WO2016150184A1 - 海洋油气水下设备重量测量和重心检测方法 - Google Patents

海洋油气水下设备重量测量和重心检测方法 Download PDF

Info

Publication number
WO2016150184A1
WO2016150184A1 PCT/CN2015/095811 CN2015095811W WO2016150184A1 WO 2016150184 A1 WO2016150184 A1 WO 2016150184A1 CN 2015095811 W CN2015095811 W CN 2015095811W WO 2016150184 A1 WO2016150184 A1 WO 2016150184A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
gravity
center
gas underwater
underwater equipment
Prior art date
Application number
PCT/CN2015/095811
Other languages
English (en)
French (fr)
Inventor
宋春娜
苗春生
张印桐
林守强
高原
颜文涛
王勇
高磊
石锦坤
叶海宾
罗耀文
Original Assignee
深圳海油工程水下技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳海油工程水下技术有限公司 filed Critical 深圳海油工程水下技术有限公司
Publication of WO2016150184A1 publication Critical patent/WO2016150184A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/08Underwater guide bases, e.g. drilling templates; Levelling thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Definitions

  • the invention relates to the field of marine oil and gas underwater equipment debugging, in particular to a method for measuring the weight and center of gravity of an offshore oil and gas underwater equipment.
  • the offshore hoisting calculation analysis is based on the modeling weight and the modeling center of gravity (ie, theoretical weight and theoretical center of gravity) calculated by software modeling, and the modeling quality is good. The bad will directly affect the direct factors of whether the hoisting calculations such as offshore hoisting calculation analysis and lock fitting are reasonable.
  • the weight and center of gravity of existing marine oil and gas underwater equipment are based on software modeling. When the model and the physical difference are large, the actual weight and theoretical weight of the offshore oil and gas underwater equipment will be The deviation between the quantity, the actual center of gravity and the theoretical center of gravity is large, which in turn affects the accuracy of the hoisting calculation analysis.
  • the technical problem to be solved by the present invention is to provide a method for measuring the weight and center of gravity of a marine oil and gas underwater device against the defects of the prior art.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: a method for measuring the weight and center of gravity of an offshore oil and gas underwater equipment, comprising the following steps:
  • the method further includes the step S5: selecting N stress points on the reference plane again, repeating steps S2 to S4, and calculating the actual weight W0 and the actual center of gravity G of the marine oil and gas underwater equipment calculated multiple times.
  • the average value of (X0, Y0) is taken as the final actual weight W and the actual center of gravity G(X, Y).
  • step S5 when N stress points are selected again on the reference plane, The spacing between the N stress points increases.
  • step S2 four stress points are arranged, which are distributed in a rectangular shape.
  • the step S3 comprises:
  • the weight sensor is adjusted by using a total station in step S32 such that the N weight sensors are on the same horizontal plane.
  • the weight sensor is a weighbridge gravity sensor with a measuring range of 0-50 tons
  • the method further includes the step S6: comparing the actual weight W0 of the marine oil and gas underwater equipment and the actual center of gravity G (X0, Y0) with the theoretical weight and the theoretical center of gravity, respectively, to correct the theoretical weight and the theoretical center of gravity.
  • the marine oil and gas underwater device comprises a deep water base plate, the deep water base plate comprising an anti-sink plate and a protection frame disposed above the anti-sink plate.
  • the invention has the following advantages: implementing the weight measurement and center of gravity detection method of the marine oil and gas underwater equipment provided by the invention, can quickly and easily calculate the actual weight and actual center of gravity of the marine oil and gas underwater equipment, and improve the lifting Calculate the accuracy of the analysis.
  • the marine oil and gas underwater equipment is jacked up by the hydraulic jack, and the weight of the marine oil and gas underwater equipment is measured by the weight sensor, and the structure is light, and does not depend on auxiliary measuring equipment such as a large crane.
  • FIG. 1 is a flow chart of a method for measuring weight and center of gravity of a marine oil and gas underwater device according to an embodiment of the present invention.
  • the marine oil and gas underwater equipment is a deep water base plate
  • the deep water base plate includes an anti-sinking plate and a protection frame disposed above the anti-sinking plate.
