WO2016148329A1 - 누설 유체를 재생하는 터보 팽창기 - Google Patents

누설 유체를 재생하는 터보 팽창기 Download PDF

Info

Publication number
WO2016148329A1
WO2016148329A1 PCT/KR2015/003603 KR2015003603W WO2016148329A1 WO 2016148329 A1 WO2016148329 A1 WO 2016148329A1 KR 2015003603 W KR2015003603 W KR 2015003603W WO 2016148329 A1 WO2016148329 A1 WO 2016148329A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
turbine
shaft
gearbox
pipe
Prior art date
Application number
PCT/KR2015/003603
Other languages
English (en)
French (fr)
Inventor
김명효
Original Assignee
한화테크윈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화테크윈 주식회사 filed Critical 한화테크윈 주식회사
Publication of WO2016148329A1 publication Critical patent/WO2016148329A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/10Heating, e.g. warming-up before starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters

Definitions

  • Embodiments relate to turboexpanders and, more particularly, to turboexpanders having improved energy efficiency by regenerating leakage fluids generated during operation of turboexpanders.
  • Turbo-expander is a device capable of producing electricity or rotating a compressor by rotating a turbine when a high pressure fluid expands. Turboexpanders are often used in electrical power generation or waste heat recovery systems for the purpose of electrical generation or to reduce the pressure in gas pipelines. Applied to
  • the turbo expander By connecting the shaft of the turbine of the turboexpander with a generator, the work generated during the expansion of the high pressure fluid can be converted into electrical energy.
  • a reduction gearbox is used to realize a proper connection speed between the turbine shaft and the generator of the turbo expander.
  • Fluid mechanical systems with turbo expanders generally use high pressure fluid, so the internal pressure of the fluid mechanical system is relatively higher than the atmospheric pressure in the surrounding environment. Therefore, in the structure of the integral geared type turbo expander in which the turbine shaft and the gearbox of the turbo expander are integrally connected, the fluid in the high pressure gas state at the mechanical connection between the shaft and the gearbox of the turbine May leak.
  • US Patent Publication No. 2014-0099184 discloses a technique for controlling gas leakage through a shaft of a turbomachine. According to this technology, gas intrusion and leakage can be detected by using a sensor to sense the pressure of the gas. However, even when using this technique, the leaking gas is necessarily generated due to the mechanical gap of the shaft, and this technique does not provide a solution for the treatment of the leaking gas.
  • U.S. Patent No. 8,393,160 discloses a technique for directing leaked fuel from a gas turbine system into a reaction vessel and then oxidizing the leaked fuel. According to this technique, oxidizing the leaked fuel can reduce environmental pollution or risk, but it is not preferable in terms of energy utilization because it cannot use the leaked fuel.
  • Another object of the embodiments is to provide a turboexpander in which operating efficiency is increased while minimizing energy consumption.
  • Still another object of the embodiments is to provide a turbo expander capable of heating a fluid supplied to a turbine using leaking fluid generated from the turbo expander.
  • the fluid supplied to the turbine can be heated using the leakage fluid generated between the turbine shaft and the gearbox, so that the energy of the leakage fluid can be efficiently Can be played with.
  • FIG. 1 is a conceptual diagram schematically illustrating a coupling relationship between components of a turbo expander for regenerating leakage fluid according to an embodiment.
  • FIG. 2 is an enlarged view of a portion of the turbo expander of FIG. 1.
  • FIG. 3 is a conceptual diagram schematically illustrating a coupling relationship between components of a turbo expander for regenerating leakage fluid according to another embodiment.
  • a turboexpander for reproducing a leaking fluid includes a turbine having a rotating shaft and arranged to rotate, the turbine expanding and discharging the fluid by rotating by the fluid, and a gear connected to the rotating shaft of the turbine and the rotating gear.
  • a gearbox having an output shaft to rotate, a generator connected to the output shaft of the gearbox to generate electricity, an extraction tube for extracting leakage fluid leaked between the rotation shaft and the gearbox, and a leakage fluid connected to the extraction tube It is provided with a heating device for heating the fluid supplied to the turbine by receiving the combustion.
  • the heating device is connected to the extraction pipe and burns the leakage fluid
  • the heater is connected to the supply pipe for supplying the fluid to the turbine to heat the fluid supplied to the turbine, and receives the thermal fluid and connects the boiler and the heater in the boiler It may be provided with a delivery tube for delivering the heated thermal fluid to the heater when the leakage fluid is burned.
  • the turbo expander for regenerating leakage fluid may further include a supplementary pipe connected to the supply pipe and supplying fluid from the supply pipe to the boiler, and a valve installed at the supplementary pipe to open or close the supplementary pipe.
  • the turboexpander for regenerating the leaking fluid may further include a sensor for detecting the amount of the leaking fluid flowing through the extraction tube, and a controller for controlling the valve based on a signal sensed from the sensor.
  • the turboexpander for regenerating leakage fluid may further include a cooling liquid tube for supplying a cooling liquid to the generator to cool the heat generated by the generator, and a cooling pump connected to the cooling liquid tube for circulating the cooling liquid.
  • a cooling liquid tube for supplying a cooling liquid to the generator to cool the heat generated by the generator
  • a cooling pump connected to the cooling liquid tube for circulating the cooling liquid.
  • the turboexpander for regenerating leakage fluid may further include a discharge pipe discharging the fluid discharged from the turbine, and a condenser connected to the discharge pipe to condense the fluid discharged through the discharge pipe.
  • the gearbox may further include an axial support portion surrounding the rotary shaft of the turbine, and the turbo expander for regenerating leakage fluid is disposed between the axial support of the gearbox and the rotary shaft so as to surround the rotary shaft, It may further include a sealing ring for sealing the space between, the extraction tube may be connected to the shaft support.
  • the turboexpander for regenerating leakage fluid may further include a bearing coupled between the shaft support and the rotary shaft to rotatably support the rotary shaft with respect to the shaft support.
  • the gearbox may further include an output hole through which the output shaft passes, and the turbo expander for regenerating leakage fluid further includes an output shaft sealing ring disposed between the output shaft and the output hole to seal a space between the gearbox and the output shaft. can do.
  • the turboexpander for regenerating leakage fluid may further include a gearbox extraction tube connected to the gearbox and supplying the leakage fluid leaked from the gearbox to the heating device.
  • FIG. 1 is a conceptual diagram schematically illustrating a coupling relationship between components of a turbo expander for regenerating leakage fluid according to an embodiment
  • FIG. 2 is an enlarged view illustrating a portion of the turbo expander of FIG. 1 in an enlarged manner.
  • the turboexpander for regenerating the leakage fluid according to the embodiment shown in FIG.
  • a heating device 50 for heating is provided.
  • the turbine 10 has an inlet 10a and an outlet 10b.
  • the turbine 10 rotates by the fluid to expand the fluid and then through the outlet 10b. Discharge to the discharge pipe (8).
  • the rotary shaft 11 of the turbine 10 is connected to the output shaft 26 for driving the generator 30 through the gearbox 25.
  • the gearbox 25 performs a speed reducer function to realize an appropriate connection speed between the turbine 10 and the generator 30.
  • the gearbox 25 is provided with a gear 20 that is connected to the rotary shaft 11 of the turbine 10 to rotate.
  • the gear 20 is rotatably installed in the gearbox 25 by the drive gear 21 connected to the rotation shaft 11 and the gear shaft 23d, for example, and rotated by the drive gear 21.
  • the intermediate gear 23 and the driven gear 22 which are rotated by the intermediate gear 23 and are connected with the output shaft 26 are provided.
  • the output shaft 26 of the gearbox 25 is connected to the generator 30, whereby the rotational movement of the output shaft 26 is converted into electrical energy by the generator 30.
  • the gearbox 25 has a shaft support portion 25b surrounding the rotary shaft 11 of the turbine 10 and rotatably supporting the rotary shaft 11.
  • the shaft support part 25b may be manufactured in the shape of a pipe having a through hole 25c through which the rotating shaft 11 of the turbine 10 passes.
  • the bearing 24 which rotatably supports the rotating shaft 11 with respect to the shaft support part 25b is provided.
  • Sealing rings 18 and 19 surrounding the outer surface of the rotating shaft 11 are disposed between the through hole 25c of the shaft supporting portion 25b and the rotating shaft 11.
  • the sealing rings 18 and 19 seal the space 17 between the shaft support 25b of the gearbox 25 and the rotary shaft 11 so that the fluid in the high pressure gas state on the turbine 10 side is rotated. It performs a function to prevent the discharge through.
  • the extraction pipe 40 is connected to the extraction hole 17f of the shaft support part 25b.
  • the extraction tube 40 performs a function of extracting the leakage fluid leaking between the rotation shaft 11 and the shaft support portion 25b of the gear box 25.
  • the gearbox 25 has an output hole 25d through which the output shaft 26 passes.
  • An output shaft sealing ring 29 may be installed between the output hole 25d of the gearbox 25 and the output shaft 26 to seal the space 27 between the gearbox 25 and the output shaft 26.
