WO2016152686A1 - 無線通信用集積回路 - Google Patents
無線通信用集積回路 Download PDFInfo
- Publication number
- WO2016152686A1 WO2016152686A1 PCT/JP2016/058373 JP2016058373W WO2016152686A1 WO 2016152686 A1 WO2016152686 A1 WO 2016152686A1 JP 2016058373 W JP2016058373 W JP 2016058373W WO 2016152686 A1 WO2016152686 A1 WO 2016152686A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frame
- transmission
- terminal
- integrated circuit
- time
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 282
- 230000005540 biological transmission Effects 0.000 claims abstract description 251
- 230000004044 response Effects 0.000 claims description 47
- 238000012790 confirmation Methods 0.000 claims description 20
- 230000001629 suppression Effects 0.000 claims description 9
- 238000012545 processing Methods 0.000 description 147
- 238000000034 method Methods 0.000 description 61
- 230000002776 aggregation Effects 0.000 description 50
- 238000004220 aggregation Methods 0.000 description 50
- 238000007726 management method Methods 0.000 description 40
- 238000006243 chemical reaction Methods 0.000 description 17
- 230000008569 process Effects 0.000 description 16
- 230000006870 function Effects 0.000 description 13
- 238000001514 detection method Methods 0.000 description 10
- 239000000284 extract Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 101100172132 Mus musculus Eif3a gene Proteins 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 230000006837 decompression Effects 0.000 description 3
- 229920005994 diacetyl cellulose Polymers 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 230000004931 aggregating effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
- H01Q1/243—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0037—Inter-user or inter-terminal allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0078—Timing of allocation
- H04L5/0082—Timing of allocation at predetermined intervals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0225—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0808—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
- H04W74/0816—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/10—Small scale networks; Flat hierarchical networks
- H04W84/12—WLAN [Wireless Local Area Networks]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- Embodiments described herein relate generally to an integrated circuit for wireless communication.
- Multi-user multi-channel (MU-MC) communication in which a plurality of terminals simultaneously use a plurality of channels has attracted attention.
- MU-MC Multi-user multi-channel
- channel-based OFDMA Orthogonal Frequency Division Multiple Access
- a technique of simultaneously transmitting data from a transmitting terminal (such as a base station) to a plurality of receiving terminals using a plurality of channels other than the primary channel has been studied.
- MU-MC communication since a plurality of channels are used, when a base station transmits to a terminal using a certain channel, another terminal may start transmission to the base station using another channel. In this case, in order for the base station to receive a signal on the other channel, it is necessary to support a full duplex system, which complicates the configuration of the base station. If the base station does not support the full duplex method, the base station cannot receive a signal, and thus the terminal consumes power wastefully.
- the embodiment of the present invention aims to reduce the power consumption of a terminal.
- the integrated circuit for wireless communication includes a baseband integrated circuit.
- the baseband integrated circuit receives a first frame requesting transmission permission via an RF integrated circuit, and controls to suppress transmission when the destination of the first frame is not its own device. Even if the second frame for notifying the transmission permission is not received after the elapse of the first time from the reception of the frame, the suppression of the transmission is maintained.
- wireless communications system provided with the base station and terminal which concern on 1st Embodiment.
- Explanatory drawing of resource unit based OFDMA The figure which shows an example of the frame format which concerns on 1st Embodiment.
- movement of the terminal which concerns on 1st Embodiment The flowchart of an example of operation
- positioning The figure which showed the hardware structural example of the radio
- IEEE Std 802.11TM-2012 and IEEE Std 802.11acTM-2013 which are known as wireless LAN standards, are all incorporated herein by reference (incorporated by reference).
- FIG. 1 is a configuration diagram of a wireless communication system including a wireless communication base station and a wireless communication terminal according to the first embodiment.
- This wireless communication system performs communication according to an arbitrary communication method such as the IEEE 802.11 standard.
- the wireless communication base station is referred to as a base station
- the wireless communication terminal is referred to as a terminal or a wireless terminal.
- a base station is also a form of terminal, and is mainly different from terminals other than the base station in that it has a relay function.
- a terminal (STA) 1, terminal 2, and terminal 3 are connected to a base station (AP: Access Point) 11 to form one wireless communication system or wireless communication group (BSS: Basic Service Set).
- the connection means a state in which a radio link is established, and the terminals 1 to 3 complete the exchange of parameters necessary for communication through the association process with the base station 11 to establish the radio link. The In this state, the base station and the terminal know each other's capabilities.
- An association ID (AID) is assigned to a terminal that has established a wireless link.
- the AID is an identifier given at the time of the association process performed with the access point because the terminal belongs to the BSS of the base station.
- the base station identifies the terminal connected to its own device by AID or MAC address.
- BSS BSS
- the base station is illustrated as having two antennas, and each terminal is illustrated as having one antenna.
- the number of antennas of the base station and the terminal is implemented. One or more arbitrary numbers may be used depending on the function.
- BSS2 a wireless communication system or a wireless communication group (hereinafter referred to as BSS2) different from BSS1 is arranged.
- a terminal (STA) 4, a terminal 5, and a terminal 6 are connected to the base station 19.
- Blocks representing terminals connected to the base station 19 are shaded.
- Terminal 6 and terminal 2 exist in the overlapping area of the coverage areas of both base station 19 and base station 11. Three terminals belong to the BSS 2, but four or more terminals may belong to the base station 11, or two or less terminals may belong to the base station 11.
- the base station 19 and the terminals 4 to 6 belonging to the BSS 2 may be legacy base stations and terminals, or may be base stations and terminals according to the present embodiment.
- Legacy base stations and terminals communicate according to standards such as IEEE 802.11b / g / n / ac, for example.
- the base station and terminal according to the present embodiment are configured to be able to communicate with legacy base stations and terminals.
- a legacy terminal may exist in the BSS1.
- the base station 11 and the terminals 1 to 3 belonging to the BSS 1 will be mainly described.
- the base station 11 and the terminals 4 to 6 are the base station and the terminal according to the present embodiment, the base station 11 and the terminal 1 Suppose that it has the same configuration as in.
- the base station 11 can receive or transmit simultaneously with a plurality of terminals using a plurality of radio channels (hereinafter referred to as channels) within a predetermined frequency band.
- the base station assigns one or more channels to each terminal and receives or transmits simultaneously with these terminals.
- Such a communication method is called a channel-based OFDMA (Orthogonal Frequency Division Multiple Access) method or a multi-user multi-channel (MU-MC) communication method.
- channel 1 is the channel with channel number 1.
- channel numbers are numbers that are defined for convenience when channels of an assumed unit channel width (for example, 20 MHz width) are arranged so as not to overlap each other.
- the higher the center frequency the higher the channel number.
- a mode in which the channel-based OFDMA scheme (MU-MC communication) is used in this way will be described.
- a resource unit having one or a plurality of continuous subcarriers as a unit in a continuous frequency domain. May be a resource unit-based OFDMA scheme in which a plurality of terminals are respectively allocated and communicated simultaneously.
- a plurality of channels are arranged in the frequency domain, and the width of each channel (for example, 20 MHz) is a continuous frequency domain.
- a plurality of subcarriers that are continuous in frequency are orthogonal to each other.
- a resource unit (which may be called another name such as a subchannel or a resource block) having one or a plurality of continuous subcarriers as one unit is defined, and one or a plurality of resource units are allocated to each terminal.
- a method of allocating resource units to each terminal and communicating at this time is called a resource unit-based OFDMA method.
- FIG. 2 shows resource units (RU # 1, RU # 2,...
- guard subcarriers may be arranged between resource units, but guard subcarriers are not essential. .
- the number of guard subcarriers is not limited to two, and may be arbitrary as long as it is one or more.
- the allocation in units of resource units may be performed for each terminal by using one or a plurality of channels 1 to 8 in the present embodiment.
- the number of subcarriers per resource unit is the same in each channel, the number of subcarriers in one resource unit may be allowed to differ between channels. Further, although the number of subcarriers in each resource unit belonging to the same channel is the same, the number of subcarriers may be different in each resource unit.
- One or a plurality of resource units in one channel may be allocated to the terminal, or a plurality of resource units belonging to a plurality of channels may be allocated to the terminal. Further, the number of subcarriers in the channel may change according to the number of channels used in resource unit-based OFDMA communication.
- the number of subcarriers in the channel is X
- the number of subcarriers per channel is X / 2. Good.
- the bandwidth of the subcarriers increases accordingly.
- the bandwidth of the subcarriers decreases accordingly.
- a channel-based OFDMA scheme that allocates to terminals in units of channels is assumed.
- the channels described below are used.
- MU-MC channel unit OFDMA
- the communication direction when transmitting data includes a downlink from the base station to each terminal and an uplink from each terminal to the base station.
- the form mainly assumes the case of the downlink.
- the uplink can be implemented in the same manner as in this embodiment.
- FIG. 3A shows a basic format example of a MAC frame (hereinafter referred to as a frame) used in the present embodiment. Communication between the base station and the terminal is performed by transmission / reception of a MAC frame, more specifically, transmission / reception of a physical packet including the MAC frame.
- the frame format in FIG. 3A includes fields of a MAC header (MAC header), a frame body (Frame body), and an FCS. Data frames, management frames, and control frames are basically based on this format, and some fields may be omitted or added as appropriate.
- FIG. 3B shows a format example of an RTS (Request to Send) frame that is a control frame for requesting transmission permission.
- the frame body field that existed in the format of the example of FIG. 3A does not exist.
- FIG. 3C shows a format example of a CTS (Clear to Send) frame that is a control frame for notifying transmission permission.
- the frame body field and TA (Transmitter Address) field that existed in the format of the example of FIG. 3A do not exist.
- FIG. 3B shows a format example of an RTS (Request to Send) frame that is a control frame for requesting transmission permission.
- the frame body field that existed in the format of the example of FIG. 3A does not exist.
- FIG. 3C
- FIG. 4A shows a format example of a CF (Contention Free) -End frame.
- the frame body field that existed in the format of the example of FIG. 3A does not exist. Note that, in FIG. 3A, even if the field is normally provided in the MAC frame, the field that is not essential for the description of the present embodiment is not shown.
- the management frame is a frame used for management of communication links with other terminals. Examples include a beacon frame, an association request frame (a connection request frame requesting connection to a base station), an association response frame (a connection response frame that is a response frame of a connection request frame), and the like.
- the control frame is a frame used for control when a management frame and a data frame are transmitted / received (exchanged) with another wireless communication apparatus. As an example, there are an RTS frame, a CTS frame, an ACK (Acknowledgement) frame, a BA (Block Ack) frame, and the like. Details of these data frames, management frames, and control frames will be described later in other embodiments.
- the Frame Control (frame control) field is provided with a subfield that indicates the type (Type) for distinguishing the three frame types of data frame (Data frame), management frame (Management frame), and control frame (Control frame). It is done.
- the frame control field is provided with a subfield representing a subtype.
- the type is a value representing a control frame
- the subtype is a value defined for an RST frame.
- BA Block Ack
- the type is a value representing the control frame
- the subtype is a value defined for the BA frame.
- the type is a value representing a control frame
- the subtype is a value defined for the CF-End frame.
- the type is a value representing the management frame
- the subtype is a value defined for the beacon frame.
- the value of the type and the subtype is set in the same manner for the association request frame and the association response frame.
- the medium reservation time is set in the Duration field.
- NAV Network Allocation Vector
- the destination address of the frame is set in the RA (Receiver Address; RA) field.
- RA Receiveiver Address
- the address of the terminal is set in the RA field.
- the terminal address is, for example, the MAC address of the terminal.
- the transmission source of the RTS frame transmitted from the base station to the terminal is the base station
- the transmission source of the RTS frame sets the address of the base station.
- the base station address is, for example, the MAC address of the base station.
- a BSSID (usually the same value as the MAC address) may be set instead of the MAC address.
- Arbitrary data to be notified to the destination terminal or base station is set in the Frame Body field.
- information to be inserted into the frame body field is managed as an information element.
- FIG. 4B shows a format example of the information element.
- the information element has an Element ID field, a Length field, and an Information field.
- the Element ID stores a value for identifying the information element.
- the Information field (hereinafter, information field) stores information to be notified.
- the Length field stores length information of the information field.
- One or a plurality of information elements having such a configuration can be stored in the frame body field of the management frame.
- FCS Full Check Sequence
- CRC Cyclic Redundancy Code
- FIG. 5 shows an example of an operation sequence related to MU-MC communication between the base station 11 belonging to the BSS 1 and a plurality of terminals.
- This example shows an example in which channels 1 to 4 are used in MU-MC communication, but various variations such as using channels 1 to 8 or using channels 2 to 8 are possible. is there.
- the system primary channel may be used in MU-MC communication, or the system primary channel may not be used in MC-MC communication.
- which channel is the system primary channel is not particularly limited.
- the sequence example in FIG. 5 is a sequence in the case where the base station 11 has data addressed to the terminal 1 and the terminal 2 in an internal buffer, and transmits these data using MU-MC communication.
- the horizontal axis represents time, and the vertical axis represents channels 1 to 4.
- Terminal 1 and terminal 2 can execute MU-MC communication, and the function of MU-MC communication is enabled (ON).
- a rectangle with “RTS” represents an RTS frame transmitted by the base station.
- the number on the right side of “RTS” represents the number of the terminal that is the destination of the RTS frame.
- RTS1 represents the RTS frame addressed to the terminal 1.
- a rectangle including “CTS” represents a CTS frame transmitted by the terminal.
- a frame containing “DATA” represents a data frame transmitted by the base station.
- the number on the right side of “DATA” represents the number of the terminal that is the destination of the data frame.
- “DATA1” represents the data frame addressed to the terminal 1.
- the data frame represented by “DATA” may be one data frame, a plurality of data frames, or an aggregation frame (superframe) obtained by aggregating a plurality of data frames (subframes).
- BA represents a BA (Block Ack) frame transmitted from the terminal to the base station.
- the BA frame includes information indicating whether each of one or more frames received from the base station is successful.
- the terminal may return an ACK frame instead of a BA frame.
- the hatched rectangle represents a signal transmitted by at least one of the terminals 4 to 6 and the base station 19 belonging to the BSS 2.
- this signal is an interference signal for the terminal 2 and is a signal that is busy with carrier sense.
- the interference signal is, for example, a signal transmitted from a terminal belonging to BSS2 or a base station or both of them, a legacy terminal belonging to base station 11, or a combination thereof.
- the base station 11 decides to transmit the RTS frame on channels 1 and 2 corresponding to the terminal 1 and channels 3 and 4 corresponding to the terminal 2 in order to perform MU-MC communication with the terminals 1 and 2. For this reason, the base station 11 performs carrier sense on the channels 1 to 4 between a distributed coordination function interval (DIFS) time and a randomly determined backoff time, and confirms that the carrier sense result is idle.
- DIFS distributed coordination function interval
- the access right that is, the time that the medium can be occupied, that is, TXOP (Transmission Opportunity) is acquired.
- the DIFS time is an example, and other frame interval time may be used as long as it is a predetermined time. Also in the following description, the DIFS time is not meant to be limited to this, and other predetermined time can be used.
- the base station 11 transmits the RTS frame through the channel that has acquired the access right.
- the base station 11 transmits an RTS frame to the terminal 1 through channels 1 and 2 and transmits an RTS frame to the terminal 2 through channels 3 and 4.
- the terminals 4 to 6 and the base station is observed at the terminal 2 before and after the transmission time of the RTS frame. It is assumed that it has not been detected.
- a NAV value medium reserved time for suppressing transmission of other terminals is set.
- the terminal designated by RA of the RTS frame can transmit a CTS frame as a response.
- the value of NAV is an example of information instructing to suppress transmission of frames other than responses.
- a time (1 ms or the like) assumed until the end of the subsequent frame sequence (CTS frame reception, aggregation frame transmission, BA frame reception, etc.) is set.
- the destination address (RA) of the RTS frame transmitted on channels 1 and 2 is the MAC address of the terminal 1
- the source address (TA) is the MAC address of the base station.
- the RTS frames transmitted on channels 1 and 2 are both frames having the same contents (Duplicate frame). Transmitting frames with the same content is sometimes called Duplicate transmission.
- the destination address of the RTS frame transmitted to the terminal 2 via the channels 3 and 4 is the MAC address of the terminal 2, and the transmission source address is the MAC address of the base station.
- the RTS frames transmitted on the channels 3 and 4 are all frames (Duplicate frames) having the same contents.
- the terminal 1 performs a standby operation on at least channels 1 and 2, and the terminal 2 performs a standby operation on at least channels 3 and 4.
- the channel to be used for MU-MC communication is notified from the base station in advance, it is only necessary to perform a standby operation on the notified channel.
- Such notification may be performed in advance in an arbitrary frame such as a beacon frame, a newly defined management frame, a control frame, or a data frame.
- the terminal 3 is performing a standby operation on channels 1 to 4, for example.
- the standby operation is waiting in a state where a frame transmitted from the base station 11 can be received.
- the operation of each part in the terminal may be set so that reception processing such as reception and demodulation of a frame signal on the corresponding channel can be performed, including performing carrier sense on the corresponding channel. May include.
- the terminals 1 and 2 receive the RTS frame transmitted from the base station 11, and the CTS frame is a channel in which the carrier sense result is idle during a fixed time (PIFS: point coordination function interframe space) before reception.
- PIFS point coordination function interframe space
- the CTS frame is transmitted after SIFS (short interframe space) time from completion of reception of the RTS frame.
- SIFS time is an example, and other frame interval time may be used as long as it is a predetermined time.
- the PIFS time is an example, and other frame interval time may be used as long as it is a predetermined time.
- the SIFS time or PIFS time is not meant to be limited to this, and other predetermined time can be used.
- Terminal 1 receives the RTS frame on channels 1 and 2 and transmits a CTS frame on channels 1 and 2 because the carrier sense result was idle for a fixed time (PIFS) before reception. Since the terminal 2 receives the RTS frame on the channel 3 and the carrier sense result is idle during the fixed time (PIFS) before reception, the terminal 3 transmits the CTS frame on the channel 3. However, the channel 4 does not return the CTS frame because the RTS frame cannot be received (for example, when the FCS indicates reception failure) or there is a busy channel during the PIFS time before reception.
- the destination address (RA) of the CTS frame transmitted from the terminals 1 and 2 is the MAC address of the base station.
- the RTS frame transmitted from the base station via channels 1 to 4 is also transmitted to other terminals (terminals other than terminals 1 and 2) that are performing standby operations on channels 1 to 4 within BSS1 of base station 11. Can be received.
- the terminal 3 can receive the RTS frame on the channels 1 to 4.
- the terminal 3 sets the NAV based on the medium reservation time set in the Duration field of the RTS frame in the channels 1 to 4 that have received the RTS frame not addressed to the terminal itself.
- the terminal 1 also performs a standby operation on the channels 3 and 4, and when an RTS frame is received on the channels 3 and 4, the NAV is set on the channels 3 and 4.
- the terminal 2 performs a standby operation on the channels 1 and 2.
- the NAV is set on the channels 1 and 2.
- the base station transmits an aggregation frame including one or more data frames on the channel that has received the CTS frame after the SIFS time has elapsed since the completion of reception of the CTS frame.
- the base station 11 since the CTS frame is received from the terminal 1 on the channels 1 and 2 and the CTS frame is received from the terminal 2 on the channel 3, the base station 11 sends the aggregation frame to the terminal 1 on the channels 1 and 2 on the channel 3. Then, the aggregation frame is transmitted to the terminal 2 at the same time. It is assumed that the length of time for transmitting the aggregation frame is determined in advance. Note that one or a plurality of data frames may be transmitted instead of the aggregation frame.
- the frames may be transmitted separately on channels 1 and 2, or the channels 1 and 2 may be bundled and used as one band.
- the transmission source address (TA) of the aggregation frame transmitted to the terminal 1 is the MAC address of the base station, and the destination address (RA) is the MAC address of the terminal 1.
- the transmission source address (TA) of the aggregation frame transmitted to the terminal 2 is the MAC address of the base station, and the destination address (RA) is the MAC address of the terminal 2.
- the plurality of frames transmitted from the base station to the plurality of terminals may be the same or different.
- X can be set to any value depending on the situation.
- Terminals 1 and 2 determine whether the reception is successful based on the FCS of the aggregation frame received from the base station, and return a BA frame after the SIFS time has elapsed from the reception of the aggregation frame on the successful channel.
- terminal 1 since terminal 1 has successfully received the aggregation frame on both channels 1 and 2, it returns a BA frame on each of channels 1 and 2.
- a BA frame may be returned using the band in which channels 1 and 2 are combined.
- terminal 2 has also successfully received the aggregation frame on channel 3, it returns a BA frame on channel 3.
- an ACK frame may be transmitted instead of the BA frame.
- the CTS frame is not transmitted from the terminal 2 on the channel 4.
- a terminal that has received an RTS frame transmitted from a base station fails to receive a CTS frame after SIFS time from the reception of the RTS frame, the NAV at that time or after a predetermined time from completion of reception of the CTS frame. It has a mechanism to cancel.
- the terminal may transmit a frame to the base station. For example, while the base station 11 is transmitting an aggregation frame to the terminals 1 and 2, it is conceivable that a terminal that has released the NAV starts frame transmission to the base station 11.
- the terminal 3 does not cancel the NAV even when the CTS frame is not received after the SIFS time has elapsed since the reception of the RTS frame. That is, the NAV is maintained for the time specified in the Duration field of the RTS frame regardless of whether or not the CTS frame is received. Thereby, the useless transmission operation of the terminal 3 can be eliminated, and the power consumption of the terminal 3 can be suppressed.
- the terminal 3 cancels the NAV after the completion of the reception of the RTS frame for the time set in the Duration field of the RTS frame.
- the same sequence can be implemented not with the channel-based OFDMA method (MU-MC method) but also with the resource unit-based OFDMA method.
- transmission / reception of RTS frames, CTS frames, aggregation frames, BA frames, and the like is performed not in units of channels but in units of resource units.
- carrier sense may be performed on a channel basis, and in a channel where the carrier sense result is idle, all resource units belonging to the channel may be determined to be idle. For a busy channel, it may be determined that all resource units belonging to the channel are busy. Of course, if carrier sense in resource units is possible, it may be determined whether each resource unit is idle or busy.
- the difference from FIG. 5 is that, even when the base station 11 does not receive the CTS frame on the channel 4, the aggregation frame (or one or more frames are transmitted to the terminal 3 on the channel 4 simultaneously with the aggregation frame transmitted on the channels 1 to 3. Multiple data frames). That is, the aggregation frame is transmitted to the terminal 3 also on the channel 4 in addition to the channels 1 to 3 after SIFS time from the reception of the CTS frame on the channels 1 to 3.
- the terminal 3 is instructed in advance to perform a standby operation on all or a part of channels (here, channels 1 to 4) for performing MU-MC communication in advance, and the terminal 3 performs a standby operation on at least the channel 4 It is assumed that Such an instruction may be performed in advance in an arbitrary frame such as a beacon frame, a newly defined management frame, a control frame, or a data frame.
- a standby operation on all or a part of channels (here, channels 1 to 4) for performing MU-MC communication in advance, and the terminal 3 performs a standby operation on at least the channel 4
- Such an instruction may be performed in advance in an arbitrary frame such as a beacon frame, a newly defined management frame, a control frame, or a data frame.
- the base station 11 selects a terminal (in this case, the terminal 3) from terminals that are waiting in advance on at least the channel 4, and transmits an aggregation frame to the selected terminal 3. Since the terminal 3 maintains the NAV, its own transmission is prohibited or suppressed. However, the terminal 3 can receive a frame and transmit a response frame. The terminal 3 receives the aggregation frame transmitted from the base station 11 and returns a BA frame after the SIFS time has elapsed. Thereby, the channel 4 can be effectively used to improve the system efficiency. Alternatively, when the terminal 3 does not receive the CTS frame, the terminal 3 may cancel the NAV and wait for reception of the frame from the base station 11.
- a terminal in this case, the terminal 3
- the terminal 3 may cancel the NAV and wait for reception of the frame from the base station 11.
- the BA frame may be returned to the aggregation frame received from the base station 11 after the SIFS time has elapsed.
- the terminal 3 may not be able to receive the frame normally due to the radio wave environment or the like, if the reception is successful, the system efficiency can be improved accordingly.
- the frame described in this embodiment may refer not only to a frame called in the IEEE 802.11 standard, but also to a packet called a packet.
- FIG. 7 is a block diagram of the wireless communication device mounted on the terminal according to the first embodiment.
- the wireless communication device of the terminal includes one or more antennas, a PHY processing and wireless unit 20, and a MAC processing unit 30.
- the PHY processing and radio unit 20 includes a transmission / reception changeover switch 21, a reception unit 22, and a transmission unit 23.
- the MAC processing unit 30 includes a transmission processing unit 31, a reception processing unit 32, a control unit 33, a timer 34, and a storage device 35.
- the reception processing unit 32 includes a reception error detection unit 41, a frame type determination unit 42, a duration determination unit 43, an RA determination unit 44, and a TA determination unit 45.
- the integrated circuit for wireless communication corresponds to the MAC processing unit 30 or a set of the MAC processing unit 30 and the PHY processing and wireless unit 20.
- the transmission / reception changeover switch 21 connects the antenna to one of the reception unit 22 and the transmission unit 23 based on an instruction from the control unit 33.
- the antenna is connected to the receiving unit 22, so that a signal received via the antenna is input to the receiving unit 22.
- the antenna is connected to the transmission unit 23 so that the signal output from the transmission unit 23 is transmitted via the antenna.
- the receiving unit 22 converts a signal received from the antenna from a radio frequency to a baseband, and extracts a signal of a corresponding channel from the baseband signal. Which channel signal is to be extracted is instructed by the control unit 33.
- the reception unit 22 can extract a signal for each channel or a band in which a plurality of channels are collected, and perform reception processing. For example, when a terminal can handle up to 8 channels, a signal is extracted separately for each channel.
- An analog filter may be provided for each channel, and a signal in each band may be extracted by the analog filter.
- one or more analog filters including all channels or a plurality of channels may be provided, and a signal extracted by the analog filter may be processed by a digital filter to extract a signal for each channel.
- the operation band of the analog filter may be variable according to an instruction from the control unit 33, or may be compatible only with a signal in a fixed band.
- the reception unit 22 performs reception processing on the extracted signal to acquire a frame, and outputs the frame to the reception processing unit 32.
- the reception processing includes, for example, A / D conversion, physical layer processing such as demodulation processing and physical header analysis.
- a circuit including a part that performs processing before or before A / D conversion in the reception processing performed by the receiving unit 22 corresponds to an RF (Radio Frequency) integrated circuit as an example.
- the MAC processing unit 30 corresponds to a baseband integrated circuit or a control processing unit that controls communication. All or a part of the processing of the digital area of each unit in the MAC processing unit 30 or the processing of the control unit may be performed by software (program) that operates on a processor such as a CPU or by hardware. Alternatively, it may be performed by both of these software and hardware.
- the terminal may include a processor that performs processing of all or part of each unit.
- the reception processing unit 32 analyzes the MAC header of the frame input from the reception unit 22.
- the reception error detection unit 41 of the reception processing unit 32 performs error inspection (CRC inspection or the like) based on the value of the FCS field of the frame input from the reception unit 22. If an error is detected, it is determined that the frame has not been received normally, and the frame is discarded. When no error is detected, it is determined that the frame has been received normally, and the frame is output to the frame type determination unit 42.
- the frame type determination unit 42 determines the frame type based on the type and subtype of the Frame Control field of the frame. For example, it is determined by type whether the frame corresponds to a management frame, a control frame, or a data frame. Alternatively, a more detailed type is determined by subtype among the determined frame types. Thus, if it is a management frame, a beacon frame, an association request frame, an association response frame, a newly defined frame, and the like are distinguished. If it is a control frame, an RTS frame, a CTS frame, a BA frame, an ACK frame, and the like are distinguished.
- the Duration determination unit 43 determines a value of NAV (Network Allocation Vector) based on the medium reservation time set in the Duration field of the frame.
- NAV Network Allocation Vector
- the RA determination unit 44 determines the destination of the frame based on the RA field of the frame. If the value of the RA field matches the MAC address of the own terminal, it is determined that the frame is addressed to the own terminal. Even in the case of a broadcast address or a multicast address, it is determined that the frame is addressed to the terminal itself. If they do not match these addresses, it is determined that the frame is for another terminal or for another station.
- the TA determination unit 45 determines the transmission source of the frame based on the TA field of the frame. For example, when the value of the TA field matches the MAC address or BBSID of the base station 11, it is determined that the transmission source of the frame is the base station 11.
- the terminal knows in advance the MAC address of the base station 11 by receiving a beacon frame or the like.
- the data frame is output to an upper processing unit (not shown) as necessary. If the received frame is a management frame or a control frame, the received frame is output to the control unit 33. Also, an instruction to generate a frame indicating a delivery confirmation response (delivery confirmation response frame) is output to the access control unit 33 according to whether the received frame is a frame that requires a delivery confirmation response and whether or not the reception of the frame is successful. Or directly to the transmission processing unit 31. Examples of the delivery confirmation response frame include an ACK frame and a BA frame.
- the BA frame is used when an aggregation frame or the like is received.
- the BA frame includes information indicating whether each frame included in the aggregation frame is successful.
- the reception processing unit 32 manages carrier sense information via the reception unit 22.
- the carrier sense information includes physical carrier sense information regarding busy and idle of the medium (CCA) input from the PHY processing unit and the radio unit 20, and a Duration value (medium reservation) described in the Duration field of the received frame. Virtual carrier sense information based on time). If any one of the carrier sense information indicates busy, the medium is regarded as busy, and signal transmission is suppressed during that time.
- the reception processing unit 32 determines that the medium is virtually busy during the medium reservation time described in the frame.
- NAV Network Allocation Vector
- the reception processing unit 32 or the reception unit 22 or both of them may include a carrier detection unit that detects a carrier.
- the storage device 35 stores information transmitted to the base station or information received from the base station.
- the storage device 35 can be read and written by the control unit 33.
- the storage device 35 is provided outside the control unit 33, but a part or all of the storage device 35 may be provided as a buffer in the control unit 33 or arranged outside the MAC processing unit. Also good.
- the storage device 35 may be a memory, an SSD (Solid State Drive), a hard disk, or the like.
- the memory may be a volatile memory such as a DRAM or a nonvolatile memory such as a NAND or MRAM.
- the control unit 33 manages channel access and controls frame transmission at a desired timing.
- a timer 35 is used to transmit a frame at a desired timing. The time until the desired timing is set in the timer 35, and when the timer 35 times out, frame transmission is executed.
- the timer 35 may be used for determining whether or not a frame has been received at a desired timing and for determining whether a desired period has elapsed.
- the control unit 33 performs control so as to suppress transmission until the NAV period elapses.
- the NAV is not canceled even if the CTS frame is not received on the same channel as the channel on which the RTS frame is transmitted after the SIFS time has elapsed since the reception of the RTS frame. This avoids performing uplink transmission while an uplink signal cannot be received because the base station is performing downlink MU-MC communication.
- the transmission processing unit 31 generates and transmits a frame in accordance with an instruction from the control unit 33.
- the transmission processing unit 31 When the transmission processing unit 31 is instructed to transmit a frame from the control unit 33, the transmission processing unit 31 generates the instructed frame and sends the generated frame to the PHY processing unit and the transmission unit 23 of the radio unit 20. Output.
- the transmission unit 23 performs a desired physical layer process on the frame input from the transmission processing unit 31 to obtain a physical packet. Then, the physical packet is subjected to DA (Digital-Analog) conversion, frequency conversion, and the like, and is transmitted as an analog signal from the antenna as a radio wave.
- DA Digital-Analog
- a circuit including a part that performs processing after D / A conversion or after D / A conversion in the transmission processing performed by the transmission unit 22 corresponds to an RF (Radio Frequency) integrated circuit as an example.
- the control unit 33 manages information related to channels processed by the transmission unit 23 and the reception unit 22.
- the control unit 33 assigns a channel to be processed to the transmission unit 23 and the reception unit 22, and instructs the transmission unit 23 and the reception unit 22 about the allocated channel.
- the transmission unit 23 and the reception unit 22 process the channel designated by the control unit 34.
- the terminal is able to execute MU-MC communication and informs the base station that the MU-MC communication function is valid (on) at the time of association or at any timing thereafter by a frame. May be.
- the base station may recognize the terminal that has made the notification as a terminal capable of MU-MC communication.
- FIG. 8 is a block diagram of a wireless communication apparatus mounted on the base station according to the first embodiment.
- the base station wireless communication apparatus includes one or more antennas, a PHY processing and wireless unit 70, and a MAC processing unit 80.
- the PHY processing and radio unit 70 includes a transmission / reception changeover switch 71, a reception unit 72, and a transmission unit 73.
- the MAC processing unit 80 includes a transmission processing unit 81, a reception processing unit 82, a control unit 83, a timer 34, a storage device 85, and a buffer 86.
- the reception processing unit 82 includes a reception error detection unit 91, a frame type determination unit 92, a duration determination unit 93, an RA determination unit 94, and a TA determination unit 95.
- the integrated circuit for wireless communication corresponds to the MAC processing unit 80 or a set of the MAC processing unit 80 and the PHY processing and wireless unit 70.
- the transmission / reception changeover switch 71 connects the antenna to one of the reception unit 72 and the transmission unit 73 based on an instruction from the control unit 83.
- an antenna is connected to the receiving unit 72, so that a signal received via the antenna is input to the receiving unit 72.
- the antenna is connected to the transmission unit 73 so that the signal output from the transmission unit 73 is transmitted via the antenna.
- the receiving unit 72 converts a signal received from the antenna from a radio frequency to a baseband, and extracts a corresponding channel signal from the baseband signal. Which channel signal is to be extracted is instructed by the control unit 83.
- the reception unit 72 can extract a signal for each channel or a band in which a plurality of channels are collected, and perform reception processing. For example, if the base station can handle up to 8 channels, the signals are extracted separately for each channel.
- An analog filter may be provided for each channel, and a signal in each band may be extracted by the analog filter.
- one or more analog filters including all channels or a plurality of channels may be provided, and a signal extracted by the analog filter may be processed by a digital filter to extract a signal for each channel.
- the operation band of the analog filter may be variable according to an instruction from the control unit 83, or may be compatible only with a signal in a fixed band.
- the receiving unit 72 performs various processes on the extracted signal to obtain a frame, and outputs the frame to the reception processing unit 82.
