WO2016152690A1 - コバルト粉の製造方法 - Google Patents

コバルト粉の製造方法 Download PDF

Info

Publication number
WO2016152690A1
WO2016152690A1 PCT/JP2016/058384 JP2016058384W WO2016152690A1 WO 2016152690 A1 WO2016152690 A1 WO 2016152690A1 JP 2016058384 W JP2016058384 W JP 2016058384W WO 2016152690 A1 WO2016152690 A1 WO 2016152690A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
powder
cobalt powder
slurry
sulfate
Prior art date
Application number
PCT/JP2016/058384
Other languages
English (en)
French (fr)
Inventor
伸一 平郡
佳智 尾崎
高石 和幸
安夫 土居
修 池田
龍馬 山隈
陽平 工藤
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to EP16768593.2A priority Critical patent/EP3276014B1/en
Priority to CN201680017678.8A priority patent/CN107406910B/zh
Priority to AU2016237468A priority patent/AU2016237468B2/en
Priority to CA2980440A priority patent/CA2980440C/en
Priority to US15/559,845 priority patent/US20180056399A1/en
Publication of WO2016152690A1 publication Critical patent/WO2016152690A1/ja
Priority to PH12017501745A priority patent/PH12017501745B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F9/26Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0476Separation of nickel from cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0476Separation of nickel from cobalt
    • C22B23/0484Separation of nickel from cobalt in acidic type solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • B22F2201/013Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for obtaining high-purity cobalt powder and briquettes formed from the cobalt sulfate ammine complex solution.
  • Patent Document 1 describes a process for producing cobalt powder in which silver is added as a seed crystal during a reduction reaction and cobalt is precipitated on the seed crystal. Specifically, in a process for producing cobalt powder from an ammoniacal cobalt sulfate solution, about 0.3 g to 10 g of soluble silver to cobalt of silver sulfate or silver nitrate is added to the solution per kg of cobalt to be reduced. The organic dispersant is added in an amount effective to prevent agglomeration of the cobalt metal powder to be produced, and the solution is stirred with a hydrogen pressure of 2500 to 5000 KPa with stirring.
  • a method for producing cobalt powder characterized by heating at a temperature within a range of ⁇ 250 ° C. for a time sufficient to reduce cobalt sulfate to cobalt metal powder.
  • this method inevitably contains silver derived from seed crystals in the product, and has a problem of affecting quality.
  • Patent Document 2 discloses a cobalt powder suitable for a conductive paste and conductive particles for a multilayer capacitor, and a method for providing a manufacturing method thereof.
  • This method provides an improved method for producing metal powder by the liquid phase reduction method so as not to generate particle aggregates.
  • a metal compound, a reducing agent, a complexing agent, and a dispersing agent are dissolved.
  • It is a manufacturing method of the metal powder provided.
  • this manufacturing method uses a large amount of expensive chemicals, it is costly, and there is a problem that is disadvantageous in terms of economy when applied to the industrial cobalt smelting process as described above.
  • Patent Document 3 discloses a method for recovering nickel and cobalt using ammonia. This method recovers nickel and cobalt from nickel- and cobalt-containing laterite ores, a) in a rotating furnace under reducing atmosphere, without adding a reducing agent to the feed ore before roasting, or Add less than 5 wt% to roast the supplied ore and selectively reduce nickel and cobalt, b) soak the reduced ore in aerated ammoniacal ammonium carbonate solution and extract nickel and cobalt into the leaching solution C) separating the tailing from the leaching solution and recovering nickel and cobalt by a method selected from ammonium-containing solvent extraction, precipitation techniques or ion exchange.
  • Patent Document 4 discloses a method for recovering copper, nickel, and cobalt from an ammonia solution using hydrogen. This method provides a method for efficiently leaching copper, nickel and cobalt from deep sea bottom oxide minerals using hydrogen. Specifically, deep sea bottom oxide mineral particles dispersed in an ammonia-ammonium salt solution are provided. By reacting activated hydrogen in the presence of a reaction medium reduced by hydrogen, reducing the reaction medium with the activated hydrogen, and reducing the deep seabed oxide mineral through the reaction medium. Copper, nickel and cobalt in the mineral are leached as ammine complex ions.
  • this method requires a catalyst in which a noble metal such as platinum is supported on an inert solid surface in order to promote the reduction reaction, and it is necessary for replenishing the amount of catalyst and depletion required when implemented on an industrial scale. Given the necessary cost, it was not advantageous.
  • the first invention of the present invention that solves such problems includes (1) a seed crystal addition step of adding cobalt powder as a seed crystal to a cobalt sulfate ammine complex solution to form a mixed slurry, and (2) a seed crystal.
  • a growth step of forming a slurry containing cobalt powder formed by precipitation and growth, (4) including the cobalt powder obtained in the reduction step of (2) above The original slurry is subjected to solid-liquid separation, and the slurry containing the cobalt powder obtained in the recovery step after the reduction step in which cobalt powder is separated and recovered as a solid phase component and the growth step of (3) is subjected to solid-liquid separation.
  • the cobalt powder is produced by performing the steps (1) to (4) of the recovery step after the growth step in which the cobalt powder is separated and recovered as a solid phase component.
  • the seed crystal in the seed crystal addition step (1) in the first invention is added to the cobalt sulfate ammine complex solution to form a mixed slurry
  • a dispersant is further added to the mixed slurry. It is the manufacturing method of the cobalt powder characterized by doing.
  • the seed crystal addition amount in the seed crystal addition step (1) in the first and second inventions is 1 to 200% by weight with respect to the cobalt weight in the cobalt sulfate ammine complex solution. It is the manufacturing method of cobalt powder characterized by the above-mentioned quantity.
  • the fourth invention of the present invention is a leaching process in which the cobalt ammine sulfate complex solution according to the first to third inventions dissolves a cobalt-containing material containing nickel and impurities, and cobalt, nickel and impurities obtained in the leaching process.
  • the nickel separation step of separating the crude cobalt sulfate solution and the nickel recovery solution by a solvent extraction method the impurities in the crude cobalt sulfate solution obtained by the nickel separation step are separated by the solvent extraction method, sulfide A cobalt sulfate ammine complex solution obtained through a purification process to obtain a cobalt sulfate solution, and a complexation process in which the cobalt sulfate solution is complexed with ammonia. It is a manufacturing method of cobalt powder characterized by being.
  • the cobalt-containing material according to the fourth aspect is at least one of powders of a mixed sulfide of cobalt and nickel, crude cobalt sulfate, cobalt oxide, cobalt hydroxide, cobalt carbonate, and metallic cobalt. It is a manufacturing method of cobalt powder characterized by being.
  • the solvent used in the solvent extraction method in the nickel separation step and the purification step in the fourth and fifth aspects is 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester or di- (2, 4,4-trimethylpentyl) phosphinic acid is a method for producing cobalt powder.
  • the seventh invention of the present invention is such that the ammonium sulfate concentration in the cobalt sulfate ammine complex solution in the seed crystal addition step of (1) of the first to third inventions is 100 to 500 g / L, and the ammonium concentration is It is the manufacturing method of the cobalt powder characterized by being 1.9 or more by molar ratio with respect to the cobalt concentration in a solution.
  • the eighth invention of the present invention is the hydrogen reduction reaction in the reduction step (2) and the growth step (3) in the first invention, wherein the temperature is 120 to 250 ° C. and the pressure is 1.0 to 4.0 MPa. It is the manufacturing method of the cobalt powder characterized by maintaining in the range and performing hydrogen reduction.
  • the ninth invention of the present invention is a method for producing cobalt powder, wherein the dispersant in the second invention contains one or more of acrylates and sulfonates.
  • the tenth invention of the present invention is a cobalt powder nodule process in which the high-purity cobalt powder obtained through the growth step (3) in the first invention is processed into a bulk cobalt briquette using a briquetting machine. And a briquette sintering step in which the obtained bulk cobalt briquette is sintered under a holding condition at a temperature of 500 to 1200 ° C. in a hydrogen atmosphere to form a cobalt briquette of a sintered body. It is a manufacturing method of cobalt powder.
  • cobalt powder is used as a solid phase component by solid-liquid separation in the recovery step (4) after the reduction step (2) and after the growth step (3) in the first invention. It is a method for producing cobalt powder, comprising an ammonium sulfate recovery step of concentrating the post-reaction solution after separation and crystallizing ammonium sulfate to recover ammonium sulfate crystals.
  • cobalt powder is used as a solid phase component by solid-liquid separation in the recovery step (4) after the reduction step (2) and after the growth step (3) in the first invention. It is a method for producing cobalt powder, comprising an ammonia recovery step in which an alkali is added to a post-reaction solution after separation and heated to volatilize and recover the ammonia gas.