  • the weight measurement and center of gravity detection method of the marine oil and gas underwater equipment includes the following steps:
  • the O-XY coordinate system is established by using the plane on which the deep water base plate is placed as a reference plane.
  • N Select N stress points on the reference plane, and the coordinates of the N stress points are (Xi, Yi), where 1 ⁇ i ⁇ N, N ⁇ 3.
  • the number of the force points N is 4, and the four force points are distributed in a rectangular shape.
  • the four force points are disposed under the anti-sinking plate or the protection frame of the deep water base plate.
  • the four stations are level-adjusted by the total station to ensure that the four stress points are on the same level, thus ensuring the accuracy of weight measurement and center of gravity measurement. Understandably, the more choices of N stress points, the more accurate the weight measurement and center of gravity measurement.
  • the placement of the N points of force is as regular as possible to facilitate calculation.
  • the shape of the marine oil and gas underwater equipment is irregular, it can be set by itself.
  • the position of the force point if necessary, can be set up with a special auxiliary bracket to ensure that the irregular marine oil and gas underwater equipment can also be weighed conveniently and quickly.
  • step S3 includes the following steps:
  • the anti-sinking plate or the protection frame of the deep water base plate is jacked up by N hydraulic jacks, and a weight sensor is placed correspondingly at the N stress point positions.
  • the weight sensor is a weighbridge gravity sensor with a measuring range of 0 to 50 tons
  • 4 weighbridge gravity sensors can measure a deep water base of 0 to 200 tons
  • the configuration of 4 weighbridge gravity sensors will be a heavy water with a larger weight.
  • the weighing of the base plate is more concise and efficient, and the weighing range is large, which has obvious advantages.
  • a hydraulic jack is used in the vicinity of each weighbridge gravity sensor to lift the anti-sinking plate or protection frame of the deep water base. The weighing operation is convenient and can be completed at the construction site of the deep water base without using expensive large cranes; It is also unnecessary to transport the deep water base to the weighbridge station for measurement, which is simple and economical.
  • the steps S31 to S33 are repeatedly performed several times, and the average value of the reading Wi of the weight sensor read several times is used as the final measurement of the weight sensor. result.
  • the anti-sinking plate or the protection frame of the deep water base plate is jacked up by using a hydraulic jack, and after the readings of the four weight sensors are cleared, the hydraulic jack is released again, and the anti-sinking plate of the deep water base plate is released.
  • the protection frame is placed on the four weight sensors, and the readings of the four weight sensors are read again to complete the second weight measurement of the deep water base plate or the protection frame.
  • the total station After the step of clearing the readings of the four weight sensors, it is not necessary to use the total station to adjust its position twice to ensure that it is on the same level. It can be understood that when the hydraulic jack is used to jack up the anti-sinking plate or the protection frame of the deep water base, the position of each weight sensor can be adjusted accordingly, and the weight sensors are adjusted to the same level by the total station, and read again.
  • the reading of the four weight sensors, the average of the readings Wi measured several times to the weight sensor is taken as the final measurement result of the weight sensor to improve the accuracy of the weight measurement and the center of gravity measurement.
  • step S1 to step S4 can accurately know the actual weight W0 of the deep water base plate and the actual center of gravity G (X0, Y0), which can protect the lifting of the deep water base plate to a certain extent, and is provided by the method.
  • the method of weight measurement and center of gravity detection is accurate and the feedback software is more capable of feeding back the true weight of the structure.
  • the actual weight and the actual center of gravity of the deep water base plate can be calculated quickly and easily, and the accuracy of the hoisting calculation analysis is improved.
  • the hydraulic jack is used to jack up the deep water base plate
  • the weight sensor is used to measure the weight of the deep water base plate
  • the structure is light, and does not depend on auxiliary measuring equipment such as a large crane.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