- the various processes include, for example, physical layer processing such as A / D conversion, demodulation processing, and physical header analysis.
- a circuit including a portion that performs processing before A / D conversion or before A / D conversion corresponds to an RF (Radio Frequency) integrated circuit as an example.
- the MAC processing unit 80 corresponds to a baseband integrated circuit or a control processing unit that controls communication. All or part of the processing of the digital area of each unit in the MAC processing unit 80, or the processing of the control unit may be performed by software (program) that operates on a processor such as a CPU, or by hardware. Alternatively, it may be performed by both of these software and hardware.
- the base station may include a processor that performs processing of all or part of each unit.
- the reception processing unit 82 analyzes the MAC header of the frame input from the reception unit 72.
- the reception error detection unit 91 of the reception processing unit 82 performs an error check (such as a CRC check) based on the value of the FCS field of the frame input from the reception unit 72. If an error is detected, it is determined that the frame has not been received normally, and the frame is discarded. When no error is detected, it is determined that the frame has been received normally, and the frame is output to the frame type determination unit 92.
- an error check such as a CRC check
- the frame type determination unit 92 determines the type of frame based on the type and subtype of the Frame Control field of the frame. For example, it is determined by type whether the frame corresponds to a management frame, a control frame, or a data frame. Alternatively, a more detailed type is determined by subtype among the determined frame types.
- the Duration determination unit 93 determines a value of NAV (Network Allocation Vector: transmission suppression period) based on the medium reservation time set in the Duration field of the frame.
- NAV Network Allocation Vector: transmission suppression period
- the RA determination unit 94 determines the destination of the frame based on the RA field of the frame. If the RA field value matches the MAC address of the local station, it is determined that the frame is addressed to the local station. Even in the case of a broadcast address or a multicast address, it is determined that the frame is addressed to the own station. If they do not match these addresses, it is determined that the frame is for another terminal or for another station.
- the TA determination unit 95 determines the frame transmission source based on the TA field of the frame.
- the data frame is output to an upper processing unit (not shown) as necessary. If the received frame is a management frame or a control frame, the received frame is output to the control unit 83. Further, an instruction to generate a frame (delivery confirmation response frame) representing a delivery confirmation response is output to the access control unit 83 according to whether or not the received frame requires a delivery confirmation response and whether or not the reception of the frame is successful. Or directly to the transmission processing unit 81. Examples of the delivery confirmation response frame include an ACK frame and a BA frame.
- the BA frame is used when an aggregation frame or the like is received.
- the BA frame includes information indicating whether each frame included in the aggregation frame is successful. If it is determined that the received frame is a data frame addressed to another terminal, processing such as relaying is performed as necessary.
- the reception processing unit 82 manages carrier sense information via the reception unit 72.
- the carrier sense information includes physical carrier sense information regarding busy and idle of the medium (CCA) input from the PHY processing unit and the radio unit 70, and a Duration value (medium reservation) described in the Duration field of the received frame. Virtual carrier sense information based on time). If any one of the carrier sense information indicates busy, the medium is regarded as busy, and signal transmission is suppressed during that time.
- the reception processing unit 82 determines that the medium is virtually busy during the medium reservation time described in the frame.
- NAV Network Allocation Vector
- the reception processing unit 82 or the reception unit 72 or both of them may include a carrier detection unit that detects a carrier.
- the storage device 85 stores information transmitted to the terminal or information received from the terminal.
- the storage device 85 can be read and written by the control unit 83.
- the storage device 85 is provided outside the control unit 83. However, a part or all of the storage device 85 may be provided as a buffer in the control unit 83, or arranged outside the MAC processing unit. Also good.
- the storage device 85 may be a memory, an SSD, a hard disk, or the like.
- the memory may be a volatile memory such as a DRAM or a nonvolatile memory such as a NAND or MRAM.
- the buffer 86 is connected to the upper layer via the input terminal 87, and data for transmission is stored from the upper layer.
- the buffer 86 may be the same device as the storage device 85 or a different device.
- the buffer 86 may be a memory, an SSD, a hard disk, or the like.
- the memory may be a volatile memory such as a DRAM or a nonvolatile memory such as a NAND or MRAM. Note that a buffer similar to the buffer 86 may also exist in the wireless communication device of the terminal in FIG.
- the control unit 83 manages channel access and controls frame transmission at a desired timing.
- a timer 85 is used to transmit a frame at a desired timing. The time until the desired timing is set in the timer 85, and when the timer 85 times out, frame transmission is executed.
- a timer 85 is used to determine whether or not a frame has been received at a desired timing and to determine whether a desired time has elapsed.
- control unit 83 includes assignment means for assigning channels to a plurality of terminals for MU-MC communication.
- the control unit 83 can perform MU-MC communication, and can perform MU-MC communication at any timing after the association or from a terminal in which the MU-MC communication function is enabled (ON). It is also possible to receive a frame notifying that it is.
- the control unit 83 may recognize the terminal that has made the notification as a terminal capable of MU-MC communication.
- the control unit 83 performs channel allocation to a plurality of terminals using the above-described allocation means.
- the control unit 83 manages the channels assigned to each terminal.
- the control unit 83 may allocate channels to each terminal by an arbitrary method. For example, information specifying a channel requested to be used may be received from each terminal, and channel allocation may be performed for each terminal based on the information. Basically, channels are allocated to each terminal so that they do not overlap, but the same channel may be allocated between terminals, and during actual MU-MC communication, do not use channels that overlap between terminals. It may be controlled to. Further, a channel to be allocated to each terminal may be determined based on the amount of data addressed to each terminal. Of course, it is possible to allocate channels by a method other than that described here.
- the control unit 83 may transmit a frame including information for notifying a channel assigned to each terminal via the transmission processing unit 81.
- the information may be notified using an association response frame, a beacon frame, and other management frames. Further, the control unit 83 may determine the start of MU-MC communication triggered by the presence of data addressed to a plurality of terminals in the buffer 86.
- the control unit 83 transmits an RTS frame on a certain channel (channel A) and simultaneously transmits an RTS frame on another channel (channel B) in MU-MC communication.
- the destinations of the RTS frames A and B may be the same or different.
- a CTS frame is received on channel A and a CTS frame is not received on channel B after the SIFS time has elapsed since transmission.
- the control unit 83 transmits a frame such as a data frame having the same destination as the RTS frame transmitted on channel A on channel A, and on channel B.
- Control is performed so that a frame such as a data frame of a destination different from the transmitted RTS frame is transmitted on channel B.
- a destination terminal to be transmitted on channel B a terminal performing at least a standby operation on channel B is selected from terminals connected to the base station.
- the terminal to be selected may be the same terminal that transmits a frame on channel A.
- the terminal may be selected by an arbitrary method, such as selecting a terminal having the largest data amount to be selected and transmitted at random.
- the transmission processing unit 81 generates and transmits a frame in accordance with an instruction from the control unit 83.
- the transmission processing unit 81 When the transmission processing unit 81 is instructed to transmit a frame from the control unit 83, the transmission processing unit 81 generates the instructed frame, and transmits the generated frame to the PHY processing unit and the transmission unit 73 of the radio unit 70. Output.
- the transmission processing unit 81 may generate a frame using data in the buffer 86.
- the transmission unit 73 performs a desired physical layer process on the frame input from the transmission processing unit 81 to obtain a physical packet. Then, the physical packet is subjected to DA (Digital-Analog) conversion, frequency conversion, and the like, and is transmitted as an analog signal from the antenna as a radio wave.
- DA Digital-Analog
- a circuit including a portion that performs processing after D / A conversion or after D / A conversion corresponds to an RF (Radio Frequency) integrated circuit as an example.
- the control unit 83 manages information related to channels processed by the transmission unit 73 and the reception unit 72.
- the control unit 83 allocates channels to be processed to the transmission unit 73 and the reception unit 72 and instructs the transmission unit 73 and the reception unit 72 about the allocated channels.
- the transmission unit 73 and the reception unit 72 process the channel designated by the control unit 34.
- FIG. 9 shows a flowchart of an example of the operation of the terminal according to the first embodiment.
- the terminal performs a standby operation on one or more channels specified in advance, and receives an RTS frame from the base station on the standby channel (S101).
- the terminal determines whether the destination of the RTS frame is its own terminal (S102). When the destination of the RTS frame is not its own terminal, that is, when it is another terminal, it is based on the medium reservation time set in the Duration field of the RTS frame. , NAV is set (S103).
- the terminal maintains the set NAV until timeout (S104). That is, the NAV is maintained even if the CTS frame is not received after SIFS time after the reception of the RTS frame in the channel that has received the RTS frame.
- step S102 when the destination of the RTS frame is the own terminal and the carrier sense result of the PIFS time before receiving the RTS frame is idle, the CTS frame and the RTS frame are received after the SIFS time from the reception of the RTS frame. It transmits on the channel (S105). After the SIFS time from the transmission of the CTS frame, the terminal receives a frame (one or a plurality of data frames, an aggregation frame, or the like) transmitted from the base station using the channel by the MU-MC method (S106). The terminal transmits a delivery confirmation response frame (such as a BA frame or an ACK frame) after SIFS time from the reception of the frame (S107).
- a delivery confirmation response frame such as a BA frame or an ACK frame
- step S101 when the transmission source of the RTS frame is not a base station, the NAV may be canceled when the CTS frame is not received after SIFS from the reception of the RTS frame.
- Whether or not the transmission source of the RTS frame is a base station may be determined based on the TA field or the like of the RTS frame. For example, as a normal communication different from MU-MC communication, there is a case where an RTS frame addressed to a base station is transmitted on a certain channel such as a primary channel in order for a certain terminal (terminal A) that is not a base station to transmit data. possible. Since another terminal (terminal B) receives the RTS frame and the destination of the RTS frame is not addressed to the own terminal, the NAV is set.
- the terminal B If the terminal B does not receive the CTS frame from the base station after SIFS time from the reception of the RTS frame, the terminal B cancels the NAV on the channel in the middle. In this case, even if the NAV is canceled, the above-described problem does not occur. Therefore, it can be said that it is desirable in terms of system efficiency to cancel the NAV so that the channel can be used.
- terminal A can transmit MU-MC downlink data in the same manner as the base station and performs RTS frame transmission in MU-MC communication, the same processing as in the base station is performed. May be.
- the address is grasped in advance in the same manner as the base station, and when the transmission source address of the RTS frame matches the address of the communication device grasped in advance, the NAV is maintained as in step S104. .
- the NAV may be canceled when the CTS frame is not received after SIFS from the reception of the RTS frame.
- FIG. 10 is a flowchart of an example of the operation of the base station according to the present embodiment.
- the base station determines the start of MU-MC communication and transmits an RTS frame to one or a plurality of terminals via a plurality of channels (S201).
- a channel that has received the CTS frame and a channel that has not received the CTS frame are identified from the channels that have transmitted the RTS frame after SIFS time from the transmission of the RTS frame (S202).
- the base station uses the channel that has received the CTS frame to transmit a frame to the terminal that has transmitted the CTS frame (referred to as a main terminal here), and at the same time uses all or part of the channel that has not received the CTS frame. Then, the frame is transmitted to another terminal (referred to as a sub-terminal here) (S203).
- the sub-terminal is considered to maintain the NAV in the channel through which the frame is transmitted by receiving the RTS frame described above. Even when the NAV is maintained, it is possible to receive a frame from the base station and transmit a frame representing a response to the frame.
- the base station receives a delivery confirmation response frame transmitted from the main terminal and the sub terminal after SIFS time from the transmission of the frame (S204).
- the base station transmits data on the channel that responded to the terminal that responded the CTS frame, and at the same time, the terminal that is waiting on the channel even if the CTS frame was not responded (the CTS frame responds on the channel). Data is transmitted to a terminal other than the terminal that did not exist. As a result, the band of the channel can be effectively used, and thus the system efficiency can be improved.
- this invention can be implemented also when performing MU-MC communication between terminals without going through a base station. For example, this corresponds to the case where one of a plurality of terminals is a transmission side and two or more of the remaining terminals are reception sides and performs MU-MC communication.
- WiFi Direct is known as a standard for communication between terminals without going through a base station. When the WiFi Direct compatible terminal is activated, the WiFi terminal is recognized as a base station by other terminals, and one-to-one or one-to-many connection is possible.
- FIG. 11 shows an example of an operation sequence related to MU-MC communication between the base station 11 and a plurality of terminals according to the second embodiment. The difference from the sequence of FIG. 6 in the first embodiment will be mainly described.
- the medium reservation time set in the Duration field of the RTS frame is set to the time from the end of the RTS frame to the end of the BA frame. This case is also assumed in the first embodiment.
- a medium reservation time that is longer than the expected time from the end of the RTS frame to the end of the BA frame is set in the Duration field of the RTS frame.
- the estimated time from the end of the RTS frame to the end of the BA frame is 1 ms, 10 ms may be set.
- a NAV associated with a time longer than the time expected until the end of the BA frame is sometimes referred to as a LongNAV.
- the base station transmits a CF (Contents Free) -End frame after SIFS time after receiving a BA frame on channels 1 to 3 in MU-MC communication.
- the CF-End frame is a frame for forcibly releasing the NAV set by the terminal. For example, a broadcast address is set in the RA field of the CF-End frame.
- the CF-End frame is transmitted also in the channel 4 that has not received the CTS frame (or that has not received the BA frame) in addition to the channels 1 to 3 that have received the CTS frame (or that has received the BA frame).
- terminals that have received CF-End frames on channels 1 to 3 detect the CF-End frames, and then use channels 1 to 3 to detect the CF-End frames. Release the set NAV.
- the terminal 3 has received the RTS frame addressed to the terminal 1 or the terminal 2 on the channels 1 to 3, since the NAV is maintained from the end of the RTS frame on the channels 1 to 3, the CF-End frame The NAV is canceled upon reception.
- the terminal 1 is waiting on the channel 3 in addition to the channels 1 and 2 and the RTS frame addressed to the terminal 2 is received on the channel 3, the NAV is maintained on the channel 3. -The NAV is canceled when the End frame is received.
- the terminal that receives the RTS frame addressed to the terminal 2 maintains the NAV even if the CTS frame is not received after the SIFS time of receiving the RTS frame. Therefore, in the channel 4 that maintains the corresponding NAV, it is necessary to cancel the NAV in accordance with the NAV cancellation of the channels 1 to 3 after the MU-MC communication in the other channels 1 to 3 is completed. Therefore, as described above, the base station transmits the CF-End frame on channels 1 to 3, and simultaneously transmits the CF-End frame on channel 4 that has not received the CTS frame. The terminal 3 that has received the CF-End frame on the channel 4 releases the maintained NAV. As a result, it is possible to prevent the terminal 3 from continuing to maintain the NAV in the channel 4 in which the MU-MC communication is not performed because the CTS frame cannot be received.
- the control unit 83 transmits a CF-End frame on a channel that has received a CTS frame (or has received a BA frame) after receiving a BA frame, and simultaneously transmits the CTS frame.
- a CF-End frame is transmitted even on a channel that has not been received.
- the control unit 33 cancels the NAV after the reception of the CF-End frame is completed.
- FIG. 12 is a flowchart of an example of the operation of the base station according to this embodiment.
- the base station determines the start of MU-MC communication and transmits an RTS frame to one or more terminals via a plurality of channels (S301). After the SIFS time from the transmission of the RTS frame, the channel that has received the CTS frame and the channel that has not received the CTS frame are identified from among the channels that have transmitted the RTS frame (S302). The base station transmits the frame to the terminal that has transmitted the CTS frame using the channel that has received the CTS frame (S303). The base station receives the delivery confirmation response frame transmitted from the terminal after SIFS time from the transmission of the frame (S304). After the SIFS from the receipt of the delivery confirmation response frame, the CF-End frame is transmitted using the channel that has received the CTS frame and the channel that has not received the CTS frame (S305).
- a period during which MU-MC communication is performed (MU-MC period) is notified by a beacon frame or a newly defined management frame.
- the MU-MC period may be defined in units of beacon intervals indicating a beacon frame and a beacon interval transmitted next, or may be defined by an arbitrary start time and an arbitrary end time.
- the arbitrary start time may be the start time of the beacon interval or may be an arbitrary time within the beacon interval.
- the end time may be the end time of the beacon interval or any time within the beacon interval.
- the NAV is not released in the channel that has not received the CTS frame after SIFS time since the reception of the RTS frame addressed to another terminal (NAV Continue).
- the NAV of the channel that did not receive the CTS frame after SIFS time from the reception of the RTS frame addressed to another terminal is released.
- communication according to a standard such as IEEE 802.11b / g / n / ac is performed based on the primary channel.
- the problem described in the first embodiment the base station performs MU-MC communication with a plurality of terminals. During this period, it is considered that the problem of other terminals performing uplink transmission to the base station does not occur.
- FIG. 13 is a diagram for explaining an overview of operations related to MU-MC communication between the base station 11 and a plurality of terminals according to the present embodiment.
- a rectangle containing the letter “B” represents a beacon frame.
- the base station transmits a beacon frame on channel 1 (here, channel 1 is a primary channel) at regular intervals.
- channel 1 is a primary channel
- information indicating whether or not the beacon interval starting from the beacon frame is in the MU-MC period is set.
- Such information may be set as an information element (FIG. 4B) in the body field of the beacon frame, or the information may be set in an empty area of an existing field or a newly added field.
- bit 1 may represent a MU-MC period
- bit 0 may represent a non-MU-MC period.
- the terminal that has received the beacon frame determines that the current beacon interval is the MU-MC period when information indicating the MU-MC period is set.
- the beacon interval when an RTS frame addressed to another terminal is received from the base station, NAV on the channel that received the RTS frame is continued even if the CTS frame is not received after the SIFS time.
- information indicating a non-MU-MC period is set, it is determined that the current beacon interval is a non-MU-MC period.
- the NAV of the channel that has not received the CTS frame after the SIFS time is released.
- the standby operation channel may be switched depending on whether or not the MU-MC period, so that the standby operation is performed only on the primary channel.
- the control unit 83 determines the start of MU-MC communication, the control unit 83 determines a MU-MC period, and sets a frame in which information specifying the determined period is set in a predetermined field
- the transmission processing unit 81 is instructed to generate (a beacon frame, a newly defined management frame, etc.).
- the transmission processing unit 81 generates and transmits a frame according to an instruction from the control unit 83.
- the frame type determination unit 42 of the reception processing unit 32 analyzes a predetermined field of a frame received from the base station and sets information for specifying the MU-MC communication period. Judgment is made.
- the control unit 33 specifies the MU-MC period and manages the specified MU-MC period.
- the MU-MC period is specified by the position of a beacon interval, a set of start time and end time, or a combination thereof.
- the control unit 33 may include a MU-MC period management unit that manages the MU-MC period.
- control unit 83 When the control unit 83 receives an RTS frame addressed to another terminal and does not receive a CTS frame after the SIFS time, the control unit 83 determines whether or not the current time is within the MU-MC period. In this case, control is performed so as to maintain the NAV set when the RTS frame is received. In the non-MU-MC period, the NAV set when the RTS frame is received is canceled.
- FIG. 14 shows a flowchart of an example of the operation of the terminal according to the third embodiment. Steps that are the same as or correspond to those in FIG. 9 are given the same reference numerals, and redundant descriptions are omitted.
- the terminal receives a frame such as a beacon frame transmitted from the base station, and specifies the MU-MC period based on the received frame (S401).
- the MU-MC period YES in S402
- the terminal maintains the NAV regardless of whether or not the CTS frame is received, as in the first embodiment ( S104).
- the NAV is canceled if the CTS frame is not received after the SIFS time (S403). If a CTS frame is received after SIFS time, the NAV is maintained.
- the base station is a part of a plurality of channels that can receive the CTS frame after transmitting the RTS frame, and a plurality of terminals and downlink spatial multiplexing communication, and more specifically, downlink MU-MIMO. Communication using the (Multi-User Multiple Input, Multiple Output) method is performed. Then, in the remaining channels, downlink communication that does not use MU-MIMO is performed as in the first to third embodiments. In such a case, the present invention relates to a method for determining the medium reservation time set in the Duration field of the RTS frame.
- MU-MIMO refers to downlink MU-MIMO, but this embodiment is applied to uplink MU-MIMO (spatial data transmission from a plurality of terminals to a base station). It is also possible to apply.
- the base station transmits a frame such as a data frame by spatial multiplexing (hereinafter, an aggregation frame is assumed) to a plurality of terminals including the terminal that has returned the CTS frame. Spatial multiplexing is to transmit simultaneously on the same frequency.
- IEEE 802.11 Also defined in ac.
- the base station When the base station receives the BA frame for the aggregation frame transmitted to the plurality of terminals by the MU-MIMO method, the base station receives the BA frames in order from each terminal.
- the BA frame is received once as in the previous embodiments. Therefore, in the case of the MU-MIMO scheme, after transmission of the aggregation frame, the BA frame is received in order from a plurality of terminals, and the time until the completion of the reception of the BA frame is longer than when the MU-MIMO scheme is not used. Become.
- a terminal that does not use the MU-MIMO scheme continues to use the same channel (for the time until a plurality of terminals that use the MU-MIMO scheme transmit all BA frames after completing the transmission of the BA frame of the terminal itself.
- a problem similar to that of the first embodiment problem of transmitting an uplink signal to the base station while the base station performs downlink communication
- a similar problem may occur in terminals that have not participated in MU-MC communication.
- the value of the medium reservation time set in the Duration field of the RTS frame transmitted using the channel not using the MU-MIMO scheme is set in the Duration field of the RTS frame transmitted using the channel using the MU-MIMO scheme.
- the medium reservation time of the channel using the MU-MIMO scheme is assumed from the end of the RTS frame to the end of the BA frame transmitted by the terminal that transmits the BA frame at the end among a plurality of terminals performing MU-MIMO communication. It's time.
- the NAV on the channel is maintained until the transmission of all BA frames in the MU-MIMO communication is completed. Thereby, the above-mentioned problem can be suppressed.
- this embodiment will be described in detail.
- FIG. 15 shows an example of an operation sequence related to MU-MC communication between the base station 11 and a plurality of terminals according to the fourth embodiment. The difference from the sequence of FIG. 6 in the first embodiment will be mainly described.
- the base station When the base station receives the CTS frame from the terminal 1 on the channels 1 and 2, the base station assumes a plurality of terminals including the terminal 1 (in this case, three terminals, in the band obtained by combining the channels 1 and 2, An aggregation frame (more specifically, a physical packet including the aggregation frame) is transmitted to each of terminal m and terminal n) by the MU-MIMO method. That is, a plurality of aggregation frames are transmitted to terminal 1, terminal m, and terminal n by spatial multiplexing.
- the base station uses a technique called beam forming, for example.
- the base station transmits, to each terminal, a beam that minimizes interference among the data streams addressed to the terminal 1, the terminal m, and the terminal n, that is, a beam that the data streams addressed to the terminals are spatially orthogonal to each other.
- a beam that minimizes interference among the data streams addressed to the terminal 1, the terminal m, and the terminal n that is, a beam that the data streams addressed to the terminals are spatially orthogonal to each other.
- the base station preliminarily estimates a propagation path with each terminal by receiving a frame including a known bit string, and forms a beam for each terminal using information on the estimated propagation path.
- terminals that can be selected as targets for MU-MIMO communication are performing standby operations on at least channels 1 and 2.
- the base station sets the group ID of the group to which the terminal 1, the terminal m, and the terminal n belong in common in the header of the physical packet including the aggregation frame to be transmitted to each terminal.
- Each terminal that receives the aggregation frame determines whether the terminal belongs to the group indicated by the group ID set in the header of the physical packet.
- an aggregation frame addressed to the own terminal is detected by demodulating the subsequent portion of the packet.
- subsequent demodulation of the packet part is not necessary.
- identification information of individual terminals that are transmission destinations of the aggregation frame may be set in the header of the physical packet.
- the identification information may be AID, a part of AID, a MAC address, or other information.
- FIG. 16 shows a format example of a physical packet used in MU-MIMO communication. Note that this format example is an example, and other formats may be used. There are fields corresponding to a physical header (L-STF, L-LTF, L-SIG, VHT-SIG-A, VHT-STF, VHT-SIG-B) and a field for setting a MAC frame.
- L-STF, L-LTF, and L-SIG are fields that can be recognized by terminals of legacy standards such as IEEE 802.11a, for example, and store information such as signal detection, frequency correction, and transmission rate.
- the group ID is set to VHT-SIG-A.
- a field for setting the group ID may be newly defined, and the group ID may be set in the field.
- the group ID may be set in other fields such as a frame body field of the MAC frame.
- identification information of individual terminals may be set.
- information such as the number of streams and / or coding (error correction code such as BCC or LDPC) used by each of a plurality of terminals communicating in spatial multiplexing is set in VHT-SIG-A. Good.
- VHT-SIG-B may be set with MCS (Modulation and Coding Scheme).
- the terminal 1 that is, the terminal that has responded to the CTS frame in response to the RTS frame transmitted from the base station, has passed SIFS time since the reception of the aggregation frame. Later, a BA frame is returned on each of channels 1 and 2.
- the BA frame is a Duplicate frame.
- One BA frame may be returned in a band obtained by combining channels 1 and 2.
- a BA frame having different contents may be returned for each of channels 1 and 2.
- the base station After receiving the BA frame from the terminal 1, the base station selects the terminal (second terminal) that returns the BA frame next, and sends the BA request frame, which is a control frame, to the selected terminal on channels 1 and 2. Send each one.
- the BA request frame is a frame for requesting transmission of the BA frame, and as an example, a frame defined by the IEEE 802.11 standard can be used.
- the BA request frame transmitted on channels 1 and 2 may be a Duplicate frame.
- the order of selecting terminals may be determined by an arbitrary method such as a random order, an order of identification numbers (such as AID or MAC address), and a combination thereof. In the example of the figure, a case where the terminal m is selected is shown.
- the terminal m that has received the BA request frame on the channels 1 and 2 returns the BA frame on each of the channels 1 and 2 after the SIFS time has elapsed since the reception.
- the BA frame is a Duplicate frame. If MU-MIMO transmission is performed for each of channels 1 and 2, separate BA request frames may be transmitted for each of channels 1 and 2, and separate BA frames may be returned from the terminal.
- the base station selects the third terminal (in this case, terminal n), and after the SIFS time elapses from the reception of the BA frame received from the second terminal m, the base station receives the BA on each channel 1.
- Send a request frame The terminal that has received the BA request frame on channels 1 and 2 returns the BA frame on each of channels 1 and 2 after the SIFS time has elapsed since reception.
- the BA frame is a Duplicate frame. When MU-MIMO transmission is performed for each of channels 1 and 2, a separate BA request frame is transmitted for each of channels 1 and 2, and a separate BA frame is returned for each of channels 1 and 2.
- the base station transmits the aggregation frame to the terminal 2 after the SIFS time has elapsed after receiving the CTS frame from the terminal 2.
- the terminal 2 returns a BA frame after the SIFS time has elapsed since the reception of the aggregation frame.
- the NAV set based on the RTS frame is maintained valid thereafter. More specifically, the NAV is maintained during the time from the reception of the RTS frame to the end of the BA frame transmitted by the third terminal described above (time T11 in FIG. 15). During the time T11, the terminal 2 is restrained from transmitting a frame spontaneously. The NAV of the terminal 2 is released at the end timing of the BA frame transmitted by the third terminal.
- the terminal that has received the RTS frame on the channel 3 similarly maintains the NAV for the time T11.
- the base station does not transmit a frame in channel 4 because it does not receive a CTS frame from terminal 2.
- the terminal that has received the RTS frame transmitted from the base station through channel 4 maintains the NAV during the medium reservation time (time T11 in FIG. 15) set in the Duration field of the RTS frame.
- the NAV maintains the CTS frame without receiving it after the SIFS time has elapsed since the reception of the RTS frame.
- the rectangle enclosed with the oblique line of a figure represents the interference signal for the terminal 2 in this sequence example.
- the interference signal is, for example, a signal transmitted from a terminal belonging to BSS2 or a base station or both of them, a legacy terminal belonging to base station 11, or a combination thereof.
- the control unit 83 of the base station selects a plurality of channels and a plurality of terminals used for MU-MC communication, and transmits RTS frames to the plurality of terminals using the selected plurality of channels. Send.
- the expected time until the BA frame is received from all terminals during MU-MIMO communication is calculated according to the number of terminals performing MU-MIMO communication.
- the reserved time is set as the medium reservation time.
- the control unit 83 includes a medium reservation time determining unit that determines the medium reservation time as described above.
- RTS frame Since the RTS frame, CTS frame, aggregation frame (or data frame), BA frame, BAR frame length (time length), and frame interval (SIFS etc.) are known in advance, BA frames are received from all terminals. It is possible to estimate in advance the time that will be expected.
- the control unit 83 When the control unit 83 receives the CTS frame in a part or all of the plurality of channels that transmitted the RTS frame, the control unit 83 performs a downlink MU-MIMO communication from the terminals that transmitted the CTS frame (here, the main terminal and the main terminal). Select one or more channels for MU-MIMO communication. Channel selection is performed in channel units, in band units obtained by combining a plurality of channels, or both. In the sequence example of FIG. 15 described above, a band in which channels 1 and 2 are combined is selected. However, MU-MIMO communication may be performed separately on channels 1 and 2.
- control unit 83 is a terminal that performs MU-MIMO communication (here, a terminal that performs MU-MIMO communication among other terminals that are not transmission destinations of RTS frames among terminals that belong to the base station and can perform MU-MIMO communication). Select a sub-terminal). If the number of multiplexed MU-MIMO communication is N, a maximum of N-1 terminals can be selected. When considering the case where one terminal can receive a plurality of data streams, the terminals may be selected so that the total number of data streams is N or less between the plurality of terminals.
- a spatial multiplexing table in which a group ID and identification information of terminals belonging to the group indicated by the group ID are associated may be used.
- the spatial multiplexing table is stored in the storage device 85.
- the control unit 83 identifies a group in which the main terminal exists and selects it as a sub terminal from the group. Such a group is generated in advance at the time of association, at an arbitrary timing thereafter, or both, and the group ID is notified to the terminal.
- a group generation method may be arbitrary, but as an example, it is conceivable that terminals having low correlation (for example, terminals far away) belong to the same group.
- the terminals are selected so that the total number of main terminals and sub-terminals (more specifically, the number of data streams) is equal to or less than the multiplexing number N. Terminals may be preferentially selected in descending order of data volume, or may be selected according to other criteria. When there is no data to be transmitted to the terminal, the terminal does not need to be selected.
- a terminal belonging to a base station can execute downlink MU-MIMO communication and that the function of the MU-MIMO communication is enabled (ON), at an arbitrary timing at the time of association or thereafter Thus, the base station may be notified.
- the base station may recognize the terminal that has made the notification as a terminal capable of downlink MU-MIMO communication.
- the control unit 83 of the base station uses the channel selected for MU-MIMO communication to generate a frame (one or a plurality of data frames or , An aggregation frame) is transmitted to a plurality of terminals via the transmission processing unit 81.
- a frame one or a plurality of data frames, an aggregation frame, or the like
- the transmission processing unit 81 is transmitted via the transmission processing unit 81 to the terminal that has transmitted the CTS frame on the channel.
- the length (time length) of a frame transmitted using the MU-MIMO scheme is the same as the length (time length) of a frame transmitted without using the MU-MIMO scheme.
- the reception processing unit 82 receives a BA frame from a terminal (first terminal) that has responded to the CTS frame with respect to the RTS frame transmitted from the base station among a plurality of terminals communicated by the MU-MIMO method.
- the BA frame is received after SIFS time from the transmission of the frame in the MU-MIMO system.
- the first terminal knows in advance that it returns a BA frame after SIFS time from reception of the frame in the MU-MIMO method because the terminal returns the CTS frame.
- the base station transmits a single frame to the terminal instead of the aggregation frame, a configuration in which an ACK frame instead of a BA frame is received from the terminal is also possible.
- the control unit 83 transmits a BA request frame to the second terminal after the SIFS time, and transmits the BA frame to the second terminal after the SIFS time. Receive from the second terminal. The terminal selection, the transmission of the BA request frame to the terminal, and the reception of the BA frame from the terminal are repeated until the BA frame is received from all terminals communicated by the MU-MIMO method.
- the reception processing unit 82 transmits a BA frame from a terminal that has communicated without using the MU-MIMO method in a channel (channel 3 in the example of FIG. 15) in which the frame is transmitted, after SIFS time from the frame transmission.
- Receive. The terminal transmits the NAV until the medium reservation time specified in the RTS frame elapses after transmission of the BA frame (during time T11 until reception of all BA frames is completed in MU-MIMO communication). But the transmission is suppressed, but the base station can also use the channel.
- the control unit 83 performs carrier sense during the total time of the DIFS time and the time determined at random using the carrier detection unit included in the reception unit 72 or the reception processing unit 82, and the result of the carrier sense is idle.
- the transmission destination of the frame may be the same terminal (terminal 2 in the example of FIG. 15) that communicated immediately on the channel, or may be another terminal.
- the DIFS time is an example, and other frame interval time such as AIFS time may be used as long as it is a predetermined time. Also in the following description, the DIFS time is not meant to be limited to this, and other predetermined time can be used.
- the control unit 33 of the terminal when the RTS frame is received from the base station through a plurality of channels, the control unit 33 of the terminal, during the medium reservation time set in the Duration field from the end of the RTS frame, The NAV is maintained in each channel that has received the RTS frame.
- the control unit 33 transmits the CTS frame via the transmission processing unit 31 on the channel in which the RTS frame addressed to the terminal itself has been successfully received and the carrier sense result during the PIFS before the reception is idle.
- a frame one or a plurality of data frames or an aggregation frame
- a BA frame is returned via the transmission processing unit 31 after SIFS time from reception. That is, the transmission unit is instructed to transmit the BA frame, and the transmission processing unit 31 transmits the BA frame via the transmission unit 23.
- the frame received from the base station may receive a frame transmitted using the MU-MIMO method, or may receive a frame transmitted without using the MU-MIMO method. Which is received may be determined from the physical header. Note that when the base station transmits a single frame to the terminal, a configuration in which an ACK frame is transmitted instead of a BA frame is also possible.
- control unit 33 when the control unit 33 receives a RTS frame addressed to another terminal from the base station and then receives a frame transmitted by the MU-MIMO method, the control unit 33 receives the frame from the base station and receives the BA from the base station. Wait for reception of request frame.
