WO2016152673A1 - Anisotropic electroconduction connection method and anisotropic electroconduction connection structure - Google Patents

Anisotropic electroconduction connection method and anisotropic electroconduction connection structure Download PDF

Info

Publication number
WO2016152673A1
WO2016152673A1 PCT/JP2016/058296 JP2016058296W WO2016152673A1 WO 2016152673 A1 WO2016152673 A1 WO 2016152673A1 JP 2016058296 W JP2016058296 W JP 2016058296W WO 2016152673 A1 WO2016152673 A1 WO 2016152673A1
Authority
WO
WIPO (PCT)
Prior art keywords
anisotropic conductive
conductive film
color
terminal row
electronic component
Prior art date
Application number
PCT/JP2016/058296
Other languages
French (fr)
Japanese (ja)
Inventor
和久 青木
雄介 田中
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020177014949A priority Critical patent/KR101992549B1/en
Priority to CN201680014131.2A priority patent/CN107431280B/en
Publication of WO2016152673A1 publication Critical patent/WO2016152673A1/en
Priority to HK18104542.5A priority patent/HK1245510A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/009Cables with built-in connecting points or with predetermined areas for making deviations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/36Insulated conductors or cables characterised by their form with distinguishing or length marks
    • H01B7/361Insulated conductors or cables characterised by their form with distinguishing or length marks being the colour of the insulation or conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/59Fixed connections for flexible printed circuits, flat or ribbon cables or like structures
    • H01R12/62Fixed connections for flexible printed circuits, flat or ribbon cables or like structures connecting to rigid printed circuits or like structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives

Definitions

  • the present invention relates to an anisotropic conductive connection method and an anisotropic conductive connection structure.
  • Patent Documents 1 to 3 a technique for anisotropically connecting (adhering) a plurality of electronic components (first electronic component and second electronic component) is known. These electronic components are, for example, substrates.
  • each electronic component is provided with a terminal row, and the terminal rows of each electronic component are anisotropically conductively connected.
  • a plurality of electronic components are anisotropically conductively connected through the following steps.
  • an anisotropic conductive film is temporarily pasted on the first terminal row provided in the first electronic component.
  • a base film such as a PET (polyethylene terephthalate) film is attached to one surface of the anisotropic conductive film. Therefore, the other surface of the anisotropic conductive film is temporarily pasted on the first terminal row.
  • an alignment mark is drawn on the first electronic component, and the first terminal row is arranged inside the alignment mark. Therefore, the anisotropic conductive film is temporarily attached inside the alignment mark.
  • the alignment mark indicates an indication of the temporary attachment position of the anisotropic conductive film (and the mounting position of the second electronic component).
  • the anisotropic conductive film is temporarily bonded to the first terminal row by pressing a heating and pressing member such as a heat tool against the base film.
  • the temperature of the heat tool at the time of temporary press bonding is lower than the temperature of the heat tool at the time of main press bonding.
  • the base film is peeled from the anisotropic conductive film.
  • the second electronic component is mounted on the anisotropic conductive film.
  • the second electronic component is mounted on the anisotropic conductive film after the second terminal row provided on the second electronic component is positioned so as to face the first terminal row.
  • the Specifically, the second electronic component is mounted inside the alignment mark.
  • the second terminal row is finally pressure-bonded onto the anisotropic conductive film by pressing the heating and pressing member against the second electronic component.
  • Patent Document 2 in order to confirm that the first electronic component and the second electronic component are anisotropically conductively connected, an anisotropic conductive film is used as the resin material that develops color under the conditions of the main pressure bonding. Is included. According to this technique, if the main pressure bonding is performed in accordance with preset conditions, the anisotropic conductive film is colored. Therefore, in Patent Document 2, it is determined whether or not the first electronic component and the second electronic component are anisotropically conductively connected by confirming whether or not the anisotropic conductive film has developed color after the main pressure bonding. Check.
  • the state of the anisotropic conductive film after the main press bonding is performed by visually recognizing the portion of the anisotropic conductive film that protrudes from the second electronic component by the main press bonding.
  • the protruding portion of the anisotropic conductive film is colored, the above confirmation is performed based on the colored state of the protruding portion.
  • the matter that can be confirmed in Patent Document 2 is only the temperature condition during thermocompression bonding.
  • anisotropic conductive connection (adhesion) of a plurality of electronic components
  • the correct position here, the position within the alignment mark.
  • the resin material disclosed in Patent Document 2 does not develop color under the provisional pressure bonding conditions. Therefore, the anisotropic conductive film disclosed in Patent Document 2 remains transparent when temporarily crimped. Therefore, in the technique disclosed in Patent Document 2, it is difficult to confirm that the anisotropic conductive film is temporarily press-bonded at a correct position.
  • Patent Document 3 discloses a color former that develops color when irradiated with UV light.
  • this color former does not develop color during temporary pressure bonding. That is, the anisotropic conductive film disclosed in Patent Document 3 also remains transparent at the time of provisional pressure bonding. Therefore, the technique disclosed in Patent Document 3 cannot solve the above problem.
  • Patent Document 4 discloses an anisotropic conductive adhesive that changes color under the conditions of the main pressure bonding. This anisotropic conductive adhesive is colored during temporary pressure bonding. Therefore, with the technique disclosed in Patent Document 4, it can be confirmed that the anisotropic conductive film is temporarily press-bonded at a correct position. However, with this technique, since the anisotropic conductive film is colored even after the main pressure bonding, there is a problem that it is difficult to visually recognize the back side of the protruding portion after the main pressure bonding.
  • the present invention has been made in view of the above problems, and an object of the present invention is that the anisotropic conductive film is temporarily pressure-bonded at a correct position, and the first electronic component and the first To provide a new and improved anisotropic conductive connection method and anisotropic conductive connection structure capable of more accurately confirming that two electronic components are anisotropically conductively connected It is in.
  • the first terminal row provided in the first electronic component and the second terminal row provided in the second electronic component are anisotropic.
  • An anisotropic conductive connection method for conductive connection wherein a step of temporarily pressing an anisotropic conductive film on a first terminal row, a step of finally pressing a second terminal row on an anisotropic conductive film,
  • the anisotropic conductive film is colored, and the colored state of the anisotropic conductive film does not change at the time of temporary pressure bonding, and the permeability of the anisotropic conductive film increases at the time of final pressure bonding.
  • a connection method is provided.
  • the anisotropic conductive film may be colored with a color similar to any of the alignment marks drawn on the first electronic component, the first terminal row, and the first electronic component.
  • the first electronic component may be colored with a transparent or achromatic color
  • the anisotropic conductive film may be colored with a color similar to either the first terminal row or the alignment mark.
  • the first electronic component may be a ceramic substrate.
  • an anisotropic conductive connection structure manufactured by the above anisotropic conductive connection method.
  • the colored state of the anisotropic conductive film does not change at the time of temporary pressure bonding, and therefore it can be confirmed more accurately that the anisotropic conductive film is temporarily pressure bonded at the correct position. Furthermore, since the permeability of the anisotropic conductive film increases at the time of the main press bonding, it can be confirmed more accurately that the main press bonding is performed according to preset conditions. Furthermore, since the back side of the protruding portion of the anisotropic conductive film can be easily visually confirmed, it can be confirmed more accurately that the mounting position of the second electronic component is maintained at an appropriate position. Therefore, it can be confirmed more accurately that the first electronic component and the second electronic component are anisotropically conductively connected.
  • the anisotropic conductive film is temporarily press-bonded at a correct position, and the first electronic component and the second electronic component are anisotropically conductively connected. Can be confirmed more accurately.
  • the anisotropic conductive film 20 includes at least a film-forming resin, an acrylic polymerizable compound, a thermosetting initiator, a colorant, and conductive particles.
  • the film forming resin is a resin for holding the anisotropic conductive film 20 in a film shape.
  • the film forming resin is not particularly limited as long as it is used for the film forming resin of the conventional anisotropic conductive film 20.
  • various resins such as an epoxy resin, a phenoxy resin, a polyester urethane resin, a polyester resin, a polyurethane resin, an acrylic resin, a polyimide resin, and a butyral resin can be used. In the present embodiment, only one of these film-forming resins can be used, or two or more can be used in any combination.
  • film forming resin is a phenoxy resin from a viewpoint of making film forming property and adhesive reliability favorable.
  • the acrylic polymerizable compound is a resin that is cured together with a thermosetting initiator by heat.
  • the cured acrylic polymerizable compound adheres the first terminal row and the second terminal row in the adhesive layer 20a described later, and holds the conductive particles in the adhesive layer 20a.
  • the acrylic polymerizable compound is a monomer, oligomer, or prepolymer having one or more acrylic groups in the molecule.
  • acrylic polymerizable compounds include methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, epoxy acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylol propane triacrylate, dimethylol tricyclodecane diacrylate, and tetramethylene glycol.
  • Tetraacrylate 2-hydroxy-1,3-diacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxyethoxy) phenyl] propane, Examples include dicyclopentenyl acrylate, tricyclodecanyl acrylate, tris (acryloxyethyl) isocyanate, and urethane acrylate. That.
  • any one of the acrylic polymerizable compounds listed above may be used, or two or more may be used in any combination.
  • thermosetting initiator is a material that is cured together with the acrylic polymerizable compound by heat.
  • the present inventor when using a specific thermosetting initiator as a thermosetting initiator, does not lose the color of the colorant at the time of temporary press-bonding, and the color of the colorant disappears at the time of the main press-bonding (that is, anisotropic conductive It was found that the permeability of the film is increased).
  • the thermosetting initiator of this embodiment contains di-t-butylperoxyhexahydroterephthalate.
  • the thermosetting initiator of this embodiment may further contain a known thermosetting initiator other than di-t-butylperoxyhexahydroterephthalate.
  • content in particular of a thermosetting initiator is not restrict
  • the colorant is a material that colors the anisotropic conductive film 20.
  • the kind of the colorant is not particularly limited, and any colorant applicable to the conventional anisotropic conductive film 20 can be used as the colorant of this embodiment.
  • various pigments, dyes, pigments, and the like can be used as the colorant of the present embodiment.
  • any of the base substrate 10 (first electronic component), the first terminal 11, the first wiring pattern 12, and the alignment mark 10a may be colored in a chromatic color.
  • these members are also referred to as “underlying members”.
  • the color of the colorant is preferably the same color as the base member colored with a chromatic color.
  • the “similar color” of the color of the base member means a color close to (but not the same as) the color of the base member on the hue ring. More specifically, the hue circle is equally divided into four. Here, the hue circle is divided into four so that the color of the base member is arranged at the center of any of the divided regions (hereinafter also referred to as “divided regions”).
  • the color in the same region as the divided region to which the color of the base member belongs becomes the “similar color” of the color of the base member.
  • the color of the colorant that is, the color of the anisotropic conductive film 20 is similar to the color of the base member, the visibility of the anisotropic conductive film 20 at the time of temporary pressure bonding is improved. Thereby, it can be confirmed easily whether the anisotropic conductive film 20 is temporarily pressure-bonded at a correct position.
  • colors are divided into 24 or more it means that they exist in different divided areas when the hue circle is divided into 24 or more.
  • the base substrate 10 has the largest area among the base members. For this reason, the color of the base substrate 10 is most noticeable among the colors of the base member. For this reason, the color of the anisotropic conductive film 20 is most preferably the same color as the color of the base substrate 10.
  • the base substrate 10 may be colored with a transparent or achromatic color, and the other base member may be colored with a chromatic color. In this case, the color of the anisotropic conductive film 20 may be a brilliant color as described later, or a color similar to either the first terminal 11 or the alignment mark 10a.
  • examples of the color (chromatic color) of the base substrate 10 include brown (matte brown), dark brown, light brown, orange, and green. Examples of similar colors of brown, dark brown, and light brown include orange and red. In addition, examples of similar orange colors include yellow and red. Examples of the green similar color include yellowish green.
  • the color (chromatic color) of the first terminal 11, the first wiring pattern 12, and the alignment mark 10a is, for example, gold. And as a golden similar color, red, orange, yellowish green, etc. are mentioned, for example.
  • the base member may be colored with an achromatic color (for example, milky white or silver).
  • the base substrate 10 and the first terminal 11 may be made of a transparent member (for example, glass or ITO). And when all the base members are achromatic or transparent, it is preferable that the color of the anisotropic conductive film 20 is colored with a bright color that is easily visually recognized.
  • the vivid color means that when a color is detected by a detector such as a CCD, it is easier to detect a peak difference than other colors (that is, a peak (voltage value detected with respect to a vivid color).
  • Etc. means colors that are easier to distinguish than peaks detected for other colors.
  • a vivid color for example, a color within the above-described divided region centered on orange is cited.
  • the conductive particles are a material that anisotropically conductively connects the first terminal row and the second terminal row within the adhesive layer 20a. Specifically, the conductive particles sandwiched between the first terminal row and the second terminal row in the adhesive layer 20a make the first terminal row and the second terminal row conductive. On the other hand, other conductive particles (for example, conductive particles that have entered the gap between the first terminals 11 and conductive particles that have entered the gap between the second terminals 41) are dispersed in the adhesive layer 20a. Are not connected to each other. Therefore, the conductive particles conduct the first terminal row and the second terminal row while maintaining the insulation between the first terminals 11 and the second terminals 41 in the adhesive layer 20a. Can do. That is, the conductive particles make anisotropic conductive connection between the first terminal row and the second terminal row in the adhesive layer 20a.
  • the type of conductive particles is not particularly limited.
  • the conductive particles include metal particles and metal-coated resin particles.
  • the metal particles include metal particles such as nickel, cobalt, copper, silver, gold, or palladium.
  • the metal-coated resin particles include nickel, copper, gold, or palladium on the surface of core resin particles such as styrene-divinylbenzene copolymer, benzoguanamine resin, cross-linked polystyrene resin, acrylic resin, or styrene-silica composite resin.
  • core resin particles such as styrene-divinylbenzene copolymer, benzoguanamine resin, cross-linked polystyrene resin, acrylic resin, or styrene-silica composite resin.
  • particles coated with a metal such as On the surface of the conductive particles, a gold or palladium thin film, or an insulating resin thin film that is thin enough to be destroyed during pressure bonding may be formed.
  • the anisotropic conductive film 20 of the present embodiment may include a photocuring initiator that cures the acrylic polymerizable compound.
  • the kind of photocuring initiator is not particularly limited.
  • Examples of the photocuring initiator include a photo radical polymerization type curing agent.
  • the anisotropic conductive film 20 may include various additives in addition to the above components.
  • additives that can be added to the anisotropic conductive film 20 include silane coupling agents, inorganic fillers, antioxidants, and rust inhibitors.
  • the kind of silane coupling agent is not particularly limited.
  • examples of the silane coupling agent include epoxy-based, amino-based, mercapto-sulfide-based, and ureido-based silane coupling agents. When these silane coupling agents are added to the anisotropic conductive film 20, adhesion to an inorganic substrate such as a glass substrate can be improved.
  • the inorganic filler is an additive for adjusting the fluidity and film strength of the anisotropic conductive film 20.
  • the kind of inorganic filler is not particularly limited. Examples of the inorganic filler include silica, talc, titanium oxide, calcium carbonate, and magnesium oxide.
  • the anisotropic conductive connection method will be described with reference to FIGS.
  • the anisotropic conductive connection method will be described by taking as an example the case where the first terminal 11 on the base substrate 10 and the second terminal 41 on the flexible substrate 40 are connected by anisotropic conductive.
  • the base substrate 10 is an example of a first electronic component
  • the flexible substrate 40 is an example of a second electronic component.
  • these electronic components are not limited to the substrate.
  • the second electronic component may be an IC chip or the like on which a plurality of bumps are formed as the second terminal row.
  • a base substrate 10 is mounted on a sample table 100.
  • the type of the base substrate 10 is not particularly limited.
  • the base substrate 10 include a glass substrate, a rigid substrate, and a ceramic substrate.
  • the glass substrate is a transparent substrate.
  • a film (oxide film) or the like is formed on the surface of the glass substrate, and this film may be colored.
  • the color of the film may be regarded as the color of the glass substrate.
  • Rigid substrates and ceramic substrates may be colored in various chromatic and achromatic colors depending on their materials.
  • the rigid substrate may be colored milky white.
  • the ceramic substrate may be colored brown (matte brown).
  • the base substrate 10 is a ceramic substrate
  • a relatively expensive electronic component is often mounted on the base substrate 10.
  • a ceramic substrate is used as a substrate for a camera module, but many electronic components constituting the camera module are expensive.
  • the base substrate 10 is a ceramic substrate, it is necessary to reduce the frequency of occurrence of defects as much as possible. That is, the temporary pressure bonding of the anisotropic conductive film 20 and the main pressure bonding of the second terminal 41 to the anisotropic conductive film 20 need to be performed more accurately and reliably.
  • the anisotropic conductive film 20 is temporarily press-bonded at a correct position.
  • the base substrate 10 and the flexible substrate 40 are anisotropically conductively connected. Therefore, when the base substrate 10 is a ceramic substrate, the effect according to the present embodiment appears more remarkably.
  • first terminal 11 and the first wiring pattern 12 are provided on the base substrate 10.
  • a plurality of first terminals 11 are provided on the base substrate 10.
  • the first terminals 11 are parallel to each other, and a plurality of first terminals 11 form a first terminal row.
  • the material constituting the first terminal 11 is not particularly limited as long as it has conductivity.
  • Examples of the material constituting the first terminal 11 include metals such as aluminum, silver, nickel, copper, and gold, indium tin oxide (ITO), indium zinc oxide (IZO), indium oxide, conductive tin oxide, Examples thereof include conductive metal oxides such as antimony tin oxide (ATO) and conductive zinc oxide, and conductive polymers such as polyaniline, polypyrrole, and polythiophene.
  • the metal constituting the first terminal 11 may be plated with various metals. For example, in the embodiment described later, the first terminal 11 made of copper plated with gold and nickel is formed. In this case, the first terminal 11 is colored in gold.
  • the first wiring pattern 12 is a wiring pattern extending from the first terminal 11 and is provided on the base substrate 10.
  • the material constituting the first wiring pattern 12 may be the same as that of the first terminal 11.
  • the first terminal 11 and the first wiring pattern 12 are colored with various chromatic colors and achromatic colors depending on their materials.
  • the first terminal 11 and the first wiring pattern 12 may be colored in gold.
  • an alignment mark 10a is drawn on the base substrate 10.
  • the alignment mark 10 a is a mark that indicates a rough indication of the temporary attachment position of the anisotropic conductive film 20 and the installation position of the flexible substrate 40. Therefore, although not shown in FIG. 3, the first terminal row is arranged in the alignment mark 10a. And in this embodiment, the front-end
  • the alignment mark 10a is colored with various chromatic colors and achromatic colors. For example, the alignment mark 10a may be colored gold when the base substrate 10 is a rigid substrate or a ceramic substrate. The alignment mark 10a may be colored silver when the base substrate 10 is a glass substrate.
  • the anisotropic conductive film 20 according to the present embodiment is temporarily attached in the alignment mark 10a.
  • the anisotropic conductive film 20 is temporarily attached on the first terminal row.
  • a base film 30 is attached to the anisotropic conductive film 20. Therefore, here, a base film 30 such as a PET (polyethylene terephthalate) film is attached to one surface of the anisotropic conductive film 20. Therefore, the other surface of the anisotropic conductive film 20 is temporarily attached in the alignment mark 10a.
  • the base film 30 supports the anisotropic conductive film 20, and includes, for example, PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methylpentene-1), PTFE ( Polytetrafluoroethylene) or the like is applied with a release agent such as silicone.
  • PET Poly Ethylene Terephthalate
  • OPP Oriented Polypropylene
  • PMP Poly-4-methylpentene-1
  • PTFE Polytetrafluoroethylene
  • the base film 30 maintains the shape of the anisotropic conductive film 20 while preventing the anisotropic conductive film 20 from drying.
  • the buffer material 200 is installed on the base film 30.
  • the anisotropic conductive film 20 is temporarily bonded to the first terminal row by pressing a heating and pressing member 300 such as a heat tool against the buffer material 200.
  • the pressurizing temperature and the applied pressure at the time of temporary pressure bonding are, for example, 60 to 80 ° C. and 1 to 2 MPa.
  • the pressurization time is appropriately adjusted depending on the material of the anisotropic conductive film 20 or the like, but is set to a value that allows at least the anisotropic conductive film 20 to be fixed on the base substrate 10.
  • the pressurization temperature that is, the temperature of the heating and pressurizing member is lower than the pressurization temperature at the time of final press-bonding described later. Under such conditions at the time of temporary pressure bonding, the colored state (hue, shade of color, transparency, etc.) of the anisotropic conductive film 20 does not change.
  • the base film 30 is peeled from the anisotropic conductive film 20.
  • the colored state of the anisotropic conductive film 20 is not changed by the temporary pressure bonding. Therefore, the anisotropic conductive film 20 is sufficiently colored even after provisional pressure bonding (no fading or the like). For this reason, it can confirm more correctly that the anisotropic conductive film 20 is temporarily crimped
  • the anisotropic conductive film 20 is preferably colored in the same color as the color of the base member. Moreover, when all the base members are colored with a transparent or achromatic color, it is preferable that the anisotropic conductive film 20 is colored with a vivid color.
  • the detailed relationship between the color of the anisotropic conductive film 20 and the color of the base member is as described above. When the color of the anisotropic conductive film 20 is selected in this way, the visibility of the anisotropic conductive film 20 is improved.
  • the tip of the flexible substrate 40 is mounted on the anisotropic conductive film 20. More specifically, the tip of the flexible substrate 40 is mounted in the alignment mark 10a. A first terminal row and an anisotropic conductive film 20 are arranged in the alignment mark 10a. Therefore, the flexible substrate 40 is mounted on the anisotropic conductive film 20 after being positioned so that the second terminal row faces the first terminal row.
  • the flexible substrate 40 is a substrate formed of a material having high flexibility and flexibility.
  • the material which comprises the flexible substrate 40 is not restrict
  • a resin such as polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyethylene, polycarbonate, polyimide, and an acrylic resin, a thin metal or glass, and the like can be given. .
  • a plurality of second terminals 41 are provided at the tip of the flexible substrate 40.
  • the second terminals 41 are parallel to each other, and a plurality of second terminals 41 form a second terminal row.
  • Each of the second terminals 41 is anisotropically conductively connected to the first terminal 11. That is, the first terminal row and the second terminal row are anisotropically conductively connected.
  • the material constituting the second terminal 41 may be the same as that of the first terminal 11.
  • the second wiring pattern 42 is a wiring pattern extending from the second terminal row, and is provided on the base substrate 10.
  • the material constituting the second wiring pattern 42 may be the same as that of the first terminal 11.
  • the second terminal row is finally bonded to the anisotropic conductive film 20.
  • the buffer material 200 is installed on the flexible substrate 40.
  • the second terminal row is finally pressure-bonded onto the anisotropic conductive film 20 by pressing the heating and pressing member 300 against the buffer material 200.
  • the pressurizing temperature and the applied pressure during the main press bonding vary depending on the material such as the anisotropic conductive film, but are set at least in the range of 120 to 190 ° C. and 0.5 to 8 MPa.
  • the pressing time is appropriately adjusted depending on the material of the anisotropic conductive film 20 or the like, but is set to a value at least that allows the anisotropic conductive film 20 to flow and cure.
  • the anisotropic conductive film 20 remains between the first terminal row and the second terminal row, and the rest is between the first terminals 11 and between the second terminals 41. Or flow outside the first terminal row and the second terminal row. Thereafter, the anisotropic conductive film 20 is cured to become an adhesive layer 20a.
  • the portion remaining between the first terminal row and the second terminal row conducts the first terminal row and the second terminal row, but the other portions have insulating properties. Is maintained. For this reason, for example, the first terminals 11 and the second terminals 41 are insulated from each other. Therefore, the adhesive layer 20a makes an anisotropic conductive connection between the first terminal 11 and the second terminal 41.
  • the adhesive layer 20a makes an anisotropic conductive connection between the base substrate 10 and the flexible substrate 40.
  • portions that flow to the outside of the first terminal row and the second terminal row, so-called protruding portions, are objects to be observed by the observer. A state in which the protruding portion is formed is shown in FIG.
  • the permeability of the anisotropic conductive film 20 is increased by the main pressure bonding. That is, the color of the anisotropic conductive film 20 disappears. Therefore, by confirming that the color of the protruding portion has disappeared, it is possible to confirm that the main press bonding has been performed under preset conditions. Furthermore, since the permeability of the protruding portion increases, the back side of the protruding portion can be sufficiently visually confirmed. In the example shown in FIG. 11, the alignment mark 10a existing on the back side of the protruding portion can be sufficiently visually confirmed. For this reason, it can be easily confirmed that the mounting position of the flexible substrate 40 is properly maintained after the main pressure bonding.
  • the base substrate 10 and the flexible substrate 40 are anisotropically conductively connected (more specifically, the first terminal row and the second terminal row are anisotropically conductively connected).
  • Conductive conductive structure can be produced.
  • the anisotropic conductive connection structure is also simply referred to as “connection structure”.
  • the connection structure includes a base substrate 10, a first terminal row, a first wiring pattern 12, a flexible substrate 40, a second terminal 41, and a second wiring pattern 42. And an adhesive layer 20a.
  • Phenoxy resin (product name: YP-50, manufactured by Nippon Steel & Sumikin Co., Ltd.) 40 parts by mass, acrylic monomer (product name: Aronix M-315, manufactured by Toagosei Co., Ltd.), 15 parts by mass, urethane acrylic oligomer (product name: Aronix M1600, manufactured by Toagosei Co., Ltd.) ) 25 parts by mass, rubber component (product name: SG80H, manufactured by Nagase ChemteX Corporation), 5 parts by mass, phosphoric acid acrylic monomer (product name: light ester P-1M, manufactured by Kyoeisha Chemical Co., Ltd.), 1 part by mass, thermosetting initiator (product name) : Kaya ester HTP-65W, manufactured by Kayaku Akzo Co., Ltd.) 3 parts by mass, Colorant (Product name: Kayase Orange AN, manufactured by Nippon Kayaku Co.
  • the adhesive composition was applied to a base film (made of PET, surface peeling treatment) having a thickness of 50 ⁇ m by using a bar coater and dried to obtain an anisotropic conductive film having a thickness of 25 ⁇ m.
  • Kayaester HTP-65W is a thermosetting initiator containing di-t-butylperoxyhexahydroterephthalate.
  • the anisotropic conductive film was colored orange with a colorant.
  • Example 2 An anisotropic conductive film having the same thickness as in Example 1 was obtained by performing the same treatment as in Example 1 except that the colorant was changed to “Kayaset Blue A-2R” (manufactured by Nippon Kayaku Co., Ltd.). . This anisotropic conductive film was colored blue with a colorant.
  • Example 3 An anisotropic conductive film having the same thickness as in Example 1 was obtained by performing the same treatment as in Example 1 except that the colorant was changed to “Kayaset Green AB” (manufactured by Nippon Kayaku Co., Ltd.). . This anisotropic conductive film was colored green with a colorant.
  • thermosetting initiator was changed to “NIPPER BW” (manufactured by NOF Corporation).
  • NIPPER BW is a thermosetting initiator containing benzoyl peroxide. This anisotropic conductive film was colored orange with a colorant.
  • Example 4 ITO pattern glass was prepared as a base substrate.
  • first terminals made of ITO are formed at a pitch of 200 ⁇ m.
  • the height of the 1st terminal was 2000 mm, and the thickness of the glass part was 0.4 mm.
  • a silver alignment mark is drawn around the first terminal row. The shape of the alignment mark was as shown in FIG. Therefore, the base substrate and the first terminal row were transparent, and the alignment mark was silver (achromatic).
  • a flexible substrate made of polyimide was prepared as a flexible substrate.
  • the thickness of the flexible substrate was 25 ⁇ m.
  • second terminals made of copper plated with gold and nickel are formed on the flexible substrate at a pitch of 200 ⁇ m.
  • the height of the second terminal was 12 ⁇ m.
  • the flexible substrate is a long substrate, and the second terminal row is disposed at the tip portion thereof.
  • the anisotropic conductive connection was performed using an ACF bonder for CCM (camera module) manufactured by Ohashi Seisakusho. This bonder has a built-in CCD camera, and each member can be photographed using the CCD camera. Moreover, the observer can visually recognize the captured image of the CCD camera.
  • Example 2 a base substrate was installed on the sample stage. And the anisotropic conductive film produced in Example 1 was temporarily stuck in the alignment mark.
  • the base film was affixed on one surface of the anisotropic conductive film, the other surface was affixed in the alignment mark.
  • a silicon rubber film having a thickness of 200 ⁇ m was placed on the base film as a buffer material.
  • the anisotropic conductive film was temporarily pressure-bonded to the first terminal row by pressing a heat tool having a width of 2.0 mm against the buffer material.
  • the pressurizing temperature, pressurizing pressure, and pressurizing time at the time of temporary press bonding were 50 ° C., 1 MPa, and 7 seconds.
  • the pressure position by the heat tool was directly above the first terminal row.
  • the base film was peeled from the anisotropic conductive film.
  • the visibility of the anisotropic conductive film at the time of temporary pressure bonding was evaluated. A specific evaluation method will be described later.
  • the tip of the flexible substrate was mounted on the anisotropic conductive film. More specifically, the tip of the flexible substrate was mounted in the alignment mark.
  • a silicon rubber film having a thickness of 200 ⁇ m was placed on the flexible substrate as a buffer material.
  • the second terminal row was pressure-bonded onto the anisotropic conductive film by pressing a heat tool having a width of 2.0 mm against the buffer material. That is, an adhesive layer was formed between the first terminal row and the second terminal row.
  • the pressurizing temperature, pressurizing pressure, and pressurizing time at the time of the main press bonding were 140 ° C., 2 MPa, and 7 seconds. And the visibility of the adhesive bond layer after this press-fit was evaluated. A specific evaluation method will be described later. And said test was tried 100 times.
  • Example 5 A matte brown ceramic substrate was prepared as a base substrate. On the ceramic substrate, first terminals made of copper plated with gold and nickel are formed at a pitch of 200 ⁇ m. The height of the first terminal was 10 ⁇ m, and the thickness of the ceramic substrate was 0.4 mm. A gold alignment mark is drawn around the first terminal row. The shape of the alignment mark was as shown in FIG. Therefore, the color of the ceramic substrate was matte brown (chromatic color), and the color of the first terminal row and the alignment mark was gold (chromatic color). The same processing as in Example 4 was performed using this base substrate.
  • Example 6 The same treatment as in Example 5 was performed except that the anisotropic conductive film produced in Example 2 was used.
  • Example 7 The same treatment as in Example 5 was performed except that the anisotropic conductive film produced in Example 3 was used.
  • Example 8 A milky white rigid substrate was prepared as a base substrate. On the rigid substrate, first terminals made of copper plated with gold and nickel are formed at a pitch of 200 ⁇ m. The height of the first terminal was 35 ⁇ m, and the thickness of the rigid substrate was 0.95 mm. A gold alignment mark is drawn around the first terminal row. The shape of the alignment mark was as shown in FIG. Therefore, the color of the ceramic substrate was milky white (achromatic color), and the color of the first terminal row and the alignment mark was gold (chromatic color). The same processing as in Example 4 was performed using this base substrate.
  • Comparative Example 2 The same treatment as in Example 4 was performed except that the anisotropic conductive film produced in Comparative Example 1 was used.
  • Comparative Example 3 The same treatment as in Comparative Example 2 was performed except that the ceramic substrate of Example 5 was used.
  • Comparative Example 4 The same treatment as in Comparative Example 2 was performed except that the rigid substrate of Example 8 was used.
  • the protruding portion of the adhesive layer was directly visually confirmed and visually confirmed via the CCD. Then, it was determined whether or not the color of the protruding portion of the adhesive layer had disappeared and whether or not the flexible substrate was mounted within the alignment mark could all be determined within 1 second. If the color of the protruding portion disappears, it can be said that the main press bonding is performed according to preset conditions. Furthermore, if the flexible substrate is mounted in the alignment mark, it can be said that the mounting position of the flexible substrate is maintained at an appropriate position. Therefore, by confirming the above items, it can be confirmed that the base substrate and the flexible substrate are anisotropically conductively connected.
  • Example 4 the base member is transparent or achromatic, whereas the anisotropic conductive film is colored in a bright color (orange).
  • Example 5 the anisotropic conductive film is colored in the same color as the base substrate.
  • Example 8 the base substrate is milky white, while the anisotropic conductive film is colored in a bright color.
  • the color of the anisotropic conductive film is similar to the color of the first terminal (gold).
  • the colors of the anisotropic conductive films of Examples 6 and 7 are different from those of the base member. For this reason, in the evaluation of provisional pressure bonding, the results of Examples 4, 5, and 8 are better than those of Examples 6 and 7.
  • Comparative Examples 2 to 4 were all evaluated to be lower than Examples 4 to 8 in the evaluation of provisional pressure bonding.
  • Comparative Examples 2 to 4 since the color of the anisotropic conductive film almost disappeared at the time of temporary pressure bonding, this evaluation was made. Since the protruding portion after the main press-bonding is almost transparent, the evaluation after the main press-fit is the same as in Examples 4 to 8. However, since the color of the anisotropic conductive film has already almost disappeared before the main bonding, in Comparative Examples 2 to 4, it is accurately determined whether or not the main pressing has been performed according to preset conditions. I can't.
  • the conduction resistance of Examples 4 to 8 was measured. Specifically, the conduction resistance value when a current of 1 mA was passed through the connection structure was measured by a four-terminal method. A digital multimeter (manufactured by Yokogawa Electric Corporation) was used for the measurement. As a result, the conduction resistances of Examples 4 to 8 were values that were not particularly problematic in practical use.
  • the adhesive strengths of Examples 4 to 8 were performed using a tensile tester (manufactured by AND). That is, the base substrate of the connection structure was held on the sample stage, and the flexible substrate was pulled up from above.
  • the measurement speed (tensile speed) was 50 mm / sec.
  • the tensile strength when the flexible substrate (specifically, the second terminal) was completely peeled off from the first terminal was defined as the adhesive strength. As a result, a value with no problem in practical use was obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Non-Insulated Conductors (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

