WO2016150185A1 - 海洋油气水下设备调试方法 - Google Patents
海洋油气水下设备调试方法 Download PDFInfo
- Publication number
- WO2016150185A1 WO2016150185A1 PCT/CN2015/095812 CN2015095812W WO2016150185A1 WO 2016150185 A1 WO2016150185 A1 WO 2016150185A1 CN 2015095812 W CN2015095812 W CN 2015095812W WO 2016150185 A1 WO2016150185 A1 WO 2016150185A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- underwater equipment
- gas underwater
- marine oil
- rov
- test
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M99/00—Subject matter not provided for in other groups of this subclass
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0208—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
Definitions
- the invention relates to the field of marine oil and gas underwater equipment debugging, in particular to a marine oil and gas underwater equipment debugging method.
- the technical problem to be solved by the present invention is to provide a method for debugging offshore oil and gas underwater equipment according to the defects of the prior art.
- the technical solution adopted by the present invention to solve the technical problem thereof is: a marine oil and gas underwater equipment adjustment
- the test method includes the following steps:
- the step S1 comprises:
- S12 providing a resistance measuring instrument between the anode material and the main structure of the marine oil and gas underwater equipment, or between the anode material and the mechanical connection between the marine oil and gas underwater equipment;
- the functional test of the step S2 comprises a hydraulic control system controlling a valve opening test and/or a ROV torque wrench controlling a valve opening;
- the hydraulic control system controls the valve opening test including a hydraulic power unit, a hydraulic pipe, a filter, a manifold, a quick-connecting joint to the hydraulic actuator of the valve actuator, and opens the hydraulic power unit to complete the opening test of the valve;
- the ROV torque wrench control valve opening includes connecting the torque wrench to a control unit of the hydraulic power unit; completing the torque wrench torque output calibration by the control unit; controlling the operation of the torque wrench to the valve actuator
- the basket controls the torque wrench to complete the opening test of the valve.
- the flying line test in the step S2 comprises: a quick joint of the electric flying line and the liquid flying line
- the interface on the valve actuator is connected to detect the resistance between the electric flying line and the liquid flying line and the interface of the valve actuator in the open or closed state of the valve to determine whether the electric flying line and the liquid flying line are The valve actuators are matched.
- the water pressure test in the step S2 comprises: maintaining a valve of the marine oil and gas underwater device in a semi-open state, using fresh water as a medium, and applying 1 to 1.5 times to the base pipeline of the marine oil and gas underwater equipment. Pressure, lasting 5-7 hours, detecting and judging whether the pressure fluctuation of the marine oil and gas underwater equipment is within the range of 1% to 3%, and if so, the base oil pipeline of the marine oil and gas underwater equipment has good sealing performance If not, the sealing is not good.
- detecting the actual weight and the actual center of gravity of the marine oil and gas underwater equipment in the step S3 comprises the following steps:
- S301 establishing an O-XY coordinate system by using a plane on which the marine oil and gas underwater equipment is placed as a reference plane;
- the marine oil and gas underwater equipment comprises a deep water base
- the test crane test comprises the following steps:
- S311 lifting and placing the anti-sinking plate of the marine oil and gas underwater equipment on the ground by using a lifting device, and providing a guiding column on the anti-soaking plate;
- S312 lifting the protection frame of the marine oil and gas underwater equipment to the top of the anti-sinking plate by using a lifting device, a limiting hole on the protection frame is aligned with the guiding column;
- S313 Sliding the protection frame along the guiding column to complete the matching of the protection frame and the anti-sinking plate.
- the totality of the marine oil and gas underwater equipment is checked by using a bull's eye total station instrument, and the direction of the marine oil and gas underwater equipment is checked by using a gyrocompass total station instrument to complete the installation process.
- Level and direction test is performed by using a bull's eye total station instrument, and the direction of the marine oil and gas underwater equipment is checked by using a gyrocompass total station instrument to complete the installation process.
- the step S4 comprises the following steps:
- the step S44 comprises the following steps:
- S441 Control the ROV to open an operation hole of the marine oil and gas underwater equipment and a cover plate of the observation hole, and identify the operation hole and the observation hole;
- S442 controlling the ROV to assemble a hydraulic torque wrench to the robot arm of the ROV;
- S445 Control the ROV to close the operation hole of the marine oil and gas underwater equipment and the cover of the observation hole.
- the invention has the following advantages: implementing the invention, providing a system for debugging marine oil and water underwater equipment, and completing the debugging of the marine oil and gas underwater equipment system to avoid the installation process of the marine oil and gas underwater equipment There is a failure in the middle, affecting the normal development of oil and gas development, and even Lead to a security incident.
- FIG. 1 is a flow chart of a marine oil and gas underwater equipment debugging method according to an embodiment of the present invention, wherein the marine oil and gas underwater equipment is a deep water base plate.
- Figure 2 is a flow chart showing the electrical continuity of the main structure and mechanical joints in the present invention.
- Figure 3 is a flow chart for detecting the actual weight and actual center of gravity of the deep water base plate in the present invention.
- Figure 4 is a flow chart of the test crane test in the present invention.
- Figure 5 is a flow chart showing the path test of the onshore simulated ROV to the deep water base in the present invention.
- Fig. 6 is a flow chart showing the operation test for controlling the ROV to complete the operation hole and the observation hole of the deep water base in the present invention.
- FIG. 1 is a flow chart showing a method for debugging an offshore oil and gas underwater device in an embodiment of the present invention.
- the marine oil and gas underwater equipment debugging method is used to systematically debug the marine oil and gas underwater equipment that has been welded to avoid failure during the installation and use of marine oil and gas underwater equipment, affecting the normal development of oil and gas development, and even causing safety accidents. .
- the structural size and pre-weld size of marine oil and gas underwater equipment are accurately controlled, especially the size of the following structures that affect offshore installation; for example, the diameter of the sleeve , the spatial distance of the sleeve, the level of the anti-sinking plate, etc., to ensure the completion of the various parts of the marine oil and gas underwater equipment
- the accuracy of the structure meets the requirements of the respective accuracy grades, and the size of the lifting hole can be smoothly matched with the lifting shackle.
- the welding of each part of the structure according to the specification and design requirements shall be in accordance with the corresponding inspection requirements, and the necessary welding inspection shall be carried out to ensure the quality control.
- the invention discloses a marine oil and gas underwater equipment debugging method.
- the marine oil and gas underwater equipment is a deep water base plate.
- the deep water base plate debugging method specifically comprises the following steps:
- step S1 The electrical continuity of the main structure and mechanical connection of the deep water base plate is detected. It will be appreciated that the mechanical connection includes an ROV cover or the like. As shown in FIG. 2, step S1 includes:
- a resistance measuring instrument is disposed between the anode material and the main structure of the deep water base plate, or between the anode material and the deep water base plate.