  • the ammonia recovered in the ammonia recovery step of the first aspect is In the manufacturing process in the manufacturing method of cobalt powder of the first invention, it is circulated and used.
  • the seed crystal of the cobalt powder in the seed crystal addition step of (1) of the first aspect is a reducing agent added to the cobalt sulfate solution obtained in the cleaning step according to the fourth aspect of the invention. It is the cobalt powder produced
  • the seed crystal of the cobalt powder in the seed crystal addition step of (1) of the first aspect is a cobalt sulfate ammine complex solution obtained in the complexing step described in the fourth aspect of the invention. It is a cobalt powder produced by a hydrogen reduction reaction in which an insoluble solid is added and hydrogen gas is blown under high temperature and high pressure.
  • a sixteenth invention of the present invention is a cobalt briquette obtained by using the first to fifteenth inventions.
  • the steps shown in the following (1) to (4) are sequentially performed on the process liquid of the hydrometallurgical process, thereby, from the cobalt sulfate ammine complex solution, It is characterized by producing high purity cobalt powder with less impurities.
  • the leaching process is a starting material, an industrial intermediate composed of one or a mixture selected from cobalt and nickel mixed sulfide, crude cobalt sulfate, cobalt oxide, cobalt hydroxide, cobalt carbonate, cobalt powder, etc.
  • the step of dissolving the cobalt-containing material with sulfuric acid and leaching cobalt to produce a leachate it can be carried out using a known method disclosed in JP-A-2005-350766.
  • Nickel separation process Next, the pH of this leachate is adjusted and used for the nickel separation step.
  • This nickel separation step is obtained by bringing the pH adjusted leachate (aqueous phase) obtained by the pH adjustment of the leachate into the organic phase after being obtained in the leaching step, and exchanging the components in each phase. Increase the concentration of one component in the water phase and decrease the concentration of the other different components.
  • “2-ethylhexylphosphonic acid mono-2-ethylhexyl ester” or “di- (2,4,4-trimethylpentyl) phosphinic acid” is selectively used as the organic phase to extract cobalt from the aqueous phase leachate. Then, a crude cobalt sulfate solution is obtained by back extraction with sulfuric acid.
  • ammonia generated in the ammonia recovery step described later can be used as the ammonia water used for pH adjustment in this step.
  • This liquid purification step is a step of reducing impurities contained in the crude cobalt sulfate solution obtained in the nickel separation step.
  • “2-ethylhexylphosphonic acid mono-2-ethylhexyl ester” or “di- (2, 4,4-trimethylpentyl) phosphinic acid is used to selectively extract impurity elements in the crude cobalt sulfate solution to obtain a high-purity cobalt sulfate solution, hydrogen sulfide gas, sodium sulfide, potassium sulfide, Selective impurities by adding a sulfurizing agent such as sodium hydrogen sulfide to selectively precipitate and remove impurities, or by adding alkali such as sodium hydroxide, calcium hydroxide, sodium carbonate, calcium carbonate, magnesium hydroxide The neutralization method is used to remove the precipitate.
  • ammonia is added so that the ammonium concentration is 1.9 or more in molar ratio to the cobalt concentration in the solution.
  • ammonium concentration of the ammonia to be added is less than 1.9, cobalt does not form an ammine complex, and precipitation of cobalt hydroxide is generated.
  • ammonium sulfate can be added in this step.
  • the ammonium sulfate concentration at this time is preferably 100 to 500 g / L. If it is 500 g / L or more, the solubility will be exceeded, and crystals will precipitate, making it impossible to operate. Moreover, it is difficult to achieve less than 100 g / L on the metal balance of a process. Furthermore, the ammonia produced
  • Seed crystal addition step This is a step of adding a cobalt powder as a seed crystal to the cobalt sulfate ammine complex solution in the form of a cobalt powder slurry to form a mixed slurry containing the seed crystal.
  • the weight of the seed crystal added at this time is preferably 1 to 200% by weight based on the weight of cobalt in the cobalt ammine sulfate complex solution. If it is less than 1%, the reaction efficiency during the reduction in the next step is remarkably lowered, which is not preferable. On the other hand, if it exceeds 200%, the amount of use is too large, which hinders handling, and costs are high in the production of seed crystals, which is not preferable.
  • the cobalt powder can be produced by mixing the high-purity cobalt sulfate solution obtained in the solvent extraction step with a reducing agent.
  • a reducing agent used here The hydrazine, sodium sulfite, etc. which are widely used industrially can be used. At this time, an alkali may be further mixed, and the pH may be adjusted to 7 to 12 using sodium hydroxide.
  • the reaction temperature is preferably 25 to 80 ° C. If it is less than 25 degreeC, reaction time becomes long and it is not realistic for industrial application. On the other hand, at 80 ° C. or higher, the equipment cost is high because the material of the reaction vessel is limited. Furthermore, the particle size of the cobalt powder produced
  • a cobalt sulfate ammine complex solution can be produced by blowing hydrogen gas under the conditions of the reduction step described later. At this time, the recovery efficiency can be improved by adding a solid insoluble in the cobalt sulfate ammine complex solution, for example, iron powder, alumina balls, zirconia balls, and a dispersant.
  • a solid insoluble in the cobalt sulfate ammine complex solution for example, iron powder, alumina balls, zirconia balls, and a dispersant.
  • the dispersant used here is not particularly limited as long as it has one or more of acrylates and sulfonates, but polyacrylates and lignin sulfonic acids can be obtained industrially at low cost. Salts are preferred.
  • reaction temperature is preferably 120 to 250 ° C. If it is less than 120 degreeC, reduction
  • the pressure during the reaction is preferably 1.0 to 4.0 MPa. If the pressure is less than 1.0 MPa, the reaction efficiency decreases, and if it exceeds 4.0 MPa, the reaction is not affected and the loss of hydrogen gas increases.
  • the mixed slurry contains mainly magnesium ions, sodium ions, sulfate ions, and ammonium ions as impurities. Since these impurities remain in the solution, high purity cobalt powder is obtained. Can do.
  • the obtained high-purity cobalt powder may be finished into a briquette shape that is coarser, less oxidizable, and easy to handle through the following briquetting process and briquette baking process.
  • ammonium sulfate contained in the post-reaction liquid obtained in this recovery step can be recovered in the ammonium sulfate recovery step, or ammonia can be recovered in the ammonia recovery step.
  • the high-purity cobalt powder produced according to the present invention is molded as a product form by a briquetting machine after drying to obtain a massive cobalt briquette. Moreover, in order to improve the moldability to this briquette, you may add the substance which does not contaminate product quality, such as water, to a cobalt powder as a binder depending on the case.
  • the cobalt briquette produced in the briquetting process is roasted and sintered in a hydrogen atmosphere to produce a briquette sintered body. This treatment increases strength and removes trace amounts of ammonia, sulfur, and carbon components.
  • the roasting and sintering temperature is preferably 500 to 1200 ° C. If it is less than 500 degreeC, sintering will become inadequate and even if it exceeds 1200 degreeC, efficiency will hardly change and the loss of energy will become large.
  • ammonium sulfate recovery process The post-reaction liquid generated in the recovery step (4) contains ammonium sulfate and ammonia. Therefore, ammonium sulfate can be recovered as ammonium sulfate crystals by heating and concentrating the post-reaction solution to crystallize ammonium sulfate.
  • ammonia recovery process On the other hand, ammonia can be recovered by adding ammonia to the solution after the reaction, adjusting the pH to the range of 10 to 13, and then heating to volatilize ammonia as a gas.
  • the alkali used here is not particularly limited, but sodium hydroxide, slaked lime and the like are industrially inexpensive and preferable.
  • ammonia water is generated by bringing the recovered ammonia gas into contact with water, pH adjustment prior to the nickel separation step in which the ammonia water is added to the above-described ammonia, a liquid purification step when using a solvent extraction method, and It can also be used repeatedly in the complexing step.
  • Seed crystal addition process 191 ml of 25% ammonia water was added to a solution containing cobalt sulfate containing 75 g of cobalt sulfate and 330 g of ammonium sulfate to prepare a solution adjusted so that the total liquid volume became 1000 ml.
  • 75 g (100% based on the weight of cobalt) of cobalt powder having an average particle size of 10 ⁇ m was added as a seed crystal, and 12.5 g of sodium polyacrylate (40% solution) was added as a dispersant to prepare a mixed slurry.
  • the mixed slurry was charged into an autoclave, heated to 185 ° C. while stirring, and hydrogen gas was blown and supplied so that the pressure in the autoclave became 3.5 MPa.
  • FIG. 2 shows the number of growth steps (the number of repetitions) and the average particle size ( ⁇ m) of the cobalt powder. It was confirmed that cobalt powder grew and coarsened with each repetition.
  • the number of repetitions may be appropriately determined in consideration of productivity and economics such as the required size of the powder and the required equipment scale and labor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

