WO2016148043A1 - シールリング - Google Patents
シールリング Download PDFInfo
- Publication number
- WO2016148043A1 WO2016148043A1 PCT/JP2016/057706 JP2016057706W WO2016148043A1 WO 2016148043 A1 WO2016148043 A1 WO 2016148043A1 JP 2016057706 W JP2016057706 W JP 2016057706W WO 2016148043 A1 WO2016148043 A1 WO 2016148043A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seal ring
- pressure
- dynamic pressure
- fluid
- generating groove
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/16—Sealings between relatively-moving surfaces
- F16J15/164—Sealings between relatively-moving surfaces the sealing action depending on movements; pressure difference, temperature or presence of leaking fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/16—Sealings between relatively-moving surfaces
- F16J15/32—Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
- F16J15/3268—Mounting of sealing rings
- F16J15/3272—Mounting of sealing rings the rings having a break or opening, e.g. to enable mounting on a shaft otherwise than from a shaft end
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/16—Sealings between relatively-moving surfaces
- F16J15/34—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
- F16J15/3464—Mounting of the seal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/44—Free-space packings
- F16J15/441—Free-space packings with floating ring
Definitions
- the present invention relates to a seal ring that seals an annular gap between a relatively rotating shaft and a housing.
- a seal ring that seals an annular gap between a relatively rotating shaft and a housing is used in an automatic transmission (AT) or a continuously variable transmission (CVT) of an automobile to maintain hydraulic pressure. It has been. In order to improve automobile fuel consumption and reduce wear of the seal ring, it is desirable that the rotational torque of the seal ring be low. Therefore, conventionally, a technique is known in which a groove for introducing a fluid to be sealed is provided on a side surface of a seal ring that becomes a sliding surface during relative sliding (see Patent Document 1).
- a flow path that introduces a fluid to be sealed from the inner peripheral side of the seal ring to the inner peripheral side of the sliding surface (side surface) of the seal ring extends over the entire periphery. Is formed.
- the dynamic pressure is generated to reduce the surface pressure of the sliding surface, thereby reducing the rotational torque (friction torque) of the seal ring.
- the wear of the sliding surface is suppressed by reducing the rotational torque, the wear can gradually progress as the use continues.
- the depth of the flow path provided on the sliding surface from the sliding surface decreases (the flow path becomes shallow), and thus the flow area on the inner peripheral side of the flow path also decreases.
- the flow path area on the inner peripheral side decreases, so that the dynamic pressure effect by the flow path can be reduced. That is, in the seal ring disclosed in Patent Document 1, when the sliding surface is worn by use, there is a possibility that the rotational torque increases due to a decrease in the dynamic pressure effect.
- an object of the present invention is to provide a seal ring that can suppress an increase in rotational torque even when a sliding surface is worn by use.
- the seal ring of the present invention is A seal ring that seals an annular gap between a relatively rotating shaft and a housing to maintain the pressure of a fluid to be sealed in a region on the high pressure side
- a dynamic pressure generating groove that is provided in a region that slides with respect to the side wall surface on the side surface on the low pressure side and that generates dynamic pressure by introducing a fluid to be sealed
- the “high pressure side” means a side that becomes high pressure when differential pressure is generated on both sides of the seal ring
- the “low pressure side” means that differential pressure is generated on both sides of the seal ring. This means the side that is at low pressure.
- the fluid to be sealed is introduced from the introduction hole having an opening on the inner peripheral surface of the seal ring into the dynamic pressure generating groove provided on the side surface on the low pressure side.
- the surface pressure of the sliding side surface (sliding surface) is reduced. Thereby, the rotational torque of the seal ring is effectively reduced.
- the opening of the introduction hole has a low pressure on the inner peripheral surface of the seal ring. It is provided at a position away from the side surface. Therefore, even if the position of the side surface gradually moves to the high-pressure side due to wear (even if the seal ring becomes gradually thinner), the area of the opening of the introduction hole does not decrease. Therefore, according to the present invention, even if the sliding surface is worn by use, the flow rate of the fluid to be sealed introduced from the introduction hole to the dynamic pressure generating groove does not decrease. Can be suppressed.