  • an output shaft bearing 28 may be installed between the output hole 25d of the gearbox 25 and the output shaft 26 to rotatably support the output shaft 26 with respect to the gearbox 25.
  • the gearbox extraction pipe 41 for extracting the leakage fluid generated inside the gearbox 25 to the outside is connected to the extraction hole 27f of the gearbox 25.
  • the embodiment is not limited to the arrangement position and the number of the sealing rings 18 and 19 shown in FIG. 2, the arrangement position and the number of the bearings 24, and the like, for example, the number of the sealing rings 18 and 19. May be further increased or decreased, and the arrangement position of the bearing 24 may be moved to the turbine 10 side or the number of bearings installed may be further increased.
  • the embodiment is not limited to the number of gears 20 included in the gearbox 25 shown in FIGS. 1 and 2, and the number or arrangement of the gears 20 is modified to implement a deceleration function. Can be.
  • the embodiment is not limited to a turbo expander having a single turbine as shown in FIG. 1, but may be applied to a turbo expander having a plurality of turbines.
  • a heating device 50 for heating the fluid supplied to the turbine 10 is connected to the supply pipe 7 for supplying the fluid to the inlet 10a of the turbine 10.
  • the heating device 50 is connected to the extraction pipe 40 and the gearbox extraction pipe 41 to burn the leakage fluid leaked between the rotary shaft 11 of the turbine 10 and the gearbox 25.
  • a heater 52 connected to a supply pipe 7 for supplying a fluid to the turbine 10 to heat the fluid supplied to the turbine 10, and a boiler 51 and the heater 52 to receive the thermal fluid. It is provided with a transmission pipe 53 for connecting the heat fluid heated in the boiler (51) to the heater (52).
  • turboexpanders have not been able to utilize leakage fluid leaked from the mechanical play existing between the shaft and the gearbox of the turbine. Since the leaking fluid may contain impurities, for example, it is difficult to supply the leaking fluid to the fuel of the engine. Therefore, since the leakage fluid of the turboexpander is generally burned and removed by a flaring device, the turboexpander always wastes energy with respect to the leaking fluid.
  • the fluid supplied to the turbine 10 can be heated by using the leakage fluid generated between the rotation shaft 11 of the turbine 10 and the gearbox 25.
  • the energy of the leaking fluid can be efficiently recycled.
  • the heated fluid can be supplied to the turbine 10 using the leakage fluid without generating a separate energy consumption, thereby improving energy efficiency.
  • the state of the fluid flowing through the supply pipe 7 for supplying the fluid to the turbine 10 changes through the heater 52. That is, before passing through the heater 52, a fluid having a pressure of 70 bar and a temperature of 0 degrees Celsius is changed to a fluid having a pressure of 70 bar and a temperature of 120 degrees Celsius after passing through the heater 52. If a 0 degree Celsius fluid is heated to 120 degree Celsius using electricity, a lot of energy will be consumed, but in the turboexpander according to the embodiment described above, the rotary shaft 11 and the gearbox 25 of the turbine 10 without additional energy consumption. It is possible to increase the operating efficiency of the turbine 10 by utilizing the leaking fluid that is essentially leaking between.
  • the supplementary pipe 70 may be connected to the supply pipe 7.
  • the supplementary tube 70 performs a function of supplementing a portion of the fluid flowing through the supply tube 7 with the boiler 51. That is, the replenishment pipe 70 is for replenishing the boiler 51 a part of the fluid of the supply pipe 7 when the amount of leakage fluid is not sufficient for the operation of the boiler 51.
  • the supplementary pipe 70 is connected to the supply pipe 7 on the upstream side of the heater 52 based on the flow of the fluid flowing through the supply pipe 7.
  • the refill pipe 70 is provided with a valve 71 that operates to allow or block the flow of fluid flowing through the refill pipe 70 by opening or closing the refill pipe 70.
  • a manually operated manually valve may be used for the valve 71, but in the example shown in FIG. 1, an electronic or hydraulically operated valve that operates by a signal applied from the controller 80 to the valve 71 is used.
  • the extraction tube 40 and the gearbox extraction tube 41 are provided with a sensor 81 for detecting the amount of leakage fluid passing through.
  • the sensor 81 may be installed in a pipe after the extraction tube 40 and the gearbox extraction tube 41 are joined.
  • the controller 80 Since the controller 80 is electrically connected with the sensor 81 and the valve 71, the controller 80 may control the operation of the valve 71 based on a detection signal regarding the leaked fluid sensed from the sensor 81. Can be.
  • the sensor 81 may detect the amount of the leaking fluid by detecting the pressure or the flow rate of the leaking fluid flowing through the extraction pipe 40 and the gearbox extraction pipe 41.
  • the controller 80 may control the valve 71 based on the sensing signal received from the sensor 81. For example, if the amount of leaking fluid sensed by the sensor 81 is less than the predetermined amount required to operate the boiler 51, the controller 80 operates the valve 71 to close the filler tube 70. Can open As a result, a part of the fluid in the supply pipe 7 may be replenished to the boiler 51 through the replenishment pipe 70 to ensure stable operation of the boiler 51.
  • the generator 30 may be connected to a cooling liquid tube 61 for supplying a cooling liquid such as, for example, water to the generator 30 to cool the heat generated by the generator 30.
  • the cooling liquid pipe 61 may be connected to a cooling pump 60 for circulating the cooling liquid, and a heat exchanger 62 for cooling the heated cooling liquid again after heating the generator 30.
  • the space occupied by the cooling device can be minimized by using the water-cooled cooling device to cool the generator.
  • FIG. 3 is a conceptual diagram schematically illustrating a coupling relationship between components of a turbo expander for regenerating leakage fluid according to another embodiment.
  • the turboexpander for regenerating the leaking fluid according to the embodiment shown in FIG. 3 is generally similar to the configuration of the turboexpander for the embodiment shown in FIGS. 1 to 2, but the condenser 95 condensing the fluid discharged from the turbine 10. ) Has been modified.
  • the same reference numerals are used in FIG. 3 for the same components as those in the turboexpander according to the embodiment shown in FIGS. 1 and 2.
  • the turbo expander according to the embodiment shown in FIG. 3 rotates by a fluid to expand and discharge the fluid 10, and a gear 20 and a gear 20 that are connected to the rotating shaft 11 of the turbine 10 to rotate.
  • a gearbox 25 having an output shaft 26 rotated by the shaft, a generator 30 rotating by the output shaft 26 of the gearbox 25 to generate electricity, and a rotation shaft 11 and a gearbox.
  • Extraction pipe 40 for extracting the leakage fluid leaking between the (25), and the heating device 50 is connected to the extraction pipe 40 to burn the fluid leakage to heat the fluid supplied to the turbine (10) and
  • the condenser 95 is connected to a discharge pipe 8 for discharging the fluid discharged and expanded from the turbine 10 and heats the fluid discharged through the discharge pipe 8.
  • the condenser 95 is connected to the refrigerant delivery pipe 91, and the refrigerant delivery pipe 91 is pressurized by the refrigerant pump 90 and the refrigerant pump 90 which pressurize the refrigerant to supply the refrigerant to the evaporator 92.
  • An evaporator 92 is connected to evaporate and heat exchange the refrigerant.
  • the refrigerant passing through the evaporator 92 is delivered to the condenser 95 after it is expanded through the expansion valve 97.
  • an expansion turbine for expanding a refrigerant instead of the expansion valve 97 may be installed.
  • the evaporator 92 may be used, for example, for cooling a cooling system or a freezer of the entire system in which a turbo expander is installed. Therefore, according to the turbo expander having the above-described configuration, by using the cold energy of the fluid expanded and discharged from the turbine 10, the heating energy required to heat the fluid before supplying the fluid to the turbine 10 is obtained. It can be minimized.
  • the state of the fluid flowing through the supply pipe 7 for supplying the fluid to the turbine 10 changes through the heater 52. That is, before passing through the heater 52, a fluid having a pressure of 70 bar and a temperature of 0 degrees Celsius is changed to a fluid having a pressure of 70 bar and a temperature of 70 degrees Celsius after passing through the heater 52.
  • the turbine 10 is supplied with a fluid having a pressure of 70 bar and a temperature of 70 degrees Celsius and then the turbine 10 rotates so that the fluid discharged through the supply pipe 7 after the fluid is expanded is about 8 bar Celsius.
  • a fluid having a pressure of 70 bar and a temperature of 70 degrees Celsius When having a temperature of -50 degrees, the temperature of the discharged fluid is too low to utilize. Therefore, when the temperature of the fluid discharged from the turbine 10 is too low in this manner, it is necessary to heat the fluid supplied to the turbine 10 to a higher temperature in advance.
  • the low temperature fluid discharged from the turbine 10 changes to a state having a pressure of about 8 bar and a temperature of 0 degrees Celsius while passing through the condenser 95.
  • the condenser 95 can be used for cooling the low-temperature fluid discharged from the turbine 10, such as in a cooling system and the like, while minimizing the heating energy for heating the fluid supplied to the turbine 10 turbo expander The energy efficiency of can be improved.
  • Embodiments relate to turboexpanders, and more particularly, turboexpanders having improved energy efficiency by regenerating leakage fluids generated during operation of turboexpanders.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