工業的に安価なHガスを使用し、微小なCo粉を用いて硫酸コバルトアンミン錯体溶液から高純度Co粉の粗大な粒を生成する製造方法を提供する。 Co含有物から硫酸コバルトアンミン錯体溶液を経て、Co粉を生成する製造工程において、その錯体溶液に種晶のCo粉を添加して混合スラリーを形成する種晶添加工程、その混合スラリーにHガスを吹き込み、スラリー中のCo成分を還元して種晶上に析出したCo粉を含む還元スラリーを形成する還元工程、その還元スラリーを固液分離して得たCo粉に前記錯体溶液を加えたスラリーにHガスを吹き込み、Co粉表面上にスラリー中のCo成分を析出させた成長したCo粉を含むスラリーを形成する成長工程、Co粉を含む還元スラリーを固液分離してCo粉を回収する還元工程後の回収工程、及び成長したCo粉を含むスラリーを固液分離してCo粉を回収する成長工程後の回収工程を施すことを特徴とする。

Description

コバルト粉の製造方法
 本発明は、硫酸コバルトアンミン錯体溶液から高純度コバルト粉やそれを成形したブリケットを得る方法に関する。
 湿式製錬プロセスを用いてコバルト粉を工業的に製造する方法として、原料を硫酸溶液に溶解後、不純物を除去する工程を経て、得た硫酸コバルト溶液にアンモニアを添加し、コバルトのアンミン錯体を形成させ、生成した硫酸コバルトアンミン錯体溶液に水素ガスを供給しコバルトを還元することによりコバルト粉を製造する方法がある。
 例えば特許文献1には還元反応時に銀を種晶として添加し、種晶上にコバルトを析出させるコバルト粉の製造プロセスが記載されている。
 具体的には、アンモニア性硫酸コバルト溶液からコバルト粉を製造する方法に於いて、硫酸銀若しくは硝酸銀を、前記溶液に、還元すべきコバルトのkg当たり銀約0.3g~10gの可溶性銀対コバルトの割合となる量を添加し、製造すべきコバルト金属粉の凝集を防止するのに効果的な量の有機分散剤を添加し、そして前記溶液を、2500~5000KPaの水素圧下、撹拌しながら150~250℃の範囲内の温度で、硫酸コバルトをコバルト金属粉に還元するのに十分な時間加熱することを特徴とするコバルト粉の製造方法である。
 しかし、この方法は製品中に種晶に由来する銀が混入することが避けられず、品質に影響する課題があった。
 さらに、水素ガス以外の還元剤を用いてコバルト粉を得る方法もある。
 例えば、特許文献2には導電ペーストおよび積層コンデンサ用の導電性粒子に適したコバルト粉、およびその製造方法を提供する方法が開示されている。この方法は、粒子凝集物を生じにくいように改善された、液相還元法による金属粉末の製造方法を提供するもので、具体的には金属化合物、還元剤、錯化剤、分散剤を溶解することにより、金属化合物に由来する金属イオンを含有する水溶液を作製する第1工程と、水溶液のpH調整をすることにより金属イオンを還元剤により還元させ、金属粉末を析出させる第2工程とを備える金属粉末の製造方法である。
 しかし、この製造方法は高価な薬剤を多量に用いることからコスト的にかさみ、上記のような工業的なコバルト製錬プロセスに適用するには経済面で不利となる課題があった。
 さらに特許文献3には、アンモニアを用いてニッケルやコバルトを回収する方法が示されている。
 この方法は、ニッケル及びコバルト含有ラテライト鉱石からニッケル及びコバルトを回収する方法であって、a)還元雰囲気下において回転炉中で、焙焼前に還元剤を供給鉱石に添加しないか、あるいは2.5wt%未満を添加して供給鉱石を焙焼し、選択的にニッケル及びコバルトを還元すること、b)還元鉱石を通気アンモニア性炭酸アンモニウム溶液に浸し、浸出溶液中にニッケル及びコバルトを抽出すること、c)浸出溶液から尾鉱を分離し、アンモニウム含有溶媒抽出、析出技術又はイオン交換から選択される方法により、ニッケル及びコバルトを回収すること、を含む方法である。
 また特許文献4には、水素を用いてアンモニア溶液から銅やニッケルやコバルトを回収する方法が示されている。
 この方法は、水素を用いた深海底酸化鉱物からの銅、ニッケル及びコバルトを効率よく浸出する方法を提供するもので、具体的にはアンモニア-アンモニウム塩溶液に分散させた深海底酸化鉱物粒子に、水素によって還元される反応媒体の存在下で、活性化した水素を作用させ、該活性化した水素によって上記反応媒体を還元し、該反応媒体を介して上記深海底酸化鉱物を還元することにより該鉱物中の銅、ニッケル及びコバルトをアンミン錯イオンとして浸出させるものである。
 しかしながらこの方法は、還元反応を促進させるために、不活性な固体表面に白金などの貴金属を担持させた触媒を必要とし、工業的な規模で実施した場合に必要となる触媒量や減耗補充に必要なコストを考えると有利とは言えなかった。
 以上のように様々なコバルト粉を製造するプロセスが提案されているが、工業的に安価な水素ガスを用いて高純度のコバルト粉を製造する方法はなかった。
特表平8-503999号公報 特開2010-242143号公報 特表2006-516679号公報 特開平6-116662号公報
 このような状況の中で、工業的に安価な水素ガスを使用し、微小なコバルト粉を用いて硫酸コバルトアンミン錯体溶液からの高純度のコバルト粉の粗大な粒を生成する製造方法の提供を目的とするものである。
 このような課題を解決する本発明の第1の発明は、(1)硫酸コバルトアンミン錯体溶液に、種晶としてコバルト粉を添加して混合スラリーを形成する種晶添加工程、(2)種晶添加工程で得られた混合スラリーに水素ガスを吹き込み、その混合スラリー中のコバルト成分を水素還元反応により種晶上に析出させて形成したコバルト粉を含む還元スラリーを形成する還元工程、(3)還元工程で形成した還元スラリーを固液分離して得られるコバルト粉に硫酸コバルトアンミン錯体溶液を加えたスラリーに水素ガスを吹き込み、水素還元反応によりコバルト粉の表面上にスラリー中のコバルト成分を還元、析出、成長させて形成したコバルト粉を含むスラリーを形成する成長工程、(4)前記(2)の還元工程で得られたコバルト粉を含む還元スラリーを、固液分離してコバルト粉を固相成分として分離、回収する還元工程後の回収工程、及び前記(3)の成長工程で得られたコバルト粉を含むスラリーを、固液分離してコバルト粉を固相成分として分離、回収する成長工程後の回収工程の(1)から(4)に示す工程を施すことを特徴とするコバルト粉の製造方法である。
