WO2016147892A1 - 処理装置及び遠隔管理システム - Google Patents

処理装置及び遠隔管理システム Download PDF

Info

Publication number
WO2016147892A1
WO2016147892A1 PCT/JP2016/056642 JP2016056642W WO2016147892A1 WO 2016147892 A1 WO2016147892 A1 WO 2016147892A1 JP 2016056642 W JP2016056642 W JP 2016056642W WO 2016147892 A1 WO2016147892 A1 WO 2016147892A1
Authority
WO
WIPO (PCT)
Prior art keywords
function
authentication key
license
processing
unit
Prior art date
Application number
PCT/JP2016/056642
Other languages
English (en)
French (fr)
Inventor
山崎 悦史
石田 修
和人 武井
鈴木 安弘
秀樹 西沢
Original Assignee
Nttエレクトロニクス株式会社
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nttエレクトロニクス株式会社, 日本電信電話株式会社 filed Critical Nttエレクトロニクス株式会社
Priority to EP16764722.1A priority Critical patent/EP3273376B1/en
Priority to CA2976184A priority patent/CA2976184C/en
Priority to US15/551,691 priority patent/US10685095B2/en
Priority to CN201680016582.XA priority patent/CN107408165B/zh
Publication of WO2016147892A1 publication Critical patent/WO2016147892A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/10Protecting distributed programs or content, e.g. vending or licensing of copyrighted material ; Digital rights management [DRM]
    • G06F21/12Protecting executable software
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/10Protecting distributed programs or content, e.g. vending or licensing of copyrighted material ; Digital rights management [DRM]
    • G06F21/101Protecting distributed programs or content, e.g. vending or licensing of copyrighted material ; Digital rights management [DRM] by binding digital rights to specific entities
    • G06F21/1011Protecting distributed programs or content, e.g. vending or licensing of copyrighted material ; Digital rights management [DRM] by binding digital rights to specific entities to devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/71Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information

Definitions

  • the present invention relates to a processing apparatus such as an optical transmission apparatus and a remote management system for remotely managing the processing apparatus.
  • Non-Patent Document 1 a digital coherent optical transmission technology has been developed as a transmission technology that realizes a transmission capacity exceeding 100 Gbit / s per wavelength (for example, see Non-Patent Document 1).
  • An optical transmission device using digital coherent optical transmission technology is connected to a LAN interface unit that inputs and outputs a client signal such as 100 GbE (Gigabit Ethernet) (Ethernet is a registered trademark) and an optical transmission device that is opposed to each other.
  • Transport (Network) WAN interface unit for inputting and outputting signals and a digital function unit.
  • the digital function unit includes a client signal processing LSI that performs client signal termination processing, an OTN framer LSI that transparently accommodates the client signal in an OTN frame, and a digital coherent DSP-LSI.
  • a receiving device is provided with a local light source (LO), and a beat signal with a received optical signal is converted into a baseband or an intermediate frequency band, and a received equalized waveform is identified and reproduced.
  • LO local light source
  • a beat signal with a received optical signal is converted into a baseband or an intermediate frequency band, and a received equalized waveform is identified and reproduced.
  • synchronization of frequency / phase between transmission optical signals and local light, polarization tracking, and the like have been major technical problems.
  • DSP-LSI digital coherent DSP-LSI.
  • the digital coherent DSP-LSI is also capable of chromatic dispersion (CD: hroChromatic Dispersion) compensation and polarization mode dispersion (PMD: ⁇ Polarization Mode Dispersion) compensation, QPSK (Quadrature Phase Shift Keying) and QAM (Quadrature Amplitude).
  • Modulation signal demodulation processing such as Modulation and error correction (FEC: Forward Error Correction) processing.
  • FEC Forward Error Correction
  • the digital coherent DSP-LSI is equipped with various functions necessary for performing coherent detection of the received optical signal.
  • the customer A connects the opposing optical transmission devices at a relatively long distance, and transmits a signal at a speed of 100 Gbit / s.
  • customer A wants to use 16QAM as the modulation / demodulation format and to use the EFEC (Enhanced FEC) function, which is a more powerful error correction function.
  • the customer B connects the opposing optical transmission apparatuses at a relatively short distance, and transmits a signal at a speed of 10 Gbit / s.
  • customer B uses QPSK as the modulation / demodulation format, and a normal FEC function is sufficient.
  • the chromatic dispersion compensation function is not necessary.
  • Another customer C was operating an optical transmission device at a transmission speed of 10 Gbit / s at the time of purchase, but wishes to upgrade the transmission speed to 100 Gbit / s as communication traffic increases.
  • the customer C needs to replace the coherent DSP-LSI with a higher function in order to upgrade the function of the optical transmission apparatus.
  • the upgrade of the function involves a considerably complicated work.
  • the above-mentioned problem is not limited to the optical transmission apparatus, but is a common problem for various processing apparatuses having various functions.
  • the present invention has been made in order to solve the above-described problems.
  • the purpose of the present invention is to replace the devices in the processing apparatus even after the use of the processing apparatus is started.
  • a processing apparatus and a remote management system capable of enabling or disabling part or all of the functions are obtained.
  • the processing device is a processing device including a processing unit having a plurality of functions, and a holding unit that holds a device identifier capable of identifying the processing device, and a specific function among the plurality of functions
  • An interface unit that receives a function authentication key that is a code for setting the password as valid or invalid, and a device identifier included in the received function authentication key matches the device identifier held in the holding unit
  • a control unit configured to enable or disable the specific function according to the function authentication key.
  • the present invention relates to a remote management system for enabling / disabling a part or all of functions of a processing device based on a license code sent from a remote to a processing device having various functions. .
  • the present invention relates to a processing apparatus that can enable / disable some or all of the functions installed in itself based on a function authentication key sent from a remote location.
  • an embodiment of the present invention will be described using an optical transmission apparatus using digital coherent optical transmission technology as an example of a processing apparatus.
  • the processing apparatus to which the present invention can be applied is limited to an optical transmission apparatus. It is not something.
  • symbol may be attached
  • FIG. 1 is a diagram showing a remote management system according to Embodiment 1 of the present invention.
  • the remote management system includes an optical transmission device 1, an operation terminal 2, and a management device 3.
  • the optical transmission device 1 is a processing device that transparently accommodates a client signal such as 100 GbE (Gigabit Ethernet) (Ethernet is a registered trademark) in an OTN frame, and superimposes it on a laser beam as a carrier wave and transmits it to an optical transmission line. is there. Details of the configuration of the optical transmission apparatus 1 will be described later.
  • a client signal such as 100 GbE (Gigabit Ethernet) (Ethernet is a registered trademark) in an OTN frame, and superimposes it on a laser beam as a carrier wave and transmits it to an optical transmission line. is there. Details of the configuration of the optical transmission apparatus 1 will be described later.