Provided is an anisotropic electroconduction connection method in which a first terminal row (11) provided to a first electronic component and a second terminal row (41) provided to a second electronic component are connected by anisotropic electroconduction, wherein: the anisotropic electroconduction connection method includes a step for prebonding an anisotropically electroconductive film (20) to the first terminal row (11), and a step for performing final bonding of the second terminal row (41) to the anisotropically electroconductive film (20); the anisotropically electroconductive film (20) is colored; and the permeability of the anisotropically electroconductive film (20) is increased during final bonding, without the state of coloration of the anisotropically electroconductive film (20) changing during the pre-bonding.

Description

異方性導電接続方法及び異方性導電接続構造体Anisotropic conductive connection method and anisotropic conductive connection structure
 本発明は、異方性導電接続方法及び異方性導電接続構造体に関する。 The present invention relates to an anisotropic conductive connection method and an anisotropic conductive connection structure.
 例えば特許文献1~3に開示されるように、複数の電子部品(第1の電子部品、第2の電子部品)を異方性導電接続(接着)する技術が知られている。これらの電子部品は例えば基板となる。ここで、各電子部品には端子列が設けられており、各電子部品の端子列同士が異方性導電接続される。この技術では、概略以下の工程によって複数の電子部品を異方性導電接続する。 For example, as disclosed in Patent Documents 1 to 3, a technique for anisotropically connecting (adhering) a plurality of electronic components (first electronic component and second electronic component) is known. These electronic components are, for example, substrates. Here, each electronic component is provided with a terminal row, and the terminal rows of each electronic component are anisotropically conductively connected. In this technique, a plurality of electronic components are anisotropically conductively connected through the following steps.
 まず、第1の電子部品に設けられた第1の端子列上に異方性導電フィルム(ACF)を仮貼りする。ここで、異方性導電フィルムの一方の面にはPET(ポリエチレンテレフタレート)フィルム等の基材フィルムが貼り付けられている。そこで、異方性導電フィルムの他方の面を第1の端子列上に仮貼りする。ここで、第1の電子部品にはアライメントマークが描かれており、アライメントマークの内側に第1の端子列が配置される。したがって、異方性導電フィルムは、アライメントマークの内側に仮貼りされる。このように、アライメントマークは、異方性導電フィルムの仮貼り位置(及び第2の電子部品の搭載位置)の目安を示すものである。 First, an anisotropic conductive film (ACF) is temporarily pasted on the first terminal row provided in the first electronic component. Here, a base film such as a PET (polyethylene terephthalate) film is attached to one surface of the anisotropic conductive film. Therefore, the other surface of the anisotropic conductive film is temporarily pasted on the first terminal row. Here, an alignment mark is drawn on the first electronic component, and the first terminal row is arranged inside the alignment mark. Therefore, the anisotropic conductive film is temporarily attached inside the alignment mark. As described above, the alignment mark indicates an indication of the temporary attachment position of the anisotropic conductive film (and the mounting position of the second electronic component).
 ついで、ヒートツール等の加熱加圧部材を基材フィルムに押し当てることで、異方性導電フィルムを第1の端子列に仮圧着する。仮圧着時のヒートツールの温度は、本圧着時のヒートツールの温度よりも低い。ついで、基材フィルムを異方性導電フィルムから剥離する。ついで、第2の電子部品を異方性導電フィルム上に搭載する。ここで、第2の電子部品は、第2の電子部品に設けられた第2の端子列が第1の端子列に対向するように位置決めされた上で、異方性導電フィルム上に搭載される。具体的には、第2の電子部品は、アライメントマークの内側に搭載される。ついで、加熱加圧部材を第2の電子部品に押し当てることで、第2の端子列を異方性導電フィルム上に本圧着する。以上の工程により、第1の電子部品と第2の電子部品とを異方性導電接続する。 Next, the anisotropic conductive film is temporarily bonded to the first terminal row by pressing a heating and pressing member such as a heat tool against the base film. The temperature of the heat tool at the time of temporary press bonding is lower than the temperature of the heat tool at the time of main press bonding. Next, the base film is peeled from the anisotropic conductive film. Next, the second electronic component is mounted on the anisotropic conductive film. Here, the second electronic component is mounted on the anisotropic conductive film after the second terminal row provided on the second electronic component is positioned so as to face the first terminal row. The Specifically, the second electronic component is mounted inside the alignment mark. Next, the second terminal row is finally pressure-bonded onto the anisotropic conductive film by pressing the heating and pressing member against the second electronic component. Through the above process, the first electronic component and the second electronic component are anisotropically conductively connected.
 上記の技術では、第1の電子部品と第2の電子部品とが異方性導電接続されていることが非常に重要である。そこで、特許文献2では、第1の電子部品と第2の電子部品とが異方性導電接続されていることを確認するために、本圧着の条件で発色する樹脂材料を異方性導電フィルムに含有させている。この技術によれば、本圧着が予め設定された条件通りに行われていれば、異方性導電フィルムが発色する。そこで、特許文献2では、本圧着後に異方性導電フィルムが発色したか否かを確認することで、第1の電子部品と第2の電子部品とが異方性導電接続されたか否かを確認する。 In the above technique, it is very important that the first electronic component and the second electronic component are anisotropically conductively connected. Therefore, in Patent Document 2, in order to confirm that the first electronic component and the second electronic component are anisotropically conductively connected, an anisotropic conductive film is used as the resin material that develops color under the conditions of the main pressure bonding. Is included. According to this technique, if the main pressure bonding is performed in accordance with preset conditions, the anisotropic conductive film is colored. Therefore, in Patent Document 2, it is determined whether or not the first electronic component and the second electronic component are anisotropically conductively connected by confirming whether or not the anisotropic conductive film has developed color after the main pressure bonding. Check.
特開2006-127956号公報Japanese Patent Laid-Open No. 2006-127756 特開平11-307154号公報JP-A-11-307154 特開2007-91798号公報JP 2007-91798 A 特開平4-145180号公報JP-A-4-145180
 ところで、本圧着後の異方性導電フィルムの状態は、本圧着によって異方性導電フィルムが第2の電子部品からはみ出した部分を視認することで行われる。特許文献2に開示された技術では、異方性導電フィルムのはみ出し部分が着色されているので、はみ出し部分の着色状態に基づいて、上記の確認を行う。しかし、特許文献2で確認できる事項はあくまで熱圧着時の温度条件だけである。 By the way, the state of the anisotropic conductive film after the main press bonding is performed by visually recognizing the portion of the anisotropic conductive film that protrudes from the second electronic component by the main press bonding. In the technique disclosed in Patent Document 2, since the protruding portion of the anisotropic conductive film is colored, the above confirmation is performed based on the colored state of the protruding portion. However, the matter that can be confirmed in Patent Document 2 is only the temperature condition during thermocompression bonding.
 その一方、第1の端子と第2の端子とが異方性導電接続されるためには、第2の電子部品の搭載位置が本圧着後も適切な位置に維持されていることが必要である。したがって、この点も確認する必要があるが、特許文献2ではこのような確認を行うことが容易でなかった。具体的には、特許文献2では、はみ出し部分が着色されるので、はみ出し部分の裏側に存在するアライメントマークを視認しにくい。このため、第2の電子部品の搭載位置が本圧着後も適切に維持されているかを確認しにくいという問題があった。したがって、特許文献2に開示された技術では、第1の電子部品と第2の電子部品とが異方性導電接続されたか否かを正確に確認することができなかった。 On the other hand, in order for the first terminal and the second terminal to be anisotropically conductively connected, it is necessary that the mounting position of the second electronic component is maintained at an appropriate position even after the main pressure bonding. is there. Therefore, it is necessary to confirm this point, but in Patent Document 2, it is not easy to perform such confirmation. Specifically, in Patent Document 2, since the protruding portion is colored, it is difficult to visually recognize the alignment mark present on the back side of the protruding portion. For this reason, there is a problem that it is difficult to confirm whether the mounting position of the second electronic component is properly maintained after the main press bonding. Therefore, with the technique disclosed in Patent Document 2, it has not been possible to accurately confirm whether or not the first electronic component and the second electronic component are anisotropically conductively connected.
 さらに、複数の電子部品を異方性導電接続(接着)する技術では、異方性導電フィルムが正しい位置(ここではアライメントマーク内の位置)に仮圧着されていることも非常に重要である。このため、異方性導電フィルムが正しい位置に仮圧着されていることを確認できる技術が切望されていたが、このような技術は何ら提案されていなかった。 Furthermore, in the technique of anisotropic conductive connection (adhesion) of a plurality of electronic components, it is also very important that the anisotropic conductive film is temporarily press-bonded at the correct position (here, the position within the alignment mark). For this reason, although the technique which can confirm that the anisotropic conductive film is temporarily crimped | bonded to the correct position was desired, such a technique was not proposed at all.
 例えば、特許文献2に開示された樹脂材料は、仮圧着の条件では発色しない。したがって、特許文献2に開示された異方性導電フィルムは、仮圧着時には透明のままである。したがって、特許文献2に開示された技術では、異方性導電フィルムが正しい位置に仮圧着されていることを確認しにくかった。 For example, the resin material disclosed in Patent Document 2 does not develop color under the provisional pressure bonding conditions. Therefore, the anisotropic conductive film disclosed in Patent Document 2 remains transparent when temporarily crimped. Therefore, in the technique disclosed in Patent Document 2, it is difficult to confirm that the anisotropic conductive film is temporarily press-bonded at a correct position.
 一方、特許文献3には、UV光の照射により発色する発色剤が開示されている。しかし、この発色剤は仮圧着時に発色しない。すなわち、特許文献3に開示された異方性導電フィルムも仮圧着時には透明のままである。したがって、特許文献3に開示された技術では、上記問題を何ら解決することができなかった。 On the other hand, Patent Document 3 discloses a color former that develops color when irradiated with UV light. However, this color former does not develop color during temporary pressure bonding. That is, the anisotropic conductive film disclosed in Patent Document 3 also remains transparent at the time of provisional pressure bonding. Therefore, the technique disclosed in Patent Document 3 cannot solve the above problem.
 また、特許文献4には、本圧着の条件で変色する異方性導電接着剤が開示されている。この異方性導電接着剤は、仮圧着時に着色されている。したがって、特許文献4に開示された技術では、異方性導電フィルムが正しい位置に仮圧着されていることを確認できる。しかしながら、この技術では、異方性導電フィルムは本圧着後も着色されているので、本圧着後にはみ出し部分の裏側を視認しにくいという問題があった。 Further, Patent Document 4 discloses an anisotropic conductive adhesive that changes color under the conditions of the main pressure bonding. This anisotropic conductive adhesive is colored during temporary pressure bonding. Therefore, with the technique disclosed in Patent Document 4, it can be confirmed that the anisotropic conductive film is temporarily press-bonded at a correct position. However, with this technique, since the anisotropic conductive film is colored even after the main pressure bonding, there is a problem that it is difficult to visually recognize the back side of the protruding portion after the main pressure bonding.
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、異方性導電フィルムが正しい位置に仮圧着されていること、及び第1の電子部品と第2の電子部品とが異方性導電接続されていることをより正確に確認することが可能な、新規かつ改良された異方性導電接続方法、及び異方性導電接続構造体を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is that the anisotropic conductive film is temporarily pressure-bonded at a correct position, and the first electronic component and the first To provide a new and improved anisotropic conductive connection method and anisotropic conductive connection structure capable of more accurately confirming that two electronic components are anisotropically conductively connected It is in.
 上記課題を解決するために、本発明のある観点によれば、第1の電子部品に設けられる第1の端子列と、第2の電子部品に設けられる第2の端子列とを異方性導電接続する異方性導電接続方法であって、第1の端子列上に異方性導電フィルムを仮圧着する工程と、異方性導電フィルム上に第2の端子列を本圧着する工程と、を含み、異方性導電フィルムは着色されており、仮圧着時には異方性導電フィルムの着色状態が変化せず、本圧着時に異方性導電フィルムの透過性が増加する、異方性導電接続方法が提供される。 In order to solve the above problems, according to one aspect of the present invention, the first terminal row provided in the first electronic component and the second terminal row provided in the second electronic component are anisotropic. An anisotropic conductive connection method for conductive connection, wherein a step of temporarily pressing an anisotropic conductive film on a first terminal row, a step of finally pressing a second terminal row on an anisotropic conductive film, The anisotropic conductive film is colored, and the colored state of the anisotropic conductive film does not change at the time of temporary pressure bonding, and the permeability of the anisotropic conductive film increases at the time of final pressure bonding. A connection method is provided.
 ここで、異方性導電フィルムは、第1の電子部品、第1の端子列、及び第1の電子部品に描かれたアライメントマークのいずれかと同系の色で着色されていてもよい。 Here, the anisotropic conductive film may be colored with a color similar to any of the alignment marks drawn on the first electronic component, the first terminal row, and the first electronic component.
 また、第1の電子部品は、透明または無彩色で着色されており、異方性導電フィルムは、第1の端子列及びアライメントマークのいずれかと同系の色で着色されていてもよい。 Further, the first electronic component may be colored with a transparent or achromatic color, and the anisotropic conductive film may be colored with a color similar to either the first terminal row or the alignment mark.
 また、第1の電子部品は、セラミック基板であってもよい。 Further, the first electronic component may be a ceramic substrate.
 本発明の他の観点によれば、上記異方性導電接続方法によって作製される、異方性導電接続構造体が提供される。 According to another aspect of the present invention, there is provided an anisotropic conductive connection structure manufactured by the above anisotropic conductive connection method.
 本発明の上記観点によれば、仮圧着時には異方性導電フィルムの着色状態が変化しないので、異方性導電フィルムが正しい位置に仮圧着されていることをより正確に確認することができる。さらに、本圧着時に異方性導電フィルムの透過性が増加するので、本圧着が予め設定された条件通りに行われていることをより正確に確認することができる。さらに、異方性導電フィルムのはみ出し部分の裏側を容易に視認することができるので、第2の電子部品の搭載位置が適切な位置に維持されていることをより正確に確認することができる。したがって、第1の電子部品と第2の電子部品とが異方性導電接続されていることをより正確に確認することができる。 According to the above aspect of the present invention, the colored state of the anisotropic conductive film does not change at the time of temporary pressure bonding, and therefore it can be confirmed more accurately that the anisotropic conductive film is temporarily pressure bonded at the correct position. Furthermore, since the permeability of the anisotropic conductive film increases at the time of the main press bonding, it can be confirmed more accurately that the main press bonding is performed according to preset conditions. Furthermore, since the back side of the protruding portion of the anisotropic conductive film can be easily visually confirmed, it can be confirmed more accurately that the mounting position of the second electronic component is maintained at an appropriate position. Therefore, it can be confirmed more accurately that the first electronic component and the second electronic component are anisotropically conductively connected.
