WO2015160094A2 - 메모리 소자 - Google Patents
메모리 소자 Download PDFInfo
- Publication number
- WO2015160094A2 WO2015160094A2 PCT/KR2015/002608 KR2015002608W WO2015160094A2 WO 2015160094 A2 WO2015160094 A2 WO 2015160094A2 KR 2015002608 W KR2015002608 W KR 2015002608W WO 2015160094 A2 WO2015160094 A2 WO 2015160094A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- magnetic
- lower electrode
- tunnel junction
- seed layer
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 claims abstract description 171
- 238000010438 heat treatment Methods 0.000 claims abstract description 40
- 230000005292 diamagnetic effect Effects 0.000 claims abstract description 36
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 239000004020 conductor Substances 0.000 claims abstract description 13
- 230000005415 magnetization Effects 0.000 claims description 50
- 239000000463 material Substances 0.000 claims description 30
- 229910052721 tungsten Inorganic materials 0.000 claims description 21
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 16
- 239000010937 tungsten Substances 0.000 claims description 16
- 230000008859 change Effects 0.000 claims description 11
- 239000010410 layer Substances 0.000 description 338
- 229910019236 CoFeB Inorganic materials 0.000 description 46
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 36
- 230000004888 barrier function Effects 0.000 description 34
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 31
- 239000000395 magnesium oxide Substances 0.000 description 31
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 31
- 229910052751 metal Inorganic materials 0.000 description 28
- 239000002184 metal Substances 0.000 description 28
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 22
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 22
- 230000005641 tunneling Effects 0.000 description 22
- 229910045601 alloy Inorganic materials 0.000 description 13
- 239000000956 alloy Substances 0.000 description 13
- 239000013078 crystal Substances 0.000 description 13
- 229910052715 tantalum Inorganic materials 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 9
- 229910052697 platinum Inorganic materials 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- 239000010408 film Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 150000002739 metals Chemical class 0.000 description 8
- 239000003302 ferromagnetic material Substances 0.000 description 7
- 239000011777 magnesium Substances 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 7
- 239000011651 chromium Substances 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 229910052763 palladium Inorganic materials 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 5
- 229910052707 ruthenium Inorganic materials 0.000 description 5
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000010948 rhodium Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 229910052762 osmium Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 2
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 2
- 229910017135 Fe—O Inorganic materials 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000010952 cobalt-chrome Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052702 rhenium Inorganic materials 0.000 description 2
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910019222 CoCrPt Inorganic materials 0.000 description 1
- 229910003321 CoFe Inorganic materials 0.000 description 1
- 229910018979 CoPt Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000012782 phase change material Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/161—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
- H10N50/85—Magnetic active materials
Definitions
- the present invention relates to a memory device, and more particularly to a magnetic memory device using a magnetic tunnel junction (MTJ).
- MTJ magnetic tunnel junction
- next-generation nonvolatile memory devices which consume less power and have higher integration than flash memory devices.
- Such next-generation nonvolatile memory devices include phase change RAM (PRAM) using a state change of a phase change material such as a chalcogenide alloy, and a magnetic tunnel junction according to the magnetization state of a ferromagnetic material.
- PRAM phase change RAM
- MRAM Magnetic RAM
- Ferroelectric memory using polarization of ferroelectric material
- ReRAM Resistance change RAM
- STT-MRAM Spin-Transfer Torque Magnetic Random Access Memory
- STT-MRAM devices each include a pinned layer and a free layer formed of ferromagnetic material, and a magnetic tunnel junction having a tunnel barrier formed therebetween.
- the magnetic tunnel junction has a low resistance state because the magnetization directions of the free layer and the pinned layer are the same (i.e., parallel), so that the current flows easily. If the magnetization directions are different (i.e., anti parallel), the current decreases and Indicates the resistance state.
- the magnetization direction should change only in the direction perpendicular to the substrate, so the free layer and the pinned layer should have the vertical magnetization value.
- STT-MRAM devices can theoretically cycle beyond 10 15 and can switch at as fast as nanoseconds.
- the vertical magnetization type STT-MRAM device has no scaling limit in theory, and research is being actively conducted as a next-generation memory device that can replace the DRAM device due to the advantage that the current density of the driving current can be lowered as the scaling progresses. Is going on. Meanwhile, an example of the STT-MRAM device is shown in Korean Patent Registration No. 10-1040163.
- a seed layer is formed below the free layer, a capping layer is formed on the fixed layer, and a synthetic exchange diamagnetic layer and an upper electrode are formed on the capping layer.
- a silicon oxide film is formed on a silicon substrate, and a seed layer and a magnetic tunnel junction are formed thereon.
- a selection element such as a transistor may be formed on the silicon substrate, and the silicon oxide film may be formed to cover the selection element.
- the STT-MRAM device has a stacked structure of a silicon oxide film, a seed layer, a free layer, a tunnel barrier, a pinned layer, a capping layer, a synthetic exchange diamagnetic layer, and an upper electrode on a silicon substrate on which the selection element is formed.
- the seed layer and the capping layer are formed using tantalum (Ta)
- the synthetic exchange diamagnetic layer has a structure in which a lower magnetic layer and an upper magnetic layer in which magnetic metals and nonmagnetic metals are alternately stacked, and a nonmagnetic layer are formed therebetween.
- the seed layer formed on the amorphous silicon oxide film is formed amorphous, so that the magnetic tunnel junction is also amorphous, thereby decreasing the crystallinity of the magnetic tunnel junction. That is, the pinned layer and the free layer are formed of amorphous CoFeB, and even if heat treatment is performed for vertical anisotropy, the crystallinity of the magnetic tunnel junction is not greatly improved. When the crystallinity of the magnetic tunnel junction is low, the perpendicular magnetic anisotropy is lowered. Therefore, even if the magnetic field is applied to change the magnetization direction, the magnetization direction does not change suddenly, and the amount of current flowing in the parallel state becomes small. Accordingly, the read / write time may be delayed, making it difficult to implement a high speed memory device, and an operation error of the read / write may occur.
- a metal line forming process and a passivation process should be performed, which is performed at a temperature of about 400 ° C.
- the perpendicular magnetic anisotropy of the magnetic tunnel junction is lowered at a temperature of about 400 ° C. Therefore, the thermal stability of the perpendicular magnetic anisotropy of the magnetic tunnel junction must be improved.
- the present invention provides a memory device capable of abruptly changing the magnetization direction of a magnetic tunnel junction, thereby increasing the operation speed of the read / write.
- the present invention provides a memory device capable of improving the crystallinity of a magnetic tunnel junction and thereby rapidly changing the magnetization direction.
- the present invention provides a memory device capable of improving the thermal stability of the perpendicular magnetic anisotropy of a magnetic tunnel junction.
- a lower electrode, a buffer layer, a seed layer, a magnetic tunnel junction, a capping layer, a synthetic exchange diamagnetic layer, and an upper electrode are stacked on a substrate, and the capping layer is formed of a polycrystalline conductive material.
- the synthetic exchange diamagnetic layer is formed of a material containing Pt.
- the capping layer is formed of a material that crystallizes at a temperature of 400 °C or more.
- the capping layer is formed of tungsten.
- the capping layer is formed to a thickness of 0.35nm to 0.55nm.
- At least one of the lower electrode and the seed layer is formed of a material that is crystallized at a temperature of 400 ° C or more.
- At least one of the lower electrode and the seed layer is formed of tungsten.
- the squareness of the magnetization change after heat treatment of 400 ° C. or more is greater than 0.8 and 1 or less.
- a memory device includes a lower electrode, a buffer layer, a seed layer, a magnetic tunnel junction, a capping layer, a synthetic exchange diamagnetic layer, and an upper electrode stacked on a substrate, and the lower electrode, the seed layer, and the capping layer At least one is formed of a polycrystalline conductive material, and the synthetic exchange diamagnetic layer is formed of a material including Pt.
- the polycrystalline conductive material includes tungsten.
- a method of fabricating a memory device wherein a lower electrode, a buffer layer, a seed layer, a magnetic tunnel junction, a capping layer, a synthetic exchange diamagnetic layer, and an upper electrode are stacked on a substrate, and the lower electrode and seed layer are stacked. And at least one of the capping layers is formed of a polycrystalline conductive material, and the synthetic exchange diamagnetic layer is formed of a material including Pt, and then heat treated at 400 ° C. to 500 ° C. after forming the upper electrode.
- a lower electrode is formed of a polycrystalline material, a seed layer of the polycrystalline material is formed thereon, and a buffer layer is formed therebetween to improve the conformity of the lower electrode and the seed layer.
- the lower electrode and the seed layer are formed of a polycrystalline material, an amorphous magnetic tunnel junction formed thereon is formed along the crystal structure of the seed layer, and then has a further improved crystal structure by heat treatment. Therefore, the change in the magnetization direction of the magnetic tunnel junction can be made drastically, and the operation speed of the read / write can be made faster.
- the magnetic tunnel junction can maintain vertical magnetic anisotropy even at a temperature of about 400 ° C. by using a metal including tungsten as the seed layer. Therefore, the thermal stability of the perpendicular magnetic anisotropy of the magnetic tunnel junction can be improved.
- the first and second magnetic layers of the synthetic exchange diamagnetic layer are formed of Co / Pt, and the capping layer is formed of W so that Pt does not diffuse into the tunneling barrier after heat treatment, thereby maintaining the crystallinity of the MgO tunneling barrier.
- the TMR ratio can be improved.
- FIG. 1 is a cross-sectional view of a memory device according to an exemplary embodiment of the present invention.
- 2 is a magnetization graph according to the heat treatment temperature of the perpendicular magnetic anisotropic structure in which Ta and W are formed as seed layers, respectively.
- 3 and 4 are graphs of magnetization according to the magnetic field of the perpendicular magnetic anisotropic structure in which Ta and W are formed as seed layers, respectively.
- 5 to 7 are TEM photographs showing the crystal state after heat treatment at various temperatures of the magnetic tunnel junction formed on the Ta seed layer according to a comparative example.
- FIG. 8 is a magnetization graph of a heat treatment temperature of a vertical magnetic anisotropic structure in which a W seed layer is contacted on a TiN lower electrode according to a comparative example.
- FIG. 9 is a magnetization graph according to annealing temperature of a vertical magnetic anisotropic structure in which a Ta buffer layer and a W seed layer are formed on a W / TiN lower electrode according to an exemplary embodiment of the present invention.
- FIG. 10 is a TEM photograph after heat treatment of a magnetic tunnel junction formed on a TiN lower electrode and a Ta seed layer according to a comparative example.
- FIG. 11 is a TEM photograph after heat treatment of a magnetic tunnel junction formed on a TiN lower electrode, a Ta buffer layer, and a W seed layer according to an embodiment of the present invention.
- FIG. 12 is a graph of magnetization according to a magnetic field of a pseudo spin valve in which a W / TiN lower electrode, a Ta buffer layer, a W seed layer, and a W capping layer are formed according to an embodiment of the present invention.
- FIG. 13 is a SIMS result showing the ion diffusion distribution of the synthetic exchange diamagnetic layer forming material of the conventional and the memory device of the present invention.