  • the operation terminal 2 enables or disables a specific function already installed in the optical transmission device 1 with respect to the optical transmission device 1 connected to the operation terminal 2 by an operation of an operator (hereinafter referred to as an operator). A computer device that instructs to do so. Further, the operation terminal 2 manages the issuance of a function authentication key, which is a code for enabling or disabling a specific function among a plurality of functions installed in the optical transmission device 1 as necessary. 3, and the function authentication key issued by the management device 3 is transferred to the optical transmission device 1.
  • a function authentication key which is a code for enabling or disabling a specific function among a plurality of functions installed in the optical transmission device 1 as necessary.
  • the operation terminal 2 is a general general-purpose computer device, it can satisfy necessary functions.
  • software for exchanging various signals or information between the optical transmission device 1 and the management device 3 (hereinafter referred to as management software) is installed in the operation terminal 2 based on the operation of the operator.
  • the operation terminal 2 is described as a device different from the optical transmission device 1, but the function of the operation terminal 2 is implemented in the optical transmission device 1 and the operation by the operator is optical.
  • a configuration in which the function is automatically performed by a function inside the transmission apparatus 1 may be used.
  • the operation terminal 2 is connected to the management interface unit of the optical transmission apparatus 1, but various forms can be adopted as the connection between the optical transmission apparatus 1 and the operation terminal 2.
  • the management interface unit is an RS-232 serial interface, and the optical transmission device 1 and the operation terminal 2 are connected by a serial cable.
  • the management interface unit may be various LAN interfaces, and the optical transmission device 1 and the operation terminal 2 may be connected via a LAN. In the latter case, the optical transmission device 1 and the operation terminal 2 transmit and receive information using the TCP / IP protocol.
  • the connection is a serial cable
  • the operation terminal 2 is typically arranged near the site where the optical transmission device 1 is installed.
  • the connection is a LAN, the operation terminal 2 can be installed not only in the vicinity of the site where the optical transmission device 1 is installed, but also at a remote location.
  • the management device 3 receives a request for issuing a function authentication key from the operation terminal 2, and issues a certain function implemented in the optical transmission device 1 connected to the operation terminal 2 based on the device information.
  • the computer device issues a function authentication key corresponding to the verification result.
  • the management device 3 includes a database (DB) that holds information necessary for issuing a function authentication key, and can exchange various signals and information with the operation terminal 2.
  • Information exchange between the management apparatus 3 and the operation terminal 2 is performed by communication via, for example, a LAN, the Internet, a dedicated line, or the like. If the TCP / IP protocol is used, communication between both apparatuses can be easily realized.
  • the method of exchanging various signals and information between the management device 3 and the operation terminal 2 is not limited to communication.
  • information may be stored in a medium such as an optical disk or a flash memory, and the medium may be moved to exchange information between both devices.
  • the remote management system performs the following processing.
  • Step 0 Function setting step
  • the operation terminal 2 instructs the optical transmission device 1 connected to the operation terminal 2 to validate the function desired to be used among the functions installed in the optical transmission device 1.
  • Step 1 License request step
  • the optical transmission device 1 determines that it is necessary to additionally issue a function authentication key in order to activate the function specified by the operation terminal 2, the device identifier held in the information holding unit 11 and the necessary information are required.
  • Device information is transmitted to the operation terminal 2 and the operation terminal 2 is requested to issue a function authentication key.
  • the operation terminal 2 sends information on a desired function and device information to the management device 3 and requests the function authentication key to be issued.
  • Step 2 License issue step
  • the management device 3 verifies the validity of enabling the function requested for the optical transmission device 1. If it is determined to be appropriate, the management device 3 issues a function authentication key for validating the function of the optical transmission device 1 and sends it to the operation terminal 2.
  • Step 3 Function setting step
  • the operation terminal 2 transmits a function authentication key to the optical transmission device 1.
  • the optical transmission device 1 receives and applies the function authentication key, thereby enabling the function specified by the operation terminal 2.
  • FIG. 2 is a diagram illustrating the optical transmission apparatus according to Embodiment 1 of the present invention.
  • the optical transmission device 1 includes a LAN interface unit 4, a WAN interface unit 5, a management interface unit 6, and a digital function unit 7.
  • the digital function unit 7 includes a client signal processing LSI 8, an OTN framer LSI 9, a digital coherent DSP-LSI 10, and an information holding unit 11.
  • the digital coherent DSP-LSI 10 includes a digital signal processing unit 12 and a control unit 13.
  • the LAN interface unit 4 is an interface for inputting and outputting client signals.
  • the client signal processing LSI 8 performs client signal termination processing.
  • the OTN framer LSI 9 transparently stores the client signal in the OTN frame and forms an OTN frame.
  • the digital signal processing unit 12 has a plurality of functions necessary for performing coherent detection of an optical signal via the WAN interface unit 5.
  • the functions necessary for coherent detection include, for example, chromatic dispersion (CD) compensation, polarization mode dispersion (PMD) compensation, polarization separation, modulation signal demodulation processing, and error correction (FEC) processing.
  • the WAN interface unit 5 transmits and receives an OTN signal in which an OTN frame is superimposed on a laser beam that is a carrier wave, to and from the opposite optical transmission apparatus 1.
  • the configuration so far is the same as the configuration of the optical transmission apparatus 1 using the conventional digital coherent technology.
  • the control unit 13 cooperates with the information holding unit 11 and plays the most important role in carrying out the present invention.
  • the control unit 13 includes a device identifier holding unit 14, a determination unit 15, a code processing unit 16, and a function selection unit 17.
  • the code processing unit 16 includes a code generation unit 18, an encryption processing unit 19, a decryption processing unit 20, and a code separation unit 21.
  • the code generation unit 18 and the cryptographic processing unit 19 generate various signals to be transmitted to the operation terminal 2 via the management interface unit 6.
  • the decoding processing unit 20 and the code separation unit 21 decode various signals transmitted from the operation terminal 2 and received via the management interface unit 6.
  • the device identifier holding unit 14 holds a device identifier (ID) that is uniquely assigned to the digital coherent DSP-LSI 10 to be controlled and that can identify the optical transmission device 1.
  • the device identifier may be in any form as long as a person who implements the present invention can appropriately manage or assign the device identifier.
  • the device identifier may be a value that is fixedly set when the digital coherent DSP-LSI 10 is manufactured.
  • a random number generator may be provided in the device identifier holding unit 14, and a random number randomized so as not to overlap with device identifiers of other digital coherent DSP-LSIs 10 may be used in operation.
  • a specific embodiment of the control unit 13 will be described in detail in the description of a processing flow to be described later.
  • the digital signal processing unit 12 and the control unit 13 are mounted on the same hardware processor (digital coherent DSP-LSI 10).
  • the control unit 13 may be a general-purpose processor capable of software processing.
