、脂環式ポリオレフィン(例えば日本ゼオン株式会社製、ゼオノア(登録商標)1600:160℃)、ポリアリレート(PAr:210℃)、ポリエーテルスルホン(PES:220℃)、ポリスルホン(PSF:190℃)、シクロオレフィンコポリマー(COC:特開2001-150584号公報に記載の化合物:162℃)、ポリイミド(例えば三菱ガス化学株式会社製、ネオプリム(登録商標):260℃)、フルオレン環変性ポリカーボネート(BCF-PC:特開2000-227603号公報に記載の化合物:225℃)、脂環変性ポリカーボネート(IP-PC:特開2000-227603号公報に記載の化合物:205℃)、アクリロイル化合物(特開2002-80616号公報に記載の化合物:300℃以上)等が挙げられる(括弧内はTgを示す)。
 本発明に係る封止フィルムは、折り曲げたり、巻物形状にしたりできるフレキシブルな機能素子、例えば、有機EL素子等の電子デバイスや有機薄膜太陽電池等に利用されることから、可撓性を有する基材は透明であることが好ましい。すなわち、光線透過率が通常80%以上、好ましくは85%以上、さらに好ましくは90%以上である。光線透過率は、JIS K7375:2008に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率および散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。
 ただし、本発明に係る封止フィルムをフレキシブルなディスプレイ用途に用いる場合であっても、観察側に設置しない場合などは必ずしも透明性が要求されない。したがって、このような場合は、可撓性を有する基材(プラスチックフィルム)として不透明な材料を用いることもできる。不透明な材料としては、例えば、ポリイミド、ポリアクリロニトリル、公知の液晶ポリマーなどが挙げられる。
 また、上記に挙げた可撓性を有する基材は、未延伸フィルムでもよく、延伸フィルムでもよい。当該可撓性を有する基材は、従来公知の一般的な方法により製造することが可能である。これらの基材の製造方法については、国際公開第2013/002026号の段落「0051」~「0055」の記載された事項を適宜採用することができる。
 可撓性を有する基材の表面は、密着性向上のための公知の種々の処理、例えばコロナ放電処理、火炎処理、酸化処理、またはプラズマ処理等を行っていてもよく、必要に応じて上記処理を組み合わせて行っていてもよい。また、可撓性を有する基材には易接着処理を行ってもよい。
 該可撓性を有する基材は、単層でもよいし2層以上の積層構造であってもよい。該可撓性を有する基材が2層以上の積層構造である場合、各可撓性を有する基材は同じ種類であってもよいし異なる種類であってもよい。
 本発明に係る可撓性を有する基材の厚さ(2層以上の積層構造である場合はその総厚)は、10~200μmであることが好ましく、20~150μmであることがより好ましい。
 [種々の機能を有する層]
 本発明の封止フィルムにおいては、上述した可撓性を有する基材、ガスバリア層及び接着層以外にも、種々の機能を有する層を設けることができる。
 (アンカーコート層)
 本発明に係るガスバリア層(上記した層(A)および層(B))を形成する側の可撓性を有する基材の表面には、可撓性を有する基材と、ガスバリア層を構成する層(A)または層(B)との密着性の向上を目的として、アンカーコート層を形成してもよい。
 アンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、およびアルキルチタネート等を単独でまたは2種以上組み合わせて使用することができる。
 これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により支持体(可撓性を有する基材)上にコーティングし、溶剤、希釈剤等を乾燥除去することによりアンカーコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1~5.0g/m(乾燥状態)程度が好ましい。
 また、アンカーコート層は、物理蒸着法または化学蒸着法といった気相法により形成することもできる。例えば、特開2008-142941号公報に記載のように、接着性等を改善する目的で酸化珪素を主体とした無機膜を形成することもできる。あるいは、特開2004-314626号公報に記載されているようなアンカーコート層を形成することで、その上に気相法により無機薄膜(上記した層(A)および層(B))を形成する際に、基材側から発生するガスをある程度遮断して、無機薄膜(上記した層(A)および層(B))の組成を制御するといった目的でアンカーコート層を形成することもできる。
 また、アンカーコート層の厚さは、特に制限されないが、0.5~10μm程度が好ましい。
 (ハードコート層)