- FIG. 1 is a cross-sectional view of a memory device according to an exemplary embodiment of the present invention, and a cross-sectional view of an STT-MRAM device.
- a memory device may include a lower electrode 110, a buffer layer 120, a seed layer 130, a free layer 140, and a tunneling barrier formed on a substrate 100. 150, a pinned layer 160, a capping layer 170, a synthetic exchange diamagnetic layer 180, and an upper electrode 190.
- the free layer 140, the tunneling barrier 150, and the pinned layer 160 form a magnetic tunnel junction.
- the substrate 100 may use a semiconductor substrate.
- the substrate 100 may use a silicon substrate, a gallium arsenide substrate, a silicon germanium substrate, a silicon oxide substrate, or the like.
- a silicon substrate is used.
- a selection device including a transistor may be formed on the substrate 100.
- An insulating layer 105 may be formed on the substrate 100. That is, the insulating layer 105 may be formed to cover a predetermined structure such as a selection device, and a contact hole exposing at least a portion of the selection device may be formed in the insulating layer 105.
- the insulating layer 105 may be formed using an amorphous silicon oxide film (SiO 2 ) or the like.
- the lower electrode 110 is formed on the insulating layer 105.
- the lower electrode 110 may be formed using a conductive material, and may be formed of metal, metal nitride, or the like.
- the lower electrode 110 of the present invention may be formed in a double structure of the first and second lower electrodes 112 and 114.
- the first lower electrode 112 may be formed on the insulating layer 105
- the second lower electrode 114 may be formed on the first lower electrode 112.
- the first lower electrode 112 may be formed in the insulating layer 105, and thus may be connected to a selection element formed on the substrate 100.
- the first and second lower electrodes 112 and 114 may be formed of a polycrystal material.
- the first and second lower electrodes 112 and 114 may be formed of a conductive material having a bcc structure.
- the first lower electrode 112 may be formed of a metal such as tungsten (W)
- the second lower electrode 114 may be formed of a metal nitride such as a titanium nitride film (TiN).
- the buffer layer 120 is formed on the lower electrode 110. That is, the buffer layer 120 is formed on the second lower electrode 114.
- the buffer layer 120 may be formed of a material having excellent conformity with the second lower electrode 114 in order to solve the lattice constant mismatch between the second lower electrode 114 and the seed layer 130.
- the buffer layer 120 may be formed using tantalum (Ta) having excellent lattice matching with TiN.
- Ta is amorphous, but since the second lower electrode 114 is polycrystalline, the amorphous buffer layer 120 may be grown along the crystal direction of the polycrystalline second lower electrode 114, and then crystalline by heat treatment. This can be improved.
- the buffer layer 120 may be formed to have a thickness of, for example, 2 nm to 10 nm.
- the seed layer 130 is formed on the buffer layer 120.
- the seed layer 130 may be formed of a polycrystalline material, for example, may be formed of tungsten (W).
- W tungsten
- the crystallinity of the magnetic tunnel junction including the free layer 140, the tunneling barrier 150, and the pinned layer 160 formed thereon may be improved. That is, when the polycrystalline seed layer 130 is formed, an amorphous magnetic tunnel junction formed on the top thereof is grown along the crystal direction of the seed layer 130, and when the heat treatment is performed for vertical magnetic anisotropy, the magnetic tunnel junction is formed. Crystallinity can be improved than before. In particular, when W is used as the seed layer 130, crystallization is performed after the high temperature heat treatment of 400 ° C.
- the seed layer 130 may be formed to have a thickness of, for example, 1 nm to 3 nm.
- the free layer 140 is formed on the seed layer 130 and is formed of a ferromagnetic material.
- the free layer 140 may be changed from one direction to another direction in which magnetization is not fixed in one direction. That is, the free layer 140 may have the same magnetization direction as that of the pinned layer 160 (ie, parallel), or may be opposite (ie, anti-parallel).
- the magnetic tunnel junction may be used as a memory device by mapping information of '0' or '1' to resistance values that vary depending on the magnetization arrangement of the free layer 140 and the pinned layer 160. For example, when the magnetization direction of the free layer 140 is parallel to the pinned layer 160, the resistance value of the magnetic tunnel junction becomes small, and this case may be defined as data '0'.
- the free layer 140 may be, for example, an amorphous rare earth element alloy, a multilayer thin film in which magnetic metals and nonmagnetic metals are alternately stacked, an alloy having an L10 type crystal structure, or a cobalt-based alloy. It can be formed using a ferromagnetic material of.
- Amorphous rare earth element alloys include alloys such as TbFe, TbCo, TbFeCo, DyTbFeCo, and GdTbCo.
- the alloy having a L10 type crystal structure includes Fe 50 Pt 50, Fe 50 Pd 50, Co 50 Pt 50, Fe 30 Ni 20 Pt 50, Co 30 Ni 20 Pt 50, and the like.
- Cobalt-based alloys include CoCr, CoPt, CoCrPt, CoCrTa, CoCrPtTa, CoCrNb, CoFeB and the like.
- the CoFeB single layer may be formed thicker than the multilayer structure of CoFeB and Co / Pt or Co / Pd, thereby increasing the magnetoresistance ratio.
- CoFeB is easier to etch than a metal such as Pt or Pd
- a CoFeB single layer is easier to manufacture than a multilayer structure containing Pt or Pd. Accordingly, an embodiment of the present invention forms a free layer 140 using a CoFeB monolayer, and CoFeB is amorphous and then texturized into the BCC 100 by heat treatment.
- the tunneling barrier 150 is formed on the free layer 140 to separate the free layer 140 and the pinned layer 160.
- Tunneling barrier 150 enables quantum mechanical tunneling between free layer 140 and pinned layer 160.
- the tunneling barrier 150 may include magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), tantalum oxide (Ta 2 O 5 ), silicon nitride (SiNx), or aluminum nitride (AlNx). It can be formed as.
- polycrystalline magnesium oxide is used as the tunneling barrier 150. Magnesium oxide is then textured into BCC 100 by heat treatment.
- the pinned layer 160 is formed on the tunnel barrier 150.
- the pinned layer 160 is fixed in one direction in a magnetic field within a predetermined range, and may be formed of a ferromagnetic material.
- magnetization may be fixed in a direction from top to bottom.
- the pinned layer 160 may be formed of, for example, a ferromagnetic material such as an amorphous rare earth element alloy, a multilayer thin film in which magnetic metals and nonmagnetic metals are alternately stacked, or an alloy having an L10 type crystal structure.
- the pinned layer 160 may be formed of the same ferromagnetic material as the free layer 140, and specifically, may be formed of a single CoFeB layer. CoFeB is amorphous and then texturized into BCC 100 by heat treatment.
- the capping layer 170 is formed on the pinned layer 160 to magnetically separate the pinned layer 160 and the synthetic exchange diamagnetic layer 180 from each other. As the capping layer 170 is formed, the magnetization of the synthetic exchange diamagnetic layer 180 and the pinned layer 160 is generated independently of each other. In addition, the capping layer 170 may be formed in consideration of the magnetoresistance ratio of the free layer 140 and the pinned layer 160 for the operation of the magnetic tunnel junction. The capping layer 170 may be formed of a material that allows the synthetic exchange diamagnetic layer 180 to grow crystals. That is, the capping layer 170 allows the first and second magnetic layers 181 and 183 of the synthetic exchange diamagnetic layer 180 to grow in a desired crystal direction.
- the capping layer 170 includes tantalum (Ta), ruthenium (Ru), titanium (Ti), palladium (Pd), platinum (Pt), magnesium (Mg), cobalt (Co), aluminum (Al), and tungsten (W). It may include a metal or an alloy thereof selected from the group consisting of. Preferably, the capping layer 170 may be formed of at least one of tantalum (Ta) and tungsten (W).
- the capping layer 170 may be formed of tantalum (Ta) or tungsten (W), or may be formed in a stacked structure of Ta / W.
- the capping layer 170 is preferably formed of a polycrystalline conductive material, for example, tungsten (W), which is crystallized at a temperature of 400 ° C. or higher.
- the capping layer 170 may be formed to a thickness of 0.3 nm to 0.6 nm, but may be formed to a thickness of 0.4 nm to 0.6 nm when using Ta, and 0.35 nm to 0.55 nm when using W. It can be formed as.
- the magnetization direction of the pinned layer 160 is fixed only when the first magnetic layer 181 of the pinned layer 160 and the synthetic exchange diamagnetic layer 180 is ferrocoupled, but the capping layer 170 using W is When formed to a thickness of 0.55 nm or more, the magnetization direction of the pinned layer 170 is not fixed due to an increase in the thickness of the capping layer 170, and has the same magnetization direction as that of the free layer 150. This does not happen and does not work with memory.
- the synthetic exchange diamagnetic layer 180 is formed on the capping layer 170.
- the synthetic exchange diamagnetic layer 180 serves to fix the magnetization of the pinned layer 160.
- the synthetic exchange diamagnetic layer 180 includes a first magnetic layer 181, a nonmagnetic layer 182, and a second magnetic layer 183. That is, in the synthetic exchange diamagnetic layer 180, the first magnetic layer 181 and the second magnetic layer 183 are antiferromagnetically coupled to each other through the nonmagnetic layer 182. At this time, the magnetization directions of the first magnetic layer 181 and the second magnetic layer 183 are antiparallel to each other.
- the first magnetic layer 181 may be magnetized in an upward direction (ie, the upper electrode 190 direction), and the second magnetic layer 183 may be magnetized in a downward direction (ie, the magnetic tunnel junction direction).
- the first magnetic layer 181 and the second magnetic layer 183 may have a structure in which magnetic metals and nonmagnetic metals are alternately stacked.
- a magnetic metal a single metal or an alloy thereof selected from the group consisting of iron (Fe), cobalt (Co), nickel (Ni), and the like may be used, and chromium (Cr), platinum (Pt), palladium as a nonmagnetic metal may be used.
- the first magnetic layer 181 and the second magnetic layer 183 may be formed of [Co / Pd] n, [Co / Pt] n or [CoFe / Pt] n (where n is an integer of 1 or more). It may be formed, preferably [Co / Pt] n.
- the first magnetic layer 181 may be formed of [Co / Pt] 5
- the second magnetic layer 183 may be formed of [Co / Pt] 6.
- the nonmagnetic layer 182 is formed between the first magnetic layer 181 and the first magnetic layer 183, and is a nonmagnetic material for allowing the first magnetic layer 181 and the second magnetic layer 183 to perform semimagnetic coupling. Is formed.
- the nonmagnetic layer 182 may be formed of a single or alloy thereof selected from the group consisting of ruthenium (Ru), rhodium (Rh), osmium (Os), rhenium (Re), and chromium (Cr).
- the upper electrode 190 is formed on the synthetic exchange diamagnetic layer 180.
- the upper electrode 180 may be formed using a conductive material, and may be formed of metal, metal oxide, metal nitride, or the like.
- the upper electrode 170 is a single selected from the group consisting of tantalum (Ta), ruthenium (Ru), titanium (Ti), palladium (Pd), platinum (Pt), magnesium (Mg) and aluminum (Al). It may be formed of a metal or an alloy thereof.