一种海洋油气水下设备重量测量和重心检测方法,包括以下步骤:以放置海洋油气水下设备的平面为基准平面,建立O-XY坐标系(S1);在基准平面上选择N个受力点,N个受力点的坐标分别是(Xi,Yi),其中1≤i≤N,N≥3(S2);采用N个液压千斤顶将海洋油气水下设备顶起,并在N个受力点上各放置一重量传感器,分别读取N个重量传感器的读数Wi(S3);根据N个受力点的坐标分别是(Xi,Yi)和N个重量传感器的读数Wi计算海洋油气水下设备的实际重量W0和实际重心G(X0,Y0),其中式(I);式(II);式(III)(S4)。该方法可快捷简便地计算出海洋油气水下设备的实际重量和实际重心,提高吊装计算分析的准确性,而且采用辅助测量设备结构轻便。

Description

海洋油气水下设备重量测量和重心检测方法 技术领域
本发明涉及海洋油气水下设备调试领域,尤其涉及一种海洋油气水下设备重量测量和重心检测方法。
背景技术
在全球油价高居不下的背景之下,深海油气勘探开发在我国已成为新的石油开发热点。随着我国海上油气开发水深的增加,越来越多的海洋油气水下设备,如深水基盘、深水管汇等,应用到深海油气勘探开发中;如LIWAN3-1项目的SSIV基盘和SUTA、PY34-1项目的SSIV基盘、LH4-1和LH19-5的管汇等。随着油气开发水深的增加,对各钻井设备的吊装要求越来越高,同时对海洋油气水下设备重量和重心控制的要求也越来越高。其原因在于:在海洋油气水下设备的安装时,海洋油气水下设备庞大的外形尺寸和质量对海洋油气水下设备的吊装运输和水下安装提出了严峻的考验,若在吊装过程中,海洋油气水下设备的重心漂移,将严重影响海洋油气水下设备水底固定作业的顺利进行,不利于海洋油气水下设备水下安装的顺利进行。
现有的海洋油气水下设备安装时,采用海上吊装计算分析是以通过软件建模计算得到的建模重量和建模重心(即理论重量和理论重心)为基础进行计算,建模质量的好坏将直接影响海上吊装计算分析和锁具配合等吊装准备工作是否合理的直接因素。现有海洋油气水下设备的重量和重心以软件建模为基础,模型与实物差异大时,将导致海洋油气水下设备实际重量和理论重 量、实际重心与理论重心偏差较大,进而影响吊装计算分析的准确性。现有技术中并不存在海洋油气水下设备重控技术,以测量海洋油气水下设备的实际重量和实际重心,在油气开发过程中,重控技术主要应用于导管架、组快等大型结构物上,并不存在对海洋油气水下设备等小型水下结构物的重量控制方案。
发明内容
本发明要解决的技术问题在于,针对现有技术的缺陷,提供一种海洋油气水下设备重量测量和重心检测方法。
本发明解决其技术问题所采用的技术方案是:一种海洋油气水下设备重量测量和重心检测方法,包括如下步骤:
S1:以放置海洋油气水下设备的平面为基准平面,建立O-XY坐标系;
S2:在所述基准平面上选择N个受力点,N个受力点的坐标分别是(Xi,Yi),其中,1≤i≤N,N≥3;
S3:采用N个液压千斤顶将所述海洋油气水下设备顶起,并在N个受力点上各放置一重量传感器,分别读取N个重量传感器的读数Wi;
S4:根据N个受力点的坐标分别是(Xi,Yi)和N个重量传感器的读数Wi计算所述海洋油气水下设备的实际重量W0和实际重心G(X0,Y0),其中,
Figure PCTCN2015095811-appb-000001
优选地,还包括步骤S5:再次在所述基准平面上选择N个受力点,重复步骤S2~步骤S4,将多次计算得到的所述海洋油气水下设备的实际重量W0和实际重心G(X0,Y0)的平均值作为最终的实际重量W和实际重心G(X,Y)。