- the BA request frame is received by the reception processing unit 32, the control unit 33 transmits the BA frame via the transmission processing unit 31 after the SIFS time. After the transmission, the NAV is maintained until the medium reservation time set in the Duration field of the RTS frame addressed to the other terminal is completed.
- FIG. 17 is a flowchart of an example of the operation of the base station according to the fourth embodiment.
- the base station determines the start of MU-MC communication and determines the value of the medium reservation time set in the RTS frame (S501).
- the number of terminals performing the MU-MIMO scheme is considered. For example, consider the time required to complete the receipt of a delivery confirmation response frame such as a BA frame from all terminals that perform the MU-MIMO scheme.
- the base station transmits an RTS frame in which the medium reservation time is set in the Duration field using a plurality of channels (S502). After the SIFS time from the transmission of the RTS frame, the channel that has received the CTS frame and the channel that has not received the CTS frame are identified from among the channels that have transmitted the RTS frame (S503).
- the base station specifies a terminal (herein referred to as a main terminal) that performs MU-MIMO communication among terminals that have transmitted CTS frames, and a terminal that performs MU-MIMO communication from other terminals connected to the base station (Hereinafter referred to as a sub-terminal) is selected (S504).
- the base station transmits a frame in the MU-MIMO scheme to the main terminal and the sub-terminal using the channel from which the main terminal has transmitted the CTS frame (S504 in the same).
- the base station After transmitting the frame in the MU-MIMO scheme, the base station receives a frame (in this case, a BA frame) indicating a delivery confirmation response from the main terminal, and then transmits a BA request frame and a BA frame for the number of sub-terminals. Repeat (S505).
- a frame in this case, a BA frame
- the base station sets information indicating the order of each sub-terminal in a frame transmitted to the sub-terminal using the MU-MIMO scheme.
- the sub-terminal grasps the rank of the terminal itself in the order, waits for the time corresponding to the grasped rank from the completion of frame reception, and transmits the BA frame.
- the information indicating the order of each sub-terminal may be a physical packet header, a MAC frame header or body field, or other fields.
- NAV can be maintained even after the end of communication. Therefore, it is possible to prevent the terminal from performing uplink transmission to the base station spontaneously after the communication on the channel is completed. Thereby, useless transmission operation of the terminal can be suppressed, and an increase in power consumption of the terminal can be suppressed.
- the channel numbers in the IEEE 802.11 standard are 5 MHz intervals, and when the channel width is 20 MHz, the channel number intervals that the channels do not suffer are every four intervals.
- the continuous channel in this specification is described in the meaning of the continuous channel without covering each other.
- the channel number in the specification is for convenience. 1 is a channel number 36 in the 5 GHz band in the IEEE 802.11 standard, ch. 2 may be interpreted as a channel number 40 of 5 GHz band in the IEEE 802.11 standard.
- [5 GHz band] In the 5 GHz band according to the IEEE 802.11 standard, channel numbers are basically used at 20 MHz intervals, so there is no problem considering the channel numbers being used.
- ch. 1 is a channel number 1 in the 2.4 GHz band in the IEEE 802.11 standard
- ch. 2 may be set at 25 MHz intervals (FIG. 18A) following North America and China, such as 2.4 GHz band channel number 6 in the IEEE 802.11 standard.
- ch. 1 is a channel number 1 in the 2.4 GHz band in the IEEE 802.11 standard, ch.
- FIG. 18C illustrates channel selection possible in the future in addition to FIGS. 18A and 18B.
- channel numbers 6 and 7 in the 2.4 GHz band as at least some channels
- channel numbers 5 and some frequencies Bandwidth will suffer.
- the frequency band affected by each other's wireless communication system is expanded, and the channel utilization efficiency is lowered.
- FIG. 19 shows an example of the hardware configuration of the wireless communication apparatus according to the present embodiment.
- This configuration can be used as a hardware configuration of a radio communication device installed in a terminal as shown in FIG. 7 and a radio communication device installed in a base station as shown in FIG.
- the configuration of FIG. 19 specifically shows the hardware configuration of each analog processing portion of the PHY processing and radio unit 20 of FIG. 7 and the PHY processing and radio unit 70 of FIG. 8 as an example.
- the 19 includes an antenna 401, a switch 402, a reception system unit 403, a transmission system unit 403, and a digital processing unit 505.
- the digital processing unit 505 includes the MAC processing unit 30 in FIG. 7 and the MAC processing unit 80 in FIG. 8, and the parts that perform the digital processing of the receiving units 22 and 72 and the transmitting units 23 and 73 in FIGS. 7 and 8.
- the reception system unit 403 corresponds to a part that performs analog processing of the reception units 22 and 72 in FIGS. 7 and 8.
- the transmission system unit 404 corresponds to a part that performs analog processing of the transmission units 23 and 73 in FIGS. 7 and 8.
- the switch 402 connects the antenna 401 to one of the reception system unit 403 and the transmission system unit 403.
- the switch 402 is controlled by the digital processing unit 405.
- the reception system unit 403 includes a low noise amplifier (LNA) 406 that amplifies a signal received by the antenna 401, and a bandpass filter 407 that extracts a signal of the entire band of the present system from the signal amplified by the LNA 406. And a plurality of receiving systems Rx1 to Rx4. Here, four reception systems corresponding to channels 1 to 4 are shown. If eight channels are supported, eight reception systems may be provided.
- LNA low noise amplifier
- the reception system Rx1 corresponding to the channel 1 includes an oscillator (frequency synthesizer) f1, mixers 411 and 412, reception filters 413 and 414, VGA (Variable Gain Amplifier) 415 and 416, and ADC (Analog-Digital Converter) 417 and 418.
- the oscillator f1 generates two signals having the center frequency f1 of the channel 1 and orthogonal to each other, and outputs them to the mixers 411 and 412.
- the mixers 411 and 412 down-convert the signal from the oscillator f1 by multiplying the signal that has passed through the band-pass filter 407.
- an I ((In-phase)) signal having the same phase as the signal that has passed through the bandpass filter 407 and a Q (Quad-phase) signal that is delayed by 90 ° therefrom are generated.
- the I signal is also called an I channel signal
- the Q signal is also called a Q channel signal.
- Reception filters 413 and 414 extract channel 1 band component signals from the I and Q signals. As an example, if one channel has a 20 MHz bandwidth, the bandwidth of the reception filters 413 and 414 is 10 MHz.
- the VGAs 415 and 416 adjust the amplitudes of the signals that have passed through the reception filters 413 and 414 in accordance with the input widths of the ADCs 417 and 418 and input them to the ADCs 417 and 418.
- the ADCs 417 and 418 perform AD conversion on the input signals and input the digital signals to the digital processing unit 405.
- the digital processing unit 405 performs physical layer processing such as demodulation on the input signal, and various processing at subsequent stages.
- the reception systems Rx2 to Rx4 respectively corresponding to the channels 2 to 4 have the same configuration as the channel 1 reception system.
- the receiving system corresponding to channel 2 is not shown.
- the reception system Rx3 corresponding to the channel 3 includes an oscillator f3, mixers 431 and 432, reception filters 433 and 434, VGA (Variable Gain Amplifier) 435 and 436, and ADCs 437 and 438.
- the reception system Rx4 corresponding to the channel 4 includes an oscillator f4, mixers 441 and 442, reception filters 443 and 444, VGA (Variable Gain Amplifier) 445 and 446, and ADCs 447 and 448, respectively.
- each receiving system showed the form which processes one channel here
- bonded several continuous channels by adjusting the frequency of an oscillator and the bandwidth of a receiving filter was shown. It may be adjusted so as to process (for example, a band in which channels 1 and 2 are combined).
- the transmission system unit 403 includes a plurality of transmission systems Tx1 to Tx4 and a preamplifier 408 that amplifies signals output from the plurality of transmission systems.
- a preamplifier 408 that amplifies signals output from the plurality of transmission systems.
- four transmission systems corresponding to channels 1 to 4 are shown. If eight channels are supported, eight transmission systems may be provided.
- the transmission system Tx1 corresponding to the channel 1 includes DAC (Digital-Analog Converter) 457 and 458, VGA (Variable Gain Amplifier) 455 and 456, transmission filters 453 and 454, mixers 451 and 452, and an oscillator f1.
- the DACs 457 and 458 receive digital signals for the I channel and Q channel that have undergone physical layer processing such as demodulation, and perform DA conversion.
- the VGAs 455 and 456 adjust the amplitudes of the analog signals of the I channel and the Q channel to desired levels, respectively, and output them to the transmission filters 453 and 454.
- Transmission filters 453 and 454 extract desired bandwidth signals from the input I-channel and Q-channel signals, respectively, and output the signals to mixers 451 and 452.
- the bandwidth of the transmission filters 453 and 454 is set to 10 MHz.
- the oscillator f1 generates two signals having the center frequency f1 of the channel 1 and orthogonal to each other, and outputs them to the mixers 451 and 452.
- the mixers 451 and 452 upconvert the signals that have passed through the transmission filters 453 and 454 to radio frequencies of the center frequency f1 by multiplying signals that are orthogonal to each other.
- the up-converted I signal and Q signal are combined, amplified by the preamplifier 408, and then radiated as a radio wave from the antenna 401 to the space.
- the transmission systems Tx2 to Tx4 respectively corresponding to the channels 2 to 4 have the same configuration as the transmission system of the channel 1. In the figure, the transmission systems corresponding to the channels 2 and 3 are not shown.
- the transmission system Tx4 corresponding to the channel 4 includes DACs 487 and 488, VGAs 485 and 486, transmission filters 483 and 454, mixers 481 and 482, and an oscillator f4.
- each transmission system showed the form which processes one channel here, the band which one transmission system couple
- FIG. 20 shows another example of the hardware configuration of the wireless communication apparatus according to the present embodiment.
- This configuration particularly corresponds to a hardware configuration example of a radio communication device mounted on a base station that implements MU-MIMO shown in the fourth embodiment.
- the description will focus on differences from the hardware configuration shown in FIG.
- This wireless communication apparatus includes four antennas 401A, 401B, 401C, and 401D, four switches 402A, 402B, 402C, and 402D, a reception system unit 493, a transmission system unit 494, and a digital processing unit 495.
- the reception system unit 493 includes four reception systems Rx1 to Rx4.
- the transmission system unit 494 includes four transmission systems Tx1 to Tx4.
- the antenna 401A is connected to the reception system Rx1 and the transmission system Tx1 via the switch 402A.
- the antenna 401B is connected to the reception system Rx2 and the transmission system Tx2 via the switch 402B
- the antenna 401C is connected to the reception system Rx3 and the transmission system Tx3 via the switch 402C
- the antenna 401D is connected to the switch 401C. It is connected to the reception system Rx4 and the transmission system Tx4 via 402D.
- the reception system unit 403 includes the bandpass filter 407 and the LNA 406 that are common to a plurality of reception systems.
- a bandpass filter and an LNA are provided for each reception system. ing. That is, the reception system Rx1 includes an LNA 406A and a bandpass filter 407A, the reception system Rx2 includes an LNA 406B and a bandpass filter 407B, the reception system Rx3 includes an LNA 406C and a bandpass filter 407C, and the reception system Rx4 includes an LNA406D. And a band pass filter 407D.
- the transmission processing unit includes the bandpass filter 408 common to a plurality of transmission systems.
- a bandpass filter is provided for each transmission system. That is, the transmission system Tx1 includes a bandpass filter 408A, the transmission system Tx2 includes a bandpass filter 408B, the transmission system Tx3 includes a bandpass filter 408C, and the transmission system Tx4 includes a bandpass filter 408D.
- the frequencies of the oscillators of the reception systems Rx1 to Rx4 are f1 to f4 corresponding to the channels 1 to 4, respectively, and the bandwidth of the reception filter is set to 10 MHz.
- f1 to f4 represent the center frequencies of the channels 1 to 4, respectively.
- These setting examples of the oscillator and the reception filter are setting examples at the time of receiving the CTS frame and the BA frame shown in the sequence example of FIG. 15 in the fourth embodiment.
- One channel width is assumed to be 20 MHz.
- the frequencies of the oscillators of the transmission systems Tx1 to Tx4 are f1.5, f1.5, f1.5, and f3, respectively, and the bandwidths of the transmission filters are set to 20 MHz, 20 MHz, 20 MHz, and 10 MHz, respectively.
- the setting example of these oscillators and transmission filters is a setting example at the time of transmission of the aggregation frame shown in the sequence example of FIG. “F1.5” represents an intermediate frequency between f1 and f2. This setting of the intermediate frequency is not a transmission for each of the channels 1 and 2 but a setting for transmission in a band in which the channels 1 and 2 are combined.
- f3 represents the center frequency of channel 3.
- reception systems Rx1 to Rx4 and the transmission systems Tx1 to Tx4 are the same as those in FIG.
- FIG. 21 shows an overall configuration example of a terminal or a base station.
- the terminal or base station includes one or a plurality of antennas 1 to n (n is an integer of 1 or more), a wireless LAN module 148, and a host system 149.
- the wireless LAN module 148 corresponds to the wireless communication device according to the first embodiment.
- the wireless LAN module 148 includes a host interface, and is connected to the host system 149 through the host interface. In addition to being connected to the host system 149 via a connection cable, the host system 149 may be directly connected.
- the wireless LAN module 148 is mounted on a substrate with solder or the like and is connected to the host system 149 through wiring on the substrate is also possible.
- the host system 149 communicates with an external device using the wireless LAN module 148 and the antennas 1 to n according to an arbitrary communication protocol.
- the communication protocol may include TCP / IP and higher-layer protocols.
- TCP / IP may be installed in the wireless LAN module 148, and the host system 149 may execute only higher-layer protocols. In this case, the configuration of the host system 149 can be simplified.
- This terminal is, for example, a mobile terminal, TV, digital camera, wearable device, tablet, smartphone, game device, network storage device, monitor, digital audio player, web camera, video camera, project, navigation system, external adapter, internal It may be an adapter, set top box, gateway, printer server, mobile access point, router, enterprise / service provider access point, portable device, handheld device, and the like.
- FIG. 22 shows a hardware configuration example of the wireless LAN module.
- This configuration can be applied when the wireless communication apparatus is installed in either a non-base station terminal or a base station. That is, it can be applied as an example of a specific configuration of the wireless communication apparatus shown in FIG.
- the configuration shown in FIG. 19 or 20 can be used.
- a plurality of sets of a transmission system (216, 222 to 225), a reception system (232 to 235), a PLL 242, a crystal oscillator (reference signal source) 243, and a switch 245 are arranged corresponding to each antenna. May be connected to the control circuit 212, respectively.
- the PLL 242 or the crystal oscillator 243 or both correspond to the oscillator according to the present embodiment.
- the wireless LAN module includes a baseband IC (Integrated Circuit) 211, an RF (Radio Frequency) IC 221, a balun 225, a switch 245, and an antenna 247.
- the integrated circuit for wireless communication according to the present embodiment corresponds to a baseband IC or a set of a baseband IC and an RF IC 221. Further, a balun 225 or switch 245 or antenna 247 or any combination thereof may be included.
- the baseband IC 211 includes a baseband circuit (control circuit) 212, a memory 213, a host interface 214, a CPU 215, a DAC (Digital to Analog Converter) 216, and an ADC (Analog to Digital Converter) 217.
- the baseband IC 211 and the RF IC 221 may be formed on the same substrate. Further, the baseband IC 211 and the RF IC 221 may be configured by one chip. Either or either of the DAC 216 and the ADC 217 may be arranged in the RF IC 221 or may be arranged in another IC. Further, both or either of the memory 213 and the CPU 215 may be arranged in an IC different from the baseband IC.
- the memory 213 stores data exchanged with the host system. In addition, the memory 213 stores information notified to the terminal or the base station, information notified from the terminal or the base station, or both of them.
- the memory 213 may store a program necessary for the execution of the CPU 215 and may be used as a work area when the CPU 215 executes the program.
- the memory 213 may be a volatile memory such as SRAM or DRAM, or a nonvolatile memory such as NAND or MRAM.
- the host interface 214 is an interface for connecting to the host system.
- the interface may be anything such as UART, SPI, SDIO, USB, and PCI Express.
- the CPU 215 is a processor that controls the baseband circuit 212 by executing a program.
- the baseband circuit 212 mainly performs MAC layer processing and physical layer processing.
- the baseband circuit 212, the CPU 215, or both correspond to a MAC processing unit or a control processing unit that controls communication.
- At least one of the baseband circuit 212 and the CPU 215 may include a clock generation unit that generates a clock, and the internal time may be managed by the clock generated by the clock generation unit.
- the baseband circuit 212 adds a physical header to the frame to be transmitted as a physical layer process, encodes, encrypts, modulates, and so on. For example, two types of digital baseband signals (hereinafter, digital I signal and digital Q signal) Signal).
- the baseband circuit 212 performs processing related to MIMO. For example, at least one or more of propagation path estimation processing, transmission weight calculation processing, stream separation processing, and the like are performed.
- the DAC 216 performs DA conversion on the signal input from the baseband circuit 212. More specifically, the DAC 216 converts a digital I signal into an analog I signal and converts a digital Q signal into an analog Q signal. Note that there may be a case where the signal is transmitted as it is without a quadrature modulation. When a plurality of antennas are provided and transmission signals of one system or a plurality of systems are distributed and transmitted by the number of antennas, a number of DACs or the like corresponding to the number of antennas may be provided.
- the RF IC 221 is, for example, an RF analog IC, a high frequency IC, or both.
- the RF IC 221 includes a filter 222, a mixer 223, a preamplifier (PA) 224, a PLL (Phase Locked Loop) 242, a low noise amplifier (LNA), a balun 235, a mixer 233, and a filter 232. Some of these elements may be located on the baseband IC 211 or another IC.
- the filters 222 and 232 may be band pass filters or low pass filters.
- the filter 222 extracts a signal in a desired band from each of the analog I signal and the analog Q signal input from the DAC 216.
- the PLL 242 uses the oscillation signal input from the crystal oscillator 243 and divides and / or multiplies the oscillation signal to generate a signal having a constant frequency synchronized with the phase of the input signal.
- the PLL 242 includes a VCO (Voltage Controlled Oscillator), and obtains a signal having the constant frequency by performing feedback control using the VCO based on an oscillation signal input from the crystal oscillator 243.
- the generated constant frequency signal is input to the mixer 223 and the mixer 233.
- the PLL 242 corresponds to an example of an oscillator that generates a signal having a constant frequency.
- the mixer 223 up-converts the analog I signal and the analog Q signal that have passed through the filter 222 to a radio frequency by using a constant frequency signal supplied from the PLL 242.
- the preamplifier (PA) amplifies the radio frequency analog I signal and analog Q signal generated by the mixer 223 to a desired output power.
- the balun 225 is a converter for converting a balanced signal (differential signal) into an unbalanced signal (single-ended signal).
- the RF IC 221 handles balanced signals, but since the unbalanced signal is handled from the output of the RF IC 221 to the antenna 247, these signals are converted by the balun 225.
- the switch 245 is connected to the balun 225 on the transmission side during transmission, and is connected to the balun 234 or RF IC 221 on the reception side during reception.
- the control of the switch 245 may be performed by the baseband IC 211 or the RF IC 221, or another circuit for controlling the switch 245 may exist and the switch 245 may be controlled from the circuit.
- the radio frequency analog I signal and analog Q signal amplified by the preamplifier 224 are balanced-unbalanced converted by the balun 225 and then radiated as radio waves from the antenna 247.
- the antenna 247 may be a chip antenna, an antenna formed by wiring on a printed board, or an antenna formed by using a linear conductor element.
- the LNA 234 in the RF IC 221 amplifies the signal received from the antenna 247 via the switch 245 to a level that can be demodulated while keeping the noise low.
- the balun 235 performs an unbalance-balance conversion on the signal amplified by the low noise amplifier (LNA) 234.
- the mixer 233 down-converts the received signal converted into the balanced signal by the balun 235 into a baseband using a signal having a constant frequency input from the PLL 242.
- the mixer 233 has means for generating a carrier wave that is 90 ° out of phase based on a constant frequency signal input from the PLL 242, and the received signals converted by the balun 235 are each 90 ° Quadrature demodulation is performed using a carrier wave having a phase shift to generate an I (In-phase) signal having the same phase as the received signal and a Q (Quad-phase) signal that is 90 ° behind the signal.
- the filter 232 extracts a signal having a desired frequency component from these I signal and Q signal.
- the I signal and Q signal extracted by the filter 232 are output from the RF IC 221 after the gain is adjusted.
- the ADC 217 in the baseband IC 211 AD-converts the input signal from the RF IC 221. More specifically, the ADC 217 converts the I signal into a digital I signal and converts the Q signal into a digital Q signal. There may be a case where only one system signal is received without performing quadrature demodulation.
- the baseband circuit 212 When a plurality of antennas are provided, the number of ADCs corresponding to the number of antennas may be provided. Based on the digital I signal and digital Q signal, the baseband circuit 212 performs physical layer processing such as demodulation processing, error correction code processing, and physical header processing to obtain a frame. The baseband circuit 212 performs MAC layer processing on the frame. Note that the baseband circuit 212 may be configured to perform TCP / IP processing when TCP / IP is implemented.
- FIG. 23A and FIG. 23B are perspective views of a wireless terminal according to the eighth embodiment, respectively.
- the wireless terminal in FIG. 23A is a notebook PC 301
- the wireless terminal in FIG. 23B is a mobile wireless terminal 321.
- the notebook PC 301 and the mobile wireless terminal 321 are equipped with wireless communication devices 305 and 315, respectively.
- the wireless communication device (such as FIG. 7) mounted on the wireless terminal described so far, the wireless communication device (such as FIG. 8) mounted on the base station, or both of them. Can be used.
- a wireless terminal equipped with a wireless communication device is not limited to a notebook PC or a mobile wireless terminal.
- TV digital camera, wearable device, tablet, smartphone, game device, network storage device, monitor, digital audio player, web camera, video camera, project, navigation system, external adapter, internal adapter, set top box, gateway, It can also be installed in printer servers, mobile access points, routers, enterprise / service provider access points, portable devices, handheld devices, and the like.
- the wireless communication device mounted on the wireless terminal and / or base station can be mounted on the memory card.
- FIG. 24 shows an example in which the wireless communication device is mounted on a memory card.
- the memory card 331 includes a wireless communication device 355 and a memory card main body 332.
- the memory card 331 uses a wireless communication device 335 for wireless communication with an external device (such as a wireless terminal and / or a base station).
- an external device such as a wireless terminal and / or a base station.
- description of other elements (for example, a memory) in the memory card 331 is omitted.
- a bus, a processor unit, and an external interface A part are connected to an external memory (buffer) via a bus.
- Firmware operates in the processor unit. As described above, by configuring the firmware to be included in the wireless communication device, it is possible to easily change the function of the wireless communication device by rewriting the firmware.
- the processor unit on which the firmware operates may be a processor that performs processing of the communication processing device or the control unit according to the present embodiment, or may be another processor that performs processing related to function expansion or change of the processing. Also good.
- the base station and / or wireless terminal may include a processor unit on which firmware operates.
- the processor unit may be provided in an integrated circuit in a wireless communication device mounted on a base station or an integrated circuit in a wireless communication device mounted on a wireless terminal.
- a clock generation unit In the tenth embodiment, in addition to the configuration of the wireless communication device (base station wireless communication device or wireless terminal wireless communication device, or both) according to the above-described embodiment, a clock generation unit is provided.
- the clock generation unit generates a clock and outputs the clock from the output terminal to the outside of the wireless communication device.
- the host side and the wireless communication apparatus side can be operated in synchronization by outputting the clock generated inside the wireless communication apparatus to the outside and operating the host side with the clock output to the outside. It becomes possible.
- a power supply unit in addition to the configuration of the wireless communication device (base station wireless communication device or wireless terminal wireless communication device) according to the above-described embodiment, a power supply unit, a power supply control unit, and a wireless power supply unit are provided. Including.
- the power supply control unit is connected to the power supply unit and the wireless power supply unit, and performs control to select a power supply to be supplied to the wireless communication device. As described above, by providing the wireless communication apparatus with the power supply, it is possible to perform a low power consumption operation by controlling the power supply.
- the twelfth embodiment includes a SIM card in addition to the configuration of the wireless communication apparatus according to the above-described embodiment.
- the SIM card is connected to a transmission processing unit, a reception processing unit, a MAC processing unit, or a plurality of these in the wireless communication apparatus. As described above, by adopting a configuration in which the SIM card is provided in the wireless communication device, authentication processing can be easily performed.
- the thirteenth embodiment includes a moving image compression / decompression unit in addition to the configuration of the wireless communication apparatus according to the above-described embodiment.
- the moving image compression / decompression unit is connected to the bus. As described above, by providing the wireless communication device with the moving image compression / decompression unit, it is possible to easily transmit the compressed moving image and expand the received compressed moving image.
- an LED unit is included.
- the LED unit is connected to a transmission unit, a reception unit, a MAC processing unit, or a plurality of these. In this way, by providing the wireless communication device with the LED unit, it is possible to easily notify the user of the operating state of the wireless communication device.
- a vibrator unit is included in addition to the configuration of the radio communication device (base station radio communication device or radio terminal radio communication device, or both) according to the above-described embodiment.
- the vibrator unit is connected to the transmission unit, the reception unit, the MAC processing unit, or a plurality of them. As described above, by providing the radio communication device with the vibrator unit, it is possible to easily notify the user of the operation state of the radio communication device.
- a display is included in addition to the configuration of the wireless communication device (base station wireless communication device or wireless terminal wireless communication device, or both) according to the above-described embodiment.
- the display may be connected to the MAC processing unit of the wireless communication device via a bus (not shown).
- a bus not shown
- [1] a frame type in a wireless communication system, [2] a method of disconnecting connections between wireless communication apparatuses, [3] an access method of a wireless LAN system, and [4] a frame interval of the wireless LAN will be described.
- [1] Frame Type in Communication System In general, frames handled on a radio access protocol in a radio communication system are roughly classified into three types: a data frame, a management frame, and a control frame. These types are usually indicated by a header portion provided in common between frames. As a display method of the frame type, three types may be distinguished by one field, or may be distinguished by a combination of two fields.
- the frame type is identified by two fields, Type and Subtype, in the Frame Control field in the frame header portion of the MAC frame.
- a data frame, a management frame, or a control frame is roughly classified in the Type field, and a detailed type in the roughly classified frame, for example, a Beacon frame in the management frame is identified in the Subtype field.
- the management frame is a frame used for managing a physical communication link with another wireless communication device. For example, there are a frame used for setting communication with another wireless communication device, a frame for releasing a communication link (that is, disconnecting), and a frame related to a power saving operation in the wireless communication device. .
- the data frame is a frame for transmitting data generated inside the wireless communication device to the other wireless communication device after establishing a physical communication link with the other wireless communication device.
- Data is generated in an upper layer of the present embodiment, for example, generated by a user operation.
- the control frame is a frame used for control when a data frame is transmitted / received (exchanged) to / from another wireless communication apparatus.
- the wireless communication apparatus receives a data frame or a management frame
- the response frame transmitted for confirmation of delivery belongs to the control frame.
- the response frame is, for example, an ACK frame or a BlockAck frame.
- RTS frames and CTS frames are also control frames.
- the association request frame and association response frame used in the process are management frames, and the association request. Since the frame and the Association Response frame are unicast management frames, the reception side wireless communication terminal is requested to transmit an ACK frame as a response frame, and the ACK frame is a control frame as described above.
- connection disconnection method between wireless communication devices There are an explicit method and an implicit method for disconnection (release) of a connection.
- an explicit method one of the wireless communication apparatuses that have established a connection transmits a frame for disconnection.
- a deauthentication frame is classified as a management frame. Normally, when a wireless communication device that transmits a frame for disconnecting a connection transmits the frame, the wireless communication device that receives a frame for disconnecting a connection disconnects the connection when the frame is received. judge. Then, if it is a non-access point wireless communication terminal, it returns to the initial state in the communication phase, for example, the state of searching for a connected BSS.
- the connection management Delete information related to the wireless communication terminal from the table. For example, when an AID is assigned at the stage where the wireless communication access point has permitted connection to each wireless communication terminal that joins its own BSS in the association process, the holding information associated with the AID of the wireless communication terminal that has disconnected the connection May be deleted, and the AID may be released and assigned to another newly joined wireless communication terminal.
- a frame transmission transmission of a data frame and a management frame, or transmission of a response frame to a frame transmitted by the device itself
- a wireless communication device of a connection partner with which a connection has been established. If not, it is determined whether the connection is disconnected.
- the connection is disconnected as described above, such that the communication distance is away from the connection-destination wireless communication device, and the wireless signal cannot be received or decoded. This is because a wireless link cannot be secured. That is, it is impossible to expect reception of a frame for disconnecting the connection.
- a timer is used as a specific example of determining disconnection by an implicit method. For example, when transmitting a data frame requesting a delivery confirmation response frame, a first timer (for example, a retransmission timer for a data frame) that limits a retransmission period of the frame is started, and until the first timer expires (that is, If a delivery confirmation response frame is not received (until the desired retransmission period elapses), retransmission is performed. The first timer is stopped when a delivery confirmation response frame to the frame is received.
- a first timer for example, a retransmission timer for a data frame
- the first timer is stopped when a delivery confirmation response frame to the frame is received.
- the first timer expires without receiving the delivery confirmation response frame, for example, it is confirmed whether the other party's wireless communication device still exists (within the communication range) (in other words, the wireless link can be secured).
- a second timer for limiting the retransmission period of the frame (for example, a retransmission timer for the management frame) is started at the same time. Similar to the first timer, the second timer also performs retransmission if it does not receive an acknowledgment frame for the frame until the second timer expires, and determines that the connection has been disconnected when the second timer expires. . When it is determined that the connection has been disconnected, a frame for disconnecting the connection may be transmitted.
- the third timer is started. Whenever a new frame is received from the connection partner wireless communication device, the third timer is stopped and restarted from the initial value. When the third timer expires, a management frame is transmitted to confirm whether the other party's wireless communication device still exists (within the communication range) (in other words, whether the wireless link has been secured) as described above. At the same time, a second timer (for example, a retransmission timer for management frames) that limits the retransmission period of the frame is started.
- a second timer for example, a retransmission timer for management frames
- the acknowledgment response frame to the frame is not received until the second timer expires, retransmission is performed, and if the second timer expires, it is determined that the connection has been disconnected.
- a frame for disconnecting the connection may be transmitted when it is determined that the connection has been disconnected.
- the latter management frame for confirming whether the wireless communication apparatus of the connection partner still exists may be different from the management frame in the former case.
- the timer for limiting the retransmission of the management frame is the same as that in the former case as the second timer, but a different timer may be used.
- [3] Access method of wireless LAN system For example, there is a wireless LAN system that is assumed to communicate or compete with a plurality of wireless communication devices.
- the IEEE 802.11 wireless LAN uses CSMA / CA (Carrier Sense Multiple Access with Carrier Avoidance) as a basic access method.
- CSMA / CA Carrier Sense Multiple Access with Carrier Avoidance
- the transmission is performed simultaneously by a plurality of wireless communication devices grasping the transmission of the wireless communication device, and as a result
- the radio signal collides and frame transmission fails.
- the transmissions by a plurality of wireless communication devices that grasp the transmission of the wireless communication device are stochastically dispersed. Therefore, if there is one wireless communication device that has drawn the earliest time in the random time, the frame transmission of the wireless communication device is successful, and frame collision can be prevented. Since acquisition of transmission rights is fair among a plurality of wireless communication devices based on a random value, the method employing Carrier Aviation is a method suitable for sharing a wireless medium between a plurality of wireless communication devices. be able to.
- the IEEE 802.11 wireless LAN frame interval will be described.
- the frame interval used in the IEEE 802.11 wireless LAN is as follows: distributed coordination function inter frame space (DIFS), arbitration inter frame space (AIFS), point coordination function intra interface space interface (IFS).
- DIFS distributed coordination function inter frame space
- AIFS arbitration inter frame space
- IFS point coordination function intra interface space interface
- RIFS reduced interface space
- the definition of the frame interval is defined as a continuous period to be opened after confirming the carrier sense idle before transmission in the IEEE 802.11 wireless LAN, and a strict period from the previous frame is not discussed. Therefore, in the description of the IEEE802.11 wireless LAN system here, the definition follows.
- the waiting time for random access based on CSMA / CA is the sum of a fixed time and a random time, and it can be said that such a definition is used to clarify the fixed time.
- DIFS and AIFS are frame intervals used when attempting to start frame exchange during a contention period competing with other wireless communication devices based on CSMA / CA.
- the DIFS is used when priority according to the traffic type (Traffic Identifier: TID) is provided when there is no distinction of the priority according to the traffic type.
- TID Traffic Identifier
- AIFS Since operations related to DIFS and AIFS are similar, the following description will be mainly made using AIFS.
- access control including the start of frame exchange is performed in the MAC layer.
- QoS Quality of Service
- the traffic type is notified together with the data, and the data is classified according to the priority at the time of access based on the traffic type.
- This class at the time of access is called an access category (AC). Therefore, an AIFS value is provided for each access category.
- PIFS is a frame interval for enabling access with priority over other competing wireless communication devices, and has a shorter period than either of the values of DIFS and AIFS.
- SIFS is a frame interval that can be used when transmitting a control frame of a response system or when frame exchange is continued in a burst after acquiring an access right once.
- the EIFS is a frame interval that is activated when frame reception fails (it is determined that the received frame is an error).
- the RIFS is a frame interval that can be used when a plurality of frames are continuously transmitted to the same wireless communication device in bursts after acquiring the access right once. Do not request a response frame.
- FIG. 25 shows an example of a frame exchange during a contention period based on random access in the IEEE 802.11 wireless LAN. *
- the random time is obtained by multiplying a pseudo-random integer derived from a uniform distribution between contention windows (Content Window: CW) given by an integer from 0 to a slot time.
- CW multiplied by slot time is referred to as CW time width.
- the initial value of CW is given by CWmin, and every time retransmission is performed, the value of CW is increased until it reaches CWmax.
- Both CWmin and CWmax have values for each access category, similar to AIFS.
- the wireless communication apparatus that is the transmission destination of W_DATA1 if the data frame is successfully received and the data frame is a frame that requests transmission of a response frame, the occupation of the physical packet that includes the data frame on the wireless medium is completed.
- a response frame (W_ACK1) is transmitted after SIFS from the time point.
- the wireless communication apparatus that has transmitted W_DATA1 transmits the next frame (for example, W_DATA2) after SIFS from the time when the physical packet containing W_ACK1 is occupied on the wireless medium if within the transmission burst time limit. be able to.
