WO2016148394A1 - 메모리 소자 - Google Patents

메모리 소자 Download PDF

Info

Publication number
WO2016148394A1
WO2016148394A1 PCT/KR2016/001135 KR2016001135W WO2016148394A1 WO 2016148394 A1 WO2016148394 A1 WO 2016148394A1 KR 2016001135 W KR2016001135 W KR 2016001135W WO 2016148394 A1 WO2016148394 A1 WO 2016148394A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetic
magnetization
memory device
free
Prior art date
Application number
PCT/KR2016/001135
Other languages
English (en)
French (fr)
Inventor
박재근
홍송화
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150045173A external-priority patent/KR101721618B1/ko
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to CN201680016542.5A priority Critical patent/CN107454986B/zh
Publication of WO2016148394A1 publication Critical patent/WO2016148394A1/ko
Priority to US15/707,491 priority patent/US10580964B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Definitions

  • the present invention relates to a memory device, and more particularly to a magnetic memory device using a magnetic tunnel junction (MTJ).
  • MTJ magnetic tunnel junction
  • next-generation nonvolatile memory devices which consume less power and have higher integration than flash memory devices.
  • Such next-generation nonvolatile memory devices include phase change RAM (PRAM) using a state change of a phase change material such as a chalcogenide alloy, and a magnetic tunnel junction according to the magnetization state of a ferromagnetic material.
  • PRAM phase change RAM
  • MRAM Magnetic RAM
  • Ferroelectric memory using polarization of ferroelectric material
  • ReRAM Resistance change RAM
  • STT-MRAM Spin-Transfer Torque Magnetic Random Access Memory
  • STT-MRAM devices each include a pinned layer and a free layer formed of ferromagnetic material, and a magnetic tunnel junction having a tunnel barrier formed therebetween.
  • the magnetic tunnel junction has a low resistance state because the magnetization directions of the free layer and the pinned layer are the same (i.e., parallel), so that the current flows easily. Indicates the resistance state.
  • the magnetization direction should change only in the direction perpendicular to the substrate, so the free layer and the pinned layer should have the vertical magnetization value.
  • STT-MRAM devices can theoretically cycle beyond 10 15 and can switch at as fast as nanoseconds.
  • the vertical magnetization type STT-MRAM device has no scaling limit in theory, and research is being actively conducted as a next-generation memory device that can replace the DRAM device due to the advantage that the current density of the driving current can be lowered as the scaling progresses. Is going on. Meanwhile, an example of the STT-MRAM device is shown in Korean Patent Registration No. 10-1040163.
  • a seed layer is formed below the free layer, a capping layer is formed on the fixed layer, and a synthetic exchange diamagnetic layer and an upper electrode are formed on the capping layer.
  • a silicon oxide film is formed on a silicon substrate, and a seed layer and a magnetic tunnel junction are formed thereon.
  • a selection element such as a transistor may be formed on the silicon substrate, and the silicon oxide film may be formed to cover the selection element.
  • the STT-MRAM device has a stacked structure of a silicon oxide film, a seed layer, a free layer, a tunnel barrier, a pinned layer, a capping layer, a synthetic exchange diamagnetic layer, and an upper electrode on a silicon substrate on which the selection element is formed.
  • the seed layer and the capping layer are formed using tantalum (Ta)
  • the synthetic exchange diamagnetic layer has a structure in which a lower magnetic layer and an upper magnetic layer in which magnetic metals and nonmagnetic metals are alternately stacked, and a nonmagnetic layer are formed therebetween.
  • a magnetic tunnel junction is formed on the lower side of the substrate and a synthetic exchange diamagnetic layer is formed on the upper side.
  • the synthetic exchange diamagnetic layer of fcc (111) is formed on the magnetic tunnel junction that is textured in the direction of bcc (100), the fcc (111) structure diffuses into the magnetic tunnel junction when forming the synthetic exchange diamagnetic layer. ) May worsen the decision. That is, when forming the synthetic exchange diamagnetic layer, some of the material may diffuse into the magnetic tunnel junction, which may worsen the crystallinity of the magnetic tunnel junction. Therefore, the magnetization direction of the magnetic tunnel junction cannot be changed rapidly, which may cause a problem that the operation speed of the memory is lowered or does not operate.
  • the present invention provides a memory device capable of improving the crystallinity of a magnetic tunnel junction and thereby rapidly changing the magnetization direction.
  • the present invention provides a memory device capable of improving the crystallinity of a magnetic tunnel junction by preventing the material of the synthetic exchange diamagnetic layer from diffusing into the magnetic tunnel junction.
  • a lower electrode, a buffer layer, a seed layer, a synthetic exchange diamagnetic layer, a capping layer, a magnetic tunnel junction, and an upper electrode are sequentially stacked on a substrate.
  • the lower electrode is made of a polycrystalline conductive material.
  • the semiconductor device may further include a buffer layer formed between the lower electrode and the seed layer and formed of a material including tantalum.
  • the synthetic exchange diamagnetic layer is formed of a laminated structure of a first magnetic layer, a nonmagnetic layer, and a second magnetic layer, and the first and second magnetic layers are formed of a material including Pt.
  • the first magnetic layer is formed of a multilayer structure in which Co / Pt is stacked at least twice, and the second magnetic layer is formed of only a single layer of Co / Pt.
  • the capping layer is formed of a material of a bcc structure.
  • the free layer includes a first magnetization layer having vertical magnetization, a separation layer without magnetization, and a second magnetization layer having vertical magnetization, wherein the first magnetization layer is formed adjacent to the pinned layer.
  • the first and second free layers are formed of a material including CoFeB, and the first free layer is formed thinner than the second free layer.
  • the magnetic tunnel junction is formed after the synthetic exchange diamagnetic layer is formed on the substrate.
  • the material of the synthetic exchange diamagnetic layer does not diffuse into the magnetic tunnel junction, thus preserving the bcc (100) crystal of the magnetic tunnel junction. Therefore, the magnetization direction of the magnetic tunnel junction can be changed drastically, and the operation speed of the memory can be improved.
  • FIG. 1 is a cross-sectional view of a memory device according to an exemplary embodiment of the present invention.
  • 2 to 5 are graphs showing the perpendicular magnetic characteristics of the memory device according to the conventional example and the present invention.
  • FIG. 1 is a cross-sectional view of a memory device according to an exemplary embodiment of the present invention, and a cross-sectional view of an STT-MRAM device.
  • a memory device may include a lower electrode 110, a first buffer layer 120, a seed layer 130, and a synthetic exchange diamagnetic layer 140 formed on a substrate 100.
  • the capping layer 150 includes a capping layer 150, a pinned layer 160, a tunnel barrier 170, a free layer 180, a second buffer layer 190, and an upper electrode 200. That is, the upper electrodes 200 are sequentially stacked on the substrate 100 from the lower electrodes 110.
  • the synthetic exchange diamagnetic layer 140 is formed of a laminated structure of the first magnetic layer 141, the nonmagnetic layer 142, and the second magnetic layer 143, and the pinned layer 160, the tunnel barrier 170, and the free layer ( 180 is a magnetic tunnel junction.
  • the substrate 100 may use a semiconductor substrate.
  • the substrate 100 may use a silicon substrate, a gallium arsenide substrate, a silicon germanium substrate, a silicon oxide substrate, or the like.
  • a silicon substrate is used.
  • a selection device including a transistor may be formed on the substrate 100.
  • An insulating layer 105 may be formed on the substrate 100. That is, the insulating layer 105 may be formed to cover a predetermined structure such as a selection device, and a contact hole exposing at least a portion of the selection device may be formed in the insulating layer 105.
  • the insulating layer 105 may be formed using an amorphous silicon oxide film (SiO 2 ) or the like.