누설 유체를 재생하는 터보 팽창기는 회전축을 구비하며 회전하도록 배치되어 유체에 의해 회전함으로써 유체를 팽창시켜 배출하는 터빈과, 터빈의 회전축에 연결되어 회전하는 기어와 기어에 연결되어 회전하는 출력축을 구비하는 기어박스와, 기어박스의 출력축에 연결되어 회전함으로써 전기를 생성하는 발전기와, 회전축과 기어박스의 사이에서 누설된 누설 유체를 추출하는 추출관과, 추출관과 연결되어 누설 유체를 공급받아 연소시킴으로써 터빈에 공급되는 유체를 가열하는 가열장치를 구비한다.

Description

누설 유체를 재생하는 터보 팽창기
실시예들은 터보 팽창기에 관한 것으로, 보다 상세하게는 터보 팽창기의 작동 중에 발생하는 누설 유체를 재생함으로써 에너지 효율이 향상된 터보 팽창기에 관한 것이다.
터보 팽창기(Turbo-expander)는 고압의 유체가 팽창할 때에 터빈을 회전시킴으로써 전기를 생산하거나 압축기를 회전시킬 수 있는 장치이다. 터보 팽창기는 전기 발전 시스템이나 폐열 회수 시스템에서 전기 발전의 용도나 가스 파이프라인의 압력을 낮추기 위한 용도로 사용되기도 하고, 냉동 시스템이나 극저온의 천연가스, 석유, 공기의 분리 공정과 같은 다양한 유체 기계 시스템에 응용된다.
터보 팽창기의 터빈의 축(shaft)을 발전기와 연결함으로써 고압의 유체가 팽창하는 과정에서 생성된 일(work)을 전기 에너지로 변환할 수 있다. 일반적으로 터보 팽창기는 발전기의 회전 속도보다 빠른 회전 속도로 회전하므로, 터보 팽창기의 터빈의 축과 발전기의 사이의 적절한 연결 속도를 구현하기 위해 감속용 기어박스가 사용된다.
터보 팽창기가 포함된 유체 기계 시스템은 일반적으로 고압의 유체를 이용하므로, 유체 기계 시스템의 내부 압력은 주변 환경의 기압보다 상대적으로 높다. 따라서 터보 팽창기의 터빈의 축과 기어박스가 일체로 연결되는 일체식 기어형 터보 팽창기(Integral geared type turbo expander)의 구조에서는 터빈의 축과 기어박스의 기계적인 연결 부위에서 고압가스 상태의 유체가 외부로 누출될 수 있다.
종래에는 터보 팽창기에서 누출된 고압가스를 연소 후 대기 중으로 배출시킴으로써 누출된 고압가스를 제거하는 기술이 사용되는데, 이러한 기술은 에너지 활용 측면에서 바람직하지 않다.
또한 터빈의 축과 기어박스의 기계적인 연결 부위에 실링(seal ring)을 설치함으로써 터보 팽창기의 외부로 가스가 누출되지 않도록 하기 위한 기술도 많이 사용되고 있다.
미국 특허공개공보 제2014-0099184호에는 터보 기계의 샤프트를 통한 가스 누출을 제어하기 위한 기술이 나타난다. 이러한 기술에 의하면 센서를 이용하여 가스의 압력을 감지함으로써 가스의 침투와 누출을 감지할 수 있다. 그러나 이러한 기술을 사용하는 경우에도 샤프트가 갖는 기계적인 간극으로 인하여 누출 가스가 반드시 발생하며, 이러한 기술은 이미 발생한 누출 가스의 처리를 위한 해결책을 제시하지 못한다.
미국 등록특허 제8,393,160호에는 가스 터빈 시스템에서 누출된 연료를 반응 용기로 유도한 후 누출된 연료를 산화시키는 기술이 나타난다. 이러한 기술에 의하면 누출된 연료를 산화시킴으로써 환경오염이나 위험을 줄일 수 있으나, 누출된 연료를 활용하지 못하므로 에너지 활용의 측면에서 바람직하지 않다.
또한 종래에는 터보 팽창기의 효율을 증가시키기 위한 목적으로 터보 팽창기의 터빈으로 유입되는 유체를 미리 가열하는 기술이 사용되기도 한다.
국제 특허공개 제2007-115579호 및 제2008-135059호와, 일본 특허공개공보 제2007-092652호에는 터빈의 입구에 배기가스의 열을 이용하는 열 교환기나, 연료를 연소시키는 별도의 가열 장치를 설치함으로써 터빈으로 유입되는 유체를 미리 가열하는 기술이 나타난다. 이러한 기술들에 의하면 터빈으로 유입되는 유체를 가열하여 터빈의 구동 효율을 증가시킬 수 있다. 그러나 전기식 히터를 이용하는 경우 및 연료를 연소시키는 별도의 가열 장치를 이용하는 경우에는 터빈으로 유입되는 유체를 미리 가열하기 위해 별도의 에너지가 소모되므로 에너지 활용 측면에서 바람직하지 않으며, 이러한 기술들을 이용하여도 터빈의 축과 기어박스의 기계적인 연결 부위에서 누출된 가스를 처리할 수 없다.
[특허문헌]
미국 특허공개공보 제2014-0099184호 (2014.04.10.)
미국 등록특허 제8,393,160호 (2013.03.12.)
국제 특허공개 제2007-115579호 (2007.10.18)
국제 특허공개 제2008-135059호 (2008.11.13.)
일본 특허공개공보 제2007-092652호 (2007.04.12.)
실시예들의 목적은 터보 팽창기의 작동 중에 발생하는 누설 유체를 재생함으로써 에너지 효율을 향상시키는 데 있다.
실시예들의 다른 목적은 에너지 소모를 최소화하면서도 작동 효율이 증가되는 터보 팽창기를 제공하는 데 있다.
실시예들의 또 다른 목적은 터보 팽창기에서 발생하는 누설 유체를 이용하여 터빈에 공급되는 유체를 가열할 수 있는 터보 팽창기를 제공하는 데 있다.
상술한 바와 같은 실시예들에 관한 누설 유체를 재생하는 터보 팽창기에 의하면 터빈의 회전축과 기어박스의 사이에서 발생하는 누설 유체를 이용하여 터빈에 공급되는 유체를 가열할 수 있으므로 누설 유체의 에너지를 효율적으로 재생할 수 있다.
또한 터빈에서 팽창된 유체의 온도가 너무 낮은 경우에는 응축기에 의해 낮은 온도를 갖는 유체의 냉열을 사용할 수 있으므로, 터빈에 공급되는 유체를 냉각시키기 위해 필요한 가열 에너지를 최소화할 수 있다.
도 1은 일 실시예에 관한 누설 유체를 재생하는 터보 팽창기의 구성 요소들의 결합 관계를 개략적으로 도시한 개념도이다.