  • the digital signal processing unit 12 may be a network processor capable of hardware processing, and a general-purpose processor electrically connected thereto may be provided outside the network processor as the control unit 13.
  • the control software for executing the function of the control unit 13 is stored in a non-volatile memory such as a read only memory (ROM) or a flash memory electrically connected to the general-purpose processor.
  • the general-purpose processor reads the control software from the non-volatile memory and executes it.
  • the information holding unit 11 holds device information such as a device identifier and device status information that are IDs of the digital coherent DSP-LSI 10 acquired from the control unit 13. Further, the function authentication key issued by the management apparatus 3 is also held. These pieces of information are provided to the control unit 13 according to instructions from the determination unit 15.
  • the information holding unit 11 may be a non-volatile memory such as an EEPROM (Electrically Erasable Programmable Read-Only Memory). Depending on the application of the remote management system, a volatile memory can be used as the information holding unit 11. When the information holding unit 11 is a nonvolatile memory, the information holding unit 11 may have the function of the device identifier holding unit 14 provided in the control unit 13.
  • the control unit 13 does not need to include the device identifier holding unit 14.
  • the information holding unit 11 holds important information necessary for remote management and setting of the function of the optical transmission apparatus 1. Therefore, in order to prevent the information held by a malicious third party from being stolen by fraud or eavesdropping, or to prevent rewriting of the information held by the malicious third party, the information holding unit 11 is It is desirable to perform appropriate management such as encrypting and holding information.
  • FIG. 3 is a diagram illustrating an example of information held in the information holding unit. As described above, the device identifier held in the device identifier holding unit 14 of the control unit 13 is copied and held in the information holding unit 11.
  • the device status information includes at least functions that are already implemented by the digital coherent DSP-LSI 10 at the time of manufacture (hereinafter referred to as “implemented functions”) and the current usage status (validation or invalidation) of these functions.
  • the “function usage status” column in FIG. 3 indicates that 0 is invalid (invalidated) and 1 is valid (validated).
  • various information such as version information of the digital coherent DSP-LSI 10, error information, and elapsed time of power-on can be adopted depending on the mode of the digital coherent DSP-LSI 10. These pieces of information are generated in cooperation with the control unit 13, encoded into a format readable by the control unit 13, and held in the information holding unit 11.
  • the function authentication key is an authentication key issued by the management device 3 and used to validate or invalidate the function implemented by the digital coherent DSP-LSI 10 included in the optical transmission device 1.
  • the function authentication key includes at least a device identifier (corresponding to a target device identifier in FIG. 3) of the digital coherent DSP-LSI 10 to which the function authentication key is to operate, and information on a function to be activated (target in FIG. 3). Equivalent to function).
  • various information can be adopted depending on the aspects of the digital coherent DSP-LSI 10 and the remote management system, such as information about a period during which the function authentication key is valid (corresponding to an expiration date in FIG. 3).
  • the function authentication key is provided with a function setting flag that indicates whether the target function is valid or invalid. It should be included.
  • the target function and other device information are converted into appropriate codes that can be decoded by the optical transmission device 1 and the management device 3, and are included in the function authentication key.
  • the function authentication key is supplied to the optical transmission apparatus 1 as a license code which is a signal format for encryption and transmission to the optical transmission apparatus 1 as described later. From the viewpoint of preventing information leakage, the function authentication key may be held in the information holding unit 11 in the form of the license code, that is, in an encrypted state, instead of being decrypted.
  • the DB provided in the management device 3 holds in advance device information such as device identifiers and device status information related to all digital coherent DSP-LSIs 10 included in the optical transmission device 1 to be managed by the management device 3. ing.
  • the “information necessary for issuing the function authentication key” stored in the DB included in the management apparatus 3 described in the description of FIG. 1 includes these pieces of information.
  • FIG. 4 is a diagram showing a processing flow of the remote management system according to the first embodiment of the present invention.
  • the digital coherent DSP-LSI 10 is not validated for the optical transmission device 1 in which one digital coherent DSP-LSI 10 is mounted on one optical transmission device 1 as shown in FIG. Processing for activating a specific function triggered by an instruction from the operation terminal 2 will be described.
  • Step 0 Function setting step
  • the operation terminal 2 starts management software by an operator's operation, and allows the optical transmission apparatus 1 connected to itself to accept processing related to remote management of functions implemented by the optical transmission apparatus 1.
  • the operation terminal 2 is a function desired to be used (hereinafter referred to as a request function) among the functions installed in the digital coherent DSP-LSI 10 of the optical transmission apparatus 1 connected to the operation terminal 2 according to the management software operation by the operator. ) Is specified, and a function setting signal, which is a signal for instructing the activation of the requested function, is sent to the management interface unit 6 of the optical transmission apparatus 1.
  • Step 1 License request step
  • Step1-1 Step for confirming whether or not a license is issued
  • the function setting signal is sent to the determination unit 15. 2 illustrates a configuration in which the function setting signal is sent to the determination unit 15 via the code processing unit 16, but the configuration is not necessarily limited to such a configuration. Based on the mounting form of the digital coherent DSP-LSI 10, it is sufficient that the determination unit 15 can appropriately receive the function setting signal.
  • FIG. 5 is a diagram showing a processing flow of the license issuance necessity confirmation step according to Embodiment 1 of the present invention.
  • the determination unit 15 that has received the function setting signal specifies the requested function from the function setting signal (Step 1-1-1).
  • the determination unit 15 searches the function authentication key related to the requested function specified by accessing the information holding unit 11 (Step 1-1-2), and whether or not the corresponding function authentication key exists in the information holding unit 11 Is confirmed (Step 1-1-3).
  • the determination unit 15 determines that the requested function has already been activated and does not require a new function authentication key, generates a function setting completion notification signal, and generates a management interface unit. 6 to the operation terminal 2 via the transmission unit 6.
  • the determination unit 15 processes the next step Step 1-2.
  • the function authentication key includes a valid period (valid period) as shown in FIG. 3, in Step 1-1-3 described above, not only the presence of the function authentication key but also the function can be used. Also check whether it is within the period.
  • Step 1-2 License issue request step
  • the determination unit 15 acquires at least a device identifier from the information holding unit 11 or the device identifier holding unit 14. Further, the determination unit 15 sends the acquired device identifier and information on the requested function specified from the function setting signal to the code processing unit 16 and generates a license request signal including the device identifier and the requested function information. Instruct them to do so.
  • the license request signal includes at least a device identifier and request function information, and is a signal for notifying the management device 3 of the device identifier.
  • the content should be concealed by an appropriate concealment unit as described later so that the content of the code including the device identifier is not grasped.
  • the code processing unit 16 that has received an instruction from the determination unit 15 generates a code including a device identifier and a requested function by the code generation unit 18.
  • the code generation unit 18 gives a delimiter code having a predetermined length and a predetermined code before and after the device identifier and the request function.