- the resistance between each main structure and the anode and the mechanical connection and the anode is detected in real time within a predetermined reasonable resistance value, so that when the deep water base plate is operated underwater, the main Structural and mechanical connections provide excellent anode protection. Since the preset reasonable resistance value is small, in the process of electrical connection detection, a special resistance measuring instrument should be used for measurement, and the resistance measuring instrument needs to be verified by a third party to ensure the accuracy of the resistance detection.
- the functional test includes a hydraulic control system to control the valve opening test and/or the ROV torque wrench.
- the control valve is open.
- the hydraulic control system control valve opening test includes a hydraulic power unit for supplying power, a hydraulic pipe for outputting power, a filter for filtering hydraulic oil when outputting power, a manifold for distributing power, and for connecting Quick connection of the valve
- the head is connected to the hydraulic flying head of the valve actuator, and the hydraulic power unit is turned on to complete the opening test of the valve.
- the ROV torque wrench control valve opening includes connecting the torque wrench to the control unit of the hydraulic power unit, wherein the hydraulic power unit (HPU) is used to provide power, and the control unit is used to control the operation of the torque wrench.
- the torque wrench torque output calibration is completed by the control unit; the torque wrench is controlled to the operation basket of the valve actuator, and the torque wrench is controlled to complete the valve opening test.
- valve opening and closing measurement on the base line of the deep water base plate is regarded as unqualified by recording the opening and closing torque of the valve and confirming whether the torque is within a preset torque range, such as a higher torque.
- the valve opening and closing instruction is checked.
- O O
- SHUP DOWN SHUP DOWN
- the valve on the base line should be measured according to the information provided by the valve manufacturer.
- the on-off torque of the valve should be recorded on the site, and the torque should be confirmed within the torque range provided by the manufacturer. If higher torque occurs, then To be unqualified.
- O O
- SHUT DOWN S (SHUT DOWN) position.
- the opening and closing of the valve shall be tested simultaneously with the two sets of opening and closing systems of the valve to verify the integrity and operability of the two sets of valve opening and closing systems.
- the flying line test is mainly used to test the quick joint matching of the electric flying line and the liquid flying line. Before the test, the flying head of the electric flying line and the liquid flying line are removed, and then the flying flying line and the liquid flying line are fast.
- the connector is connected to the interface on the valve actuator to detect the resistance between the fly-wire and the liquid fly-line and the valve actuator interface when the valve is opened or closed to determine whether the fly-by wire and the liquid fly-line match the valve actuator To protect the accuracy of electrical signal output.
- there are two electric flying lines and liquid flying lines and there are four contact points, which are numbered 1, 2, 3, and 4. When the valve is opened, the contact point 1 and the contact point 2 are turned on. The No. 3 contact point and the No.
- a pairing test of the beacon sleeve is required. That is to take photos through a digital camera to achieve the necessary pairing test for beacons used in underwater positioning to ensure smooth underwater positioning during offshore construction.
- the water pressure test includes keeping the valve of the deep water base plate in a semi-open state, applying fresh water as a medium, applying a pressure of 1 to 1.5 times to the base line of the deep water base plate for 5 to 7 hours, and detecting and judging the deep water base plate. Whether the pressure fluctuation is within the range of 1% to 3%, if so, the base line of the deep water base plate has good sealing performance, and if not, the base line of the deep water base plate has poor sealing performance.
- the water pressure test tests the sealing performance of the flange sealing surface, the weld bead and the valve to ensure that the base line maintains a good sealing performance during the underwater oil and gas transportation process.
- detecting the actual weight and actual center of gravity of the deep water base includes the following steps:
- S301 Establish an O-XY coordinate system by using a plane on which the deep water base plate is placed as a reference plane.
- N stress points on the reference plane and the coordinates of the N stress points are (Xi, Yi), where 1 ⁇ i ⁇ N, N ⁇ 3.
- the number of the force points N is 4, and the four force points are distributed in a rectangular shape, and are disposed under the anti-sinking plate or the protection frame of the deep water base plate, and the four stress points are performed by the total station.
- the level is adjusted to ensure that the four stress points are on the same level, thus ensuring the accuracy of weight measurement and center of gravity measurement. Understandably, the more choices of N stress points, the more accurate the weight measurement and center of gravity measurement.
- the placement of the N points of force is as regular as possible to facilitate calculation. If the shape of the deep water base plate is irregular, you can set the position of the force point yourself. If necessary, you can set a special auxiliary bracket to ensure that the irregular deep water base plate can also be weighed conveniently and quickly.
- the deep water base plate is jacked up by N hydraulic jacks, and a weight sensor is placed on each of the N stress points, and the reading Wi of the N weight sensors is respectively read. It can be understood that in the deep water base weight measurement and the center of gravity detection process, the weight and center of gravity of the anti-sinking plate and the protection frame are separately detected.
- step S303 includes the following steps:
- the anti-sinking plate or the protection frame of the deep water base plate is jacked up by N hydraulic jacks, and a weight sensor is placed correspondingly at the N stress points.
- the weight sensor is a weighbridge gravity sensor with a measuring range of 0 to 50 tons
- 4 weighbridge gravity sensors can measure a deep water base of 0 to 200 tons
- the configuration of 4 weighbridge gravity sensors will be a heavy water with a larger weight.
- the weighing of the base plate is more concise and efficient, and the weighing range is large, which has obvious advantages.
- a hydraulic jack is used in the vicinity of each weighbridge gravity sensor to lift the anti-sinking plate or protection frame of the deep water base. The weighing operation is convenient and can be completed at the construction site of the deep water base without using expensive large cranes; It is also unnecessary to transport the deep water base to the weighbridge station for measurement, which is simple and economical.
- S3032 Adjust the weight sensor so that the N weight sensors are on the same level to ensure the accuracy of weight measurement and center of gravity measurement. Specifically, the position of the weight sensor is adjusted using a total station so that the four weight sensors are on the same level.
- the steps S31 to S33 are repeatedly performed several times, and the average value of the reading Wi of the weight sensor read several times is used as the final measurement result of the weight sensor.
- the anti-sinking plate or the protection frame of the deep water base plate is jacked up by using a hydraulic jack, and after the readings of the four weight sensors are cleared, the hydraulic jack is released again, and the anti-sinking plate of the deep water base plate is released. Or protect the frame on 4 weight sensors and read 4 weights again The sensor's reading completes the second weight measurement of the deep water base plate or the protective frame.
- the total station After the step of clearing the readings of the four weight sensors, it is not necessary to use the total station to adjust its position twice to ensure that it is on the same level. It can be understood that when the hydraulic jack is used to jack up the anti-sinking plate or the protection frame of the deep water base, the position of each weight sensor can be adjusted accordingly, and the weight sensors are adjusted to the same level by the total station, and read again.
- the reading of the four weight sensors, the average of the readings Wi measured several times to the weight sensor is taken as the final measurement result of the weight sensor to improve the accuracy of the weight measurement and the center of gravity measurement.
- step S1 to step S4 can accurately know the actual weight W0 of the deep water base plate and the actual center of gravity G (X0, Y0), which can protect the lifting of the deep water base plate to a certain extent, and is provided by the method.