  • the lower electrode 110 is formed on the insulating layer 105.
  • the lower electrode 110 may be formed using a conductive material such as metal, metal nitride, or the like.
  • the lower electrode 110 of the present invention may be formed of at least one layer.
  • the lower electrode 110 may be formed as a dual structure of the first and second lower electrodes.
  • the first lower electrode may be formed on the insulating layer 105, and the second lower electrode may be formed on the first lower electrode.
  • the first lower electrode may be formed in the insulating layer 105, and thus may be connected to the selection element formed on the substrate 100.
  • the lower electrode 110 may be formed of a polycrystalline conductive material.
  • the first and second lower electrodes may be formed of a conductive material having a bcc structure.
  • the first lower electrode may be formed of a metal such as tungsten (W)
  • the second lower electrode may be formed of a metal nitride such as a titanium nitride film (TiN).
  • the first buffer layer 120 is formed on the lower electrode 110.
  • the first buffer layer 120 may be formed of a material having excellent conformity with the lower electrode 110 in order to resolve the lattice constant mismatch between the lower electrode 110 and the seed layer 130.
  • the first buffer layer 120 may be formed using tantalum (Ta) having excellent lattice matching with TiN.
  • Ta tantalum
  • the amorphous first buffer layer 120 may be grown along the crystal direction of the polycrystalline lower electrode 110, and then the crystallinity is improved by heat treatment. Can be.
  • the first buffer layer 120 may be formed to have a thickness of, for example, 2 nm to 10 nm.
  • the seed layer 130 is formed on the first buffer layer 120.
  • the seed layer 130 may be formed of a material that allows the synthetic exchange diamagnetic layer 140 to grow crystals. That is, the seed layer 130 allows the first and second magnetic layers 141 and 143 of the synthetic exchange diamagnetic layer 140 to grow in a desired crystal direction.
  • it may be formed of a metal that facilitates the growth of crystals in the (111) direction of the face centered cubic (FCC) or the (001) direction of the hexagonal close-packed structure (HCP). have.
  • the seed layer 130 includes tantalum (Ta), ruthenium (Ru), titanium (Ti), palladium (Pd), platinum (Pt), magnesium (Mg), cobalt (Co), aluminum (Al), and tungsten (W). It may include a metal or an alloy thereof selected from the group consisting of.
  • the seed layer 130 may be formed of platinum (Pt), and may be formed to a thickness of 1nm to 3nm.
  • Synthetic exchange diamagnetic layer 140 is formed on seed layer 130.
  • the synthetic exchange diamagnetic layer 140 serves to fix the magnetization of the pinned layer 160.
  • the synthetic exchange diamagnetic layer 140 includes a first magnetic layer 141, a nonmagnetic layer 142, and a second magnetic layer 143. That is, in the synthetic exchange diamagnetic layer 140, the first magnetic layer 141 and the second magnetic layer 143 are antiferromagnetically coupled to each other through the nonmagnetic layer 142.
  • the first magnetic layer 141 and the second magnetic layer 143 may have a crystal in the FCC 111 direction or the HCP 001 direction.
  • the magnetization directions of the first and second magnetic layers 141 and 143 are arranged antiparallel.
  • the first magnetic layer 141 is magnetized in an upward direction (ie, the upper electrode 190 direction), and The two magnetic layers 143 may be magnetized in the downward direction (ie, the substrate 100 direction).
  • the first magnetic layer 141 and the second magnetic layer 143 may be formed in a structure in which a magnetic metal and a nonmagnetic metal are alternately stacked.
  • a magnetic metal a single metal or an alloy thereof selected from the group consisting of iron (Fe), cobalt (Co), nickel (Ni), and the like may be used, and chromium (Cr), platinum (Pt), palladium as a nonmagnetic metal may be used.
  • a single metal or alloy thereof selected from the group consisting of (Pd), iridium (Ir), rhodium (Rh), ruthenium (Ru), osmium (Os), rhenium (Re), gold (Au) and copper (Cu) can be used.
  • the first magnetic layer 141 and the second magnetic layer 143 may be formed of [Co / Pd] n, [Co / Pt] n or [CoFe / Pt] n (where n is an integer of 1 or more).
  • the first magnetic layer 141 may be formed thicker than the second magnetic layer 143.
  • the first magnetic layer 141 may be formed of a plurality of layers, and the second magnetic layer 143 may be formed of a single layer. That is, the first magnetic layer 141 may be formed of a structure in which a magnetic metal and a nonmagnetic metal are repeatedly stacked a plurality of times, and the second magnetic layer 143 may be formed by stacking a magnetic metal and a nonmagnetic metal once, that is, in a single stacked structure. It can be formed as.
  • the nonmagnetic layer 142 is formed between the first magnetic layer 141 and the first magnetic layer 143, and is a nonmagnetic material that allows the first magnetic layer 141 and the second magnetic layer 143 to perform diamagnetic coupling. Is formed.
  • the nonmagnetic layer 142 may be formed of one or an alloy thereof selected from the group consisting of ruthenium (Ru), rhodium (Rh), osmium (Os), rhenium (Re), and chromium (Cr).
  • Ru ruthenium
  • the second magnetic layer 143 is formed of a single stacked structure, that is, a single layer, the thickness of the first magnetic layer 141 may also be reduced, thereby reducing the thickness of the entire memory device. That is, the sum of the magnetization values of the first magnetic layer 183 and the magnetization values of the second magnetic layer 143 and the pinned layer 160 should be the same with respect to the nonmagnetic layer 142.
  • the first magnetic layer is formed so that the sum of the magnetization values of the second magnetic layer 143 and the pinned layer 160 and the magnetization value of the first magnetic layer 141 are the same.
  • 141 is formed by increasing the number of repetitions more than the second magnetic layer 143.
  • the second magnetic layer 143 by forming the second magnetic layer 143 in a single structure, the number of times of stacking the first magnetic layer 141 can be reduced than before, and thus the overall thickness of the memory device can be reduced.
  • the capping layer 150 is formed on the synthetic exchange diamagnetic layer 140. As the capping layer 150 is formed, the magnetization of the synthetic exchange diamagnetic layer 140 and the pinned layer 160 is generated independently of each other. In addition, the capping layer 150 is formed of a material capable of improving the crystallinity of the magnetic tunnel junction including the pinned layer 160, the tunnel barrier 170, and the free layer 180. To this end, the capping layer 150 may be formed of a polycrystalline material, for example, a conductive material having a bcc structure, and may be formed of tungsten (W).
  • W tungsten
  • the capping layer 150 may be formed of a polycrystalline material to improve crystallinity of the magnetic tunnel junction including the pinned layer 160, the tunnel barrier 170, and the free layer 180 formed thereon. That is, when the polycrystalline capping layer 150 is formed, an amorphous magnetic tunnel junction formed on the upper portion thereof is grown along the crystal direction of the capping layer 150. Then, when the heat treatment is performed for vertical magnetic anisotropy, the magnetic tunnel junction is formed. Crystallinity can be improved than before. In particular, when the W is used as the capping layer 150, crystallization is performed after a high temperature heat treatment of 400 ° C. or higher, for example, 400 ° C.
  • the free layer 180 may be crystallized to maintain the perpendicular magnetic anisotropy of the magnetic tunnel junction.
  • the capping layer 150 may be formed to have a thickness of 0.4 nm to 0.8 nm, for example.
  • the magnetization direction of the pinned layer 160 is fixed only by ferro coupling of the second magnetic layer 143 and the pinned layer 160 of the synthetic exchange diamagnetic layer 140, but the capping layer 150 using W is When formed to a thickness of 0.8 nm or more, the magnetization direction of the pinned layer 160 is not fixed due to an increase in the thickness of the capping layer 150, and has the same magnetization direction as that of the free layer 180. This does not happen and does not work with memory.
  • the pinned layer 160 is formed on the capping layer 150 and is formed of a ferromagnetic material.