- the lower electrode 110 is formed of a polycrystalline material
- the seed layer 130 of the polycrystalline material is formed thereon
- the lower electrode 110 and the seed layer are formed therebetween to improve the consistency of the 130.
- an amorphous magnetic tunnel junction formed thereon is formed along the crystal structure of the seed layer 130 and then further improved by conventional heat treatment. You have a structure. That is, in the vertical magnetization type magnetic tunnel junction, the (100) direction texturing of the body centered cubic (BCC) of the free layer, the tunneling barrier, and the fixed layer is important, and the present invention forms polycrystalline TiN as the lower electrode.
- the seed layer 130 and the capping layer 170 may be formed using a metal including tungsten, respectively, so that the magnetic tunnel junction may maintain vertical magnetic anisotropy even at a temperature of about 400 ° C. That is, after forming the upper electrode 190, a metal line and a passivation process are performed at a temperature of about 400 ° C. In the conventional art of using tantalum (Ta) as a seed layer, the perpendicular magnetic anisotropy of the magnetic tunnel junction is deteriorated at this temperature. The present invention can maintain the perpendicular magnetic anisotropy of the magnetic tunnel junction.
- Ta tantalum
- FIG. 2 is a magnetization graph according to the heat treatment temperature of a perpendicular magnetic anisotropic structure using Ta and W as seed layers, respectively.
- a vertical magnetic anisotropic structure in which a silicon oxide film, a Ta or W seed layer (5 nm), a CoFeB magnetic layer (1.05 nm), and an MgO tunneling barrier (2.0 nm) is stacked on a silicon substrate, is fabricated between 275 ° C and 400 ° C.
- the heat treatment was performed at various temperatures. As shown in FIG. 2, when Ta is used as the seed layer, the magnetic layer maintains the magnetization value well from 275 ° C. to 300 ° C., but the magnetization value is lowered at 300 ° C. or higher.
- the magnetic layer formed on the Ta seed layer deteriorates the perpendicular magnetic anisotropy at a high temperature of 300 ° C. or higher.
- W used as the seed layer
- the magnetization value is maintained as it is even at a temperature of 400 ° C.
- the magnetic layer formed on the W seed layer may maintain vertical magnetic anisotropy even at a high temperature of 400 ° C. or higher.
- FIG. 3 is a graph of magnetization according to the magnetic field when Ta is used as the seed layer
- FIG. 4 is a graph of magnetization according to the magnetic field when W is used as the seed layer.
- FIG. 3 when Ta is used as the seed layer, vertical magnetic anisotropy is maintained up to 300 ° C., but vertical magnetic anisotropy gradually decreases from 300 ° C. or higher, and vertical magnetic anisotropy disappears completely at 350 ° C. or higher.
- FIG. 4 when W is used as the seed layer, it can be seen that vertical magnetic anisotropy is maintained well even when the temperature rises to 400 ° C.
- the CoFeB magnetic layer is formed on an amorphous lattice structure of Ta, so that heat treatment is performed at a temperature of about 275 ° C. as shown in FIG. 5.
- the Ta seed layer and the CoFeB magnetic layer remain in an amorphous state.
- the MgO tunnel barrier becomes a L10 crystal (bcc like) structure
- a portion of boron (B) diffuses from the CoFeB of the free layer and the fixed layer into the MgO tunneling barrier and the Ta capping layer
- the Co and Fe atoms are MgO / At the interface of CoFeB is collected.
- CoFeB remains in an amorphous state, but at the interface of MgO / CoFeB, oxygen of MgO and Fe of CoFeB combine to form Fe-O bonding.
- Fe-O bonding forms an interfacial perpendicular magnetic anisotropy and is therefore an important mechanism for maintaining vertical properties.
- thermal treatment at 325 ° C.
- amorphous CoFeB causes Ta seed layer to diffuse through the amorphous CoFeB into the MgO tunnel barrier as shown in FIGS. 6 and 7 to deteriorate the crystalline linearity of MgO. .
- This is expected to deteriorate the crystallinity of the MgO tunnel barrier by forming MgTaOx such that the atomic radius of Ta is 135pm, which is almost the same as the atomic radius of Mg, 137pm.
- Ta is one of the transition metals of the d-orbital element on the periodic table and has a bcc lattice structure similar to the L10 lattice (bcc like) structure of the MgO tunnel barrier at an appropriate thickness.
- the seed layer used for the magnetic tunnel junction is preferably a material having a bcc lattice structure of the transition metal.
- Transition metals having a general bcc lattice structure include V, Nb, Ta, Cr, Mo, W, Fe, and the like.
- Fe and Cr have too low or high crystallization temperature and high lattice mismatch with the TiN lower electrode, making it impossible to use as a seed layer for maintaining the perpendicular magnetic anisotropy of CoFeB.
- W used in the present invention, it is not only easy to form a seed layer like Ta, but also crystallized after high temperature heat treatment at 400 ° C., thereby inhibiting Ta diffusion into the MgO tunnel barrier and further crystallizing the CoFeB magnetic layer. The perpendicular magnetic anisotropy of the tunnel junction can be maintained.
- FIG. 8 is a magnetization graph according to a heat treatment temperature of a vertical magnetic anisotropic structure in which a tungsten seed layer is directly formed on a TiN lower electrode. That is, a tungsten first lower electrode and a TiN second lower electrode are formed on the silicon substrate, and a W seed layer, a CoFeB magnetic layer (1.05 nm), and an MgO tunneling barrier (2.0 nm) are stacked thereon, Magnetization properties were measured.
- the W seed layer was formed in thicknesses of 3 nm, 4 nm, 5 nm and 8 nm, respectively. As shown in FIG.
- FIG. 9 is a heat treatment of a vertical magnetic anisotropic structure according to an embodiment of the present invention in which a W / TiN lower electrode, a Ta buffer layer, a W seed layer, a CoFeB magnetic layer (1.05 nm), and an MgO tunneling barrier (2.0 nm) are stacked on a silicon substrate. Magnetization graph with temperature.
- the W seed layer was formed with a thickness of 1 nm, 1.5 nm, 2 nm, 2.5 nm, 3 nm and 4 nm, respectively, and was heat-treated at a temperature of 400 ° C.
- FIG. 9 in the present invention in which the Ta buffer layer and the W seed layer are formed on the W / TiN lower electrode, vertical magnetic anisotropy is well represented. That is, when the magnetization changes from the magnetization in one direction to the other direction, a substantially rectangular graph is formed as shown by coercive force.
- the squareness that is, the squareness of the square is about 0.8 to 1 in the case of the present invention. The larger the squareness, the faster the magnetization changes, so that the operation speed of the memory device can be increased. That is, the time of the read / write operation of the memory device can be reduced.
- FIG. 10 and 11 show the TEM images after the heat treatment when the Ta seed layer is formed on the TiN lower electrode and when the Ta buffer layer and the W seed layer are formed. That is, FIG. 10 is a TEM photograph after forming a Ta seed layer on a TiN lower electrode and forming a CoFeB magnetic layer and an MgO tunnel barrier and performing a heat treatment at 400 ° C., and FIG. 11 shows the Ta buffer layer and the W seed layer on the TiN lower electrode. After forming, a CoFeB magnetic layer and an MgO tunnel barrier were formed and TEM photograph after the heat processing at 400 degreeC. When the Ta seed layer is formed as shown in FIG. 10, the CoFeB magnetic layer maintains an amorphous state. However, as shown in FIG. 11, the CoFeB magnetic layer formed on the Ta buffer layer and the W seed layer is crystallized at a heat treatment temperature of 400 ° C. FIG. You can see that.
- FIG. 12 shows a silicon oxide film formed on a silicon substrate, a W / TiN lower electrode, a Ta buffer layer (5 nm), a W seed layer (2 nm), a CoFeB free layer (1.05 nm), and a MgO tunnel barrier (1.2) thereon.
- CoFeB fixed layer (1.0 nm) and W capping layer (1.5-4 nm) is a graph of the magnetization according to the magnetic field of the pseudo spin valve (pseudo spin valve) according to the present invention. That is, in order to confirm the perpendicular magnetic anisotropy according to the thickness of the W capping layer, the magnetization according to the magnetic field of the pseudo spin valve having different thicknesses of the capping layer was measured. At this time, the W capping layer was used to maintain the perpendicular magnetic anisotropy of the CoFeB fixed layer even after the heat treatment at 400 °C instead of Ta previously used as a capping layer on the CoFeB fixed layer. As shown in FIG.
- the W capping layer maintains the perpendicular magnetic anisotropy of the CoFeB magnetic layer when its thickness is 4 nm or more.
- the W seed layer was formed to have a thickness of 0.35 nm to 0.55 nm, and in the present experimental example, the W capping layer was formed to be 4 nm or more.
- the W capping layer is formed to a thickness of 4 nm or less, since no structure is formed on the capping layer, W is oxidized and affects the CoFeB magnetic layer, thereby decreasing the vertical magnetic anisotropy property. The above experimental result was obtained.
- the capping layer may be formed at 0.35 nm to 0.55 nm to obtain perpendicular magnetic anisotropy.
- CoFeB grows in an amorphous state and the Ta element diffuses into the MgO layer and destroys the crystallinity of MgO when heat-treated at 300 ° C. or higher, but the W seed layer and the W capping layer are In the present invention used, the W seed layer and the W capping layer become x-tal (crystalline) after heat treatment at 400 ° C., whereby W can suppress diffusion of Ta into the MgO layer. Further, by allowing the CoFeB magnetic layer to crystallize, a vertical magnetic tunnel junction in the x-tal state that maintains vertical magnetic anisotropy is formed.
- the perpendicular magnetic anisotropy of the CoFeB magnetic layer was maintained at a heat treatment temperature of 275 ° C., and the tunnel magnetic resistance (TMR) ratio was measured to be about 130.86%.
- the heat treatment temperature is 300 ° C. or higher, the perpendicular magnetic anisotropy of the CoFeB magnetic layer disappears and the TMR ratio is reduced.
- the magnetic tunnel junction formed with the Ta buffer layer, the W seed layer, and the Ta capping layer had a TMR ratio of 136.45% after forming the tunneling barrier and performing heat treatment at a temperature of 400 ° C. Slightly increased.
- the capping layer was changed to W that is, the magnetic tunnel junction in which the Ta buffer layer, the W seed layer, and the W capping layer were formed
- the TMR ratio was confirmed to be maintained at 134.44% at a heat treatment temperature of 400 ° C.
- the thickness of the W capping layer for obtaining such a TMR ratio is maintained at about 0.35 nm to 0.55 nm.
- the TMR ratio was measured through the equipment of the current in plane tunneling method (CiPT).
- CiPT current in plane tunneling method
- two probes are bonded on a thin upper electrode to differentiate intervals by several ⁇ m, and at this time, the resistance between the thin upper electrode and the thick lower electrode measured by several ⁇ m intervals is fitted to the TMR ratio in the equipment itself. Will yield.
- the memory device of the present invention can suppress diffusion of a material for forming a synthetic exchange diamagnetic layer as compared to a conventional memory device, thereby improving the TMR ratio.