도 2는 도 1의 터보 팽창기의 일부분을 확대하여 도시한 확대도이다.
도 3은 다른 실시예에 관한 누설 유체를 재생하는 터보 팽창기의 구성 요소들의 결합 관계를 개략적으로 도시한 개념도이다.
일 실시예에 관한 누설 유체를 재생하는 터보 팽창기는 회전축을 구비하며 회전하도록 배치되어 유체에 의해 회전함으로써 유체를 팽창시켜 배출하는 터빈과, 터빈의 회전축에 연결되어 회전하는 기어와 기어에 연결되어 회전하는 출력축을 구비하는 기어박스와, 기어박스의 출력축에 연결되어 회전함으로써 전기를 생성하는 발전기와, 회전축과 기어박스의 사이에서 누설된 누설 유체를 추출하는 추출관과, 추출관과 연결되어 누설 유체를 공급받아 연소시킴으로써 터빈에 공급되는 유체를 가열하는 가열장치를 구비한다.
가열장치는 추출관과 연결되어 누설 유체를 연소시키는 보일러와, 터빈에 유체를 공급하는 공급관에 연결되어 터빈으로 공급되는 유체를 가열하는 히터와, 열유체를 수용하며 보일러 및 히터를 연결하여 보일러에서 누설 유체가 연소될 때 가열된 열유체를 히터에 전달하는 전달관을 구비할 수 있다.
누설 유체를 재생하는 터보 팽창기는 공급관에 연결되며 공급관의 유체를 보일러에 공급하는 보충관과, 보충관에 설치되어 보충관을 개방하거나 폐쇄하는 밸브를 더 구비할 수 있다.
누설 유체를 재생하는 터보 팽창기는 추출관을 흐르는 누설 유체의 양을 감지하는 센서와, 센서로부터 감지된 신호에 기초하여 밸브를 제어하는 제어기를 더 구비할 수 있다.
누설 유체를 재생하는 터보 팽창기는, 발전기에서 발생한 열을 냉각하도록 발전기에 냉각용 액체를 공급하는 냉각용 액체관과, 냉각용 액체관에 연결되어 냉각용 액체를 순환시키는 냉각용 펌프를 더 구비할 수 있다.
누설 유체를 재생하는 터보 팽창기는 터빈에서 배출된 유체를 배출하는 배출관과, 배출관에 연결되어 배출관을 통해 배출되는 유체를 응축시키는 응축기를 더 구비할 수 있다.
기어박스는 터빈의 회전축을 둘러싸는 축 지지부를 더 구비할 수 있고, 누설 유체를 재생하는 터보 팽창기는 회전축을 둘러싸도록 기어박스의 축 지지부와 회전축의 사이에 배치되어 기어박스의 축 지지부와 회전축의 사이의 공간을 밀봉하는 밀봉링을 더 구비할 수 있으며, 추출관은 축 지지부에 연결될 수 있다.
누설 유체를 재생하는 터보 팽창기는 축 지지부와 회전축의 사이에 결합되어 축 지지부에 대하여 회전축을 회전 가능하게 지지하는 베어링을 더 구비할 수 있다.
기어박스는 출력축이 관통하는 출력용 구멍을 더 구비할 수 있고, 누설 유체를 재생하는 터보 팽창기는 출력축과 출력용 구멍의 사이에 배치되어 기어박스와 출력축의 사이의 공간을 밀봉하는 출력축 밀봉링을 더 구비할 수 있다.
누설 유체를 재생하는 터보 팽창기는 기어박스에 연결되며 기어박스로부터 누설된 누설 유체를 가열장치에 공급하는 기어박스 추출관을 더 구비할 수 있다.
이하, 첨부 도면의 실시예들을 통하여, 실시예들에 관한 누설 유체를 재생하는 터보 팽창기의 구성과 작용을 상세히 설명한다. 설명 중에 사용되는 '및/또는'의 표현은 관련 요소들의 하나 또는 요소들의 조합을 의미한다.
도 1은 일 실시예에 관한 누설 유체를 재생하는 터보 팽창기의 구성 요소들의 결합 관계를 개략적으로 도시한 개념도이고, 도 2는 도 1의 터보 팽창기의 일부분을 확대하여 도시한 확대도이다.
도 1 및 2에 나타난 실시예에 관한 누설 유체를 재생하는 터보 팽창기는, 유체에 의해 회전함으로써 유체를 팽창시켜 배출하는 터빈(10)과, 터빈(10)의 회전축(11)에 연결되어 회전하는 기어(20)와 기어(20)에 의해 회전하는 출력축(26)을 구비하는 기어박스(25)와, 기어박스(25)의 출력축(26)에 의해 회전하여 전기를 생성하는 발전기(30)와, 회전축(11)과 기어박스(25)의 사이에서 누설되는 누설 유체를 추출하는 추출관(40)과, 추출관(40)에 연결되어 누설 유체를 연소시켜 터빈(10)에 공급되는 유체를 가열하는 가열장치(50)를 구비한다.
터빈(10)은 입구(10a)와 출구(10b)를 구비하며, 입구(10a)에 연결된 공급관(7)을 통해 유체가 공급되면 유체에 의해 회전함으로써 유체를 팽창시킨 후에 출구(10b)를 통해 배출관(8)으로 배출한다.
터빈(10)의 회전축(11)은 기어박스(25)를 통해 발전기(30)를 구동하는 출력축(26)에 연결된다. 기어박스(25)는 터빈(10)과 발전기(30)의 사이에 적절한 연결 속도를 구현하기 위해 감속기 기능을 수행한다.
기어박스(25)는 터빈(10)의 회전축(11)에 연결되어 회전하는 기어(20)를 구비한다. 기어(20)는 예를 들어 회전축(11)에 연결된 구동기어(21)와, 기어축(23d)에 의해 기어박스(25)의 내부에 회전 가능하게 설치되어 구동기어(21)에 의해 회전하는 중간 기어(23)와, 중간 기어(23)에 의해 회전하며 출력축(26)과 연결된 종동 기어(22)를 구비한다.
기어박스(25)의 출력축(26)은 발전기(30)와 연결됨으로써, 출력축(26)의 회전 운동이 발전기(30)에 의해 전기 에너지로 변환된다.
기어박스(25)는 터빈(10)의 회전축(11)을 둘러싸며 회전축(11)을 회전 가능하게 지지하는 축 지지부(25b)를 구비한다. 축 지지부(25b)는 터빈(10)의 회전축(11)이 관통하는 관통공(25c)을 구비하는 파이프 형상으로 제작될 수 있다. 축 지지부(25b)와 회전축(11)의 사이에는 축 지지부(25b)에 대하여 회전축(11)을 회전 가능하게 지지하는 베어링(24)이 설치된다.