  • This delimiter code is also known by the management device 3, and the management device 3 decodes the device identifier and the request function using the delimiter code as a mark.
  • the code generation unit 18 may create a code by integrating the information of the device identifier and other information. Even in that case, the management apparatus 3 can decipher various information transmitted by the optical transmission apparatus 1 if an appropriate delimiter code is given.
  • the code generated by the code generation unit 18 is sent to the encryption processing unit 19 of the code processing unit 16.
  • the encryption processing unit 19 encrypts this code with a predetermined algorithm and creates a license request signal for sending to the management apparatus 3.
  • a code is encrypted using a public key in a public key cryptosystem.
  • the public key cryptosystem since it is not necessary to mount a secret key in the digital coherent DSP-LSI 10, it is possible to prevent the secret key from being leaked due to eavesdropping or the like, and to prevent leakage of the device identifier.
  • the encrypted license request signal is sent from the encryption processing unit 19 to the transmission unit of the management interface unit 6.
  • the transmission unit of the management interface unit 6 transmits a license request signal to the operation terminal 2.
  • the encryption key is embedded in the digital coherent DSP-LSI 10 as a hardware implementation so that a third party can receive it from the outside. It becomes difficult to read the encryption key. Further, by using a function that can be written only once at the time of shipment, such as one-time programmable, it becomes possible to vary the encryption key written at the time of shipment of the digital coherent DSP-LSI 10 for each chip. In that case, even if the encryption key of a certain chip leaks, the risk that the encryption key written in another chip is known to a third party can be reduced.
  • Step 1-3 License request signal transfer step
  • the operation terminal 2 that has received the license request signal as a response to the function setting signal converts the received license request signal into an appropriate signal format that can be communicated with the management device 3 as necessary, and transmits the signal to the management device 3.
  • the operation terminal 2 may automatically transmit the license request signal after receiving the license request signal in accordance with a command described in the management software. Alternatively, the operation terminal 2 may wait for the operation of the management software by the operator and transmit a license request signal based on the operator's instruction.
  • operation terminal 2 Since operation terminal 2 does not hold a decryption key for decrypting the license request signal (corresponding to a secret key when using the public key cryptosystem), operation terminal 2 cannot decrypt the license request signal.
  • the device identifier cannot be detected.
  • wireless or wired communication may be used as means for communicating a license request signal between the operation terminal 2 and the management device 3.
  • the license request signal may be transferred by moving the storage medium from the operation terminal 2 to the management device 3.
  • Step 2 License issue step
  • the management device 3 that has received the license request signal decrypts the license request signal using the decryption key, and decrypts the device identifier and the request function.
  • the license request signal is decrypted using the secret key.
  • the secret key is mounted only on the management apparatus 3, and the license request signal cannot be decrypted by other apparatuses or terminals, and leakage of the apparatus identifier can be prevented.
  • the management device 3 verifies the validity of enabling the desired request function for the digital coherent DSP-LSI 10 corresponding to the decrypted device identifier.
  • the management device 3 searches a database (DB) provided by itself using the decrypted device identifier as a key, and checks whether the device identifier exists. If it does not exist, it is determined that the request function is disabled, and the processing flow of the remote management system is stopped. Alternatively, a predetermined termination process may be performed.
  • DB database
  • the management device 3 When the device identifier described in the license request signal exists, the management device 3 further searches the DB and confirms the “implemented function list” of the digital coherent DSP-LSI 10 corresponding to the device identifier. If it is confirmed that the function is not implemented in the digital coherent DSP-LSI 10 whose function is to be validated, it is determined that the requested function is invalid and the processing flow of the remote management system is stopped. Alternatively, a predetermined termination process may be performed. Further, the management apparatus 3 searches the DB and confirms the “currently enabled function list” corresponding to the apparatus identifier. If it is confirmed that the desired function of the digital coherent DSP-LSI 10 has already been activated, it is determined that the requested function is not necessary, and the processing flow of the remote management system is stopped. Alternatively, a predetermined termination process may be performed.
  • the management device 3 determines that it is appropriate to enable the desired request function. However, it is not always necessary to execute the process for confirming whether or not the above-described request function is enabled.
  • the management apparatus 3 issues a function authentication key delivered to the optical transmission apparatus 1 in order to validate the requested function.
  • the management device 3 holds the issued function authentication key in a license code that is a signal format for transmission to the optical transmission device 1 and transmits the license code to the operation terminal 2.
  • the function authentication key includes at least a device identifier transmitted by the optical transmission device 1 that is a control target and information indicating a requested function to be activated.
  • the function authentication key may be configured to add a delimiter code having a predetermined length and a predetermined code before and after the device identifier and the requested function.
  • Step 3 Function setting step
  • Step3-1 License code transfer step
  • the operating terminal 2 that has received the license code as a response to the license request signal transfers the license code to the management interface unit 6 of the optical transmission apparatus 1 connected to itself.
  • the operation terminal 2 since the operation terminal 2 does not hold a decryption key for decrypting the license code, the operation terminal 2 cannot decrypt the license code. Therefore, the operator of the operation terminal 2 cannot read the contents of the license code, and the contents of the license code can be prevented from leaking.
  • the operating terminal 2 can know that the license code has arrived, it can be known that the management device 3 has approved the activation of the requested function for the designated digital coherent DSP-LSI 10.
  • Step 3-2 Function authentication key application step
  • the receiving unit of the management interface unit 6 of the optical transmission apparatus 1 receives the license code
  • the license code is sent to the decoding processing unit 20 of the code processing unit 16.
  • the decryption processing unit 20 decrypts the license code and generates a function authentication key.
  • the decryption processing unit 20 transmits the decrypted function authentication key to the code separation unit 21.
  • the code separation unit 21 separates and extracts the device identifier from the received function authentication key, and transmits the device identifier and the function authentication key to the determination unit 15.
  • FIG. 6 is a diagram showing a processing flow of the function authentication key applying step and the requested function enabling step according to Embodiment 1 of the present invention.
  • the determination unit 15 (Step 3-2-1) that has received the device identifier and the function authentication key receives the device identifier transferred from the code separation unit 21, the device identifier held in the information holding unit 11 or the device identifier holding unit 14, and Are compared (Step 3-2-2). If the two device identifiers match, the determination unit 15 determines that the previous license code has been transmitted to itself, and proceeds to the next process. If the two device identifiers are different, the determination unit 15 discards the received device identifier and function authentication key, and ends the determination processing flow.
  • the determination unit 15 When it is determined that the function authentication key is transmitted to itself, the determination unit 15 holds the function authentication key transferred from the code processing unit 16 in the information holding unit 11 (Step 3-2-3). Alternatively, the determination unit 15 may hold the encrypted function authentication key (license code) transmitted from the management device 3 in the information holding unit 11. At the same time, the determination unit 15 notifies the function selection unit 17 that a function authentication key has been newly added to the information holding unit 11 (Step 3-2-4).