- 13 (a) and 13 (b) are results of secondary ion mass spectroscopy (SIMS) showing ion diffusion distributions of materials for forming a synthetic exchange diamagnetic layer of a memory device according to the related art and the present invention, respectively.
- 13 (a) shows the diffusion distribution of Mg and Pd ions after sputter deposition and after 275 ° C. heat treatment
- FIG. 13 (b) shows the diffusion distribution of Mg and Pt ions after sputter deposition and after 350 ° C. and 400 ° C. heat treatment.
- a Ta seed layer, a CoFeB free layer, an MgO tunnel barrier, a CoFeB pinned layer, a Ta capping layer, a Co / Pd first magnetic layer, a Ru nonmagnetic layer, and a Co / Pd second magnetic layer are sequentially formed at 275 ° C.
- the heat treatment step of was performed.
- a Ta buffer layer, a W seed layer, a CoFeB free layer, an MgO tunnel barrier, a CoFeB pinned layer, a W capping layer, a Co / Pt first magnetic layer, a Ru nonmagnetic layer, and a Co / Pt second magnetic layer are sequentially After the formation, was formed and a heat treatment step of 350 ° C or 400 ° C was performed. That is, the memory elements of the prior art and the present invention differ in the materials of the capping layer, the first magnetic layer and the second magnetic layer. As shown in FIG.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Hall/Mr Elements (AREA)
- Mram Or Spin Memory Techniques (AREA)
Abstract
본 발명은 기판 상에 하부 전극, 버퍼층, 시드층, 자기 터널 접합, 캐핑층, 합성 교환 반자성층 및 상부 전극이 적층 형성되고, 하부 전극 및 시드층은 다결정의 도전 물질로 형성되며, 400℃ 이상의 열처리 온도에서도 자기 터널 접합의 수직 자기 이방성이 유지되는 메모리 소자를 제시한다.
Description
본 발명은 메모리 소자에 관한 것으로, 특히 자기 터널 접합(Magnetic Tunnel Junction; MTJ)을 이용하는 자기 메모리 소자에 관한 것이다.
플래쉬 메모리 소자에 비해 소비 전력이 적고 집적도가 높은 차세대 비휘발성 메모리 소자에 대한 연구가 진행되고 있다. 이러한 차세대 비휘발성 메모리 소자로는 칼코게나이드 합금(chalcogenide alloy)과 같은 상변화 물질의 상태 변화를 이용하는 상변화 메모리(Phase change RAM; PRAM), 강자성체의 자화 상태에 따른 자기 터널 접합(Magnetic Tunnel Junction; MTJ)의 저항 변화를 이용하는 자기 메모리(Magnetic RAM; MRAM), 강유전체 물질의 분극 현상을 이용하는 강유전체 메모리(Ferroelectric RAM), 가변 저항 물질의 저항 변화를 이용하는 저항 변화 메모리(Resistance change RAM; ReRAM) 등이 있다.
자기 메모리로서 전자 주입에 의한 스핀 전달 토크(Spin-Transfer Torque; STT) 현상을 이용하여 자화를 반전시키고, 자화 반전 전후의 저항차를 판별하는 STT-MRAM(Spin-Transfer Torque Magnetic Random Access Memory) 소자가 있다. STT-MRAM 소자는 각각 강자성체로 형성된 고정층(pinned layer) 및 자유층(free layer)과, 이들 사이에 터널 배리어(tunnel barrier)가 형성된 자기 터널 접합을 포함한다. 자기 터널 접합은 자유층과 고정층의 자화 방향이 동일(즉 평행(parallel))하면 전류 흐름이 용이하여 저저항 상태를 갖고, 자화 방향이 다르면(즉 반평행(anti parallel)) 전류가 감소하여 고저항 상태를 나타낸다. 또한, 자기 터널 접합은 자화 방향이 기판에 수직 방향으로만 변화하여야 하기 때문에 자유층 및 고정층이 수직 자화값을 가져야 한다. 자기장의 세기 및 방향에 따라 수직 자화값이 0을 기준으로 대칭이 되고 스퀘어니스(squareness; S)의 모양이 뚜렷이 나오게 되면(S=1) 수직 자기 이방성(perpendicular magnetic anisotropy; PMA)이 우수하다고 할 수 있다. 이러한 STT-MRAM 소자는 이론적으로 1015 이상의 사이클링(cycling)이 가능하고, 나노초(ns) 정도의 빠른 속도로 스위칭이 가능하다. 특히, 수직 자화형 STT-MRAM 소자는 이론상 스케일링 한계(Scaling Limit)가 없고, 스케일링이 진행될수록 구동 전류의 전류 밀도를 낮출 수 있다는 장점으로 인해 DRAM 소자를 대체할 수 있는 차세대 메모리 소자로 연구가 활발하게 진행되고 있다. 한편, STT-MRAM 소자의 예가 한국등록특허 제10-1040163호에 제시되어 있다.
또한, STT-MRAM 소자는 자유층 하부에 시드층이 형성되고, 고정층 상부에 캐핑층이 형성되며, 캐핑층 상부에 합성 교환 반자성층 및 상부 전극이 형성된다. 그리고, STT-MRAM 소자는 실리콘 기판 상에 실리콘 산화막이 형성된 후 그 상부에 시드층 및 자기 터널 접합이 형성된다. 또한, 실리콘 기판 상에는 트랜지스터 등의 선택 소자가 형성될 수 있고, 실리콘 산화막은 선택 소자를 덮도록 형성될 수 있다. 따라서, STT-MRAM 소자는 선택 소자가 형성된 실리콘 기판 상에 실리콘 산화막, 시드층, 자유층, 터널 배리어, 고정층, 캐핑층, 합성 교환 반자성층 및 상부 전극의 적층 구조를 갖는다. 여기서, 시드층 및 캐핑층은 탄탈륨(Ta)를 이용하여 형성하고, 합성 교환 반자성층은 자성 금속과 비자성 금속이 교대로 적층된 하부 자성층 및 상부 자성층과, 이들 사이에 비자성층이 형성된 구조를 갖는다.
그런데, 비정질의 실리콘 산화막 상부에 형성되는 시드층은 비정질로 형성되고, 그에 따라 자기 터널 접합 또한 비정질로 형성되므로 자기 터널 접합의 결정성이 저하된다. 즉, 고정층 및 자유층은 비정질의 CoFeB로 형성되는데, 수직 이방성 특성을 위해 열처리를 실시하더라도 자기 터널 접합의 결정성이 크게 향상되지 않는다. 자기 터널 접합의 결정성이 낮으면 수직 자기 이방성이 저하된다. 따라서, 자화 방향을 변화시키기 위해 자기장을 인가하더라도 자화 방향이 급격하게 변화하지 않고, 평행 상태에서 흐르는 전류의 양이 작아진다. 그에 따라, 리드/라이트의 시간이 지연될 수 있어 고속 메모리 소자를 구현하기 어렵고, 리드/라이트의 동작 오류가 발생될 수 있다.
또한, 합성 교환 반자성층 및 상부 전극을 형성한 후 메탈 라인 형성 공정 및 패시베이션 공정을 실시해야 하는데, 이러한 공정은 약 400℃의 온도에서 실시된다. 그런데, Ta를 시드층으로 이용하는 경우 400℃ 정도의 온도에서 자기 터널 접합의 수직 자기 이방성이 저하된다. 따라서, 자기 터널 접합의 수직 자기 이방성의 열 안정성을 향상시켜야 한다.
본 발명은 자기 터널 접합의 자화 방향의 변화를 급격하게 할 수 있어 리드/라이트의 동작 속도를 빠르게 할 수 있는 메모리 소자를 제공한다.
본 발명은 자기 터널 접합의 결정성을 향상시킬 수 있고, 그에 따라 자화 방향의 변화를 급격하게 할 수 있는 메모리 소자를 제공한다.
본 발명은 자기 터널 접합의 수직 자기 이방성의 열 안정성을 향상시킬 수 있는 메모리 소자를 제공한다.
본 발명의 일 양태에 따른 메모리 소자는 기판 상에 하부 전극, 버퍼층, 시드층, 자기 터널 접합, 캐핑층, 합성 교환 반자성층 및 상부 전극이 적층 형성되고, 상기 캐핑층은 다결정의 도전 물질로 형성되며, 상기 합성 교환 반자성층은 Pt를 포함하는 물질로 형성된다.
상기 캐핑층은 400℃ 이상의 온도에서 결정화되는 물질로 형성된다.
상기 캐핑층은 텅스텐으로 형성된다.
상기 캐핑층은 0.35㎚ 내지 0.55㎚의 두께로 형성된다.
상기 하부 전극 및 시드층의 적어도 어느 하나는 400℃ 이상의 온도에서 결정화되는 물질로 형성된다.
상기 하부 전극 및 시드층의 적어도 어느 하나는 텅스텐으로 형성된다.
상기 자기 터널 접합은 400℃ 이상의 열처리 후의 자화 변화의 스퀘어니스가 0.8 초과 1 이하이다.
본 발명의 다른 양태에 따른 메모리 소자는 기판 상에 하부 전극, 버퍼층, 시드층, 자기 터널 접합, 캐핑층, 합성 교환 반자성층 및 상부 전극이 적층 형성되고, 상기 하부 전극, 시드층 및 캐핑층의 적어도 어느 하나는 다결정의 도전 물질로 형성되며, 상기 합성 교환 반자성층은 Pt를 포함하는 물질로 형성된다.
상기 다결정의 도전 물질은 텅스텐을 포함한다.
본 발명의 또다른 양태에 따른 메모리 소자의 제조 방법은 기판 상에 하부 전극, 버퍼층, 시드층, 자기 터널 접합, 캐핑층, 합성 교환 반자성층 및 상부 전극을 적층 형성하고, 상기 하부 전극, 시드층 및 캐핑층의 적어도 어느 하나는 다결정의 도전 물질로 형성하며, 상기 합성 교환 반자성층은 Pt를 포함하는 물질로 형성하고, 상기 상부 전극을 형성한 후 400℃ 내지 500℃의 열처리를 실시한다.
본 발명의 메모리 소자는 하부 전극을 다결정 물질로 형성하고, 그 상부에 다결정 물질의 시드층을 형성하며, 하부 전극과 시드층의 정합성을 향상시키기 위해 그 사이에 버퍼층을 형성한다. 하부 전극 및 시드층이 다결정 물질로 형성됨으로써 그 상부에 형성되는 비정질의 자기 터널 접합이 시드층의 결정 구조를 따라 형성되고, 이후 열처리에 의해 종래보다 더욱 향상된 결정 구조를 갖게 된다. 따라서, 자기 터널 접합의 자화 방향의 변화를 급격하게 할 수 있어 리드/라이트의 동작 속도를 빠르게 할 수 있다.
또한, 본 발명은 시드층으로 텅스텐을 포함하는 금속을 이용하여 형성함으로써 약 400℃의 온도에서도 자기 터널 접합이 수직 자기 이방성을 유지할 수 있다. 따라서, 자기 터널 접합의 수직 자기 이방성의 열 안정성을 향상시킬 수 있다.