- the method of weight measurement and center of gravity detection is accurate and the feedback software is more capable of feeding back the true weight of the structure.
- Steps S3031 to S3036 can quickly and easily calculate the actual weight and actual center of gravity of the deep water base plate, and improve the accuracy of the hoisting calculation analysis.
- the hydraulic jack is used to jack up the deep water base plate
- the weight sensor is used to measure the weight of the deep water base plate
- the structure is light, and does not depend on auxiliary measuring equipment such as a large crane.
- the test crane test includes the following steps:
- S312 lifting the protection frame of the deep water base plate to the top of the anti-sinking plate by using a lifting device, and the limiting hole on the protection frame is aligned with the guiding column;
- S313 Sliding the protection frame along the guiding column to complete the matching of the protection frame and the anti-sinking plate.
- the hoisting conditions should be followed according to the design of the locks hoisted at sea, and the hoisting scheme of the offshore installation is used for the test hoisting of the deep water base plate, and the entire test hoisting process is recorded.
- hoisting use the bull's eye total station to check the level of the deep water base plate, and use the gyrocompass total station to check the direction of the deep water base plate to complete the horizontal and direction test of the installation process.
- the horizontal angle of the deep water base plate is recorded. The hoisting state of the base plate should be close to the horizontal.
- the actual weight and actuality of the deep water base plate are calculated according to the calculation.
- the center of gravity evaluates the rationality of the hoisting design and should adjust the hoisting plan if necessary.
- the bull's eye is installed on the deep water base plate to measure whether there is a spatial angular deviation after the deep water base water is launched, and the underwater degree of the deep water base plate is confirmed by the reading of the bull's eye.
- the bull's-eye is calibrated before the deep-water base is launched to ensure that the readings of the bull's eye are consistent with the horizontal.
- the readings of the bull's eye are consistent with the pipeline orientation of the deep water base, so deep
- the construction of the water-based disk should ensure that the orientation of the pipeline is horizontal to ensure that the readings of the bull's eye can truly reflect the orientation of the pipeline.
- the gyro compass should be installed before the underwater installation of the deep water base to indicate the direction of underwater installation.
- the gyro should be checked on the land using the total station. .
- step S4 Perform a path test of the onshore simulated ROV to the deep water base.
- the ROV, the ROV control room, the hydraulic power station, the retractable cable winch and the generator are first connected to complete the connection of the device.
- the ROV is hydraulically driven, and the ROV is powered by a hydraulic power station (ie, HPU) matched with the ROV, and the hydraulic power station is connected to the ROV.
- the ROV control room is connected to the ROV to control and view the ROV test results, such as viewing the video of the ROV's camera monitoring.
- the retractable cable winch is connected to the ROV and is used to control the length of the umbilical cable according to the distance between the ROV and the ROV control room.
- the generators are connected to the ROV control room and the retractable cable winch respectively. After completing the connection and debugging of the corresponding equipment, connect the lifting point above the ROV to the crane.
- step S4 includes the following steps:
- S41 Leave the ROV floating and control the ROV to work at a constant temperature. Specifically, the ROV is suspended by a 15 ton crane, and the ROV is limited in the diagonal direction during the lifting process. After the suspension is completed, the ROV is turned on, and the ROV is continuously flushed and cooled by the fire hose to make the ROV work under constant temperature to avoid the ROV temperature being too high during the detection process, which affects its normality. jobs.
- S42 Control the ROV to conduct a path test to the deep water base plate. Specifically, the control ROV moves to the operation hole position and the observation hole position of the deep water base plate according to the preset path, and correspondingly controls the retractable cable winch to recover or lower the umbilical cable to complete the path test.
- the ROV is limited by moving the limit rail on the crane to prevent the ROV from deviating from the preset path to avoid the left and right swing, which causes the structure of the ROV to collide with the deep water base.
- the operation hole is disposed on the deep water base plate On the protection frame. Understandably, in the suspended state, if the ROV can reach the ROV operation hole and the observation hole position (ie, the ROV does not collide with the protection frame), the path test passes, otherwise it is regarded as unqualified.
- S43 Control the ROV to perform the test of reading the identification information of the deep water base plate.
- the imaging device provided on the control ROV collects the identification information of the surface of the deep water base plate and performs the engraving in the ROV control room.
- the identification information includes a tick mark and a medium flow direction indication arrow, a TN mark and a PN mark, and an operation hole mark provided on the protection frame of the deep water base plate, and the TN mark and the PN mark are disposed on the anti-sink plate of the deep water base plate. Refers to the true north and platform north flags, respectively, for pointing to the underwater orientation of the deep water base. It can be understood that in the process of suspending the ROV, the ROV needs to be limited in the diagonal direction, and the identification of the identification information can facilitate the correct identification of the position of the deep water base plate to protect the normal operation of the ROV detection work.
- S44 Control the ROV to complete an operation test on the operation hole and the observation hole of the deep water base plate.
- the ROV is controlled to complete the operation test of the operation hole and the observation hole of the deep water base plate to simulate the operation of the ROV on the deep water base plate installation process, thereby ensuring the smooth installation of the ROV under the deep water base plate.
- step S44 includes the following steps:
- S441 Control the crane to lower the ROV to the surface of the deep water base plate, and control the ROV to open the operation hole and the cover plate of the observation hole disposed on the protection frame of the deep water base plate, and identify the operation hole and the observation hole.
- identifying the operation hole and the observation hole of the ROV includes identifying the O/S of the valve operation hole and the O/S indicating the hole by the ROV camera.
- step S445 Lift the ROV again, go to the top of the protection frame of the deep water base, and control the ROV to use the mechanical arm to close the operation hole of the deep water base plate and the cover of the observation hole to complete the ROV operation test. It can be understood that after the completion of step S45, the connection of the ROV, the ROV control room, the hydraulic power station, the retractable cable winch and the generator is removed, and the ROV detecting device is recovered.
- step S4 the solid water ROV is applied to the deep water base plate by detecting the ROV on the ground, and the physical ROV is applied to the ROV test of the deep water base plate to determine whether the ROV interface is reasonable, and whether the underwater operation can be smoothly completed to ensure the smooth operation of the ROV. It is applied to the underwater installation process of deep water base plate to avoid the smooth installation of deep water base plate due to ROV in actual application, which affects the smooth progress of seawater oil and gas development process, which leads to project continuation and cost increase.
- the operability of the ROV operation interface of the deep water base plate is evaluated by performing the path test of the onshore simulated ROV on the deep water base plate. If the test fails, the operability of the ROV operation interface of the deep water base plate is required. Make the necessary changes.
- the manufacturer of the base plate should complete the production of the factory nameplate according to the owner or the actual situation.
- the font of the nameplate should meet the needs of ROV underwater reading.
- the basic information of the base plate such as the date of manufacture, the owner, the constructor, the designer, the pressure range of use, the name of the base, etc., shall be marked as necessary.