 可撓性を有する基材の表面(片面または両面)には、ハードコート層を有していてもよい。ハードコート層に含まれる材料の例としては、例えば、熱硬化性樹脂や活性エネルギー線硬化性樹脂が挙げられるが、成形が容易なことから、活性エネルギー線硬化性樹脂が好ましい。このような硬化性樹脂は、単独でもまたは2種以上組み合わせても用いることができる。
 活性エネルギー線硬化性樹脂とは、紫外線や電子線のような活性エネルギー線照射により架橋反応等を経て硬化する樹脂をいう。活性エネルギー線硬化性樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性エネルギー線を照射することによって硬化させて、活性エネルギー線硬化性樹脂の硬化物を含む層、すなわちハードコート層が形成される。活性エネルギー線硬化性樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する紫外線硬化性樹脂が好ましい。予めハードコート層が形成されている市販の可撓性を有する基材を用いてもよい。
 ハードコート層の厚さは、平滑性および屈曲耐性の観点から、0.1~15μmが好ましく、1~5μmであることがより好ましい。
 (平滑層)
 本発明の封止フィルムにおいては、可撓性を有する基材とガスバリア層(上記した層(A)および層(B))との間に、平滑層を有してもよい。本発明に用いられる平滑層は、突起等が存在する可撓性を有する基材の粗面を平坦化し、あるいは、可撓性を有する基材に存在する突起により透明無機化合物層(上記した層(B)など)に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑層は、基本的には感光性材料、または、熱硬化性材料を硬化させて作製される。
 平滑層の感光性材料としては、例えば、ラジカル反応性不飽和化合物を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。具体的には、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)シリーズを用いることができる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。
 平滑層の熱硬化性材料として具体的には、クラリアント社製のトゥットプロムシリーズ(有機ポリシラザン)、セラミックコート株式会社製のSP COAT耐熱クリアー塗料、株式会社アデカ製のナノハイブリッドシリコーン、DIC株式会社製のユニディック(登録商標)V-8000シリーズ、EPICLON(登録商標) EXA-4710(超高耐熱性エポキシ樹脂)、信越化学工業株式会社製の各種シリコン樹脂、日東紡株式会社製の無機・有機ナノコンポジット材料SSGコート、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂等が挙げられる。この中でも特に耐熱性を有するエポキシ樹脂ベースの材料であることが好ましい。
 平滑層の形成方法は、特に制限はないが、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法等のウエットコーティング法、あるいは、蒸着法等のドライコーティング法により形成することが好ましい。
 平滑層の形成では、上述の感光性樹脂に、必要に応じて酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、平滑層の積層位置に関係なく、いずれの平滑層においても、成膜性向上および膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。
 平滑層の厚さとしては、封止フィルムの耐熱性を向上させ、封止フィルムの光学特性のバランス調整を容易にする観点から、1~10μmの範囲が好ましく、さらに好ましくは、2μm~7μmの範囲にすることが好ましい。
 平滑層の平滑性は、JIS B 0601:2001で規定される表面粗さで表現される値で、十点平均粗さRzが、10nm以上、30nm以下であることが好ましい。この範囲であれば、ガスバリア層を構成する層(B)を塗布形式で塗布する場合に、ワイヤーバー、ワイヤレスバー等の塗布方式で、平滑層表面に塗工手段が接触する場合であっても塗布性が損なわれることが少なく、また、塗布後の凹凸を平滑化することも容易である。
 [機能素子]
 本発明の封止フィルムは、折り曲げたり、巻物形状にしたりできるフレキシブルな素子、例えば、有機EL素子等の電子デバイスや有機薄膜太陽電池等に好ましく適用できる。なかでも、本発明の封止フィルムは、空気中の化学成分(酸素、水、窒素酸化物、硫黄酸化物、オゾン等)によってバリア性能が劣化する上記フレキシブルな素子に好ましく適用できる。即ち、フレキシブルな素子である本発明の機能素子は、本発明の(フレキシブル性を有する)封止フィルムで封止されていることを特徴とするものである。この(フレキシブルな)機能素子は、本発明の(フレキシブル性を有する)封止フィルムと、該封止フィルムで封止されてなる機能素子本体(素子を搭載する基板)と、を含む構成を有するものである。