  • the pinned layer 160 is fixed in one direction in a magnetic field within a predetermined range, and may be formed of a ferromagnetic material.
  • magnetization may be fixed in a direction from top to bottom.
  • the pinned layer 160 may be, for example, a multilayer in which a full-heusler semimetal-based alloy, an amorphous rare earth element alloy, a ferromagnetic metal, and a nonmagnetic metal are alternately stacked. It can be formed using a ferromagnetic material such as a thin film, an alloy having a L10 type crystal structure, or a cobalt-based alloy.
  • the full-heussler semimetal-based alloys include CoFeAl, CoFeAlSi and the like, and amorphous rare earth element alloys include alloys such as TbFe, TbCo, TbFeCo, DyTbFeCo, and GdTbCo.
  • amorphous rare earth element alloys include alloys such as TbFe, TbCo, TbFeCo, DyTbFeCo, and GdTbCo.
  • the alloy having a L10 type crystal structure includes Fe 50 Pt 50, Fe 50 Pd 50, Co 50 Pt 50, Fe 30 Ni 20 Pt 50, Co 30 Ni 20 Pt 50, and the like.
  • Cobalt-based alloys include CoCr, CoPt, CoCrPt, CoCrTa, CoCrPtTa, CoCrNb, CoFeB and the like.
  • the CoFeB single layer may be formed thicker than the multilayer structure of CoFeB and Co / Pt or Co / Pd, thereby increasing the magnetoresistance ratio.
  • CoFeB is easier to etch than a metal such as Pt or Pd
  • a CoFeB single layer is easier to manufacture than a multilayer structure containing Pt or Pd.
  • CoFeB may have horizontal magnetization as well as vertical magnetization by adjusting the thickness. Accordingly, an embodiment of the present invention forms a pinned layer 160 using a CoFeB monolayer, and CoFeB is formed into an amorphous and then textured into the BCC 100 by heat treatment.
  • the tunnel barrier 170 is formed on the pinned layer 160 to separate the pinned layer 160 and the free layer 180.
  • the tunnel barrier 170 enables quantum mechanical tunneling between the pinned layer 160 and the free layer 180.
  • the tunnel barrier 170 may include magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), tantalum oxide (Ta 2 O 5 ), silicon nitride (SiNx), aluminum nitride (AlNx), or the like. It can be formed as.
  • polycrystalline magnesium oxide is used as the tunnel barrier 170. Magnesium oxide is then textured into BCC 100 by heat treatment.
  • the free layer 180 is formed on the tunnel barrier 170.
  • the free layer 180 may be changed from one direction to another direction in which magnetization is not fixed in one direction. That is, the free layer 180 may have the same magnetization direction as that of the pinned layer 160 (ie, parallel), or may be opposite (ie, anti-parallel).
  • the magnetic tunnel junction may be used as a memory device by mapping information of '0' or '1' to resistance values that vary depending on the magnetization arrangement of the free layer 180 and the pinned layer 160. For example, when the magnetization direction of the free layer 180 is parallel to the pinned layer 160, the resistance value of the magnetic tunnel junction becomes small, and this case may be defined as data '0'.
  • the free layer 180 may include, for example, a full-heusler semimetal alloy, an amorphous rare earth element alloy, a multilayer thin film in which magnetic metals and nonmagnetic metals are alternately stacked, or an L10 type crystal structure. It may be formed of a ferromagnetic material such as an alloy having. Meanwhile, the free layer 180 may be formed as a stacked structure of a first free layer, a separation layer, and a second free layer. Here, the first and second free layers may have magnetizations in the same direction and may have magnetizations in different directions.
  • the first and second free layers may each have a vertical magnetization
  • the first free layer may have a vertical magnetization
  • the second free layer may have a horizontal magnetization
  • the separation layer may be formed of a material having a bcc structure having no magnetization. That is, the first free layer may be magnetized vertically, the separation layer may not be magnetized, and the second free layer may be magnetized vertically or horizontally. As such, when the first free layer has vertical magnetization and the second free layer has horizontal magnetization with the separation layer interposed therebetween, the switching energy can be lowered through magnetic resonance of the first and second free layers.
  • the switching energy of the free layer 180 may be lowered by performing magnetic resonance with the second free layer of horizontal magnetization.
  • the first and second free layers are each formed of CoFeB, and the first free layer is formed thinner than the second free layer.
  • the first free layer is formed with a thickness of 0.8 nm to 1.2 nm using CoFeB
  • the second free layer is formed with a thickness of 1 nm to 4 nm using CoFeB
  • the separation layer has a bcc structure.
  • the material can be formed to a thickness of 0.4 nm to 2 nm.
  • the second buffer layer 190 is formed on the free layer 180.
  • the second buffer layer 190 is formed of a polycrystalline material, for example, a conductive material having a bcc structure.
  • the second buffer layer 190 may be formed of tungsten (W).
  • W tungsten
  • the amorphous magnetic tunnel junction is grown along the crystal direction of the capping layer 150, and the second buffer layer of the bcc structure on the magnetic tunnel junction If 190 is formed and subsequently heat treated, the crystallinity of the magnetic tunnel junction may be further improved. Meanwhile, the second buffer layer 190 may be formed to have a thickness of, for example, 1 nm to 4 nm.
  • the upper electrode 200 is formed on the second buffer layer 190.
  • the upper electrode 200 may be formed using a conductive material, and may be formed of metal, metal oxide, metal nitride, or the like.
  • the upper electrode 200 is a single selected from the group consisting of tantalum (Ta), ruthenium (Ru), titanium (Ti), palladium (Pd), platinum (Pt), magnesium (Mg) and aluminum (Al). It may be formed of a metal or an alloy thereof.
  • the lower electrode 110 is formed of a polycrystalline material, a synthetic exchange diamagnetic layer 140 is formed thereon, and then a magnetic tunnel junction is formed. Therefore, since the fcc (111) structure of the synthetic exchange diamagnetic layer 140 does not diffuse to the magnetic tunnel junction, it is possible to preserve the bcc (100) crystal of the magnetic tunnel junction, thereby rapidly changing the magnetization direction of the magnetic tunnel junction. It can improve the operation speed of the memory.
  • FIG. 2 and 3 illustrate a memory device (FIG. 2) in which a magnetic tunnel junction and a synthetic exchange diamagnetic layer are stacked on a conventional substrate, and a memory device in which a synthetic exchange diamagnetic layer and magnetic tunnel junction are stacked on a substrate of the present invention.
  • FIG. 3 shows the perpendicular magnetization characteristics of -4 kOe to 4 kOe.
  • the conventional case and the present invention have almost the same squareness and a magnetic moment of 800 uemu, so that the vertical characteristics of the two structures are almost the same.
  • FIG. 2 and 3 illustrate a memory device (FIG. 2) in which a magnetic tunnel junction and a synthetic exchange diamagnetic layer are stacked on a conventional substrate, and a memory device in which a synthetic exchange diamagnetic layer and magnetic tunnel junction are stacked on a substrate of the present invention.
  • Fig. 3 shows the perpendicular magnetization characteristics of -4 kOe to 4 kOe.
  • the vertical magnetic property of the fixed layer is deteriorated in the range of -1.5 kOe to 1.5 kOe, and thus cannot serve as an information storage of a proper magnetic tunnel junction.
  • the vertical magnetic properties of the pinned layer were not deteriorated by suppressing the diffusion effect of the fcc 111 of the synthetic exchange diamagnetic layer.
  • FIG. 4 and 5 illustrate a memory device in which a magnetic tunnel junction and a synthetic exchange diamagnetic layer are stacked on a conventional substrate (FIG. 4), and a memory device in which a synthetic exchange diamagnetic layer and a magnetic tunnel junction are stacked on a substrate of the present invention.
  • Fig. 5 shows the vertical magnetization characteristics of -500Oe to 500Oe. In particular, the vertical magnetic properties of the free layer, that is, the information storage layer, appear in this range.
  • the conventional and the present invention have almost the same squareness and magnetic moment of 100uemu, so that the vertical characteristics are almost the same in both structures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