 本発明の第2の発明は、第1の発明における(1)の種晶添加工程における種晶を硫酸コバルトアンミン錯体溶液に添加して混合スラリーを形成する際、混合スラリーに分散剤をさらに添加することを特徴とするコバルト粉の製造方法である。
 本発明の第3の発明は、第1及び第2の発明における(1)の種晶添加工程における種晶の添加量が、硫酸コバルトアンミン錯体溶液中のコバルト重量に対し、1~200重量%となる量であることを特徴とするコバルト粉の製造方法である。
 本発明の第4の発明は、第1から第3の発明における硫酸コバルトアンミン錯体溶液が、ニッケルおよび不純物を含むコバルト含有物を溶解する浸出工程と、浸出工程で得られたコバルトとニッケルおよび不純物を含む浸出液をpH調整した後、溶媒抽出法により粗硫酸コバルト溶液とニッケル回収液に分離するニッケル分離工程と、ニッケル分離工程で得られた粗硫酸コバルト溶液中の不純物を、溶媒抽出法、硫化法、中和法のいずれか又は組み合わせて用いて除去し、硫酸コバルト溶液を得る浄液工程と、硫酸コバルト溶液をアンモニアにより錯化処理する錯化工程を経て得られた硫酸コバルトアンミン錯体溶液であることを特徴とするコバルト粉の製造方法である。
 本発明の第5の発明は、第4の発明におけるコバルト含有物が、コバルトおよびニッケルの混合硫化物、粗硫酸コバルト、酸化コバルト、水酸化コバルト、炭酸コバルト、金属コバルトの粉末の少なくとも1種であることを特徴とするコバルト粉の製造方法である。
 本発明の第6の発明は、第4及び第5の発明におけるニッケル分離工程および浄液工程の溶媒抽出法において用いられる溶媒が、2-エチルヘキシルホスホン酸モノ2-エチルヘキシルエステルまたはジ-(2,4,4-トリメチルペンチル)ホスフィン酸であることを特徴とするコバルト粉の製造方法である。
 本発明の第7の発明は、第1から第3の発明の(1)の種晶添加工程における硫酸コバルトアンミン錯体溶液中の硫酸アンモニウム濃度が、100~500g/L、且つアンモニウム濃度が、前記錯体溶液中のコバルト濃度に対してモル比で1.9以上であることを特徴とするコバルト粉の製造方法である。
 本発明の第8の発明は、第1の発明における(2)の還元工程及び(3)の成長工程における水素還元反応が、温度を120~250℃、及び圧力を1.0~4.0MPaの範囲に維持して水素還元を行うことを特徴とするコバルト粉の製造方法である。
 本発明の第9の発明は、第2の発明における分散剤が、アクリル酸塩、スルホン酸塩のうち、1種類以上を含むことを特徴とするコバルト粉の製造方法である。
 本発明の第10の発明は、第1の発明における(3)の成長工程を経て得られた高純度コバルト粉を、団鉱機を用いて塊状のコバルトブリケットに加工するコバルト粉団鉱工程と、得られた塊状のコバルトブリケットを、水素雰囲気中で温度500~1200℃での保持条件により、焼結処理を行い焼結体のコバルトブリケットを形成するブリケット焼結工程を含むことを特徴とするコバルト粉の製造方法である。
 本発明の第11の発明は、第1の発明における(2)の還元工程後、及び(3)の成長工程後の(4)の回収工程における固液分離処理によりコバルト粉を固相成分として分離した後の反応後液を濃縮し、硫酸アンモニウムを晶析させて硫酸アンモニウム結晶を回収する硫安回収工程を含むことを特徴とするコバルト粉の製造方法である。
 本発明の第12の発明は、第1の発明における(2)の還元工程後、及び(3)の成長工程後の(4)の回収工程における固液分離処理によりコバルト粉を固相成分として分離した後の反応後液にアルカリを加えて加熱し、アンモニアガスを揮発させ回収するアンモニア回収工程を含むことを特徴とするコバルト粉の製造方法である。
 本発明の第13の発明は、第1の発明におけるアンモニア回収工程で回収したアンモニアが、
  第1の発明のコバルト粉の製造方法における製造工程内で循環使用され、
  第4の発明におけるニッケル分離工程のpH調整に用いるアルカリ、第4の発明における浄液工程の中和法を用いた場合の中和に用いるアルカリ、及び第4の発明における錯化工程に用いるアルカリとして用いられることを特徴とするコバルト粉の製造方法である。
 本発明の第14の発明は、第1の発明の(1)の種晶添加工程におけるコバルト粉の種晶が、第4の発明に記載の浄液工程で得られた硫酸コバルト溶液に還元剤を添加して生成したコバルト粉であることを特徴とするコバルト粉の製造方法である。
 本発明の第15の発明は、第1の発明の(1)の種晶添加工程におけるコバルト粉の種晶が、第4の発明に記載の錯化工程で得られた硫酸コバルトアンミン錯体溶液に不溶性固体を加え、高温高圧下で水素ガスを吹込む水素還元反応により生成したコバルト粉であることを特徴とするコバルト粉の製造方法である。
本発明の第16の発明は、第1~15の発明を用いて得ることを特徴とするコバルトブリケットである。
 硫酸コバルトアンミン錯体溶液から水素ガスを用いてコバルト粉を生成する製造方法において、本発明を用いることによって高純度なコバルト粉やコバルトブリケットを効率よく得ることができ、工業的に顕著な効果を奏するものである。
本発明のコバルト粉の製造フロー図である。 実施例1の成長工程回数による平均粒径変化を示す図である。
 本発明では、硫酸コバルトアンミン錯体溶液からコバルト粉を得る製造方法において、湿式製錬プロセスの工程液に下記(1)~(4)に示す工程を順に施すことによって、硫酸コバルトアンミン錯体溶液から、より不純物の少ない高純度コバルト粉を製造することを特徴とするものである。
 以下、図1に示す本発明の高純度コバルト粉の製造フロー図を参照して、本発明の高純度コバルト粉の製造方法を説明する。
[浸出工程]
 先ず、浸出工程は、出発原料となる、コバルトおよびニッケル混合硫化物、粗硫酸コバルト、酸化コバルト、水酸化コバルト、炭酸コバルト、コバルト粉などから選ばれる一種、または複数の混合物から成る工業中間物などのコバルト含有物を、硫酸により溶解して、コバルトを浸出させて浸出液を生成する工程で、特開2005-350766号公報などに開示された公知の方法を用いて行うことができる。