축 지지부(25b)의 관통공(25c)과 회전축(11)의 사이에는 회전축(11)의 외측 면을 둘러싸는 밀봉링(18, 19)이 배치된다. 밀봉링(18, 19)은 기어박스(25)의 축 지지부(25b)와 회전축(11)의 사이의 공간(17)을 밀봉함으로써 터빈(10) 측의 고압가스 상태의 유체가 회전축(11)을 통해 배출되는 것을 방지하는 기능을 수행한다.
축 지지부(25b)의 추출공(17f)에는 추출관(40)이 연결된다. 추출관(40)은 회전축(11)과 기어박스(25)의 축 지지부(25b)의 사이에서 누설되는 누설 유체를 추출하는 기능을 수행한다.
기어박스(25)는 출력축(26)이 관통하는 출력용 구멍(25d)을 구비한다. 기어박스(25)의 출력용 구멍(25d)과 출력축(26)의 사이에는 기어박스(25)와 출력축(26)의 사이의 공간(27)을 밀봉하는 출력축 밀봉링(29)이 설치될 수 있다. 또한 기어박스(25)의 출력용 구멍(25d)과 출력축(26)의 사이에는 출력축(26)을 기어박스(25)에 대하여 회전 가능하게 지지하는 출력축 베어링(28)이 설치될 수 있다.
기어박스(25)의 추출공(27f)에는 기어박스(25)의 내부에서 발생하는 누설 유체를 외부로 추출하기 위한 기어박스 추출관(41)이 연결된다.
실시예는 도 2에 도시된 밀봉링(18, 19)의 배치 위치와 개수나, 베어링(24)의 배치 위치와 개수 등에 의해 한정되는 것은 아니며, 예를 들어 밀봉링(18, 19)의 개수를 더 증가시키거나 감소시킬 수 있으며, 베어링(24)의 배치 위치를 터빈(10) 측으로 이동시키거나 설치되는 베어링의 개수를 더 증가시킬 수 있다.
마찬가지로 실시예는 도 1 및 도 2에 도시된 기어박스(25)에 포함되는 기어(20)의 개수에 의해 한정되는 것은 아니며, 기어(20)의 개수나 배치 구조는 감속 기능을 구현하기 위하여 변형될 수 있다.
실시예는 도 1에 도시된 바와 같이 하나의 터빈을 갖는 터보 팽창기에만 한정되는 것은 아니며, 복수 개의 터빈을 갖는 터보 팽창기에도 적용될 수 있다.
터빈(10)의 입구(10a)에 유체를 공급하는 공급관(7)에는 터빈(10)에 공급되는 유체를 가열하는 가열장치(50)가 연결된다. 가열장치(50)는 추출관(40)과 기어박스 추출관(41)과 연결되어 터빈(10)의 회전축(11)과 기어박스(25)의 사이에서 누설된 누설 유체를 연소시키는 보일러(51)와, 터빈(10)에 유체를 공급하는 공급관(7)에 연결되어 터빈(10)으로 공급되는 유체를 가열하는 히터(52)와, 열유체를 수용하며 보일러(51)와 히터(52)를 연결하며 보일러(51)에서 가열된 열유체를 히터(52)에 전달하는 전달관(53)을 구비한다.
종래의 터보 팽창기에서는 터빈의 회전축과 기어박스의 사이에 존재하는 기계적인 유격으로부터 누설된 누설 유체를 활용하지 못하였다. 누설 유체에는 불순물이 함유될 수 있으므로, 예를 들어 누설 유체를 엔진의 연료로 공급하기 어렵다. 따라서 터보 팽창기의 누설 유체는 일반적으로 플레어 장치(flaring device)에 의해 연소시켜 제거하기 때문에, 터보 팽창기에서는 누설 유체와 관련하여 항상 에너지의 낭비가 발생하였다.
그러나 상술한 실시예에 관한 터보 팽창기에 의하면, 터빈(10)의 회전축(11)과 기어박스(25)의 사이에서 발생하는 누설 유체를 이용하여 터빈(10)에 공급되는 유체를 가열할 수 있으므로 누설 유체의 에너지를 효율적으로 재생할 수 있다.
특히, 종래에는 터보 팽창기의 효율을 증가시키기 위하여 터빈(10)의 입구 측에 전기나 가열원을 이용하는 가열 장치를 설치하였으므로 추가적인 에너지 소모로 인해 전체적인 에너지 효율이 좋지 않았다.
상술한 실시예에 관한 터보 팽창기에서는 별도의 에너지 소모를 발생시키지 않고 누설 유체를 이용하여 터빈(10)에 가열된 유체를 공급할 수 있어서 에너지 효율이 향상된다.
예를 들어 터빈(10)에 유체를 공급하는 공급관(7)을 흐르는 유체의 상태가 히터(52)를 통과하며 변화된다. 즉 히터(52)를 통과하기 전에는 70 bar의 압력과 섭씨 0도의 온도를 갖는 유체가 히터(52)를 통과한 이후에는 70 bar의 압력과 섭씨 120도의 온도를 갖는 유체로 변화된다. 전기를 이용하여 섭씨 0도의 유체를 섭씨 120도의 유체로 가열한다면, 많은 에너지가 소모될 것이지만 상술한 실시예에 관한 터보 팽창기에서는 추가적인 에너지 소모 없이 터빈(10)의 회전축(11)과 기어박스(25)의 사이에서 필수적으로 누설되는 누설 유체를 활용하여 터빈(10)의 작동 효율을 증가시킬 수 있다.
터빈(10)에 70 bar의 압력과 섭씨 120도의 온도를 갖는 유체가 공급되면, 터빈(10)이 회전함으로써 유체가 팽창된 후에 공급관(7)을 통해 약 8바의 압력과 섭씨 0도의 온도를 갖는 유체가 배출된다.
공급관(7)에는 보충관(70)이 연결될 수 있다. 보충관(70)은 공급관(7)을 흐르는 유체의 일부를 보일러(51)로 보충하는 기능을 수행한다. 즉 보충관(70)은 누설 유체의 발생량이 보일러(51)의 작동에 충분하지 않은 경우, 공급관(7)의 유체의 일부를 보일러(51)에 보충하기 위한 것이다. 보충관(70)은 공급관(7)을 흐르는 유체의 흐름을 기준으로 히터(52)의 상류측에서 공급관(7)에 연결된다.
보충관(70)에는 보충관(70)을 개방하거나 폐쇄함으로써 보충관(70)을 흐르는 유체의 흐름을 허용하거나 차단하도록 작동하는 밸브(71)가 설치된다. 밸브(71)에는 수동으로 작동되는 수동식 밸브가 사용될 수도 있으나, 도 1에 도시된 예에서는 밸브(71)에 제어기(80)로부터 인가되는 신호에 의해 작동하는 전자식 또는 유압 작동식 밸브가 사용된다.