 フレキシブルな素子である本発明の機能素子に用いられる機能素子本体の例としては、例えば、有機エレクトロルミネッセンス素子(有機EL素子)、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、有機薄膜太陽電池(PV)等を挙げることができる。本発明の効果がより効率的に得られるという観点から、該機能素子本体は有機EL素子または太陽電池が好ましく、有機EL素子がより好ましい。
 フレキシブルな素子である本発明の機能素子に求められる性能を満たすためには機能素子自体をより薄くする必要があり、機能素子本体も薄くする必要があることから、該機能素子本体(素子側基板)の厚さは、10~200μm、好ましくは10~100μmの範囲である。なお機能素子本体(素子側基板)は素子を設ける都合上その表面は数μm程度の凹凸をもった表面になる。そのため、上記機能素子本体(素子側基板)の厚さは、各種の素子(電子デバイス)を設けていない凹部(即ち、基板)の厚さとする。
 本発明の封止フィルムで封止した機能素子が、長期間折り曲げや巻き付けを繰り返しても耐透湿性を有することの評価は、実施例に記載の「折り曲げ耐性の評価」に基づき、折り曲げ性が失われたと判定した際の、その折り曲げ回数を尺度として評価できる。
 即ち、本発明では折り曲げ耐性の評価方法として曲率半径を固定して繰り返し折り曲げすることに対する耐久性を評価する方法を採用できる。具体的にはフレキシブルディスプレイ素子の機械的ストレステスト(IEC62715-6-1 Ed.1)に規定されている繰り返し屈曲テスト法が挙げられる。これは機能素子を一定の曲率半径になるようにU字型に折り曲げたところで素子の両端を前後に繰り返しスライドすることによって繰り返し折り曲げするテスト法である。装置例としてはユアサシステム機器株式会社製のU字折り返し試験機等が挙げられる。その他の試験条件としては屈曲速度が挙げられるが、本発明においては、試験期間や実際の使用現場を考慮して1分間に60回の繰り返し速度で行う。
 例えば、折り曲げ耐性は、曲率半径2.0mmで上記試験を行ったあとに、例えば85℃、85%RHの環境に24時間放置したのち発光試験を行うことにより、評価することができる。詳しくは実施例の「折り曲げ耐性の評価」に記載の通りである。ただし、実施例では曲率半径2.0mmとしたが、実際の使用用途に応じて、当該曲率半径を変更(例えば、3.0mmとか、4.0mmなど)して評価してもよい。
 本発明の効果を、以下の実施例及び比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。また、下記操作において、特記しない限り、操作及び物性等の測定は室温(25℃)、相対湿度50%の条件で行う。
 〔比較例1〕
 《封止フィルム1の製造》
[ガスバリア層1(ポリシラザン改質層;遷移金属化合物を含まない層(B)の作製]
 〈ポリシラザンを含有する塗布液の調製〉
 無触媒のパーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NN120-20)と、アミン触媒(N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン(TMDAH))5質量%を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NAX120-20)とを、4:1の割合(質量比)で混合し、さらにジブチルエーテルと2,2,4-トリメチルペンタンとの質量比が65:35となるように混合した溶媒で、塗布液の固形分が5質量%になるように、塗布液を希釈調製した。
 上記で得られた塗布液を、株式会社きもと製のクリアハードコート(ハードコート層;厚さ4μm)を施した総厚さ75μmのPET基材(可撓性を有する基材)上に乾燥後の厚さが300nmになるようスピンコート法により成膜し、2分間放置した後、80℃のホットプレートで1分間加熱処理を行い、ポリシラザン塗膜を形成した。ポリシラザン塗膜を形成した後、波長172nmのXeエキシマランプにて6000mJ/cmの真空紫外線照射処理を施してガスバリア層1(層(B))を形成した。この際、照射雰囲気は窒素で置換し、酸素濃度は0.1体積%とした。また、試料を設置するステージ温度を80℃とした。また、上記クリアハードコート(ハードコート層)は、上記基材とガスバリア層1(層(B))との間に配置されるようにした。
 [接着層1の形成]
 (塗布液の調製)