본 발명은 기판 상에 형성된 하부 전극, 제 1 버퍼층, 시드층, 합성 교환 반자성층, 캐명층, 고정층, 터널 배리어, 자유층, 제 2 버퍼층 및 상부 전극을 포함한다. 기판 상에 하부 전극으로부터 상부 전극이 순서대로 적층 형성되며, 합성 교환 반자성층은 제 1 자성층, 비자성층 및 제 2 자성층의 적층구조로 형성되며, 고정층, 터널 배리어 및 자유층이 자기 터널 접합을 이루는 메모리 소자가 제시된다.

Description

메모리 소자
본 발명은 메모리 소자에 관한 것으로, 특히 자기 터널 접합(Magnetic Tunnel Junction; MTJ)을 이용하는 자기 메모리 소자에 관한 것이다.
플래쉬 메모리 소자에 비해 소비 전력이 적고 집적도가 높은 차세대 비휘발성 메모리 소자에 대한 연구가 진행되고 있다. 이러한 차세대 비휘발성 메모리 소자로는 칼코게나이드 합금(chalcogenide alloy)과 같은 상변화 물질의 상태 변화를 이용하는 상변화 메모리(Phase change RAM; PRAM), 강자성체의 자화 상태에 따른 자기 터널 접합(Magnetic Tunnel Junction; MTJ)의 저항 변화를 이용하는 자기 메모리(Magnetic RAM; MRAM), 강유전체 물질의 분극 현상을 이용하는 강유전체 메모리(Ferroelectric RAM), 가변 저항 물질의 저항 변화를 이용하는 저항 변화 메모리(Resistance change RAM; ReRAM) 등이 있다.
자기 메모리로서 전자 주입에 의한 스핀 전달 토크(Spin-Transfer Torque; STT) 현상을 이용하여 자화를 반전시키고, 자화 반전 전후의 저항차를 판별하는 STT-MRAM(Spin-Transfer Torque Magnetic Random Access Memory) 소자가 있다. STT-MRAM 소자는 각각 강자성체로 형성된 고정층(pinned layer) 및 자유층(free layer)과, 이들 사이에 터널 배리어(tunnel barrier)가 형성된 자기 터널 접합을 포함한다. 자기 터널 접합은 자유층과 고정층의 자화 방향이 동일(즉 평행(parallel))하면 전류 흐름이 용이하여 저저항 상태를 갖고, 자화 방향이 다르면(즉 반평행(anti parallel)) 전류가 감소하여 고저항 상태를 나타낸다. 또한, 자기 터널 접합은 자화 방향이 기판에 수직 방향으로만 변화하여야 하기 때문에 자유층 및 고정층이 수직 자화값을 가져야 한다. 자기장의 세기 및 방향에 따라 수직 자화값이 0을 기준으로 대칭이 되고 스퀘어니스(squareness; S)의 모양이 뚜렷이 나오게 되면(S=1) 수직 자기 이방성(perpendicular magnetic anisotropy; PMA)이 우수하다고 할 수 있다. 이러한 STT-MRAM 소자는 이론적으로 1015 이상의 사이클링(cycling)이 가능하고, 나노초(ns) 정도의 빠른 속도로 스위칭이 가능하다. 특히, 수직 자화형 STT-MRAM 소자는 이론상 스케일링 한계(Scaling Limit)가 없고, 스케일링이 진행될수록 구동 전류의 전류 밀도를 낮출 수 있다는 장점으로 인해 DRAM 소자를 대체할 수 있는 차세대 메모리 소자로 연구가 활발하게 진행되고 있다. 한편, STT-MRAM 소자의 예가 한국등록특허 제10-1040163호에 제시되어 있다.
또한, STT-MRAM 소자는 자유층 하부에 시드층이 형성되고, 고정층 상부에 캐핑층이 형성되며, 캐핑층 상부에 합성 교환 반자성층 및 상부 전극이 형성된다. 그리고, STT-MRAM 소자는 실리콘 기판 상에 실리콘 산화막이 형성된 후 그 상부에 시드층 및 자기 터널 접합이 형성된다. 또한, 실리콘 기판 상에는 트랜지스터 등의 선택 소자가 형성될 수 있고, 실리콘 산화막은 선택 소자를 덮도록 형성될 수 있다. 따라서, STT-MRAM 소자는 선택 소자가 형성된 실리콘 기판 상에 실리콘 산화막, 시드층, 자유층, 터널 배리어, 고정층, 캐핑층, 합성 교환 반자성층 및 상부 전극의 적층 구조를 갖는다. 여기서, 시드층 및 캐핑층은 탄탈륨(Ta)를 이용하여 형성하고, 합성 교환 반자성층은 자성 금속과 비자성 금속이 교대로 적층된 하부 자성층 및 상부 자성층과, 이들 사이에 비자성층이 형성된 구조를 갖는다. 즉, 기판을 중심으로 자기 터널 접합이 하측에 형성되고 합성 교환 반자성층이 상측에 형성된다.
그런데, bcc(100) 방향으로 텍스처링되는 자기 터널 접합 상측에 fcc(111)의 합성 교환 반자성층이 형성되므로 합성 교환 반자성층을 형성할 때 fcc(111) 구조가 자기 터널 접합으로 확산되어 bcc(100) 결정을 악화시킬 수 있다. 즉, 합성 교환 반자성층을 형성할 때 그 물질의 일부가 자기 터널 접합으로 확산되어 자기 터널 접합의 결정성을 악화시킬 수 있다. 따라서, 자기 터널 접합의 자화 방향이 급격하게 변화될 수 없어 메모리의 동작 속도가 저하되거나 동작하지 않는 문제가 발생될 수 있다.
(선행기술문헌)
한국등록특허 제10-1040163호
본 발명은 자기 터널 접합의 결정성을 향상시킬 수 있고, 그에 따라 자화 방향의 변화를 급격하게 할 수 있는 메모리 소자를 제공한다.
본 발명은 합성 교환 반자성층의 물질이 자기 터널 접합으로 확산되지 않도록 함으로써 자기 터널 접합의 결정성을 향상시킬 수 있는 메모리 소자를 제공한다.
본 발명의 일 양태에 따른 메모리 소자는 기판 상에 하부 전극, 버퍼층, 시드층, 합성 교환 반자성층, 캐핑층, 자기 터널 접합 및 상부 전극이 순서대로 적층 형성된다.
상기 하부 전극은 다결정의 도전 물질로 형성된다.
상기 하부 전극과 상기 시드층 사이에 형성되며, 탄탈륨을 포함하는 물질로 형성된 버퍼층을 더 포함한다.
상기 합성 교환 반자성층은 제 1 자성층, 비자성층 및 제 2 자성층의 적층 구조로 형성되고, 상기 제 1 및 제 2 자성층은 Pt를 포함하는 물질로 형성된다.
상기 제 1 자성층은 Co/Pt가 적어도 2회 이상 적층된 다층 구조로 형성되고, 제 2 자성층은 Co/Pt의 단일층만으로 형성된다.
상기 캐핑층은 bcc 구조의 물질로 형성된다.
상기 자유층은 수직 자화를 갖는 제 1 자화층, 자화를 갖지 않는 분리층 및 수직 자화를 갖는 제 2 자화층을 포함하며, 상기 제 1 자화층이 상기 고정층에 인접하여 형성된다.
상기 제 1 및 제 2 자유층은 CoFeB를 포함하는 물질로 형성되며, 상기 제 1 자유층이 상기 제 2 자유층보다 얇게 형성된다.
본 발명은 기판 상에 합성 교환 반자성층이 형성된 후 자기 터널 접합이 형성된다. 따라서, 합성 교환 반자성층의 물질이 자기 터널 접합으로 확산되지 않으므로 자기 터널 접합의 bcc(100) 결정을 보존할 수 있다. 따라서, 자기 터널 접합의 자화 방향이 급격하게 변화시킬 수 있어 메모리의 동작 속도를 향상시킬 수 있다.