 以上説明したように本発明によれば、異方性導電フィルムが正しい位置に仮圧着されていること、及び第1の電子部品と第2の電子部品とが異方性導電接続されていることをより正確に確認することができる。 As described above, according to the present invention, the anisotropic conductive film is temporarily press-bonded at a correct position, and the first electronic component and the second electronic component are anisotropically conductively connected. Can be confirmed more accurately.
本発明の実施形態に係る異方性導電接続方法を説明するための側断面図である。It is a sectional side view for demonstrating the anisotropic conductive connection method which concerns on embodiment of this invention. 本発明の実施形態に係る異方性導電接続方法を説明するための側断面図である。It is a sectional side view for demonstrating the anisotropic conductive connection method which concerns on embodiment of this invention. 本発明の実施形態に係る異方性導電接続方法を説明するための平面図である。It is a top view for demonstrating the anisotropic conductive connection method which concerns on embodiment of this invention. 本発明の実施形態に係る異方性導電接続方法を説明するための側断面図である。It is a sectional side view for demonstrating the anisotropic conductive connection method which concerns on embodiment of this invention. 本発明の実施形態に係る異方性導電接続方法を説明するための側断面図である。It is a sectional side view for demonstrating the anisotropic conductive connection method which concerns on embodiment of this invention. 本発明の実施形態に係る異方性導電接続方法を説明するための平面図である。It is a top view for demonstrating the anisotropic conductive connection method which concerns on embodiment of this invention. 本発明の実施形態に係る異方性導電接続方法を説明するための側断面図である。It is a sectional side view for demonstrating the anisotropic conductive connection method which concerns on embodiment of this invention. 本発明の実施形態に係る異方性導電接続方法を説明するための平面図である。It is a top view for demonstrating the anisotropic conductive connection method which concerns on embodiment of this invention. 本発明の実施形態に係る異方性導電接続方法を説明するための側断面図である。It is a sectional side view for demonstrating the anisotropic conductive connection method which concerns on embodiment of this invention. 本発明の実施形態に係る異方性導電接続方法を説明するための側断面図である。It is a sectional side view for demonstrating the anisotropic conductive connection method which concerns on embodiment of this invention. 本発明の実施形態に係る異方性導電接続方法を説明するための平面図である。It is a top view for demonstrating the anisotropic conductive connection method which concerns on embodiment of this invention.
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 <1.異方性導電フィルムの構成>
 本実施形態では、図7に示す異方性導電フィルム20を用いて、ベース基板10(第1の電子部品)に設けられた第1の端子11とフレキシブル基板40(第2の電子部品)に設けられた第2の端子41とを異方性導電接続する。そこで、まず、本実施形態に係る異方性導電フィルム20の構成について説明する。異方性導電フィルム20は、少なくとも、膜形成樹脂、アクリル重合性化合物、熱硬化開始剤、着色剤、及び導電性粒子を含む。
<1. Configuration of anisotropic conductive film>
In this embodiment, the anisotropic conductive film 20 shown in FIG. 7 is used for the first terminal 11 and the flexible substrate 40 (second electronic component) provided on the base substrate 10 (first electronic component). An anisotropic conductive connection is made to the provided second terminal 41. Therefore, first, the configuration of the anisotropic conductive film 20 according to the present embodiment will be described. The anisotropic conductive film 20 includes at least a film-forming resin, an acrylic polymerizable compound, a thermosetting initiator, a colorant, and conductive particles.
 膜形成樹脂は、異方性導電フィルム20をフィルム形状に保持するための樹脂である。膜形成樹脂は、従来の異方性導電フィルム20の膜形成樹脂に使用されるものであれば特に制限されない。膜形成樹脂としては、例えば、エポキシ樹脂、フェノキシ樹脂、ポリエステルウレタン樹脂、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ポリイミド樹脂、ブチラール樹脂などの種々の樹脂を用いることができる。また、本実施形態では、これらの膜形成樹脂のうちいずれか1種だけを使用することもできるし、2種以上を任意に組み合わせて使用することもできる。なお、膜形成樹脂は、膜形成性および接着信頼性を良好にするという観点からは、フェノキシ樹脂であることが好ましい。 The film forming resin is a resin for holding the anisotropic conductive film 20 in a film shape. The film forming resin is not particularly limited as long as it is used for the film forming resin of the conventional anisotropic conductive film 20. As the film forming resin, for example, various resins such as an epoxy resin, a phenoxy resin, a polyester urethane resin, a polyester resin, a polyurethane resin, an acrylic resin, a polyimide resin, and a butyral resin can be used. In the present embodiment, only one of these film-forming resins can be used, or two or more can be used in any combination. In addition, it is preferable that film forming resin is a phenoxy resin from a viewpoint of making film forming property and adhesive reliability favorable.
 アクリル重合性化合物は、熱によって熱硬化開始剤とともに硬化する樹脂である。硬化したアクリル重合性化合物は、後述する接着剤層20a内で第1の端子列と第2の端子列とを接着するとともに、導電性粒子を接着剤層20a内に保持する。 The acrylic polymerizable compound is a resin that is cured together with a thermosetting initiator by heat. The cured acrylic polymerizable compound adheres the first terminal row and the second terminal row in the adhesive layer 20a described later, and holds the conductive particles in the adhesive layer 20a.
 アクリル重合性化合物は、分子内に1つまたは2つ以上のアクリル基を有するモノマー、オリゴマー、またはプレポリマーである。アクリル重合性化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エポキシアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジメチロールトリシクロデカンジアクリレート、テトラメチレングリコールテトラアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアネレート、およびウレタンアクリレート等が挙げられる。 The acrylic polymerizable compound is a monomer, oligomer, or prepolymer having one or more acrylic groups in the molecule. Examples of acrylic polymerizable compounds include methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, epoxy acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylol propane triacrylate, dimethylol tricyclodecane diacrylate, and tetramethylene glycol. Tetraacrylate, 2-hydroxy-1,3-diacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxyethoxy) phenyl] propane, Examples include dicyclopentenyl acrylate, tricyclodecanyl acrylate, tris (acryloxyethyl) isocyanate, and urethane acrylate. That.
 本実施形態では、上記で列挙したアクリル重合性化合物のうちいずれか1種を用いてもよく、2種以上を任意に組み合わせて用いてもよい。 In this embodiment, any one of the acrylic polymerizable compounds listed above may be used, or two or more may be used in any combination.
 熱硬化開始剤は、熱によって上記アクリル重合性化合物とともに硬化する材料である。本発明者は、熱硬化開始剤として特定の熱硬化開始剤を使用した場合に、仮圧着時に着色剤の色が抜けず、本圧着時に着色剤の色が消失する(すなわち、異方性導電フィルムの透過性が増加する)ことを見出した。具体的には、本実施形態の熱硬化開始剤は、ジ-t-ブチルパーオキシヘキサヒドロテレフタレートを含む。本実施形態の熱硬化開始剤は、ジ-t-ブチルパーオキシヘキサヒドロテレフタレート以外の公知の熱硬化開始剤をさらに含んでいてもよい。なお、熱硬化開始剤の含有量は特に制限されず、公知の異方性導電フィルム20に適用される含有量であればよい。 The thermosetting initiator is a material that is cured together with the acrylic polymerizable compound by heat. The present inventor, when using a specific thermosetting initiator as a thermosetting initiator, does not lose the color of the colorant at the time of temporary press-bonding, and the color of the colorant disappears at the time of the main press-bonding (that is, anisotropic conductive It was found that the permeability of the film is increased). Specifically, the thermosetting initiator of this embodiment contains di-t-butylperoxyhexahydroterephthalate. The thermosetting initiator of this embodiment may further contain a known thermosetting initiator other than di-t-butylperoxyhexahydroterephthalate. In addition, content in particular of a thermosetting initiator is not restrict | limited, What is necessary is just content applied to the well-known anisotropic conductive film 20. FIG.
 着色剤は、異方性導電フィルム20を着色する材料である。着色剤の種類は特に制限されず、従来の異方性導電フィルム20に適用可能な着色剤であれば本実施形態の着色剤として使用することができる。例えば、本実施形態の着色剤としては、各種色素、染料、顔料等が使用可能である。 The colorant is a material that colors the anisotropic conductive film 20. The kind of the colorant is not particularly limited, and any colorant applicable to the conventional anisotropic conductive film 20 can be used as the colorant of this embodiment. For example, various pigments, dyes, pigments, and the like can be used as the colorant of the present embodiment.
 ここで、後述するように、ベース基板10(第1の電子部品)、第1の端子11、第1の配線パターン12、及びアライメントマーク10aのいずれかが有彩色で着色されている場合がある。以下、これらの部材を「下地部材」とも称する。この場合、着色剤の色は、有彩色で着色されている下地部材と同系色であることが好ましい。ここで、下地部材の色の「同系色」とは、色相環上で下地部材の色と近しい(ただし同一ではない)色を意味する。より具体的には、色相環を均等に4分割する。ここで、分割されたいずれかの領域(以下、「分割領域」とも称する)の中心に下地部材の色が配置されるように、色相環を4分割する。そして、下地部材の色が属する分割領域と同じ領域内の色が下地部材の色の「同系色」となる。着色剤の色、すなわち異方性導電フィルム20の色が下地部材の色と同系色となる場合、仮圧着時における異方性導電フィルム20の視認性が向上する。これにより、異方性導電フィルム20が正しい位置に仮圧着されているかを容易に確認することができる。また、色が同一でないとは、色相環を24以上に分割した場合において、異なる分割された領域に存在することを指す。 Here, as will be described later, any of the base substrate 10 (first electronic component), the first terminal 11, the first wiring pattern 12, and the alignment mark 10a may be colored in a chromatic color. . Hereinafter, these members are also referred to as “underlying members”. In this case, the color of the colorant is preferably the same color as the base member colored with a chromatic color. Here, the “similar color” of the color of the base member means a color close to (but not the same as) the color of the base member on the hue ring. More specifically, the hue circle is equally divided into four. Here, the hue circle is divided into four so that the color of the base member is arranged at the center of any of the divided regions (hereinafter also referred to as “divided regions”). The color in the same region as the divided region to which the color of the base member belongs becomes the “similar color” of the color of the base member. When the color of the colorant, that is, the color of the anisotropic conductive film 20 is similar to the color of the base member, the visibility of the anisotropic conductive film 20 at the time of temporary pressure bonding is improved. Thereby, it can be confirmed easily whether the anisotropic conductive film 20 is temporarily pressure-bonded at a correct position. Moreover, when colors are divided into 24 or more, it means that they exist in different divided areas when the hue circle is divided into 24 or more.
 また、下地部材のうち、ベース基板10の面積が最も大きい。このため、下地部材の色のうち、ベース基板10の色が最も目立つ。このため、異方性導電フィルム20の色は、ベース基板10の色と同系色であることが最も好ましい。ただし、ベース基板10が透明または無彩色で着色され、他の下地部材が有彩色で着色されている場合もある。この場合、異方性導電フィルム20の色は、後述するようにあざやかな色とするか、第1の端子11及びアライメントマーク10aのいずれかと同系色とすればよい。 Also, the base substrate 10 has the largest area among the base members. For this reason, the color of the base substrate 10 is most noticeable among the colors of the base member. For this reason, the color of the anisotropic conductive film 20 is most preferably the same color as the color of the base substrate 10. However, the base substrate 10 may be colored with a transparent or achromatic color, and the other base member may be colored with a chromatic color. In this case, the color of the anisotropic conductive film 20 may be a brilliant color as described later, or a color similar to either the first terminal 11 or the alignment mark 10a.
 ここで、ベース基板10の色(有彩色)としては、例えば、茶色(艶消し茶色)、焦茶色、薄い茶色、オレンジ色、緑色等が挙げられる。そして、茶色、焦茶色、薄い茶色の同系色としては、例えばオレンジ色、赤色等が挙げられる。また、オレンジ色の同系色としては、例えば、黄色、赤色等が挙げられる。緑色の同系色としては、例えば、黄緑色等が挙げられる。 Here, examples of the color (chromatic color) of the base substrate 10 include brown (matte brown), dark brown, light brown, orange, and green. Examples of similar colors of brown, dark brown, and light brown include orange and red. In addition, examples of similar orange colors include yellow and red. Examples of the green similar color include yellowish green.
 また、第1の端子11、第1の配線パターン12、及びアライメントマーク10aの色(有彩色)としては、例えば金色等が挙げられる。そして、金色の同系色としては、例えば赤色、オレンジ色、黄緑色等が挙げられる。 The color (chromatic color) of the first terminal 11, the first wiring pattern 12, and the alignment mark 10a is, for example, gold. And as a golden similar color, red, orange, yellowish green, etc. are mentioned, for example.
 また、下地部材は、無彩色(例えば乳白色、銀色)で着色されている場合がある。また、ベース基板10及び第1の端子11は透明な部材(例えばガラス、ITO)で構成される場合もある。そして、下地部材が全て無彩色または透明となっている場合、異方性導電フィルム20の色は目視で視認し易いあざやかな色で着色されていることが好ましい。ここで、あざやかな色とは、CCDなどの検出器によって色を検出する際に、他の色よりもピークの差分を検出しやすい(すなわち、あざやかな色に対して検出されるピーク(電圧値のピーク等)が他の色に対して検出されるピークよりも区別しやすい)色を意味する。あざやかな色としては、例えば、オレンジ色を中心とした上記分割領域内の色が挙げられる。 Also, the base member may be colored with an achromatic color (for example, milky white or silver). The base substrate 10 and the first terminal 11 may be made of a transparent member (for example, glass or ITO). And when all the base members are achromatic or transparent, it is preferable that the color of the anisotropic conductive film 20 is colored with a bright color that is easily visually recognized. Here, the vivid color means that when a color is detected by a detector such as a CCD, it is easier to detect a peak difference than other colors (that is, a peak (voltage value detected with respect to a vivid color). , Etc.) means colors that are easier to distinguish than peaks detected for other colors. As a vivid color, for example, a color within the above-described divided region centered on orange is cited.
 導電性粒子は、接着剤層20a内で第1の端子列と第2の端子列とを異方性導電接続する材料である。具体的には、接着剤層20a内で第1の端子列と第2の端子列とで挟持された導電性粒子は、第1の端子列と第2の端子列とを導通させる。一方、他の導電性粒子(例えば、第1の端子11同士の隙間に入り込んだ導電性粒子、第2の端子41同士の隙間に入り込んだ導電性粒子)は、接着剤層20a内で分散しているため、互いに導通していない。したがって、導電性粒子は、接着剤層20a内で第1の端子11同士及び第2の端子41同士の絶縁性を維持しつつ、第1の端子列と第2の端子列とを導通させることができる。すなわち、導電性粒子は、接着剤層20a内で第1の端子列と第2の端子列とを異方性導電接続する。 The conductive particles are a material that anisotropically conductively connects the first terminal row and the second terminal row within the adhesive layer 20a. Specifically, the conductive particles sandwiched between the first terminal row and the second terminal row in the adhesive layer 20a make the first terminal row and the second terminal row conductive. On the other hand, other conductive particles (for example, conductive particles that have entered the gap between the first terminals 11 and conductive particles that have entered the gap between the second terminals 41) are dispersed in the adhesive layer 20a. Are not connected to each other. Therefore, the conductive particles conduct the first terminal row and the second terminal row while maintaining the insulation between the first terminals 11 and the second terminals 41 in the adhesive layer 20a. Can do. That is, the conductive particles make anisotropic conductive connection between the first terminal row and the second terminal row in the adhesive layer 20a.