- AIFS, DIFS, PIFS, and EIFS are functions of SIFS and slot time, and SIFS and slot time are defined for each physical layer.
- Parameters for which values are provided for each access category, such as AIFS, CWmin, and CWmax, can be set for each communication group (Basic Service Set (BSS) in the IEEE 802.11 wireless LAN), but default values are set. .
- BSS Base Service Set
- the SIFS is 16 ⁇ s and the slot time is 9 ⁇ s.
- the PIFS is 25 ⁇ s
- the DIFS is 34 ⁇ s
- the frame interval of the access category BACKGROUND (AC_BK) in AIFS is 79 ⁇ s by default.
- the frame interval of BEST EFFORT (AC_BE) has a default value of 43 ⁇ s
- the frame interval of VIDEO (AC_VI) and VOICE (AC_VO) has a default value of 34 ⁇ s
- the default values of CWmin and CWmax are 31 and 1023 for AC_BK and AC_BE, respectively.
- AC_VI is 15 and 31
- AC_VO is 7 and 15.
- the EIFS is basically the sum of the time lengths of response frames in the case of transmission at SIFS and DIFS at the slowest required physical rate.
- the occupation time length of a physical packet carrying a response frame to a physical packet that has activated EIFS is estimated, and the sum of SIFS, DIFS, and the estimated time may be used. it can.
- a wireless communication system using such a frame interval parameter is assumed as an interference system having a wide communication range.
- the frame described in each embodiment may refer to what is called a packet in the IEEE 802.11 standard or a compliant standard such as Null Data Packet.
- processors may include general purpose processors, central processing units (CPUs), microprocessors, digital signal processors (DSPs), controllers, microcontrollers, state machines, and the like.
- processors may refer to an application specific integrated circuit, a field programmable gate array (FPGA), a programmable logic circuit (PLD), or the like.
- FPGA field programmable gate array
- PLD programmable logic circuit
- processor may refer to a combination of processing devices such as a plurality of microprocessors, a combination of a DSP and a microprocessor, and one or more microprocessors that cooperate with a DSP core.
- the term “memory” may encompass any electronic component capable of storing electronic information.
- “Memory” means random access memory (RAM), read only memory (ROM), programmable read only memory (PROM), erasable programmable read only memory (EPROM), electrically erasable PROM (EEPROM), non-volatile It may refer to random access memory (NVRAM), flash memory, magnetic or optical data storage, which can be read by the processor. If the processor reads and / or writes information to the memory, the memory can be said to be in electrical communication with the processor. The memory may be integrated into the processor, which again can be said to be in electrical communication with the processor.
- the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
- various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
- constituent elements over different embodiments may be appropriately combined.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
【課題】端末の消費電力を低減する。 【解決手段】本発明の実施形態に従った無線通信用集積回路は、ベースバンド集積回路を備える。前記ベースバンド集積回路は、RF集積回路を介して、送信許可を要求する第1フレームを受信し、前記第1フレームの宛先が自装置でないとき、送信を抑制するように制御し、前記第1フレームの受信から第1時間の経過後に前記送信許可を通知する第2フレームが受信されなくても、前記送信の抑制を維持する。
Description
本発明の実施形態は、無線通信用集積回路に関する。
複数のチャネルを複数の端末が同時に利用するマルチユーザーマルチチャネル(Multi-user Multi-Channel:MU-MC)通信が注目されている。チャネルベースのOFDMA(Orthogonal Frequency Division Multiple Access)通信とも呼ばれる。例えば、送信側の端末(基地局等)から、プライマリチャネル以外の複数のチャネルを用いて、受信側の複数の端末へ同時にデータ送信する手法等が検討されている。
MU-MC通信では、複数のチャネルを用いることから、基地局があるチャネルで端末に送信しているときに、別の端末が別のチャネルで基地局に送信を開始することも考えられる。この場合に、基地局が当該別のチャネルで信号を受信するには、全二重(Full duplex)方式をサポートする必要があり、基地局の構成が複雑になる。基地局が全二重方式をサポートしていない場合、基地局は信号を受信できないことから、端末は無駄に電力を消費することになる。
IEEE Std 802.11acTM-2013
IEEE Std 802.11TM-2012
本発明の実施形態は、端末の消費電力を低減することを目的とする。
本発明の実施形態に従った無線通信用集積回路は、ベースバンド集積回路を備える。前記ベースバンド集積回路は、RF集積回路を介して、送信許可を要求する第1フレームを受信し、前記第1フレームの宛先が自装置でないとき、送信を抑制するように制御し、前記第1フレームの受信から第1時間の経過後に前記送信許可を通知する第2フレームが受信されなくても、前記送信の抑制を維持する。
以下、図面を参照しながら、本発明の実施形態について、説明する。無線LANの規格して知られているIEEE Std 802.11TM-2012およびIEEE Std 802.11acTM-2013は、本明細書においてその全てが参照によって組み込まれる(incorporated by reference)ものとする。
以下、図面を参照しながら、本発明の実施形態について、説明する。
(第1の実施形態)
図1は、第1の実施形態に係る無線通信基地局と無線通信端末とを備えた無線通信システムの構成図である。この無線通信システムは、IEEE802.11規格など、任意の通信方式に従って通信を行う。ここでは、IEEE802.11規格に従って通信を行う場合を想定するが、これに限定されない。以下、無線通信基地局を基地局、無線通信端末を端末もしくは無線端末と呼ぶ。基地局も端末の一形態であり、中継機能を有する点が基地局以外の端末と主に異なる。
図1は、第1の実施形態に係る無線通信基地局と無線通信端末とを備えた無線通信システムの構成図である。この無線通信システムは、IEEE802.11規格など、任意の通信方式に従って通信を行う。ここでは、IEEE802.11規格に従って通信を行う場合を想定するが、これに限定されない。以下、無線通信基地局を基地局、無線通信端末を端末もしくは無線端末と呼ぶ。基地局も端末の一形態であり、中継機能を有する点が基地局以外の端末と主に異なる。
基地局(AP:Access Point)11に、端末(STA:STAtion)1、端末2、端末3が接続して、1つの無線通信システムもしくは無線通信グループ(BSS:Basic Service Set)を形成している。接続とは、無線リンクを確立した状態を意味しており、端末1~3は、基地局11とのアソシエーションプロセスを経て、通信に必要なパラメータの交換が完了することで、無線リンクが確立される。この状態では、基地局および端末は、互いの能力を把握している。無線リンクを確立した端末には、アソシエーションID(AID)が割り当てられる。AIDは、端末が基地局のBSSに属するためにアクセスポイントとの間で行うアソシエーションプロセス時に付与される識別子である。基地局は、自装置に接続した端末を、AIDまたはMACアドレスにより識別する。図1では基地局11のBSS(BSS1)に3台の端末が属しているが、4台以上の端末が基地局11に属していてもよいし、2台以下の端末が基地局11に属していてもよい。図1では、基地局は2本のアンテナを備え、各端末は1本のアンテナを備えているかのように描かれているが、実際には、基地局および端末のアンテナの本数は、実装する機能に応じて、1本またはそれ以上の任意の本数でよい。
また、BSS1とは別の無線通信システムもしくは無線通信グループ(以下、BSS2)が配置されている。基地局19に、端末(STA)4、端末5、端末6が接続している。基地局19に接続している端末を表すブロックには、斜線が施されている。端末6および端末2は、基地局19と基地局11の双方のカバレッジエリアの重複エリアに存在している。BSS2には3台の端末が属しているが、4台以上の端末が基地局11に属していてもよいし、2台以下の端末が基地局11に属していてもよい。
BSS2に属する基地局19および端末4~6は、レガシーの基地局および端末でもよいし、本実施形態に従った基地局および端末でもよい。レガシーの基地局および端末は、例えば、IEEE802.11b/g/n/ac等の規格に従って通信を行う。なお、本実施形態に従った基地局および端末は、レガシーの基地局および端末と通信可能に構成される。BSS1にレガシーの端末が存在してもよい。以下、BSS1に属する基地局11および端末1~3を中心に説明するが、基地局19および端末4~6が本実施形態に従った基地局および端末である場合は、基地局11および端末1~3と同様の構成を備えるものとする。
本実施形態に係る基地局11は、所定の周波数帯域内の複数の無線チャネル(以下、チャネル)を用いて、複数の端末と同時に受信または送信できる。基地局は、各端末にチャネルを1つまたは複数割り当て、これらの端末と同時に受信または同時に送信する。このような通信方式をチャネルベースのOFDMA(Orthogonal Frequency Division Multiple Access)方式またはマルチユーザーマルチチャネル(Multi-user Multi-Channel:MU-MC)通信方式と呼ぶ。
本実施形態では、所定の周波数帯域内に存在する複数のチャネルとして、周波数の低い側から順に、チャネル1からチャネル8までの8個のチャネルがあるとする。チャネル1~8の1~8までの数字は、チャネル番号を表す。例えば、チャネル1は、チャネル番号1のチャネルのことである。なお、ここでのチャネル番号は、想定する単位チャネル幅(例えば20MHz幅)のチャネルが互いに重複しないように配置されている場合にこれらのチャネルを便宜的に定義した番号である。本実施形態では、中心周波数が高くなるほどチャネル番号も高くなる場合を想定するが、これは一例であり、中心周波数の順序とチャネル番号の順序が一致している必要はない。
本実施形態では、このようにチャネルベースのOFDMA方式(MU-MC通信)を利用する形態を述べるが、連続する周波数領域内で、1つまたは連続する複数のサブキャリアを一単位とするリソースユニットを、複数の端末に各々割り当てて同時に通信する、リソースユニットベースのOFDMA方式でもよい。
例えば、図2に示すように、周波数領域に複数のチャネルが配置されており、1つ1つのチャネルの幅(例えば20MHz)をそれぞれ連続する周波数領域とする。1つのチャネル内には、周波数的に連続する複数のサブキャリアが互いに直交している。1つまたは連続する複数のサブキャリアを一単位とするリソースユニット(サブチャネル、リソースブロックなど、別の呼び方でも良い)を定義し、各端末には、1つまたは複数のリソースユニットを割り当てる。このようにリソースユニットを各端末に割り当てて同時に通信する方式を、リソースユニットベースのOFDMA方式と呼ぶ。図2では、1つのチャネル(ここではチャネルMと記述している)内の連続した周波数領域に確保したリソースユニット(RU#1、RU#2、・・・RU#K)が示されている。リソースユニット間には、1つ以上のサブキャリア(ガードサブキャリア)が配置されてもよいが、ガードサブキャリアは必須ではない。。ガードサブキャリアの個数は2に限定されず、1以上であれば任意でよい。
本実施形態におけるチャネル1~8のうちの1つまたは複数を用いて、各端末に、リソースユニット単位での割り当てを行ってもよい。各チャネルで1リソースユニット当たりのサブキャリア数は同じとするが、チャネル間で1リソースユニットのサブキャリア数が異なることを許容してもよい。また、同じチャネルに属する各リソースユニット内のサブキャリア数は同じとするが、各リソースユニットでサブキャリア数が異なることを許容してもよい。端末には、1つのチャネルの中の1つまたは複数のリソースユニットを割り当ててもよいし、複数のチャネルに属する複数のリソースユニットを割り当ててもよい。また、リソースユニットベースのOFDMA通信で使用するチャネル数に応じて、チャネル内のサブキャリア数が変わってもよい。例えばリソースユニットベースのOFDMA通信で1つのチャネルを使用するときは、チャネル内のサブキャリア数はX本、2つのチャネルを使用するときは1チャネル当たりのサブキャリア数はX/2本などとしてもよい。この場合、サブキャリア数が少なくなると、それに応じて、サブキャリアの帯域幅が大きくなり、逆にサブキャリア数が多くなると、それに応じて、サブキャリアの帯域幅が小さくなる。なお、リソースユニットを1つのチャネル内の全サブキャリアであるように定めた場合、リソースユニットベースのOFDMAの動作は、チャネルベースのOFDMAと実質的に同じになるといえる。
以下の説明では、チャネル単位で端末に割り当てを行うチャネルベースのOFDMA方式を前提とするが、リソースユニット単位で端末に割り当てを行う、リソースユニットベースのOFDMA方式を用いる場合は、以下の説明のチャネルをリソースユニットに置き換えて読み、チャネルベースのOFDMA(MU-MC)をリソースユニットベースのOFDMAに置き換えて読むなどすることで、実施可能である。なお、リソースユニットベースおよびチャネルベースを問わず、OFDMA方式の通信を行っていない通常の動作期間では、システムとして共通認識のプライマリチャネルを基本チャネルとして通信を行ってもよい。プライマリチャネルは、リソースユニットベースのOFDMA方式の通信を行っている間も、監視および送受信を行ってもよい。なお、チャネルベースまたはリソースユニットベースのOFDMA通信で、データ送信する際の通信の方向には、基地局から各端末へのダウンリンクと、各端末から基地局へのアップリンクがあるが、本実施形態では主としてダウンリンクの場合を想定する。ただし、アップリンクの場合も本実施形態と同様にして実施可能である。
図3(A)に、本実施形態で使用するMACフレーム(以下、フレーム)の基本的なフォーマット例を示す。基地局および端末間の通信は、MACフレームの送受信、より詳細には、MACフレームを含む物理パケットの送受信により行われる。
図3(A)のフレームフォーマットは、MACヘッダ(MAC header)、フレームボディ(Frame body)およびFCSの各フィールドを含む。データフレーム、管理フレーム、制御フレームは、基本的にこのフォーマットをベースとし、適宜、一部フィールドが省略または追加されることもある。例えば、図3(B)に、送信許可を要求する制御フレームであるRTS(Request to Send)フレームのフォーマット例を示す。図3(A)の例のフォーマットでは存在していたフレームボディフィールドが存在していない。図3(C)に、送信許可を通知する制御フレームであるCTS(Clear to Send)フレームのフォーマット例を示す。図3(A)の例のフォーマットでは存在していたフレームボディフィールドおよびTA(Transmitter Address)フィールドが存在していない。さらに、図4(A)に、CF(Contention Free)-Endフレームのフォーマット例を示す。図3(A)の例のフォーマットでは存在していたフレームボディフィールドが存在していない。なお、図3(A)において、MACフレームが通常備えるフィールドであっても本実施形態の説明に必須でないフィールドは、図示を省略している。
ここで、管理フレームは、他の端末との間の通信リンクの管理のために用いられるフレームである。一例として、ビーコンフレーム、アソシエーション要求フレーム(基地局への接続を要求する接続要求フレーム)、アソシエーション応答フレーム(接続要求フレームの応答フレームである接続応答フレーム)等がある。その他、新たに定義する管理フレームもあり得る。制御フレームは、管理フレームおよびデータフレームを、他の無線通信装置との間で送受信(交換)するときの制御のために用いられるフレームである。一例として、RTSフレーム、CTSフレーム、ACK(Acknowledgement)フレーム、BA(Block Ack)フレーム等がある。これらデータフレーム、管理フレーム、制御フレームの詳細は、他の実施形態で後述する。
Frame Control(フレームコントロール)フィールドには、データフレーム(Data frame)、管理フレーム(Management frame)、制御フレーム(Control frame)の3つのフレーム種別を区別するためのタイプ(Type)を表すサブフィールドが設けられる。さらに詳細なフレーム種別を区別するためにフレームコントロールフィールドには、サブタイプ(Subtype)を表すサブフィールドが設けられている。
RTSフレームの場合、例えばタイプは制御フレームを表す値とし、サブタイプは、RSTフレーム用に定義された値とする。同様に、制御フレームであるBlock Ack(BA)フレームの場合は、タイプは制御フレームを表す値とし、サブタイプは、BAフレーム用に定義された値とする。さらに、後述するCF-Endフレームの場合、タイプは制御フレームを表す値とし、サブタイプは、CF-Endフレーム用に定義された値とする。また、管理フレームであるビーコンフレームの場合、タイプは管理フレームを表す値とし、サブタイプは、ビーコンフレーム用に定義された値とする。その他、アソシエーション要求フレームおよびアソシエーション応答フレームなども同様にして、タイプおよびサブタイプの値が設定される。
Duration(デュレーション)フィールドには、媒体予約時間が設定される。他端末宛の(自端末宛でない)フレームを受信した場合に、この媒体予約時間に亘って、媒体が仮想的にビジーであると判定する。このような仮想的に媒体をビジーであると判定する仕組み、或いは、仮想的に媒体をビジーであるとする期間は、NAV(Network Allocation Vector)と呼ばれる。
RA(Receiver Address;RA)フィールドには、フレームの宛先アドレスを設定する。例えば基地局が端末に送信するRTSフレームの宛先は端末であるため、RAフィールドには当該端末のアドレスを設定する。端末のアドレスは、例えば、端末のMACアドレスである。
TAフィールドには、フレームの送信元のアドレスを設定する。例えば基地局が端末に送信するRTSフレームの送信元は、基地局であるため、RTSフレームの送信元は基地局のアドレスを設定する。基地局のアドレスは、例えば基地局のMACアドレスである。MACアドレスの代わりに、BSSID(通常はMACアドレスと同じ値)を設定してもよい。
Frame Body(フレームボディ)フィールドには、宛先の端末または基地局に通知する任意のデータを設定する。管理フレームの場合、フレームボディフィールドに挿入する情報を、情報エレメントとして管理する。図4(B)に情報エレメントのフォーマット例を示す。情報エレメントは、Element IDフィールド、Lengthフィールド、Informationフィールドを有する。Element IDは、情報エレメントを識別する値を格納する。Informationフィールド(以下、情報フィールド)は、通知する情報を格納する。Lengthフィールドは、情報フィールドの長さ情報を格納する。管理フレームのフレームボディフィールドには、このような構成を有する情報エレメントを、1つまたは複数格納できる。
FCSフィールドには、受信側でフレームの誤り検出のため用いられるチェックサム符号としてFCS(Frame Check Sequence)情報が設定される。FCS情報の例としては、CRC(Cyclic Redundancy Code)などがある。
図5は、BSS1に属する基地局11および複数の端末間のMU-MC通信に係る動作シーケンスの例を示す。本例では、MU-MC通信でチャネル1~4を使用する場合の例を示すが、チャネル1~8まで使用することや、あるいはチャネル2~8を使用することなど、様々なバリエーションが可能である。MU-MC通信でシステムプライマリチャネルを使用してもよいし、MC-MC通信ではシステムプライマリチャネルを使用しなくてもよい。ここでは、どのチャネルがシステムプライマリチャネルであるかは特に限定しない。
図5のシーケンス例は、基地局11が、端末1および端末2宛のデータを内部のバッファに有しており、これらのデータをMU-MC通信を利用して送信する場合のシーケンスである。横軸は、時間を表し、縦軸は、チャネル1~4を表す。端末1および端末2は、MU-MC通信を実行可能であり、かつMU-MC通信の機能が有効(オン)になっている。
「RTS」が入った矩形は、基地局が送信するRTSフレームを表す。「RTS」の右側の数字は、RTSフレームの宛先となる端末の番号を表し、例えば「RTS1」は、端末1宛のRTSフレームを表す。「CTS」が入った矩形は、端末が送信するCTSフレームを表す。「DATA」が入ったフレームは、基地局が送信するデータフレームを表す。「DATA」の右側の数字は、データフレームの宛先となる端末の番号を表し、例えば「DATA1」は、端末1宛のデータフレームを表す。「DATA」が表すデータフレームは、1つのデータフレームでもよいし、複数のデータフレームでもよいし、複数のデータフレーム(サブフレーム)をアグリーゲートしたアグリゲーションフレーム(スーパーフレーム)でもよい。以下の説明ではアグリゲーションフレームを送信する場合を想定する。「BA」は、端末が基地局に送信するBA(Block Ack)フレームを表す。BAフレームは、基地局から受信した1つ以上のフレームのそれぞれの成功可否を表す情報を含む。基地局が端末に単一のフレームを送信する場合は、端末はBAフレームではなく、ACKフレームを返してもよい。なお、1つのフレームの送信に対して、ACKフレームでなく、BAフレームを応答する構成も可能である。図5において、斜線の入った矩形は、BSS2に属する端末4~6および基地局19のうち少なくともいずれか1つが送信する信号を表す。この信号は、本シーケンス例では、端末2にとっての干渉信号であり、キャリアセンスでビジーとなる信号である。干渉信号は、例えばBSS2に属する端末または基地局またはこれらの両方、もしくは基地局11に属するレガシー端末、またはこれらの組み合わせから送信される信号である。
基地局11は、端末1、2とMU-MC通信を行うべく、端末1に対応するチャネル1、2と、端末2に対応するチャネル3、4で、RTSフレームを送信することを決定する。このため、基地局11は、チャネル1~4で、DIFS(distributed coordination function interframe space)時間とランダムに決定したバックオフ時間との間、キャリアセンスを行い、キャリアセンス結果がアイドルであることを確認することで、アクセス権、すなわち、媒体を占有可能な時間、すなわちTXOP(Transmission Opportunity)を取得する。なおDIFS時間は一例であり、予め定めた時間である限り、他のフレーム間隔時間でもかまわない。以下の説明でも、DIFS時間というときは、これに限定することを意味するものではなく、他の予め定めた時間を用いることができる。基地局11は、アクセス権を獲得できたチャネルでRTSフレームを送信する。ここでは、チャネル1~4のいずれでもキャリアセンスの結果がアイドルであったとする。このため、基地局11は、チャネル1、2で端末1にRTSフレームを送信し、チャネル3、4で端末2にRTSフレームを送信する。なお図では、端末4~6および基地局のうちの少なくとも1つの信号がRTSフレームの送信時間およびその前後で、端末2で観測されることが示されているが、この信号は基地局11では検知していないものとする。RTSフレームのDurationフィールドには、他の端末の送信を抑制するNAVの値(媒体予約時間)を設定する。なお、RTSフレームのRAに指定される端末は、応答としてCTSフレームを送信できる。NAVの値は、応答以外のフレームの送信を抑制することを指示する情報の一例である。NAVの値の例として、その後の、フレームシーケンス(CTSフレームの受信、アグリゲーションフレームの送信、BAフレームの受信など)の終了までに想定される時間(1msなど)を設定する。
チャネル1、2で送信するRTSフレームの宛先アドレス(RA)は、端末1のMACアドレスであり、送信元アドレス(TA)は基地局のMACアドレスである。チャネル1、2で送信するRTSフレームはいずれも同じ内容のフレーム(Duplicateフレーム)である。同じ内容のフレームを送信することをDuplicate送信と呼ぶこともある。また、端末2にチャネル3、4で送信するRTSフレームの宛先アドレスは端末2のMACアドレスであり、送信元アドレスは基地局のMACアドレスである。チャネル3、4で送信するRTSフレームも、いずれも同じ内容のフレーム(Duplicateフレーム)である。
端末1は少なくともチャネル1、2で待ち受け動作を行っており、端末2は少なくともチャネル3、4で待ち受け動作を行っている。MU-MC通信で使用するチャネルが事前に基地局から通知されている場合は、通知されたチャネルで待ち受け動作を行っていればよい。このような通知は、ビーコンフレームまたは新規に定義した管理フレーム、あるいは制御フレームまたはデータフレームなど、任意のフレームで事前に行えばよい。なお、端末3は、例えばチャネル1~4で待ち受け動作を行っているものとする。待ち受け動作とは、基地局11から送信されるフレームを受信可能な状態で待機することである。具体的に、該当するチャネルでのキャリアセンスを行うことを含み、また該当するチャネルでのフレームの信号の受信および復調等の受信処理を行えるように、端末内の各部の動作を設定することも含んでよい。
端末1、2は、基地局11から送信されるRTSフレームを受信し、かつ受信前の固定時間(PIFS:point coordination function interframe space)の間、キャリアセンス結果がアイドルであったチャネルで、CTSフレームを送信する。CTSフレームは、RTSフレームの受信完了からSIFS(short interframe space)時間後に送信する。なおSIFS時間は一例であり、予め定めた時間である限り、他のフレーム間隔時間でもかまわない。同様に、PIFS時間は一例であり、予め定めた時間である限り、他のフレーム間隔時間でもかまわない。以下の説明でも、SIFS時間またはPIFS時間というときは、これに限定することを意味するものではなく、他の予め定めた時間を用いることができる。
端末1は、チャネル1、2でRTSフレームを受信し、かつ受信前の固定時間(PIFS)の間、キャリアセンス結果がアイドルであったため、チャネル1、2でCTSフレームを送信する。端末2がチャネル3でRTSフレームを受信し、かつ受信前の固定時間(PIFS)の間、キャリアセンス結果がアイドルであったため、チャネル3でCTSフレームを送信する。ただし、チャネル4は、RTSフレームが受信できなかった(例えばFCSが受信失敗を示す場合)、もしくは、受信前のPIFS時間の間、ビジーであったチャネルがあったため、CTSフレームを返さない。端末1、2から送信するCTSフレームの宛先アドレス(RA)は、基地局のMACアドレスである。なお、基地局からチャネル1~4で送信されたRTSフレームは、基地局11のBSS1内で、チャネル1~4で待ち受け動作を行っている他の端末(端末1、2以外の端末)にも受信され得る。ここでは、端末3がチャネル1~4でRTSフレームを受信し得る。端末3は、自端末宛でないRTSフレームを受信したチャネル1~4で、RTSフレームのDurationフィールドに設定された媒体予約時間に基づいて、NAVを設定する。なお、端末1もチャネル3、4で待ち受け動作を行っており、チャネル3、4でRTSフレームを受信した場合は、当該チャネル3、4でNAVを設定する。同様に端末2も、チャネル1、2で待ち受け動作を行っており、チャネル1、2でRTSフレームを受信した場合は、当該チャネル1、2でNAVを設定する。
基地局は、CTSフレームを受信したチャネルで、CTSフレームの受信完了からSIFS時間経過後に、1つまたは複数のデータフレームを含むアグリゲーションフレームを送信する。ここでは、端末1からチャネル1、2でCTSフレームをそれぞれ受信し、端末2からチャネル3でそれぞれCTSフレームを受信したため、基地局11は、チャネル1、2で端末1にアグリゲーションフレームを、チャネル3で端末2にアグリゲーションフレームを同時に送信する。アグリゲーションフレームを送信する時間の長さは事前に決まっているとする。なおアグリゲーションフレームではなく、1つまたは複数のデータフレームを送信してもよい。また、チャネル1、2での送信では、チャネル1、2で別々にフレームを送信してもよいし、チャネル1、2を束ねて1つの帯域として用いて、フレームを送信してもよい。端末1に送信するアグリゲーションフレームの送信元アドレス(TA)は基地局のMACアドレスであり、宛先アドレス(RA)は端末1のMACアドレスである。端末2に送信するアグリゲーションフレームの送信元アドレス(TA)は基地局のMACアドレスであり、宛先アドレス(RA)は端末2のMACアドレスである。なお、基地局が複数の端末に送信する複数のフレームは、同じものであっても異なるものであってもよい。なお、一般的な表現として、基地局が複数のフレームまたは複数の第Xフレームを送信または受信すると表現する場合、これらのフレームまたは第Xフレームは同じものであっても異なるものであってもよい。Xには状況に応じて任意の値を入れることができる。
端末1、2は、基地局から受信したアグリゲーションフレームのFCSに基づいて、受信に成功したかを判断し、成功したチャネルで、アグリゲーションフレームの受信からSIFS時間経過後、BAフレームを返す。ここでは、端末1はチャネル1、2のいずれでもアグリゲーションフレームの受信に成功したため、チャネル1、2のそれぞれでBAフレームを返す。チャネル1、2を結合した帯域を用いて送信されたアグリゲーションフレームを受信した場合は、当該チャネル1、2を結合した帯域を用いてBAフレームを返してもよい。端末2もチャネル3でアグリゲーションフレームの受信に成功したため、チャネル3でBAフレームを返す。なお、アグリゲーションフレームでなく、1つのデータフレームを受信した場合などは、BAフレームに代えて、ACKフレームを送信してもよい。
上述したシーケンスにおいてチャネル4では、CTSフレームが端末2から送信されなかった。通常、基地局から送信されたRTSフレームを受信した端末は、RTSフレームの受信からSIFS時間後に、CTSフレームが受信できなかった場合、その時点またはCTSフレームの受信完了から予め定めた時間後に、NAVを解除する仕組みを備える。NAVを解除した場合、その端末は基地局にフレームを送信する可能性がある。例えば基地局11が端末1、2にアグリゲーションフレームを送信している間に、NAVを解除した端末が基地局11にフレーム送信を開始することが考えられる。この場合、基地局11は、アップリンク通信とダウンリンク通信を同時に行う全二重(Full duplex)通信に対応していない場合、端末からのアップリンク信号を受信できず、端末は、少なくとも基地局11と端末1、2とのダウンリンクMU-MC通信が完了するまで、基地局11と通信できない。したがって、端末の送信は、無駄に電力を消費する。そこで、本実施形態の端末(ここでは端末3)は、RTSフレームの受信からSIFS時間経過後にCTSフレームを受信しない場合でも、NAVを解除しない。すなわち、CTSフレームの受信有無に拘わらず、RTSフレームのDurationフィールドで指定された時間の間、NAVを維持する。これにより、端末3の無駄な送信動作をなくして、端末3の消費電力を抑制できる。端末3は、RTSフレームのDurationフィールドに設定された時間だけRTSフレームの受信完了から経過したら、NAVを解除する。
なお、前述したように、チャネルベースのOFDMA方式(MU-MC方式)ではなく、リソースユニットベースのOFDMA方式でも、同様のシーケンスが実施可能である。この場合、チャネル単位でなく、リソースユニット単位でRTSフレーム、CTSフレーム、アグリゲーションフレームおよびBAフレーム等の送受信が行われる。なお、リソースユニットベースのOFDMA方式の場合、キャリアセンスについてはチャネル単位で行い、キャリアセンス結果がアイドルであったチャネルでは、当該チャネルに属するすべてのリソースユニットがアイドルと判断してもよい。ビジーであったチャネルでは、当該チャネルに属するすべてのリソースユニットがビジーであると判断してもよい。もちろん、リソースユニット単位でのキャリアセンスが可能であれば、リソースユニットごとにアイドルかビジーかの判定を行ってもよい。
図5のシーケンスでは、CTSフレームが受信されなかった場合もNAVを解除させないことで、端末3の不必要な送信動作を防止した。ここで、このNAVの期間の間、基地局11が、当該NAVが設定されたチャネルでダウンリンクのデータ送信を行うことで、当該チャネルを有効利用することも可能である。この場合のシーケンス例を図6に示す。
図5との違いは、基地局11がチャネル4でCTSフレームを受信しなかった場合にも、チャネル1~3で送信するアグリゲーションフレームと同時に、チャネル4で端末3にアグリゲーションフレーム(または1つまたは複数のデータフレーム)を送信する。すなわち、チャネル1~3でのCTSフレームの受信からSIFS時間後にチャネル1~3に加えて、チャネル4でもアグリゲーションフレームを端末3に送信する。端末3には事前に少なくともMU-MC通信を行うチャネル(ここではチャネル1~4)の全部または一部での待ち受け動作を行うように指示しておき、端末3は少なくともチャネル4での待ち受け動作を行っているものとする。このような指示はビーコンフレームまたは新規に定義した管理フレーム、あるいは制御フレームまたはデータフレームなど、任意のフレームで事前に行えばよい。端末3は、チャネル4でRTSフレームを受信したが、そのSIFS時間後にCTSフレームを受信しない場合は、前述したように、本実施形態に従って、そのままNAVを維持する。基地局11は、事前に少なくともチャネル4での待ち受けを行っている端末から端末(ここでは端末3)を選択して、選択した端末3にアグリゲーションフレームを送信する。端末3は、NAVを維持しているため自ら主体的な送信は禁止または抑制されるが、フレームの受信とそれに対する応答のフレームの送信は可能とする。端末3は、基地局11から送信されるアグリゲーションフレームを受信し、SIFS時間経過後に、BAフレームを返す。これにより、チャネル4を有効活用して、システム効率を向上させることができる。あるいは、端末3は上記CTSフレームを受信しない場合は、NAVを解除し、基地局11からのフレームの受信を待機するようにしてもよい。そして、基地局11から受信したアグリゲーションフレームに対し、SIFS時間経過後に、BAフレームを返してもよい。なお、端末3も電波環境等によりフレームを正常に受信できない場合もあり得るが、受信に成功すれば、その分システム効率を向上させることができる。
なお、本実施形態で述べるフレームは、例えばIEEE802.11規格でフレームと呼ばれているもののみならず、パケットと呼ばれているものを指してもよい。
図7は、第1の実施形態に係る端末に搭載される無線通信装置のブロック図である。
端末の無線通信装置は、1つまたは複数のアンテナ、PHY処理および無線部20、MAC処理部30を備える。PHY処理および無線部20は、送受切替スイッチ21、受信部22および送信部23を備える。MAC処理部30は、送信処理部31、受信処理部32、制御部33、タイマ34、記憶装置35を備える。受信処理部32は、受信エラー検出部41、フレーム種別判定部42、Duration判定部43、RA判定部44、TA判定部45を備える。本実施形態に係る無線通信用集積回路は、一例として、MAC処理部30、または、MAC処理部30とPHY処理および無線部20との組に対応する。
送受切替スイッチ21は、制御部33の指示に基づき、アンテナを受信部22および送信部23のいずれか一方に接続する。受信時は、アンテナが受信部22に接続されることで、アンテナを介して受信される信号が受信部22に入力される。送信時には、アンテナが送信部23に接続されることで、送信部23から出力される信号が、アンテナを介して送信される。