 液状ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製「828EL」)30質量部、オルソトルイジンジグリシジルアミン(日本化薬社製「GOT」)20質量部、アクリル系コアシェル樹脂(日本ゼオン社製「F351」)8質量部、固体分散型硬化剤(味の素ファインテクノ社製「アミキュアVDH-J」)18質量部、固体分散型硬化剤(味の素ファインテクノ社製「アミキュアPN40-J」)2質量部、ビフェニルアラルキル型エポキシ樹脂(日本化薬社製「NC3000」)の70質量%固形分のメチルエチルケトン(MEK)溶液85質量部、フェノキシ樹脂(ジャパンエポキシレジン社製「YX6954」)の35質量%MEK溶液60質量部をアジホモミキサーロボミックス型混合攪拌機(プライミクス社製)にて混合し、さらに溶剤(MEK)35質量部を混合し、高速回転ミキサーで均一に分散して、ワニス状の塗布液を得た。
 得られたワニス状の塗布液を前記で得たガスバリア層1上に、乾燥後の接着層1(熱硬化性樹脂層)の厚さが10μmになるよう、アプリケーターにて均一に塗布し、60~80℃で6分間乾燥させることにより、接着層1を形成することで、比較例1の封止フィルム1を得た。
 〔実施例1〕
 《封止フィルム2の製造》
[ガスバリア層2(遷移金属化合物として酸化タンタルを含む層(A-1))の作製]
 マグネトロンスパッタ装置を用いて、ターゲットとしてTaターゲットを用い、プロセスガスにはArとOとを用いたDCスパッタにより、比較例1の封止フィルム1の製造と同様にして作製したガスバリア層1(層(B))を有するフィルム上に、ガスバリア層2(層(A-1))として酸化タンタル膜(TaO)を成膜した。事前にガラス基板を用いた成膜により、酸素分圧を調整することにより組成の条件出しを行い、表層から深さ1nm近傍の組成がTaO1.5となる条件を見出した。この条件を適用し、厚さ10nmで酸化タンタル膜の成膜を行った。
 比較例1の封止フィルム1の「接着層1の形成」と同様にして調製した塗布液を前記で得たガスバリア層2(層(A-1))上に、乾燥後の接着層1(熱硬化性樹脂層)の厚さが10μmになるよう、アプリケーターにて均一に塗布し、60~80℃で6分間乾燥させることにより、接着層1を形成することで、本実施例の封止フィルム2を得た。
 〔実施例2〕
 《封止フィルム3の製造》
 接着層1(熱硬化性樹脂層)の厚さを5μmに変更する以外は封止フィルム2の製造と同様にして、本実施例の封止フィルム3を得た。
 〔実施例3〕
 《封止フィルム4の製造》
 接着層を、以下の「接着層2の形成」に記載のようにして設ける以外は封止フィルム3の製造と同様にして本実施例の封止フィルム4を得た。
 [接着層2の形成]
 (塗布液の調製)
 ポリイソブテン(オパノール(登録商標)B100:粘度平均分子量1100000、BASF社製)を芳香族系混合溶剤(イプゾール150:出光興産株式会社製)に溶解して30質量%の溶液としたもの50質量部に、水添脂環式石油樹脂(Escorez(登録商標)5340:Exxon Mobile Chemical社製)20質量部と、液状ポリイソブテン(Tetrax3T:新日本石油社製)5質量部と、液状ポリイソプレン(クラプレンLIR-50:株式会社クラレ製)10質量部とを、混合し、高速回転ミキサーで均一に分散して塗布液を得た。
 得られた塗布液を前記で得たガスバリア層2(層(A-1))上に、乾燥後の接着層2(ポリイソブテン系粘着剤層)の厚さが5μmになるようアプリケーターにて均一に塗布し、80℃で30分間乾燥させることにより、接着層2を形成することで、本実施例の封止フィルム4を得た。
 〔実施例4〕
 《封止フィルム5の製造》
 接着層2(ポリイソブテン系粘着剤層)の厚さを2μmに変更する以外は封止フィルム4の製造と同様にして、本実施例の封止フィルム5を得た。
 〔実施例5〕
 《封止フィルム6の製造》
 ガスバリア層2(層(A-1))を下記ガスバリア層3(層(A-2))に変更する以外は封止フィルム4の製造と同様にして、本実施例の封止フィルム6を得た。
 [ガスバリア層3(遷移金属化合物として酸化ニオブを含む層(A-2))の作製]
 マグネトロンスパッタ装置を用いて、ターゲットとして酸素欠損型Nbターゲットを用い、プロセスガスにはArとOとを用いたDCスパッタにより、実施例3の封止フィルム4(=比較例1の封止フィルム1)の製造と同様にして作製したガスバリア層1(層(B))を有するフィルム上に、ガスバリア層3(層(A-2))として酸化ニオブ膜(NbO)を成膜した。事前にガラス基板を用いた成膜により、酸素分圧を調整することにより組成の条件出しを行い、表層から深さ2nm近傍の組成がNbO1.5となる条件を見出した。この条件を適用し、厚さ30nmで酸化ニオブ膜の成膜を行った。
 〔比較例2〕
 《封止フィルム7の製造》
 ガスバリア層2(層(A-1))を下記ガスバリア層1(層(B))に変更する以外は封止フィルム4の製造と同様にして、比較例2の封止フィルム7を得た。即ち、比較例2の封止フィルム7は、基材上に厚さ300nmのガスバリア層1(層(B))が2層積層され(層(B)の合計厚さ:600nm)、その上に厚さ5μmの接着層2(ポリイソブテン系粘着剤層)が形成された構成である。