- the dynamic pressure generating groove is formed shallower at both ends than the center in the circumferential direction, and the introduction hole may communicate with the center of the dynamic pressure generating groove.
- dynamic pressure generating groove By forming the dynamic pressure generating groove in such a shape, dynamic pressure can be effectively generated by the so-called wedge effect. Further, it becomes possible to generate dynamic pressure regardless of the rotation direction of the seal ring with respect to the annular groove.
- FIG. 1 is a side view of a seal ring according to an embodiment of the present invention.
- FIG. 2 is a partially enlarged view of a side surface of the seal ring according to the embodiment of the present invention.
- FIG. 3 is a partially enlarged view of the inner peripheral surface of the seal ring according to the embodiment of the present invention.
- FIG. 4 is a schematic cross-sectional view of a seal ring according to an embodiment of the present invention.
- FIG. 5 is a schematic cross-sectional view of a seal ring according to an embodiment of the present invention.
- FIG. 6 is a schematic cross-sectional view showing a state in use of the seal ring according to the embodiment of the present invention.
- the seal ring according to the present embodiment is used for sealing an annular gap between a relatively rotating shaft and a housing in order to maintain hydraulic pressure in a transmission such as an AT or CVT for an automobile.
- high pressure side means a side that becomes high when differential pressure occurs on both sides of the seal ring
- low pressure side means that differential pressure occurs on both sides of the seal ring. This means the side that is at low pressure.
- FIG. 1 is a side view of a seal ring according to an embodiment of the present invention.
- FIG. 1 shows a side surface (sliding surface) that slides with respect to the side wall surface of the annular groove of the shaft among the two side surfaces of the seal ring.
- FIG. 2 is a partially enlarged view of the side surface of the seal ring according to the embodiment of the present invention.
- FIG. 3 is a partially enlarged view of the inner peripheral surface of the seal ring according to the embodiment of the present invention.
- FIG. 4 is a schematic cross-sectional view of a seal ring according to an embodiment of the present invention. 4 is a cross-sectional view taken along line AA in FIG.
- FIG. 5 is a schematic cross-sectional view of a seal ring according to an embodiment of the present invention.
- 5 is a BB cross-sectional view in FIG.
- FIG. 6 is a schematic cross-sectional view showing a state in use of the seal ring according to the embodiment of the present invention.
- the cross section of the seal ring in FIG. 6 is an AA cross section in FIG.
- the seal ring 100 is mounted in an annular groove 210 provided on the outer periphery of the shaft 200, and seals the annular gap between the relatively rotating shaft 200 and the housing 300 (see FIG. 6). . Thereby, the seal ring 100 maintains the pressure of the fluid in the region to be sealed, which is a region on one side separated by the seal ring 100.
- the fluid in the sealing target region is a lubricating oil for the transmission.
- the fluid pressure hydroaulic pressure
- the fluid pressure in the right region in FIG. 6 is higher than the left region in the drawing. It is configured.
- the seal ring 100 fulfills the role of maintaining the fluid pressure in the region to be sealed on the right side in the drawing.
- the right side in FIG. 6 is referred to as a high pressure side H
- the left side is referred to as a low pressure side L.
- the seal ring 100 is formed of a resin material such as polyether ether ketone (PEEK), polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE). Further, the peripheral length of the outer peripheral surface of the seal ring 100 is configured to be shorter than the peripheral length of the inner peripheral surface 310 of the shaft hole of the housing 300, and is configured not to have a tightening allowance. Accordingly, the outer peripheral surface of the seal ring 100 can be separated from the inner peripheral surface 310 of the housing 300 when the fluid pressure is not acting.
- PEEK polyether ether ketone
- PPS polyphenylene sulfide
- PTFE polytetrafluoroethylene
- the seal ring 100 is provided with an abutment portion 110 at one place in the circumferential direction.
- the joint portion 110 employs a so-called special step cut that is cut in a step shape when viewed from either the outer peripheral surface side or both side surfaces. Since the special step cut is a known technique, a detailed description thereof is omitted, but it has a characteristic of maintaining a stable sealing performance even if the circumference of the seal ring 100 is changed due to thermal expansion and contraction.
- about the shape of the abutment part 110 not only this but a straight cut, a bias cut, a step cut, etc. can be employ
- the end portion may be provided without providing the joint portion 110.