  • Step3-3 Request function enabling step
  • the function selection unit 17 accesses the information holding unit 11 based on the notification from the determination unit 15 and receives all the function authentication keys included in the information holding unit 11 (Step 3-3-1).
  • the function selection unit 17 sends the license code to the decryption processing unit 20 for decryption, and then the function authentication key. The key may be received.
  • the function selection unit 17 applies all the received function authentication keys and individually activates the function specified by the function authentication key (Step 3-3-2). After performing the above-described function setting, the function selection unit 17 transmits a signal for notifying that the function setting has been successful to the determination unit 15 (Step 3-3-3). The determination unit 15 that has received the notification from the function selection unit 17 updates the function usage status for the newly activated function among the device status information held in the information holding unit 11 to “1” (Step 3-3). -4).
  • the determination unit 15 generates a function setting completion notification signal for notifying the operation terminal 2 that the function specified by the function authentication key has been enabled for the digital coherent DSP-LSI 10, and transmits the function interface 6 to the management interface unit 6. To the operation terminal 2 (Step 3-3-5).
  • Step 4 Operation termination step
  • the operation terminal 2 that has received the function setting completion notification signal terminates the processing related to the remote setting of the function in the optical transmission device 1 that is started by the command of the management software.
  • the remote management system does not replace the digital coherent DSP-LSI 10 in the optical transmission apparatus 1 even after the use of the optical transmission apparatus 1 as a processing apparatus is started.
  • Some or all of the functions implemented in the LSI can be validated or invalidated by remote operation.
  • the management apparatus 3 issues a function authentication key for setting the function of the digital signal processing unit 12 (digital coherent DSP-LSI 10) by remote operation
  • the digital transmission transmitted by the optical transmission apparatus 1 is used as the function authentication key. Since the device identifier of the coherent DSP-LSI 10 is included, the function authentication key issued to other processing devices can be prevented from being used. If the device identifier held in the optical transmission device 1 is kept secret and the information communicated between the optical transmission device 1 and the management device 3 is encrypted, the device identifier can be easily used by a third party. Therefore, the function authentication key can be prevented from being counterfeited.
  • Embodiment 2 The configurations of the remote management system and the optical transmission device 1 (processing device) according to the second embodiment of the present invention are the same as those of the first embodiment. However, the configuration of device information and function authentication key held in the information holding unit 11 is different from that of the first embodiment.
  • the apparatus status information and the function authentication key include “license issuance count” that is the total number of function authentication keys issued to each of a plurality of functions implemented by the digital coherent DSP-LSI 10. It is.
  • FIG. 11 is a diagram showing a processing flow of the remote management system according to the second embodiment of the present invention.
  • the processing flow of both the setting for enabling a function that is not enabled for the digital coherent DSP-LSI 10 and the setting for disabling the enabled function will be described.
  • Step 0 Function setting step
  • the operation terminal 2 activates or deactivates the functions implemented by the digital coherent DSP-LSI 10 of the optical transmission device 1 connected to the operation terminal 2 according to the operation of the operator (
  • the requested function is specified, and a function setting signal including the requested function and function setting information for instructing to enable or disable the requested function is sent to the optical transmission apparatus 1.
  • Step 1 License request step
  • Step1-1 Step for confirming whether to issue a license
  • FIG. 12 is a diagram showing a part of the processing flow of the license issue necessity confirmation step according to Embodiment 2 of the present invention.
  • the control unit 13 of the optical transmission apparatus 1 “if the function authentication key corresponding to the requested function exists in the information holding unit 11, the requested function is already activated. Therefore, it is determined that it is not necessary to obtain a new function authentication key, and the processing flow is ended.
  • Step 1-1-3 is adopted instead of Step 1-1-3 in the first embodiment in order to enable the function invalidation processing in the optical transmission apparatus 1.
  • the determination unit 15 accesses the information holding unit 11 and searches for a function authentication key related to the requested function (Step 1-1-2), whether the function setting signal instructs the setting of activation, Alternatively, it is confirmed whether the invalidation setting is designated (Step 1-1-3-1). If it is confirmed that the activation setting is instructed, it is confirmed whether or not a function authentication key related to the requested function exists in the information holding unit 11 (Step 1-1-3-2). If the function authentication key does not exist, the corresponding function is in an initial state, that is, invalidated at this time (the contents of the information holding unit 11 correspond to FIG. 7), and therefore the determination unit 15 performs the next step Step1- 2 is processed.
  • Step 1-1-3-3 the setting flag in the function authentication key is confirmed (Step 1-1-3-3). If it is an activation flag (the content of the information holding unit 11 corresponds to FIG. 8 or FIG. 10), the determination unit 15 needs to obtain a new function authentication key because the requested function has already been activated. If not, a function setting completion notification signal is generated and transmitted to the operation terminal 2, and the processing flow ends.
  • Step 1-1-3-3 the content of the information holding unit 11 corresponds to FIG. 9
  • the determination unit 15 processes the next step Step1-2.
  • Step 1-1-3-1 when it is confirmed that the function setting signal indicates invalidation setting, it is confirmed whether or not a function authentication key related to the requested function exists in the information holding unit 11 (Step 1-1-3-4).
  • the function authentication key does not exist, the corresponding function is in an initial state, that is, it is invalidated at this time (the content of the information holding unit 11 corresponds to FIG. 7), so the determination unit 15 is for invalidation. It is determined that it is not necessary to obtain a function authentication key, a function setting completion notification signal is generated and transmitted to the operation terminal 2, and the processing flow ends.
  • Step 1-1-3-5 the setting flag in the function authentication key is confirmed (Step 1-1-3-5).
  • the determination unit 15 determines that it is not necessary to obtain a function authentication key for invalidation, and a function setting completion notification signal Is transmitted to the operation terminal 2 and the processing flow is terminated.
  • Step 1-1-3-5 the content of the information holding unit 11 corresponds to FIG. 8 or FIG. 10
  • the determination unit 15 performs function authentication for invalidation.
  • the next step Step 1-2 is processed.
  • Step 1-2 License issue request step Processing similar to that in Step 1-2 in the first embodiment is performed.
  • the license request signal generated by the determination unit 15 includes at least function setting information indicating whether to perform setting of device identifier, license issuance count, requested function, and validation / invalidation of the requested function. Is different.
  • the number of licenses issued is the total number of function authentication keys that have been issued so far and have been applied to the device itself for each function implemented by the digital coherent DSP-LSI 10.
  • “license issuance count” is included as device status information, and information on the “license issuance count” is sent to the management device 3 in addition to the license request signal, so that the function authentication issued in the past It is possible to prevent the request function from being applied again by applying the key.
  • Step 1-3 License request signal transfer step
  • the license request signal handled in this process includes at least a device identifier, the number of license issuances, a requested function, and function setting information as described above.