 [2層積層されたガスバリア層1(層(B))の作製]
 比較例1の「ポリシラザンを含有する塗布液の調製」と同様にして得られた塗布液を、株式会社きもと製のクリアハードコート(ハードコート層;厚さ4μm)を施した総厚さ75μmのPET基材(可撓性を有する基材)上に乾燥後の厚さが300nmになるようスピンコート法により成膜し、2分間放置した後、80℃のホットプレートで1分間加熱処理を行い、1層目のポリシラザン塗膜を形成した。この1層目のポリシラザン塗膜に波長172nmのXeエキシマランプにて6000mJ/cmの真空紫外線照射処理を施して1層目のバリア層を形成した。さらに1層目のバリア層上に上記塗布液を乾燥後の厚さが300nmになるようスピンコート法により成膜し、2分間放置した後、80℃のホットプレートで1分間加熱処理を行い、2層目のポリシラザン塗膜を形成した。この2層目のポリシラザン塗膜に波長172nmのXeエキシマランプにて6000mJ/cmの真空紫外線照射処理を施して2層目のバリア層を形成し、2層積層されたガスバリア層1(層(B))を形成した。この際、照射雰囲気は窒素で置換し、酸素濃度は0.1体積%とした。また、試料を設置するステージ温度を80℃とした。
 《機能素子の作製》
 機能素子の一例として有機EL素子を作製した。
 〔有機EL素子1の作製〕
 (第一電極の形成)
 30μmの厚さの薄膜ガラスと50μmの厚さのPETとを複合化させた樹脂基材(50mm×100mm)上に、40mm×30mmの長方形の厚さ150nmのITOをスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第一電極を形成した。
 (正孔輸送層の形成)
 正孔輸送層形成用塗布液を塗布する前に、第一電極が形成された樹脂基材の洗浄表面改質処理を、波長184.9nmの低圧水銀ランプを使用し、照射強度15mW/cm、距離10mmで実施した。帯電除去処理は、微弱X線による除電器を使用して行った。
 第一電極が形成された樹脂基材の第一電極の上に、以下に示す正孔輸送層形成用塗布液を、25℃、50%RHの環境下で、スピンコーターで塗布した後、下記の条件で乾燥及び加熱処理を行い、正孔輸送層を形成した。正孔輸送層形成用塗布液は乾燥後の厚さが50nmになるように塗布した。
 〈正孔輸送層形成用塗布液の準備〉
 ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS、Bayer社製 Bytron P AI 4083)を純水65質量%、メタノール5質量%で希釈した溶液を正孔輸送層形成用塗布液として準備した。
 〈乾燥及び加熱処理条件〉
 正孔輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度100℃で溶媒を除去した後、引き続き、加熱処理装置を用い温度150℃で裏面伝熱方式の熱処理を行い、正孔輸送層を形成した。
 (発光層の形成)
 上記で形成した正孔輸送層上に、以下に示す白色発光層形成用塗布液を、下記の条件によりスピンコーターで塗布した後、下記の条件で乾燥及び加熱処理を行い、発光層を形成した。白色発光層形成用塗布液は乾燥後の厚さが40nmになるように塗布した。
 〈白色発光層形成用塗布液〉
 ホスト材として下記化学式H-Aで表される化合物1.0gと、発光ドーパントとして下記化学式D-Aで表される化合物を100mg、発光ドーパントとして下記化学式D-Bで表される化合物を0.2mg、発光ドーパントとして下記化学式D-Cで表される化合物を0.2mg、100gのトルエンに溶解し白色発光層形成用塗布液として準備した。
Figure JPOXMLDOC01-appb-C000006
 〈塗布条件〉
 塗布工程を窒素ガス濃度99体積%以上の雰囲気で、塗布温度を25℃とした。
〈乾燥及び加熱処理条件〉
 白色発光層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、温度130℃で加熱処理を行い、発光層を形成した。
 (電子輸送層の形成)
 上記で形成した発光層の上に、以下に示す電子輸送層形成用塗布液を下記の条件によりスピンコーターで塗布した後、下記の条件で乾燥及び加熱処理し、電子輸送層を形成した。電子輸送層形成用塗布液は、乾燥後の厚さが30nmになるように塗布した。
 〈塗布条件〉
 塗布工程は窒素ガス濃度99体積%以上の雰囲気で、電子輸送層形成用塗布液の塗布温度を25℃とした。
 〈電子輸送層形成用塗布液〉
 電子輸送層は下記化学式E-Aで表される化合物を2,2,3,3-テトラフルオロ-1-プロパノール中に溶解し0.5質量%溶液とし電子輸送層形成用塗布液とした。
Figure JPOXMLDOC01-appb-C000007
 〈乾燥及び加熱処理条件〉
 電子輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、加熱処理部で、温度200℃で加熱処理を行い、電子輸送層を形成した。