[ニッケル分離工程]
 次に、この浸出液のpH調整を行ない、ニッケル分離工程に供する。
 このニッケル分離工程は、浸出工程で得られた後、浸出液にpH調整を施して得た、pH調整された浸出液(水相)と有機相を接触させ、各相中の成分を交換することで、水相中のある成分の濃度を高め、他の異なる成分の濃度を低くするものである。
 本発明では有機相に「2-エチルヘキシルホスホン酸モノ2-エチルヘキシルエステル」又は「ジ-(2,4,4-トリメチルペンチル)ホスフィン酸」を用いて水相の浸出液中のコバルトを選択的に抽出し、硫酸を用いて逆抽出することにより粗硫酸コバルト溶液を得るものである。
 また、この工程時にpH調整のため用いられるアンモニア水には、後述するアンモニア回収工程で生成されるアンモニアを使用することができる。
[浄液工程]
 この浄液工程は、ニッケル分離工程で得られた粗硫酸コバルト溶液中に含まれる不純物を低減させる工程で、有機相に「2-エチルヘキシルホスホン酸モノ2-エチルヘキシルエステル」または「ジ-(2,4,4-トリメチルペンチル)ホスフィン酸」を用いて粗硫酸コバルト溶液中の不純物元素を選択的に抽出し、高純度の硫酸コバルト溶液を得る溶媒抽出法、硫化水素ガス、硫化ナトリウム、硫化カリウム、硫化水素ナトリウムなどの硫化剤を添加して不純物を選択的に沈殿除去する硫化法、水酸化ナトリウム、水酸化カルシウム、炭酸ナトリウム、炭酸カルシウム、水酸化マグネシウムなどのアルカリを添加して不純物を選択的に沈殿除去する中和法を用いて行なう。
[錯化工程]
 この錯化工程は、浄液工程で得られた高純度の硫酸コバルト溶液に、アンモニアガスまたはアンモニア水のアンモニアを添加、錯化処理し、コバルトのアンミン錯体である硫酸コバルトアンミン錯体を生成し、硫酸コバルトアンミン錯体溶液を形成する工程である。
 このときのアンモニウム濃度は、溶液中のコバルト濃度に対しモル比で1.9以上になるようにアンモニアを添加する。添加するアンモニアのアンモニウム濃度が1.9未満ではコバルトがアンミン錯体を形成せず、水酸化コバルトの沈殿が生成してしまう。
 また、硫酸アンモニウム濃度を調整するために、本工程において硫酸アンモニウムを添加することができる。
 このときの硫酸アンモニウム濃度は100~500g/Lが好ましい。500g/L以上では溶解度を超えてしまい、結晶が析出し操業できなくなる。また、プロセスのメタルバランス上、100g/L未満を達成するのは困難である。
 さらに、この工程で用いるアンモニアガスまたはアンモニア水にも、後述するアンモニア回収工程で生成されるアンモニアを使用することができる。
[硫酸コバルトアンミン錯体溶液からのコバルト粉製造工程]
 図1の処理工程で示される高純度の硫酸コバルトアンミン錯体溶液からコバルト粉を製造する工程を以下に説明する。
(1)種晶添加工程
 硫酸コバルトアンミン錯体溶液に、コバルト粉を種晶としてコバルト粉スラリーの形態で添加して種晶を含む混合スラリーを形成する工程である。
 このときに添加する種晶の重量は、硫酸コバルトアンミン錯体溶液中のコバルト重量に対し1~200重量%が好ましい。1%未満では次工程の還元時の反応効率が著しく低下して好ましくない。また200%を越えると使用量が多すぎて、ハンドリングに支障が出たり、種晶製造にコストが掛かり経済的ではない等好ましくない。
 上記コバルト粉は、上記溶媒抽出工程で得られた高純度の硫酸コバルト溶液と還元剤を混合することで生成することができる。
 ここで使用する還元剤としては、特に限定されるものではないが、工業的に広く用いられているヒドラジン、亜硫酸ナトリウムなどを用いることができる。
 このとき、さらにアルカリを混合しても良く、水酸化ナトリウムを用いてpHを7~12に調整すると良い。
 また、反応温度は25~80℃が好ましい。25℃未満では反応時間が長時間になり工業的に適用するには現実的ではない。一方、80℃以上では反応槽の材質が限られるため設備費が高額となる。さらに、この際に界面活性剤を少量添加することにより生成するコバルト粉の粒径を細かくすることができる。
 別の種晶製造方法としては、硫酸コバルトアンミン錯体溶液を後述する還元工程の条件下で水素ガスを吹き込むことにより生成することができる。このとき、硫酸コバルトアンミン錯体溶液に不溶な固体、たとえば鉄粉、アルミナボール、ジルコニアボール、と分散剤を添加することにより回収効率を向上させることができる。
 種晶を含む混合スラリーに、同時に分散剤を添加しても良い。この分散剤を添加することにより種晶が分散するため、次工程の還元工程での反応効率を効果的に向上できる。
 ここで使用する分散剤としては、アクリル酸塩、スルホン酸塩の内、1種類以上を有するものであれば特に限定されないが、工業的に安価に入手できるものとしてポリアクリル酸塩、リグニンスルホン酸塩が好ましい。
(2)還元工程
 (1)の種晶添加工程で得られた混合スラリーに水素ガスを吹き込み、高圧下での水素還元反応により溶液中のコバルトを種晶表面上に析出させる。
 このとき、反応温度は120~250℃が好ましい。120℃未満では還元効率が低下し、250℃を超えても反応が加速することはなく熱エネルギー等のロスが増加するなど好ましくない。
 また、反応時の圧力は1.0~4.0MPaが好ましい。1.0MPa未満では反応効率が低下し、4.0MPaを超えても反応への影響はなく水素ガスのロスが増加する。
 この混合スラリーの液中には、不純物として主にマグネシウムイオン、ナトリウムイオン、硫酸イオン、アンモニウムイオンが存在するが、これらの不純物はいずれも溶液中に残留するため、高純度のコバルト粉を得ることができる。
(3)成長工程
 高純度のコバルト粉に、前述の錯化工程で得られた硫酸コバルトアンミン錯体溶液を加えたスラリーに、(2)の還元工程と同じ方法により高圧下で水素ガスを供給して、水素還元反応により高純度のコバルト粉上に、スラリー中のコバルト成分を還元析出させて成長したコバルト粒子を含むスラリーを形成する。