  • Step 2 License issue step
  • the management apparatus 3 refers to the “currently activated function list” corresponding to the apparatus identifier to be set in the DB, and the requested function is activated. It is determined that the function authentication key is issued properly.
  • the function authentication key issued by the management device 3 includes at least the device identifier to be controlled, the number of license issuances transmitted by the optical transmission device 1 with respect to the requested function, the requested function, and The difference is that it includes a setting flag that indicates which setting to enable / disable the request function.
  • Step 3 Function setting step
  • Step3-1 License code transfer step
  • the function authentication key included in the license code handled in this process includes at least the device identifier, the license issuance count, the requested function, and the setting flag.
  • FIG. 13 is a diagram showing a processing flow of the function authentication key applying step and the requested function enabling step according to Embodiment 2 of the present invention.
  • FIG. Step 3-2 ′ is adopted. The details are as follows.
  • the license code is sent to the decoding processing unit 20 of the code processing unit 16.
  • the decryption processing unit 20 decrypts the license code and generates a function authentication key.
  • the decryption processing unit 20 transmits the decrypted function authentication key to the code separation unit 21.
  • the code separation unit 21 separates and extracts the device identifier and the license issuance number from the received function authentication key, and transmits the device identifier, the license issuance number and the function authentication key to the determination unit 15.
  • the determination unit 15 (Step 3-2-1 ′ in FIG. 13) that has received the device identifier, the number of license issuances, and the function authentication key first stores the device identifier transferred from the code separation unit 21 and the information holding unit 11. The device identifier is compared (Step 3-2-2-1). If the two device identifiers match, the determination unit 15 determines that the previous license code has been transmitted to itself, and proceeds to the next process. If the two device identifiers are different, the determination unit 15 discards the received function authentication key and ends the determination processing flow.
  • the determination unit 15 compares the license issuance number transferred from the code separation unit 21 with the license issuance number held in the information holding unit 11 (Step 3-2-2-2). If the number of licenses issued is different, the determination unit 15 determines that an unauthorized function authentication key has been sent, discards the received function authentication key, and ends the determination processing flow. On the other hand, if the number of licenses issued is the same, the determination unit 15 determines that a regular function authentication key has been sent, and proceeds to the next process.
  • the determination unit 15 transmits the function authentication key transferred from the code processing unit 16 to the information holding unit 11 and holds it (Step 3-2-3). If the previous function authentication key related to the same requested function is already held in the information holding unit 11, it is replaced with a new function authentication key. However, as long as it is possible to determine which is the latest function authentication key for a certain function, the old key and the new key may be mixed. For example, the function authentication key with the maximum number of licenses issued may be determined as the “latest” key. At the same time, the determination unit 15 notifies the function selection unit 17 that a function authentication key has been newly added to the information holding unit 11 (Step 3-2-4). These are the same processes as those in the first embodiment.
  • Step3-3 Request function enabling step
  • Step 3-3 ′ in FIG. 13 is adopted instead of Step 3-3 (Step 3-3-1 to Step 3-3-4) in the first embodiment.
  • the details are as follows.
  • the function selection unit 17 accesses the information holding unit 11 based on the notification from the determination unit 15 and receives all the function authentication keys included in the information holding unit 11 (Step 3-3-1).
  • the function selection unit 17 applies the latest key among all the received function authentication keys, and determines each function specified by the function authentication key based on the information of the function authentication key setting flag. Enable or disable (Step 3-3-2).
  • the function selection unit 17 transmits a signal for notifying that the function setting has been successful to the determination unit 15 (Step 3-3-3).
  • the determination unit 15 that has received the notification from the function selection unit 17 newly sets a function among the device status information held in the information holding unit 11 (this includes both validation and invalidation).
  • the function usage status for the function is updated, and the number of licenses issued for the function is increased by “1” (Step 3-3-4).
  • the determination unit 15 generates a function setting completion notification signal for notifying the operation terminal 2 that the function specified by the function authentication key has been enabled for the digital coherent DSP-LSI 10, and transmits the function interface 6 to the management interface unit 6. To the operation terminal 2 (Step 3-3-5).
  • Step 4 Operation termination step
  • Step 4 of Embodiment 1 The same processing as Step 4 of Embodiment 1 is performed.
  • the remote management system does not replace the digital coherent DSP-LSI 10 in the optical transmission apparatus 1 even after the use of the optical transmission apparatus 1 as a processing apparatus is started.
  • Some or all of the functions mounted on the LSI can be validated or invalidated by a function authentication key sent from a remote location.
  • the optical transmission device 1 holds the number of licenses issued, and the function authentication key including the number of licenses issued is used for setting the function. It is possible to prevent an illegal action such as re-applying the issued function authentication key to validate the requested function. The reason why the latter effect can be expected will be described with reference to FIGS.
  • FIG. 7 shows an example of information in the information holding unit 11 in the initial state (at the first start-up) of the optical transmission apparatus 1. Since no function has been validated yet, no function authentication key is held. The number of licenses issued in the device status information is also all “0”.
  • FIG. 8 shows an example of information in the information holding unit 11 when the processing of FIG. 11 is performed and the “QPSK demodulation function” is validated after the optical transmission device 1 is first activated.
  • this function is first used for free and the performance is evaluated. Since the number of licenses issued for the “QPSK demodulation function” in FIG. 7 is “0”, the function authentication key (corresponding to the function authentication key in FIG. 8) generated by the management apparatus 3 as a result of the processing in FIG. The number of times is “0”. Since the function authentication key of FIG. 8 is applied, the “QPSK demodulation function” column of the device status information indicates that the function usage status is “1” (validated) by the determination unit 15 and the license issuance count is “1” ( The first function authentication key is applied).
  • FIG. 9 shows an example of information in the information holding unit 11 when the “QPSK demodulation function” is validated once and then invalidated by performing the process of FIG. 11 again.
  • a certain function is evaluated, but it is determined that it is not necessary to use it in actual operation, and the trial is stopped.
  • the function authentication key (corresponding to the function authentication key in FIG. 9) generated by the management apparatus 3 as a result of the processing in FIG. The number of times is “1”. Since the function authentication key of FIG. 9 is applied, the “QPSK demodulation function” column of the device status information indicates that the function usage status is “0” (invalidated) by the determination unit 15 and the license issuance count is “2” ( The second function authentication key is applied).
  • FIG. 10 shows an example of information in the information holding unit 11 when the “QPSK demodulation function” is enabled once and further disabled, and then the processing of FIG. 11 is performed again and enabled.
  • the function authentication key (corresponding to the function authentication key in FIG. 10) generated by the management apparatus 3 as a result of the processing in FIG. The number of times is “2”. Since the function authentication key of FIG. 10 is applied, the “QPSK demodulation function” column of the device status information indicates that the function usage status is “1” (validated) by the determination unit 15 and the license issuance count is “3” ( The second function authentication key is applied).