 導電性粒子の種類は特に制限されない。導電性粒子としては、例えば、金属粒子、および金属被覆樹脂粒子等が挙げられる。金属粒子としては、例えば、ニッケル、コバルト、銅、銀、金、またはパラジウムなどの金属粒子等が挙げられる。金属被覆樹脂粒子としては、例えば、スチレン-ジビニルベンゼン共重合体、ベンゾグアナミン樹脂、架橋ポリスチレン樹脂、アクリル樹脂、またはスチレン-シリカ複合樹脂などのコア樹脂粒子の表面を、ニッケル、銅、金、またはパラジウムなどの金属で被覆した粒子等が挙げられる。導電性粒子の表面には、金もしくはパラジウム薄膜、または圧着時には破壊される程度に薄い絶縁樹脂薄膜などが形成されてもよい。 ¡The type of conductive particles is not particularly limited. Examples of the conductive particles include metal particles and metal-coated resin particles. Examples of the metal particles include metal particles such as nickel, cobalt, copper, silver, gold, or palladium. Examples of the metal-coated resin particles include nickel, copper, gold, or palladium on the surface of core resin particles such as styrene-divinylbenzene copolymer, benzoguanamine resin, cross-linked polystyrene resin, acrylic resin, or styrene-silica composite resin. And particles coated with a metal such as On the surface of the conductive particles, a gold or palladium thin film, or an insulating resin thin film that is thin enough to be destroyed during pressure bonding may be formed.
 本実施形態の異方性導電フィルム20は、アクリル重合性化合物を硬化させる光硬化開始剤を含んでいてもよい。光硬化開始剤の種類は特に制限されない。光硬化開始剤としては、例えば、光ラジカル重合型硬化剤等が挙げられる。 The anisotropic conductive film 20 of the present embodiment may include a photocuring initiator that cures the acrylic polymerizable compound. The kind of photocuring initiator is not particularly limited. Examples of the photocuring initiator include a photo radical polymerization type curing agent.
 また、異方性導電フィルム20には、上記の成分の他、各種添加剤等を含めてもよい。異方性導電フィルム20に添加可能な添加剤としては、シランカップリング剤、無機フィラー、酸化防止剤、および防錆剤等が挙げられる。シランカップリング剤の種類は特に制限されない。シランカップリング剤としては、例えば、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系のシランカップリング剤等が挙げられる。異方性導電フィルム20にこれらのシランカップリング剤が添加された場合、ガラス基板等の無機基板への接着性を向上させることができる。 In addition, the anisotropic conductive film 20 may include various additives in addition to the above components. Examples of additives that can be added to the anisotropic conductive film 20 include silane coupling agents, inorganic fillers, antioxidants, and rust inhibitors. The kind of silane coupling agent is not particularly limited. Examples of the silane coupling agent include epoxy-based, amino-based, mercapto-sulfide-based, and ureido-based silane coupling agents. When these silane coupling agents are added to the anisotropic conductive film 20, adhesion to an inorganic substrate such as a glass substrate can be improved.
 また、無機フィラーは、異方性導電フィルム20の流動性及び膜強度を調整するための添加剤である。無機フィラーの種類も特に制限されない。無機フィラーとしては、例えば、シリカ、タルク、酸化チタン、炭酸カルシウム、酸化マグネシウム等が挙げられる。 The inorganic filler is an additive for adjusting the fluidity and film strength of the anisotropic conductive film 20. The kind of inorganic filler is not particularly limited. Examples of the inorganic filler include silica, talc, titanium oxide, calcium carbonate, and magnesium oxide.
 <2.異方性導電接続方法>
 次に、図1~図10に基づいて、本実施形態に係る異方性導電接続方法について説明する。なお、以下の説明では、ベース基板10上の第1の端子11と、フレキシブル基板40上の第2の端子41とを異方性導電接続する場合を一例として、異方性導電接続方法を説明する。ベース基板10は第1の電子部品の一例であり、フレキシブル基板40は第2の電子部品の一例である。もちろん、これらの電子部品は基板にかぎられない。例えば、第2の電子部品は、第2の端子列として複数のバンプが形成されたICチップ等であってもよい。
<2. Anisotropic conductive connection method>
Next, the anisotropic conductive connection method according to the present embodiment will be described with reference to FIGS. In the following description, the anisotropic conductive connection method will be described by taking as an example the case where the first terminal 11 on the base substrate 10 and the second terminal 41 on the flexible substrate 40 are connected by anisotropic conductive. To do. The base substrate 10 is an example of a first electronic component, and the flexible substrate 40 is an example of a second electronic component. Of course, these electronic components are not limited to the substrate. For example, the second electronic component may be an IC chip or the like on which a plurality of bumps are formed as the second terminal row.
 まず、図1に示すように、試料台100上にベース基板10を搭載する。ここで、ベース基板10の種類は特に制限されない。ベース基板10の種類としては、例えばガラス基板、リジッド基板、及びセラミック基板等が挙げられる。ガラス基板は透明な基板である。なお、ガラス基板の表面には何らかの膜(酸化膜)等が形成され、この膜が発色している場合がある。この場合、膜の色をガラス基板の色とみなしてもよい。リジッド基板及びセラミック基板は、それらの材質によって様々な有彩色、無彩色で着色されている場合がある。例えば、リジッド基板は乳白色で着色されている場合がある。セラミック基板は茶色(艶消し茶色)で着色されている場合がある。 First, as shown in FIG. 1, a base substrate 10 is mounted on a sample table 100. Here, the type of the base substrate 10 is not particularly limited. Examples of the base substrate 10 include a glass substrate, a rigid substrate, and a ceramic substrate. The glass substrate is a transparent substrate. Note that a film (oxide film) or the like is formed on the surface of the glass substrate, and this film may be colored. In this case, the color of the film may be regarded as the color of the glass substrate. Rigid substrates and ceramic substrates may be colored in various chromatic and achromatic colors depending on their materials. For example, the rigid substrate may be colored milky white. The ceramic substrate may be colored brown (matte brown).
 ここで、ベース基板10がセラミック基板となる場合、ベース基板10には比較的高価な電子部品が搭載される場合が多い。例えば、セラミック基板は、カメラモジュールの基板として使用されるが、カメラモジュールを構成する電子部品は高価な物が多い。このため、ベース基板10がセラミック基板となる場合、不良の発生頻度はなるべく少なくする必要がある。すなわち、異方性導電フィルム20の仮圧着、第2の端子41の異方性導電フィルム20への本圧着はより正確かつ確実に行われる必要がある。この点、本実施形態では、異方性導電フィルム20が正しい位置に仮圧着されていることをより正確に確認することができる。さらに、ベース基板10とフレキシブル基板40とが異方性導電接続されていることをより正確に確認することができる。したがって、ベース基板10がセラミック基板となる場合、本実施形態による効果がより顕著に現れる。 Here, when the base substrate 10 is a ceramic substrate, a relatively expensive electronic component is often mounted on the base substrate 10. For example, a ceramic substrate is used as a substrate for a camera module, but many electronic components constituting the camera module are expensive. For this reason, when the base substrate 10 is a ceramic substrate, it is necessary to reduce the frequency of occurrence of defects as much as possible. That is, the temporary pressure bonding of the anisotropic conductive film 20 and the main pressure bonding of the second terminal 41 to the anisotropic conductive film 20 need to be performed more accurately and reliably. In this respect, in the present embodiment, it can be confirmed more accurately that the anisotropic conductive film 20 is temporarily press-bonded at a correct position. Furthermore, it can be confirmed more accurately that the base substrate 10 and the flexible substrate 40 are anisotropically conductively connected. Therefore, when the base substrate 10 is a ceramic substrate, the effect according to the present embodiment appears more remarkably.
 また、ベース基板10上には、第1の端子11及び第1の配線パターン12が設けられている。第1の端子11は、ベース基板10上に複数設けられる。第1の端子11同士は互いに平行になっており、複数の第1の端子11によって第1の端子列が形成される。 Further, the first terminal 11 and the first wiring pattern 12 are provided on the base substrate 10. A plurality of first terminals 11 are provided on the base substrate 10. The first terminals 11 are parallel to each other, and a plurality of first terminals 11 form a first terminal row.
 第1の端子11を構成する材料は、導電性を有するものであれば特に制限されない。第1の端子11を構成する材料としては、例えば、アルミニウム、銀、ニッケル、銅、および金などの金属、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化インジウム、導電性酸化スズ、アンチモンスズ酸化物(ATO)、および導電性酸化亜鉛などの導電性金属酸化物、ポリアニリン、ポリピロール、およびポリチオフェンなどの導電性高分子などが挙げられる。第1の端子11を構成する金属は、各種金属によってめっきされていてもよい。例えば後述する実施例では、金及びニッケルでめっきされた銅からなる第1の端子11が形成されている。この場合、第1の端子11は金色に着色されることになる。 The material constituting the first terminal 11 is not particularly limited as long as it has conductivity. Examples of the material constituting the first terminal 11 include metals such as aluminum, silver, nickel, copper, and gold, indium tin oxide (ITO), indium zinc oxide (IZO), indium oxide, conductive tin oxide, Examples thereof include conductive metal oxides such as antimony tin oxide (ATO) and conductive zinc oxide, and conductive polymers such as polyaniline, polypyrrole, and polythiophene. The metal constituting the first terminal 11 may be plated with various metals. For example, in the embodiment described later, the first terminal 11 made of copper plated with gold and nickel is formed. In this case, the first terminal 11 is colored in gold.
 第1の配線パターン12は、第1の端子11から伸びる配線パターンであり、ベース基板10上に設けられる。第1の配線パターン12を構成する材料は、第1の端子11と同様であれば良い。第1の端子11及び第1の配線パターン12は、それらの材質によって様々な有彩色、無彩色で着色されている。例えば、第1の端子11及び第1の配線パターン12は、金色に着色されている場合がある。 The first wiring pattern 12 is a wiring pattern extending from the first terminal 11 and is provided on the base substrate 10. The material constituting the first wiring pattern 12 may be the same as that of the first terminal 11. The first terminal 11 and the first wiring pattern 12 are colored with various chromatic colors and achromatic colors depending on their materials. For example, the first terminal 11 and the first wiring pattern 12 may be colored in gold.
 また、ベース基板10には、図3に示すように、アライメントマーク10aが描かれている。アライメントマーク10aは、異方性導電フィルム20の仮貼り位置及びフレキシブル基板40の設置位置の目安を示すマークである。したがって、図3では図示を省略しているが、アライメントマーク10a内に第1の端子列が配置されている。そして、本実施形態では、アライメントマーク10aの内側にフレキシブル基板40の先端部を設置する。したがって、異方性導電フィルム20もこの位置に仮圧着される。アライメントマーク10aは、様々な有彩色、無彩色で着色されている。例えば、アライメントマーク10aは、ベース基板10がリジッド基板またはセラミック基板となる場合、金色に着色されている場合がある。また、アライメントマーク10aは、ベース基板10がガラス基板となる場合、銀色に着色されている場合がある。 Further, as shown in FIG. 3, an alignment mark 10a is drawn on the base substrate 10. The alignment mark 10 a is a mark that indicates a rough indication of the temporary attachment position of the anisotropic conductive film 20 and the installation position of the flexible substrate 40. Therefore, although not shown in FIG. 3, the first terminal row is arranged in the alignment mark 10a. And in this embodiment, the front-end | tip part of the flexible substrate 40 is installed inside the alignment mark 10a. Therefore, the anisotropic conductive film 20 is also temporarily pressure-bonded at this position. The alignment mark 10a is colored with various chromatic colors and achromatic colors. For example, the alignment mark 10a may be colored gold when the base substrate 10 is a rigid substrate or a ceramic substrate. The alignment mark 10a may be colored silver when the base substrate 10 is a glass substrate.
 ついで、図2及び図3に示すように、アライメントマーク10a内に本実施形態に係る異方性導電フィルム20を仮貼りする。ここで、アライメントマーク10a内には第1の端子列が配置されているので、異方性導電フィルム20は、第1の端子列上に仮貼りされる。また、異方性導電フィルム20には、基材フィルム30が貼り付けられている。したがって、ここでは、異方性導電フィルム20の一方の面にはPET(ポリエチレンテレフタレート)フィルム等の基材フィルム30が貼り付けられている。そこで、異方性導電フィルム20の他方の面をアライメントマーク10a内に仮貼りする。ここで、基材フィルム30は、異方性導電フィルム20を支持するものであり、例えば、PET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methylpentene-1)、PTFE(Polytetrafluoroethylene)等にシリコーン等の剥離剤を塗布したものである。基材フィルム30は、異方性導電フィルム20の乾燥を防ぐとともに、異方性導電フィルム20の形状を維持する。 Then, as shown in FIGS. 2 and 3, the anisotropic conductive film 20 according to the present embodiment is temporarily attached in the alignment mark 10a. Here, since the first terminal row is arranged in the alignment mark 10a, the anisotropic conductive film 20 is temporarily attached on the first terminal row. A base film 30 is attached to the anisotropic conductive film 20. Therefore, here, a base film 30 such as a PET (polyethylene terephthalate) film is attached to one surface of the anisotropic conductive film 20. Therefore, the other surface of the anisotropic conductive film 20 is temporarily attached in the alignment mark 10a. Here, the base film 30 supports the anisotropic conductive film 20, and includes, for example, PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methylpentene-1), PTFE ( Polytetrafluoroethylene) or the like is applied with a release agent such as silicone. The base film 30 maintains the shape of the anisotropic conductive film 20 while preventing the anisotropic conductive film 20 from drying.
 ついで、図4に示すように、緩衝材200を基材フィルム30上に設置する。ついで、ヒートツール等の加熱加圧部材300を緩衝材200に押し当てることで、異方性導電フィルム20を第1の端子列に仮圧着する。仮圧着時の加圧温度、加圧力は例えば60~80℃、1~2MPaである。加圧時間は異方性導電フィルム20の材質等によって適宜調整されるが、少なくとも異方性導電フィルム20がベース基板10上に固定される程度の値に設定される。加圧温度、すなわち加熱加圧部材の温度は、後述する本圧着時の加圧温度よりも低い。このような仮圧着時の条件下では、異方性導電フィルム20の着色状態(色相、色の濃淡、透過性等)は変化しない。 Next, as shown in FIG. 4, the buffer material 200 is installed on the base film 30. Next, the anisotropic conductive film 20 is temporarily bonded to the first terminal row by pressing a heating and pressing member 300 such as a heat tool against the buffer material 200. The pressurizing temperature and the applied pressure at the time of temporary pressure bonding are, for example, 60 to 80 ° C. and 1 to 2 MPa. The pressurization time is appropriately adjusted depending on the material of the anisotropic conductive film 20 or the like, but is set to a value that allows at least the anisotropic conductive film 20 to be fixed on the base substrate 10. The pressurization temperature, that is, the temperature of the heating and pressurizing member is lower than the pressurization temperature at the time of final press-bonding described later. Under such conditions at the time of temporary pressure bonding, the colored state (hue, shade of color, transparency, etc.) of the anisotropic conductive film 20 does not change.
 ついで、図5及び図6に示すように、基材フィルム30を異方性導電フィルム20から剥離する。ここで、異方性導電フィルム20の着色状態は仮圧着により変化していない。したがって、異方性導電フィルム20は、仮圧着後も十分に着色されている(色あせ等がない)。このため、異方性導電フィルム20が正しい位置、すなわちアライメントマーク10a内に仮圧着されていることをより正確に確認することができる。 Next, as shown in FIGS. 5 and 6, the base film 30 is peeled from the anisotropic conductive film 20. Here, the colored state of the anisotropic conductive film 20 is not changed by the temporary pressure bonding. Therefore, the anisotropic conductive film 20 is sufficiently colored even after provisional pressure bonding (no fading or the like). For this reason, it can confirm more correctly that the anisotropic conductive film 20 is temporarily crimped | bonded in the correct position, ie, the alignment mark 10a.