优选地,所述步骤S5中,再次在所述基准平面上选择N个受力点时,使 N个受力点之间的间距增大。
优选地,所述步骤S2中设置4个受力点,呈矩形分布。
优选地,所述步骤S3包括:
S31:采用N个液压千斤顶将所述海洋油气水下设备顶起,并在所述N个受力点位置相应放置一重量传感器;
S32:调整所述重量传感器,以使N个所述重量传感器处于同一水平面上;
S33:释放所述液压千斤顶,使海洋油气水下设备放置在N个所述重量传感器上,分别读取N个重量传感器的读数Wi。
优选地,步骤S32中采用全站仪调整所述重量传感器,以使N个所述重量传感器处于同一水平面上。
优选地,所述重量传感器为测量范围为0~50吨的地磅式重力传感器
优选地,还包括步骤S6:将所述海洋油气水下设备的实际重量W0和实际重心G(X0,Y0)分别与理论重量和理论重心进行比较,以对理论重量和理论重心进行修正。
优选地,所述海洋油气水下设备包括深水基盘,所述深水基盘包括防沉板和设置在所述防沉板上方的保护框架。
本发明与现有技术相比具有如下优点:实施本发明所提供的海洋油气水下设备重量测量和重心检测方法,可快捷简便地计算出海洋油气水下设备的实际重量和实际重心,提高吊装计算分析的准确性。本发明中,采用液压千斤顶将海洋油气水下设备顶起,并采用重量传感器进行测算海洋油气水下设备的重量,结构轻便,不依赖于大型吊机等辅助测量设备。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明一实施例中海洋油气水下设备重量测量和重心检测方法的流程图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
图1示出本发明一实施例中海洋油气水下设备重量测量和重心检测方法的流程图。本实施例中,海洋油气水下设备为深水基盘,该深水基盘包括防沉板和设置在防沉板上方的保护框架。在海洋油气水下设备(即深水基盘)安装海上安装时,需先安装防沉板,然后在基盘管线两次分别连接好海底SPOOL后,在防沉板上安装两根导向柱,将保护框架滑移至防沉板,在防沉板和保护框架的安装过程中,需使两者的重心对准,否则无法顺利安装,因此需分别对防沉板及保护框架进行重量测量和重心检测。
如图1所示,该海洋油气水下设备(即深水基盘)重量测量和重心检测方法包括以下步骤:
S1:以放置深水基盘的平面为基准平面,建立O-XY坐标系。
S2:在基准平面上选择N个受力点,N个受力点的坐标分别是(Xi,Yi),其中,1≤i≤N,N≥3。本实施例中,受力点N的个数为4,4个受力点呈矩形分布,本实施例中,4个受力点均设置在深水基盘的防沉板或保护框架的下方,采用全站仪对4个受力点进行水平度调节,以保证4个受力点在同一水平面上,从而保证重量测量和重心测算的准确性。可以理解地,N个受力点的选择越多,其重量测量和重心测算越准确。N个受力点的放置尽量呈规则图形,以方便计算。可以理解地,若海洋油气水下设备的形状不规则,可自行设置受 力点的位置,必要时,可设置专用的辅助支架,以保证不规则的海洋油气水下设备也可以方便快捷的称量。
S3:采用N个液压千斤顶将海洋油气水下设备顶起,并在N个受力点上各放置一重量传感器,分别读取N个重量传感器的读数Wi。本实施例中,在对深水基盘的重量测量和重心检测过程中,需分别检测防沉板和保护框架的重量和重心。
具体地,步骤S3包括如下步骤:
S31:采用N个液压千斤顶将深水基盘的防沉板或保护框架顶起,并在N个受力点位置相应放置一重量传感器。具体地,重量传感器为测量范围为0~50吨的地磅式重力传感器,4个地磅式重力传感器可测量0~200吨的深水基盘,4个地磅式重力传感器的配置将重量较大的深水基盘的称量更简洁、高效,且称重范围大,具有明显的优势。在每一地磅式重力传感器附近采用一个液压千斤顶将深水基盘的防沉板或保护框架顶起,称量操作便捷,可在深水基盘的建造场地完成,无需使用价格高昂的大型吊机;也不必将深水基盘运输到地磅站进行测量,操作简单,经济实用。
S32:调整重量传感器,以使N个重量传感器处于同一水平面上,以保证重量测量和重心测算的准确性。具体地,采用全站仪调整重量传感器的位置,以使4个重量传感器处于同一水平面上。
S33:释放液压千斤顶,使深水基盘的防沉板或保护框架放置在N个重量传感器上,分别读取N个重量传感器的读数Wi,以完成深水基盘的防沉板或保护框架的一次重量测量。
可以理解地,为保护重量测量的准确性,重复执行步骤S31~S33数次,将数次读取到的重量传感器的读数Wi的平均值作为该重量传感器最终的测量 结果。具体地,即在步骤S33之后,采用液压千斤顶将深水基盘的防沉板或保护框架顶起,对4个重量传感器的读数清零后,再次释放液压千斤顶,将深水基盘的防沉板或保护框架放置在4个重量传感器上,再次读取4个重量传感器的读数,完成深水基盘防沉板或保护框架的第二次重量测量。该步骤对4个重量传感器的读数清规后,无需两次使用全站仪调整其位置,即可保证其处于同一水平面上。可以理解地,在使用液压千斤顶将深水基盘的防沉板或保护框架顶起时,可相应调整各重量传感器的位置,并采用全站仪将各重量传感器调整在同一水平面上,再次读取4个重量传感器的读数,将数次测量到重量传感器的读数Wi的平均值作为该重量传感器最终的测量结果,以提高重量测量和重心测算的准确性。
S4:根据N个受力点的坐标分别是(Xi,Yi)和N个重量传感器的读数Wi计算深水基盘的实际重量W0和实际重心G(X0,Y0),其中,
Figure PCTCN2015095811-appb-000002
Figure PCTCN2015095811-appb-000003
可以理解地,本实施例中将4个重量传感器的至少3次计算得到的重量传感器的读数Wi的平均值作为最终重量传感器的读数Wi并计算,其重量测量和重心测算结果更准确,以保证深水基盘吊装的顺利进行。
可以理解地,步骤S1~步骤S4即可准确获知深水基盘的实际重量W0和实际重心G(X0,Y0),可在一定程度上保护深水基盘吊装的顺利进行,而且采用本方法所提供的重量测量和重心检测的方法称重结果准确,比建模软件更能反馈结构真实的重量。
S5:再次在基准平面上选择N个受力点,重复步骤S2~步骤S4,将多次计算得到的深水基盘的实际重量W0和实际重心G(X0,Y0)的平均值作为最终的实际重量W和实际重心G(X,Y),以进一步提高深水基盘重量测量和重 量测算的准确性。
S6:将深水基盘的实际重量W0和实际重心G(X0,Y0)分别与理论重量和理论重心进行比较,以对理论重量和理论重心进行修正,以提高结构建模的准确性。
实施本发明所提供的深水基盘重量测量和重心检测方法,可快捷简便地计算出深水基盘的实际重量和实际重心,提高吊装计算分析的准确性。本发明中,采用液压千斤顶将深水基盘顶起,并采用重量传感器进行测算深水基盘的重量,结构轻便,不依赖于大型吊机等辅助测量设备。
本发明是通过一个具体实施例进行说明的,本领域技术人员应当明白,在不脱离本发明范围的情况下,还可以对本发明进行各种变换和等同替代。另外,针对特定情形或具体情况,可以对本发明做各种修改,而不脱离本发明的范围。因此,本发明不局限于所公开的具体实施例,而应当包括落入本发明权利要求范围内的全部实施方式。