그리고, 본 발명은 합성 교환 반자성층의 제 1 및 제 2 자성층을 Co/Pt로 형성하고, 캐핑층을 W로 형성함으로써 열처리 후 Pt가 터널링 배리어 내로 확산되지 않아 MgO 터널링 배리어의 결정성을 유지할 수 있으며, 그에 따라 TMR 비를 향상시킬 수 있다.
도 1은 본 발명의 일 실시 예에 따른 메모리 소자의 단면도.
도 2는 Ta 및 W를 시드층으로 각각 형성한 수직 자기 이방성 구조의 열처리 온도에 따른 자화 그래프.
도 3 및 도 4는 Ta 및 W를 시드층으로 각각 형성한 수직 자기 이방성 구조의 자기장에 따른 자화의 그래프.
도 5 내지 도 7은 비교 예에 따른 Ta 시드층 상에 형성된 자기 터널 접합의 다양한 온도에서 열처리 후의 결정 상태를 도시한 TEM 사진.
도 8은 비교 예에 따른 TiN 하부 전극 상에 W 시드층이 접촉 형성된 수직 자기 이방성 구조의 열처리 온도에 따른 자화 그래프.
도 9는 본 발명의 실시 예에 따른 W/TiN 하부 전극 상에 Ta 버퍼층 및 W 시드층이 형성된 수직 자기 이방성 구조의 열처리 온도에 따른 자화 그래프.
도 10은 비교 예에 따른 TiN 하부 전극 및 Ta 시드층 상에 형성된 자기 터널 접합의 열처리 후의 TEM 사진.
도 11은 본 발명의 실시 예에 따른 TiN 하부 전극, Ta 버퍼층 및 W 시드층 상에 형성된 자기 터널 접합의 열처리 후의 TEM 사진.
도 12는 본 발명의 실시 예에 따른 W/TiN 하부 전극, Ta 버퍼층, W 시드층 및 W 캐핑층이 형성된 슈도 스핀 밸브의 자기장에 따른 자화의 그래프.
도 13은 종래 및 본 발명의 메모리 소자의 합성 교환 반자성층 형성 물질의 이온 확산 분포를 도시한 SIMS 결과.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한 다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
도 1은 본 발명의 일 실시 예에 따른 메모리 소자의 단면도로서, STT-MRAM 소자의 단면도이다.
도 1을 참조하면, 본 발명의 일 실시 예에 따른 메모리 소자는 기판(100) 상에 형성된 하부 전극(110), 버퍼층(120), 시드층(130), 자유층(140), 터널링 배리어(150), 고정층(160), 캐핑층(170), 합성 교환 반자성층(180) 및 상부 전극(190)을 포함한다. 여기서, 자유층(140), 터널링 배리어(150) 및 고정층(160)은 자기 터널 접합을 이룬다.
기판(100)은 반도체 기판을 이용할 수 있다. 예를 들어, 기판(100)은 실리콘 기판, 갈륨 비소 기판, 실리콘 게르마늄 기판, 실리콘 산화막 기판 등을 이용할 수 있는데, 본 실시 예에서는 실리콘 기판을 이용한다. 또한, 기판(100) 상에는 트랜지스터를 포함하는 선택 소자가 형성될 수 있다. 이러한 기판(100) 상에는 절연층(105)이 형성될 수 있다. 즉, 절연층(105)은 선택 소자 등의 소정의 구조물을 덮도록 형성될 수 있고, 절연층(105)에는 선택 소자의 적어도 일부를 노출시키는 콘택홀이 형성될 수 있다. 이러한 절연층(105)은 비정질 구조의 실리콘 산화막(SiO2) 등을 이용하여 형성할 수 있다.
하부 전극(110)은 절연층(105) 상에 형성된다. 이러한 하부 전극(110)은 도전 물질을 이용하여 형성할 수 있는데, 금속, 금속 질화물 등으로 형성될 수 있다. 또한, 본 발명의 하부 전극(110)은 제 1 및 제 2 하부 전극(112, 114)의 이중 구조로 형성될 수 있다. 여기서, 제 1 하부 전극(112)은 절연층(105) 상에 형성되고, 제 2 하부 전극(114)은 제 1 하부 전극(112) 상에 형성될 수 있다. 또한, 제 1 하부 전극(112)는 절연층(105) 내부에 형성될 수 있고, 그에 따라 기판(100) 상에 형성된 선택 소자와 연결될 수도 있다. 이러한 제 1 및 제 2 하부 전극(112, 114)은 다결정(polycrystal)의 물질로 형성될 수 있다. 즉, 제 1 및 제 2 하부 전극(112, 114)는 bcc 구조의 도전 물질로 형성될 수 있다. 예를 들어, 제 1 하부 전극(112)은 텅스텐(W) 등의 금속으로 형성될 수 있고, 제 2 하부 전극(114)는 티타늄 질화막(TiN) 등의 금속 질화물로 형성될 수 있다.
버퍼층(120)은 하부 전극(110) 상부에 형성된다. 즉, 버퍼층(120)은 제 2 하부 전극(114) 상에 형성된다. 버퍼층(120)은 제 2 하부 전극(114)과 시드층(130)의 격자 상수 불일치를 해소하기 위해 제 2 하부 전극(114)과 정합성이 우수한 물질로 형성할 수 있다. 예를 들어, 제 2 하부 전극(114)이 TiN으로 형성되는 경우 버퍼층(120)은 TiN과 격자 정합성이 우수한 탄탈륨(Ta)을 이용하여 형성할 수 있다. 여기서, Ta는 비정질이지만, 제 2 하부 전극(114)이 다결정이기 때문에 비정질의 버퍼층(120)은 다결정의 제 2 하부 전극(114)의 결정 방향을 따라 성장될 수 있고, 이후 열처리에 의해 결정성이 향상될 수 있다. 한편, 버퍼층(120)은 예를 들어 2㎚∼10㎚의 두께로 형성될 수 있다.
시드층(130)은 버퍼층(120) 상부에 형성된다. 시드층(130)은 다결정 물질로 형성될 수 있는데, 예를 들어 텅스텐(W)으로 형성될 수 있다. 이렇게 시드층(130)이 다결정 물질로 형성됨으로써 그 상부에 형성되는 자유층(140), 터널링 배리어(150) 및 고정층(160)을 포함하는 자기 터널 접합의 결정성을 향상시킬 수 있다. 즉, 다결정의 시드층(130)이 형성되면 그 상부에 형성되는 비정질의 자기 터널 접합이 시드층(130)의 결정 방향을 따라 성장되고, 이후 수직 자기 이방성을 위해 열처리를 하게 되면 자기 터널 접합이 결정성이 종래보다 향상될 수 있다. 특히, W을 시드층(130)으로 이용하게 되면 400℃ 이상, 예를 들어 400℃∼500℃의 고온 열처리 후에 결정화됨으로써 터널 배리어(150) 안으로의 Ta 확산을 억제하고 더 나아가 자유층(140) 및 고정층(160)을 결정화시켜 자기 터널 접합의 수직 자기 이방성을 유지할 수 있다. 즉, 종래에는 비정질의 절연층 상에 비정질의 시드층 및 비정질의 자기 터널 접합이 형성되므로 이후 열처리를 하더라도 결정성이 향상되지 않았다. 그런데, 본 발명에 의해 자기 터널 접합의 결정성이 향상되면 자기장을 인가했을 때 자화가 더 크게 발생되고, 평행 상태에서 자기 터널 접합을 통해 흐르는 전류가 더 많아진다. 따라서, 이러한 자기 터널 접합을 메모리 소자에 적용하면 소자의 동작 속도 및 신뢰성을 향상시킬 수 있다. 한편, 시드층(130)은 예를 들어 1㎚∼3㎚의 두께로 형성될 수 있다.
자유층(140)은 시드층(130) 상에 형성되고, 강자성체 물질로 형성된다. 이러한 자유층(140)은 자화가 한 방향으로 고정되지 않고 일 방향에서 이와 대향되는 타 방향으로 변화될 수 있다. 즉, 자유층(140)은 고정층(160)과 자화 방향이 동일(즉 평행)할 수 있고, 반대(즉 반평행)일 수도 있다. 자기 터널 접합은 자유층(140)과 고정층(160)의 자화 배열에 따라 변하는 저항값에 '0' 또는 '1'의 정보를 대응시킴으로써 메모리 소자로 활용될 수 있다. 예를 들어, 자유층(140)의 자화 방향이 고정층(160)과 평행일 때, 자기 터널 접합의 저항값은 작아지고, 이 경우를 데이터 '0' 이라 규정할 수 있다. 또한, 자유층(140)의 자화 방향이 고정층(160)과 반평행일 때, 자기 터널 접합의 저항값은 커지고, 이 경우를 데이터 '1'이라 규정할 수 있다. 이러한 자유층(140)은 예를 들어 비정질계 희토류 원소 합금, 자성 금속(ferromagnetic metal)과 비자성 금속(nonmagnetic matal)이 교대로 적층된 다층 박막, L10형 결정 구조를 갖는 합금 또는 코발트계 합금 등의 강자성체 물질을 이용하여 형성할 수 있다. 비정질계 희토류 원소 합금으로는 TbFe, TbCo, TbFeCo, DyTbFeCo, GdTbCo 등의 합금이 있다. 또한, 비자성 금속과 자성 금속이 교대로 적층된 다층 박막으로는 Co/Pt, Co/Pd, CoCr/Pt, Co/Ru, Co/Os, Co/Au, Ni/Cu, CoFeAl/Pd, CoFeAl/Pt, CoFeB/Pd, CoFeB/Pt 등이 있다. 그리고, L10형 결정 구조를 갖는 합금으로는 Fe50Pt50, Fe50Pd50, Co50Pt50, Fe30Ni20Pt50, Co30Ni20Pt50 등이 있다. 또한, 코발트계 합금으로는 CoCr, CoPt, CoCrPt, CoCrTa, CoCrPtTa, CoCrNb, CoFeB 등이 있다. 이러한 물질들 중에서 CoFeB 단일층은 CoFeB와 Co/Pt 또는 Co/Pd의 다층 구조에 비해 두껍게 형성될 수 있어 자기 저항비를 증가시킬 수 있다. 또한, CoFeB는 Pt 또는 Pd 등과 같은 금속보다 식각이 용이하므로 CoFeB 단일층은 Pt 또는 Pd 등이 함유된 다층 구조에 비해 제조 공정이 용이하다. 따라서, 본 발명의 실시 예는 CoFeB 단일층을 이용하여 자유층(140)을 형성하며, CoFeB는 비정질로 형성된 후 열처리에 의해 BCC(100)으로 텍스처링(texturing)된다.
터널링 배리어(150)는 자유층(140) 상에 형성되어 자유층(140)과 고정층(160)을 분리한다. 터널링 배리어(150)는 자유층(140)과 고정층(160) 사이에 양자 기계적 터널링(quantum mechanical tunneling)이 가능하게 한다. 이러한 터널링 배리어(150)는 마그네슘 산화물(MgO), 알루미늄 산화물(Al2O3), 실리콘 산화물(SiO2), 탄탈륨산화물(Ta2O5), 실리콘 질화물(SiNx) 또는 알루미늄 질화물(AlNx) 등으로 형성될 수 있다. 본 발명의 실시 예에서는 터널링 배리어(150)로 다결정의 마그네슘 산화물을 이용한다. 마그네슘 산화물은 이후 열처리에 의해 BCC(100)으로 텍스처링된다.