 ここで、下地部材(例えばベース基板10)が有彩色に着色されている場合、異方性導電フィルム20は、下地部材の色と同系色で着色されていることが好ましい。また、下地部材が全て透明または無彩色で着色されている場合、異方性導電フィルム20の色はあざやかな色で着色されていることが好ましい。異方性導電フィルム20の色と下地部材の色との詳細な関係は上述したとおりである。異方性導電フィルム20を色をこのように選択した場合、異方性導電フィルム20の視認性が向上する。後述する実施例で示されるように、異方性導電フィルム20を直接視認した場合と、CCDカメラを介して視認した(すなわちCCDカメラによって得られた撮像画像を視認した)場合との双方において、異方性導電フィルム20の視認性が向上する。また、異方性導電フィルム20の色が下地部材の色と同系色となる場合、観察者の疲労が低減されることも期待できる。 Here, when the base member (for example, the base substrate 10) is colored in a chromatic color, the anisotropic conductive film 20 is preferably colored in the same color as the color of the base member. Moreover, when all the base members are colored with a transparent or achromatic color, it is preferable that the anisotropic conductive film 20 is colored with a vivid color. The detailed relationship between the color of the anisotropic conductive film 20 and the color of the base member is as described above. When the color of the anisotropic conductive film 20 is selected in this way, the visibility of the anisotropic conductive film 20 is improved. As shown in the examples described later, both when the anisotropic conductive film 20 is directly viewed and when viewed through the CCD camera (that is, when the captured image obtained by the CCD camera is viewed), The visibility of the anisotropic conductive film 20 is improved. Further, when the color of the anisotropic conductive film 20 is similar to the color of the base member, it can be expected that the fatigue of the observer is reduced.
 また、近年では、異方性導電フィルム20が正しい位置に仮圧着されていることを自動認識する技術も検討されている。この技術では、CCDカメラ等を用いて異方性導電フィルム20及びその周辺を撮影し、撮像画像を自動認識装置に認識させる。そして、自動認識装置は、撮像画像に基づいて、異方性導電フィルム20が正しい位置に仮圧着されているかを判定する。異方性導電フィルム20の色が下地部材の色と同系色となる場合、自動認識の精度が向上することが期待される。 In recent years, a technique for automatically recognizing that the anisotropic conductive film 20 has been temporarily press-bonded at a correct position has been studied. In this technique, an anisotropic conductive film 20 and its periphery are photographed using a CCD camera or the like, and the captured image is recognized by an automatic recognition device. And an automatic recognition apparatus determines whether the anisotropic conductive film 20 is temporarily crimped | bonded to the correct position based on a captured image. When the color of the anisotropic conductive film 20 is similar to the color of the base member, it is expected that the accuracy of automatic recognition is improved.
 ついで、図7及び図8に示すように、異方性導電フィルム20上にフレキシブル基板40の先端部を搭載する。より具体的には、フレキシブル基板40の先端部をアライメントマーク10a内に搭載する。アライメントマーク10a内には、第1の端子列及び異方性導電フィルム20が配置されている。したがって、フレキシブル基板40は、第2の端子列が第1の端子列に対向するように位置決めされた上で、異方性導電フィルム20上に搭載される。 Next, as shown in FIGS. 7 and 8, the tip of the flexible substrate 40 is mounted on the anisotropic conductive film 20. More specifically, the tip of the flexible substrate 40 is mounted in the alignment mark 10a. A first terminal row and an anisotropic conductive film 20 are arranged in the alignment mark 10a. Therefore, the flexible substrate 40 is mounted on the anisotropic conductive film 20 after being positioned so that the second terminal row faces the first terminal row.
 ここで、フレキシブル基板40は、可撓性および柔軟性が高い材料で形成された基板である。フレキシブル基板40を構成する材料は特に制限されず、公知のフレキシブル基板に適用される材料は本実施形態にも適用可能である。フレキシブル基板40を構成する材料としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルサルフォン、ポリエチレン、ポリカーボネート、ポリイミド、およびアクリル樹脂などの樹脂の他、薄膜化された金属またはガラス等が挙げられる。 Here, the flexible substrate 40 is a substrate formed of a material having high flexibility and flexibility. The material which comprises the flexible substrate 40 is not restrict | limited in particular, The material applied to a well-known flexible substrate is applicable also to this embodiment. As a material constituting the flexible substrate 40, for example, a resin such as polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyethylene, polycarbonate, polyimide, and an acrylic resin, a thin metal or glass, and the like can be given. .
 第2の端子41は、フレキシブル基板40の先端部に複数設けられる。第2の端子41同士は互いに平行になっており、複数の第2の端子41によって第2の端子列が形成される。第2の端子41の各々は、第1の端子11と異方性導電接続される。すなわち、第1の端子列と第2の端子列とは異方性導電接続される。第2の端子41を構成する材料は、第1の端子11と同様であれば良い。 A plurality of second terminals 41 are provided at the tip of the flexible substrate 40. The second terminals 41 are parallel to each other, and a plurality of second terminals 41 form a second terminal row. Each of the second terminals 41 is anisotropically conductively connected to the first terminal 11. That is, the first terminal row and the second terminal row are anisotropically conductively connected. The material constituting the second terminal 41 may be the same as that of the first terminal 11.
 第2の配線パターン42は、第2の端子列から伸びる配線パターンであり、ベース基板10上に設けられる。第2の配線パターン42を構成する材料は、第1の端子11と同様であれば良い。 The second wiring pattern 42 is a wiring pattern extending from the second terminal row, and is provided on the base substrate 10. The material constituting the second wiring pattern 42 may be the same as that of the first terminal 11.
 ついで、図9に示すように、第2の端子列を異方性導電フィルム20に本圧着する。具体的には、緩衝材200をフレキシブル基板40上に設置する。ついで、加熱加圧部材300を緩衝材200に押し当てることで、第2の端子列を異方性導電フィルム20上に本圧着する。本圧着時の加圧温度、加圧力は、異方性導電フィルム等の材質によって変動するが、少なくとも120~190℃、0.5~8MPaの範囲内で設定される。加圧時間は異方性導電フィルム20の材質等によって適宜調整されるが、少なくとも異方性導電フィルム20が流動、硬化する程度の値に設定される。 Next, as shown in FIG. 9, the second terminal row is finally bonded to the anisotropic conductive film 20. Specifically, the buffer material 200 is installed on the flexible substrate 40. Next, the second terminal row is finally pressure-bonded onto the anisotropic conductive film 20 by pressing the heating and pressing member 300 against the buffer material 200. The pressurizing temperature and the applied pressure during the main press bonding vary depending on the material such as the anisotropic conductive film, but are set at least in the range of 120 to 190 ° C. and 0.5 to 8 MPa. The pressing time is appropriately adjusted depending on the material of the anisotropic conductive film 20 or the like, but is set to a value at least that allows the anisotropic conductive film 20 to flow and cure.
 これにより、異方性導電フィルム20の一部は、第1の端子列及び第2の端子列の間に残留し、残りは第1の端子11同士の間、第2の端子41同士の間、または第1の端子列及び第2の端子列の外側に流動する。その後、異方性導電フィルム20は硬化し、接着剤層20aとなる。接着剤層20aのうち、第1の端子列及び第2の端子列の間に残留した部分は、第1の端子列と第2の端子列とを導通するが、他の部分は絶縁性を維持している。このため、例えば、第1の端子11同士、及び第2の端子41同士は絶縁されている。したがって、接着剤層20aは、第1の端子11と第2の端子41とを異方性導電接続する。すなわち、接着剤層20aは、ベース基板10とフレキシブル基板40とを異方性導電接続する。接着剤層20aのうち、第1の端子列及び第2の端子列の外側に流動した部分、いわゆるはみ出し部分は、観察者による観察の対象となる。はみ出し部分が形成された様子を図11に示す。 Thereby, a part of the anisotropic conductive film 20 remains between the first terminal row and the second terminal row, and the rest is between the first terminals 11 and between the second terminals 41. Or flow outside the first terminal row and the second terminal row. Thereafter, the anisotropic conductive film 20 is cured to become an adhesive layer 20a. Of the adhesive layer 20a, the portion remaining between the first terminal row and the second terminal row conducts the first terminal row and the second terminal row, but the other portions have insulating properties. Is maintained. For this reason, for example, the first terminals 11 and the second terminals 41 are insulated from each other. Therefore, the adhesive layer 20a makes an anisotropic conductive connection between the first terminal 11 and the second terminal 41. That is, the adhesive layer 20a makes an anisotropic conductive connection between the base substrate 10 and the flexible substrate 40. Of the adhesive layer 20a, portions that flow to the outside of the first terminal row and the second terminal row, so-called protruding portions, are objects to be observed by the observer. A state in which the protruding portion is formed is shown in FIG.
 異方性導電フィルム20は、本圧着によって透過性が増加する。すなわち、異方性導電フィルム20の色が消失する。したがって、はみ出し部分の色が消失したことを確認することで、本圧着が予め設定された条件で行われたことを確認することができる。さらに、はみ出し部分の透過性が増加するので、はみ出し部分の裏側を十分に視認可能となる。図11に示す例では、はみ出し部分の裏側に存在するアライメントマーク10aを十分に視認可能となる。このため、本圧着後にフレキシブル基板40の搭載位置が本圧着後も適切に維持されていることを容易に確認することができる。 The permeability of the anisotropic conductive film 20 is increased by the main pressure bonding. That is, the color of the anisotropic conductive film 20 disappears. Therefore, by confirming that the color of the protruding portion has disappeared, it is possible to confirm that the main press bonding has been performed under preset conditions. Furthermore, since the permeability of the protruding portion increases, the back side of the protruding portion can be sufficiently visually confirmed. In the example shown in FIG. 11, the alignment mark 10a existing on the back side of the protruding portion can be sufficiently visually confirmed. For this reason, it can be easily confirmed that the mounting position of the flexible substrate 40 is properly maintained after the main pressure bonding.
 以上の工程により、ベース基板10とフレキシブル基板40とが異方性導電接続された(より詳細には、第1の端子列と第2の端子列とが異方性導電接続された)異方性導電接続構造体を作製することができる。以下、異方性導電接続構造体を単に「接続構造体」とも称する。接続構造体は、図10に示すように、ベース基板10と、第1の端子列と、第1の配線パターン12と、フレキシブル基板40と、第2の端子41と、第2の配線パターン42と、接着剤層20aとを備える。 Through the above steps, the base substrate 10 and the flexible substrate 40 are anisotropically conductively connected (more specifically, the first terminal row and the second terminal row are anisotropically conductively connected). Conductive conductive structure can be produced. Hereinafter, the anisotropic conductive connection structure is also simply referred to as “connection structure”. As shown in FIG. 10, the connection structure includes a base substrate 10, a first terminal row, a first wiring pattern 12, a flexible substrate 40, a second terminal 41, and a second wiring pattern 42. And an adhesive layer 20a.
(異方性導電フィルムの作製)
 (実施例1)
 フェノキシ樹脂(品名:YP-50、新日鉄住金社製)40質量部、アクリルモノマー(品名:アロニックスM-315、東亞合成社製)15質量部、ウレタンアクリルオリゴマー(品名:アロニックスM1600、東亞合成社製)25質量部、ゴム成分(品名:SG80H、ナガセケムテックス社製)5質量部、リン酸アクリルモノマー(品名:ライトエステルP-1M、共栄社化学社製)1質量部、熱硬化開始剤(品名:カヤエステルHTP-65W、化薬アクゾ社製)3質量部、着色剤(品名:Kayaset Orange A-N、日本化薬社製)0.3質量部、導電性粒子(Ni及びAuでめっきされたアクリル樹脂粒子、粒径10μm)5質量部を混合することで、接着剤組成物を作製した。そして、バーコータを用いて接着剤組成物を厚さ50μmの基材フィルム(PET製、表面剥離処理)に塗工、乾燥することで、厚さ25μmの異方性導電フィルムを得た。カヤエステルHTP-65Wは、ジ-t-ブチルパーオキシヘキサヒドロテレフタレートを含む熱硬化開始剤である。異方性導電フィルムは着色剤によりオレンジ色に着色されていた。
(Preparation of anisotropic conductive film)
(Example 1)
Phenoxy resin (product name: YP-50, manufactured by Nippon Steel & Sumikin Co., Ltd.) 40 parts by mass, acrylic monomer (product name: Aronix M-315, manufactured by Toagosei Co., Ltd.), 15 parts by mass, urethane acrylic oligomer (product name: Aronix M1600, manufactured by Toagosei Co., Ltd.) ) 25 parts by mass, rubber component (product name: SG80H, manufactured by Nagase ChemteX Corporation), 5 parts by mass, phosphoric acid acrylic monomer (product name: light ester P-1M, manufactured by Kyoeisha Chemical Co., Ltd.), 1 part by mass, thermosetting initiator (product name) : Kaya ester HTP-65W, manufactured by Kayaku Akzo Co., Ltd.) 3 parts by mass, Colorant (Product name: Kayase Orange AN, manufactured by Nippon Kayaku Co., Ltd.), 0.3 parts by mass, conductive particles (plated with Ni and Au) The adhesive composition was prepared by mixing 5 parts by mass of acrylic resin particles having a particle diameter of 10 μm. Then, the adhesive composition was applied to a base film (made of PET, surface peeling treatment) having a thickness of 50 μm by using a bar coater and dried to obtain an anisotropic conductive film having a thickness of 25 μm. Kayaester HTP-65W is a thermosetting initiator containing di-t-butylperoxyhexahydroterephthalate. The anisotropic conductive film was colored orange with a colorant.
 (実施例2)
 着色剤を「Kayaset Blue A-2R」(日本化薬社製)に変更した他は実施例1と同様の処理を行うことで、実施例1と同一厚さの異方性導電フィルムを得た。この異方性導電フィルムは着色剤により青色に着色されていた。
(Example 2)
An anisotropic conductive film having the same thickness as in Example 1 was obtained by performing the same treatment as in Example 1 except that the colorant was changed to “Kayaset Blue A-2R” (manufactured by Nippon Kayaku Co., Ltd.). . This anisotropic conductive film was colored blue with a colorant.
 (実施例3)
 着色剤を「Kayaset Green A-B」(日本化薬社製)に変更した他は実施例1と同様の処理を行うことで、実施例1と同一厚さの異方性導電フィルムを得た。この異方性導電フィルムは着色剤により緑色に着色されていた。
(Example 3)
An anisotropic conductive film having the same thickness as in Example 1 was obtained by performing the same treatment as in Example 1 except that the colorant was changed to “Kayaset Green AB” (manufactured by Nippon Kayaku Co., Ltd.). . This anisotropic conductive film was colored green with a colorant.
 (比較例1)
 熱硬化開始剤を「ナイパーBW」(日本油脂社製)に変更した他は実施例1と同様の処理を行うことで、実施例1と同一厚さの異方性導電フィルムを得た。「ナイパーBW」は、ベンゾイルパーオキサイドを含む熱硬化開始剤である。この異方性導電フィルムは、着色剤によりオレンジ色に着色されていた。
(Comparative Example 1)
An anisotropic conductive film having the same thickness as that of Example 1 was obtained by performing the same treatment as in Example 1 except that the thermosetting initiator was changed to “NIPPER BW” (manufactured by NOF Corporation). “Niper BW” is a thermosetting initiator containing benzoyl peroxide. This anisotropic conductive film was colored orange with a colorant.
 (評価用接続構造体の作製)
 (実施例4)
 ベース基板として、ITOパターンガラスを用意した。このITOパターンガラスには、ITOからなる第1の端子が200μmピッチで形成されている。また、第1の端子の高さは2000Åであり、ガラス部分の厚さは0.4mmであった。また、第1の端子列の周辺には、銀色のアライメントマークが描かれている。アライメントマークの形状は図3に示すものであった。したがって、ベース基板及び第1の端子列は透明であり、アライメントマークは銀色(無彩色)であった。
(Preparation of connection structure for evaluation)
Example 4
ITO pattern glass was prepared as a base substrate. In the ITO pattern glass, first terminals made of ITO are formed at a pitch of 200 μm. Moreover, the height of the 1st terminal was 2000 mm, and the thickness of the glass part was 0.4 mm. A silver alignment mark is drawn around the first terminal row. The shape of the alignment mark was as shown in FIG. Therefore, the base substrate and the first terminal row were transparent, and the alignment mark was silver (achromatic).