Claims (9)

  1. 一种海洋油气水下设备重量测量和重心检测方法,其特征在于,包括如下步骤:
    S1:以放置海洋油气水下设备的平面为基准平面,建立O-XY坐标系;
    S2:在所述基准平面上选择N个受力点,N个受力点的坐标分别是(Xi,Yi),其中,1≤i≤N,N≥3;
    S3:采用N个液压千斤顶将所述海洋油气水下设备顶起,并在N个受力点上各放置一重量传感器,分别读取N个重量传感器的读数Wi;
    S4:根据N个受力点的坐标分别是(Xi,Yi)和N个重量传感器的读数Wi计算所述海洋油气水下设备的实际重量W0和实际重心G(X0,Y0),其中,
    Figure PCTCN2015095811-appb-100001
  2. 根据权利要求1所述的海洋油气水下设备重量测量和重心检测方法,其特征在于,还包括步骤S5:再次在所述基准平面上选择N个受力点,重复步骤S2~步骤S4,将多次计算得到的所述海洋油气水下设备的实际重量W0和实际重心G(X0,Y0)的平均值作为最终的实际重量W和实际重心G(X,Y)。
  3. 根据权利要求2所述的海洋油气水下设备重量测量和重心检测方法,其特征在于,所述步骤S5中,再次在所述基准平面上选择N个受力点时,使N个受力点之间的间距增大。
  4. 根据权利要求1所述的海洋油气水下设备重量测量和重心检测方法,其特征在于,所述步骤S2中设置4个受力点,呈矩形分布。
  5. 根据权利要求1所述的海洋油气水下设备重量测量和重心检测方法,其特征在于,所述步骤S3包括:
    S31:采用N个液压千斤顶将所述海洋油气水下设备顶起,并在所述N个 受力点位置相应放置一重量传感器;
    S32:调整所述重量传感器,以使N个所述重量传感器处于同一水平面上;
    S33:释放所述液压千斤顶,使海洋油气水下设备放置在N个所述重量传感器上,分别读取N个重量传感器的读数Wi。
  6. 根据权利要求5所述的海洋油气水下设备重量测量和重心检测方法,其特征在于,步骤S32中采用全站仪调整所述重量传感器,以使N个所述重量传感器处于同一水平面上。
  7. 根据权利要求1所述的海洋油气水下设备重量测量和重心检测方法,其特征在于,所述重量传感器为测量范围为0~50吨的地磅式重力传感器。
  8. 根据权利要求1-7任一项所述的海洋油气水下设备重量测量和重心检测方法,其特征在于,还包括步骤S6:将所述海洋油气水下设备的实际重量W0和实际重心G(X0,Y0)分别与理论重量和理论重心进行比较,以对理论重量和理论重心进行修正。
  9. 根据权利要求8所述的海洋油气水下设备重量测量和重心检测方法,其特征在于,所述海洋油气水下设备包括深水基盘,所述深水基盘包括防沉板和设置在所述防沉板上方的保护框架。
PCT/CN2015/095811 2015-03-24 2015-11-27 海洋油气水下设备重量测量和重心检测方法 WO2016150184A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510130628.8A CN104864906A (zh) 2015-03-24 2015-03-24 海洋油气水下设备重量测量和重心检测方法
CN201510130628.8 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016150184A1 true WO2016150184A1 (zh) 2016-09-29

Family

ID=53910902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095811 WO2016150184A1 (zh) 2015-03-24 2015-11-27 海洋油气水下设备重量测量和重心检测方法

Country Status (2)

Country Link
CN (1) CN104864906A (zh)
WO (1) WO2016150184A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114485872A (zh) * 2022-01-26 2022-05-13 中船黄埔文冲船舶有限公司 一种气垫船称量装置及称量计算方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104864906A (zh) * 2015-03-24 2015-08-26 深圳海油工程水下技术有限公司 海洋油气水下设备重量测量和重心检测方法
CN105716789A (zh) * 2016-05-09 2016-06-29 蓬莱巨涛海洋工程重工有限公司 一种海洋模块构件的质量重心检测装置及方法
CN110608844A (zh) * 2019-07-02 2019-12-24 蚌埠学院 管廊模块重心检测系统
CN110793719A (zh) * 2019-12-06 2020-02-14 福州聚英智能科技有限公司 潜伏式agv重心检测装置及识别、预防倾倒风险的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2132670A (en) * 1982-12-21 1984-07-11 Sedco Inc Installation and levelling of subsea templates
CN201100120Y (zh) * 2007-11-02 2008-08-13 中国海洋石油总公司 钻井船下入式边际油气田水下钻井基盘
CN101424175A (zh) * 2007-11-02 2009-05-06 中国海洋石油总公司 水下钻井基盘吊装系统
CN201359547Y (zh) * 2009-02-27 2009-12-09 西安信通控制系统有限责任公司 钻井平台重心测试系统
CN202038441U (zh) * 2011-03-17 2011-11-16 哈尔滨工程大学 一种水下机器人重心调节装置
CN102632978A (zh) * 2012-05-09 2012-08-15 北京理工大学 应用于水下机器海豚的重心调节装置
CN103090945A (zh) * 2013-01-29 2013-05-08 大连中远船务工程有限公司 大型海洋功能模块称重方法及独立称重单元
CN104864906A (zh) * 2015-03-24 2015-08-26 深圳海油工程水下技术有限公司 海洋油气水下设备重量测量和重心检测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10154872B4 (de) * 2001-11-08 2006-05-04 Kvaerner Warnow Werft Gmbh Meßverfahren und Meßvorrichtung zum Bestimmen der Masse und/oder des Schwerpunktes eines Bauteils
CN2713448Y (zh) * 2004-03-04 2005-07-27 甘肃省科学院传感技术研究所 飞机重量重心测量装置
CN100487391C (zh) * 2006-12-28 2009-05-13 大连船舶重工集团有限公司 大型悬臂梁结构称重方法
CN103278229B (zh) * 2013-05-20 2015-10-28 天利航空科技深圳有限公司 直升飞机称重测量器及直升飞机重心测量方法
CN103439083A (zh) * 2013-08-30 2013-12-11 西北工业大学 一种回转体水下航行器衡重测试台