 (電子注入層の形成)
 上記で形成した電子輸送層上に、電子注入層を形成した。まず、基板を減圧チャンバーに投入し、5×10-4Paまで減圧した。あらかじめ、真空チャンバーにタンタル製蒸着ボートに用意しておいたフッ化セシウムを加熱し、厚さ3nmの電子注入層を形成した。
 (第二電極の形成)
 上記で形成した電子注入層の上であって、第一電極の取り出し電極になる部分を除く部分に、5×10-4Paの真空下で、第二電極形成材料としてアルミニウムを使用し、取り出し電極を有するように蒸着法にて、発光面積が40mm×30mmの長方形になるようにマスクパターン成膜し、厚さ100nmの第二電極を積層し、電子素子を作製した。
 (封止)
 封止フィルムとして、上記で作製した封止フィルム1を50mm×100mmに切り出し使用した。封止フィルムを、取り出し電極及び電極リードの接合部を覆うようにして密着・配置して、圧着ローラーを用いて圧着条件として、圧着ローラー温度120℃、圧力0.5MPa、装置速度0.3m/minで密着封止した。このようにして比較例1の有機EL素子1を作製した。
 〔有機EL素子2~7の作製〕
 有機EL素子2~7は、封止フィルム1を封止フィルム2~7に変更し、有機EL素子1の作製と同様にして行った。これにより、実施例1~5及び比較例2の有機EL素子2~7を作製した。
 (折り曲げ耐性の評価)
 上記で作製した有機EL素子1~7の折り曲げ耐性をフレキシブルディスプレイ素子の機械的ストレステスト(IEC62715-6-1 Ed.1)に準じて評価した。具体的には、23℃、50%RHの環境下でユアサシステム機器株式会社製のU字折り返し試験機を用いて曲率半径2.0mm、封止フィルム側が外側になるようにセットし、屈曲速度60回/分で最大30万回繰り返し屈曲させた。ここで、1万回以上折り曲げ可能の場合は、1万回ごとに以下に示す発光強度を測定した。一方、1万回までに折り曲げ性が失われている場合は、1千回ごとに以下の発光強度を測定した。
 所定回数(1万回以上折り曲げ可能の場合は1万回ごとに、また1万回までに折り曲げ性が失われている場合は1千回ごとに)繰り返し屈曲させた後、85℃、85%RHの環境に24時間放置して最大屈曲回数を出した。なお、耐久性の判定は、ストレステスト前の、一定電圧(10V)における発光強度に対して、テスト後の当該発光強度が50%未満となったとき、折り曲げ性が失われたと判定し、その折り曲げ回数を尺度とした。
 得られた最大屈曲回数の結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000008
 上記表2の結果より、実施例1~5の封止フィルム2~6を用いた有機EL素子2~6は、比較例1、2の封止フィルム1、7を用いた有機EL素子1、7に比して、最大屈曲回数が格段に向上(100倍~200倍以上向上)することから長期間折り曲げや巻き付けを繰り返しても折り曲げ耐性が極めて劣化し難く、耐透湿性(ガスバリア性)が特段に優れることがわかる。
 また、実施例1~5の封止フィルム2~6を用いた有機EL素子2~6の中では、接着層に粘着剤を用いた封止フィルム4~6を用いた有機EL素子4~6の方が、接着層に熱硬化剤を用いた封止フィルム2~3を用いた有機EL素子2~3に比して、最大屈曲回数が大きく向上することから、折り曲げ耐性が特に劣化し難く、耐透湿性(ガスバリア性)がより優れることがわかる。
 また、接着層に同じ接着剤を用い、その厚さを変えた封止フィルム2~3を用いた有機EL素子2~3を対比することで、接着層の厚さを薄くした封止フィルム3を用いた有機EL素子3の方が、最大屈曲回数がより向上することから、折り曲げ耐性が劣化し難く、耐透湿性(ガスバリア性)が優れることがわかる。
 同様に、接着層に同じ接着剤を用い、その厚さをより薄くなるように変えた封止フィルム4~5を用いた有機EL素子4~5を対比することで、接着層の厚さをより薄くした封止フィルム5を用いた有機EL素子5の方が、最大屈曲回数がより向上することから、折り曲げ耐性が劣化し難く、耐透湿性(ガスバリア性)が優れることがわかる。
 また、接着層は同じ(薄い粘着剤)で、ガスバリア層(層(A))に含有させる遷移金属化合物(特に好適な第5族元素の酸化物)を変えた封止フィルム4、6を用いた有機EL素子4、6を対比することで、酸化タンタルよりも酸化ニオブを用いた封止フィルム6を用いた有機EL素子6が、最大屈曲回数が最も向上することから、折り曲げ耐性が極めて劣化し難く、耐透湿性(ガスバリア性)が最も優れることがわかる。
 本出願は、2015年3月26日に出願された日本国特許出願第2015-064929号に基づいており、その開示内容は、参照により全体として引用されている。
10  封止フィルム、
11  可撓性を有する基材、
12  遷移金属化合物を含まない層(B)、
13  遷移金属化合物を含有する層(A)、
14  ガスバリア層、
15  接着層。