도 1은 본 발명의 일 실시 예에 따른 메모리 소자의 단면도.
도 2 내지 도 5는 종래 예 및 본 발명 예에 따른 메모리 소자의 수직 자기 특성을 도시한 그래프.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한 다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
도 1은 본 발명의 일 실시 예에 따른 메모리 소자의 단면도로서, STT-MRAM 소자의 단면도이다.
도 1을 참조하면, 본 발명의 일 실시 예에 따른 메모리 소자는 기판(100) 상에 형성된 하부 전극(110), 제 1 버퍼층(120), 시드층(130), 합성 교환 반자성층(140), 캐핑층(150), 고정층(160), 터널 배리어(170), 자유층(180), 제 2 버퍼층(190) 및 상부 전극(200)을 포함한다. 즉, 기판(100) 상에 하부 전극(110)으로부터 상부 전극(200)이 순서대로 적층 형성된다. 여기서, 합성 교환 반자성층(140)은 제 1 자성층(141), 비자성층(142) 및 제 2 자성층(143)의 적층 구조로 형성되며, 고정층(160), 터널 배리어(170) 및 자유층(180)은 자기 터널 접합을 이룬다.
기판(100)은 반도체 기판을 이용할 수 있다. 예를 들어, 기판(100)은 실리콘 기판, 갈륨 비소 기판, 실리콘 게르마늄 기판, 실리콘 산화막 기판 등을 이용할 수 있는데, 본 실시 예에서는 실리콘 기판을 이용한다. 또한, 기판(100) 상에는 트랜지스터를 포함하는 선택 소자가 형성될 수 있다. 이러한 기판(100) 상에는 절연층(105)이 형성될 수 있다. 즉, 절연층(105)은 선택 소자 등의 소정의 구조물을 덮도록 형성될 수 있고, 절연층(105)에는 선택 소자의 적어도 일부를 노출시키는 콘택홀이 형성될 수 있다. 이러한 절연층(105)은 비정질 구조의 실리콘 산화막(SiO2) 등을 이용하여 형성할 수 있다.
하부 전극(110)은 절연층(105) 상에 형성된다. 이러한 하부 전극(110)은 금속, 금속 질화물 등의 도전 물질을 이용하여 형성될 수 있다. 또한, 본 발명의 하부 전극(110)은 적어도 하나의 층으로 형성될 수 있다. 예를 들어, 하부 전극(110)은 제 1 및 제 2 하부 전극의 이중 구조로 형성될 수 있다. 여기서, 제 1 하부 전극은 절연층(105) 상에 형성되고, 제 2 하부 전극은 제 1 하부 전극 상에 형성될 수 있다. 또한, 제 1 하부 전극은 절연층(105) 내부에 형성될 수 있고, 그에 따라 기판(100) 상에 형성된 선택 소자와 연결될 수도 있다. 이러한 하부 전극(110)은 다결정(polycrystal)의 도전 물질로 형성될 수 있다. 즉, 제 1 및 제 2 하부 전극는 bcc 구조의 도전 물질로 형성될 수 있다. 예를 들어, 제 1 하부 전극은 텅스텐(W) 등의 금속으로 형성될 수 있고, 제 2 하부 전극은 티타늄 질화막(TiN) 등의 금속 질화물로 형성될 수 있다.
제 1 버퍼층(120)은 하부 전극(110) 상부에 형성된다. 제 1 버퍼층(120)은 하부 전극(110)과 시드층(130)의 격자 상수 불일치를 해소하기 위해 하부 전극(110)과 정합성이 우수한 물질로 형성할 수 있다. 예를 들어, 하부 전극(110) 또는 제 2 하부 전극이 TiN으로 형성되는 경우 제 1 버퍼층(120)은 TiN과 격자 정합성이 우수한 탄탈륨(Ta)을 이용하여 형성할 수 있다. 여기서, Ta는 비정질이지만, 하부 전극(110)이 다결정이기 때문에 비정질의 제 1 버퍼층(120)은 다결정의 하부 전극(110)의 결정 방향을 따라 성장될 수 있고, 이후 열처리에 의해 결정성이 향상될 수 있다. 한편, 제 1 버퍼층(120)은 예를 들어 2㎚∼10㎚의 두께로 형성될 수 있다.
시드층(130)은 제 1 버퍼층(120) 상에 형성된다. 시드층(130)은 합성 교환 반자성층(140)이 결정 성장할 수 있도록 하는 물질로 형성될 수 있다. 즉, 시드층(130)은 합성 교환 반자성층(140)의 제 1 및 제 2 자성층(141, 143)이 원하는 결정 방향으로 성장할 수 있도록 한다. 예를 들어, 면심 입방 격자(Face Centered Cubic: FCC)의 (111) 방향 또는 육방 밀집 구조(Hexagonal Close-Packed Structure: HCP)의 (001) 방향으로 결정의 성장을 용이하게 하는 금속으로 형성될 수 있다. 이러한 시드층(130)은 탄탈륨(Ta), 루테늄(Ru), 티타늄(Ti), 팔라듐(Pd), 백금(Pt), 마그네슘(Mg), 코발트(Co), 알루미늄(Al) 및 텅스텐(W)으로 이루어진 군으로부터 선택된 금속 또는 이들의 합금을 포함할 수 있다. 바람직하게, 시드층(130)은 백금(Pt)으로 형성할 수 있고, 1㎚∼3㎚의 두께로 형성할 수 있다.
합성 교환 반자성층(140)은 시드층(130) 상에 형성된다. 합성 교환 반자성층(140)은 고정층(160)의 자화를 고정시키는 역할을 한다. 합성 교환 반자성층(140)은 제 1 자성층(141), 비자성층(142) 및 제 2 자성층(143)을 포함한다. 즉, 합성 교환 반자성층(140)은 제 1 자성층(141)과 제 2 자성층(143)이 비자성층(142)을 매개로 반강자성적으로 결합된다. 이때, 제 1 자성층(141)과 제 2 자성층(143)은 FCC(111) 방향 또는 HCP(001) 방향의 결정을 가질 수 있다. 또한, 제 1 및 제 2 자성층(141, 143)의 자화 방향은 반평행하게 배열되는데, 예를 들어 제 1 자성층(141)은 상측 방향(즉, 상부 전극(190) 방향)으로 자화되고, 제 2 자성층(143)은 하측 방향(즉, 기판(100) 방향)으로 자화될 수 있다. 제 1 자성층(141) 및 제 2 자성층(143)은 자성 금속과 비자성 금속이 교대로 적층된 구조로 형성될 수 있다. 자성 금속으로 철(Fe), 코발트(Co) 및 니켈(Ni) 등으로 이루어진 군으로부터 선택된 단일 금속 또는 이들의 합금이 이용될 수 있고, 비자성 금속으로 크롬(Cr), 백금(Pt), 팔라듐(Pd), 이리듐(Ir), 로듐(Rh), 루테늄(Ru), 오스뮴(Os), 레늄(Re), 금(Au) 및 구리(Cu)로 이루어진 군으로부터 선택된 단일 금속 또는 이들의 합금이 이용될 수 있다. 예를 들어, 제 1 자성층(141) 및 제 2 자성층(143)은 [Co/Pd]n, [Co/Pt]n 또는 [CoFe/Pt]n (여기서, n은 1 이상의 정수)로 형성될 수 있다. 이때, 제 1 자성층(141)이 제 2 자성층(143)보다 두껍게 형성될 수 있다. 