  • the information holding unit 11 does not hold the number of licenses issued, and the function authentication key generated as a result of communication between the optical transmission device 1 and the management device 3 does not include the number of licenses issued.
  • the function authentication key of FIG. 8 (which corresponds to the “trial license” in the above example) is easily applied to the optical transmission device 1 in which the information holding unit 11 holds the information of FIG. Can do.
  • the “QPSK demodulation function” can be enabled free of charge.
  • the information holding unit 11 holds the number of licenses issued for each function mounted on the digital coherent DSP-LSI 10 and also provides function authentication for remotely setting the function to the optical transmission apparatus 1. Since the key includes the number of times the license is issued, even if the function authentication key of FIG. 8 is applied to the optical transmission device 1 in which the information of FIG. 9 is held in the information holding unit 11, the process of Step 3-2 ′ in FIG. Thus, it is possible to determine whether the function authentication key is an unauthorized function, and therefore it is possible to prevent an unauthorized action such as re-applying a function authentication key issued in the past to validate the requested function.
  • the second embodiment targets an optical transmission device 1 (processing device) in which one digital coherent DSP-LSI 10 is mounted on one optical transmission device 1 as shown in FIG.
  • some or all of the functions of the processing apparatus are effective without replacing devices in the processing apparatus. Can be disabled or disabled.
  • it is possible to determine that the function authentication key is an unauthorized function it is possible to prevent an unauthorized action such as re-applying a function authentication key issued in the past to validate the requested function.
  • the remote management system is an optical transmission device 1 (processing device) in which a plurality of digital coherent DSP-LSIs 10 are mounted on one optical transmission device 1.
  • the functions of the optical transmission device 1 are set remotely.
  • the remote management system since the same function in a plurality of digital coherent DSP-LSIs 10 can be set (validated or invalidated) at a time using one function authentication key, the remote management system is more flexible and Low-cost operation is possible.
  • the configuration of the remote management system according to the present embodiment is the same as that of FIG. 1 of the first embodiment, and the optical transmission device 1 (processing device) according to the present embodiment has only the configuration of FIG. 2 of the first embodiment. Instead, a configuration in which a plurality of digital coherent DSP-LSIs 10 are mounted on one optical transmission device 1 may be included. Further, the configuration of the device information and the function authentication key held in the information holding unit 11 is different from the first and second embodiments. Specific differences will be described later.
  • FIG. 14 shows an optical transmission apparatus according to Embodiment 3 of the present invention.
  • FIG. 15 is a diagram showing information held in the information holding unit of the optical transmission apparatus according to Embodiment 3 of the present invention.
  • the optical transmission device 1 includes a LAN interface unit, a WAN interface unit, and a digital function unit as a set of optical transmission processing units, and includes a plurality of optical transmission processing units 22-1 to 22-n.
  • Each of the optical transmission processing units 22-1 to 22-n includes a LAN interface unit 4-1 to 4-n, a WAN interface unit 5-1 to 5-n, and a digital function unit 7-1 to 7-n. Is provided.
  • Each of the digital function units 7-1 to 7-n includes client signal processing LSIs 8-1 to 8-n, OTN framer LSIs 9-1 to 9-n, and digital coherent DSP-LSIs 10-1 to 10-n. Prepare.
  • Each of the digital coherent DSP-LSIs 10-1 to 10-n includes digital signal processing units 12-1 to 12-n and control units 13-1 to 13-n.
  • the configuration and connection form of these digital function units are the same as in the first embodiment, and a detailed description thereof will be omitted.
  • the configuration of the digital signal processing unit 12 and the control unit 13 of the digital coherent DSP-LSI 10 is as follows: “The digital signal processing unit 12 is a network processor capable of hardware processing, and the control unit 13 is a network processor. A configuration of “a general-purpose processor (and control software for executing the function of the control unit 13) electrically connected to the processor” is exemplified. Also in this embodiment, such a configuration example can be adopted. In this case, unlike the configuration of FIG. 14, one control unit (general-purpose processor or the like) is physically provided for one optical transmission apparatus 1, and this one control unit is a digital coherent DSP-LSI 10-. Each of 1 to 10-n is controlled individually.
  • the optical transmission device 1 further includes a management interface unit 6 and an information holding unit 11 shared by a plurality of optical transmission processing units 22-1 to 22-n.
  • the configurations of the management interface unit 6 and the information holding unit 11 are the same as those in the first embodiment.
  • the management interface unit 6 is connected to the control units 13-1 to 13-n included in each of the digital coherent DSP-LSIs 10-1 to 10-n, and the plurality of control units 13-1 to 13-n are operated terminals.
  • 2 is a common input / output interface for transmitting and receiving various signals to and from 2.
  • the information holding unit 11 is connected to the control units 13-1 to 13-n included in each of the digital coherent DSP-LSIs 10-1 to 10-n, and is operated by a plurality of digital coherent DSP-LSIs 10-1 to 10-n. Shared and holds device identifiers, device information, function authentication keys, and the like regarding each of the digital coherent DSP-LSIs 10-1 to 10-n.
  • the information holding unit 11 holds at least device information and a function authentication key.
  • the device information includes at least a device identifier, device status information, and license information.
  • the device identifier is identifier (ID) information uniquely assigned to one digital coherent DSP-LSI.
  • the information holding unit 11 includes all the digital coherent DSP-LSIs 10-1 to 10-n (hereinafter referred to as control target digitals) that are provided in the optical transmission apparatus 1 and for which setting of enabling / disabling of functions that have already been implemented are to function. This is different from the first and second embodiments in that a device identifier for a coherent DSP-LSI is held. In FIG. 15, these device identifiers are indicated as “DSP-1, DSP-2,..., DSP-n” (n is a positive number).
  • the device status information includes the functions already implemented by the digital coherent DSP-LSIs 10-1 to 10-n to be controlled (hereinafter referred to as “implemented functions”) and the current usage status (enabled or disabled) of these functions. And a combination thereof.
  • implemented functions the functions already implemented by the digital coherent DSP-LSIs 10-1 to 10-n to be controlled
  • current usage status the current usage status (enabled or disabled) of these functions. And a combination thereof.
  • “0” indicates an invalid (invalidated) state
  • “1” indicates an activated (validated) state.
  • the information holding unit 11 holds device status information for all the control target digital coherent DSP-LSIs 10-1 to 10-n.
  • the license information includes the number of times the license is issued and the license application destination for all the functions (implemented functions) implemented by the control target digital coherent DSP-LSIs 10-1 to 10-n provided in one optical transmission apparatus 1. Information at least. Such license information is particularly useful information in the present embodiment.
  • the number of license issuances is information indicating the total number of function authentication keys that have been issued to each of the implemented functions and applied to the device itself.