Claims (5)

  1.  可撓性を有する基材と、前記基材の片方の表面上に形成されたガスバリア層と、接着層とをこの順に備える封止フィルムであって、
     前記ガスバリア層に遷移金属化合物を含有していることを特徴とする封止フィルム。
  2.  前記接着層の厚みが1~5μmの範囲であることを特徴とする請求項1に記載の封止フィルム。
  3.  前記接着層が、イソプレン、イソブテン、及びブタジエンよりなる群から選ばれた少なくとも1種を重合成分とする単独重合体樹脂又は共重合体樹脂を含有することを特徴とする請求項1または2に記載の封止フィルム。
  4.  前記遷移金属化合物として酸化ニオブを含有していることを特徴とする請求項1~3のいずれか1項に記載の封止フィルム。
  5.  請求項1~4のいずれか1項に記載の封止フィルムで封止されていることを特徴とする機能素子。
PCT/JP2016/058874 2015-03-26 2016-03-18 封止フィルム及び封止フィルムで封止された機能素子 WO2016152817A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017508338A JPWO2016152817A1 (ja) 2015-03-26 2016-03-18 封止フィルム及び封止フィルムで封止された機能素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-064929 2015-03-26
JP2015064929 2015-03-26

Publications (1)

Publication Number Publication Date
WO2016152817A1 true WO2016152817A1 (ja) 2016-09-29