추출관(40) 및 기어박스 추출관(41)에는 통과하는 누설 유체의 양을 감지하는 센서(81)가 설치된다. 센서(81)는 추출관(40) 및 기어박스 추출관(41)이 합류된 이후의 관(pipe)에 설치될 수 있다.
제어기(80)와 센서(81) 및 밸브(71)와 전기적으로 연결되므로, 제어기(80)는 센서(81)로부터 감지된 누설 유체에 관한 감지 신호에 기초하여 밸브(71)의 작동을 제어할 수 있다.
센서(81)는 추출관(40)과 기어박스 추출관(41)을 흐르는 누설 유체의 압력을 감지하거나 유량을 감지함으로써 누설 유체의 양을 감지할 수 있다.
제어기(80)는 센서(81)로부터 수신된 감지 신호에 기초하여 밸브(71)를 제어할 수 있다. 예를 들어 센서(81)에 의해 감지된 누설 유체의 양이 보일러(51)를 작동시키기 위해 필요한 미리 정해진 양보다 작은 경우에는 제어기(80)가 밸브(71)를 작동시켜 보충관(70)을 개방할 수 있다. 이로써 공급관(7)의 유체의 일부가 보충관(70)을 통해 보일러(51)로 보충되어 보일러(51)의 안정적인 동작을 확보할 수 있다.
발전기(30)에는 발전기(30)에서 발생한 열을 냉각시키기 위해 발전기(30)에 예를 들어 물과 같은 냉각용 액체를 공급하는 냉각용 액체관(61)이 연결될 수 있다. 냉각용 액체관(61)에는 냉각용 액체를 순환시키는 냉각용 펌프(60)와, 발전기(30)를 가열한 후 가열된 냉각용 액체를 다시 냉각시키기 위한 열교환기(62)가 연결될 수 있다.
발전기(30)를 냉각시키기 위해 공랭식 냉각장치를 이용하던 종래의 방식에 의하면, 공랭식 냉각장치의 설치를 위한 공간이 많이 필요하였다. 그러나 상술한 실시예에 관한 터보 팽창기에서는 발전기를 냉각시키기 위하여 수냉식 냉각장치를 사용함으로써 냉각 장치가 차지하는 공간을 최소화할 수 있다.
도 3은 다른 실시예에 관한 누설 유체를 재생하는 터보 팽창기의 구성 요소들의 결합 관계를 개략적으로 도시한 개념도이다.
도 3에 나타난 실시예에 관한 누설 유체를 재생하는 터보 팽창기는 도 1 내지 도 2에 나타난 실시예에 관한 터보 팽창기의 구성과 전체적으로 유사하지만, 터빈(10)에서 배출된 유체를 응축하는 응축기(95)를 설치한 점이 변형되었다. 도 1 및 도 2에 나타난 실시예에 관한 터보 팽창기의 구성 요소와 동일한 구성 요소에 대해서는 도 3에서도 동일한 도면 부호를 사용하였다.
도 3에 나타난 실시예에 관한 터보 팽창기는 유체에 의해 회전함으로써 유체를 팽창시켜 배출하는 터빈(10)과, 터빈(10)의 회전축(11)에 연결되어 회전하는 기어(20)와 기어(20)에 의해 회전하는 출력축(26)을 구비하는 기어박스(25)와, 기어박스(25)의 출력축(26)에 의해 회전하여 전기를 생성하는 발전기(30)와, 회전축(11)과 기어박스(25)의 사이에서 누설되는 누설 유체를 추출하는 추출관(40)과, 추출관(40)에 연결되어 누설 유체를 연소시켜 터빈(10)에 공급되는 유체를 가열하는 가열장치(50)와, 터빈(10)에서 팽창되어 배출되는 유체를 배출하는 배출관(8)에 연결되어 배출관(8)을 통해 배출되는 유체를 가열하는 응축기(95)를 구비한다.
응축기(95)는 냉매 전달관(91)과 연결되며, 냉매 전달관(91)에는 냉매를 가압하여 증발기(92)로 냉매를 공급하는 냉매 펌프(90)와 냉매 펌프(90)에 의해 가압된 냉매를 증발시켜 열교환시키는 증발기(92)가 연결된다. 증발기(92)를 통과한 냉매는 팽창밸브(97)를 통하여 팽창된 이후에 다시 응축기(95)로 전달된다. 증발기(92)의 하류 측에는 팽창밸브(97) 대신 냉매를 팽창시키는 팽창용 터빈이 설치될 수도 있다.
증발기(92)는 예를 들어 터보 팽창기가 설치되는 전체 시스템의 냉방 시스템이나 냉동고 등의 냉각을 위해 사용될 수 있다. 따라서 상술한 바와 같은 구성의 터보 팽창기에 의하면 터빈(10)에서 팽창되어 배출된 유체의 냉열(cold energy)을 이용함으로써 터빈(10)에 유체를 공급하기 이전에 유체를 가열하기 위하 필요한 가열 에너지를 최소화할 수 있다.
예를 들어 터빈(10)에 유체를 공급하는 공급관(7)을 흐르는 유체의 상태가 히터(52)를 통과하며 변화된다. 즉 히터(52)를 통과하기 전에는 70 bar의 압력과 섭씨 0도의 온도를 갖는 유체가 히터(52)를 통과한 이후에는 70 bar의 압력과 섭씨 70도의 온도를 갖는 유체로 변화된다.
터빈(10)에 70 bar의 압력과 섭씨 70도의 온도를 갖는 유체가 공급된 후 터빈(10)이 회전함으로써 유체가 팽창된 후에 공급관(7)을 통해 배출되는 유체가 약 8바의 압력과 섭씨 -50도의 온도를 갖는 경우, 배출된 유체의 온도가 너무 낮아 활용하기가 어렵다. 따라서 이와 같이 터빈(10)에서 배출된 유체의 온도가 너무 낮은 경우에는, 터빈(10)에 공급되는 유체를 더 높은 온도에 이르기까지 미리 가열할 필요가 있다.
그러나 상술한 구성의 터보 팽창기에서는 터빈(10)에서 배출된 낮은 온도의 유체가 응축기(95)를 통과하면서 약 8bar의 압력과 섭씨 0도의 온도를 갖는 상태로 변화된다. 응축기(95)를 이용함으로써 터빈(10)에서 배출된 낮은 온도의 유체의 냉열을 냉방 시스템 등에 사용할 수 있음과 아울러 터빈(10)에 공급되는 유체를 가열하기 위한 가열 에너지를 최소화할 수 있으므로 터보 팽창기의 에너지 효율이 향상될 수 있다.
상술한 실시예들에 대한 구성과 효과에 대한 설명은 예시적인 것에 불과하며, 당해 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.
실시예들은 터보 팽창기에 관한 것으로, 보다 상세하게는 터보 팽창기의 작동 중에 발생하는 누설 유체를 재생함으로써 에너지 효율이 향상된 터보 팽창기