또한, 제 1 자성층(141)은 복수의 층으로 형성되고, 제 2 자성층(143)은 단일층으로 형성될 수 있다. 즉, 제 1 자성층(141)은 자성 금속과 비자성 금속이 복수회 반복 적층된 구조로 형성될 수 있고, 제 2 자성층(143)은 자성 금속과 비자성 금속이 한번 적층된, 즉 단일 적층 구조로 형성될 수 있다. 비자성층(142)은 제 1 자성층(141)과 제 1 자성층(143)의 사이에 형성되며, 제 1 자성층(141) 및 제 2 자성층(143)이 반자성 결합을 할 수 있도록 하는 비자성 물질로 형성된다. 예를 들어, 비자성층(142)은 루테늄(Ru), 로듐(Rh), 오스뮴(Os), 레늄(Re) 및 크롬(Cr)으로 이루어진 군으로부터 선택된 단독 또는 이들의 합금으로 형성될 수 있는데, 바람직하게는 루테늄(Ru)으로 형성될 수 있다. 한편, 제 2 자성층(143)이 단일 적층 구조, 즉 단일층으로 형성될 경우 제 1 자성층(141)의 두께도 줄일 수 있고, 그에 따라 전체적인 메모리 소자의 두께를 줄일 수 있다. 즉, 비자성층(142)를 중심으로 제 1 자성층(183)의 자화값과 제 2 자성층(143) 및 고정층(160)의 자화값의 합이 동일해야 한다. 그런데, 제 2 자성층(143)을 복수 적층 구조로 형성하는 경우 제 2 자성층(143) 및 고정층(160)의 자화값의 합과 제 1 자성층(141)의 자화값이 동일하도록 하기 위해 제 1 자성층(141)은 제 2 자성층(143)보다 반복 회수를 더 증가시켜 형성한다. 그러나, 본 발명은 제 2 자성층(143)을 단일 구조로 형성함으로써 제 1 자성층(141)의 적층 회수를 종래보다 줄일 수 있고, 그에 따라 메모리 소자의 전체적인 두께를 줄일 수 있다.
캐핑층(150)은 합성 교환 반자성층(140) 상부에 형성된다. 캐핑층(150)이 형성됨으로써 합성 교환 반자성층(140)과 고정층(160)의 자화는 서로 독립적으로 발생된다. 또한, 캐핑층(150)은 고정층(160), 터널 배리어(170) 및 자유층(180)을 포함하는 자기 터널 접합의 결정성을 향상시킬 수 있는 물질로 형성된다. 이를 위해 캐핑층(150)은 다결정 물질, 예를 들어 bcc 구조의 도전 물질로 형성될 수 있는데, 텅스텐(W)으로 형성될 수 있다. 이렇게 캐핑층(150)이 다결정 물질로 형성됨으로써 그 상부에 형성되는 고정층(160), 터널 배리어(170) 및 자유층(180)을 포함하는 자기 터널 접합의 결정성을 향상시킬 수 있다. 즉, 다결정의 캐핑층(150)이 형성되면 그 상부에 형성되는 비정질의 자기 터널 접합이 캐핑층(150)의 결정 방향을 따라 성장되고, 이후 수직 자기 이방성을 위해 열처리를 하게 되면 자기 터널 접합이 결정성이 종래보다 향상될 수 있다. 특히, W을 캐핑층(150)으로 이용하게 되면 400℃ 이상, 예를 들어 400℃∼500℃의 고온 열처리 후에 결정화됨으로써 터널 배리어(170) 안으로의 이종 물질의 확산을 억제하고 더 나아가 고정층(160) 및 자유층(180)을 결정화시켜 자기 터널 접합의 수직 자기 이방성을 유지할 수 있다. 즉, 자기 터널 접합의 결정성이 향상되면 자기장을 인가했을 때 자화가 더 크게 발생되고, 평행 상태에서 자기 터널 접합을 통해 흐르는 전류가 더 많아진다. 따라서, 이러한 자기 터널 접합을 메모리 소자에 적용하면 소자의 동작 속도 및 신뢰성을 향상시킬 수 있다. 한편, 캐핑층(150)은 예를 들어 0.4㎚∼0.8㎚의 두께로 형성될 수 있다. 여기서, 합성 교환 반자성층(140)의 제 2 자성층(143)과 고정층(160)이 페로커플링(ferro coupling)되어야 고정층(160)의 자화 방향이 고정되지만, W를 이용한 캐핑층(150)이 0.8㎚ 이상의 두께로 형성되면 캐핑층(150)의 두께 증가로 인하여 고정층(160)의 자화 방향이 고정되지 않고 자유층(180)과 동일한 자화 방향을 가져 MRAM 소자에서 필요한 동일 자화 방향 및 다른 자화 방향이 발생하지 않아 메모리로 동작하지 않는다.
고정층(160)은 캐핑층(150) 상에 형성되고, 강자성체 물질로 형성된다. 고정층(160)은 소정 범위 내의 자기장에서 자화가 한 방향으로 고정되며, 강자성체 물질로 형성될 수 있다. 예를 들어, 상부에서 하부로 향하는 방향으로 자화가 고정될 수 있다. 이러한 고정층(160)은 예를 들어 풀-호이슬러(Full-Heusler) 반금속 계열의 합금, 비정질계 희토류 원소 합금, 자성 금속(ferromagnetic metal)과 비자성 금속(nonmagnetic matal)이 교대로 적층된 다층 박막, L10형 결정 구조를 갖는 합금 또는 코발트계 합금 등의 강자성체 물질을 이용하여 형성할 수 있다. 풀-호이슬러 반금속 계열의 합금으로는 CoFeAl, CoFeAlSi 등이 있고, 비정질계 희토류 원소 합금으로는 TbFe, TbCo, TbFeCo, DyTbFeCo, GdTbCo 등의 합금이 있다. 또한, 비자성 금속과 자성 금속이 교대로 적층된 다층 박막으로는 Co/Pt, Co/Pd, CoCr/Pt, Co/Ru, Co/Os, Co/Au, Ni/Cu, CoFeAl/Pd, CoFeAl/Pt, CoFeB/Pd, CoFeB/Pt 등이 있다. 그리고, L10형 결정 구조를 갖는 합금으로는 Fe50Pt50, Fe50Pd50, Co50Pt50, Fe30Ni20Pt50, Co30Ni20Pt50 등이 있다. 또한, 코발트계 합금으로는 CoCr, CoPt, CoCrPt, CoCrTa, CoCrPtTa, CoCrNb, CoFeB 등이 있다. 이러한 물질들 중에서 CoFeB 단일층은 CoFeB와 Co/Pt 또는 Co/Pd의 다층 구조에 비해 두껍게 형성될 수 있어 자기 저항비를 증가시킬 수 있다. 또한, CoFeB는 Pt 또는 Pd 등과 같은 금속보다 식각이 용이하므로 CoFeB 단일층은 Pt 또는 Pd 등이 함유된 다층 구조에 비해 제조 공정이 용이하다. 뿐만 아니라 CoFeB는 두께를 조절함으로써 수직 자화 뿐만 아니라 수평 자화를 가질 수 있다. 따라서, 본 발명의 실시 예는 CoFeB 단일층을 이용하여 고정층(160)을 형성하며, CoFeB는 비정질로 형성된 후 열처리에 의해 BCC(100)으로 텍스처링(texturing)된다.
터널 배리어(170)는 고정층(160) 상에 형성되어 고정층(160)과 자유층(180)을 분리한다. 터널 배리어(170)는 고정층(160)과 자유층(180) 사이에 양자 기계적 터널링(quantum mechanical tunneling)이 가능하게 한다. 이러한 터널 배리어(170)는 마그네슘 산화물(MgO), 알루미늄 산화물(Al2O3), 실리콘 산화물(SiO2), 탄탈륨산화물(Ta2O5), 실리콘 질화물(SiNx) 또는 알루미늄 질화물(AlNx) 등으로 형성될 수 있다. 본 발명의 실시 예에서는 터널 배리어(170)로 다결정의 마그네슘 산화물을 이용한다. 마그네슘 산화물은 이후 열처리에 의해 BCC(100)으로 텍스처링된다.