- the above test items are required to be witnessed by the classification society. After completing the above tests, the report shall be submitted to the owner and the classification society for review. If the product is qualified, the classification society shall issue the corresponding classification society certificate.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Earth Drilling (AREA)
Abstract
一种海洋油气水下设备调试方法,包括以下步骤:对海洋油气水下设备的主结构及机械连接处的电气连续性进行检测;对海洋油气水下设备的阀门进行功能性检测和飞线测试,并进行水压测试;检测海洋油气水下设备的实际重量和实际重心,并根据检测到的实际重心进行试吊测试;进行陆上模拟ROV对海洋油气水下设备的通路测试。该海洋油气水下设备调试方法用于完成对海洋油气水下设备系统的调试,以避免海洋油气水下设备安装使用过程中出现故障,影响油气开发的正常进行,甚至导致安全事故发生
Description
本发明涉及海洋油气水下设备调试领域,尤其涉及一种海洋油气水下设备调试方法。
在全球油价高居不下的背景之下,深海油气勘探开发在我国已成为新的石油开发热点。随着我国海上油气开发水深的增加,越来越多的海洋油气水下设备,如深水基盘、深水管汇等,应用到深海油气勘探开发中;如LIWAN3-1项目的SSIV基盘和SUTA、PY34-1项目的SSIV基盘、LH4-1和LH19-5的管汇等。随着油气开发水深的增加,海洋油气水下设备越来越多地应用到深水油田的油气开发中,海洋油气水下设备的正常安装与工作对于深水油气开发工作的顺利进行至关重要。
当前我国海洋石油工业建造的水下基盘数量少,功能单一,而且使用前无系统的调试工作,导致水下基盘使用时,出现影响油气开发正常工作的故障,如PY4-2/5-1调整项目中完成的三通基盘和水下小管汇均没有进行系统的陆地调试。
发明内容
本发明要解决的技术问题在于,针对现有技术的缺陷,提供一种海洋油气水下设备调试方法。
本发明解决其技术问题所采用的技术方案是:一种海洋油气水下设备调
试方法,包括以下步骤:
S1:对海洋油气水下设备的主结构及机械连接处的电气连续性进行检测;
S2:对所述海洋油气水下设备的阀门进行功能性检测和飞线测试,并进行水压测试;
S3:检测海洋油气水下设备的实际重量和实际重心,并根据检测到的实际重心进行试吊测试;
S4:进行陆上模拟ROV对海洋油气水下设备的通路测试。
优选地,所述步骤S1包括:
S11:将阳极材料连接至海洋油气水下设备的主结构及机械连接处;
S12:在阳极材料与海洋油气水下设备的主结构之间,或阳极材料与海洋油气水下设备的机械连接处之间设置电阻测量仪;
S13:使所述海洋油气水下设备的主结构及机械连接处放置在电解液中,根据所述电阻测量仪确定所述海洋油气水下设备的电气连续性。
优选地,所述步骤S2的功能性测试包括液压控制系统控制阀门开启测试和/或ROV扭矩扳手控制阀门开启;
所述液压控制系统控制阀门开启测试包括液压动力单元、液压管、过滤器、管汇、快速接头连接到阀门执行器的的液压飞头,打开液压动力单元以完成阀门的开启测试;
所述ROV扭矩扳手控制阀门开启包括将所述扭矩扳手与液压动力单元的控制单元相连;通过所述控制单元完成所述扭矩扳手扭力输出校准;控制所述扭矩扳手至所述阀门执行器的操作篮,控制所述扭矩扳手完成阀门的开启测试。
优选地,所述步骤S2中飞线测试包括:将电飞线和液飞线的快速接头与
阀门执行器上的接口相连,检测阀门打开或关闭状态下所述电飞线和液飞线与所述阀门执行器各接口之间的电阻,以确定所述电飞线和液飞线是否与所述阀门执行器匹配。
优选地,所述步骤S2中水压测试包括:使所述海洋油气水下设备的阀门保持半打开状态,以淡水为介质,对所述海洋油气水下设备的基盘管线施加1~1.5倍压力,持续5~7小时,检测并判断所述海洋油气水下设备的压力波动是否在1%~3%的范围之内,若是,则所述海洋油气水下设备的基盘管线密封性良好,若否,则密封性不好。
优选地,所述步骤S3中检测海洋油气水下设备的实际重量和实际重心包括如下步骤:
S301:以放置海洋油气水下设备的平面为基准平面,建立O-XY坐标系;
S302:在所述基准平面上选择N个受力点,N个受力点的坐标分别是(Xi,Yi),其中,1≤i≤N,N≥3;
S303:采用N个液压千斤顶将所述海洋油气水下设备顶起,并在N个受力点上各放置一重量传感器,分别读取N个重量传感器的读数Wi;
优选地,所述海洋油气水下设备包括深水基盘,所述试吊测试包括如下步骤:
S311:采用吊装设备将海洋油气水下设备的防沉板吊起并放置在地面上,防沉板上设有导向柱;
S312:采用吊装设备将海洋油气水下设备的保护框架吊起至防沉板上方,
保护框架上的限位孔对准所述导向柱;
S313:使所述保护框架沿所述导向柱滑移就位,完成保护框架与防沉板的匹配。
优选地,在试吊测试过程中,采用牛眼的全站仪校核海洋油气水下设备的水平度,并采用电罗经的全站仪校核海洋油气水下设备的方向,以完成安装过程的水平度及方向测试。
优选地,所述步骤S4包括如下步骤:
S41:将ROV悬空,并控制所述ROV在恒温状态下工作;
S42:控制所述ROV进行前往海洋油气水下设备的通路测试;
S43:控制所述ROV进行读取所述海洋油气水下设备的标识信息测试;
S44:控制所述ROV完成对所述海洋油气水下设备的操作孔和观察孔的操作测试。
优选地,所述步骤S44包括如下步骤:
S441:控制所述ROV打开海洋油气水下设备的操作孔和观察孔的盖板,并对所述操作孔和观察孔进行识别;
S442:控制所述ROV将液压扭矩扳手装配至所述ROV的机械臂上;
S443:控制所述ROV前往所述海洋油气水下设备的操作孔,将所述液压扭矩扳手插入所述操作孔内,并在完成匹配操作后,拔出所述液压扭矩扳手;
S444:控制所述ROV将所述液压扭矩扳手从所述机械臂上解开;
S445:控制所述ROV关闭所述海洋油气水下设备的操作孔和观察孔的盖板。
本发明与现有技术相比具有如下优点:实施本发明,提供系统的海洋油气水下设备调试方法,用于完成对海洋油气水下设备系统的调试,以避免海洋油气水下设备安装使用过程中出现故障,影响油气开发的正常进行,甚至
导致安全事故发生。
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明一实施例中海洋油气水下设备调试方法的流程图,其中,海洋油气水下设备为深水基盘。
图2是本发明中主结构及机械连接处的电气连续性进行检测的流程图。
图3是本发明中检测深水基盘的实际重量和实际重心的流程图。
图4是本发明中试吊测试的流程图。
图5是本发明中陆上模拟ROV对深水基盘的通路测试的流程图。
图6是本发明中控制ROV完成对深水基盘的操作孔和观察孔的操作测试的流程图。