 また、フレキシブル基板として、ポリイミド製のフレキシブル基板を準備した。フレキシブル基板の厚さは25μmであった。また、このフレキシブル基板には、金及びニッケルでめっきされた銅からなる第2の端子が200μmピッチで形成されている。第2の端子の高さは12μmであった。また、フレキシブル基板は長尺な基板であり、その先端部に第2の端子列が配置されている。また、異方性導電接続は、大橋製作所社製CCM(カメラモジュール)用ACFボンダを用いて行った。このボンダはCCDカメラを内蔵しており、CCDカメラを用いて各部材を撮影することができる。また、観察者は、CCDカメラの撮像画像を視認することができる。 Also, a flexible substrate made of polyimide was prepared as a flexible substrate. The thickness of the flexible substrate was 25 μm. In addition, second terminals made of copper plated with gold and nickel are formed on the flexible substrate at a pitch of 200 μm. The height of the second terminal was 12 μm. In addition, the flexible substrate is a long substrate, and the second terminal row is disposed at the tip portion thereof. The anisotropic conductive connection was performed using an ACF bonder for CCM (camera module) manufactured by Ohashi Seisakusho. This bonder has a built-in CCD camera, and each member can be photographed using the CCD camera. Moreover, the observer can visually recognize the captured image of the CCD camera.
 ついで、試料台にベース基板を設置した。そして、アライメントマーク内に実施例1で作製した異方性導電フィルムを仮貼りした。ここで、異方性導電フィルムの一方の面には基材フィルムが貼り付けられているので、他方の面をアライメントマーク内に貼り付けた。 Next, a base substrate was installed on the sample stage. And the anisotropic conductive film produced in Example 1 was temporarily stuck in the alignment mark. Here, since the base film was affixed on one surface of the anisotropic conductive film, the other surface was affixed in the alignment mark.
 ついで、緩衝材として厚さ200μmのシリコンゴム膜を基材フィルム上に設置した。ついで、幅2.0mmのヒートツールを緩衝材に押し当てることで、異方性導電フィルムを第1の端子列に仮圧着した。仮圧着時の加圧温度、加圧力、加圧時間は、50℃、1MPa、7秒とした。ヒートツールによる加圧位置は、第1の端子列の直上とした。ついで、基材フィルムを異方性導電フィルムから剥離した。ついで、仮圧着時の異方性導電フィルムの視認性を評価した。具体的な評価方法は後述する。 Next, a silicon rubber film having a thickness of 200 μm was placed on the base film as a buffer material. Subsequently, the anisotropic conductive film was temporarily pressure-bonded to the first terminal row by pressing a heat tool having a width of 2.0 mm against the buffer material. The pressurizing temperature, pressurizing pressure, and pressurizing time at the time of temporary press bonding were 50 ° C., 1 MPa, and 7 seconds. The pressure position by the heat tool was directly above the first terminal row. Subsequently, the base film was peeled from the anisotropic conductive film. Subsequently, the visibility of the anisotropic conductive film at the time of temporary pressure bonding was evaluated. A specific evaluation method will be described later.
 ついで、異方性導電フィルム上にフレキシブル基板の先端部を搭載した。より具体的には、フレキシブル基板の先端部をアライメントマーク内に搭載した。ついで、緩衝材として厚さ200μmのシリコンゴム膜をフレキシブル基板上に設置した。ついで、幅2.0mmのヒートツールを緩衝材に押し当てることで、第2の端子列を異方性導電フィルム上に本圧着した。すなわち、第1の端子列と第2の端子列との間に接着剤層を形成した。本圧着時の加圧温度、加圧力、加圧時間は、140℃、2MPa、7秒とした。そして、本圧着後の接着剤層の視認性を評価した。具体的な評価方法は後述する。そして、上記の試験を100回試行した。 Next, the tip of the flexible substrate was mounted on the anisotropic conductive film. More specifically, the tip of the flexible substrate was mounted in the alignment mark. Next, a silicon rubber film having a thickness of 200 μm was placed on the flexible substrate as a buffer material. Next, the second terminal row was pressure-bonded onto the anisotropic conductive film by pressing a heat tool having a width of 2.0 mm against the buffer material. That is, an adhesive layer was formed between the first terminal row and the second terminal row. The pressurizing temperature, pressurizing pressure, and pressurizing time at the time of the main press bonding were 140 ° C., 2 MPa, and 7 seconds. And the visibility of the adhesive bond layer after this press-fit was evaluated. A specific evaluation method will be described later. And said test was tried 100 times.
 (実施例5)
 ベース基板として、艶消し茶色のセラミック基板を用意した。このセラミック基板には、金及びニッケルでめっきされた銅からなる第1の端子が200μmピッチで形成されている。また、第1の端子の高さは10μmであり、セラミック基板の厚さは0.4mmであった。また、第1の端子列の周辺には、金色のアライメントマークが描かれている。アライメントマークの形状は図3に示すものであった。したがって、セラミック基板の色は艶消し茶色(有彩色)であり、第1の端子列及びアライメントマークの色は金色(有彩色)であった。このベース基板を用いて実施例4と同じ処理を行った。
(Example 5)
A matte brown ceramic substrate was prepared as a base substrate. On the ceramic substrate, first terminals made of copper plated with gold and nickel are formed at a pitch of 200 μm. The height of the first terminal was 10 μm, and the thickness of the ceramic substrate was 0.4 mm. A gold alignment mark is drawn around the first terminal row. The shape of the alignment mark was as shown in FIG. Therefore, the color of the ceramic substrate was matte brown (chromatic color), and the color of the first terminal row and the alignment mark was gold (chromatic color). The same processing as in Example 4 was performed using this base substrate.
 (実施例6)
 実施例2で作製した異方性導電フィルムを用いた他は実施例5と同様の処理を行った。
(Example 6)
The same treatment as in Example 5 was performed except that the anisotropic conductive film produced in Example 2 was used.
 (実施例7)
 実施例3で作製した異方性導電フィルムを用いた他は実施例5と同様の処理を行った。
(Example 7)
The same treatment as in Example 5 was performed except that the anisotropic conductive film produced in Example 3 was used.
 (実施例8)
 ベース基板として、乳白色のリジッド基板を用意した。このリジッド基板には、金及びニッケルでめっきされた銅からなる第1の端子が200μmピッチで形成されている。また、第1の端子の高さは35μmであり、リジッド基板の厚さは0.95mmであった。また、第1の端子列の周辺には、金色のアライメントマークが描かれている。アライメントマークの形状は図3に示すものであった。したがって、セラミック基板の色は乳白色(無彩色)であり、第1の端子列及びアライメントマークの色は金色(有彩色)であった。このベース基板を用いて実施例4と同じ処理を行った。
(Example 8)
A milky white rigid substrate was prepared as a base substrate. On the rigid substrate, first terminals made of copper plated with gold and nickel are formed at a pitch of 200 μm. The height of the first terminal was 35 μm, and the thickness of the rigid substrate was 0.95 mm. A gold alignment mark is drawn around the first terminal row. The shape of the alignment mark was as shown in FIG. Therefore, the color of the ceramic substrate was milky white (achromatic color), and the color of the first terminal row and the alignment mark was gold (chromatic color). The same processing as in Example 4 was performed using this base substrate.
 (比較例2)
 比較例1で作製した異方性導電フィルムを用いた他は実施例4と同様の処理を行った。
(Comparative Example 2)
The same treatment as in Example 4 was performed except that the anisotropic conductive film produced in Comparative Example 1 was used.
 (比較例3)
 実施例5のセラミック基板を用いた他は比較例2と同様の処理を行った。
(Comparative Example 3)
The same treatment as in Comparative Example 2 was performed except that the ceramic substrate of Example 5 was used.
 (比較例4)
 実施例8のリジッド基板を用いた他は比較例2と同様の処理を行った。
(Comparative Example 4)
The same treatment as in Comparative Example 2 was performed except that the rigid substrate of Example 8 was used.
 (視認性の評価)
 仮圧着時の評価では、仮圧着された異方性導電フィルムを直接視認及びCCDを介して視認し、異方性導電フィルムがアライメントマーク内に存在することを1秒以内に判定できたか否かを判定した。そして、100回の試行の全てで上記判定を行えた場合を「A」と評価し、100回中90回以上の試行で上記判定を行えた場合を「B」と評価し、100回中90回未満の試行で上記判定を行えた場合を「C」と評価した。
(Visibility evaluation)
In the evaluation at the time of pre-bonding, whether or not the pre-bonded anisotropic conductive film was directly visually confirmed and confirmed via the CCD, and whether or not the anisotropic conductive film was present in the alignment mark could be determined within 1 second. Was judged. The case where the above determination can be made in all 100 trials is evaluated as “A”, and the case where the above determination can be made in 90 or more trials out of 100 is evaluated as “B”. The case where the said determination was able to be performed by trial less than times was evaluated as "C".
 本圧着後の評価では、接着剤層のはみ出し部分を直接視認及びCCDを介して視認した。そして、接着剤層のはみ出し部分の色が消失していること、及びフレキシブル基板がアライメントマーク内に搭載されていることを1秒以内に全て判定できたか否かを判定した。はみ出し部分の色が消失していれば、本圧着が予め設定された条件通りに行われているといえる。さらに、フレキシブル基板がアライメントマーク内に搭載されていれば、フレキシブル基板の搭載位置が適切な位置に維持されているといえる。したがって、上記の事項を確認することで、ベース基板とフレキシブル基板とが異方性導電接続されていることを確認できる。そして、100回中95回の試行の全てで上記判定を行えた場合を「A」と評価し、100回中90回以上の試行で上記判定を行えた場合を「B」と評価し、100回中90回未満の試行で上記判定を行えた場合を「C」と評価した。評価結果を表1にまとめて示す。 In the evaluation after the main pressure bonding, the protruding portion of the adhesive layer was directly visually confirmed and visually confirmed via the CCD. Then, it was determined whether or not the color of the protruding portion of the adhesive layer had disappeared and whether or not the flexible substrate was mounted within the alignment mark could all be determined within 1 second. If the color of the protruding portion disappears, it can be said that the main press bonding is performed according to preset conditions. Furthermore, if the flexible substrate is mounted in the alignment mark, it can be said that the mounting position of the flexible substrate is maintained at an appropriate position. Therefore, by confirming the above items, it can be confirmed that the base substrate and the flexible substrate are anisotropically conductively connected. Then, the case where the above determination can be made in all 95 trials out of 100 is evaluated as “A”, and the case where the above determination is made in 90 or more trials out of 100 is evaluated as “B”. The case where the above determination could be made with less than 90 trials was evaluated as “C”. The evaluation results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例4~8では、いずれも良好な結果が得られた。すなわち、実施例4~8では、仮圧着後も異方性導電フィルムの色が十分に残っていたので、異方性導電フィルムを容易に視認することができた。また、本圧着後は接着剤層の色が十分に消失し、接着剤層の透過性が増加していた。このため、本圧着後に接着剤層の色が消失していることを容易に確認できた。この結果、本圧着が予め設定された条件通りに行われていることを容易に確認できた。さらに、はみ出し部分の裏側を容易に視認することができた。このため、フレキシブル基板の搭載位置が適切な位置に維持されていることを容易に確認することができた。また、直接視認であってもCCDを介した視認であっても同様の結果が得られた。したがって、CCDを用いた自動認識装置においても、正確な自動認識が可能になることが期待できる。 In Examples 4 to 8, good results were obtained in all cases. That is, in Examples 4 to 8, since the color of the anisotropic conductive film remained sufficiently even after provisional pressure bonding, the anisotropic conductive film could be easily visually confirmed. In addition, the color of the adhesive layer disappeared sufficiently after the main pressure bonding, and the permeability of the adhesive layer was increased. For this reason, it was possible to easily confirm that the color of the adhesive layer had disappeared after the main press bonding. As a result, it was possible to easily confirm that the main pressure bonding was performed in accordance with preset conditions. Furthermore, the back side of the protruding portion could be easily visually confirmed. For this reason, it was possible to easily confirm that the mounting position of the flexible substrate was maintained at an appropriate position. Moreover, the same result was obtained whether it was direct visual recognition or visual recognition via a CCD. Therefore, it can be expected that an automatic recognition apparatus using a CCD can perform accurate automatic recognition.
 ここで、実施例4では、下地部材が透明または無彩色であるのに対し、異方性導電フィルムはあざやかな色(オレンジ色)で着色されている。また、実施例5では、異方性導電フィルムがベース基板の色と同系色で着色されている。実施例8では、ベース基板が乳白色であるのに対し、異方性導電フィルムは、あざやかな色で着色されている。また、異方性導電フィルムの色は、第1の端子の色(金色)と同系色ともなっている。一方、実施例6、7の異方性導電フィルムの色は、下地部材のいずれの色とも別系の色となっている。このため、仮圧着の評価において、実施例4、5、8は、実施例6、7よりも良好な結果が得られている。 Here, in Example 4, the base member is transparent or achromatic, whereas the anisotropic conductive film is colored in a bright color (orange). In Example 5, the anisotropic conductive film is colored in the same color as the base substrate. In Example 8, the base substrate is milky white, while the anisotropic conductive film is colored in a bright color. In addition, the color of the anisotropic conductive film is similar to the color of the first terminal (gold). On the other hand, the colors of the anisotropic conductive films of Examples 6 and 7 are different from those of the base member. For this reason, in the evaluation of provisional pressure bonding, the results of Examples 4, 5, and 8 are better than those of Examples 6 and 7.
 一方、比較例2~4は、仮圧着の評価において、いずれも実施例4~8よりも低い評価が得られた。比較例2~4では、仮圧着時に異方性導電フィルムの色がほとんど消失してしまったため、このような評価となった。なお、本圧着後のはみ出し部分はほぼ透明となっているので、本圧着後の評価は実施例4~8と同様の評価となっている。ただし、異方性導電フィルムの色は本圧着前にすでにほとんど消失しているので、比較例2~4では、本圧着が予め設定された条件通りに行われたか否かを正確に判定することができない。 On the other hand, Comparative Examples 2 to 4 were all evaluated to be lower than Examples 4 to 8 in the evaluation of provisional pressure bonding. In Comparative Examples 2 to 4, since the color of the anisotropic conductive film almost disappeared at the time of temporary pressure bonding, this evaluation was made. Since the protruding portion after the main press-bonding is almost transparent, the evaluation after the main press-fit is the same as in Examples 4 to 8. However, since the color of the anisotropic conductive film has already almost disappeared before the main bonding, in Comparative Examples 2 to 4, it is accurately determined whether or not the main pressing has been performed according to preset conditions. I can't.
 (導通抵抗測定)
 実施例4~8の導通抵抗を測定した。具体的には、接続構造体に電流1mAを流したときの導通抵抗値を4端子法により測定した。測定にはデジタルマルチメータ(横河電機社製)を用いた。この結果、実施例4~8の導通抵抗は、実用上特に特に問題ない値が得られた。
(Conduction resistance measurement)
The conduction resistance of Examples 4 to 8 was measured. Specifically, the conduction resistance value when a current of 1 mA was passed through the connection structure was measured by a four-terminal method. A digital multimeter (manufactured by Yokogawa Electric Corporation) was used for the measurement. As a result, the conduction resistances of Examples 4 to 8 were values that were not particularly problematic in practical use.
 (接着強度測定)
 実施例4~8の接着強度を、引張り試験機(AND社製)を用いて行った。すなわち、接続構造体のベース基板を試料台に保持し、フレキシブル基板を上方から引っ張りあげた。測定速度(引張速度)は50mm/secとした。そして、フレキシブル基板(詳細には第2の端子)が第1の端子から完全に剥がれたときの引張強度を接着強度とした。この結果、実用上特に問題ない値が得られた。
(Adhesive strength measurement)
The adhesive strengths of Examples 4 to 8 were performed using a tensile tester (manufactured by AND). That is, the base substrate of the connection structure was held on the sample stage, and the flexible substrate was pulled up from above. The measurement speed (tensile speed) was 50 mm / sec. The tensile strength when the flexible substrate (specifically, the second terminal) was completely peeled off from the first terminal was defined as the adhesive strength. As a result, a value with no problem in practical use was obtained.
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.
 1   接続構造体
10   ベース基板
11   第1の端子
12   第1の配線パターン
20   異方性導電フィルム
30   基材フィルム
40   フレキシブル基板
41   第2の端子
42   第2の配線パターン
 