- the abutment portion 110 may be formed by a mold or may be formed by cutting or the like.
- a dynamic pressure generating groove 120 is provided on the side surface 111 on the sliding surface side of the seal ring 100.
- a plurality of (11 in this embodiment) dynamic pressure generating grooves 120 are provided on the side surface 111 of the seal ring 100 at equal intervals over the entire circumference except for the vicinity of the joint portion 110.
- the plurality of dynamic pressure generating grooves 120 are provided in a region in the side surface 111 of the seal ring 100 that slides on the side wall surface 211 on the low pressure side of the annular groove 210 (sliding region X in FIG. 6). ),
- a dynamic pressure is generated by introducing the fluid to be sealed.
- the dynamic pressure generating groove 120 can be formed by, for example, cutting, but the forming method is not particularly limited.
- the dynamic pressure generating groove 120 includes a central portion 121 provided at the center in the circumferential direction of the seal ring 100 and a pair of tapered portions 122 and 123 extending from the central portion 121 in the circumferential direction.
- the central part 121 has a flat bottom surface.
- the taper portions 122 and 123 are formed so as to gradually become shallower from the central portion 121 toward the respective end portions.
- the bottom surface of the central part 121 is formed deeper than the tapered parts 122 and 123.
- the seal ring 100 is provided with an introduction hole 130 that has an opening 131 at a position away from the side surface 111 on the inner peripheral surface 112 and communicates with the dynamic pressure generation groove 120 and introduces lubricating oil into the dynamic pressure generation groove 120. ing.
- the introduction hole 130 is provided in each of the plurality of dynamic pressure generation grooves 120 and communicates with the central portion 121 of the dynamic pressure generation grooves 120.
- the opening 131 of the introduction hole 130 is provided at a position Y away from the side surface 111 of the seal ring 100.
- the introduction hole 130 can be formed using a drill or the like, but the forming method is not particularly limited.
- the entire side surface of the seal ring 100 opposite to the side surface 111 is flat.
- FIG. 6 shows a state in which an automobile engine is applied and a differential pressure is generated between two regions separated by a seal ring 100 (the pressure in the right region in the figure is higher than the pressure in the left region). ).
- the side surface 111 of the seal ring 100 slides against the side wall surface 211 on the low pressure side L of the annular groove 210 due to the fluid pressure acting on the side surface on the high pressure side H. Adhere freely.
- the outer peripheral surface of the seal ring 100 is slidably brought into close contact with the inner peripheral surface 310 of the shaft hole of the housing 300 by the fluid pressure acting on the inner peripheral surface 112 of the seal ring 100.
- the annular gap between the relatively rotating shaft 200 and the housing 300 is sealed, and the hydraulic pressure in the high-pressure side H region (sealing target region) can be maintained.
- the side surface 111 of the seal ring 100 slides with respect to the side wall surface 211 of the annular groove 210.
- lubricating oil is introduced into the dynamic pressure generating groove 120 provided on the side surface 111 of the seal ring 100 from the introduction hole 130. As shown in FIG.
- the dynamic pressure generating groove 120 includes tapered portions 122 and 123 extending from the central portion 121 to one side and the other side in the circumferential direction. Therefore, according to the seal ring 100, the dynamic pressure can be generated regardless of the rotation direction of the seal ring 100 with respect to the annular groove 210.
- Each of the taper portions 122 and 123 is formed so as to gradually become shallower toward the end portion. Therefore, the above dynamic pressure can be effectively generated by the so-called wedge effect.
- the side surface 111 of the seal ring 100 can be gradually worn by use.
- the opening 131 of the introduction hole 130 is provided at a position away from the side surface 111 by a distance Y. Therefore, even if the position of the side surface 111 gradually moves to the high-pressure side H due to wear (even if the seal ring 100 becomes gradually thinner), the area of the opening 131 does not decrease. That is, even if the side surface 111 is worn, the flow passage area for introducing the lubricating oil from the inner peripheral side of the seal ring 100 to the dynamic pressure generating groove 120 does not decrease.