자유층(180)은 터널 배리어(170) 상에 형성된다. 이러한 자유층(180)은 자화가 한 방향으로 고정되지 않고 일 방향에서 이와 대향되는 타 방향으로 변화될 수 있다. 즉, 자유층(180)은 고정층(160)과 자화 방향이 동일(즉 평행)할 수 있고, 반대(즉 반평행)일 수도 있다. 자기 터널 접합은 자유층(180)과 고정층(160)의 자화 배열에 따라 변하는 저항값에 '0' 또는 '1'의 정보를 대응시킴으로써 메모리 소자로 활용될 수 있다. 예를 들어, 자유층(180)의 자화 방향이 고정층(160)과 평행일 때, 자기 터널 접합의 저항값은 작아지고, 이 경우를 데이터 '0' 이라 규정할 수 있다. 또한, 자유층(180)의 자화 방향이 고정층(160)과 반평행일 때, 자기 터널 접합의 저항값은 커지고, 이 경우를 데이터 '1'이라 규정할 수 있다. 이러한 자유층(180)은 예를 들어 풀-호이슬러(Full-Heusler) 반금속 계열의 합금, 비정질계 희토류 원소 합금, 자성 금속과 비자성 금속이 교대로 적층된 다층 박막 또는 L10형 결정 구조를 갖는 합금 등의 강자성체 물질로 형성될 수 있다. 한편, 자유층(180)은 제 1 자유층, 분리층 및 제 2 자유층의 적층 구조로 형성될 수 있다. 여기서, 제 1 및 제 2 자유층은 동일 방향의 자화를 가질 수 있고, 서로 다른 방향의 자화를 가질 수 있다. 예를 들어, 제 1 및 제 2 자유층은 수직 자화를 각각 가질 수 있고, 제 1 자유층이 수직 자화를 갖고 제 2 자유층이 수평 자화를 가질 수 있다. 또한, 분리층은 자화를 갖지 않는 bcc 구조의 물질로 형성할 수 있다. 즉, 제 1 자유층이 수직으로 자화되고, 분리층이 자화되지 않으며, 제 2 자유층이 수직 또는 수평으로 자화될 수 있다. 이렇게 분리층을 사이에 두고 제 1 자유층이 수직 자화를 갖고 제 2 자유층이 수평 자화를 가질 경우 제 1 및 제 2 자유층의 자기 공명을 통해 스위칭 에너지를 낮출 수 있다. 즉, 수직 자화의 제 1 자유층의 스핀 방향이 수평 방향을 지나 반대 수직 방향으로 변화될 때 수평 자화의 제 2 자유층과 자기 공명을 하여 자유층(180)의 스위칭 에너지를 낮출 수 있다. 이때, 제 1 및 제 2 자유층은 각각 CoFeB로 형성되며, 제 1 자유층이 제 2 자유층보다 얇게 형성된다. 예를 들어, 제 1 자유층이 CoFeB를 이용하여 0.8㎚∼1.2㎚의 두께로 형성하고, 제 2 자유층이 CoFeB를 이용하여 1㎚∼4㎚의 두께로 형성하며, 분리층은 bcc 구조의 물질을 0.4㎚∼2㎚의 두께로 형성할 수 있다.
제 2 버퍼층(190)은 자유층(180) 상에 형성된다. 제 2 버퍼층(190)은 다결정 물질, 예를 들어 bcc 구조의 도전 물질로 형성된다. 예를 들어, 제 2 버퍼층(190)은 텅스텐(W)으로 형성될 수 있다. 이렇게 제 2 버퍼층(190)이 다결정 물질로 형성됨으로써 그 하부의 자기 터널 접합의 결정성을 향상시킬 수 있다. 즉, bcc 구조의 캐핑층(150) 상에 비정질의 자기 터널 접합이 형성되면 비정질의 자기 터널 접합이 캐핑층(150)의 결정 방향을 따라 성장되고, 자기 터널 접합 상에 bcc 구조의 제 2 버퍼층(190)이 형성되어 이후 열처리를 하게 되면 자기 터널 접합의 결정성이 더욱 향상될 수 있다. 한편, 제 2 버퍼층(190)은 예를 들어 1㎚∼4㎚의 두께로 형성될 수 있다.
상부 전극(200)은 제 2 버퍼층(190) 상에 형성된다. 이러한 상부 전극(200)은 도전 물질을 이용하여 형성할 수 있는데, 금속, 금속 산화물, 금속 질화물 등으로 형성될 수 있다. 예를 들어, 상부 전극(200)은 탄탈륨(Ta), 루테늄(Ru), 티타늄(Ti), 팔라듐(Pd), 백금(Pt), 마그네슘(Mg) 및 알루미늄(Al)으로 이루어진 군으로부터 선택된 단일 금속 또는 이들의 합금으로 형성될 수 있다.
상기한 바와 같이 본 발명의 실시 예들에 따른 메모리 소자는 하부 전극(110)을 다결정 물질로 형성하고, 그 상부에 합성 교환 반자성층(140)을 형성한 후 자기 터널 접합을 형성한다. 따라서, 합성 교환 반자성층(140)의 fcc(111) 구조가 자기 터널 접합으로 확산되지 않으므로 자기 터널 접합의 bcc(100) 결정을 보존할 수 있고, 그에 따라 자기 터널 접합의 자화 방향이 급격하게 변화시킬 수 있어 메모리의 동작 속도를 향상시킬 수 있다.
종래 예 및 발명 예의 비교
도 2 및 도 3은 종래의 기판 상에 자기 터널 접합 및 합성 교환 반자성층이 적층된 메모리 소자(도 2)와 본 발명의 기판 상에 합성 교환 반자성층 및 자기 터널 접합이 적층된 메모리 소자(도 3)의 -4kOe∼4kOe의 수직 자화 특성을 도시한 도면이다. 도시된 바와 같이 종래의 경우 및 본 발명의 경우 거의 동일한 스퀘어니스(Squareness)와 800uemu의 마그네틱 모멘트(Magnetic moment)를 가지고 있어 두 구조에서 수직 특성이 거의 동일하다고 할 수 있다. 그러나, 도 2에 도시된 바와 같이 종래의 경우 -1.5kOe∼1.5kOe의 범위에서 고정층의 수직 자기 특성이 악화되어 제대로 된 자기 터널 접합의 정보 저장 역할을 할 수가 없다. 그러나, 본 발명이 경우 합성 교환 반자성층의 fcc(111)의 확산 효과를 억제하여 도 3에 도시된 바와 같이 고정층의 수직 자기 특성이 열화되지 않았다.
도 4 및 도 5는 종래의 기판 상에 자기 터널 접합 및 합성 교환 반자성층이 적층된 메모리 소자(도 4)와 본 발명의 기판 상에 합성 교환 반자성층 및 자기 터널 접합이 적층된 메모리 소자(도 5)의 -500Oe∼500Oe의 수직 자화 특성을 도시한 도면이다. 특히, 이 범위에서는 자유층, 즉 정보 저장층의 수직 자기 특성이 나타난다. 도시된 바와 같이 종래 및 본 발명의 경우 거의 동일한 스퀘어니스(Squareness)와 100uemu의 마그네틱 모멘트(Magnetic moment)를 가지고 있어 두 구조에서 수직 특성이 거의 동일하다고 할 수 있다.
한편, 본 발명의 기술적 사상은 상기 실시 예에 따라 구체적으로 기술되었으나, 상기 실시 예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주지해야 한다. 또한, 본 발명의 기술분야에서 당업자는 본 발명의 기술 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.