 また、本成長工程を複数回繰り返して行なうことにより、より粒径が大きな高純度のコバルト粉を生成することができ、さらに、回収工程を経ることで高純度コバルト粉と反応後液に分離し、その得られた高純度コバルト粉に対しては、以下の団鉱工程やブリケット焼成工程を経て、より粗大で酸化し難く取り扱いしやすいブリケットの形状に仕上げても良い。
 また、この回収工程で得た反応後液中に含まれる硫酸アンモニウムを硫安回収工程で回収したり、アンモニアをアンモニア回収工程により回収することもできる。
(4)還元工程後及び成長工程後の回収工程
 (2)の還元工程で形成した還元スラリー、又は(3)の成長工程で形成した成長したコバルト粒子を含むスラリーを固液分離し、高純度のコバルト粉と反応後液を回収する。
[コバルト粉団鉱工程]
 本発明により製造される高純度のコバルト粉は、製品形態として、乾燥後に団鉱機等により成形加工を行ない塊状のコバルトブリケットを得る。
 また、このブリケットへの成形性を向上させるために、場合によってはコバルト粉に水等の製品品質を汚染しない物質をバインダーとして添加しても良い。
[ブリケット焼結工程]
 団鉱工程で作製したコバルトブリケットは、水素雰囲気中で焙焼、焼結を行ない、ブリケット焼結体を作製する。この処理では強度を高めると共に、微量残留するアンモニア、硫黄、炭素成分の除去を行なうもので、その焙焼・焼結温度は、500~1200℃が好ましい。500℃未満では焼結が不十分となり、1200℃を超えても効率がほとんど変わらずエネルギーのロスが大きくなる。
[硫安回収工程]
 (4)の回収工程において発生した反応後液中には硫酸アンモニウムおよびアンモニアが含まれる。
 そこで、硫酸アンモニウムは、反応後液を加熱濃縮して硫酸アンモニウムを晶析させ、硫酸アンモニウム結晶として回収することができる。
[アンモニア回収工程]
 一方アンモニアは、反応後液にアルカリを添加し、pHを10~13の範囲に調整後、加熱することによりアンモニアをガスとして揮発させ回収することができる。
 ここで用いるアルカリは特に限定されるものではないが、水酸化ナトリウム、消石灰などが工業的に安価であり好ましい。
 さらに、回収したアンモニアガスを水と接触させることによりアンモニア水を生成させ、そのアンモニア水を上述のアンモニアを添加するニッケル分離工程前のpH調整、溶媒抽出法を用いた場合の浄液工程、及び錯化工程に繰り返して使用することもできる。
 以下、実施例を用いて本発明を、より詳細に説明する。
(1)種晶添加工程
 コバルト75gが含まれる硫酸コバルトと硫酸アンモニウム330gを含む溶液に、25%アンモニア水を191ml添加し、合計の液量が1000mlになるように調整した溶液を作製した。この溶液に平均粒径が10μmのコバルト粉を種晶として75g(コバルト重量に対し100%)および分散剤としてポリアクリル酸ナトリウム(40%溶液)12.5gを添加して混合スラリーを作製した。
(2)還元工程
 種晶添加工程で作製した混合スラリーを、オートクレーブに装入した後、撹拌しながら185℃に昇温し、オートクレーブ内の圧力が3.5MPaになるように水素ガスを吹き込み、供給して還元処理であるコバルト粉生成処理を行なった。
 水素ガスの供給後、1時間が経過した後に水素ガスの供給を停止し、オートクレーブを冷却した。
(3)還元工程後の回収工程
 冷却後に得られた還元スラリーを濾過による固液分離処理し、高純度の小径コバルト粉と反応後液に分離、回収した。このときの回収したコバルト粉は141gであった。
(4)成長工程
 次に、コバルト75gが含まれる硫酸コバルトと硫酸アンモニウム濃度330gを含む溶液に、25%アンモニア水を191ml添加し、合計の液量が1000mlになるように調整した溶液を作製した。
 この溶液に上記還元工程後の回収工程で得られた高純度の小径コバルト粉を種晶として全量添加して混合スラリーを作製した。
 この混合スラリーをオートクレーブに装入して撹拌しながら185℃に昇温し、オートクレーブ内の圧力が3.5MPaになるように水素ガスを吹き込み、供給した。
 水素ガスの供給後、1時間が経過した後に水素ガスの供給を停止し、オートクレーブを冷却した。冷却後に得られたスラリーを濾過による固液分離処理し、高純度の粒成長したコバルト粉を回収した。
 一部を分取し、公知の方法を用いて粒径を測定し、残りは上記成長工程に記載した小径コバルト粉として添加し、オートクレーブ中で水素ガスによる還元に付す成長工程を繰り返した。
 図2に(繰り返した回数である)成長工程回数(回)とコバルト粉の平均粒径(μm)を示す。繰り返す毎にコバルト粉が成長し、粗大化することを確かめた。
 繰り返し回数は、必要とする紛体のサイズと必要となる設備規模や手間など生産性および経済性を勘案して適宜決定すればよい。
 表1に示す硫酸コバルトアンミン錯体溶液1000mlに、種晶として平均粒径10μmのコバルト粉を75g添加した後、オートクレーブに装入後、撹拌しながら185℃に昇温し、オートクレーブ内の圧力が3.5MPaになるように水素ガスを吹き込み、供給した。
 水素ガスの供給開始後、1時間が経過した後に水素ガスの供給を停止し、オートクレーブを冷却した。冷却後に得られたスラリーを濾過による固液分離処理を施し、回収したコバルト粉を純水で洗浄した後、コバルト粉の不純物品位を分析した。
 その結果を表1に示す。
 MgやNa、Caはコバルト粉への混入はなく、高純度のコバルト粉を生成することができた。
Figure JPOXMLDOC01-appb-T000001
(比較例1)
 コバルト75gが含まれる硫酸コバルトと硫酸アンモニウム濃度330gを含む溶液に、25%アンモニア水を191ml添加し、合計の液量が1000mlになるように調整した溶液を作製した。
 種晶を添加せずに、このスラリーをオートクレーブに装入後、撹拌しながら水素ガスをオートクレープ内の3.5MPaまで供給し、185℃に昇温後、1時間保持した。冷却後、オートクレーブ内から回収できたコバルト粉はわずか1gであった。
 以上、説明してきたように本発明を用いることで高純度なコバルト粉やコバルトブリケットを効率よく得ることを可能とする。