受信部22は、アンテナから受信した信号を、無線周波数からベースバンドへ変換し、ベースバンド信号から該当するチャネルの信号を抽出する。どのチャネルの信号を抽出するのかは制御部33により指示される。受信部22は、チャネル毎に、または複数のチャネルをまとめた帯域で、信号を抽出し、受信処理を行うことができる。例えば、端末が8チャネルまで対応可能とした場合、1チャネル毎に分離して信号を抽出する。チャネル毎のアナログフィルタを設け、アナログフィルタでそれぞれの帯域の信号を抽出してもよい。または、すべてのチャネルまたは複数のチャネルを含むアナログフィルタを1つまたは複数設け、アナログフィルタで抽出した信号をデジタルフィルタで処理して、チャネル毎の信号を抽出してもよい。また、アナログフィルタは、制御部33の指示でその動作帯域が可変になっていてもよいし、予め固定された帯域の信号のみに対応可能であってもよい。受信部22は、抽出した信号に受信処理を行ってフレームを取得し、フレームを受信処理部32へ出力する。受信処理としては、例えば、A/D変換や、復調処理および物理ヘッダの解析などの物理層処理が含まれる。受信部22が行う受信処理のうちA/D変換以前またはA/D変換より前までの処理を行う部分を含む回路は、一例として、RF(Radio Frequency)集積回路に対応する。
MAC処理部30は、通信を制御するベースバンド集積回路または制御処理部に対応する。MAC処理部30内の各部のデジタル領域の処理の全部または一部、あるいは制御部の処理は、CPU等のプロセッサで動作するソフトウェア(プログラム)によって行われてもよいし、ハードウェアによって行われてもよいし、これらのソフトウェアとハードウェアの両方によって行われてもよい。端末は、各部の全部または一部の処理を行うプロセッサを備えてもよい。
受信処理部32は、受信部22から入力されたフレームのMACヘッダの解析等を行う。受信処理部32の受信エラー検出部41は、受信部22から入力されたフレームのFCSフィールドの値に基づき、エラー検査(CRC検査など)を行う。エラーが検出された場合は、フレームが正常に受信できなかったとして、当該フレームを破棄する。エラーが検出されなかったときは、フレームが正常に受信できたとして、当該フレームをフレーム種別判定部42に出力する。
フレーム種別判定部42は、フレームのFrame Controlフィールドのタイプおよびサブタイプに基づき、フレームの種別を判定する。例えばフレームが、管理フレーム、制御フレーム、データフレームのいずれに該当するかをタイプにより判定する。または、判定されたフレームの種別の中で、さらに詳細な種別をサブタイプで判定する。これにより、管理フレームであれば、ビーコンフレーム、アソシエーション要求フレーム、アソシエーション応答フレーム、新規に定義したフレームなどを区別する。制御フレームであれば、RTSフレーム、CTSフレーム、BAフレーム、ACKフレームなどを区別する。
Duration判定部43は、フレームのDurationフィールドに設定された媒体予約時間に基づき、NAV(Network Allocation Vector:送信抑制期間)の値を決定する。
RA判定部44は、フレームのRAフィールドに基づき、フレームの宛先を判定する。RAフィールドの値は、自端末のMACアドレスに一致する場合は、自端末宛のフレームと判断する。ブロードキャストアドレスまたはマルチキャストアドレスの場合も自端末宛のフレームと判定する。これらのアドレスに一致しないときは、他端末宛または他局宛のフレームと判定する。
TA判定部45は、フレームのTAフィールドに基づき、フレームの送信元を判定する。例えば、TAフィールドの値が、基地局11のMACアドレスまたはBBSIDに一致する場合は、当該フレームの送信元は基地局11であると判断する。端末は、基地局11のMACアドレスを、ビーコンフレーム等の受信により予め把握している。
受信したフレームのMACヘッダの解析結果から、受信フレームが自端末宛のデータフレームであると判断した場合は、必要に応じて、データフレームを、図示しない上位処理部へ出力する。また、受信フレームが管理フレームまたは制御フレームであれば、当該フレームを制御部33に出力する。また、受信したフレームが送達確認応答の必要なフレームか否か、およびフレームの受信成功の可否に応じて、送達確認応答を表すフレーム(送達確認応答フレーム)の生成指示をアクセス制御部33に出力、または送信処理部31に直接出力する。送達確認応答フレームとしては、ACKフレームおよびBAフレーム等がある。BAフレームは、アグリゲーションフレーム等を受信した場合に用いられる。BAフレームには、アグリゲーションフレームに含まれる各フレームの成功可否を表す情報を含める。
また受信処理部32は、受信部22を介して、キャリアセンス情報の管理を行う。このキャリアセンス情報には、PHY処理部および無線部20から入力する媒体(CCA)のビジーおよびアイドルに関する物理的なキャリアセンス情報と、受信フレームのDurationフィールド中に記載されているDuration値(媒体予約時間)に基づく仮想的なキャリアセンス情報とがある。いずれか一方のキャリアセンス情報がビジーを示すならば、媒体がビジーであるとみなされ、その間、信号の送信が抑制される。受信処理部32は、他の端末宛の(すなわち自端末宛でない)フレームを受信した場合に、フレームに記載された媒体予約時間の間、媒体が仮想的にビジーであると判定する。このような仮想的に媒体ビジーを判定する仕組み、或いは、仮想的な媒体ビジーの期間は、NAV(Network Allocation Vector)と呼ばれる。受信処理部32または受信部22またはこれらの両方は、キャリアを検知するキャリア検知部を含んでもよい。
記憶装置35は、基地局に送信する情報または基地局から受信した情報を記憶する。記憶装置35は、制御部33により読み出しおよび書き込みが可能である。記憶装置35は、制御部33の外側に設けられているが、記憶装置35の一部または全部がバッファとして、制御部33内に設けられてもよいし、MAC処理部の外側に配置されてもよい。記憶装置35は、メモリでもよいし、SSD(Solid State Drive)、ハードディスク等でもよい。記憶装置35がメモリの場合、当該メモリはDRAM等の揮発性メモリでも、NAND、MRAM等の不揮発メモリでもよい。
制御部33は、チャネルのアクセスを管理し、所望タイミングにて、フレームの送信を制御する。所望タイミングでフレーム送信を行うため、タイマ35を利用する。所望タイミングの時刻までの時間をタイマ35に設定し、タイマ35がタイムアウトしたら、フレーム送信を実行する。また所望のタイミングでフレームを受信したか否かの判定、および所望の期間の経過の判定のためタイマ35を用いてもよい。動作の一例として、制御部33は、受信したフレームがRTSフレームであり、かつRTSフレームの宛先が他の端末のときは、NAV期間が経過するまで送信を抑制するように制御する。この際、RTSフレームの受信からSIFS時間経過後に、当該RTSフレームが送信されたチャネルと同じチャネルでCTSフレームが受信されなくても、NAVを解除しない。これにより、基地局がダウンリンクのMU-MC通信を行っているためにアップリンクの信号を受信できない間に、アップリンク送信を行うことを回避する。
送信処理部31は、制御部33の指示に従って、フレームの生成および送信を行う。送信処理部31は、制御部33からフレームの送信が指示されると、送信処理部31は、指示されたフレームを生成し、生成したフレームを、PHY処理部および無線部20の送信部23へ出力する。
送信部23は、送信処理部31から入力されたフレームに対し、所望の物理層の処理を行って物理パケットとする。そして、当該物理パケットに対してDA(Digital-Analog)変換や周波数変換等を行ってアナログ信号として、アンテナから当該信号を空間に電波として送信する。送信部22が行う送信処理のうちD/A変換以降またはD/A変換より後の処理を行う部分を含む回路は、一例として、RF(Radio Frequency)集積回路に対応する。
送信部23および受信部22が処理するチャネルに関する情報は、制御部33が管理する。制御部33が、送信部23および受信部22に処理すべきチャネルを割り当て、割り当てたチャネルを送信部23および受信部22に指示する。送信部23および受信部22は、制御部34から指示されたチャネルを処理する。
なお、端末は、MU-MC通信を実行可能であり、かつMU-MC通信の機能が有効(オン)になっていることを、アソシエーション時またはその後の任意のタイミングで、基地局にフレームで通知してもよい。基地局は、当該通知を行った端末を、MU-MC通信可能な端末として認識してもよい。
図8は、第1の実施形態に係る基地局に搭載される無線通信装置のブロック図である。
基地局の無線通信装置は、1つまたは複数のアンテナ、PHY処理および無線部70、MAC処理部80を備える。PHY処理および無線部70は、送受切替スイッチ71、受信部72および送信部73を備える。MAC処理部80は、送信処理部81、受信処理部82、制御部83、タイマ34、記憶装置85、バッファ86を備える。受信処理部82は、受信エラー検出部91、フレーム種別判定部92、Duration判定部93、RA判定部94、TA判定部95を備える。本実施形態に係る無線通信用集積回路は、一例として、MAC処理部80、または、MAC処理部80とPHY処理および無線部70との組に対応する。
送受切替スイッチ71は、制御部83の指示に基づき、アンテナを受信部72および送信部73のいずれか一方に接続する。受信時は、アンテナが受信部72に接続されることで、アンテナを介して受信される信号が受信部72に入力される。送信時には、アンテナが送信部73に接続されることで、送信部73から出力される信号が、アンテナを介して送信される。
受信部72は、アンテナから受信した信号を、無線周波数からベースバンドへ変換し、ベースバンド信号から該当するチャネルの信号を抽出する。どのチャネルの信号を抽出するのかは制御部83により指示される。受信部72は、チャネル毎に、または複数のチャネルをまとめた帯域で、信号を抽出し、受信処理を行うことができる。例えば、基地局が8チャネルまで対応可能とした場合、1チャネル毎に分離して信号を抽出する。チャネル毎のアナログフィルタを設け、アナログフィルタでそれぞれの帯域の信号を抽出してもよい。または、すべてのチャネルまたは複数のチャネルを含むアナログフィルタを1つまたは複数設け、アナログフィルタで抽出した信号をデジタルフィルタで処理して、チャネル毎の信号を抽出してもよい。また、アナログフィルタは、制御部83の指示でその動作帯域が可変になっていてもよいし、予め固定された帯域の信号のみに対応可能であってもよい。受信部72は、抽出した信号に各種処理を行ってフレームを取得し、フレームを受信処理部82へ出力する。各種処理としては、例えば、A/D変換や、復調処理および物理ヘッダの解析などの物理層処理が含まれる。受信部72が行う受信処理のうちA/D変換以前またはA/D変換より前までの処理を行う部分を含む回路は、一例として、RF(Radio Frequency)集積回路に対応する。
MAC処理部80は、通信を制御するベースバンド集積回路または制御処理部に対応する。MAC処理部80内の各部のデジタル領域の処理の全部または一部、あるいは制御部の処理は、CPU等のプロセッサで動作するソフトウェア(プログラム)によって行われてもよいし、ハードウェアによって行われてもよいし、これらのソフトウェアとハードウェアの両方によって行われてもよい。基地局は、各部の全部または一部の処理を行うプロセッサを備えてもよい。
受信処理部82は、受信部72から入力されたフレームのMACヘッダの解析等を行う。受信処理部82の受信エラー検出部91は、受信部72から入力されたフレームのFCSフィールドの値に基づき、エラー検査(CRC検査など)を行う。エラーが検出された場合は、フレームが正常に受信できなかったとして、当該フレームを破棄する。エラーが検出されなかったときは、フレームが正常に受信できたとして、当該フレームをフレーム種別判定部92に出力する。
フレーム種別判定部92は、フレームのFrame Controlフィールドのタイプおよびサブタイプに基づき、フレームの種別を判定する。例えばフレームが、管理フレーム、制御フレーム、データフレームのいずれに該当するかをタイプにより判定する。または、判定されたフレームの種別の中で、さらに詳細な種別をサブタイプで判定する。
Duration判定部93は、フレームのDurationフィールドに設定された媒体予約時間に基づき、NAV(Network Allocation Vector:送信抑制期間)の値を決定する。
RA判定部94は、フレームのRAフィールドに基づき、フレームの宛先を判定する。RAフィールドの値は、自局のMACアドレスに一致する場合は、自局宛のフレームと判断する。ブロードキャストアドレスまたはマルチキャストアドレスの場合も自局宛のフレームと判定する。これらのアドレスに一致しないときは、他端末宛または他局宛のフレームと判定する。
TA判定部95は、フレームのTAフィールドに基づき、フレームの送信元を判定する。
受信したフレームのMACヘッダの解析結果から、受信フレームが自局宛のデータフレームであると判断した場合は、必要に応じて、データフレームを、図示しない上位処理部へ出力する。また、受信フレームが管理フレームまたは制御フレームであれば、当該フレームを制御部83に出力する。また、受信したフレームが送達確認応答の必要なフレームか否か、およびフレームの受信成功の可否に応じて、送達確認応答を表すフレーム(送達確認応答フレーム)の生成指示をアクセス制御部83に出力、または送信処理部81に直接出力する。送達確認応答フレームとしては、ACKフレームおよびBAフレーム等がある。BAフレームは、アグリゲーションフレーム等を受信した場合に用いられる。BAフレームには、アグリゲーションフレームに含まれる各フレームの成功可否を表す情報を含める。受信フレームが他端末宛のデータフレームであると判断した場合は、必要に応じて中継等の処理を行う。
また受信処理部82は、受信部72を介して、キャリアセンス情報の管理を行う。このキャリアセンス情報には、PHY処理部および無線部70から入力する媒体(CCA)のビジーおよびアイドルに関する物理的なキャリアセンス情報と、受信フレームのDurationフィールド中に記載されているDuration値(媒体予約時間)に基づく仮想的なキャリアセンス情報とがある。いずれか一方のキャリアセンス情報がビジーを示すならば、媒体がビジーであるとみなされ、その間、信号の送信が抑制される。受信処理部82は、他の端末宛の(すなわち自局宛でない)フレームを受信した場合に、フレームに記載された媒体予約時間の間、媒体が仮想的にビジーであると判定する。このような仮想的に媒体ビジーを判定する仕組み、或いは、仮想的な媒体ビジーの期間は、NAV(Network Allocation Vector)と呼ばれる。受信処理部82または受信部72またはこれらの両方は、キャリアを検知するキャリア検知部を含んでもよい。
記憶装置85は、端末に送信する情報または端末から受信した情報を記憶する。記憶装置85は、制御部83により読み出しおよび書き込みが可能である。記憶装置85は、制御部83の外側に設けられているが、記憶装置85の一部または全部がバッファとして、制御部83内に設けられても良いし、MAC処理部の外側に配置されてもよい。記憶装置85は、メモリでもよいし、SSD、ハードディスク等でもよい。記憶装置85がメモリの場合、当該メモリはDRAM等の揮発性メモリでも、NAND、MRAM等の不揮発メモリでもよい。
バッファ86は、入力端子87を介して上位層と接続されており、上位層から送信用のデータが格納される。バッファ86は、記憶装置85と同一の装置であっても、異なる装置であってもよい。バッファ86は、メモリでもよいし、SSD、ハードディスク等でもよい。バッファ86がメモリの場合、当該メモリはDRAM等の揮発性メモリでも、NAND、MRAM等の不揮発メモリでもよい。なお、図7の端末の無線通信装置にもバッファ86と同様のバッファが存在してもよい。
制御部83は、チャネルのアクセスを管理し、所望タイミングにて、フレームの送信を制御する。所望タイミングでフレーム送信を行うため、タイマ85を利用する。所望タイミングの時刻までの時間をタイマ85に設定し、タイマ85がタイムアウトしたら、フレーム送信を実行する。また所望のタイミングでフレームを受信したか否かの判定、および所望の時間が経過したかのためタイマ85を用いる。
また、制御部83は、MU-MC通信用に複数の端末にチャネルを割り当てる割り当て手段を備える。制御部83は、MU-MC通信を実行可能であり、かつMU-MC通信の機能が有効(オン)になっている端末から、アソシエーション時またはその後の任意のタイミングで、MU-MC通信が可能である旨を通知するフレームを受信するようにしてもよい。制御部83は、当該通知を行った端末を、MU-MC通信可能な端末として認識してもよい。
制御部83は、上述の割り当て手段を用いて、複数の端末にチャネルの割り当てを行う。制御部83は、各端末に割り当てたチャネルを管理する。制御部83は、各端末に任意の方法でチャネルを割り当ててよい。例えば、各端末から使用を要求するチャネルを特定する情報を受信し、当該情報に基づき、各端末にチャネル割り当てを行ってもよい。基本的には、重複しないように各端末にチャネルを割り当てるが、端末間で重複して同じチャネルが割り当てられてもよく、実際のMU-MC通信時には、端末間で重複したチャネルを使用しないように制御すればよい。また、各端末宛のデータ量に基づいて、各端末に割り当てるチャネルを決定してもよい。ここで述べた以外の方法でチャネルを割りあてることももちろん可能である。
制御部83は、各端末にそれぞれ割り当てたチャネルを通知する情報を含むフレームを送信処理部81を介して送信してもよい。当該情報は、アソシエーション応答フレーム、ビーコンフレームおよびその他の管理フレームなどで通知してもよい。また制御部83は、バッファ86に複数の端末宛のデータが存在するなどをトリガーに、MU-MC通信の開始を決定してもよい。
動作の一例として、制御部83は、MU-MC通信において、あるチャネル(チャネルAとする)でRTSフレームを送信し、同時に別のチャネル(チャネルBとする)でRTSフレームを送信したとする。RTSフレームA、Bの宛先は同じでも異なってもよい。送信からSIFS時間の経過後に、チャネルAでCTSフレームが受信され、チャネルBでCTSフレームが受信されなかったとする。このとき、制御部83は、チャネルAでのCTSフレームの受信からSIFS時間経過後、チャネルAで送信したRTSフレームと同じ宛先のデータフレーム等のフレームをチャネルAで送信し、かつ、チャネルBで送信したRTSフレームと異なる宛先のデータフレーム等のフレームをチャネルBで送信するよう制御する。チャネルBで送信する宛先の端末は、基地局に接続している端末のうち、少なくともチャネルBでの待ち受け動作を行っている端末を選択する。選択する端末は、チャネルAでフレームを送信する先と同じ端末である場合もあり得る。候補となる端末が複数存在するときは、ランダムに選択、送信すべきデータ量が最も多い端末を選択するなど、任意の方法で端末を選択してもよい。
送信処理部81は、制御部83の指示に従って、フレームの生成および送信を行う。送信処理部81は、制御部83からフレームの送信が指示されると、送信処理部81は、指示されたフレームを生成し、生成したフレームを、PHY処理部および無線部70の送信部73へ出力する。送信処理部81は、バッファ86内のデータを用いてフレームを生成してもよい。
送信部73は、送信処理部81から入力されたフレームに対し、所望の物理層の処理を行って、物理パケットとする。そして、当該物理パケットに対してDA(Digital-Analog)変換や周波数変換等を行ってアナログ信号として、アンテナから当該信号を空間に電波として送信する。送信部73が行う送信処理のうちD/A変換以降またはD/A変換より後の処理を行う部分を含む回路は、一例として、RF(Radio Frequency)集積回路に対応する。
送信部73および受信部72が処理するチャネルに関する情報は、制御部83が管理する。制御部83が、送信部73および受信部72に処理すべきチャネルを割り当て、割り当てたチャネルを送信部73および受信部72に指示する。送信部73および受信部72は、制御部34から指示されたチャネルを処理する。
図9は、第1の実施形態に係る端末の動作の一例のフローチャートを示す。
端末は、予め指定された1つ以上のチャネルで待ち受け動作し、待ち受け動作しているチャネルで基地局からのRTSフレームを受信する(S101)。端末は、当該RTSフレームの宛先が自端末かを判断し(S102)、RTSフレームの宛先が自端末でないとき、すなわち他端末のときは、RTSフレームのDurationフィールドに設定された媒体予約時間に基づき、NAVを設定する(S103)。端末は、設定したNAVをタイムアウトまで維持する(S104)。すなわち、RTSフレームを受信したチャネルで、当該RTSフレームの受信からSIFS時間後に、CTSフレームを受信しなくても、NAVを維持する。
ステップS102において、RTSフレームの宛先が自端末であり、かつRTSフレームの受信前のPIFS時間のキャリアセンス結果がアイドルのときは、RTSフレームの受信からSIFS時間後にCTSフレームを、RTSフレームを受信したチャネルで送信する(S105)。端末は、CTSフレームの送信からSIFS時間後に、基地局から当該チャネルを用いてMU-MC方式で送信されるフレーム(1つまたは複数のデータフレーム、あるいはアグリゲーションフレームなど)を受信する(S106)。端末は、フレームの受信からSIFS時間後に、送達確認応答フレーム(BAフレームまたはACKフレームなど)を送信する(S107)。
ここでステップS101において、RTSフレームの送信元が基地局でない場合、RTSフレームの受信からSIFS後にCTSフレームを受信しないとき、NAVを解除してもよい。RTSフレームの送信元が基地局か否かは、RTSフレームのTAフィールド等に基づき判断すればよい。例えば、MU-MC通信とは異なる通常の通信として、基地局でないある端末(端末A)がデータ送信を行うために、プライマリチャネル等のあるチャネルで、基地局宛のRTSフレームを送信する場合があり得る。当該RTSフレームを別の端末(端末B)が受信し、RTSフレームの宛先が自端末宛でないため、NAVを設定する。端末Bは、RTSフレームの受信からSIFS時間後に基地局からのCTSフレームを受信しない場合は、当該チャネルでのNAVを途中で解除する。この場合、NAVを解除しても、前述したような問題は生じないため、NAVを解除することで、当該チャネルを利用可能にすることがシステム効率上、望ましいといえる。ただし、端末Aが基地局と同様にMU-MC方式のダウンリンクのデータ送信が可能な場合で、MU-MC通信でのRTSフレーム送信を行う場合は、基地局の場合と同様の処理を行ってもよい。このような端末については、基地局と同様に事前にアドレスを把握しておき、RTSフレームの送信元アドレスが予め把握した通信装置のアドレスに一致するときは、ステップS104のようにNAVを維持する。一方、これらのアドレスが一致しないときは、RTSフレームの受信からSIFS後にCTSフレームを受信しない場合に、NAVを解除してもよい。
図10は、本実施形態に係る基地局の動作の一例のフローチャートである。
基地局は、MU-MC通信の開始を決定し、複数のチャネルでRTSフレームを1つまたは複数の端末に送信する(S201)。RTSフレームの送信からSIFS時間後に、RTSフレームを送信したチャネルのうち、CTSフレームを受信したチャネルと、CTSフレームを受信しなかったチャネルを特定する(S202)。基地局は、CTSフレームを受信したチャネルを用いて、CTSフレームを送信した端末(ここでは主端末と呼ぶ)にフレームを送信すると同時に、CTSフレームを受信しなかったチャネルの全部または一部を用いて、他の端末(ここではサブ端末と呼ぶ)にフレームを送信する(S203)。サブ端末は、当該フレームが送信されるチャネルでは、前述したRTSフレームの受信によりNAVを維持していると考えられる。NAVを維持している場合も、基地局からのフレームの受信、およびそれに対する応答を表すフレームの送信は可能である。基地局は、フレームの送信からSIFS時間後に、主端末およびサブ端末から送信される送達確認応答フレームを受信する(S204)。
以上、本実施形態によれば、端末が、他端末宛のRTSフレームの受信からSIFS時間経過後にCTSフレームを受信しない場合でも、NAVを解除しない(NAVを維持する)。これにより、受信動作が行えない可能性のある基地局への不必要な送信動作をなくして、端末の無駄な消費電力を抑制できる。また、基地局は、CTSフレームを応答した端末に該当応答したチャネルでデータ送信すると同時に、CTSフレームが応答されなかったチャネルでも当該チャネルで待ち受けを行っている端末(当該チャネルでCTSフレームを応答しなかった端末以外の端末)にデータ送信する。これにより、チャネルの帯域を有効利用でき、よってシステム効率を向上させることができる。
なお、本実施形態では基地局と複数の端末との間で通信する形態を示したが、基地局を介さずに、端末間でMU-MC通信する場合も、本発明は実施可能である。例えば、複数の端末のうちの1台が送信側、残りの端末のうちの2台以上端末が受信側となり、MU-MC通信を行う場合がこれに相当する。なお、基地局を介さずに、端末同士で通信する規格として、WiFi Direct等が知られている。WiFi Direct対応端末は、その機能を有効にすると、他の端末からは基地局として認識され、1対1または1対多の接続が可能となる。
(第2の実施形態)
図11は、第2の実施形態に係る、基地局11および複数の端末間のMU-MC通信に係る動作シーケンスの例を示す。第1の実施形態における図6のシーケンスとの違いを中心に説明する。
図11は、第2の実施形態に係る、基地局11および複数の端末間のMU-MC通信に係る動作シーケンスの例を示す。第1の実施形態における図6のシーケンスとの違いを中心に説明する。
通常、RTSフレームのDurationフィールドに設定する媒体予約時間は、RTSフレームの終わりから、BAフレームの終わりまでの時間を設定する。第1の実施形態でも、この場合を想定した。本シーケンス例では、RTSフレームの終わりから、BAフレームの終わりまで想定される時間よりも長い値の媒体予約時間を、RTSフレームのDurationフィールドに設定する。一例として、RTSフレームの終わりから、BAフレームの終わりまでに想定される時間が1msのとき、10msを設定することが考えられる。このようにBAフレームの終わりまでに想定される時間よりも長い時間に係るNAVを、LongNAVと呼ぶこともある。
本シーケンスでは、基地局が、MU-MC通信においてチャネル1~3でBAフレームを受信した後、SIFS時間後に、CF(Contention Free)-Endフレームを送信する。CF-Endフレームは、端末が設定しているNAVを強制的に解除させるためのフレームである。CF-EndフレームのRAフィールドには、例えばブロードキャストアドレスが設定される。CF-Endフレームは、CTSフレームを受信した(あるいはBAフレームを受信した)チャネル1~3に加えて、CTSフレームを受信しなかった(あるいはBAフレームを受信しなかった)チャネル4でも送信する。チャネル1~3で受信したRTSフレームの宛先が自端末宛でなかった端末のうち、CF-Endフレームをチャネル1~3で受信した端末は、CF-Endフレームを検出後、チャネル1~3で設定しているNAVを解除する。例えば、端末3がチャネル1~3で端末1または端末2宛のRTSフレームを受信していた場合は、チャネル1~3でRTSフレームの終わりからNAVを維持しているため、CF-Endフレームの受信により、当該NAVを解除する。また、端末1がチャネル1、2以外にもチャネル3で待ち受けを行っており、チャネル3で端末2宛のRTSフレームを受信していた場合も、チャネル3でNAVを維持しているため、CF-Endフレームの受信により、当該NAVを解除する。
チャネル4に関して、端末2宛のRTSフレームの受信した端末(ここでは端末3とする)は、RTSフレームの受信のSIFS時間後にCTSフレームを受信しなくても、NAVを維持している。このため、該当NAVを維持しているチャネル4では、他のチャネル1~3でのMU-MC通信が完了後に、チャネル1~3のNAV解除に合わせて、NAVを解除する必要がある。そこで、基地局は、上述のように、チャネル1~3でCF-Endフレームを送信すると同時に、当該CTSフレームを受信しなかったチャネル4でもCF-Endフレームを送信する。チャネル4でCF-Endフレームを受信した端末3は、維持しているNAVを解除する。これにより、CTSフレームが受信できないことによりMU-MC通信が行われなかったチャネル4で、端末3がNAVを維持しつづけることを防止できる。
本実施形態の基地局の動作例として、制御部83は、BAフレームの受信完了後、CTSフレームを受信した(あるいはBAフレームを受信した)チャネルでCF-Endフレームを送信すると同時に、CTSフレームを受信しなかったチャネルでもCF-Endフレームを送信する。また端末の動作例として、制御部33は、CF-Endフレームを受信したチャネルでNAVを維持している場合に、CF-Endフレームの受信完了後、当該NAVを解除する。
図12は、本実施形態に係る基地局の動作の一例のフローチャートである。
基地局は、MU-MC通信の開始を決定し、複数のチャネルでRTSフレームを1つまたは複数の端末に送信する(S301)。RTSフレームの送信からSIFS時間後に、RTSフレームを送信したチャネルのうち、CTSフレームを受信したチャネルと、CTSフレームを受信しなかったチャネルを特定する(S302)。基地局は、CTSフレームを受信したチャネルを用いて、CTSフレームを送信した端末にフレームを送信する(S303)。基地局は、フレームの送信からSIFS時間後に、当該端末から送信される送達確認応答フレームを受信する(S304)。送達確認応答フレームの受信からSIFS後に、CTSフレームを受信したチャネルと、CTSフレームを受信しなかったチャネルで、CF-Endフレームを送信する(S305)。
以上、本実施形態によれば、CTSフレームの応答がなかったことによりMU-MC方式でデータ送信が行われなかったチャネルでも、CF-Endフレームを送信することにより、当該データ送信が完了後に、当該チャネルでNAVが継続されることを防止できる。
(第3の実施形態)
第3の実施形態では、ビーコンフレームまたは新規に定義する管理フレームで、MU-MC通信が行われる期間(MU-MC期間)を通知する。MU-MC期間は、ビーコンフレームと、次に送信されるビーコンインターバルの間を表すビーコンインターバル単位で規定されてもよいし、任意の開始時刻と任意の終了時刻とによって定義されてもよい。この際、任意の開始時刻は、ビーコンインターバルの開始時刻でもよいし、ビーコンインターバル内の任意の時刻でもよい。終了時刻は、ビーコンインターバルの終了時刻でもよいし、ビーコンインターバル内の任意の時刻でもよい。本実施形態では、MU-MC期間では、第1および第2の実施形態と同様に、他端末宛のRTSフレームの受信からSIFS時間後にCTSフレームを受信しなかったチャネルではNAVを解除しない(NAVを継続する)。一方、MU-MC期間以外の期間(非MU-MC期間)では、他端末宛のRTSフレームの受信からSIFS時間後にCTSフレームを受信しなかったチャネルのNAVは解除する。非MU-MC期間ではプライマリチャネルをベースに、例えばIEEE802.11b/g/n/ac等の規格に従った通信が行われる。このため、非MU-MC期間では、CTSフレームを受信しない場合にNAVを解除しても、第1の実施形態で述べたような問題(基地局がMU-MC通信を複数の端末と行っている間に、他の端末が基地局にアップリンク送信を行う問題)は生じないと考えられる。
第3の実施形態では、ビーコンフレームまたは新規に定義する管理フレームで、MU-MC通信が行われる期間(MU-MC期間)を通知する。MU-MC期間は、ビーコンフレームと、次に送信されるビーコンインターバルの間を表すビーコンインターバル単位で規定されてもよいし、任意の開始時刻と任意の終了時刻とによって定義されてもよい。この際、任意の開始時刻は、ビーコンインターバルの開始時刻でもよいし、ビーコンインターバル内の任意の時刻でもよい。終了時刻は、ビーコンインターバルの終了時刻でもよいし、ビーコンインターバル内の任意の時刻でもよい。本実施形態では、MU-MC期間では、第1および第2の実施形態と同様に、他端末宛のRTSフレームの受信からSIFS時間後にCTSフレームを受信しなかったチャネルではNAVを解除しない(NAVを継続する)。一方、MU-MC期間以外の期間(非MU-MC期間)では、他端末宛のRTSフレームの受信からSIFS時間後にCTSフレームを受信しなかったチャネルのNAVは解除する。非MU-MC期間ではプライマリチャネルをベースに、例えばIEEE802.11b/g/n/ac等の規格に従った通信が行われる。このため、非MU-MC期間では、CTSフレームを受信しない場合にNAVを解除しても、第1の実施形態で述べたような問題(基地局がMU-MC通信を複数の端末と行っている間に、他の端末が基地局にアップリンク送信を行う問題)は生じないと考えられる。
図13は、本実施形態に係る基地局11および複数の端末間のMU-MC通信に係る動作の概要を説明する図である。図において、「B」の文字が入った矩形は、ビーコンフレームを表している。基地局は、一定の周期で、チャネル1(ここではチャネル1はプライマリチャネルであるとする)でビーコンフレームを送信している。ビーコンフレームには、当該ビーコンフレームで始まるビーコンインターバルがMU-MC期間か否かを表す情報が設定されている。このような情報は、ビーコンフレームのボディフィールドに情報エレメント(図4(B))として設定してもよいし、既存のフィールドの空き領域または新規に追加するフィールドに当該情報を設定してもよい。例えば、ビット1がMU-MC期間、ビット0が非MU-MC期間を表してもよい。
ビーコンフレームを受信した端末は、MU-MC期間を表す情報が設定されている場合は、今回のビーコンインターバルはMU-MC期間であると判断する。そのビーコンインターバル内では、基地局から他端末宛のRTSフレームが受信した場合にそのSIFS時間後にCTSフレームを受信しなくても、RTSフレームを受信したチャネルでのNAVを継続する。一方、非MU-MC期間を表す情報が設定されている場合は、今回のビーコンインターバルは非MU-MC期間であると判断する。そのビーコンインターバル内では、基地局から他端末宛のRTSフレームが受信した場合にそのSIFS時間後にCTSフレームを受信しなかったチャネルのNAVは解除する。なお、ビーコンフレームを受信した端末は、ビーコンフレームにMU-MC期間を表す情報が設定されている場合に、MU-MC通信用のチャネルで待ち受け動作を開始し、非MU-MC期間を表す場合は、プライマリチャネルのみでの待ち受け動作を行うように、MU-MC期間か否かで待ち受け動作チャネルを切り換えるようにしてもよい。
本実施形態に係る基地局の動作例として、制御部83は、MU-MC通信の開始を決定すると、MU-MC期間を決定し、当該決定した期間を特定する情報を所定フィールドに設定したフレーム(ビーコンフレーム、新規に定義した管理フレーム等)の生成を、送信処理部81に指示する。送信処理部81は、制御部83の指示に従ってフレームを生成して送信する。
本実施形態に係る端末の動作例として、受信処理部32のフレーム種別判定部42は、基地局から受信したフレームの所定フィールドを解析して、MU-MC通信の期間を特定する情報が設定されているかを判断する。当該情報が設定されている場合は、制御部33が、当該MU-MC期間を特定し、特定したMU-MC期間を管理する。MU-MC期間は、ビーコンインターバルの位置、または、開始時刻と終了時刻の組、またはこれらの組み合わせなどで特定される。制御部33は、MU-MC期間を管理するMU-MC期間管理部を備えていてもよい。制御部83は、他端末宛のRTSフレームを受信し、かつそのSIFS時間後にCTSフレームを受信しなかった場合、現在時刻がMU-MC期間内か否かを判断し、MU-MC期間内の場合は、RTSフレームの受信時に設定したNAVを維持するよう制御する。非MU-MC期間の場合は、RTSフレームの受信時に設定したNAVを解除する。
図14は、第3の実施形態に係る端末の動作の一例のフローチャートを示す。図9と同一または対応するステップには同一の符号を付して、重複する説明を省略する。
端末は、基地局から送信されるビーコンフレーム等のフレームを受信し、受信したフレームに基づき、MU-MC期間を特定する(S401)。端末は、MU-MC期間の場合に(S402のYES)、他端末宛のRTSフレームを受信した場合は、第1の実施形態と同様、CTSフレームの受信有無にかかわらず、NAVを維持する(S104)。一方、非MU-MC期間の場合に(S402のNO)、当該RTSフレームを受信した場合は、そのSIFS時間後にCTSフレームを受信しない場合は、NAVを解除する(S403)。なお、SIFS時間後にCTSフレームを受信した場合は、NAVを維持する。
(第4の実施形態)
本実施形態は、基地局がRTSフレームの送信後に、CTSフレームを受信できた複数のチャネルの一部で、複数の端末とダウンリンクの空間多重通信、より詳細には、ダウンリンクのMU-MIMO(Multi-User Multiple Input,Multiple Output)方式を用いた通信を行う。そして、残りのチャネルで、第1~第3の実施形態と同様に、MU-MIMOを用いないダウンリンクの通信を行う。このような場合においてRTSフレームのDurationフィールドに設定する媒体予約時間の決定方法に係るものである。なお、以下でMU-MIMOと言うときは、ダウンリンクのMU-MIMOを指すものとするが、アップリンクのMU-MIMO(複数の端末から基地局に空間多重でデータ送信)に本実施形態を適用することも可能である。
本実施形態は、基地局がRTSフレームの送信後に、CTSフレームを受信できた複数のチャネルの一部で、複数の端末とダウンリンクの空間多重通信、より詳細には、ダウンリンクのMU-MIMO(Multi-User Multiple Input,Multiple Output)方式を用いた通信を行う。そして、残りのチャネルで、第1~第3の実施形態と同様に、MU-MIMOを用いないダウンリンクの通信を行う。このような場合においてRTSフレームのDurationフィールドに設定する媒体予約時間の決定方法に係るものである。なお、以下でMU-MIMOと言うときは、ダウンリンクのMU-MIMOを指すものとするが、アップリンクのMU-MIMO(複数の端末から基地局に空間多重でデータ送信)に本実施形態を適用することも可能である。
基地局は、MU-MIMO通信では、CTSフレームを返した端末を含む複数の端末に対して、空間多重でデータフレーム等のフレーム(以下では、アグリゲーションフレームを想定)を送信する。空間多重とは、同一の周波数で同時に送信することである。ダウンリンクのMU-MIMO方式については、IEEE802.11.acでも定められている。
基地局は、複数の端末にMU-MIMO方式で送信したアグリゲーションフレームに対するBAフレームを受信する際、各端末から順番にBAフレームを受信する。一方、MU-MIMO方式を用いないチャネルでの通信では、アグリゲーションフレームの送信後、これまでの実施形態と同様、BAフレームを1回受信する。したがって、MU-MIMO方式の場合、アグリゲーションフレームの送信後、複数の端末から順番にBAフレームを受信するだけ、MU-MIMO方式を用いない場合もよりも、BAフレームの受信完了までの時間が長くなる。
このため、MU-MIMO方式を用いない端末が、自端末のBAフレーム送信完了後、MU-MIMO方式を用いた複数の端末がすべてBAフレームを送信するまでの時間の間に、引き続き同じチャネル(BAフレーム送信完了したチャネル)でフレームを送信する可能性がある。この場合、第1の実施形態と同様の問題(基地局がダウンリンクの通信を行っている間に、アップリンクの信号を基地局に送信する問題)が生じうる。MU-MC通信に参加しなかった端末等にも同様の問題が起こり得る。