Claims (8)

  1. 기판 상에 하부 전극, 버퍼층, 시드층, 합성 교환 반자성층, 캐핑층, 자기 터널 접합 및 상부 전극이 적층 형성된 메모리 소자.
  2. 청구항 1에 있어서, 상기 하부 전극은 다결정의 도전 물질로 형성되는 메모리 소자.
  3. 청구항 2에 있어서, 상기 하부 전극과 상기 시드층 사이에 형성되며, 탄탈륨을 포함하는 물질로 형성된 버퍼층을 더 포함하는 메모리 소자.
  4. 청구항 1에 있어서, 상기 합성 교환 반자성층은 제 1 자성층, 비자성층 및 제 2 자성층의 적층 구조로 형성되고, 상기 제 1 및 제 2 자성층은 Pt를 포함하는 물질로 형성된 메모리 소자.
  5. 청구항 4에 있어서, 상기 제 1 자성층은 Co/Pt가 적어도 2회 이상 적층된 다층 구조로 형성되고, 제 2 자성층은 Co/Pt의 단일층으로 형성된 메모리 소자.
  6. 청구항 1에 있어서, 상기 캐핑층은 bcc 구조의 물질로 형성된 메모리 소자.
  7. 청구항 1에 있어서, 상기 자유층은 수직 자화를 갖는 제 1 자화층, 자화를 갖지 않는 분리층 및 수직 자화를 갖는 제 2 자화층을 포함하며, 상기 제 1 자화층이 상기 고정층에 인접하여 형성된 메모리 소자.
  8. 청구항 7에 있어서, 상기 제 1 및 제 2 자유층은 CoFeB를 포함하는 물질로 형성되며, 상기 제 1 자유층이 상기 제 2 자유층보다 얇게 형성된 메모리 소자.
PCT/KR2016/001135 2015-03-18 2016-02-02 메모리 소자 WO2016148394A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680016542.5A CN107454986B (zh) 2015-03-18 2016-02-02 存储器件
US15/707,491 US10580964B2 (en) 2015-03-18 2017-09-18 Memory device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0037233 2015-03-18
KR20150037233 2015-03-18
KR10-2015-0045173 2015-03-31
KR1020150045173A KR101721618B1 (ko) 2015-03-18 2015-03-31 메모리 소자

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001130 Continuation-In-Part WO2016148392A1 (ko) 2015-03-18 2016-02-02 메모리 소자

Publications (1)

Publication Number Publication Date
WO2016148394A1 true WO2016148394A1 (ko) 2016-09-22

Family

ID=56918917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001135 WO2016148394A1 (ko) 2015-03-18 2016-02-02 메모리 소자

Country Status (1)

Country Link
WO (1) WO2016148394A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110692144A (zh) * 2017-07-21 2020-01-14 应用材料公司 适于高温热处理的磁性隧道结
CN111816760A (zh) * 2019-04-11 2020-10-23 上海磁宇信息科技有限公司 一种磁性随机存储器磁性存储单元及其形成方法
US10944050B2 (en) 2018-05-08 2021-03-09 Applied Materials, Inc. Magnetic tunnel junction structures and methods of manufacture thereof
EP4366492A1 (en) 2022-11-07 2024-05-08 Samsung Electronics Co., Ltd. Seed layer for enhancing tunnel magnetoresistance with perpendicularly magnetized heusler films

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110133595A (ko) * 2009-03-02 2011-12-13 콸콤 인코포레이티드 자기 터널 접합 디바이스 및 제조
KR101195041B1 (ko) * 2011-05-12 2012-10-31 고려대학교 산학협력단 자기 공명 세차 현상을 이용한 스핀전달토크 자기 메모리 소자
KR20140011138A (ko) * 2012-07-17 2014-01-28 삼성전자주식회사 자기 소자 및 그 제조 방법
KR20140025165A (ko) * 2012-08-21 2014-03-04 삼성전자주식회사 자기 메모리 소자의 제조 방법
KR20150015602A (ko) * 2013-07-31 2015-02-11 한양대학교 산학협력단 메모리 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110133595A (ko) * 2009-03-02 2011-12-13 콸콤 인코포레이티드 자기 터널 접합 디바이스 및 제조
KR101195041B1 (ko) * 2011-05-12 2012-10-31 고려대학교 산학협력단 자기 공명 세차 현상을 이용한 스핀전달토크 자기 메모리 소자
KR20140011138A (ko) * 2012-07-17 2014-01-28 삼성전자주식회사 자기 소자 및 그 제조 방법
KR20140025165A (ko) * 2012-08-21 2014-03-04 삼성전자주식회사 자기 메모리 소자의 제조 방법
KR20150015602A (ko) * 2013-07-31 2015-02-11 한양대학교 산학협력단 메모리 소자

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110692144A (zh) * 2017-07-21 2020-01-14 应用材料公司 适于高温热处理的磁性隧道结
CN110692144B (zh) * 2017-07-21 2024-01-30 应用材料公司 适于高温热处理的磁性隧道结
US10944050B2 (en) 2018-05-08 2021-03-09 Applied Materials, Inc. Magnetic tunnel junction structures and methods of manufacture thereof
US11552244B2 (en) 2018-05-08 2023-01-10 Applied Materials, Inc. Magnetic tunnel junction structures and methods of manufacture thereof
CN111816760A (zh) * 2019-04-11 2020-10-23 上海磁宇信息科技有限公司 一种磁性随机存储器磁性存储单元及其形成方法
CN111816760B (zh) * 2019-04-11 2023-07-14 上海磁宇信息科技有限公司 一种磁性随机存储器磁性存储单元及其形成方法
EP4366492A1 (en) 2022-11-07 2024-05-08 Samsung Electronics Co., Ltd. Seed layer for enhancing tunnel magnetoresistance with perpendicularly magnetized heusler films

Similar Documents

Publication Publication Date Title
US10783945B2 (en) Memory device
US7602000B2 (en) Spin-current switched magnetic memory element suitable for circuit integration and method of fabricating the memory element
US10580964B2 (en) Memory device
WO2016148391A1 (ko) 메모리 소자
KR102169622B1 (ko) 메모리 소자
KR102117393B1 (ko) 멀티 비트 수직 자기 터널링 접합에 기반한 메모리 소자
KR101721618B1 (ko) 메모리 소자
US11417379B2 (en) Magnetic tunnel junction memory devices employing resonant tunneling and methods of manufacturing the same
KR20150015602A (ko) 메모리 소자
KR102316542B1 (ko) 메모리 소자
WO2016148394A1 (ko) 메모리 소자
WO2015160092A2 (ko) 메모리 소자
WO2015160093A2 (ko) 메모리 소자
KR101636492B1 (ko) 메모리 소자
CN107735874B (zh) 存储器件
WO2016148392A1 (ko) 메모리 소자
KR101956975B1 (ko) 메모리 소자
KR101698532B1 (ko) 메모리 소자
KR101756883B1 (ko) 메모리 소자
WO2016148395A1 (ko) 메모리 소자
WO2015160094A2 (ko) 메모리 소자
KR101956976B1 (ko) 메모리 소자
WO2016148393A1 (ko) 메모리 소자
KR101933268B1 (ko) 메모리 소자
KR101956977B1 (ko) 메모리 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16765150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/01/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16765150

Country of ref document: EP

Kind code of ref document: A1