Claims (16)

  1.   コバルト含有物から硫酸コバルトアンミン錯体溶液を経て、コバルト粉を生成する製造工程において、
      下記(1)から(4)に示す工程を施すことを特徴とするコバルト粉の製造方法。
                          記
    (1)前記硫酸コバルトアンミン錯体溶液に、種晶としてコバルト粉を添加して混合スラリーを形成する種晶添加工程。
    (2)前記種晶添加工程で得られた前記混合スラリーに水素ガスを吹き込み、前記混合スラリー中のコバルト成分を水素還元反応により前記種晶上に析出させて形成したコバルト粉を含む還元スラリーを形成する還元工程。
    (3)前記工程(2)の還元工程で形成した還元スラリーを固液分離して得られるコバルト粉に硫酸コバルトアンミン錯体溶液を加えたスラリーに水素ガスを吹き込み、水素還元反応により前記コバルト粉の表面上に前記スラリー中のコバルト成分を還元、析出、成長させて形成したコバルト粉を含むスラリーを形成する成長工程。
    (4)前記(2)の還元工程で得られたコバルト粉を含む還元スラリーを、固液分離して前記コバルト粉を固相成分として分離、回収する還元工程後の回収工程、及び前記(3)の成長工程で得られたコバルト粉を含むスラリーを、固液分離して前記コバルト粉を固相成分として分離、回収する成長工程後の回収工程。
  2.  前記(1)の種晶添加工程における前記種晶を前記硫酸コバルトアンミン錯体溶液に添加して混合スラリーを形成する際、前記混合スラリーに分散剤をさらに添加することを特徴とする請求項1に記載のコバルト粉の製造方法。
  3.  前記(1)の種晶添加工程における前記種晶の添加量が、硫酸コバルトアンミン錯体溶液中のコバルト重量に対し、1~200重量%となる量であることを特徴とする請求項1又は2に記載のコバルト粉の製造方法。
  4.  前記硫酸コバルトアンミン錯体溶液が、
      前記コバルト含有物がニッケルおよび不純物を含み、前記コバルト含有物を溶解する浸出工程と、
      前記浸出工程で得られたコバルトとニッケルおよび不純物を含む浸出液をpH調整した後、溶媒抽出法により粗硫酸コバルト溶液とニッケル回収液に分離するニッケル分離工程と、
      前記ニッケル分離工程で得られた粗硫酸コバルト溶液中の不純物を、溶媒抽出法、硫化法、中和法のいずれか又は組み合わせて用いて除去し、硫酸コバルト溶液を得る浄液工程と、
      前記硫酸コバルト溶液をアンモニアにより錯化処理する錯化工程を、
    経て得られた硫酸コバルトアンミン錯体溶液であることを特徴とする請求項1~3のいずれか1項に記載のコバルト粉の製造方法。
  5.  前記コバルト含有物が、コバルトおよびニッケルの混合硫化物、粗硫酸コバルト、酸化コバルト、水酸化コバルト、炭酸コバルト、金属コバルトの粉末の少なくとも1種であることを特徴とする請求項4に記載のコバルト粉の製造方法。
  6.  前記ニッケル分離工程および浄液工程の溶媒抽出法において用いられる溶媒が、2-エチルヘキシルホスホン酸モノ2-エチルヘキシルエステル、又はジ-(2,4,4-トリメチルペンチル)ホスフィン酸であることを特徴とする請求項4又は5に記載のコバルト粉の製造方法。
  7.  前記(1)の種晶添加工程における硫酸コバルトアンミン錯体溶液中の硫酸アンモニウム濃度が、100~500g/L、且つアンモニウム濃度が、前記錯体溶液中のコバルト濃度に対してモル比で1.9以上であることを特徴とする請求項1~3のいずれか1項に記載のコバルト粉の製造方法。
  8.  前記(2)の還元工程、及び(3)の成長工程における水素還元反応が、温度を120~250℃、及び圧力を1.0~4.0MPaの範囲に維持して水素還元を行うことを特徴とする請求項1に記載のコバルト粉の製造方法。
  9.  前記分散剤が、アクリル酸塩、スルホン酸塩のうち、1種類以上を含むことを特徴とする請求項2に記載のコバルト粉の製造方法。
  10.  前記(3)の成長工程を経て得られた高純度コバルト粉を、団鉱機を用いて塊状のコバルトブリケットに加工するコバルト粉団鉱工程と、
      得られた塊状のコバルトブリケットを、水素雰囲気中で温度500~1200℃での保持条件により、焼結処理を行い、焼結体のコバルトブリケットを形成するブリケット焼結工程
    を含むことを特徴とする請求項1記載のコバルト粉の製造方法。
  11.  前記(2)の還元工程後、及び(3)の成長工程後の(4)の回収工程における固液分離処理によりコバルト粉を固相成分として分離した後の反応後液を濃縮し、硫酸アンモニウムを晶析させて硫酸アンモニウム結晶を回収する硫安回収工程を含むことを特徴とする請求項1記載のコバルト粉の製造方法。
  12.  前記(2)の還元工程後、及び(3)の成長工程後の(4)の回収工程における固液分離処理によりコバルト粉を固相成分として分離した後の反応後液にアルカリを加えて加熱し、アンモニアガスを揮発させ回収するアンモニア回収工程を含むことを特徴とする請求項1に記載のコバルト粉の製造方法。
  13.  前記アンモニア回収工程で回収したアンモニアが、
      請求項1記載のコバルト粉の製造方法における製造工程内で循環使用され、
      請求項4記載のニッケル分離工程におけるpH調整に用いるアルカリ、請求項4記載の浄液工程において中和法を用いた場合の中和に用いるアルカリ、及び請求項4記載の錯化工程で用いられるアルカリとして用いられることを特徴とする請求項1記載のコバルト粉の製造方法。
  14.  前記(1)の種晶添加工程におけるコバルト粉の種晶が、請求項4に記載の浄液工程で得られた硫酸コバルト溶液に還元剤を添加して生成したコバルト粉であることを特徴とする請求項1に記載のコバルト粉の製造方法。
  15.  前記(1)の種晶添加工程におけるコバルト粉の種晶が、請求項4に記載の錯化工程で得られた硫酸コバルトアンミン錯体溶液に不溶性固体を加え、高温高圧下で水素ガスを吹込む水素還元反応により生成したコバルト粉であることを特徴とする請求項1に記載のコバルト粉の製造方法。
  16.  上記請求項1~15の方法を用いて得ることを特徴とするコバルトブリケット。
PCT/JP2016/058384 2015-03-23 2016-03-16 コバルト粉の製造方法 WO2016152690A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16768593.2A EP3276014B1 (en) 2015-03-23 2016-03-16 Cobalt powder production method
CN201680017678.8A CN107406910B (zh) 2015-03-23 2016-03-16 钴粉的制造方法
AU2016237468A AU2016237468B2 (en) 2015-03-23 2016-03-16 Cobalt powder production method
CA2980440A CA2980440C (en) 2015-03-23 2016-03-16 Cobalt powder production method
US15/559,845 US20180056399A1 (en) 2015-03-23 2016-03-16 Cobalt powder production method
PH12017501745A PH12017501745B1 (en) 2015-03-23 2017-09-22 Cobalt powder production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-059760 2015-03-23
JP2015059760A JP6020971B2 (ja) 2015-03-23 2015-03-23 コバルト粉の製造方法