そこで本実施形態では、MU-MIMO方式を用いないチャネルで送信するRTSフレームのDurationフィールドに設定する媒体予約時間の値を、MU-MIMO方式を用いるチャネルで送信するRTSフレームのDurationフィールドに設定する媒体予約時間と同じにする。MU-MIMO方式を用いるチャネルの媒体予約時間は、RTSフレームの終わりから、MU-MIMO通信を行う複数の端末のうち最後にBAフレームを送信する端末が送信するBAフレームの終わりまでに想定される時間である。この時間を、MU-MIMO方式を用いないチャネルの媒体予約時間にも適用することで、当該チャネルでのNAVを、MU-MIMO通信でのBAフレームの送信がすべて完了するまで維持する。これにより、上述の問題を抑制できる。以下、本実施形態について詳細に説明する。
図15は、第4の実施形態に係る、基地局11および複数の端末間のMU-MC通信に係る動作シーケンスの例を示す。第1の実施形態における図6のシーケンスとの違いを中心に説明する。
基地局は、チャネル1、2で端末1からCTSフレームを受信すると、チャネル1、2を結合した帯域で、端末1を含む複数の端末(ここでは3台の端末を想定し、端末1以外を端末mと端末nと呼ぶ)に対し、MU-MIMO方式でアグリゲーションフレーム(より詳細にはアグリゲーションフレームを含む物理パケット)をそれぞれ送信する。すなわち、空間多重で、端末1、端末mおよび端末nに、複数のアグリゲーションフレームを送信する。なお、MU-MIMO方式の通信では、基地局は、例えばビームフォーミングと呼ばれる技術を用いる。基地局は、端末1、端末mおよび端末n宛のデータストリームで互いに干渉が最小となるようなビーム、すなわち各端末宛のデータストリームが空間的に直交するようなビームを、各端末に対して形成する。これにより、空間多重が可能となり、基地局は端末1、端末mおよび端末nに対して、同時に別々のデータを送信できる。なお、ビームフォーミングのため、基地局は事前に各端末との伝搬路を、既知ビット列を含むフレームの受信により推定しておき、推定した伝搬路の情報を用いて端末毎にビームを形成する。
MU-MIMO通信の対象として選定され得る端末(ここでは端末mと端末n)は、少なくともチャネル1、2で待ち受け動作を行っているものとする。基地局は、各端末にそれぞれ送信するアグリゲーションフレームを含む物理パケットのヘッダに、端末1、端末mおよび端末nが共通に属するグループのグループIDを設定する。アグリゲーションフレームをそれぞれ受信した端末は、物理パケットのヘッダに設定されたグループIDが示すグループに、自端末が属するかを判断する。グループに自端末が属する場合は、パケットのその後の部分を復調等することで、自端末宛のアグリゲーションフレームを検出する。グループIDが示すグループに自端末が属さない場合は、その後のパケット部分の復調は不要である。これにより不必要な動作を省略して、低消費電力を図ることができる。なお、グループIDを利用せずに、MACフレームの復調まで常に行って、自端末宛のMACフレームが存在するかを判断するようにしてもよい。または、グループIDの代わりに、アグリゲーションフレームの送信先となる個々の端末の識別情報を物理パケットのヘッダに設定してもよい。識別情報は、AIDでも、AIDの一部でも、MACアドレスでも、その他の情報でもよい。
図16に、MU-MIMO通信で使用する物理パケットのフォーマット例を示す。なお、このフォーマット例は一例であり、これとは別のフォーマットを利用してもかまわない。物理ヘッダに相当するフィールド(L-STF、L-LTF、L-SIG、VHT-SIG-A、VHT-STF、VHT-SIG-B)と、MACフレームを設定するフィールドとが存在する。L-STF、L-LTF、L-SIGは、例えば、IEEE802.11aなどのレガシー規格の端末も認識可能なフィールドであり、信号検出、周波数補正、伝送速度などの情報が格納される。グループIDは例えばVHT-SIG-Aに設定する。ただし、グループIDを設定するフィールドを新規に定義して、当該フィールドにグループIDを設定してもよい。または、MACフレームのフレームボディフィールドなど、その他のフィールドにグループIDを設定してもよい。グループIDの代わりに、個々の端末の識別情報を設定してもよい。また、VHT-SIG-Aには、空間多重で通信する複数の端末のそれぞれが使用するストリーム数またはコーディング(BCCやLDPCなどの誤り訂正符号)方式またはこれらの両方などの情報が設定されてもよい。なお、VHT-SIG-Bには、MCS(Modulation and Coding Scheme:変調符号化方式)などが設定されてもよい。
基地局からMU-MIMOで送信されたアグリゲーションフレームを受信した端末のうち端末1、すなわち、基地局から送信されたRTSフレームに対してCTSフレームを応答した端末は、アグリゲーションフレームの受信からSIFS時間経過後に、BAフレームをチャネル1、2のそれぞれで返す。BAフレームはDuplicateフレームである。チャネル1、2を結合した帯域で1つのBAフレームを返すようにしてもよい。なお、チャネル1、2のそれぞれごとに、MU-MIMO送信された場合は、チャネル1、2のそれぞれで別々の内容のBAフレームを返すようにすればよい。
基地局は、端末1からBAフレームを受信した後、次にBAフレームを返す端末(2番目の端末)を選択して、選択した端末に、制御フレームであるBAリクエストフレームをチャネル1、2でそれぞれ送信する。BAリクエストフレームは、BAフレームの送信を要求するフレームであり、一例として、IEEE802.11規格で定義されたフレームを用いることができる。チャネル1、2で送信するBAリクエストフレームはDuplicateフレームでよい。また、端末を選択する順序は、ランダム順または識別番号(AIDまたはMACアドレスなど)の順およびこれらの組み合わせなど、任意の方法で決定すればよい。図の例では、端末mが選択された場合が示される。BAリクエストフレームをチャネル1、2で受信した端末mは、受信からSIFS時間経過後に、BAフレームをチャネル1、2のそれぞれで返す。BAフレームはDuplicateフレームである。なお、チャネル1、2のそれぞれごとに、MU-MIMO送信された場合は、チャネル1、2のそれぞれで別々のBAリクエストフレームを送信し、別々のBAフレームを端末から返すようにすればよい。
次に、基地局は、3番目の端末(ここでは端末n)を選択し、端末nに、2番目の端末mから受信したBAフレームの受信からSIFS時間経過後に、チャネル1、のそれぞれでBAリクエストフレームを送信する。BAリクエストフレームをチャネル1、2で受信した端末は、受信からSIFS時間経過後に、BAフレームをチャネル1、2のそれぞれで返す。BAフレームはDuplicateフレームである。なお、チャネル1、2のそれぞれごとに、MU-MIMO送信された場合は、チャネル1、2のそれぞれで別々のBAリクエストフレームを送信し、チャネル1、2のそれぞれで別々のBAフレームを返す。
一方、基地局は、チャネル3では、端末2からCTSフレームを受信してからSIFS時間経過後に、アグリゲーションフレームを端末2に送信する。端末2は、アグリゲーションフレームの受信からSIFS時間経過後に、BAフレームを返す。端末2は、RTSフレームに基づき設定したNAVが、その後も有効に維持される。より詳細には、RTSフレームの受信から、上述した3番目の端末が送信するBAフレームの終わりまでの時間(図15の時間T11)の間、NAVが維持される。時間T11の間、端末2は、自発的にフレームを送信することは抑制される。端末2のNAVは、3番目の端末が送信するBAフレームの終わりのタイミングで解除される。端末2以外にも、チャネル3でRTSフレームを受信した端末も同様に、時間T11の間、NAVを維持する。
なお、基地局は、チャネル4では、端末2からCTSフレームを受信しないため、フレーム送信を行わない。基地局からチャネル4で送信したRTSフレームを受信した端末は、RTSフレームのDurationフィールドに設定された媒体予約時間(図15の時間T11)の間、NAVを維持する。第1~第3の実施形態のいずれかと同様に、NAVは、RTSフレームの受信からSIFS時間経過後にCTSフレームを受信しなくても維持する。なお、図の斜線で囲まれた矩形は、本シーケンス例では、端末2にとっての干渉信号を表す。干渉信号は、例えばBSS2に属する端末または基地局またはこれらの両方、もしくは基地局11に属するレガシー端末、またはこれらの組み合わせから送信される信号である。
本実施形態に係る基地局の動作例として、基地局の制御部83は、MU-MC通信に用いる複数のチャネルと複数の端末を選択し、選択した複数のチャネルで複数の端末にRTSフレームを送信する。この際、RTSフレームのDurationフィールドには、MU-MIMO通信の際にすべての端末からBAフレームを受信するまでに想定される時間を、MU-MIMO通信を行う端末数に応じて計算し、計算した時間またはそれ以上の長さの時間を、媒体予約時間として設定する。制御部83は、このように媒体予約時間を決定する媒体予約時間決定部を備える。RTSフレーム、CTSフレーム、アグリゲーションフレーム(もしくはデータフレーム)、BAフレーム、BARフレームの長さ(時間長)、およびフレーム間隔(SIFS等)は事前に分かっているため、すべての端末からBAフレームを受信するまでに想定される時間を事前に見積もることができる。
制御部83は、RTSフレームを送信した複数のチャネルの一部または全部でCTSフレームを受信すると、CTSフレームを送信した端末の中からダウンリンクのMU-MIMO通信を行う端末(ここでは主端末と呼ぶ)と、MU-MIMO通信を行う1つまたは複数のチャネルを選択する。チャネルの選択は、チャネル単位、もしくは、複数のチャネルを結合した帯域単位、もしくはこれらの両方で行う。先に説明した図15のシーケンス例では、チャネル1、2を結合した帯域を選択したが、チャネル1、2で別々にMU-MIMO通信を行ってもよい。
また、制御部83は、基地局に属しているMU-MIMO通信可能な端末のうち、RTSフレームの送信先となっていなかった他の端末の中から、MU-MIMO通信を行う端末(ここではサブ端末と呼ぶ)を選択する。MU-MIMO通信可能な多重数をNとすると、最大でN-1台の端末を選択できる。なお、1台の端末が複数のデータストリームを受信可能な場合を考慮するときは、複数の端末間で合計のデータストリーム数がN以下になるように端末を選択すればよい。
MU-MIMO通信を行う他の端末を選択する際、一例として、グループIDと、当該グループIDが示すグループに属する端末の識別情報とを関連づけた空間多重テーブルを用いてもよい。空間多重テーブルは記憶装置85に格納しておく。この場合、制御部83は、主端末が存在するグループを特定し、当該グループからサブ端末として選択する。このようなグループは、アソシエーション時またはその後の任意のタイミングまたはこれらの両方で事前に生成しておき、グループIDは端末に通知しておく。グループの生成方法は任意でよいが、一例として相関が低い端末(例えば距離的に遠い端末など)を同じグループに属させることが考えられる。
サブ端末の選択においては、主端末とサブ端末との合計数(より詳細にはデータストリーム数)が多重数N以下になるように、端末を選択する。データ量が多い順に優先的に端末を選択してもよいし、その他の基準で選択してもよい。なお、端末に対して送信すべきデータが存在しない場合、その端末は選択する必要はない。
なお、基地局に属する端末は、ダウンリンクのMU-MIMO通信を実行可能であり、かつ当該MU-MIMO通信の機能が有効(オン)になっていることを、アソシエーション時またはその後の任意のタイミングで、基地局に通知しておいてもよい。基地局は、当該通知を行った端末を、ダウンリンクのMU-MIMO通信可能な端末として認識してもよい。
基地局の制御部83は、MU-MIMO通信を行う複数の端末を決定したら、MU-MIMO通信用に選択したチャネルを用いて、MU-MIMO方式でフレーム(1つまたは複数のデータフレーム、もしくは、アグリゲーションフレームなど)を、複数の端末に送信処理部81を介して送信する。同時に、MU-MIMO通信を行わないチャネルでは、当該チャネルでCTSフレームを送信した端末にフレーム(1つまたは複数のデータフレーム、もしくは、アグリゲーションフレームなど)を、送信処理部81を介して送信する。一例として、MU-MIMO方式で送信するフレームの長さ(時間長)は、MU-MIMO方式を用いないで送信するフレームの長さ(時間長)と同じである。
受信処理部82では、MU-MIMO方式で通信した複数の端末のうち、基地局から送信されたRTSフレームに対してCTSフレームを応答した端末(1番目の端末)から、BAフレームを受信する。BAフレームは、MU-MIMO方式でのフレームの送信からSIFS時間後に受信される。当該1番目の端末は、自端末がCTSフレームを返したため、MU-MIMO方式でフレームの受信からSIFS時間後にBAフレームを返すことを事前に把握している。なお、基地局がアグリゲーションフレームではなく、単一のフレームを端末に送信した場合は、BAフレームでなく、ACKフレームを端末から受信する構成も可能である。制御部83は、受信処理部82で1番目の端末からBAフレームを受信したことを検出すると、そのSIFS時間後に、BAリクエストフレームを2番目の端末に送信し、そのSIFS時間後にBAフレームを当該2番目の端末から受信する。MU-MIMO方式で通信したすべての端末からBAフレームを受信するまで、端末の選択と、当該端末へのBAリクエストフレームの送信、および当該端末からのBAフレームの受信を繰り返す。
また、受信処理部82では、MU-MIMO方式を用いずに通信した端末からは、フレームの送信を行ったチャネル(図15の例ではチャネル3)で、当該フレーム送信からSIFS時間後にBAフレームを受信する。当該端末は、BAフレームを送信後、RTSフレームで指定された媒体予約時間が経過するまでの間(MU-MIMO通信ですべてのBAフレームの受信が完了するまでの時間T11の間)、NAVを維持し、送信は抑制されるが、基地局は、当該チャネルを利用することもできる。例えば、制御部83は、受信部72または受信処理部82が備えるキャリア検出部を用いてDIFS時間とランダムに決定した時間との合計時間の間、キャリアセンスを行い、キャリアセンスの結果がアイドルであれば、そのチャネルでフレーム送信を行ってもよい。フレームの送信先は、当該チャネルで直前に通信を行った同じ端末(図15の例では端末2)でもよいし、別の端末でもよい。なおDIFS時間は一例であり、予め定めた時間である限り、AIFS時間など、他のフレーム間隔時間でもかまわない。以下の説明でも、DIFS時間というときは、これに限定することを意味するものではなく、他の予め定めた時間を用いることができる。
本実施形態に係る端末の動作例として、端末の制御部33は、基地局から複数のチャネルでRTSフレームが受信されると、RTSフレームの終わりからDurationフィールドに設定された媒体予約時間の間、当該RTSフレームを受信した各チャネルで、NAVを維持する。
制御部33は、自端末宛のRTSフレームの受信に成功しかつその受信前のPIFSの間のキャリアセンスの結果がアイドルであったチャネルで、CTSフレームを、送信処理部31を介して送信する。当該CTSフレームの送信からSIFS時間後に、基地局からフレーム(1つまたは複数のデータフレーム、もしくはアグリゲーションフレームなど)を受信すると、受信からSIFS時間後にBAフレームを、送信処理部31を介して返す。つまり、送信部にBAフレームの送信を指示し、送信処理部31がBAフレームを送信部23を介して送信する。基地局から受信するフレームは、MU-MIMO方式で送信されたフレームを受信する場合と、MU-MIMO方式を用いずに送信されたフレームを受信する場合がある。どちらで受信されたかは物理ヘッダから判断すればよい。なお、基地局が、単一のフレームを端末に送信した場合は、BAフレームでなく、ACKフレームを送信する構成も可能である。
また制御部33は、基地局から他端末宛のRTSフレームを受信したチャネルで、その後、MU-MIMO方式で送信されるフレームを受信した場合は、当該フレームを受信したチャネルで、基地局からBAリクエストフレームの受信を待機する。制御部33は、BAリクエストフレームが受信処理部32で受信された場合は、そのSIFS時間後にBAフレームを、送信処理部31を介して送信する。送信後、上述の他端末宛のRTSフレームのDurationフィールドで設定された媒体予約時間が終了するまで、NAVを維持する。
図17は、第4の実施形態に係る基地局の動作の一例のフローチャートである。
基地局は、MU-MC通信の開始を決定し、RTSフレームに設定する媒体予約時間の値を決定する(S501)。媒体予約時間の値を決定するに際しては、MU-MIMO方式を行う端末数を考慮する。例えば、MU-MIMO方式を行う端末のすべてからのBAフレーム等の送達確認応答フレームの受信完了までに要する時間を考慮する。基地局は、複数のチャネルで、当該媒体予約時間をDurationフィールドに設定したRTSフレームを送信する(S502)。RTSフレームの送信からSIFS時間後に、RTSフレームを送信したチャネルのうち、CTSフレームを受信したチャネルと、CTSフレームを受信しなかったチャネルを特定する(S503)。基地局は、CTSフレームを送信した端末のうちMU-MIMO通信を行う端末(ここでは主端末と呼ぶ)を特定し、また基地局に接続している他の端末からMU-MIMO通信を行う端末(ここではサブ端末と呼ぶ)を選択する(S504)。基地局は、主端末がCTSフレームを送信したチャネルを用いて、主端末およびサブ端末にMU-MIMO方式でフレームを送信する(同S504)。基地局はMU-MIMO方式でフレーム送信後、主端末から送達確認応答を表すフレーム(ここではBAフレーム)を受信し、その後、BAリクエストフレームの送信とBAフレームの受信を、サブ端末の台数分繰り返す(S505)。
本実施形態の変形例として、サブ端末がBAフレームを返す順序を事前に定めておき、BAリクエストフレームを送信すること無く、BAフレームをサブ端末から順番に受信することも可能である。例えばMU-MIMO方式でサブ端末に送信するフレームに、各サブ端末の順序を表す情報を基地局が設定しておく。サブ端末は、順序における自端末の順位を把握し、把握した順位に応じた時間だけフレームの受信完了から待機して、BAフレームを送信する。各サブ端末の順序を表す情報は、物理パケットのヘッダでもよいし、MACフレームのヘッダまたはボディフィールドでもよいし、それ以外のフィールドでもよい。
以上、本実施形態によれば、MU-MIMO方式でフレームを受信した複数の端末からの送達確認応答フレームをすべて受信するまで、MU-MIMO方式が用いられないチャネルで通信を行った端末に、通信終了後もNAVを維持させることができる。よって、当該端末が当該チャネルでの通信が終了した後に自発的にアップリンクの送信を基地局に行うことを防止できる。これにより端末の無駄な送信動作を抑制して、端末の消費電力増大を抑制できる。
(第5の実施形態)
第1~第4の実施形態では、連続する複数のチャネル1~4を用いた例を示したが、複数のチャネルの連続について補足の説明をする。
第1~第4の実施形態では、連続する複数のチャネル1~4を用いた例を示したが、複数のチャネルの連続について補足の説明をする。
IEEE802.11規格でのチャネル番号は、5MHz間隔であり、1チャネル幅が20MHzとした場合に、チャネル同士が被らないチャネル番号の間隔は、4つおきとなる。本明細書での連続するチャネルは、チャネル同士が被らないで連続したチャネルの意味で記載している。明細書中でのチャネル番号とは便宜的なもので、実際はch.1は、IEEE802.11規格での5GHz帯のチャネル番号36、ch.2は、IEEE802.11規格での5GHz帯のチャネル番号40、というように解釈すればよい。
[5GHz帯]
IEEE802.11規格での5GHz帯では、基本的にチャネル番号が20MHz間隔で用いられるので、その使われているチャネル番号に則って考えて問題ない。
IEEE802.11規格での5GHz帯では、基本的にチャネル番号が20MHz間隔で用いられるので、その使われているチャネル番号に則って考えて問題ない。
[2.4GHz帯]
一方、2.4GHz帯では、図18のように、基準チャネルの選択が、北米や中国などでは25MHz間隔(図18(A))で、欧州では30MHz間隔(図18(B))で行われている。そこで、明細書中のch.1は、IEEE802.11規格での2.4GHz帯のチャネル番号1、ch.2はIEEE802.11規格での2.4GHz帯のチャネル番号6、というように、北米や中国に倣って25MHz間隔(図18(A))のものとするのでもよい。または、明細書中のch.1は、IEEE802.11規格での2.4GHz帯のチャネル番号1、ch.2はIEEE802.11規格での2.4GHz帯のチャネル番号7、というように欧州に倣って30MHz間隔((図18(B)))のものとするのでもよい。あるいは図18(C)に示すように、5GHz帯での20MHzチャネル間隔に倣い、明細書中のch.1はIEEE802.11規格での2.4GHz帯のチャネル番号1、ch.2はIEEE802.11規格での2.4GHz帯のチャネル番号5、というようにするのでもよい。図18(C)は、図18(A)および図18(B)以外に、今後考えられるチャネル選択を例示したものである。ただし、北米や中国、欧州のような場合、別の無線通信システムが、2.4GHz帯のチャネル番号6や7を、少なくとも一部のチャネルとして選択していると、チャネル番号5と一部周波数帯域が被ることになる。この場合、互いの無線通信システムが影響する周波数帯域が広がり、チャネル利用効率が下がる。
一方、2.4GHz帯では、図18のように、基準チャネルの選択が、北米や中国などでは25MHz間隔(図18(A))で、欧州では30MHz間隔(図18(B))で行われている。そこで、明細書中のch.1は、IEEE802.11規格での2.4GHz帯のチャネル番号1、ch.2はIEEE802.11規格での2.4GHz帯のチャネル番号6、というように、北米や中国に倣って25MHz間隔(図18(A))のものとするのでもよい。または、明細書中のch.1は、IEEE802.11規格での2.4GHz帯のチャネル番号1、ch.2はIEEE802.11規格での2.4GHz帯のチャネル番号7、というように欧州に倣って30MHz間隔((図18(B)))のものとするのでもよい。あるいは図18(C)に示すように、5GHz帯での20MHzチャネル間隔に倣い、明細書中のch.1はIEEE802.11規格での2.4GHz帯のチャネル番号1、ch.2はIEEE802.11規格での2.4GHz帯のチャネル番号5、というようにするのでもよい。図18(C)は、図18(A)および図18(B)以外に、今後考えられるチャネル選択を例示したものである。ただし、北米や中国、欧州のような場合、別の無線通信システムが、2.4GHz帯のチャネル番号6や7を、少なくとも一部のチャネルとして選択していると、チャネル番号5と一部周波数帯域が被ることになる。この場合、互いの無線通信システムが影響する周波数帯域が広がり、チャネル利用効率が下がる。
(第6の実施形態)
図19は、本実施形態に係る無線通信装置のハードウェア構成の一例を示す。この構成は、図7に示したような端末に搭載する無線通信装置、および図8に示したような基地局に搭載する無線通信装置のハードウェア構成として用いることができる。図19の構成は、特に図7のPHY処理および無線部20および図8のPHY処理および無線部70のそれぞれのアナログ処理部分のハードウェア構成を具体化して一例として示したものである。
図19は、本実施形態に係る無線通信装置のハードウェア構成の一例を示す。この構成は、図7に示したような端末に搭載する無線通信装置、および図8に示したような基地局に搭載する無線通信装置のハードウェア構成として用いることができる。図19の構成は、特に図7のPHY処理および無線部20および図8のPHY処理および無線部70のそれぞれのアナログ処理部分のハードウェア構成を具体化して一例として示したものである。
図19の無線通信装置は、アンテナ401と、スイッチ402と、受信系統部403と、送信系統部403と、デジタル処理部505を備える。デジタル処理部505は、図7のMAC処理部30および図8のMAC処理部80と、図7および図8の受信部22、72および送信部23、73のそれぞれのデジタル処理を行う部分とに対応する。受信系統部403は、図7および図8の受信部22、72のアナログ処理を行う部分に対応する。送信系統部404は、図7および図8の送信部23、73のアナログ処理を行う部分に対応する。
スイッチ402は、アンテナ401を、受信系統部403および送信系統部403のいずれか一方に接続する。スイッチ402はデジタル処理部405により制御される。
受信系統部403は、アンテナ401で受信した信号を増幅する低雑音増幅器(LNA:Low Nosise Amplifier)406と、LNA406で増幅された信号から、本システムの全帯域の信号を抽出するバンドパスフィルタ407と、複数の受信系統Rx1~Rx4を備える。ここでは、チャネル1~4に対応する4つの受信系統が示される。8個のチャネルに対応する場合は、8個の受信系統を設ければよい。
チャネル1に対応する受信系統Rx1は、発振器(周波数シンセサイザ)f1、ミキサ411、412、受信フィルタ413、414、VGA(Variable Gain Amplifier)415、416、ADC(Analog-Digital Converter)417、418を備える。発振器f1は、チャネル1の中心周波数f1を有し、かつ互いに直交する2つの信号を生成して、ミキサ411、412に出力する。ミキサ411、412は、発振器f1からの信号を、バンドパスフィルタ407を通過した信号に乗算することで、ダウンコンバートする。ミキサ411、412からは、バンドパスフィルタ407を通過した信号と同位相のI((In-phase))信号と、これより90°位相が遅れたQ(Quad-phase))信号を生成する。I信号はIチャネル信号、Q信号はQチャネル信号とも呼ばれる。受信フィルタ413、414は、I信号およびQ信号からチャネル1の帯域成分の信号を抽出する。一例として、1チャネルが20MHz帯域幅であれば、受信フィルタ413、414の帯域幅は10MHzである。VGA415、416は、受信フィルタ413、414を通過した信号の振幅を、ADC417、418の入力幅に合わせて調整し、ADC417、418に入力する。ADC417、418は、入力された信号をAD変換し、デジタル処理部405に入力する。デジタル処理部405は、入力された信号に対して復調等の物理層の処理、およびそれ以降の段階の各種処理等を行う。
チャネル2~4にそれぞれ対応する受信系統Rx2~Rx4も、チャネル1の受信系統と同様の構成を有する。図では、チャネル2に対応する受信系統の図示は省略されている。チャネル3に対応する受信系統Rx3は、発振器f3、ミキサ431、432、受信フィルタ433、434、VGA(Variable Gain Amplifier)435、436、ADC437、438を備える。チャネル4に対応する受信系統Rx4は、発振器f4、ミキサ441、442、受信フィルタ443、444、VGA(Variable Gain Amplifier)445、446、ADC447、448を備える。
なお、ここで各受信系統が1チャネルの処理を行う形態を示したが、発振器の周波数および受信フィルタの帯域幅を調整することで、1つの受信系統が、連続する複数のチャネルを結合した帯域(例えばチャネル1、2を結合した帯域)を処理するように調整するようにしてもよい。
送信系統部403は、複数の送信系統Tx1~Tx4と、複数の送信系統から出力された信号を増幅するプリアンプ408とを備える。ここでは、チャネル1~4に対応する4つの送信系統が示される。8個のチャネルに対応する場合は、8個の送信系統を設けてもよい。
チャネル1に対応する送信系統Tx1は、DAC(Digital-Analog Converter)457、458、VGA(Variable Gain Amplifier)455、456、送信フィルタ453、454、ミキサ451、452、発振器f1を備える。DAC457、458は、復調等の物理層の処理を経た、IチャネルおよびQチャネル用のデジタル信号が入力され、それぞれDA変換する。VGA455、456は、IチャネルおよびQチャネルのアナログ信号の振幅をそれぞれ所望のレベルに調整して送信フィルタ453、454に出力する。送信フィルタ453、454は、入力されたIチャネルおよびQチャネルの信号のそれぞれから所望の帯域幅の信号を抽出して、ミキサ451、452に出力する。一例として20MHz幅のチャネル1用の信号を送信する場合は、送信フィルタ453、454の帯域幅を10MHzに設定する。発振器f1は、チャネル1の中心周波数f1を有し、かつ互いに直交する2つの信号を生成して、ミキサ451、452に出力する。ミキサ451、452は、送信フィルタ453、454を通過した信号に、それぞれ直交する信号を乗算することにより、中心周波数f1の無線周波数にアップコンバートする。アップコンバートされたI信号およびQ信号は合成されて、プリアンプ408によって増幅された後、アンテナ401から空間に電波として放射される。
チャネル2~4にそれぞれ対応する送信系統Tx2~Tx4も、チャネル1の送信系統と同様の構成を有する。図では、チャネル2、3に対応する送信系統の図示は省略されている。チャネル4に対応する送信系統Tx4は、DAC487、488、VGA485、486、送信フィルタ483、454、ミキサ481、482、発振器f4を備える。
なお、ここで各送信系統が1チャネルの処理を行う形態を示したが、発振器の周波数および送信フィルタの帯域幅を調整することで、1つの送信系統が、連続する複数のチャネルを結合した帯域(例えばチャネル1、2を結合した帯域)を処理するように調整するようにしてもよい。
図20は、本実施形態に係る無線通信装置のハードウェア構成の他の例を示す。この構成は、特に第4の実施形態で示したMU-MIMOを実施する基地局に搭載する無線通信装置のハードウェア構成例に対応する。図19に示したハードウェア構成との差分を中心に説明する。
本無線通信装置は、4つのアンテナ401A、401B、401C、401Dと、4つのスイッチ402A、402B、402C、402Dと、受信系統部493と、送信系統部494と、デジタル処理部495とを備える。受信系統部493は、4つの受信系統Rx1~Rx4を備える。送信系統部494は、4つの送信系統Tx1~Tx4を備える。
アンテナ401Aは、スイッチ402Aを介して、受信系統Rx1と送信系統Tx1に接続されている。同様に、アンテナ401Bは、スイッチ402Bを介して、受信系統Rx2と送信系統Tx2に接続され、アンテナ401Cは、スイッチ402Cを介して、受信系統Rx3と送信系統Tx3に接続され、アンテナ401Dは、スイッチ402Dを介して、受信系統Rx4と送信系統Tx4に接続されている。
図19の構成では、受信系統部403が、複数の受信系統に共通のバンドパスフィルタ407とLNA406を備えていたが、図20の構成では、受信系統ごとに、バンドパスフィルタとLNAが設けられている。すなわち、受信系統Rx1は、LNA406Aとバンドパスフィルタ407Aを備え、受信系統Rx2は、LNA406Bとバンドパスフィルタ407Bを備え、受信系統Rx3は、LNA406Cとバンドパスフィルタ407Cを備え、受信系統Rx4は、LNA406Dとバンドパスフィルタ407Dを備える。
また、図19の構成では、送信処理部が、複数の送信系統に共通のバンドパスフィルタ408を備えていたが、図20の構成では、送信系統ごとに、バンドパスフィルタが設けられている。すなわち、送信系統Tx1はバンドパスフィルタ408Aを備え、送信系統Tx2はバンドパスフィルタ408Bを備え、送信系統Tx3はバンドパスフィルタ408Cを備え、送信系統Tx4はバンドパスフィルタ408Dを備える。
受信系統Rx1~Rx4の発振器の周波数は、それぞれチャネル1~4に対応するf1~f4であり、受信フィルタの帯域幅はそれぞれ10MHzに設定されている。f1~f4は、チャネル1~4のそれぞれの中心周波数を表す。これらの発振器および受信フィルタの設定例は、第4の実施形態において、図15のシーケンス例で示したCTSフレームおよびBAフレームの受信時の設定例を示したものである。1つのチャネル幅は20MHzであるとする。
また、送信系統Tx1~Tx4の発振器の周波数は、それぞれf1.5、f1.5、f1.5、f3であり、送信フィルタの帯域幅は、それぞれ20MHz、20MHz、20MHz、10MHzに設定されている。これらの発振器および送信フィルタの設定例は、図15のシーケンス例で示したアグリゲーションフレームの送信時の設定例を示したものである。「f1.5」は、f1とf2の中間周波数を表す。この中間周波数の設定は、チャネル1、2の個々で送信するのではなく、チャネル1、2を結合した帯域で送信するための設定である。図15のシーケンス例では、MU-MIMOで3台の端末に同時に送信しているため、図20の設定でも、これに対応して3つの送信系統および3つのアンテナが、MU-MIMO送信用の設定になっている。なお、f3は、チャネル3の中心周波数を表す。
受信系統Rx1~Rx4および送信系統Tx1~Tx4の個々の詳細な動作は、図19と同様であるため、説明を省略する。
(第7の実施形態)
図21は、端末または基地局の全体構成例を示したものである。この構成例は一例であり、本実施形態はこれに限定されるものではない。端末または基地局は、1つまたは複数のアンテナ1~n(nは1以上の整数)と、無線LANモジュール148と、ホストシステム149を備える。無線LANモジュール148は、第1の実施形態に係る無線通信装置に対応する。無線LANモジュール148は、ホスト・インターフェースを備え、ホスト・インターフェースで、ホストシステム149と接続される。接続ケーブルを介してホストシステム149と接続される他、ホストシステム149と直接接続されてもよい。また、無線LANモジュール148が基板にはんだ等で実装され、基板の配線を介してホストシステム149と接続される構成も可能である。ホストシステム149は、任意の通信プロトコルに従って、無線LANモジュール148およびアンテナ1~nを用いて、外部の装置と通信を行う。通信プロトコルは、TCP/IPと、それより上位の層のプロトコルと、を含んでもよい。または、TCP/IPは無線LANモジュール148に搭載し、ホストシステム149は、それより上位層のプロトコルのみを実行してもよい。この場合、ホストシステム149の構成を簡単化できる。本端末は、例えば、移動体端末、TV、デジタルカメラ、ウェアラブルデバイス、タブレット、スマートフォン、ゲーム装置、ネットワークストレージ装置、モニタ、デジタルオーディオプレーヤ、Webカメラ、ビデオカメラ、プロジェクト、ナビゲーションシステム、外部アダプタ、内部アダプタ、セットトップボックス、ゲートウェイ、プリンタサーバ、モバイルアクセスポイント、ルータ、エンタープライズ/サービスプロバイダアクセスポイント、ポータブル装置、ハンドヘルド装置等でもよい。
図21は、端末または基地局の全体構成例を示したものである。この構成例は一例であり、本実施形態はこれに限定されるものではない。端末または基地局は、1つまたは複数のアンテナ1~n(nは1以上の整数)と、無線LANモジュール148と、ホストシステム149を備える。無線LANモジュール148は、第1の実施形態に係る無線通信装置に対応する。無線LANモジュール148は、ホスト・インターフェースを備え、ホスト・インターフェースで、ホストシステム149と接続される。接続ケーブルを介してホストシステム149と接続される他、ホストシステム149と直接接続されてもよい。また、無線LANモジュール148が基板にはんだ等で実装され、基板の配線を介してホストシステム149と接続される構成も可能である。ホストシステム149は、任意の通信プロトコルに従って、無線LANモジュール148およびアンテナ1~nを用いて、外部の装置と通信を行う。通信プロトコルは、TCP/IPと、それより上位の層のプロトコルと、を含んでもよい。または、TCP/IPは無線LANモジュール148に搭載し、ホストシステム149は、それより上位層のプロトコルのみを実行してもよい。この場合、ホストシステム149の構成を簡単化できる。本端末は、例えば、移動体端末、TV、デジタルカメラ、ウェアラブルデバイス、タブレット、スマートフォン、ゲーム装置、ネットワークストレージ装置、モニタ、デジタルオーディオプレーヤ、Webカメラ、ビデオカメラ、プロジェクト、ナビゲーションシステム、外部アダプタ、内部アダプタ、セットトップボックス、ゲートウェイ、プリンタサーバ、モバイルアクセスポイント、ルータ、エンタープライズ/サービスプロバイダアクセスポイント、ポータブル装置、ハンドヘルド装置等でもよい。
図22は、無線LANモジュールのハードウェア構成例を示す。この構成は、無線通信装置が非基地局の端末および基地局のいずれに搭載される場合にも適用可能である。つまり、図7または図8に示した無線通信装置の具体的な構成の一例として適用できる。無線LANモジュールのハードウェア構成例として、図19または図20の構成を用いることもできる。図22の構成例では、アンテナは1本のみであるが、2本以上のアンテナを備えていてもよい。この場合、各アンテナに対応して、送信系統(216、222~225)、受信系統(232~235)、PLL242、水晶発振器(基準信号源)243およびスイッチ245のセットが複数配置され、各セットがそれぞれ制御回路212に接続されてもよい。PLL242または水晶発振器243またはこれらの両方は、本実施形態に係る発振器に対応する。
無線LANモジュール(無線通信装置)は、ベースバンドIC(Integrated Circuit)211と、RF(Radio Frequency)IC221と、バラン225と、スイッチ245と、アンテナ247とを備える。本実施形態に係る無線通信用集積回路は、一例として、ベースバンドIC、またはベースバンドICとRF IC221との組に対応する。さらにバラン225またはスイッチ245またはアンテナ247またはこれらの任意の組み合わせが含まれてもよい。
ベースバンドIC211は、ベースバンド回路(制御回路)212、メモリ213、ホスト・インターフェース214、CPU215、DAC(Digital to Analog Conveter)216、およびADC(Analog to Digital Converter)217を備える。
ベースバンドIC211とRF IC221は同じ基板上に形成されてもよい。また、ベースバンドIC211とRF IC221は1チップで構成されてもよい。DAC216およびADC217の両方またはいずれか一方が、RF IC221に配置されてもよいし、別のICに配置されてもよい。またメモリ213およびCPU215の両方またはいずれか一方が、ベースバンドICとは別のICに配置されてもよい。
メモリ213は、ホストシステムとの間で受け渡しするデータを格納する。またメモリ213は、端末または基地局に通知する情報、または端末または基地局から通知された情報、またはこれらの両方を格納する。また、メモリ213は、CPU215の実行に必要なプログラムを記憶し、CPU215がプログラムを実行する際の作業領域として利用されてもよい。メモリ213はSRAM、DRAM等の揮発性メモリでもよいし、NAND、MRAM等の不揮発メモリでもよい。
ホスト・インターフェース214は、ホストシステムと接続するためのインターフェースである。インターフェースは、UART、SPI、SDIO、USB、PCI Expressなど何でも良い。
CPU215は、プログラムを実行することによりベースバンド回路212を制御するプロセッサである。ベースバンド回路212は、主にMAC層の処理および物理層の処理を行う。ベースバンド回路212、CPU215またはこれらの両方は、通信を制御するMAC処理部または制御処理部に対応する。