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
图1示出本发明一实施例中的海洋油气水下设备调试方法的流程图。该海洋油气水下设备调试方法用于对完成焊接的海洋油气水下设备进行系统的调试,以避免海洋油气水下设备安装使用过程中出现故障,影响油气开发的正常进行,甚至导致安全事故发生。可以理解地,在海洋油气水下设备建造过程中,对海洋油气水下设备的结构尺寸和焊接前后尺寸进行精确和控制,尤其是影响海上安装的以下结构的尺寸进行控制;如套筒的直径、套筒的空间距离、防沉板的水平度等,以保证建造完成的海洋油气水下设备各部分结
构的精度满足各自的精度等级要求,吊点孔等尺寸可以顺利与吊装卸扣进行匹配。在焊接过程中,按规格书和设计要求对各部分结构的焊接应按照相应的检验要求,做必要的焊接检验,以保证质量进行控制。
本发明公开一种海洋油气水下设备调试方法,本实施例中,海洋油气水下设备为深水基盘,如图1所示,深水基盘调试方法具体包括以下步骤:
S1:对深水基盘的主结构及机械连接处的电气连续性进行检测。可以理解地,机械连接处包括ROV盖板等。如图2所示,步骤S1包括:
S11:将阳极材料连接至深水基盘的主结构及机械连接处。
S12:在阳极材料与深水基盘的主结构之间,或阳极材料与深水基盘的机械连接处之间设置电阻测量仪。
S13:使所述深水基盘的主结构及机械连接处放置在电解液中,根据电阻测量仪确定深水基盘的电气连续性。
可以理解地,在电气连接性检验过程中,实时检测各主结构与阳极和机械连接处与阳极之间的电阻在预设的合理电阻值内,以使深水基盘水下工作时,其主结构和机械连接处可以得到很好的阳极的保护。由于预设的合理电阻值较小,在电气连接性检测过程中,应采用特有的电阻测量仪进行测量,且电阻测量仪需经第三方校验,以保证电阻检测的准确性。
S2:对深水基盘的阀门进行功能性检测和飞线测试,并进行水压测试。具体地,功能性测试用于确定深水基盘管线阀门能否正常工作,以保护阀门启示系统的完整性和可操作性,该功能性测试包括液压控制系统控制阀门开启测试和/或ROV扭矩扳手控制阀门开启。其中,液压控制系统控制阀门开启测试包括用于提供动力的液压动力单元、用于输出动力的液压管、用于输出动力时过滤液压油的过滤器、用于分配动力的管汇、用于连接阀门的快速接
头连接到阀门执行器的的液压飞头,打开液压动力单元以完成阀门的开启测试。ROV扭矩扳手控制阀门开启包括将扭矩扳手与液压动力单元的控制单元相连,其中,液压动力单元(HPU)用于提供动力,控制单元用于控制扭矩扳手的运作。通过控制单元完成扭矩扳手扭力输出校准;控制扭矩扳手至所述阀门执行器的操作篮,控制扭矩扳手完成阀门的开启测试。
可以理解地,深水基盘的基盘管线上的阀门启闭测量,通过记录阀门的启闭扭矩,并确认扭矩是否在预设的扭矩范围内,如较高扭矩出现,则视为不合格。在阀门启闭测量过程中,对阀门的开闭指示进行检查,开启时,阀门指针指向O(OPEN)位置,闭合时,阀门指针指向S(SHUP DOWN)位置。
基盘管线上的阀门应按照阀门厂家提供的资料进行阀门的启闭扭矩测量,现场应记录阀门的启闭扭矩,并确认扭矩是否在厂家提供的扭矩范围内,如果较高扭矩出现,则视为不合格。阀门启闭过程中,对阀门的开闭指示一并做检查,开的时候阀门指针应指向O(OPEN)位置,闭的时候阀门指针应指向S(SHUT DOWN)位置。阀门的启闭应对阀门两套启闭系统同时进行测试以验证两套阀门启闭系统的完整性和可操作性。
具体地,飞线测试主要用于测试电飞线和液飞线的快速接头匹配,在测试前,将电飞线和液飞线的飞头去除,再将电飞线和液飞线的快速接头与阀门执行器上的接口相连,检测阀门打开或关闭状态下电飞线和液飞线与阀门执行器各接口之间的电阻,以确定电飞线和液飞线是否与阀门执行器匹配,保护电信号输出的准确性。具体地,电飞线和液飞线均设有两根,共有四个接触点,分别编号为1、2、3及4,在阀门打开时,1号接触点和2号接触点导通,3号接触点和4号接触点断开;在阀门关闭时,1号接触点和2号接触点断开,3号接触点和4号接触点导通。电飞线和液飞线输出的是电阻信号,
阀门打开时,3号接触点和4号接触点之间的电阻无限大;阀门关闭时,1号接触点和2号接触点之间的电阻无限大。
可以理解地,在完成飞线测试后,需进行信标套筒的配对测试。即通过数码相机进行拍照,以实现对水下定位过程中使用的信标进行必要的配对测试,以保证海上施工过程中水下定位的顺利。
具体地,水压测试包括使深水基盘的阀门保持半打开状态,以淡水为介质,对深水基盘的基盘管线施加1~1.5倍压力,持续5~7小时,检测并判断深水基盘的压力波动是否在1%~3%的范围之内,若是,则深水基盘的基盘管线密封性良好,若否,则深水基盘的基盘管线密封性密封性不好。水压测试通过对法兰密封面、焊道及阀门的密封性进行测试,保证基盘管线在水下油气的输送过程中保持良好的密封性用于保证。
S3:检测深水基盘的实际重量和实际重心,并根据检测到的实际重心进行试吊测试。
如图3所示,检测深水基盘的实际重量和实际重心包括如下步骤:
S301:以放置深水基盘的平面为基准平面,建立O-XY坐标系。
S302:在基准平面上选择N个受力点,N个受力点的坐标分别是(Xi,Yi),其中,1≤i≤N,N≥3。本实施例中,受力点N的个数为4,4个受力点呈矩形分布,设置在深水基盘的防沉板或保护框架的下方,采用全站仪对4个受力点进行水平度调节,以保证4个受力点在同一水平面上,从而保证重量测量和重心测算的准确性。可以理解地,N个受力点的选择越多,其重量测量和重心测算越准确。N个受力点的放置尽量呈规则图形,以方便计算。若深水基盘的形状不规则,可自行设置受力点的位置,必要时,可设置专用的辅助支架,以保证不规则的深水基盘也可以方便快捷的称量。
S303:采用N个液压千斤顶将深水基盘顶起,并在N个受力点上各放置一重量传感器,分别读取N个重量传感器的读数Wi。可以理解地,在深水基盘重量测量和重心检测过程中,需分别检测防沉板和保护框架的重量和重心。
具体地,步骤S303包括如下步骤:
S3031:采用N个液压千斤顶将深水基盘的防沉板或保护框架顶起,并在N个受力点位置相应放置一重量传感器。具体地,重量传感器为测量范围为0~50吨的地磅式重力传感器,4个地磅式重力传感器可测量0~200吨的深水基盘,4个地磅式重力传感器的配置将重量较大的深水基盘的称量更简洁、高效,且称重范围大,具有明显的优势。在每一地磅式重力传感器附近采用一个液压千斤顶将深水基盘的防沉板或保护框架顶起,称量操作便捷,可在深水基盘的建造场地完成,无需使用价格高昂的大型吊机;也不必将深水基盘运输到地磅站进行测量,操作简单,经济实用。
S3032:调整重量传感器,以使N个重量传感器处于同一水平面上,以保证重量测量和重心测算的准确性。具体地,采用全站仪调整重量传感器的位置,以使4个重量传感器处于同一水平面上。
S3033:释放液压千斤顶,使深水基盘的防沉板或保护框架放置在N个重量传感器上,分别读取N个重量传感器的读数Wi,以完成深水基盘的防沉板或保护框架的一次重量测量。