- the seal ring 100 even if the side surface 111 is worn, the flow rate of the lubricating oil introduced from the introduction hole 130 into the dynamic pressure generating groove 120 does not decrease, so that the decrease in the dynamic pressure effect is suppressed. Therefore, according to the seal ring 100, an increase in rotational torque due to wear can be suppressed.
- the number and shape of the dynamic pressure generating grooves 120 and the introduction holes 130 are not limited to those described above.
- the number and shape of the dynamic pressure generating grooves 120 may be changed as appropriate in order to obtain a desired dynamic pressure effect.
- the installation positions and shapes of the introduction hole 130 and the opening 131 may be appropriately changed in order to obtain a desired dynamic pressure effect or according to the assumed degree of wear of the side surface 111.
- seal ring seal ring
- 110 joint portion
- 111 side surface
- 120 dynamic pressure generating groove
- 130 introduction hole
- 200 shaft
- 210 annular groove
- 211 side wall surface
- 300 housing
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Sealing Devices (AREA)
Abstract
Description
すなわち、本発明のシールリングは、
相対的に回転する軸とハウジングとの間の環状隙間を封止して、高圧側の領域内の密封対象流体の圧力を保持するシールリングであって、
前記軸の外周に設けられた環状溝に装着され、前記環状溝における低圧側の側壁面に対して摺動するシールリングにおいて、
低圧側の側面における前記側壁面に対して摺動する領域内に設けられた、密封対象流体が導入されることによって動圧を発生する動圧発生溝と、
前記シールリングの内周面における前記側面から離れた位置に開口を有し、前記動圧発生溝に連通した、前記動圧発生溝に密封対象流体を導入する導入孔と、
を備えることを特徴とする。
図1~図6を参照して、本発明の実施例に係るシールリングについて説明する。図1は本発明の実施例に係るシールリングの側面図である。なお、図1は、シールリングにおける2つの側面のうち、軸の環状溝の側壁面に対して摺動する側面(摺動面)を示している。図2は本発明の実施例に係るシールリングの当該側面の一部拡大図である。図3は本発明の実施例に係るシールリングの内周面の一部拡大図である。図4は本発明の実施例に係るシールリングの模式的断面図である。なお、図4は図2中のAA断面図である。図5は本発明の実施例に係るシールリングの模式的断面図である。なお、図5は図2中のBB断面図である。そして、図6は本発明の実施例に係るシールリングの使用時の状態を示す模式的断面図である。なお、図6におけるシールリングの断面は、図2中のAA断面である。
本実施例に係るシールリング100は、軸200の外周に設けられた環状溝210に装着され、相対的に回転する軸200とハウジング300との間の環状隙間を封止する(図6参照)。これにより、シールリング100は、シールリング100によって隔てられた一方側の領域である密封対象領域の流体の圧力を保持する。なお、本実施例では、密封対象領域内の流体(密封対象流体)は変速機の潤滑油である。本実施例においては、流体圧力(油圧)が発生しているとき(例えば、自動車のエンジン作動中)において、図6中の右側の領域の流体圧力が、図中左側の領域よりも高くなるように構成されている。つまり、シールリング100は、図中右側の密封対象領域の流体圧力を保持する役割を発揮する。以下、図6中における右側を高圧側H、左側を低圧側Lと称する。
特に、図6を参照して、本実施例に係るシールリング100の使用時のメカニズムについて説明する。図6は、自動車のエンジンがかかり、シールリング100によって隔てられた2つの領域間に差圧が生じている状態(図中右側の領域の圧力が左側の領域の圧力に比べて高くなった状態)を示している。このようにして差圧が生じた状態においては、シールリング100は、高圧側Hの側面に作用する流体圧力によって、側面111が、環状溝210の低圧側Lの側壁面211に対して摺動自在に密着する。これと同時に、シールリング100の内周面112に作用する流体圧力によって、シールリング100の外周面が、ハウジング300の軸孔の内周面310に対して摺動自在に密着する。
本実施例に係るシールリング100によれば、密封対象流体としての潤滑油が、導入孔130から動圧発生溝120内に導入されるため、動圧発生溝120が設けられている領域においては、高圧側Hからシールリング100に対して作用する流体圧力と低圧側Lからシールリング100に対して作用する流体圧力が相殺される。また、シールリング100と環状溝210との相対的な回転時には、テーパ部122、123から潤滑油が流出するため、シールリング100と環状溝210との間の摺動部分に動圧が発生する。以上により、側壁面211に対する側面111の面圧が低減されるため、シールリング100の回転トルク(摺動トルク)を効果的に低減させることが可能となる。
Claims (2)
- 相対的に回転する軸とハウジングとの間の環状隙間を封止して、高圧側の領域内の密封対象流体の圧力を保持するシールリングであって、
前記軸の外周に設けられた環状溝に装着され、前記環状溝における低圧側の側壁面に対して摺動するシールリングにおいて、