Claims (10)

  1. 회전축을 구비하며 회전하도록 배치되어 유체에 의해 회전함으로써 유체를 팽창시켜 배출하는 터빈;
    상기 터빈의 상기 회전축에 연결되어 회전하는 기어와, 상기 기어에 연결되어 회전하는 출력축을 구비하는 기어박스;
    상기 기어박스의 상기 출력축에 연결되어 회전함으로써 전기를 생성하는 발전기;
    상기 회전축과 상기 기어박스의 사이에서 누설된 누설 유체를 추출하는 추출관; 및
    상기 추출관과 연결되어 상기 누설 유체를 공급받아 연소시킴으로써 상기 터빈에 공급되는 유체를 가열하는 가열장치;를 구비하는, 누설 유체를 재생하는 터보 팽창기.
  2. 제1항에 있어서,
    상기 가열장치는,
    상기 추출관과 연결되어 상기 누설 유체를 연소시키는 보일러;
    상기 터빈에 유체를 공급하는 공급관에 연결되어 상기 터빈으로 공급되는 유체를 가열하는 히터; 및
    열유체를 수용하며 상기 보일러 및 상기 히터를 연결하여, 상기 보일러에서 상기 누설 유체가 연소될 때 가열된 열유체를 히터에 전달하는 전달관;을 구비하는, 누설 유체를 재생하는 터보 팽창기.
  3. 제2항에 있어서,
    상기 공급관에 연결되며 상기 공급관의 유체를 상기 보일러에 공급하는 보충관과, 상기 보충관에 설치되어 상기 보충관을 개방하거나 폐쇄하는 밸브를 더 구비하는, 누설 유체를 재생하는 터보 팽창기.
  4. 제3항에 있어서,
    상기 추출관을 흐르는 상기 누설 유체의 양을 감지하는 센서와, 상기 센서로부터 감지된 신호에 기초하여 상기 밸브를 제어하는 제어기를 더 구비하는, 누설 유체를 재생하는 터보 팽창기.
  5. 제1항에 있어서,
    상기 발전기에서 발생한 열을 냉각하도록 상기 발전기에 냉각용 액체를 공급하는 냉각용 액체관과, 상기 냉각용 액체관에 연결되어 상기 냉각용 액체를 순환시키는 냉각용 펌프를 더 구비하는, 누설 유체를 재생하는 터보 팽창기.
  6. 제1항에 있어서,
    상기 터빈에서 배출된 유체를 배출하는 배출관과, 상기 배출관에 연결되어 상기 배출관을 통해 배출되는 유체를 응축시키는 응축기를 더 구비하는, 누설 유체를 재생하는 터보 팽창기.
  7. 제1항에 있어서,
    상기 기어박스는 상기 터빈의 상기 회전축을 둘러싸는 축 지지부를 더 구비하고, 상기 회전축을 둘러싸도록 상기 기어박스의 상기 축 지지부와 상기 회전축의 사이에 배치되어 상기 기어박스의 상기 축 지지부와 상기 회전축의 사이의 공간을 밀봉하는 밀봉링을 더 구비하며, 상기 추출관은 상기 축 지지부에 연결되는, 누설 유체를 재생하는 터보 팽창기.
  8. 제7항에 있어서,
    상기 축 지지부와 상기 회전축의 사이에 결합되어 상기 축 지지부에 대하여 상기 회전축을 회전 가능하게 지지하는 베어링을 더 구비하는, 누설 유체를 재생하는 터보 팽창기.
  9. 제1항에 있어서,
    상기 기어박스는 상기 출력축이 관통하는 출력용 구멍을 더 구비하고, 상기 출력축과 상기 출력용 구멍의 사이에 배치되어 상기 기어박스와 상기 출력축의 사이의 공간을 밀봉하는 출력축 밀봉링을 더 구비하는, 누설 유체를 재생하는 터보 팽창기.
  10. 제1항에 있어서,
    상기 기어박스에 연결되며 상기 기어박스로부터 누설된 누설 유체를 상기 가열장치에 공급하는 기어박스 추출관을 더 구비하는, 누설 유체를 재생하는 터보 팽창기.
PCT/KR2015/003603 2015-03-18 2015-04-10 누설 유체를 재생하는 터보 팽창기 WO2016148329A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0037704 2015-03-18
KR1020150037704A KR102309815B1 (ko) 2015-03-18 2015-03-18 누설 유체를 재생하는 터보 팽창기