고정층(160)은 터널 배리어(150) 상에 형성된다. 고정층(160)은 소정 범위 내의 자기장에서 자화가 한 방향으로 고정되며, 강자성체 물질로 형성될 수 있다. 예를 들어, 상부에서 하부로 향하는 방향으로 자화가 고정될 수 있다. 이러한 고정층(160)은 예를 들어 비정질계 희토류 원소 합금, 자성 금속과 비자성 금속이 교대로 적층된 다층 박막 또는 L10형 결정 구조를 갖는 합금 등의 강자성체 물질로 형성될 수 있다. 이때, 고정층(160)은 자유층(140)과 동일한 강자성체로 형성될 수 있으며, 구체적으로 CoFeB 단일층으로 형성될 수 있다. CoFeB는 비정질로 형성된 후 열처리에 의해 BCC(100)으로 텍스처링(texturing)된다.
캐핑층(170)은 고정층(160) 상에 형성되어 고정층(160)과 합성 교환 반자성층(180)을 자기적으로 상호 분리시킨다. 캐핑층(170)이 형성됨으로써 합성 교환 반자성층(180)과 고정층(160)의 자화는 서로 독립적으로 발생된다. 또한, 캐핑층(170)은 자기 터널 접합의 동작을 위해 자유층(140)과 고정층(160)의 자기 저항비를 고려하여 형성할 수 있다. 이러한 캐핑층(170)은 합성 교환 반자성층(180)이 결정 성장할 수 있도록 하는 물질로 형성될 수 있다. 즉, 캐핑층(170)은 합성 교환 반자성층(180)의 제 1 및 제 2 자성층(181, 183)이 원하는 결정 방향으로 성장할 수 있도록 한다. 예를 들어, 면심 입방 격자(Face Centered Cubic: FCC)의 (111) 방향 또는 육방 밀집 구조(Hexagonal Close-Packed Structure: HCP)의 (001) 방향으로 결정의 성장을 용이하게 하는 금속으로 형성될 수 있다. 이러한 캐핑층(170)은 탄탈륨(Ta), 루테늄(Ru), 티타늄(Ti), 팔라듐(Pd), 백금(Pt), 마그네슘(Mg), 코발트(Co), 알루미늄(Al) 및 텅스텐(W)으로 이루어진 군으로부터 선택된 금속 또는 이들의 합금을 포함할 수 있다. 바람직하게, 캐핑층(170)은 탄탈륨(Ta) 및 텅스텐(W)의 적어도 어느 하나로 형성할 수 있다. 즉, 캐핑층(170)은 탄탈륨(Ta) 또는 텅스텐(W)으로 형성될 수도 있으며, Ta/W의 적층 구조로 형성할 수도 있다. 그러나, 캐핑층(170)은 400℃ 이상의 온도에서 결정화되는 다결정의 도전 물질, 예를 들어 텅스텐(W)으로 형성하는 것이 바람직하다. 한편, 이러한 캐핑층(170)은 0.3㎚∼0.6㎚의 두께로 형성할 수 있는데, Ta를 이용하는 경우 0.4㎚∼0.6㎚의 두께로 형성할 수 있고, W을 이용하는 경우 0.35㎚∼0.55㎚의 두께로 형성할 수 있다. 여기서, 고정층(160)과 합성 교환 반자성층(180)의 제 1 자성층(181)이 페로커플링(ferro coupling)되어야 고정층(160)의 자화 방향이 고정되지만, W를 이용한 캐핑층(170)이 0.55㎚ 이상의 두께로 형성되면 캐핑층(170)의 두께 증가로 인하여 고정층(170)의 자화 방향이 고정되지 않고 자유층(150)과 동일한 자화 방향을 가져 MRAM 소자에서 필요한 동일 자화 방향 및 다른 자화 방향이 발생하지 않아 메모리로 동작하지 않는다.
합성 교환 반자성층(180)은 캐핑층(170) 상에 형성된다. 합성 교환 반자성층(180)은 고정층(160)의 자화를 고정시키는 역할을 한다. 합성 교환 반자성층(180)은 제 1 자성층(181), 비자성층(182) 및 제 2 자성층(183)을 포함한다. 즉, 합성 교환 반자성층(180)은 제 1 자성층(181)과 제 2 자성층(183)이 비자성층(182)을 매개로 반강자성적으로 결합된다. 이때, 제 1 자성층(181)과 제 2 자성층(183)의 자화 방향은 반평행하게 배열된다. 예를 들어, 제 1 자성층(181)은 상측 방향(즉, 상부 전극(190) 방향)으로 자회되고, 제 2 자성층(183)은 하측 방향(즉, 자기 터널 접합 방향)으로 자화될 수 있다. 제 1 자성층(181) 및 제 2 자성층(183)은 자성 금속과 비자성 금속이 교대로 적층된 구조로 형성될 수 있다. 자성 금속으로 철(Fe), 코발트(Co) 및 니켈(Ni) 등으로 이루어진 군으로부터 선택된 단일 금속 또는 이들의 합금이 이용될 수 있고, 비자성 금속으로 크롬(Cr), 백금(Pt), 팔라듐(Pd), 이리듐(Ir), 로듐(Rh), 루테늄(Ru), 오스뮴(Os), 레늄(Re), 금(Au) 및 구리(Cu)로 이루어진 군으로부터 선택된 단일 금속 또는 이들의 합금이 이용될 수 있다. 예를 들어, 제 1 자성층(181) 및 제 2 자성층(183)은 [Co/Pd]n, [Co/Pt]n 또는 [CoFe/Pt]n (여기서, n은 1 이상의 정수)로 형성될 수 있는데, 바람직하게는 [Co/Pt]n으로 형성될 수 있다. 또한, 제 1 자성층(181)은 [Co/Pt]5로 형성되고, 제 2 자성층(183)은 [Co/Pt]6으로 형성될 수 있다. 비자성층(182)은 제 1 자성층(181)과 제 1 자성층(183)의 사이에 형성되며, 제 1 자성층(181) 및 제 2 자성층(183)이 반자성 결합을 할 수 있도록 하는 비자성 물질로 형성된다. 예를 들어, 비자성층(182)은 루테늄(Ru), 로듐(Rh), 오스뮴(Os), 레늄(Re) 및 크롬(Cr)으로 이루어진 군으로부터 선택된 단독 또는 이들의 합금으로 형성될 수 있다.
상부 전극(190)은 합성 교환 반자성층(180) 상에 형성된다.이러한 상부 전극(180)은 도전 물질을 이용하여 형성할 수 있는데, 금속, 금속 산화물, 금속 질화물 등으로 형성될 수 있다. 예를 들어, 상부 전극(170)은 탄탈륨(Ta), 루테늄(Ru), 티타늄(Ti), 팔라듐(Pd), 백금(Pt), 마그네슘(Mg) 및 알루미늄(Al)으로 이루어진 군으로부터 선택된 단일 금속 또는 이들의 합금으로 형성될 수 있다.
상기한 바와 같이 본 발명의 실시 예들에 따른 메모리 소자는 하부 전극(110)을 다결정 물질로 형성하고, 그 상부에 다결정 물질의 시드층(130)을 형성하며, 하부 전극(110)과 시드층(130)의 정합성을 향상시키기 위해 그 사이에 버퍼층(120)을 형성한다. 하부 전극(110) 및 시드층(130)이 다결정 물질로 형성됨으로써 그 상부에 형성되는 비정질의 자기 터널 접합이 시드층(130)의 결정 구조를 따라 형성되고, 이후 열처리에 의해 종래보다 더욱 향상된 결정 구조를 갖게 된다. 즉, 수직 자화형 자기 터널 접합은 자유층, 터널링 배리어 및 고정층의 체심 입방 구조(Body Centered Cubic; BCC)의 (100) 방향 텍스처링(texturing)이 중요한데, 본 발명은 하부 전극으로 다결정의 TiN을 형성하고 그 상부에 다결정의 W 시드층을 형성하여 평탄한 시드층의 인터페이스 확보와 자기 터널 접합의 BCC(100) 결정성을 향상시킬 수 있다. 또한, 본 발명은 시드층(130) 및 캐핑층(170)으로 텅스텐을 포함하는 금속을 각각 이용하여 형성함으로써 약 400℃의 온도에서도 자기 터널 접합이 수직 자기 이방성을 유지할 수 있다. 즉, 상부 전극(190)을 형성한 후 약 400℃의 온도에서 메탈 라인 및 패시베이션 공정을 실시하는데, 탄탈륨(Ta)을 시드층으로 이용하는 종래에는 이 온도에서 자기 터널 접합의 수직 자기 이방성이 저하되었지만, 본 발명은 자기 터널 접합의 수직 자기 이방성을 유지할 수 있다. 이러한 본 발명의 일 실시 예에 따른 메모리 소자와 종래의 메모리 소자의 특성을 비교하면 다음과 같다.
도 2는 시드층으로 Ta 및 W를 각각 이용하는 수직 자기 이방성 구조의 열처리 온도에 따른 자화 그래프이다. 이를 위해 실리콘 기판 상에 실리콘 산화막, Ta 또는 W 시드층(5㎚), CoFeB 자성층(1.05㎚), MgO 터널링 배리어(2.0㎚)가 적층된 수직 자기 이방성 구조를 제작하고, 275℃부터 400℃ 사이의 다양한 온도에서 열처리를 실시하였다. 도 2에 도시된 바와 같이 Ta를 시드층으로 이용한 경우 자성층은 275℃부터 300℃까지는 자화값을 잘 유지하지만, 300℃ 이상에서는 자화값이 낮아지게 된다. 즉, Ta 시드층 상에 형성된 자성층은 300℃ 이상의 고온에서 수직 자기 이방성이 저하된다. 그러나, W을 시드층으로 이용한 경우 400℃의 온도에서도 자화값을 그대로 유지하는 것을 알 수 있다. 즉, W 시드층 상에 형성된 자성층은 400℃ 이상의 고온에서도 수직 자기 이방성을 유지할 수 있다.
또한, 도 3은 시드층으로 Ta를 이용한 경우의 자기장에 따른 자화의 그래프이고, 도 4는 시드층으로 W을 이용한 경우의 자기장에 따른 자화의 그래프이다. 도 3에 도시된 바와 같이 Ta를 시드층으로 이용하는 경우 300℃까지는 수직 자기 이방성을 유지하지만, 300℃ 이상에서부터 수직 자기 이방성이 점점 저하되어 350℃ 이상에서는 수직 자기 이방성이 완전히 사라지는 것을 볼 수 있다. 그러나, 도 4에 도시된 바와 같이 W를 시드층으로 이용하는 경우 400℃로 상승하더라도 수직 자기 이방성을 잘 유지하는 것을 볼 수 있다.