Family

ID=56978217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058874 WO2016152817A1 (ja) 2015-03-26 2016-03-18 封止フィルム及び封止フィルムで封止された機能素子

Country Status (2)

Country Link
JP (1) JPWO2016152817A1 (ja)
WO (1) WO2016152817A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110283550A (zh) * 2018-03-19 2019-09-27 日东电工株式会社 粘合片和磁盘装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328397A (ja) * 1989-02-02 1991-02-06 Alcan Internatl Ltd 二重酸化物膜フィルム及びその製造方法
WO2014069398A1 (ja) * 2012-10-29 2014-05-08 リンテック株式会社 粘着剤組成物及び粘着シート
JP2014151571A (ja) * 2013-02-08 2014-08-25 Konica Minolta Inc ガスバリア性フィルムおよびその製造方法、ならびに前記ガスバリア性フィルムを含む電子デバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328397A (ja) * 1989-02-02 1991-02-06 Alcan Internatl Ltd 二重酸化物膜フィルム及びその製造方法
WO2014069398A1 (ja) * 2012-10-29 2014-05-08 リンテック株式会社 粘着剤組成物及び粘着シート
JP2014151571A (ja) * 2013-02-08 2014-08-25 Konica Minolta Inc ガスバリア性フィルムおよびその製造方法、ならびに前記ガスバリア性フィルムを含む電子デバイス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110283550A (zh) * 2018-03-19 2019-09-27 日东电工株式会社 粘合片和磁盘装置

Also Published As

Publication number Publication date
JPWO2016152817A1 (ja) 2018-02-01

Similar Documents

Publication Publication Date Title
JP5135726B2 (ja) 透明導電膜付きフィルムおよびその製造方法、この透明導電膜付きフィルムからなるディスプレイ用基板、ディスプレイならびに有機el素子
JP2004299230A (ja) ガスバリア性基板
TW201816047A (zh) 接著劑組成物、密封薄片以及密封體
JP2011143550A (ja) ガスバリアフィルム
JP4498949B2 (ja) ガスバリア性フィルム、並びにこれを用いたディスプレイ用基板及びディスプレイ
JP2015103389A (ja) 有機el素子
JP4437735B2 (ja) ガスバリア性フィルム、並びにこれを用いたディスプレイ用基板及びディスプレイ
JP5825016B2 (ja) バリアーフィルムの製造方法
WO2014178254A1 (ja) 封止フィルム、その製造方法及び封止フィルムで封止された機能素子
WO2016136389A1 (ja) 有機エレクトロルミネッセンス装置
JP4191626B2 (ja) ガスバリア性積層フィルムおよびその製造方法
JP2006123289A (ja) ガスバリア性フィルム、並びにこれを用いたカラーフィルタ及びディスプレイ
WO2016152817A1 (ja) 封止フィルム及び封止フィルムで封止された機能素子
JPWO2018190010A1 (ja) 有機エレクトロルミネッセンス素子
TW201725218A (zh) 電子裝置用密封劑及電子裝置之製造方法
WO2014097997A1 (ja) 電子デバイス
CN114555661B (zh) 组合物、固化物、有机电致发光显示元件用密封材料及有机电致发光显示装置
JP5107078B2 (ja) バリア性積層体、バリア性フィルム基板、デバイス、およびバリア性積層体の製造方法
JP5114961B2 (ja) 透明導電膜付きフィルムおよびこの透明導電膜付きフィルムからなるディスプレイ用基板、ディスプレイ、液晶表示装置ならびに有機el素子
JP2015202620A (ja) ガスバリア性フィルムの製造方法および電子デバイスの製造方法
JP2016171038A (ja) 電子デバイスの製造方法
WO2017047346A1 (ja) 電子デバイス及び電子デバイスの封止方法
JP6303835B2 (ja) 電子デバイス
JP2014143195A (ja) 有機薄膜素子保護用蒸着材料、樹脂保護膜、及び、有機光デバイス
JP2012061659A (ja) ガスバリアフィルムの製造方法、該ガスバリアフィルムを有する有機電子デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508338

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768720

Country of ref document: EP

Kind code of ref document: A1