低圧側の側面における前記側壁面に対して摺動する領域内に設けられた、密封対象流体が導入されることによって動圧を発生する動圧発生溝と、
前記シールリングの内周面における前記側面から離れた位置に開口を有し、前記動圧発生溝に連通した、前記動圧発生溝に密封対象流体を導入する導入孔と、
を備えることを特徴とするシールリング。 - 前記動圧発生溝は、周方向において、中央よりも両端側が浅く形成されており、
前記導入孔は、前記動圧発生溝の中央に連通している、
請求項1に記載のシールリング。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/558,228 US10428948B2 (en) | 2015-03-16 | 2016-03-11 | Seal ring |
CN201680014303.6A CN107429844A (zh) | 2015-03-16 | 2016-03-11 | 密封圈 |
EP16764873.2A EP3273116A4 (en) | 2015-03-16 | 2016-03-11 | Seal ring |
JP2017506511A JP6428916B2 (ja) | 2015-03-16 | 2016-03-11 | シールリング |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-052459 | 2015-03-16 | ||
JP2015052459 | 2015-03-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016148043A1 true WO2016148043A1 (ja) | 2016-09-22 |
Family
ID=56919059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/057706 WO2016148043A1 (ja) | 2015-03-16 | 2016-03-11 | シールリング |
Country Status (5)
Country | Link |
---|---|
US (1) | US10428948B2 (ja) |
EP (1) | EP3273116A4 (ja) |
JP (1) | JP6428916B2 (ja) |
CN (1) | CN107429844A (ja) |
WO (1) | WO2016148043A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019221226A1 (ja) * | 2018-05-17 | 2019-11-21 | イーグル工業株式会社 | シールリング |
US11525512B2 (en) | 2018-05-17 | 2022-12-13 | Eagle Industry Co., Ltd. | Seal ring |
US11530749B2 (en) | 2018-05-17 | 2022-12-20 | Eagle Industry Co., Ltd. | Seal ring |
US11644100B2 (en) | 2018-05-17 | 2023-05-09 | Eagle Industry Co., Ltd. | Seal ring |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019221231A1 (ja) * | 2018-05-17 | 2019-11-21 | イーグル工業株式会社 | シールリング |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08121603A (ja) * | 1994-10-25 | 1996-05-17 | Nok Corp | シ−ルリング |
JP2002276815A (ja) * | 2001-03-16 | 2002-09-25 | Nok Corp | シールリング |
WO2011105513A1 (ja) * | 2010-02-26 | 2011-09-01 | Nok株式会社 | シールリング |
JP2015028382A (ja) * | 2013-07-03 | 2015-02-12 | Ntn株式会社 | シールリング |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5246295A (en) * | 1991-10-30 | 1993-09-21 | Ide Russell D | Non-contacting mechanical face seal of the gap-type |
US5066026A (en) * | 1990-06-11 | 1991-11-19 | Kaydon Corporation | Gas face seal |
JPH0650438A (ja) | 1992-08-03 | 1994-02-22 | Nissan Motor Co Ltd | 高速回転体のシール構造 |
JPH08159290A (ja) | 1994-12-06 | 1996-06-21 | Nok Corp | シ−ルリング |
US5558341A (en) * | 1995-01-11 | 1996-09-24 | Stein Seal Company | Seal for sealing an incompressible fluid between a relatively stationary seal and a movable member |
JPH09210211A (ja) * | 1996-02-01 | 1997-08-12 | Riken Corp | シールリング |
CN1085311C (zh) * | 1997-04-22 | 2002-05-22 | 株式会社理研 | 密封圈 |
US6290235B1 (en) * | 1997-07-02 | 2001-09-18 | Parker-Hannifin Corporation | Sealing system for a reciprocating shaft |
US6446976B1 (en) * | 2000-09-06 | 2002-09-10 | Flowserve Management Company | Hydrodynamic face seal with grooved sealing dam for zero-leakage |