Publications (1)

Publication Number Publication Date
WO2016148329A1 true WO2016148329A1 (ko) 2016-09-22

Family

ID=56919043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003603 WO2016148329A1 (ko) 2015-03-18 2015-04-10 누설 유체를 재생하는 터보 팽창기

Country Status (2)

Country Link
KR (1) KR102309815B1 (ko)
WO (1) WO2016148329A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100022550A1 (it) 2021-08-30 2023-03-02 Exergy Int S R L Turbomacchina con girante a sbalzo per impianti industriali di produzione di energia
US11698025B2 (en) 2020-02-14 2023-07-11 Pratt & Whitney Canada Corp. Oil leakage monitoring system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113236380B (zh) * 2021-06-21 2022-09-06 西安西热节能技术有限公司 一种低压缸零出力耦合储热罐的间冷机组防冻供热系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070018760A (ko) * 2003-12-09 2007-02-14 가부시키가이샤 어스쉽 공조 시스템
JP2007092652A (ja) * 2005-09-29 2007-04-12 Ntn Corp 熱発電システム
CN203499743U (zh) * 2013-08-22 2014-03-26 中国船舶重工集团公司第七一一研究所 针对低品位热能的完全封闭循环发电系统
US20140099184A1 (en) * 2011-03-29 2014-04-10 Antonio Asti Sealing systems for turboexpanders for use in organic rankine cycles
US20140150443A1 (en) * 2012-12-04 2014-06-05 General Electric Company Gas Turbine Engine with Integrated Bottoming Cycle System

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636010B1 (en) 2001-10-01 2003-10-21 Zevex, Inc. Precision dosage apparatus, system and method
JP2004036535A (ja) * 2002-07-04 2004-02-05 Kansai Electric Power Co Inc:The 発電所主機排熱回収装置
US7697264B2 (en) 2005-03-31 2010-04-13 Fuji Jukogyo Kabushiki Kaisha Lithium ion capacitor
KR100714090B1 (ko) * 2006-05-18 2007-05-04 삼성중공업 주식회사 전기추진 액화천연가스운반선의 재기화 시스템
US8393160B2 (en) 2007-10-23 2013-03-12 Flex Power Generation, Inc. Managing leaks in a gas turbine system
KR20140020945A (ko) * 2011-03-29 2014-02-19 누보 피그노네 에스피에이 유기 랭킨 사이클에서 사용하기 위한 터보 팽창기용 밀봉 시스템
KR20130033859A (ko) * 2011-09-27 2013-04-04 한국전력공사 터빈발전기 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070018760A (ko) * 2003-12-09 2007-02-14 가부시키가이샤 어스쉽 공조 시스템
JP2007092652A (ja) * 2005-09-29 2007-04-12 Ntn Corp 熱発電システム
US20140099184A1 (en) * 2011-03-29 2014-04-10 Antonio Asti Sealing systems for turboexpanders for use in organic rankine cycles
US20140150443A1 (en) * 2012-12-04 2014-06-05 General Electric Company Gas Turbine Engine with Integrated Bottoming Cycle System
CN203499743U (zh) * 2013-08-22 2014-03-26 中国船舶重工集团公司第七一一研究所 针对低品位热能的完全封闭循环发电系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11698025B2 (en) 2020-02-14 2023-07-11 Pratt & Whitney Canada Corp. Oil leakage monitoring system
IT202100022550A1 (it) 2021-08-30 2023-03-02 Exergy Int S R L Turbomacchina con girante a sbalzo per impianti industriali di produzione di energia

Also Published As

Publication number Publication date
KR102309815B1 (ko) 2021-10-07
KR20160112309A (ko) 2016-09-28

Similar Documents

Publication Publication Date Title
EP1872002B1 (en) Energy recovery system
US9239013B2 (en) Combustion turbine purge system and method of assembling same
RU2491481C1 (ru) Устройство для восстановления тепла
RU2498090C2 (ru) Система для охлаждения компонента паровой трубы
US9963994B2 (en) Method and apparatus for clearance control utilizing fuel heating
WO2016148329A1 (ko) 누설 유체를 재생하는 터보 팽창기
RU2562682C2 (ru) Турбина, включающая систему клапанов уплотнительного воздуха
JP3689747B2 (ja) ガスタービン利用の乾燥機システム及び使用方法
WO2015088109A1 (ko) 초임계유체 냉각 가스터빈 장치
WO2011149191A2 (ko) 소형 열병합 발전 시스템 및 그 제어방법
JP2007051644A (ja) タービンエンジン用潤滑オイル熱回収システム
WO2006129150A2 (en) Practical method for improving the efficiency of cogeneration system
WO2020091299A1 (ko) 극지용 선박의 공기 공급 시스템
WO2021033930A1 (ko) 자가 가동형 소각로 시스템
JP2017170351A (ja) 廃棄物処理設備及び廃棄物処理設備の操炉方法
JP2014047676A (ja) 蒸気タービンおよびこれを備えたバイナリ発電装置
US20140013749A1 (en) Waste-heat recovery system
US8893507B2 (en) Method for controlling gas turbine rotor temperature during periods of extended downtime
WO2019013420A1 (ko) 스팀의 생성과 발전이 연계된 엔진 시스템
JP2022097537A (ja) 過給機付き焼却炉
WO2012081854A2 (ko) 선박용 폐열회수장치
WO2012162922A1 (zh) 燃气和蒸汽轮机系统
JP2022553780A (ja) 密閉サイクルターボ機械を始動および停止するための方法とシステム
WO2020091300A1 (ko) 극지용 선박의 공조 시스템
JP4086510B2 (ja) ガス圧縮装置及びその運転方法、及びガスタービン発電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885632

Country of ref document: EP

Kind code of ref document: A1