ベースバンド回路212およびCPU215の少なくとも一方は、クロックを生成するクロック生成部を含み、当該クロック生成部で生成するクロックにより、内部時間を管理してもよい。
ベースバンド回路212は、送信するフレームに、物理層の処理として、物理ヘッダの付加、符号化、暗号化、変調処理など行い、例えば2種類のデジタルベースバンド信号(以下、デジタルI信号とデジタルQ信号)を生成する。またベースバンド回路212は、MIMOに関する処理を行う。例えば、伝搬路推定の処理、送信ウェイト計算処理、ストリームの分離処理等の少なくとも1つまたは複数を行う。
DAC216は、ベースバンド回路212から入力される信号をDA変換する。より詳細には、DAC216はデジタルI信号をアナログのI信号に変換し、デジタルQ信号をアナログのQ信号に変換する。なお、直交変調せずに一系統の信号のままで送信する場合もありうる。複数のアンテナを備え、一系統または複数系統の送信信号をアンテナの数だけ振り分けて送信する場合には、アンテナの数に応じた数のDAC等を設けてもよい。
RF IC221は、一例としてRFアナログICあるいは高周波IC、あるいはこれらの両方である。RF IC221は、フィルタ222、ミキサ223、プリアンプ(PA)224、PLL(Phase Locked Loop:位相同期回路)242、低雑音増幅器(LNA)、バラン235、ミキサ233、およびフィルタ232を備える。これらの要素のいくつかが、ベースバンドIC211または別のIC上に配置されてもよい。フィルタ222、232は、帯域通過フィルタでも、低域通過フィルタでもよい。
フィルタ222は、DAC216から入力されるアナログI信号およびアナログQ信号のそれぞれから所望帯域の信号を抽出する。PLL242は、水晶発振器243から入力される発振信号を用い、発振信号を分周または逓倍またはこれらの両方を行うことで、入力信号の位相に同期した、一定周波数の信号を生成する。なお、PLL242は、VCO(Voltage Controlled Oscillator)を備え、水晶発振器243から入力される発振信号に基づき、VCOを利用してフィードバック制御を行うことで、当該一定周波数の信号を得る。生成した一定周波数の信号は、ミキサ223およびミキサ233に入力される。PLL242は、一定周波数の信号を生成する発振器の一例に相当する。
ミキサ223は、フィルタ222を通過したアナログI信号およびアナログQ信号を、PLL242から供給される一定周波数の信号を利用して、無線周波数にアップコンバートする。プリアンプ(PA)は、ミキサ223で生成された無線周波数のアナログI信号およびアナログQ信号を、所望の出力電力まで増幅する。バラン225は、平衡信号(差動信号)を不平衡信号(シングルエンド信号)に変換するための変換器である。RF IC221では平衡信号が扱われるが、RF IC221の出力からアンテナ247までは不平衡信号が扱われるため、バラン225で、これらの信号変換を行う。
スイッチ245は、送信時は、送信側のバラン225に接続され、受信時は、受信側のバラン234またはRF IC221に接続される。スイッチ245の制御はベースバンドIC211またはRF IC221により行われてもよいし、スイッチ245を制御する別の回路が存在し、当該回路からスイッチ245の制御を行ってもよい。
プリアンプ224で増幅された無線周波数のアナログI信号およびアナログQ信号は、バラン225で平衡-不平衡変換された後、アンテナ247から空間に電波として放射される。
アンテナ247は、チップアンテナでもよいし、プリント基板上に配線により形成したアンテナでもよいし、線状の導体素子を利用して形成したアンテナでもよい。
RF IC221におけるLNA234は、アンテナ247からスイッチ245を介して受信した信号を、雑音を低く抑えたまま、復調可能なレベルまで増幅する。バラン235は、低雑音増幅器(LNA)234で増幅された信号を、不平衡-平衡変換する。ミキサ233は、バラン235で平衡信号に変換された受信信号を、PLL242から入力される一定周波数の信号を用いてベースバンドにダウンコンバートする。より詳細には、ミキサ233は、PLL242から入力される一定周波数の信号に基づき、互いに90°位相のずれた搬送波を生成する手段を有し、バラン235で変換された受信信号を、互いに90°位相のずれた搬送波により直交復調して、受信信号と同位相のI(In-phase)信号と、これより90°位相が遅れたQ(Quad-phase)信号とを生成する。フィルタ232は、これらI信号とQ信号から所望周波数成分の信号を抽出する。フィルタ232で抽出されたI信号およびQ信号は、ゲインが調整された後に、RF IC221から出力される。
ベースバンドIC211におけるADC217は、RF IC221からの入力信号をAD変換する。より詳細には、ADC217はI信号をデジタルI信号に変換し、Q信号をデジタルQ信号に変換する。なお、直交復調せずに一系統の信号だけを受信する場合もあり得る。
複数のアンテナが設けられる場合には、アンテナの数に応じた数のADCを設けてもよい。ベースバンド回路212は、デジタルI信号およびデジタルQ信号に基づき、復調処理、誤り訂正符号処理、物理ヘッダの処理など、物理層の処理等を行い、フレームを得る。ベースバンド回路212は、フレームに対してMAC層の処理を行う。なお、ベースバンド回路212は、TCP/IPを実装している場合は、TCP/IPの処理を行う構成も可能である。
(第8の実施形態)
図23(A)および図23(B)は、それぞれ第8の実施形態に係る無線端末の斜視図である。図23(A)の無線端末はノートPC301であり、図23(B)の無線端末は移動体無線端末321である。ノートPC301および移動体無線端末321は、それぞれ無線通信装置305、315を搭載している。無線通信装置305、315として、これまで説明してきた無線端末に搭載されていた無線通信装置(図7等)、または基地局に搭載されていた無線通信装置(図8等)、またはこれらの両方を用いることができる。無線通信装置を搭載する無線端末は、ノートPCや移動体無線端末に限定されない。例えば、TV、デジタルカメラ、ウェアラブルデバイス、タブレット、スマートフォン、ゲーム装置、ネットワークストレージ装置、モニタ、デジタルオーディオプレーヤ、Webカメラ、ビデオカメラ、プロジェクト、ナビゲーションシステム、外部アダプタ、内部アダプタ、セットトップボックス、ゲートウェイ、プリンタサーバ、モバイルアクセスポイント、ルータ、エンタープライズ/サービスプロバイダアクセスポイント、ポータブル装置、ハンドヘルド装置等にも搭載可能である。
図23(A)および図23(B)は、それぞれ第8の実施形態に係る無線端末の斜視図である。図23(A)の無線端末はノートPC301であり、図23(B)の無線端末は移動体無線端末321である。ノートPC301および移動体無線端末321は、それぞれ無線通信装置305、315を搭載している。無線通信装置305、315として、これまで説明してきた無線端末に搭載されていた無線通信装置(図7等)、または基地局に搭載されていた無線通信装置(図8等)、またはこれらの両方を用いることができる。無線通信装置を搭載する無線端末は、ノートPCや移動体無線端末に限定されない。例えば、TV、デジタルカメラ、ウェアラブルデバイス、タブレット、スマートフォン、ゲーム装置、ネットワークストレージ装置、モニタ、デジタルオーディオプレーヤ、Webカメラ、ビデオカメラ、プロジェクト、ナビゲーションシステム、外部アダプタ、内部アダプタ、セットトップボックス、ゲートウェイ、プリンタサーバ、モバイルアクセスポイント、ルータ、エンタープライズ/サービスプロバイダアクセスポイント、ポータブル装置、ハンドヘルド装置等にも搭載可能である。
また、無線端末または基地局、またはこれらの両方に搭載されていた無線通信装置は、メモリーカードにも搭載可能である。当該無線通信装置をメモリーカードに搭載した例を図24に示す。メモリーカード331は、無線通信装置355と、メモリーカード本体332とを含む。メモリーカード331は、外部の装置(無線端末または基地局、またはこれらの両方等)との無線通信のために無線通信装置335を利用する。なお、図24では、メモリーカード331内の他の要素(例えばメモリ等)の記載は省略している。
(第9の実施形態)
第9の実施形態では、上述した実施形態に係る無線通信装置(基地局の無線通信装置または無線端末の無線通信装置、またはこれらの両方)の構成に加えて、バス、プロセッサ部、および外部インターフェース部を備える。プロセッサ部および外部インターフェース部は、バスを介して外部メモリ(バッファ)と接続される。プロセッサ部ではファームウエアが動作する。このように、ファームウエアを無線通信装置に含める構成とすることにより、ファームウエアの書き換えによって無線通信装置の機能の変更を容易に行うことが可能となる。ファームウエアが動作するプロセッサ部は、本実施形態に係る通信処理装置または制御部の処理を行うプロセッサであってもよいし、当該処理の機能拡張または変更に係る処理を行う別のプロセッサであってもよい。ファームウエアが動作するプロセッサ部を、本実施形態に係る基地局あるいは無線端末あるいはこれらの両方が備えてもよい。または当該プロセッサ部を、基地局に搭載される無線通信装置内の集積回路、または無線端末に搭載される無線通信装置内の集積回路が備えてもよい。
第9の実施形態では、上述した実施形態に係る無線通信装置(基地局の無線通信装置または無線端末の無線通信装置、またはこれらの両方)の構成に加えて、バス、プロセッサ部、および外部インターフェース部を備える。プロセッサ部および外部インターフェース部は、バスを介して外部メモリ(バッファ)と接続される。プロセッサ部ではファームウエアが動作する。このように、ファームウエアを無線通信装置に含める構成とすることにより、ファームウエアの書き換えによって無線通信装置の機能の変更を容易に行うことが可能となる。ファームウエアが動作するプロセッサ部は、本実施形態に係る通信処理装置または制御部の処理を行うプロセッサであってもよいし、当該処理の機能拡張または変更に係る処理を行う別のプロセッサであってもよい。ファームウエアが動作するプロセッサ部を、本実施形態に係る基地局あるいは無線端末あるいはこれらの両方が備えてもよい。または当該プロセッサ部を、基地局に搭載される無線通信装置内の集積回路、または無線端末に搭載される無線通信装置内の集積回路が備えてもよい。
(第10の実施形態)
第10の実施形態では、上述した実施形態に係る無線通信装置(基地局の無線通信装置または無線端末の無線通信装置、またはこれらの両方)の構成に加えて、クロック生成部を備える。クロック生成部は、クロックを生成して出力端子より無線通信装置の外部にクロックを出力する。このように、無線通信装置内部で生成されたクロックを外部に出力し、外部に出力されたクロックによってホスト側を動作させることにより、ホスト側と無線通信装置側とを同期させて動作させることが可能となる。
第10の実施形態では、上述した実施形態に係る無線通信装置(基地局の無線通信装置または無線端末の無線通信装置、またはこれらの両方)の構成に加えて、クロック生成部を備える。クロック生成部は、クロックを生成して出力端子より無線通信装置の外部にクロックを出力する。このように、無線通信装置内部で生成されたクロックを外部に出力し、外部に出力されたクロックによってホスト側を動作させることにより、ホスト側と無線通信装置側とを同期させて動作させることが可能となる。
(第11の実施形態)
第11の実施形態では、上述した実施形態に係る無線通信装置(基地局の無線通信装置または無線端末の無線通信装置)の構成に加えて、電源部、電源制御部、および無線電力給電部を含む。電源制御部は、電源部と無線電力給電部とに接続され、無線通信装置に供給する電源を選択する制御を行う。このように、電源を無線通信装置に備える構成とすることにより、電源を制御した低消費電力化動作が可能となる。
第11の実施形態では、上述した実施形態に係る無線通信装置(基地局の無線通信装置または無線端末の無線通信装置)の構成に加えて、電源部、電源制御部、および無線電力給電部を含む。電源制御部は、電源部と無線電力給電部とに接続され、無線通信装置に供給する電源を選択する制御を行う。このように、電源を無線通信装置に備える構成とすることにより、電源を制御した低消費電力化動作が可能となる。
(第12の実施形態)
第12の実施形態では、上述した実施形態に係る無線通信装置の構成に加えて、SIMカードを含む。SIMカードは、無線通信装置における送信処理部または受信処理部またはMAC処理部、またはこれらのうちの複数と接続される。このように、SIMカードを無線通信装置に備える構成とすることにより、容易に認証処理を行うことが可能となる。
第12の実施形態では、上述した実施形態に係る無線通信装置の構成に加えて、SIMカードを含む。SIMカードは、無線通信装置における送信処理部または受信処理部またはMAC処理部、またはこれらのうちの複数と接続される。このように、SIMカードを無線通信装置に備える構成とすることにより、容易に認証処理を行うことが可能となる。
(第13の実施形態)
第13の実施形態では、上述した実施形態に係る無線通信装置の構成に加えて、動画像圧縮/伸長部を含む。動画像圧縮/伸長部は、バスと接続される。このように、動画像圧縮/伸長部を無線通信装置に備える構成とすることにより、圧縮した動画像の伝送と受信した圧縮動画像の伸長とを容易に行うことが可能となる。
第13の実施形態では、上述した実施形態に係る無線通信装置の構成に加えて、動画像圧縮/伸長部を含む。動画像圧縮/伸長部は、バスと接続される。このように、動画像圧縮/伸長部を無線通信装置に備える構成とすることにより、圧縮した動画像の伝送と受信した圧縮動画像の伸長とを容易に行うことが可能となる。
(第14の実施形態)
第14の実施形態では、上述した実施形態に係る無線通信装置(基地局の無線通信装置または無線端末の無線通信装置、またはこれらの両方)の構成に加えて、LED部を含む。LED部は、送信部または受信部またはMAC処理部またはこれらのうちの複数と接続される。このように、LED部を無線通信装置に備える構成とすることにより、無線通信装置の動作状態をユーザに容易に通知することが可能となる。
第14の実施形態では、上述した実施形態に係る無線通信装置(基地局の無線通信装置または無線端末の無線通信装置、またはこれらの両方)の構成に加えて、LED部を含む。LED部は、送信部または受信部またはMAC処理部またはこれらのうちの複数と接続される。このように、LED部を無線通信装置に備える構成とすることにより、無線通信装置の動作状態をユーザに容易に通知することが可能となる。
(第15の実施形態)
第15の実施形態では、上述した実施形態に係る無線通信装置(基地局の無線通信装置または無線端末の無線通信装置、またはこれらの両方)の構成に加えて、バイブレータ部を含む。バイブレータ部は、送信部または受信部またはMAC処理部またはこれらのうちの複数と接続される。このように、バイブレータ部を無線通信装置に備える構成とすることにより、無線通信装置の動作状態をユーザに容易に通知することが可能となる。
第15の実施形態では、上述した実施形態に係る無線通信装置(基地局の無線通信装置または無線端末の無線通信装置、またはこれらの両方)の構成に加えて、バイブレータ部を含む。バイブレータ部は、送信部または受信部またはMAC処理部またはこれらのうちの複数と接続される。このように、バイブレータ部を無線通信装置に備える構成とすることにより、無線通信装置の動作状態をユーザに容易に通知することが可能となる。
(第16の実施形態)
第16の実施形態では、上述した実施形態に係る無線通信装置(基地局の無線通信装置または無線端末の無線通信装置、またはこれらの両方)の構成に加えて、ディスプレイを含む。ディスプレイは、図示しないバスを介して、無線通信装置のMAC処理部に接続されてもよい。このようにディスプレイを備える構成とし、無線通信装置の動作状態をディスプレイに表示することで、無線通信装置の動作状態をユーザに容易に通知することが可能となる。
第16の実施形態では、上述した実施形態に係る無線通信装置(基地局の無線通信装置または無線端末の無線通信装置、またはこれらの両方)の構成に加えて、ディスプレイを含む。ディスプレイは、図示しないバスを介して、無線通信装置のMAC処理部に接続されてもよい。このようにディスプレイを備える構成とし、無線通信装置の動作状態をディスプレイに表示することで、無線通信装置の動作状態をユーザに容易に通知することが可能となる。
(第17の実施形態)
本実施形態では、[1]無線通信システムにおけるフレーム種別、[2]無線通信装置間の接続切断の手法、[3]無線LANシステムのアクセス方式、[4]無線LANのフレーム間隔について説明する。
[1]通信システムにおけるフレーム種別
一般的に無線通信システムにおける無線アクセスプロトコル上で扱うフレームは、大別してデータ(data)フレーム、管理(management)フレーム、制御(control)フレームの3種類に分けられる。これらの種別は、通常、フレーム間で共通に設けられるヘッダ部で示される。フレーム種別の表示方法としては、1つのフィールドで3種類を区別できるようにしてあってもよいし、2つのフィールドの組み合わせで区別できるようにしてあってもよい。IEEE802.11規格では、フレーム種別の識別は、MACフレームのフレームヘッダ部にあるFrame Controlフィールドの中のType、Subtypeという2つのフィールドで行う。データフレームか、管理フレームか、制御フレームかの大別はTypeフィールドで行われ、大別されたフレームの中での細かい種別、例えば管理フレームの中のBeaconフレームといった識別はSubtypeフィールドで行われる。
本実施形態では、[1]無線通信システムにおけるフレーム種別、[2]無線通信装置間の接続切断の手法、[3]無線LANシステムのアクセス方式、[4]無線LANのフレーム間隔について説明する。
[1]通信システムにおけるフレーム種別
一般的に無線通信システムにおける無線アクセスプロトコル上で扱うフレームは、大別してデータ(data)フレーム、管理(management)フレーム、制御(control)フレームの3種類に分けられる。これらの種別は、通常、フレーム間で共通に設けられるヘッダ部で示される。フレーム種別の表示方法としては、1つのフィールドで3種類を区別できるようにしてあってもよいし、2つのフィールドの組み合わせで区別できるようにしてあってもよい。IEEE802.11規格では、フレーム種別の識別は、MACフレームのフレームヘッダ部にあるFrame Controlフィールドの中のType、Subtypeという2つのフィールドで行う。データフレームか、管理フレームか、制御フレームかの大別はTypeフィールドで行われ、大別されたフレームの中での細かい種別、例えば管理フレームの中のBeaconフレームといった識別はSubtypeフィールドで行われる。
管理フレームは、他の無線通信装置との間の物理的な通信リンクの管理に用いるフレームである。例えば、他の無線通信装置との間の通信設定を行うために用いられるフレームや通信リンクをリリースする(つまり接続を切断する)ためのフレーム、無線通信装置でのパワーセーブ動作に係るフレームがある。
データフレームは、他の無線通信装置と物理的な通信リンクが確立した上で、無線通信装置の内部で生成されたデータを他の無線通信装置に送信するフレームである。データは本実施形態の上位層で生成され、例えばユーザの操作によって生成される。
制御フレームは、データフレームを他の無線通信装置との間で送受(交換)する際の制御に用いられるフレームである。無線通信装置がデータフレームや管理フレームを受信した場合にその送達確認のために送信される応答フレームは、制御フレームに属する。応答フレームは、例えばACKフレームやBlockAckフレームである。またRTSフレームやCTSフレームも制御フレームである。
これら3種類のフレームは、物理層で必要に応じた処理を経て物理パケットとしてアンテナを経由して送出される。なお、IEEE802.11規格(前述のIEEE Std
802.11ac-2013などの拡張規格を含む)では接続確立の手順の1つとしてアソシエーション(association)プロセスがあるが、その中で使われるAssociation RequestフレームとAssociation Responseフレームが管理フレームであり、Association RequestフレームやAssociation Responseフレームはユニキャストの管理フレームであることから、受信側無線通信端末に応答フレームであるACKフレームの送信を要求し、このACKフレームは上述のように制御フレームである。
802.11ac-2013などの拡張規格を含む)では接続確立の手順の1つとしてアソシエーション(association)プロセスがあるが、その中で使われるAssociation RequestフレームとAssociation Responseフレームが管理フレームであり、Association RequestフレームやAssociation Responseフレームはユニキャストの管理フレームであることから、受信側無線通信端末に応答フレームであるACKフレームの送信を要求し、このACKフレームは上述のように制御フレームである。
[2]無線通信装置間の接続切断の手法
接続の切断(リリース)には、明示的な手法と暗示的な手法とがある。明示的な手法としては、接続を確立している無線通信装置間のいずれか一方が切断のためのフレームを送信する。IEEE802.11規格ではDeauthenticationフレームがこれに当たり、管理フレームに分類される。通常、接続を切断するフレームを送信する側の無線通信装置では当該フレームを送信した時点で、接続を切断するフレームを受信する側の無線通信装置では当該フレームを受信した時点で、接続の切断と判定する。その後、非アクセスポイントの無線通信端末であれば通信フェーズでの初期状態、例えば接続するBSS探索する状態に戻る。無線通信アクセスポイントがある無線通信端末との間の接続を切断した場合には、例えば無線通信アクセスポイントが自BSSに加入する無線通信端末を管理する接続管理テーブルを持っているならば当該接続管理テーブルから当該無線通信端末に係る情報を削除する。例えば、無線通信アクセスポイントが自BSSに加入する各無線通信端末に接続をアソシエーションプロセスで許可した段階で、AIDを割り当てる場合には、当該接続を切断した無線通信端末のAIDに関連づけられた保持情報を削除し、当該AIDに関してはリリースして他の新規加入する無線通信端末に割り当てられるようにしてもよい。
接続の切断(リリース)には、明示的な手法と暗示的な手法とがある。明示的な手法としては、接続を確立している無線通信装置間のいずれか一方が切断のためのフレームを送信する。IEEE802.11規格ではDeauthenticationフレームがこれに当たり、管理フレームに分類される。通常、接続を切断するフレームを送信する側の無線通信装置では当該フレームを送信した時点で、接続を切断するフレームを受信する側の無線通信装置では当該フレームを受信した時点で、接続の切断と判定する。その後、非アクセスポイントの無線通信端末であれば通信フェーズでの初期状態、例えば接続するBSS探索する状態に戻る。無線通信アクセスポイントがある無線通信端末との間の接続を切断した場合には、例えば無線通信アクセスポイントが自BSSに加入する無線通信端末を管理する接続管理テーブルを持っているならば当該接続管理テーブルから当該無線通信端末に係る情報を削除する。例えば、無線通信アクセスポイントが自BSSに加入する各無線通信端末に接続をアソシエーションプロセスで許可した段階で、AIDを割り当てる場合には、当該接続を切断した無線通信端末のAIDに関連づけられた保持情報を削除し、当該AIDに関してはリリースして他の新規加入する無線通信端末に割り当てられるようにしてもよい。
一方、暗示的な手法としては、接続を確立した接続相手の無線通信装置から一定期間フレーム送信(データフレーム及び管理フレームの送信、あるいは自装置が送信したフレームへの応答フレームの送信)を検知しなかった場合に、接続状態の切断の判定を行う。このような手法があるのは、上述のように接続の切断を判定するような状況では、接続先の無線通信装置と通信距離が離れて無線信号が受信不可あるいは復号不可になるなど物理的な無線リンクが確保できない状態が考えられるからである。すなわち、接続を切断するフレームの受信を期待できないからである。
暗示的な方法で接続の切断を判定する具体例としては、タイマを使用する。例えば、送達確認応答フレームを要求するデータフレームを送信する際、当該フレームの再送期間を制限する第1のタイマ(例えばデータフレーム用の再送タイマ)を起動し、第1のタイマが切れるまで(つまり所望の再送期間が経過するまで)当該フレームへの送達確認応答フレームを受信しないと再送を行う。当該フレームへの送達確認応答フレームを受信すると第1のタイマは止められる。
一方、送達確認応答フレームを受信せず第1のタイマが切れると、例えば接続相手の無線通信装置がまだ(通信レンジ内に)存在するか(言い換えれば、無線リンクが確保できているか)を確認するための管理フレームを送信し、それと同時に当該フレームの再送期間を制限する第2のタイマ(例えば管理フレーム用の再送タイマ)を起動する。第1のタイマと同様、第2のタイマでも、第2のタイマが切れるまで当該フレームへの送達確認応答フレームを受信しないと再送を行い、第2のタイマが切れると接続が切断されたと判定する。接続が切断されたと判定した段階で、前記接続を切断するフレームを送信するようにしてもよい。
あるいは、接続相手の無線通信装置からフレームを受信すると第3のタイマを起動し、新たに接続相手の無線通信装置からフレームを受信するたびに第3のタイマを止め、再び初期値から起動する。第3のタイマが切れると前述と同様に接続相手の無線通信装置がまだ(通信レンジ内に)存在するか(言い換えれば、無線リンクが確保できているか)を確認するための管理フレームを送信し、それと同時に当該フレームの再送期間を制限する第2のタイマ(例えば管理フレーム用の再送タイマ)を起動する。この場合も、第2のタイマが切れるまで当該フレームへの送達確認応答フレームを受信しないと再送を行い、第2のタイマが切れると接続が切断されたと判定する。この場合も、接続が切断されたと判定した段階で、前記接続を切断するフレームを送信するようにしてもよい。後者の、接続相手の無線通信装置がまだ存在するかを確認するための管理フレームは、前者の場合の管理フレームとは異なるものであってもよい。また後者の場合の管理フレームの再送を制限するためのタイマは、ここでは第2のタイマとして前者の場合と同じものを用いたが、異なるタイマを用いるようにしてもよい。
[3]無線LANシステムのアクセス方式
例えば、複数の無線通信装置と通信または競合することを想定した無線LANシステムがある。IEEE802.11無線LANではCSMA/CA(Carrier Sense Multiple Access with Carrier Avoidance)をアクセス方式の基本としている。ある無線通信装置の送信を把握し、その送信終了から固定時間を置いて送信を行う方式では、その無線通信装置の送信を把握した複数の無線通信装置で同時に送信を行うことになり、その結果、無線信号が衝突してフレーム送信に失敗する。ある無線通信装置の送信を把握し、その送信終了からランダム時間待つことで、その無線通信装置の送信を把握した複数の無線通信装置での送信が確率的に分散することになる。よって、ランダム時間の中で最も早い時間を引いた無線通信装置が1つなら無線通信装置のフレーム送信は成功し、フレームの衝突を防ぐことができる。ランダム値に基づき送信権の獲得が複数の無線通信装置間で公平になることから、Carrier Avoidanceを採用した方式は、複数の無線通信装置間で無線媒体を共有するために適した方式であるということができる。
例えば、複数の無線通信装置と通信または競合することを想定した無線LANシステムがある。IEEE802.11無線LANではCSMA/CA(Carrier Sense Multiple Access with Carrier Avoidance)をアクセス方式の基本としている。ある無線通信装置の送信を把握し、その送信終了から固定時間を置いて送信を行う方式では、その無線通信装置の送信を把握した複数の無線通信装置で同時に送信を行うことになり、その結果、無線信号が衝突してフレーム送信に失敗する。ある無線通信装置の送信を把握し、その送信終了からランダム時間待つことで、その無線通信装置の送信を把握した複数の無線通信装置での送信が確率的に分散することになる。よって、ランダム時間の中で最も早い時間を引いた無線通信装置が1つなら無線通信装置のフレーム送信は成功し、フレームの衝突を防ぐことができる。ランダム値に基づき送信権の獲得が複数の無線通信装置間で公平になることから、Carrier Avoidanceを採用した方式は、複数の無線通信装置間で無線媒体を共有するために適した方式であるということができる。
[4]無線LANのフレーム間隔
IEEE802.11無線LANのフレーム間隔について説明する。IEEE802.11無線LANで用いられるフレーム間隔は、distributed coordination function interframe space(DIFS)、arbitration interframe space(AIFS)、point coordination function interframe space(PIFS)、short interframe space(SIFS)、extended interframe space(EIFS)、reduced interframe space(RIFS)の6種類ある。
IEEE802.11無線LANのフレーム間隔について説明する。IEEE802.11無線LANで用いられるフレーム間隔は、distributed coordination function interframe space(DIFS)、arbitration interframe space(AIFS)、point coordination function interframe space(PIFS)、short interframe space(SIFS)、extended interframe space(EIFS)、reduced interframe space(RIFS)の6種類ある。
フレーム間隔の定義は、IEEE802.11無線LANでは送信前にキャリアセンスアイドルを確認して開けるべき連続期間として定義されており、厳密な前のフレームからの期間は議論しない。従ってここでのIEEE802.11無線LANシステムでの説明においてはその定義を踏襲する。IEEE802.11無線LANでは、CSMA/CAに基づくランダムアクセスの際に待つ時間を固定時間とランダム時間との和としており、固定時間を明確にするため、このような定義になっているといえる。
DIFSとAIFSとは、CSMA/CAに基づき他の無線通信装置と競合するコンテンション期間にフレーム交換開始を試みるときに用いるフレーム間隔である。DIFSは、トラヒック種別による優先権の区別がないとき、AIFSはトラヒック種別(Traffic Identifier:TID)による優先権が設けられている場合に用いる。
DIFSとAIFSとで係る動作としては類似しているため、以降では主にAIFSを用いて説明する。IEEE802.11無線LANでは、MAC層でフレーム交換の開始などを含むアクセス制御を行う。さらに、上位層からデータを渡される際にQoS(Quality of Service)対応する場合には、データとともにトラヒック種別が通知され、トラヒック種別に基づいてデータはアクセス時の優先度のクラス分けがされる。このアクセス時のクラスをアクセスカテゴリ(Access Category;AC)と呼ぶ。従って、アクセスカテゴリごとにAIFSの値が設けられることになる。
PIFSは、競合する他の無線通信装置よりも優先権を持つアクセスができるようにするためのフレーム間隔であり、DIFS及びAIFSのいずれの値よりも期間が短い。SIFSは、応答系の制御フレームの送信時あるいは一旦アクセス権を獲得した後にバーストでフレーム交換を継続する場合に用いることができるフレーム間隔である。EIFSはフレーム受信に失敗した(受信したフレームがエラーであると判定した)場合に発動されるフレーム間隔である。
RIFSは一旦アクセス権を獲得した後にバーストで同一無線通信装置に複数のフレームを連続して送信する場合に用いることができるフレーム間隔であり、RIFSを用いている間は送信相手の無線通信装置からの応答フレームを要求しない。
ここでIEEE802.11無線LANにおけるランダムアクセスに基づく競合期間のフレーム交換の一例を図25に示す。
ある無線通信装置においてデータフレーム(W_DATA1)の送信要求が発生した際に、キャリアセンスの結果、媒体がビジーである(busy medium)と認識する場合を想定する。この場合、キャリアセンスがアイドルになった時点から固定時間のAIFSを空け、その後ランダム時間(random backoff)空いたところで、データフレームW_DATA1を通信相手に送信する。なお、キャリアセンスの結果、媒体がビジーではない、つまり媒体がアイドル(idle)であると認識した場合には、キャリアセンスを開始した時点から固定時間のAIFSを空けて、データフレームW_DATA1を通信相手に送信する。
ランダム時間は0から整数で与えられるコンテンションウィンドウ(Contention Window:CW)の間の一様分布から導かれる擬似ランダム整数にスロット時間をかけたものである。ここで、CWにスロット時間をかけたものをCW時間幅と呼ぶ。CWの初期値はCWminで与えられ、再送するたびにCWの値はCWmaxになるまで増やされる。CWminとCWmaxとの両方とも、AIFSと同様アクセスカテゴリごとの値を持つ。W_DATA1の送信先の無線通信装置では、データフレームの受信に成功し、かつ当該データフレームが応答フレームの送信を要求するフレームであるとそのデータフレームを内包する物理パケットの無線媒体上での占有終了時点からSIFS後に応答フレーム(W_ACK1)を送信する。W_DATA1を送信した無線通信装置は、W_ACK1を受信すると送信バースト時間制限内であればまたW_ACK1を内包する物理パケットの無線媒体上での占有終了時点からSIFS後に次のフレーム(例えばW_DATA2)を送信することができる。
AIFS、DIFS、PIFS及びEIFSは、SIFSとスロット時間との関数になるが、SIFSとスロット時間とは物理層ごとに規定されている。また、AIFS、CWmin及びCWmaxなどアクセスカテゴリごとに値が設けられるパラメータは、通信グループ(IEEE802.11無線LANではBasic Service Set(BSS))ごとに設定可能であるが、デフォルト値が定められている。
例えば、802.11acの規格策定では、SIFSは16μs、スロット時間は9μsであるとして、それによってPIFSは25μs、DIFSは34μs、AIFSにおいてアクセスカテゴリがBACKGROUND(AC_BK)のフレーム間隔はデフォルト値が79μs、BEST EFFORT(AC_BE)のフレーム間隔はデフォルト値が43μs、VIDEO(AC_VI)とVOICE(AC_VO)のフレーム間隔はデフォルト値が34μs、CWminとCWmaxとのデフォルト値は、各々AC_BKとAC_BEとでは31と1023、AC_VIでは15と31、AC_VOでは7と15になるとする。なお、EIFSは、基本的にはSIFSとDIFSと最も低速な必須の物理レートで送信する場合の応答フレームの時間長の和である。なお効率的なEIFSの取り方ができる無線通信装置では、EIFSを発動した物理パケットへの応答フレームを運ぶ物理パケットの占有時間長を推定し、SIFSとDIFSとその推定時間の和とすることもできる。本実施形態では、このようなフレーム間隔のパラメータを用いる無線通信システムを通信レンジの広い干渉システムとして想定する。
なお、各実施形態で記載されているフレームは、Null Data Packetなど、IEEE802.11規格または準拠する規格で、パケットと呼ばれるものを指してもよい。
本実施形態で用いられる用語は、広く解釈されるべきである。例えば用語“プロセッサ”は、汎用目的プロセッサ、中央処理装置(CPU)、マイクロプロセッサ、デジタル信号プロセッサ(DSP)、コントローラ、マイクロコントローラ、状態マシンなどを包含してもよい。状況によって、“プロセッサ”は、特定用途向け集積回路、フィールドプログラマブルゲートアレイ(FPGA)、プログラム可能論理回路(PLD)などを指してもよい。“プロセッサ”は、複数のマイクロプロセッサのような処理装置の組み合わせ、DSPおよびマイクロプロセッサの組み合わせ、DSPコアと協働する1つ以上のマイクロプロセッサを指してもよい。
別の例として、用語“メモリ”は、電子情報を格納可能な任意の電子部品を包含してもよい。“メモリ”は、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、プログラム可能読み出し専用メモリ(PROM)、消去可能プログラム可能読み出し専用メモリ(EPROM)、電気的消去可能PROM(EEPROM)、不揮発性ランダムアクセスメモリ(NVRAM)、フラッシュメモリ、磁気または光学データストレージを指してもよく、これらはプロセッサによって読み出し可能である。プロセッサがメモリに対して情報を読み出しまたは書き込みまたはこれらの両方を行うならば、メモリはプロセッサと電気的に通信すると言うことができる。メモリは、プロセッサに統合されてもよく、この場合も、メモリは、プロセッサと電気的に通信していると言うことができる。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
11、19:基地局(AP)
1~6:端末(STA)
20、70:PHY処理部&無線部
21、71:送受切替スイッチ
22、72:受信部
23、73:送信部
30、80:MAC処理部
31、81:送信処理部
32、82:受信処理部
33、83:制御部
34、84:タイマ
35、85:記憶装置
41、91:受信エラー検出部
42、92:フレーム種別判定部
43、93:Duration判定部
44,94:RA判定部
45、95:TA判定部
86:バッファ
211:ベースバンドIC
213:メモリ
214:ホスト・インターフェース
215:CPU
216:DAC
217:ADC
221:RF IC
222、232:フィルタ
223、233:ミキサ
224、234:アンプ
225、235:バラン
242:PLL
243:水晶発振器
247:アンテナ
245:スイッチ
148:無線LANモジュール
149:ホストシステム301:ノートPC
305、315、355:無線通信装置
321:移動体端末
331:メモリーカード
332:メモリーカード本体
1~6:端末(STA)
20、70:PHY処理部&無線部
21、71:送受切替スイッチ
22、72:受信部
23、73:送信部
30、80:MAC処理部
31、81:送信処理部
32、82:受信処理部
33、83:制御部
34、84:タイマ
35、85:記憶装置
41、91:受信エラー検出部
42、92:フレーム種別判定部
43、93:Duration判定部
44,94:RA判定部
45、95:TA判定部
86:バッファ
211:ベースバンドIC
213:メモリ
214:ホスト・インターフェース
215:CPU
216:DAC
217:ADC
221:RF IC
222、232:フィルタ
223、233:ミキサ
224、234:アンプ
225、235:バラン
242:PLL
243:水晶発振器
247:アンテナ
245:スイッチ
148:無線LANモジュール
149:ホストシステム301:ノートPC
305、315、355:無線通信装置
321:移動体端末
331:メモリーカード
332:メモリーカード本体
Claims (9)
- RF集積回路を介して、送信許可を要求する第1フレームを受信し、
前記第1フレームの宛先が自装置でないとき、送信を抑制するように制御するベースバンド集積回路
を備え、
前記ベースバンド集積回路は、前記第1フレームの受信から第1時間の経過後に前記送信許可を通知する第2フレームが受信されなくても、前記送信の抑制を維持する