Publications (1)

Publication Number Publication Date
WO2016152690A1 true WO2016152690A1 (ja) 2016-09-29

Family

ID=56977361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058384 WO2016152690A1 (ja) 2015-03-23 2016-03-16 コバルト粉の製造方法

Country Status (8)

Country Link
US (1) US20180056399A1 (ja)
EP (1) EP3276014B1 (ja)
JP (1) JP6020971B2 (ja)
CN (1) CN107406910B (ja)
AU (1) AU2016237468B2 (ja)
CA (1) CA2980440C (ja)
PH (1) PH12017501745B1 (ja)
WO (1) WO2016152690A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109943733A (zh) * 2019-03-12 2019-06-28 衢州华友钴新材料有限公司 一种粗制钴/镍盐原料高效分离钴/镍镁锰的方法
JP7365846B2 (ja) * 2019-10-16 2023-10-20 Jx金属株式会社 高純度硫酸コバルト溶液の製造方法及び、硫酸コバルトの製造方法
CN113500203A (zh) * 2021-06-23 2021-10-15 安徽寒锐新材料有限公司 一种纳米钴粉的制备工艺
CN113664216A (zh) * 2021-08-13 2021-11-19 衢州华友钴新材料有限公司 一种大粒径球形钴粉的制备方法
CN113881858B (zh) * 2021-09-08 2023-03-31 荆门市格林美新材料有限公司 一种含钴废料回收再利用的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02503575A (ja) * 1987-05-20 1990-10-25 クイーンズランド ニツケル ピーテイワイ リミテツド アンモニア性系におけるニツケルおよびコバルトの分離および回収
JP2012012619A (ja) * 2010-06-29 2012-01-19 Jx Nippon Mining & Metals Corp コバルト粉末及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2749235A (en) * 1953-09-25 1956-06-05 Chemical Construction Corp Method of reducing cobaltic ammine salt
US4541861A (en) * 1984-09-13 1985-09-17 The Royal Institution For The Advancement Of Learning (Mcgill University) Process for the production of cobalt, nickel and copper powders from chelating extractants
US6949232B2 (en) * 2002-05-31 2005-09-27 Sherritt International Corporation Producing cobalt (III) hexammine sulfate from nickel cobalt sulfides
CN100410399C (zh) * 2004-06-28 2008-08-13 斯凯资源有限公司 通过与浓酸反应及水浸出从红土矿石中回收镍和钴的方法
WO2009114904A1 (en) * 2008-03-19 2009-09-24 Bhp Billiton Ssm Development Pty Ltd A process for atmospheric leaching of laterite ores using hypersaline leach solution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02503575A (ja) * 1987-05-20 1990-10-25 クイーンズランド ニツケル ピーテイワイ リミテツド アンモニア性系におけるニツケルおよびコバルトの分離および回収
JP2012012619A (ja) * 2010-06-29 2012-01-19 Jx Nippon Mining & Metals Corp コバルト粉末及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3276014A4 *

Also Published As

Publication number Publication date
US20180056399A1 (en) 2018-03-01
JP6020971B2 (ja) 2016-11-02
CN107406910A (zh) 2017-11-28
EP3276014A4 (en) 2018-08-08
CA2980440A1 (en) 2016-09-29
CN107406910B (zh) 2018-11-16
EP3276014B1 (en) 2020-04-29
PH12017501745A1 (en) 2018-03-19
PH12017501745B1 (en) 2018-03-19
AU2016237468A1 (en) 2017-11-02
EP3276014A1 (en) 2018-01-31
CA2980440C (en) 2019-10-15
JP2016180129A (ja) 2016-10-13
AU2016237468B2 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
JP5828923B2 (ja) ニッケル粉の製造方法
JP6610425B2 (ja) ニッケル粉の製造方法
JP2017150063A5 (ja)
WO2016152690A1 (ja) コバルト粉の製造方法
AU2017223933B2 (en) Method for producing nickel powder
JP6531913B2 (ja) ニッケル粉の製造方法
JP2017150002A5 (ja)
WO2017038589A1 (ja) ニッケル粉の製造方法
JP6624464B2 (ja) ニッケル粉の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2980440

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15559845

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 12017501745

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016768593

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016237468

Country of ref document: AU

Date of ref document: 20160316

Kind code of ref document: A