 
DESCRIPTION OF SYMBOLS 1 Connection structure 10 Base board 11 1st terminal 12 1st wiring pattern 20 Anisotropic conductive film 30 Base film 40 Flexible board 41 2nd terminal 42 2nd wiring pattern

Claims (5)

  1.  第1の電子部品に設けられる第1の端子列と、第2の電子部品に設けられる第2の端子列とを異方性導電接続する異方性導電接続方法であって、
     前記第1の端子列上に異方性導電フィルムを仮圧着する工程と、
     前記異方性導電フィルム上に前記第2の端子列を本圧着する工程と、を含み、
     前記異方性導電フィルムは着色されており、前記仮圧着時には前記異方性導電フィルムの着色状態が変化せず、前記本圧着時に前記異方性導電フィルムの透過性が増加する、異方性導電接続方法。
    An anisotropic conductive connection method of anisotropically connecting a first terminal row provided in a first electronic component and a second terminal row provided in a second electronic component,
    Temporarily crimping an anisotropic conductive film on the first terminal row;
    And a step of subjecting the second terminal row to the final pressure bonding on the anisotropic conductive film,
    The anisotropic conductive film is colored, the colored state of the anisotropic conductive film does not change during the temporary pressure bonding, and the permeability of the anisotropic conductive film increases during the main pressure bonding. Conductive connection method.
  2.  前記異方性導電フィルムは、前記第1の電子部品、前記第1の端子列、及び前記第1の電子部品に描かれたアライメントマークのいずれかと同系の色で着色されている、請求項1記載の異方性導電接続方法。 The anisotropic conductive film is colored with a color similar to any of the first electronic component, the first terminal row, and an alignment mark drawn on the first electronic component. The anisotropic conductive connection method as described.
  3.  前記第1の電子部品は、透明または無彩色で着色されており、
     前記異方性導電フィルムは、前記第1の端子列及びアライメントマークのいずれかと同系の色で着色されている、請求項2記載の異方性導電接続方法。
    The first electronic component is colored with a transparent or achromatic color,
    The anisotropic conductive connection method according to claim 2, wherein the anisotropic conductive film is colored in a color similar to any one of the first terminal row and the alignment mark.
  4.  前記第1の電子部品は、セラミック基板であることを特徴とする、請求項1~3の何れか1項に記載の異方性導電接続方法。 4. The anisotropic conductive connection method according to claim 1, wherein the first electronic component is a ceramic substrate.
  5.  請求項1~4のいずれか1項に記載の異方性導電接続方法によって作製される、異方性導電接続構造体。
     
     
    An anisotropic conductive connection structure produced by the anisotropic conductive connection method according to any one of claims 1 to 4.

PCT/JP2016/058296 2015-03-20 2016-03-16 Anisotropic electroconduction connection method and anisotropic electroconduction connection structure WO2016152673A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177014949A KR101992549B1 (en) 2015-03-20 2016-03-16 Anisotropic electroconduction connection method and anisotropic electroconduction connection structure
CN201680014131.2A CN107431280B (en) 2015-03-20 2016-03-16 Anisotropic conductive connection method and anisotropic conductive connection structure
HK18104542.5A HK1245510A1 (en) 2015-03-20 2018-04-06 Anisotropic electroconduction connection method and anisotropic electroconduction connection structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-058067 2015-03-20
JP2015058067A JP6508677B2 (en) 2015-03-20 2015-03-20 Anisotropic conductive connection method and anisotropic conductive connection structure

Publications (1)

Publication Number Publication Date
WO2016152673A1 true WO2016152673A1 (en) 2016-09-29

Family

ID=56978769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058296 WO2016152673A1 (en) 2015-03-20 2016-03-16 Anisotropic electroconduction connection method and anisotropic electroconduction connection structure

Country Status (6)

Country Link
JP (1) JP6508677B2 (en)
KR (1) KR101992549B1 (en)
CN (1) CN107431280B (en)
HK (1) HK1245510A1 (en)
TW (1) TWI692913B (en)
WO (1) WO2016152673A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145180A (en) * 1990-10-05 1992-05-19 Shin Etsu Polymer Co Ltd Adhesive having anisotropic electrical conductivity and connection structure using the same
JPH11307154A (en) * 1998-04-16 1999-11-05 Fujikura Ltd Anisotropic conductive material
WO2014024980A1 (en) * 2012-08-10 2014-02-13 旭硝子株式会社 Electrically connected structure, glass plate having terminal including said structure attached thereto, and manufacturing method for glass plate having terminal attached thereto

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3433836B2 (en) * 1994-01-25 2003-08-04 ソニー株式会社 Anisotropic conductive film and liquid crystal display panel connected by anisotropic conductive film
JP4145180B2 (en) 2003-03-27 2008-09-03 株式会社クボタ Assembly method and assembly production facility
JP4555943B2 (en) 2004-10-29 2010-10-06 日立化成工業株式会社 Anisotropic conductive film, method for manufacturing anisotropic conductive film, connection body using the same, and semiconductor device
JP2007091798A (en) 2005-09-27 2007-04-12 Sony Chemical & Information Device Corp Color developing agent, set of color developing agent, adhesive, adhesive set and adhesion method
KR101630319B1 (en) * 2009-06-30 2016-06-14 엘지디스플레이 주식회사 Detecting Method for Anisotropic Conductive Film of Display Device
KR101260440B1 (en) * 2010-02-04 2013-05-02 주식회사 이그잭스 Conductive adhesive composition for connecting circuit electrodes, circuit connecting material including the conductive adhesive composition, connected circuit structure and method of the connected circuit structure using the circuit connecting material
JP2014149918A (en) * 2011-06-06 2014-08-21 Hitachi Chemical Co Ltd Film-like circuit connection material and circuit connection structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145180A (en) * 1990-10-05 1992-05-19 Shin Etsu Polymer Co Ltd Adhesive having anisotropic electrical conductivity and connection structure using the same
JPH11307154A (en) * 1998-04-16 1999-11-05 Fujikura Ltd Anisotropic conductive material
WO2014024980A1 (en) * 2012-08-10 2014-02-13 旭硝子株式会社 Electrically connected structure, glass plate having terminal including said structure attached thereto, and manufacturing method for glass plate having terminal attached thereto

Also Published As

Publication number Publication date
KR101992549B1 (en) 2019-06-24
JP6508677B2 (en) 2019-05-08
TW201705616A (en) 2017-02-01
JP2016178015A (en) 2016-10-06
HK1245510A1 (en) 2018-08-24
TWI692913B (en) 2020-05-01
KR20170081664A (en) 2017-07-12
CN107431280A (en) 2017-12-01
CN107431280B (en) 2020-03-03

Similar Documents

Publication Publication Date Title
KR101618949B1 (en) Anisotropic conductive film, connecting method, and joined structure
TWI463575B (en) Manufacturing method of semiconductor device
JPWO2008084811A1 (en) Circuit member connecting adhesive and semiconductor device using the same
KR101344965B1 (en) Anisotropic conductive film, united object, and process for producing united object
WO2016152543A1 (en) Anisotropic conductive connection structure, anisotropic conductive connection method, and anisotropic conductive adhesive
CN108702845B (en) Method for manufacturing connection structure
CN102460669A (en) Insulating resin film, bonded body using insulating resin film, and method for manufacturing bonded body
KR20190087365A (en) Manufacturing method of mounting device, connecting method and anisotropic conductive film
JP2009010057A (en) Electron device mounting method
KR20140124333A (en) Anisotropic conductive film, connecting method, and joined structure
KR102193813B1 (en) Anisotropic conductive film, connecting method, and joined structure
KR101973823B1 (en) Anisotropic conductive connection material, film laminate, connection method, and connection structure
WO2016152673A1 (en) Anisotropic electroconduction connection method and anisotropic electroconduction connection structure
KR102573777B1 (en) Adhesive composition and manufacturing method of connected body
JP6442628B2 (en) Anisotropic conductive film, and manufacturing method and bonded body of bonded body
WO2016052130A1 (en) Anisotropic conductive film and bonding method
JP6783537B2 (en) Manufacturing method of the connector
JP7386773B2 (en) Anisotropic conductive adhesive, connected structure, anisotropic conductive connection method, and method for manufacturing connected structure
TW201834858A (en) Anisotropic conductive connection structure body, method for manufacturing the same, anisotropic conductive film, and anisotropic conductive paste
TWI834608B (en) Adhesive composition and manufacturing method of connector
JP6280017B2 (en) Anisotropic conductive film, connection method and joined body
JP2017092106A (en) Anisotropic conductive connection structure and anisotropic conductive connection method
JP2017098413A (en) Repair method and connection method
JP2015191928A (en) Method of determining bonding temperature condition of electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177014949

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768576

Country of ref document: EP

Kind code of ref document: A1