可以理解地,为保护重量测量的准确性,重复执行步骤S31~S33数次,将数次读取到的重量传感器的读数Wi的平均值作为该重量传感器最终的测量结果。具体地,即在步骤S33之后,采用液压千斤顶将深水基盘的防沉板或保护框架顶起,对4个重量传感器的读数清零后,再次释放液压千斤顶,将深水基盘的防沉板或保护框架放置在4个重量传感器上,再次读取4个重量
传感器的读数,完成深水基盘防沉板或保护框架的第二次重量测量。该步骤对4个重量传感器的读数清规后,无需两次使用全站仪调整其位置,即可保证其处于同一水平面上。可以理解地,在使用液压千斤顶将深水基盘的防沉板或保护框架顶起时,可相应调整各重量传感器的位置,并采用全站仪将各重量传感器调整在同一水平面上,再次读取4个重量传感器的读数,将数次测量到重量传感器的读数Wi的平均值作为该重量传感器最终的测量结果,以提高重量测量和重心测算的准确性。
S304:根据N个受力点的坐标分别是(Xi,Yi)和N个重量传感器的读数Wi计算深水基盘的实际重量W0和实际重心G(X0,Y0),其中,
可以理解地,本实施例中将4个重量传感器的至少3次计算得到的重量传感器的读数Wi的平均值作为最终重量传感器的读数Wi并计算,其重量测量和重心测算结果更准确,以保证深水基盘吊装的顺利进行。
可以理解地,步骤S1~步骤S4即可准确获知深水基盘的实际重量W0和实际重心G(X0,Y0),可在一定程度上保护深水基盘吊装的顺利进行,而且采用本方法所提供的重量测量和重心检测的方法称重结果准确,比建模软件更能反馈结构真实的重量。
S3035:再次在基准平面上选择N个受力点,重复步骤S2~步骤S4,将多次计算得到的深水基盘的实际重量W0和实际重心G(X0,Y0)的平均值作为最终的实际重量W和实际重心G(X,Y),以进一步提高深水基盘重量测量和重量测算的准确性。
S3036:将深水基盘的实际重量W0和实际重心G(X0,Y0)分别与理论重量和理论重心进行比较,以对理论重量和理论重心进行修正,以提高结构
建模的准确性。
步骤S3031~S3036可快捷简便地计算出深水基盘的实际重量和实际重心,提高吊装计算分析的准确性。而且,采用液压千斤顶将深水基盘顶起,并采用重量传感器进行测算深水基盘的重量,结构轻便,不依赖于大型吊机等辅助测量设备。
如图4所示,试吊测试包括如下步骤:
S311:采用吊装设备将深水基盘的防沉板吊起并放置在地面上,防沉板上设有导向柱;
S312:采用吊装设备将深水基盘的保护框架吊起至防沉板上方,保护框架上的限位孔对准所述导向柱;
S313:使所述保护框架沿所述导向柱滑移就位,完成保护框架与防沉板的匹配。
可以理解地,在深水基盘完成建造后具备吊装条件后应按照海上吊装的锁具的设计,使用海上安装的吊装方案进行深水基盘的试吊,整个试吊过程进行录像。吊装时,采用牛眼的全站仪校核深水基盘的水平度,并采用电罗经的全站仪校核深水基盘的方向,以完成安装过程的水平度及方向测试。根据牛眼的读数记录深水基盘的水平角度,基盘的吊装状态应接近水平,如果倾斜较大,特别是水平度对安装工作影响较大的部分因根据测算深水基盘的实际重量和实际重心评估吊装设计的合理性,必要时应调整吊装方案。
可以理解地,在深水基盘上安装牛眼,用于测量深水基盘下水后是否存在空间上的角度偏移,通过牛眼的读数确认深水基盘的水下度。为保证牛眼指示的准确性,在深水基盘下水前,对牛眼进行校验,以确保牛眼本身的读数与水平面一致。此外,牛眼的读数与深水基盘的管线朝向一致,因此在深
水基盘的建造过程中应保证管线的朝向是水平的,才能保证牛眼的读数能真实反应管线的朝向。可以理解地,在深水基盘水下安装前,应安装电罗经,以指示水下安装的方向,为保证电罗经指示方向的准确性,应在陆地上使用全站仪对电罗经进行校核。
S4:进行陆上模拟ROV对深水基盘的通路测试。可以理解地,在进行步骤S4之前,需先将ROV、ROV控制室、液压动力站、收放缆绞车及发电机连接成一体,完成设备的连接。其中,该ROV为液压驱动,采用与ROV配套的液压动力站(即HPU)给ROV提供动力,该液压动力站与ROV相连。ROV控制室与ROV相连以控制并查看ROV测试结果,如查看ROV的摄像头监测的录像。收放缆绞车与ROV相连,用于根据ROV与ROV控制室的距离控制脐带缆的长短。发电机分别与ROV控制室和收放缆绞车相连。在完成相应设备的连接和调试后,将ROV上方的吊点与吊机完成连接。
如图5所示,步骤S4包括如下步骤:
S41:将ROV悬空,并控制ROV在恒温状态下工作。具体地,采用15吨的吊机将ROV悬空吊起,在起吊过程中,需在对角方向对ROV进行限位。在悬空吊起完成后,使ROV开机,并采用消防水带对所述ROV进行不间断的冲水降温,以使ROV在恒温状态下工作,避免检测过程中ROV的温度过高,影响其正常工作。
S42:控制ROV进行前往深水基盘的通路测试。具体地,控制ROV按预设路径移动到深水基盘的操作孔位置和观察孔位置,相应控制收放缆绞车回收或下放脐带缆,以完成通路测试。在进行通路测试过程中,通过设置在吊机上的用于避免ROV偏离预设路径移动限位导轨对ROV进行限位,以避免左右摇摆,导致ROV与深水基盘的结构碰撞。具体地,操作孔设置在深水基盘
的保护框架上。可以理解地,在悬空状态下,若ROV可以无障碍抵达ROV操作孔和观察孔位置(即ROV不会与保护框架发生碰撞),则通路测试合格,否则视为不合格。
S43:控制ROV进行读取所述深水基盘的标识信息测试。具体地,控制ROV上设置的摄像设备采集深水基盘表面的标识信息,并在ROV控制室中进行刻盘。标识信息包括设置在深水基盘的防沉板上的刻度线标识和介质流动方向指示箭头、T.N.标识和P.N.标识以及设置在深水基盘的保护框架上的操作孔标识,其中T.N.标识和P.N.标识分别指true north和platform north标识,用于指向深水基盘的水下朝向。可以理解地,在将ROV悬空吊起的过程中,需在对角方向对ROV进行限位,标识信息的识别可有利于正确识别深水基盘的位置,以保护ROV的检测工作的正常进行。
S44:控制所述ROV完成对所述深水基盘的操作孔和观察孔的操作测试。控制ROV完成对深水基盘的操作孔和观察孔的操作测试,以模拟ROV对深水基盘安装过程中的操作,从而保证ROV在深水基盘水下安装的顺利。
如图6所示,步骤S44包括如下步骤:
S441:控制吊机将ROV下放至深水基盘所在地面,控制ROV打开设置在深水基盘的保护框架上的操作孔和观察孔的盖板,并对操作孔和观察孔进行识别。具体地,对ROV的操作孔和观察孔进行识别包括采用ROV摄像头对阀门操作孔的指示O/S和指示孔的O/S进行识别。
S442:恢复至陆地,控制ROV将海上开阀门用的液压扭矩扳手装配至ROV的机械臂上。
S443:吊机再次吊起ROV,控制ROV前往深水基盘的操作孔,将液压扭矩扳手插入操作孔内,并在完成匹配操作后,拔出液压扭矩扳手。可以理解地,
在此过程吕,通过ROV上的摄像设备查看观察孔,以控制ROV上的液压扭矩扳手完成匹配操作。
S444:ROV再次吊起放至陆地,控制ROV将液压扭矩扳手从机械臂上解开,完成液压扭矩扳手的解配。
S445:吊起再次吊起ROV,前往深水基盘的保护框架顶板,控制ROV使用机械臂关闭深水基盘的操作孔和观察孔的盖板,完成ROV的操作测试。可以理解地,完成步骤S45之后,拆除ROV、ROV控制室、液压动力站、收放缆绞车及发电机的连接,回收ROV检测设备。