Ta 시드층 상에 CoFeB 자성층, 즉 자유층 및 CoFeB 고정층을 형성하는 경우 Ta의 비정질(amorphous) 격자 구조 상에 CoFeB 자성층이 형성되므로 도 5에 도시된 바와 같이 275℃ 정도의 온도에서 열처리를 실시하여도 Ta 시드층과 CoFeB 자성층은 비정질 상태를 유지한다. 또한, 열처리 후에 MgO 터널 배리어는 L10 결정(bcc like) 구조가 되며, 자유층 및 고정층의 CoFeB에서 붕소(B)가 MgO 터널링 배리어 및 Ta 캐핑층으로 일부가 확산되고, Co 원자 및 Fe 원자가 MgO/CoFeB의 계면에 모이게 된다. 이후에 CoFeB은 계속 비정질 상태로 유지되지만 MgO/CoFeB의 계면에서 MgO의 산소와 CoFeB의 Fe가 결합하여 Fe-O 본딩을 형성한다. Fe-O 본딩은 계면 수직 자기 이방성(interfacial PMA)을 형성하므로 수직 특성을 유지하는 중요한 메카니즘이다. 그러나, 비정질 CoFeB은 325℃ 및 350℃의 열처리 이후에 도 6 및 도 7에 도시된 바와 같이 Ta 시드층이 비정질 CoFeB를 통과하여 MgO 터널 배리어 안으로 확산되어 MgO의 결정 리니어리티(crystalline linearity)를 악화시킨다. 이는 Ta의 원자 반지름이 135pm로써 Mg의 원자 반지름인 137pm와 거의 동일하여 MgTaOx가 형성됨으로써 MgO 터널 배리어의 결정성을 악화시키는 것으로 예상된다.
한편, Ta은 주기율표상 d-오비탈 원소인 전이 금속 중 하나로 적당한 두께에서 MgO 터널 배리어의 L10 격자(bcc like) 구조와 비슷한 bcc 격자 구조를 가진다. 특히, 자기 터널 접합에 이용되는 시드층은 전이 금속 중 bcc 격자 구조를 가진 물질을 이용하는 것이 바람직하다. 일반적인 bcc 격자 구조를 가지는 전이 금속으로는 V, Nb, Ta, Cr, Mo, W, Fe 등이 있다. 그런데, Fe, Cr은 결정화 온도가 너무 낮거나 높으며 TiN 하부 전극과의 격자 불일치가 높아 CoFeB의 수직 자기 이방성을 유지하기 위한 시드층으로 이용하기 불가능하다. 그러나, 본 발명에 이용되는 W의 경우, Ta과 마찬가지로 시드층으로 형성하기 용이할 뿐만 아니라 특히 400℃의 고온 열처리 후에 결정화됨으로써 MgO 터널 배리어 안으로의 Ta 확산을 억제하고 더 나아가 CoFeB 자성층을 결정화시켜 자기 터널 접합의 수직 자기 이방성을 유지할 수 있다.
도 8은 텅스텐 시드층을 TiN 하부 전극 상에 직접 형성한 수직 자기 이방성 구조의 열처리 온도에 따른 자화 그래프이다. 즉, 실리콘 기판 상에 텅스텐 제 1 하부 전극, TiN 제 2 하부 전극을 형성하고, 그 상부에 W 시드층, CoFeB 자성층(1.05㎚), MgO 터널링 배리어(2.0㎚)를 적층하고, 열처리 온도에 따른 자화 특성을 측정하였다. 여기서, W 시드층은 3㎚, 4㎚, 5㎚ 및 8㎚의 두께로 각각 형성하였다. 도 8에 도시된 바와 같이 TiN 하부 전극 상에 W 시드층을 직접 형성하는 경우 TiN과 W의 격자 불일치가 커져 정합성이 떨어지고, 그에 따라 자성층 성장에 영향을 미쳐 수직 자기 이방성이 나타나지 않음을 알 수 있다.
이러한 문제를 해결하여 W/TiN 하부 전극 상에 W 시드층을 형성하기 위해서는 TiN과 정합성이 좋은 Ta를 버퍼층으로 형성하고, 그 상부에 W 시드층을 형성하는 것이 바람직하다. 도 9는 실리콘 기판 상에 W/TiN 하부 전극, Ta 버퍼층, W 시드층, CoFeB 자성층(1.05㎚), MgO 터널링 배리어(2.0㎚)가 적층된 본 발명의 실시 예에 따른 수직 자기 이방성 구조의 열처리 온도에 따른 자화 그래프이다. 여기서, W 시드층은 1㎚, 1.5㎚, 2㎚, 2.5㎚, 3㎚ 및 4㎚의 두께로 각각 형성하였고, 400℃의 온도에서 열처리하였다. 도 9에 도시된 바와 같이 W/TiN 하부 전극 상에 Ta 버퍼층 및 W 시드층을 형성한 본 발명의 경우 수직 자기 이방성이 잘 나타나고 있음을 알 수 있다. 즉, 일측 방향의 자화로부터 타측 방향으로 자화가 변화할 때 보자력(coercive force)에 의해 도시된 바와 같이 대략 사각형의 그래프가 형성된다. 이때, 사각형의 직각도, 즉 스퀘어니스(squareness)가 본 발명의 경우 0.8 내지 1 정도이다. 스퀘어니스가 클수록 자화의 변화가 빠르게 일어나므로 메모리 소자의 동작 속도를 빠르게 할 수 있다. 즉, 메모리 소자의 리드/라이트 동작의 시간을 감소시킬 수 있다.
또한, TiN 하부 전극 상에 Ta 시드층을 형성한 경우와 Ta 버퍼층 및 W 시드층을 형성한 경우 열처리 후의 TEM 사진을 도 10 및 도 11에 나타내었다. 즉, 도 10은 TiN 하부 전극 상에 Ta 시드층을 형성한 후 CoFeB 자성층 및 MgO 터널 배리어를 형성하고 400℃의 열처리 후의 TEM 사진이고, 도 11은 TiN 하부 전극 상에 Ta 버퍼층 및 W 시드층을 형성한 후 CoFeB 자성층 및 MgO 터널 배리어를 형성하고 400℃의 열처리 후의 TEM 사진이다. 도 10에 도시된 바와 같이 Ta 시드층을 형성한 경우 CoFeB 자성층이 비정질 상태를 유지하고 있지만, 도 11에 도시된 바와 같이 Ta 버퍼층과 W 시드층 상에 형성된 CoFeB 자성층은 400℃의 열처리 온도에서 결정화되는 것을 확인할 수 있다.
그리고, 본 발명에 따른 수직 자기 터널 접합의 자유층 및 고정층의 수직 자기 이방성을 평가하기 위하여 슈도 스핀 밸브 구조를 제작하고, 자기장에 따른 자화의 측정 결과를 도 12에 도시하였다. 도 12는 실리콘 기판 상에 실리콘 산화막이 형성되고, 그 상부에 W/TiN 하부 전극, Ta 버퍼층(5㎚), W 시드층(2㎚), CoFeB 자유층(1.05㎚), MgO 터널 배리어(1.2㎚), CoFeB 고정층(1.0㎚) 및 W 캐핑층(1.5∼4㎚)이 적층된 본 발명에 따른 슈도 스핀 밸브(pseudo spin valve)의 자기장에 따른 자화의 그래프이다. 즉, W 캐핑층의 두께에 따른 수직 자기 이방성을 확인하기 위해 캐핑층의 두께를 다르게 한 슈도 스핀 밸브의 자기장에 따른 자화를 측정하였다. 이때, CoFeB 고정층 위에 캡핑층으로 기존에 사용되던 Ta가 아닌 400℃의 열처리 후에도 CoFeB 고정층의 수직 자기 이방성을 유지할 수 있는 W 캡핑층을 사용하였다. 도 12에 도시된 바와 같이 W 캡핑층은 그 두께가 4㎚ 이상일 때 CoFeB 자성층의 수직 자기 이방성이 유지된다. 한편, 본 발명의 실시 예에서 W 시드층은 0.35㎚∼0.55㎚의 두께로 형성하였고 본 실험 예에서 W 캐핑층을 4㎚ 이상으로 형성하는 것으로 설명하였다. 실험 예의 슈도 스핀 밸브 구조에서 W 캐핑층을 4㎚ 이하의 두께로 형성하면 캐핑층 상에 아무런 구조가 형성되어 있지 않기 때문에 W가 산화되어 CoFeB 자성층에도 영향을 주어 수직 자기 이방성 특성이 저하되므로 4㎚ 이상의 실험 결과를 얻었다. 그러나, 실시 예에서 W 캐핑층 상에 합성 교환 반자성층이 형성되므로 캐핑층의 산화 문제가 없으며 이 경우 캐핑층을 0.35㎚∼0.55㎚로 형성하여 수직 자기 이방성을 얻을 수 있다.
Ta 시드층 및 Ta 캐핑층을 이용하는 종래의 경우 CoFeB가 비정질로 성장하며 300℃ 이상에서 열처리를 하였을 때 Ta 원소가 MgO층으로 확산하여 MgO의 결정성을 파괴하지만, W 시드층 및 W 캐핑층을 이용한 본 발명의 경우는 W 시드층과 W 캡핑층이 400℃의 열처리 후에 x-tal(crystalline)이 됨으로써 Ta이 MgO층으로 확산하는 것을 W가 억제할 수 있다. 또한, CoFeB 자성층을 결정화하게 함으로써 수직 자기 이방성을 유지하는 x-tal 상태의 수직 자기 터널 접합이 형성된다.
또한, Ta 시드층 및 Ta 캐핑층을 형성하는 종래의 자기 터널 접합은 275℃의 열처리 온도에서 CoFeB 자성층의 수직 자기 이방성이 유지되며, 터널 자기 저항(Tunnel Magnetic Resistance; TMR)비가 130.86% 정도로 측정되었다. 그러나, Ta 시드층 및 Ta 캐핑층을 형성하는 종래의 자기 터널 접합은 열처리 온도가 300℃ 이상이 되면 CoFeB 자성층의 수직 자기 이방성이 사라지게 되며 TMR비가 감소되는 현상이 나타난다. 이에 비해, 본 발명에서 제시한 바와 같이 Ta 버퍼층, W 시드층을 형성하고 Ta 캐핑층을 형성한 자기 터널 접합은 터널링 배리어를 형성하고 400℃의 온도에서 열처리를 실시한 후의 TMR비가 136.45%로 종래보다 약간 증가하였다. 그런데, 캡핑층을 W으로 변경하면, 즉 Ta 버퍼층, W 시드층 및 W 캐핑층을 형성한 자기 터널 접합은 400℃의 열처리 온도에서 TMR비가 134.44%로 유지되는 것을 확인하였다. 이러한 TMR비를 얻기 위한 W 캡핑층의 두께는 0.35㎚∼0.55㎚ 정도로 유지된다. 한편, TMR비는 CiPT(current in plane tunneling method) 방식의 장비를 통해 측정되었다. CiPT 측정 방식은 얇은 상부 전극 위에 두개의 프로브를 접합시켜 수 ㎛씩 간격을 차별화하여 측정하게 되며, 이때 수 ㎛ 간격씩 측정된 얇은 상부 전극과 두꺼운 하부 전극 사이의 저항들을 피팅하여 장비 자체에서 TMR비를 산출하게 된다.