無線通信用集積回路。 - 前記第1フレームは、前記第1時間より長い第2時間を示す値を含み、
前記ベースバンド集積回路は、前記第1フレームの受信から前記第2時間の間、前記送信の抑制を維持する
請求項1に記載の無線通信用集積回路。 - 前記ベースバンド集積回路は、前記第2時間の経過前に前記送信の抑制の解除を指示する第3フレームが受信された場合は、前記送信の抑制を解除する
請求項2に記載の無線通信用集積回路。 - 前記ベースバンド集積回路は、前記第1フレームの送信元が予め定めた通信装置でない場合、前記第1フレームの受信から第1時間の経過後に前記第2フレームが受信されないときは、前記送信の抑制を解除する
請求項1ないし3のいずれか一項に記載の無線通信用集積回路。 - リソースユニットベースのOFDMA(Orthogonal Frequency Division Multiple Access)通信を実行可能であり、
前記ベースバンド集積回路は、前記RF集積回路を介して、複数のリソースユニットのうち第1リソースユニットで自装置宛でない前記第1フレームを受信し、
前記ベースバンド集積回路は、前記第1フレームの受信から前記第1時間の経過後に前記第1リソースユニットで前記第2フレームが受信されなくても、前記第1リソースユニットでの前記送信を抑制するよう制御する、
請求項1ないし4のいずれか一項に記載の無線通信用集積回路。 - 前記ベースバンド集積回路は、前記RF集積回路を介して、リソースユニットベースのOFDMA(Orthogonal Frequency Division Multiple Access)通信を実行する期間を特定する情報を含む第4フレームを、予め定めたリソースユニットで受信し、
前記ベースバンド集積回路は、前記RF集積回路を介して、前記第1リソースユニットで自装置宛でない前記第1フレームを受信し、
前記ベースバンド集積回路は、前記OFDMA通信を実行する期間以外で前記第1フレームが受信されたときは、前記第1フレームの受信から前記第1時間の経過後に前記第2フレームが受信されない場合に、前記送信の抑制を解除する
請求項1ないし5のいずれか一項に記載の無線通信用集積回路。 - RF集積回路を介して、送信許可を要求する第1フレームを第1リソースユニットで送信し、かつ送信許可を要求する第2フレームを第2リソースユニットで送信し、
前記第1フレームの送信から第1時間の経過後に、前記第1フレームで要求された送信許可を通知する第3フレームが前記第1リソースユニットで受信された場合で、かつ前記第2フレームの送信から前記第1時間の経過後に、前記第2フレームで要求された送信許可を通知する第4フレームが前記第2リソースユニットで受信されない場合、前記第3フレームの受信から第2時間の経過後、RF集積回路を介して、前記第1フレームと同じ宛先の第5フレームを前記第1リソースユニットで送信し、かつ前記第2フレームと異なる宛先の第6フレームを前記第2リソースユニットで送信するベースバンド集積回路
を備えた無線通信用集積回路。 - RF集積回路を介して、送信許可を要求する第1フレームを第1リソースユニットで送信し、かつ送信許可を要求する第2フレームを第2リソースユニットで送信し、前記第1および第2フレームは、前記第1および第2フレームの受信後の第1時間の間、応答以外のフレームの送信の抑制を指示する情報を含み、
前記第1フレームの送信から第2時間の経過後に、前記第1フレームで要求された送信許可を通知する第3フレームが前記第1リソースユニットで受信された場合で、かつ前記第2フレームの送信から前記第2時間の経過後に、前記第2フレームで要求された送信許可を通知する第4フレームが前記第2リソースユニットで受信されない場合、前記第3フレームの受信から第3時間の経過後、RF集積回路を介して、前記第1リソースユニットで通信を行うベースバンド集積回路
を備え、
前記ベースバンド集積回路は、前記第1リソースユニットでの前記通信の終了後、前記第1時間の経過前にRF集積回路を介して、前記送信の抑制の解除を指示する第5フレームを前記第1リソースユニットで送信し、かつ前記送信の抑制の解除を指示する第6フレームを前記第2リソースユニットで送信する
無線通信用集積回路。 - RF集積回路を介して、送信許可を要求する第1フレームを第1リソースユニットで送信し、かつ送信許可を要求する第2フレームを第2リソースユニットで送信し、前記第1および第2フレームは、前記第1および第2フレームの受信後の第1時間の間、応答以外のフレームの送信の抑制を指示する情報を含み、
前記第1フレームの送信から第2時間の経過後に、前記第1フレームで要求された送信許可を通知する第3フレームが受信された場合、前記第3フレームの受信から第3時間の経過後、前記RF集積回路を介して、前記第1フレームの宛先である通信装置と、少なくとも1つの他の通信装置とに対し、前記第1リソースユニットで、空間多重により複数の第4フレームを送信し、前記第2フレームの送信から前記第2時間の経過後に、前記第2フレームで要求された送信許可を通知する第6フレームが受信された場合、前記第6フレームの受信から前記第3時間の経過後、前記RF集積回路を介して、前記第2リソースユニットで第7フレームを送信し、
前記複数の第4フレームの送信後、前記RF集積回路を介して、送達確認応答を表す複数の第5フレームを前記第1リソースユニットで順番に受信し、前記第7フレームの送信後、前記RF集積回路を介して、前記送達確認応答を表す第8フレームを、前記第2リソースユニットで受信する、ベースバンド集積回路を備え、
前記第1時間は、前記第1フレームを送信した後、前記複数の第5フレームのすべての受信が完了するまでに必要な時間またはそれ以上の値に設定されている
無線通信用集積回路。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017508273A JP6313519B2 (ja) | 2015-03-20 | 2016-03-16 | 無線通信装置 |
US15/452,285 US10616883B2 (en) | 2015-03-20 | 2017-03-07 | Wireless communication device |
US16/799,439 US11310791B2 (en) | 2015-03-20 | 2020-02-24 | Wireless communication device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-058437 | 2015-03-20 | ||
JP2015058437 | 2015-03-20 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/452,285 Continuation US10616883B2 (en) | 2015-03-20 | 2017-03-07 | Wireless communication device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016152686A1 true WO2016152686A1 (ja) | 2016-09-29 |
Family
ID=56978764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/058373 WO2016152686A1 (ja) | 2015-03-20 | 2016-03-16 | 無線通信用集積回路 |
Country Status (3)
Country | Link |
---|---|
US (2) | US10616883B2 (ja) |
JP (1) | JP6313519B2 (ja) |
WO (1) | WO2016152686A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3355640A1 (en) * | 2017-01-30 | 2018-08-01 | Kabushiki Kaisha Toshiba | Wireless communication device and wireless communication method |
US20220239545A1 (en) * | 2021-01-22 | 2022-07-28 | Toshiba Tec Kabushiki Kaisha | Communication apparatus and communication method |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016152686A1 (ja) | 2015-03-20 | 2016-09-29 | 株式会社 東芝 | 無線通信用集積回路 |
WO2016152683A1 (ja) * | 2015-03-20 | 2016-09-29 | 株式会社 東芝 | 無線通信用集積回路および無線通信方法 |
WO2017039377A1 (ko) * | 2015-09-02 | 2017-03-09 | 주식회사 윌러스표준기술연구소 | 네트워크 얼로케이션 벡터를 이용하는 무선 통신 방법 및 무선 통신 단말 |
EP3386260B1 (en) * | 2015-12-28 | 2020-10-14 | Huawei Technologies Co., Ltd. | Method, apparatus and system for sending and receiving information |
KR102134147B1 (ko) | 2016-04-11 | 2020-07-17 | 주식회사 윌러스표준기술연구소 | 다중 사용자 캐스캐이딩 전송을 지원하는 무선 통신방법 및 이를 사용하는 무선 통신 단말 |
US10985862B2 (en) * | 2016-08-30 | 2021-04-20 | Mediatek Inc. | Wireless communicating method and associated electronic device |
TWI651981B (zh) * | 2017-08-23 | 2019-02-21 | 聯發科技股份有限公司 | 無線通訊方法及相關電子設備 |
US11564272B2 (en) * | 2019-03-08 | 2023-01-24 | Qualcomm Incorporated | Considerations for multi-link aggregation |
US11057083B1 (en) * | 2020-07-27 | 2021-07-06 | Hewlett Packard Enterprise Development Lp | System and method for dynamic single-radio and dual-radio mode selection for DL MU-MIMO |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006013559A (ja) * | 2004-05-28 | 2006-01-12 | Toshiba Corp | 無線通信システムおよび無線端末 |
Family Cites Families (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3485860B2 (ja) | 2000-03-27 | 2004-01-13 | 松下電器産業株式会社 | 基地局装置及び無線通信方法 |
US7551546B2 (en) | 2002-06-27 | 2009-06-23 | Nortel Networks Limited | Dual-mode shared OFDM methods/transmitters, receivers and systems |
KR100560386B1 (ko) | 2003-12-17 | 2006-03-13 | 한국전자통신연구원 | 무선 통신 시스템의 상향 링크에서 코히어런트 검출을위한 직교주파수 분할 다중 접속 방식의 송수신 장치 및그 방법 |
JP4005974B2 (ja) | 2004-01-09 | 2007-11-14 | 株式会社東芝 | 通信装置、通信方法、および通信システム |
US7408909B2 (en) * | 2004-04-28 | 2008-08-05 | Intel Corporation | Method and apparatus to enable multiple receivers |
US7573851B2 (en) | 2004-12-07 | 2009-08-11 | Adaptix, Inc. | Method and system for switching antenna and channel assignments in broadband wireless networks |
KR101080970B1 (ko) | 2004-12-27 | 2011-11-09 | 엘지전자 주식회사 | 광대역 무선접속 시스템에 적용되는 디코드 정보 전송 방법 |
GB2439685B (en) | 2005-03-24 | 2010-04-28 | Siport Inc | Low power digital media broadcast receiver with time division |
US7873018B2 (en) | 2005-06-16 | 2011-01-18 | Nokia Corporation | Scheduling data transmissions to improve power efficiency in a wireless network |
EP1949631A4 (en) | 2005-10-21 | 2013-02-20 | Nortel Networks Ltd | OFD MULTIPLEXING SCHEME |
EP1942587B1 (en) | 2005-10-28 | 2013-10-23 | NEC Corporation | Mobile communication system, base station, mobile station and methods for power-saving transmission/reception |
KR100765776B1 (ko) * | 2005-12-13 | 2007-10-12 | 삼성전자주식회사 | 무선랜에서 매체 접근에 대한 충돌을 방지하는 방법 및장치 |
US8611300B2 (en) | 2006-01-18 | 2013-12-17 | Motorola Mobility Llc | Method and apparatus for conveying control channel information in OFDMA system |
WO2007133041A1 (en) | 2006-05-15 | 2007-11-22 | Samsung Electronics Co., Ltd. | Apparatus and method for allocating resources in an orthogonal frequency division multiple access mobile communication system |
US7876313B2 (en) | 2006-09-29 | 2011-01-25 | Intel Corporation | Graphics controller, display controller and method for compensating for low response time in displays |
JP4895198B2 (ja) * | 2007-01-26 | 2012-03-14 | Kddi株式会社 | 許容遅延時間を考慮した下りリンクの無線アクセス制御方法、アクセスポイント、端末及びプログラム |
US20080192622A1 (en) | 2007-02-09 | 2008-08-14 | Comsys Communication & Signal Processing Ltd. | Control channel signaling in a multiple access wireless communication system |
US8320358B2 (en) * | 2007-12-12 | 2012-11-27 | Qualcomm Incorporated | Method and apparatus for resolving blinded-node problems in wireless networks |
JP2009171506A (ja) | 2008-01-21 | 2009-07-30 | Toshiba Corp | 無線通信装置、無線通信装置の制御プログラム、および無線通信システム |
JP2009224850A (ja) | 2008-03-13 | 2009-10-01 | Toshiba Corp | 無線通信装置 |
EP2134019B1 (en) | 2008-06-13 | 2013-07-31 | Fujitsu Limited | Wireless communication systems |
US20100002641A1 (en) | 2008-07-04 | 2010-01-07 | Nokia Siemens Networks Oy | Support for broadcast control header for wireless networks |
US8488634B2 (en) | 2008-07-07 | 2013-07-16 | Apple Inc. | Use of first and second preambles in wireless communication signals |
US8233428B2 (en) | 2008-08-13 | 2012-07-31 | Telefonaktiebolaget Lm Ericsson (Publ) | Using a synchronization channel to send quick paging signals |
KR101682034B1 (ko) | 2008-08-18 | 2016-12-05 | 삼성전자주식회사 | 다중 밴드를 사용하는 광대역 무선통신 시스템에서 서브밴드의 선택적 사용을 위한 장치 및 방법 |
EP2157820A1 (en) | 2008-08-22 | 2010-02-24 | Fujitsu Limited | Methods and apparatus for operating a wireless communications system |
US8515481B2 (en) | 2008-09-05 | 2013-08-20 | Mediatek Inc. | Power management for multi-carrier transmission |
KR101477812B1 (ko) | 2008-09-05 | 2014-12-31 | 엘지전자 주식회사 | 오버레이 무선랜 및/또는 밀리미터 포털을 위한 프로토콜 아키텍쳐와 이를 위한 프레임 포맷 및 그 전송 방법 |
KR101718496B1 (ko) | 2008-10-30 | 2017-03-21 | 한국전자통신연구원 | 다중 반송파 관리 장치 및 방법과 단말의 수면 모드 동작 방법 |
US8780728B1 (en) | 2008-12-22 | 2014-07-15 | Blackberry Limited | Test loading in OFDMA wireless networks |
CN101771646A (zh) | 2009-01-07 | 2010-07-07 | 中兴通讯股份有限公司 | 控制信道的资源映射方法 |
JP5161804B2 (ja) * | 2009-01-29 | 2013-03-13 | 株式会社東芝 | 無線装置、およびその制御方法 |
WO2010090467A2 (en) | 2009-02-05 | 2010-08-12 | Lg Electronics Inc. | Method and apparatus of transmitting uplink control signal in wireless communication system |
US8259627B2 (en) | 2009-02-05 | 2012-09-04 | Lg Electronics Inc. | Method and apparatus of composing uplink control channel in wireless communication system |
US8159978B2 (en) | 2009-02-05 | 2012-04-17 | Lg Electronics Inc. | Method and apparatus of transmitting feedback message in wireless communication system |
US8948102B2 (en) | 2009-02-18 | 2015-02-03 | Lg Electronics Inc. | Channel access method for very high throughput (VHT) wireless local access network system |
JP2010206574A (ja) * | 2009-03-04 | 2010-09-16 | Sony Corp | 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム |
WO2010123215A2 (en) | 2009-04-24 | 2010-10-28 | Lg Electronics Inc. | Method and apparatus for releasing uplink radio resource in wireless communication system |
KR101646941B1 (ko) | 2009-08-26 | 2016-08-09 | 삼성전자주식회사 | 이동통신 시스템에서 오버헤드를 줄이기 위한 자원할당 장치 및 방법 |
WO2011034318A2 (en) | 2009-09-16 | 2011-03-24 | Lg Electronics Inc. | Method and apparatus for transmitting uplink control signal in relay station |
EP2499872B1 (en) | 2009-11-13 | 2015-01-14 | Marvell World Trade Ltd. | Multi-channel wireless communications |
WO2011074780A2 (en) | 2009-12-18 | 2011-06-23 | Lg Electronics Inc. | Method and apparatus for transmitting uplink control signal in wireless communication system |
KR101208554B1 (ko) | 2010-01-12 | 2012-12-05 | 엘지전자 주식회사 | 멀티 캐리어 시스템에서 e-mbs서비스를 지원하기 위한 방법 및 장치 |
US8509166B2 (en) | 2010-01-28 | 2013-08-13 | Tti Inventions D Llc | System and method for resource allocation of a LTE network integrated with femtocells |
KR101710395B1 (ko) | 2010-02-01 | 2017-02-28 | 엘지전자 주식회사 | 무선랜 시스템에서 다중 채널 운영 방법 및 장치 |
US9025544B2 (en) * | 2010-02-10 | 2015-05-05 | Lg Electronics Inc. | Channel access method and apparatus in wireless local area network system |
US8559323B2 (en) * | 2010-03-10 | 2013-10-15 | Cisco Technology, Inc. | Downlink OFDMA for service sets with mixed client types |
US8554261B2 (en) | 2010-07-28 | 2013-10-08 | Intel Corporation | Power loading in MU-MIMO |
US8483119B2 (en) | 2010-12-06 | 2013-07-09 | Qualcomm Incorporated | System and method for wireless communication diversity retransmission relay |
WO2012093783A2 (ko) | 2011-01-05 | 2012-07-12 | 엘지전자 주식회사 | 무선 접속 시스템에서 단말 간 협력적 통신을 수행하기 위한 방법 및 장치 |
FI20115043A0 (fi) | 2011-01-17 | 2011-01-17 | Nokia Corp | Lähetysresurssien varaaminen |
JP5275389B2 (ja) | 2011-02-28 | 2013-08-28 | 株式会社東芝 | 無線通信装置 |
EP2696548B1 (en) | 2011-04-03 | 2020-03-04 | LG Electronics Inc. | Method and apparatus for transmitting/receiving downlink control channel in wireless communication system |
CN103718577B (zh) | 2011-07-25 | 2017-10-31 | 日本电气株式会社 | 移动站设备、控制设备、基站设备、其中实现的方法 |
JP2013030953A (ja) | 2011-07-28 | 2013-02-07 | Fujitsu Mobile Communications Ltd | 移動通信装置および無線通信方法 |
CA2844598C (en) | 2011-08-07 | 2016-09-27 | Lg Electronics Inc. | Method and apparatus for transmitting and receiving frame on the basis of frequency selection transmission |
US8934504B2 (en) | 2011-08-12 | 2015-01-13 | Intel IP Corporation | System and method for frequency-agile transmission in a wireless communication device |
EP2759085A1 (en) | 2011-09-21 | 2014-07-30 | Nokia Solutions and Networks Oy | Apparatus and method for communication |
US9894187B2 (en) | 2011-10-06 | 2018-02-13 | Intel Corporation | Methods and arrangements for short beacon frames in wireless networks |
EP2595425A1 (en) | 2011-11-18 | 2013-05-22 | Panasonic Corporation | Active bandwidth indicator for power-saving UEs |
US8934436B2 (en) | 2011-12-31 | 2015-01-13 | Ofinno Technologies, L.L.C. | Special subframe configuration in wireless networks |
EP2807860A4 (en) | 2012-01-23 | 2016-04-13 | Intel Corp | NETWORK-SUPPORTED USER LINK AND RELEASE PROCESS FOR INTEGRATED HETEROGENIC MULTI-RAT NETWORKS |
KR20130109781A (ko) | 2012-03-28 | 2013-10-08 | 한국전자통신연구원 | 셀룰러 이동통신 시스템에서의 단말간 직접 통신을 위한 자원 할당 방법 |
US9143984B2 (en) * | 2012-04-13 | 2015-09-22 | Intel Corporation | Mapping of enhanced physical downlink control channels in a wireless communication network |
EP3367605B1 (en) | 2012-05-09 | 2019-06-05 | Sun Patent Trust | Reception apparatus and corresponding method for signal detection in cross-carrier scheduled e-pdcch signals |
EP3258734B1 (en) * | 2012-09-24 | 2023-08-16 | Telenor Maritime Oy | Fast automated radio link establishment |
EP2901796B1 (en) | 2012-09-26 | 2018-12-05 | LG Electronics Inc. | Method and apparatus for sub-channel selective access in wireless lan system |
US9736871B2 (en) | 2012-12-12 | 2017-08-15 | Lg Electronics Inc. | Method for transmitting/receiving information related to association identifier in wireless communication system and device therefor |
JP5895167B2 (ja) | 2013-04-09 | 2016-03-30 | パナソニックIpマネジメント株式会社 | 無線通信方法及び無線通信システム |
US9954711B2 (en) | 2013-06-07 | 2018-04-24 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Orthogonal frequency division multiple access (OFDMA) structures for high efficiency wireless communications |
US9467379B2 (en) | 2013-08-28 | 2016-10-11 | Qualcomm Incorporated | Methods and apparatus for multiple user uplink |
US9936502B2 (en) * | 2013-12-18 | 2018-04-03 | Huawei Technologies Co., Ltd. | System and method for OFDMA resource management in WLAN |
EP3107223B1 (en) * | 2014-02-10 | 2020-02-05 | LG Electronics Inc. | Method and device for transmitting frame in wireless lan |
US9408214B2 (en) * | 2014-07-24 | 2016-08-02 | Qualcomm Incorporated | Methods and systems for protection and bandwidth selection for downlink and uplink frequency division multiple access communications |
JP2018050093A (ja) * | 2015-02-03 | 2018-03-29 | シャープ株式会社 | 無線受信装置、無線送信装置、通信方法および通信システム |
US9930695B2 (en) | 2015-02-03 | 2018-03-27 | Intel IP Corporation | Orthogonal frequency-division multiple access distributed channel access |
WO2016143718A1 (ja) | 2015-03-06 | 2016-09-15 | 日本電信電話株式会社 | 無線通信システム、無線通信方法、無線lan基地局装置および無線lan端末装置 |
WO2016152686A1 (ja) | 2015-03-20 | 2016-09-29 | 株式会社 東芝 | 無線通信用集積回路 |
WO2016152683A1 (ja) | 2015-03-20 | 2016-09-29 | 株式会社 東芝 | 無線通信用集積回路および無線通信方法 |
US20170034723A1 (en) | 2015-07-30 | 2017-02-02 | Qualcomm Incorporated | Managing Tune Away During An Ongoing Voice Call |
US20170064598A1 (en) | 2015-08-26 | 2017-03-02 | Qualcomm Incorporated | Managing Cell Selection In A Dual-Receive Multi-Subscription Multi-Standby Communication Device |
-
2016
- 2016-03-16 WO PCT/JP2016/058373 patent/WO2016152686A1/ja active Application Filing
- 2016-03-16 JP JP2017508273A patent/JP6313519B2/ja active Active
-
2017
- 2017-03-07 US US15/452,285 patent/US10616883B2/en active Active
-
2020
- 2020-02-24 US US16/799,439 patent/US11310791B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006013559A (ja) * | 2004-05-28 | 2006-01-12 | Toshiba Corp | 無線通信システムおよび無線端末 |
Non-Patent Citations (2)
Title |
---|
LIWEN CHU: "80MHz 160MHz TXOP protection", IEEE 802.11-10/1096R7, 15 September 2010 (2010-09-15) * |
LIWEN CHU: "RTS CTS rule amendment", IEEE 802.11-11/0059R1, 18 January 2011 (2011-01-18) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3355640A1 (en) * | 2017-01-30 | 2018-08-01 | Kabushiki Kaisha Toshiba | Wireless communication device and wireless communication method |
US20220239545A1 (en) * | 2021-01-22 | 2022-07-28 | Toshiba Tec Kabushiki Kaisha | Communication apparatus and communication method |
Also Published As
Publication number | Publication date |
---|---|
US10616883B2 (en) | 2020-04-07 |
JP6313519B2 (ja) | 2018-04-18 |
US11310791B2 (en) | 2022-04-19 |
JPWO2016152686A1 (ja) | 2017-06-22 |
US20170181164A1 (en) | 2017-06-22 |
US20200196308A1 (en) | 2020-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6313519B2 (ja) | 無線通信装置 | |
JP6594319B2 (ja) | 無線通信装置 | |
JP6482652B2 (ja) | 無線通信装置および無線通信方法 | |
JP6482653B2 (ja) | 無線通信装置および無線通信方法 | |
JP6408605B2 (ja) | 無線通信装置 | |
WO2016088726A1 (ja) | 無線通信端末及び無線通信方法 | |
WO2016088727A1 (ja) | 無線通信用集積回路 | |
JP6335205B2 (ja) | 無線通信装置および無線通信方法 | |
JP6621870B2 (ja) | 無線通信装置および無線通信方法 | |
JP6359760B2 (ja) | 無線通信装置および無線通信方法 | |
JP6619311B2 (ja) | 無線通信装置および無線通信方法 | |
JPWO2015133648A1 (ja) | 無線通信装置および無線通信方法 | |
JP2019057763A (ja) | 無線通信装置および無線通信方法 | |
JP2017085508A (ja) | 無線通信システムおよび無線通信方法 | |
WO2016080408A1 (ja) | 無線通信端末、無線通信方法および無線通信システム | |
JP2017055398A (ja) | 無線通信装置および無線通信方法 | |
JP2017059911A (ja) | 無線通信装置および無線通信方法 | |
JP2016213568A (ja) | 無線通信用集積回路 | |
JP2017055314A (ja) | 無線通信システムおよび無線通信方法 | |
JP2019057756A (ja) | 無線通信装置および無線通信方法 | |
WO2016080410A1 (ja) | 無線通信用集積回路 | |
JP2017092686A (ja) | 無線通信用集積回路、無線通信端末および無線通信方法 | |
JP2017055312A (ja) | 無線通信端末および無線通信方法 | |
JP2017055311A (ja) | 無線通信用集積回路 | |
JP2017055313A (ja) | 無線通信端末および無線通信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16768589 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017508273 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16768589 Country of ref document: EP Kind code of ref document: A1 |