步骤S4中,通过在陆上模拟ROV对深水基盘进行检测,将实体ROV运用到深水基盘的ROV测试中,以确定ROV接口是否合理,能否顺利完成水下操作,以保证ROV能够顺利应用到深水基盘水下安装过程中,避免实际应用中因ROV无法对深水基盘进行顺利安装,影响海水油气开发进程的顺利进行,进而导致项目延续且成本增加。
可以理解地,通过进行陆上模拟ROV对深水基盘的通路测试,对深水基盘的ROV操作接口的可操作性进行评估,若测试失败,需对深水基盘的ROV操作接口的可操作性进行必要的修改。
可以理解地,在完成以上的测试后,基盘制造厂家应根据业主或实际情况完成出厂铭牌的制作。铭牌的字体应满足ROV水下读取的需要,对基盘的基本信息如出厂日期、业主方、施工方、设计方、使用压力范围、基盘名称等进行必要的标识。以上的测试项均需船级社的现场见证,完成以上测试后,须整理出报告交业主和船级社审核,如果产品合格,船级社应出具相应的船级社证书。
本发明是通过一个具体实施例进行说明的,本领域技术人员应当明白,
在不脱离本发明范围的情况下,还可以对本发明进行各种变换和等同替代。另外,针对特定情形或具体情况,可以对本发明做各种修改,而不脱离本发明的范围。因此,本发明不局限于所公开的具体实施例,而应当包括落入本发明权利要求范围内的全部实施方式。
Claims (10)
- 一种海洋油气水下设备调试方法,其特征在于:包括以下步骤:S1:对海洋油气水下设备的主结构及机械连接处的电气连续性进行检测;S2:对所述海洋油气水下设备的阀门进行功能性检测和飞线测试,并进行水压测试;S3:检测海洋油气水下设备的实际重量和实际重心,并根据检测到的实际重心进行试吊测试;S4:进行陆上模拟ROV对海洋油气水下设备的通路测试。
- 根据权利要求1所述的海洋油气水下设备调试方法,其特征在于:所述步骤S1包括:S11:将阳极材料连接至海洋油气水下设备的主结构及机械连接处;S12:在阳极材料与海洋油气水下设备的主结构之间,或阳极材料与海洋油气水下设备的机械连接处之间设置电阻测量仪;S13:使所述海洋油气水下设备的主结构及机械连接处放置在电解液中,根据所述电阻测量仪确定所述海洋油气水下设备的电气连续性。
- 根据权利要求1所述的海洋油气水下设备调试方法,其特征在于:所述步骤S2的功能性测试包括液压控制系统控制阀门开启测试和/或ROV扭矩扳手控制阀门开启;所述液压控制系统控制阀门开启测试包括液压动力单元、液压管、过滤器、管汇、快速接头连接到阀门执行器的的液压飞头,打开液压动力单元以完成阀门的开启测试;所述ROV扭矩扳手控制阀门开启包括将所述扭矩扳手与液压动力单元的控制单元相连;通过所述控制单元完成所述扭矩扳手扭力输出校准;控制所 述扭矩扳手至所述阀门执行器的操作篮,控制所述扭矩扳手完成阀门的开启测试。
- 根据权利要求1所述的海洋油气水下设备调试方法,其特征在于:所述步骤S2中飞线测试包括:将电飞线和液飞线的快速接头与阀门执行器上的接口相连,检测阀门打开或关闭状态下所述电飞线和液飞线与所述阀门执行器各接口之间的电阻,以确定所述电飞线和液飞线是否与所述阀门执行器匹配。
- 根据权利要求1所述的海洋油气水下设备调试方法,其特征在于,所述步骤S2中水压测试包括:使所述海洋油气水下设备的阀门保持半打开状态,以淡水为介质,对所述海洋油气水下设备的基盘管线施加1~1.5倍压力,持续5~7小时,检测并判断所述海洋油气水下设备的压力波动是否在1%~3%的范围之内,若是,则所述海洋油气水下设备的基盘管线密封性良好,若否,则密封性不好。
- 根据权利要求1所述的海洋油气水下设备调试方法,其特征在于:所述海洋油气水下设备包括深水基盘,所述试吊测试包括如下步骤:S311:采用吊装设备将海洋油气水下设备的防沉板吊起并放置在地面上,防沉板上设有导向柱;S312:采用吊装设备将海洋油气水下设备的保护框架吊起至防沉板上方,保护框架上的限位孔对准所述导向柱;S313:使所述保护框架沿所述导向柱滑移就位,完成保护框架与防沉板的匹配。
- 根据权利要求7所述的海洋油气水下设备调试方法,其特征在于:在试吊测试过程中,采用牛眼的全站仪校核海洋油气水下设备的水平度,并采用电罗经的全站仪校核海洋油气水下设备的方向,以完成安装过程的水平度及方向测试。
- 根据权利要求1所述的海洋油气水下设备调试方法,其特征在于:所述步骤S4包括如下步骤:S41:将ROV悬空,并控制所述ROV在恒温状态下工作;S42:控制所述ROV进行前往海洋油气水下设备的通路测试;S43:控制所述ROV进行读取所述海洋油气水下设备的标识信息测试;S44:控制所述ROV完成对所述海洋油气水下设备的操作孔和观察孔的操作测试。
- 根据权利要求9所述的海洋油气水下设备调试方法,其特征在于:所述步骤S44包括如下步骤:S441:控制所述ROV打开海洋油气水下设备的操作孔和观察孔的盖板,并对所述操作孔和观察孔进行识别;S442:控制所述ROV将液压扭矩扳手装配至所述ROV的机械臂上;S443:控制所述ROV前往所述海洋油气水下设备的操作孔,将所述液压扭矩扳手插入所述操作孔内,并在完成匹配操作后,拔出所述液压扭矩扳手;S444:控制所述ROV将所述液压扭矩扳手从所述机械臂上解开;S445:控制所述ROV关闭所述海洋油气水下设备的操作孔和观察孔的盖板。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510131634.5A CN104865955B (zh) | 2015-03-24 | 2015-03-24 | 海洋油气水下设备调试方法 |
CN2015101316345 | 2015-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016150185A1 true WO2016150185A1 (zh) | 2016-09-29 |
Family
ID=53911855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/095812 WO2016150185A1 (zh) | 2015-03-24 | 2015-11-27 | 海洋油气水下设备调试方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104865955B (zh) |
WO (1) | WO2016150185A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104865955B (zh) * | 2015-03-24 | 2017-08-08 | 深圳海油工程水下技术有限公司 | 海洋油气水下设备调试方法 |
CN105696981B (zh) * | 2016-04-14 | 2018-11-02 | 深圳市雷斯特海洋工程有限公司 | 一种可燃冰解堵装置、解堵系统及解堵方法 |
CN113640026B (zh) * | 2021-08-12 | 2023-12-08 | 三一汽车制造有限公司 | 一种工业设备测试方法和装置、测试系统 |