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2132670A (en) * 1982-12-21 1984-07-11 Sedco Inc Installation and levelling of subsea templates
CN201100120Y (zh) * 2007-11-02 2008-08-13 中国海洋石油总公司 钻井船下入式边际油气田水下钻井基盘
CN101424175A (zh) * 2007-11-02 2009-05-06 中国海洋石油总公司 水下钻井基盘吊装系统
CN201359547Y (zh) * 2009-02-27 2009-12-09 西安信通控制系统有限责任公司 钻井平台重心测试系统
CN202038441U (zh) * 2011-03-17 2011-11-16 哈尔滨工程大学 一种水下机器人重心调节装置
CN102632978A (zh) * 2012-05-09 2012-08-15 北京理工大学 应用于水下机器海豚的重心调节装置
CN103090945A (zh) * 2013-01-29 2013-05-08 大连中远船务工程有限公司 大型海洋功能模块称重方法及独立称重单元
CN104864906A (zh) * 2015-03-24 2015-08-26 深圳海油工程水下技术有限公司 海洋油气水下设备重量测量和重心检测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114485872A (zh) * 2022-01-26 2022-05-13 中船黄埔文冲船舶有限公司 一种气垫船称量装置及称量计算方法

Also Published As

Publication number Publication date
CN104864906A (zh) 2015-08-26

Similar Documents

Publication Publication Date Title
WO2016150184A1 (zh) 海洋油气水下设备重量测量和重心检测方法
CN102592692B (zh) 安装核电站核岛内蒸汽发生器的方法
CN203824548U (zh) 一种桥梁结构砼表面观测区面积测定仪
CN104110046A (zh) 入岩灌注桩沉渣厚度测试装置及其使用方法
CN109374171A (zh) 用于检测在役斜拉索索力的方法
WO2016150185A1 (zh) 海洋油气水下设备调试方法
CN206847567U (zh) 一种自动岩土变形检测装置
CN102937435B (zh) 一种精确控制链轮闸门埋件的垂直度与共面度的测量方法
RU2456566C1 (ru) Способ статической балансировки рабочего колеса гидравлической турбины
JP6096558B2 (ja) 測定システム
US7750255B2 (en) Hydraulic weight-measuring apparatus and method
CN112600373B (zh) 一种转子吊装监测方法
CN205642267U (zh) 一种塑料波纹管内径变形测量装置
CN105501393B (zh) 一种船舶起重柱的安装方法
CN105256847B (zh) 一种水下建筑物定位转移测量装置与方法
Peng et al. DIC-hole drilling method for in-situ residual stress measurement
CN106932160A (zh) 古建筑受荷分析方法
CN204023631U (zh) 入岩灌注桩沉渣厚度测试装置
CN206917622U (zh) 一种井架井口测量对中装置
CN112525395A (zh) 膜层应力测量装置及测量方法
CN109183764B (zh) 自升式平台的弦相位标定方法
CN104457514A (zh) 海洋工程吊车滑轮检测方法
CN209342290U (zh) 一种重心测量装置
CN109520475A (zh) 一种堆内构件安装过程中水平度测量计算方法
CN114353764B (zh) 一种护筒参数的测量方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886106

Country of ref document: EP

Kind code of ref document: A1