한편, 본 발명의 메모리 소자는 도 13에 도시된 바와 같이 종래의 메모리 소자에 비해 합성 교환 반자성층을 형성하기 위한 물질의 확산을 억제할 수 있고, 그에 따라 TMR비를 향상시킬 수 있다. 도 13(a) 및 도 13(b)는 종래 및 본 발명에 따른 메모리 소자의 합성 교환 반자성층을 형성하기 위한 물질의 이온 확산 분포를 각각 도시한 SIMS(Secondary ion mass spectroscopy) 결과이다. 도 13(a)에는 스퍼터 증착 후와 275℃ 열처리 후의 Mg와 Pd 이온의 확산 분포가 도시되어 있으며, 도 13(b)에는 스퍼터 증착 후와 350℃ 및 400℃ 열처리 후의 Mg와 Pt 이온의 확산 분포가 도시되어 있다. 여기서, 종래 메모리 소자는 Ta 시드층, CoFeB 자유층, MgO 터널 배리어, CoFeB 고정층, Ta 캐핑층, Co/Pd 제 1 자성층, Ru 비자성층 및 Co/Pd 제 2 자성층을 순차적으로 형성한 후 275℃의 열처리 공정을 실시하였다. 반면, 본 발명의 메모리 소자는 Ta 버퍼층, W 시드층, CoFeB 자유층, MgO 터널 배리어, CoFeB 고정층, W 캐핑층, Co/Pt 제 1 자성층, Ru 비자성층 및 Co/Pt 제 2 자성층을 순차적으로 형성한 후 을 형성하고 350℃ 또는 400℃의 열처리 공정을 실시하였다. 즉, 종래 및 본 발명의 메모리 소자는 캐핑층, 제 1 및 제 2 자성층의 물질이 상이하다. 도 13(a)에 도시된 바와 같이 종래의 메모리 소자는 합성 교환 반자성층의 Pd 이온이 캐핑층을 넘어 고정층 및 MgO 터널링 배리어까지 확산됨을 알 수 있다. 그러나, 도 13(b)에 도시된 바와 같이 본 발명의 메모리 소자는 합성 교환 반자성층의 Pt가 MgO 터널링 배리어까지 확산되지 않고 W 캐핑층 및 고정층까지만 확산됨을 알 수 있다. 즉, 합성 교환 반자성층을 형성하는 Pt는 Pd보다 MgO 터널링 배리어 내에 적게 확산되고, Ta 캡핑층 대신에 결정질 상태의 W 캡핑층을 사용하였을 때 MgO 터널링 배리어 내로의 Pt 확산을 더욱 억제할 수 있다. 따라서, MgO 터널링 배리어의 결정성을 유지할 수 있으며, 그에 따라 TMR 비가 종래의 142.21%에서 본 발명의 158.99%로 약 17% 증가된다.
한편, 본 발명의 기술적 사상은 상기 실시 예에 따라 구체적으로 기술되었으나, 상기 실시 예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주지해야 한다. 또한, 본 발명의 기술분야에서 당업자는 본 발명의 기술 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.
Claims (10)
- 기판 상에 하부 전극, 버퍼층, 시드층, 자기 터널 접합, 캐핑층, 합성 교환 반자성층 및 상부 전극이 적층 형성되고,상기 캐핑층은 다결정의 도전 물질로 형성되며,상기 합성 교환 반자성층은 Pt를 포함하는 물질로 형성된 메모리 소자.
- 청구항 1에 있어서, 상기 캐핑층은 400℃ 이상의 온도에서 결정화되는 물질로 형성된 메모리 소자.
- 청구항 2에 있어서, 상기 캐핑층은 텅스텐으로 형성된 메모리 소자.
- 청구항 3에 있어서, 상기 캐핑층은 0.35㎚ 내지 0.55㎚의 두께로 형성된 메모리 소자.
- 청구항 1에 있어서, 상기 하부 전극 및 시드층의 적어도 어느 하나는 400℃ 이상의 온도에서 결정화되는 물질로 형성된 메모리 소자.
- 청구항 5에 있어서, 상기 하부 전극 및 시드층의 적어도 어느 하나는 텅스텐으로 형성된 메모리 소자.
- 청구항 1에 있어서, 상기 자기 터널 접합은 400℃ 이상의 열처리 후의 자화 변화의 스퀘어니스가 0.8 초과 1 이하인 메모리 소자.
- 기판 상에 하부 전극, 버퍼층, 시드층, 자기 터널 접합, 캐핑층, 합성 교환 반자성층 및 상부 전극이 적층 형성되고,상기 하부 전극, 시드층 및 캐핑층의 적어도 어느 하나는 다결정의 도전 물질로 형성되며,상기 합성 교환 반자성층은 Pt를 포함하는 물질로 형성된 메모리 소자.
- 청구항 8에 있어서, 상기 다결정의 도전 물질은 텅스텐을 포함하는 메모리 소자.
- 기판 상에 하부 전극, 버퍼층, 시드층, 자기 터널 접합, 캐핑층, 합성 교환 반자성층 및 상부 전극을 적층 형성하고,상기 하부 전극, 시드층 및 캐핑층의 적어도 어느 하나는 다결정의 도전 물질로 형성하며,상기 합성 교환 반자성층은 Pt를 포함하는 물질로 형성하고,상기 상부 전극을 형성한 후 400℃ 내지 500℃의 열처리를 실시하는 메모리 소자의 제조 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/094,365 US11050014B2 (en) | 2014-04-18 | 2015-03-18 | Memory device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0046563 | 2014-04-18 | ||
KR1020140046563 | 2014-04-18 | ||
KR1020140102420A KR101583783B1 (ko) | 2014-04-18 | 2014-08-08 | 메모리 소자 |
KR10-2014-0102420 | 2014-08-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2015160094A2 true WO2015160094A2 (ko) | 2015-10-22 |
WO2015160094A3 WO2015160094A3 (ko) | 2017-05-18 |
Family
ID=54324675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/002608 WO2015160094A2 (ko) | 2014-04-18 | 2015-03-18 | 메모리 소자 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11050014B2 (ko) |
KR (1) | KR101583783B1 (ko) |
WO (1) | WO2015160094A2 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180013059A1 (en) * | 2015-01-19 | 2018-01-11 | Industry-University Cooperation Foundation Hanyang University | Mtj structure having vertical magnetic anisotropy and magnetic element including the same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3800643A1 (en) * | 2019-10-02 | 2021-04-07 | Imec VZW | Magnetic device with a hybrid free layer stack |
EP4426090A1 (en) * | 2023-02-28 | 2024-09-04 | Imec VZW | A stack with a high tunneling magnetoresistance ratio for a magnetic random access memory device |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3831353B2 (ja) * | 2003-03-27 | 2006-10-11 | 株式会社東芝 | 磁気ランダムアクセスメモリ |
KR100988081B1 (ko) * | 2003-04-23 | 2010-10-18 | 삼성전자주식회사 | 이종방식으로 형성된 중간 산화막을 구비하는 자기 램 및그 제조 방법 |
US8018011B2 (en) * | 2007-02-12 | 2011-09-13 | Avalanche Technology, Inc. | Low cost multi-state magnetic memory |
JP2007266498A (ja) | 2006-03-29 | 2007-10-11 | Toshiba Corp | 磁気記録素子及び磁気メモリ |
US20090218645A1 (en) * | 2007-02-12 | 2009-09-03 | Yadav Technology Inc. | multi-state spin-torque transfer magnetic random access memory |
US7830016B2 (en) * | 2008-06-30 | 2010-11-09 | Intel Corporation | Seed layer for reduced resistance tungsten film |
KR101040163B1 (ko) | 2008-12-15 | 2011-06-09 | 한양대학교 산학협력단 | 다치화 구조를 갖는 stt-mram 메모리 소자와 그 구동방법 |
US20110031569A1 (en) * | 2009-08-10 | 2011-02-10 | Grandis, Inc. | Method and system for providing magnetic tunneling junction elements having improved performance through capping layer induced perpendicular anisotropy and memories using such magnetic elements |
JP2011096356A (ja) | 2009-10-28 | 2011-05-12 | Seagate Technology Llc | 多層硬質磁石、データ記憶装置のための読取書込ヘッド、および硬質磁石の製造方法 |
US8358534B2 (en) * | 2010-09-17 | 2013-01-22 | Micron Technology, Inc. | Spin torque transfer memory cell structures and methods |
JP5162021B2 (ja) | 2011-11-28 | 2013-03-13 | 株式会社東芝 | 磁気抵抗効果素子、磁気メモリ、磁気抵抗効果ヘッド、および磁気記録再生装置 |
KR101446338B1 (ko) * | 2012-07-17 | 2014-10-01 | 삼성전자주식회사 | 자기 소자 및 그 제조 방법 |
-
2014
- 2014-08-08 KR KR1020140102420A patent/KR101583783B1/ko active IP Right Grant
-
2015
- 2015-03-18 US US16/094,365 patent/US11050014B2/en active Active
- 2015-03-18 WO PCT/KR2015/002608 patent/WO2015160094A2/ko active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180013059A1 (en) * | 2015-01-19 | 2018-01-11 | Industry-University Cooperation Foundation Hanyang University | Mtj structure having vertical magnetic anisotropy and magnetic element including the same |
US10700266B2 (en) * | 2015-01-19 | 2020-06-30 | Industry-University Cooperation Foundation Hanyang University | MTJ structure having vertical magnetic anisotropy and magnetic element including the same |
Also Published As
Publication number | Publication date |
---|---|
US20200266333A1 (en) | 2020-08-20 |
US11050014B2 (en) | 2021-06-29 |
KR20150121637A (ko) | 2015-10-29 |
KR101583783B1 (ko) | 2016-01-13 |
WO2015160094A3 (ko) | 2017-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10643681B2 (en) | Memory device | |
EP2873079B1 (en) | Engineered magnetic layer with improved perpendicular anisotropy using glassing agents for spintronic applications | |
EP2820680B1 (en) | Engineered magnetic layer with improved perpendicular anisotropy using glassing agents for spintronic applications | |
US10580964B2 (en) | Memory device | |
WO2015160092A2 (ko) | 메모리 소자 | |
WO2016148391A1 (ko) | 메모리 소자 | |
WO2015160093A2 (ko) | 메모리 소자 | |
KR101721618B1 (ko) | 메모리 소자 | |
KR101956975B1 (ko) | 메모리 소자 | |
KR101705125B1 (ko) | 메모리 소자 | |
WO2016148394A1 (ko) | 메모리 소자 | |
WO2015160094A2 (ko) | 메모리 소자 | |
WO2016148392A1 (ko) | 메모리 소자 | |
KR101756883B1 (ko) | 메모리 소자 | |
KR101698532B1 (ko) | 메모리 소자 | |
KR101956976B1 (ko) | 메모리 소자 | |
WO2016148395A1 (ko) | 메모리 소자 | |
WO2016148393A1 (ko) | 메모리 소자 | |
KR101933268B1 (ko) | 메모리 소자 | |
KR101956977B1 (ko) | 메모리 소자 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15780240 Country of ref document: EP Kind code of ref document: A2 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15780240 Country of ref document: EP Kind code of ref document: A2 |