CN116430832A (zh) * | 2023-04-26 | 2023-07-14 | 广州番禺职业技术学院 | 一种电驱动水下闸阀执行器测试系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2729724Y (zh) * | 2004-09-24 | 2005-09-28 | 中国石化集团胜利石油管理局钻井工艺研究院 | 一种管道内缺陷检测装置使用的投放发射器、回收器 |
CN103711460A (zh) * | 2013-12-31 | 2014-04-09 | 重庆前卫海洋石油工程设备有限责任公司 | 深水管线多回路跨接系统及其测试安装方法 |
US8820411B2 (en) * | 2011-06-09 | 2014-09-02 | Organoworld Inc. | Deepwater blow out throttling apparatus and method |
CN104865955A (zh) * | 2015-03-24 | 2015-08-26 | 深圳海油工程水下技术有限公司 | 海洋油气水下设备调试方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104315225A (zh) * | 2014-08-25 | 2015-01-28 | 中国海洋石油总公司 | 海底管道的水下安全隔离装置 |
-
2015
- 2015-03-24 CN CN201510131634.5A patent/CN104865955B/zh active Active
- 2015-11-27 WO PCT/CN2015/095812 patent/WO2016150185A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2729724Y (zh) * | 2004-09-24 | 2005-09-28 | 中国石化集团胜利石油管理局钻井工艺研究院 | 一种管道内缺陷检测装置使用的投放发射器、回收器 |
US8820411B2 (en) * | 2011-06-09 | 2014-09-02 | Organoworld Inc. | Deepwater blow out throttling apparatus and method |
CN103711460A (zh) * | 2013-12-31 | 2014-04-09 | 重庆前卫海洋石油工程设备有限责任公司 | 深水管线多回路跨接系统及其测试安装方法 |
CN104865955A (zh) * | 2015-03-24 | 2015-08-26 | 深圳海油工程水下技术有限公司 | 海洋油气水下设备调试方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104865955B (zh) | 2017-08-08 |
CN104865955A (zh) | 2015-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10732580B2 (en) | Processes for preparing, forming and assembling pipe sections in a pipeline using mechanical press fit pipe joints | |
WO2016150185A1 (zh) | 海洋油气水下设备调试方法 | |
US9964519B2 (en) | Non-destructive system and method for detecting structural defects | |
BRPI0708621A2 (pt) | ferramentas de reparo e manuteção de tubulações submarinas e métodos para substituição de tubulações rompidas | |
CN105741278B (zh) | 一种基于计算机视觉的拉索分布应力在线监测方法 | |
CN107283083B (zh) | 环焊缝评价方法及装置 | |
CN113640301B (zh) | 特种设备的螺栓检测方法 | |
CN208537474U (zh) | 一种管道焊缝检测装置 | |
Reda et al. | Simulated in-line deployment of offshore rigid field joint–A testing concept | |
WO2016150186A1 (zh) | 陆上模拟rov对海洋油气水下设备的检测方法 | |
CN107144640A (zh) | 一种储罐检测装置及方法 | |
CN103899842A (zh) | 深水在线三通的安装方法 | |
CN103105333B (zh) | 跨断层埋地管线原位试验量测系统 | |
CN109959325A (zh) | 一种发动机支架固定面平面度检测装置 | |
D’Zurko et al. | Completion of development of robotics systems for inspecting unpiggable transmission pipelines | |
Campaci et al. | Well Killing Guidance System: Operation and Handling Tested in Water | |
US20230056235A1 (en) | Shearography system for subsea inspections | |
Dos Santos et al. | Flexible pipe integrity analysis using event trees | |
KR101910492B1 (ko) | 상수도관의 위험감지 시스템 및 이를 이용한 상수도관의 위험감지 방법 | |
CN204514598U (zh) | 一种对海底防喷器的支撑结构进行负载试验的装置 | |
He et al. | Research on mechanical model for aligning dislocated underwater pipelines during replacement and repair | |
McGeady | In-situ testing of mooring bollards | |
CN204718976U (zh) | 一种小径管对接接头伽马射线检测工装固定装置 | |
CN115542832A (zh) | 一种矿用供水阀门远程监控系统及控制方法 | |
CN115876362A (zh) | 一种含硫管道远场应力检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15886107 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15886107 Country of ref document: EP Kind code of ref document: A1 |