US20080284105A1 (en) * | 2006-06-21 | 2008-11-20 | Thurai Manik Vasagar | Low and reverse pressure application hydrodynamic pressurizing seals |
AT504394B1 (de) | 2006-11-03 | 2008-10-15 | Gittler Philipp Dipl Ing Dr Te | Anordnung zur abdichtung zwischen zwei relativ zueinander bewegbaren teilen einer hydraulischen strömungsmaschine |
US9695940B2 (en) * | 2013-12-18 | 2017-07-04 | Kaydon Ring & Seal, Inc. | Bidirectional lift-off circumferential shaft seal segment and a shaft seal including a plurality of the segments |
US9927033B2 (en) * | 2015-06-29 | 2018-03-27 | Kaydon Ring & Seal, Inc. | Split circumferential lift-off seal segment |
-
2016
- 2016-03-11 JP JP2017506511A patent/JP6428916B2/ja not_active Expired - Fee Related
- 2016-03-11 EP EP16764873.2A patent/EP3273116A4/en not_active Withdrawn
- 2016-03-11 CN CN201680014303.6A patent/CN107429844A/zh active Pending
- 2016-03-11 US US15/558,228 patent/US10428948B2/en active Active
- 2016-03-11 WO PCT/JP2016/057706 patent/WO2016148043A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08121603A (ja) * | 1994-10-25 | 1996-05-17 | Nok Corp | シ−ルリング |
JP2002276815A (ja) * | 2001-03-16 | 2002-09-25 | Nok Corp | シールリング |
WO2011105513A1 (ja) * | 2010-02-26 | 2011-09-01 | Nok株式会社 | シールリング |
JP2015028382A (ja) * | 2013-07-03 | 2015-02-12 | Ntn株式会社 | シールリング |
Non-Patent Citations (1)
Title |
---|
See also references of EP3273116A4 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019221226A1 (ja) * | 2018-05-17 | 2019-11-21 | イーグル工業株式会社 | シールリング |
JPWO2019221226A1 (ja) * | 2018-05-17 | 2021-06-10 | イーグル工業株式会社 | シールリング |
US11293553B2 (en) | 2018-05-17 | 2022-04-05 | Eagle Industry Co., Ltd. | Seal ring |
US11525512B2 (en) | 2018-05-17 | 2022-12-13 | Eagle Industry Co., Ltd. | Seal ring |
US11530749B2 (en) | 2018-05-17 | 2022-12-20 | Eagle Industry Co., Ltd. | Seal ring |
JP7242658B2 (ja) | 2018-05-17 | 2023-03-20 | イーグル工業株式会社 | シールリング |
US11644100B2 (en) | 2018-05-17 | 2023-05-09 | Eagle Industry Co., Ltd. | Seal ring |
Also Published As
Publication number | Publication date |
---|---|
US10428948B2 (en) | 2019-10-01 |
CN107429844A (zh) | 2017-12-01 |
EP3273116A1 (en) | 2018-01-24 |
JPWO2016148043A1 (ja) | 2017-11-30 |
EP3273116A4 (en) | 2018-11-07 |
JP6428916B2 (ja) | 2018-11-28 |
US20180045314A1 (en) | 2018-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6491374B2 (ja) | シールリング | |
JP7242658B2 (ja) | シールリング | |
JP6615833B2 (ja) | シールリング | |
JP6428916B2 (ja) | シールリング | |
JP6314689B2 (ja) | 密封装置 | |
CN112088267B (zh) | 密封环 | |
WO2019155945A1 (ja) | シールリング | |
US11333250B2 (en) | Seal ring | |
JP2015158215A (ja) | シールリング | |
JP6597840B2 (ja) | 軸及び密封構造 | |
WO2015020075A1 (ja) | シールリング | |
JP6170271B2 (ja) | シールリング | |
JP7377891B2 (ja) | 密封装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16764873 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017506511 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15558228 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2016764873 Country of ref document: EP |