  • the license application destination is information for specifying a control target digital coherent DSP-LSI whose function is currently enabled for each of the mounted functions. For example, as shown in FIG. 15, the device identifier of the control target digital coherent DSP-LSI that is validated is included. Note that “(null)” described in the license application destination information in FIG. 15 means that the corresponding function is not activated in any control target digital coherent DSP-LSI.
  • apparatus status information is prepared for each control target digital coherent DSP-LSI 10-1 to 10-n, and license information is stored in all control target digital coherent DSP-LSIs 10-1 to 10-n.
  • One set is prepared for it.
  • the function authentication key includes at least device identifiers of all the control target digital coherent DSP-LSIs 10-1 to 10-n mounted on the optical transmission device 1, information on the target functions, and the number of valid licenses.
  • the number of valid licenses indicates the maximum number of control target digital coherent DSP-LSIs that can validate a specific function in one optical transmission apparatus 1, and is particularly useful in the present embodiment. Information. If a function authentication key in which the number of activation licenses is described as “2” is applied, the requested function is 2 regardless of the number of control target digital coherent DSP-LSIs mounted in one optical transmission apparatus 1. It is possible to validate up to the control target digital coherent DSP-LSI. If it is desired to invalidate the function, the number of license issuances may be included as described in the second embodiment. However, the setting flag is not necessarily provided because the case where the number of valid licenses is “0” is equivalent to invalidating the target function in all the digital coherent DSP-LSIs 10.
  • FIG. 16 is a diagram showing a processing flow of the remote management system according to the third embodiment of the present invention.
  • Step 0 Function setting step
  • the operation terminal 2 sets a function (controls enabling or disabling) of the control target digital coherent DSP-LSIs 10-1 to 10-n of the optical transmission device 1 connected to the operation terminal 2 according to an operation of the operator.
  • Control target digital coherent DSP-LSI hereinafter referred to as “setting target digital coherent DSP-LSI”
  • target target digital coherent DSP-LSI a function setting signal including information on the setting target digital coherent DSP-LSI, the requested function, and function setting information for instructing to enable or disable the requested function
  • the operation terminal 2 designates a plurality of setting target digital coherent DSP-LSIs for a certain request function, and enables or disables the request function for the plurality of setting target digital coherent DSP-LSIs.
  • the optical transmission apparatus 1 is instructed using the function setting signal.
  • the management interface unit 6 of the optical transmission apparatus 1 receives the function setting signal.
  • one function setting signal may be transmitted to the optical transmission apparatus 1 including information on a plurality of setting target digital coherent DSP-LSIs, and each function setting signal corresponds to each of the plurality of setting target digital coherent DSP-LSIs.
  • a plurality of function setting signals may be transmitted.
  • Table 2 shows a format example of the function setting signal when the former embodiment is adopted.
  • FIG. 17 is a diagram showing a processing flow of the license issuance necessity confirmation step according to Embodiment 3 of the present invention.
  • the management interface unit 6 of the optical transmission apparatus 1 sends the received function setting signal to the control units 13-1 to 13-n of all the control target digital coherent DSP-LSIs 10-1 to 10-n.
  • the control unit 13-1 of the digital coherent DSP-LSI 10-1 performs processing related to the function setting.
  • the control units 13-1 to 13-n each perform the digital coherent DSP.
  • any one of the plurality of control units 13-1 to 13-n needs to be designed to lead the function setting process. Therefore, for example, the control unit 13-1 of the digital coherent DSP-LSI 10-1 corresponding to the device identifier having the smallest value among the setting target digital coherent DSP-LSI included in the function setting signal performs processing related to function setting.
  • the selection method of the initiative control unit is not limited to this.
  • the shared control unit 13 performs all the processes related to function setting. There is no need to select any control unit 13.
  • the received function setting signal is sent to the determination unit 15 provided therein.
  • Each determination unit 15 decodes the received function setting signal as necessary, and determines whether or not it should become the initiative control unit according to a predetermined algorithm (Step 1-1-0, not shown).
  • the determination unit 15 of the control unit 13-1 which is the initiative control unit, specifies a requested function and a setting instruction for the setting target digital coherent DSP-LSI from the received function setting signal (Step 1-1-1).
  • the determination unit 15 searches the function authentication key related to the requested function specified by accessing the information holding unit 11 (Step 1-1-2), and whether or not the corresponding function authentication key exists in the information holding unit 11 Is confirmed (Step 1-1-3).
  • the determination unit 15 determines that a new function authentication key needs to be requested, and processes the next Step Step 1-2.
  • the determination unit 15 processes the “necessary license number” calculating step (Step 1-1-4). In this step, the determination unit 15 calculates the number of control target digital coherent DSP-LSIs (hereinafter referred to as the necessary license number) that is activated when the optical transmission device 1 is set based on the function setting signal. .
  • FIG. 18 is a diagram showing processing of a required license number calculation step according to Embodiment 3 of the present invention.
  • the determination unit 15 confirms which setting target digital coherent DSP-LSI is validated or invalidated, as shown in the table on the right side of FIG. 18, from the information of the received function setting signal.
  • the determination unit 15 accesses the information holding unit 11, and from the device information and function authentication key information held therein, all the control target digital coherent DSP-LSIs 10 as shown in the left table of FIG. The usage status of the requested function in -1 to 10-n and the information on the number of valid licenses are confirmed.
  • the determination unit 15 overwrites the information in the left table of FIG. 18 with the information in the right table.
  • the number of control target digital coherent DSP-LSIs that will use the requested function when the optical transmission device 1 is set based on the function setting signal that is, the required number of licenses.
  • the required number of licenses is “3”.
  • the determination unit 15 compares the number of necessary licenses calculated in Step 1-1-4 with the number of valid licenses obtained from the function authentication key held in the information holding unit 11 (Step 1-1-5). ). If (required license number)> (valid license number), the determination unit 15 determines that a new function authentication key needs to be requested, and proceeds to the next step Step 1-2. On the other hand, if (the number of required licenses) ⁇ (the number of valid licenses), the determination unit 15 determines that it is not necessary to newly request a function authentication key, and proceeds to Step 3-2-3-1 described later. The license information is updated, and the process proceeds to the requested function validation step Step3-3.
  • Step 1-2 License issue request step
  • the determination unit 15 of the initiative control unit sends, from the information holding unit 11, all device identifiers related to the control target digital coherent DSP-LSIs 10-1 to 10-n mounted in the optical transmission device 1, and the number of licenses issued for the requested function. And get. Further, the determination unit 15 performs code processing on the information on the requested function specified from the function setting signal and the necessary number of licenses calculated in Step 1-1-4, in addition to the device identifier and the number of licenses issued from the information holding unit 11. It is sent to the unit 16 and instructed to generate a license request signal including these pieces of information.
  • the code processing unit 16 Upon receiving the instruction from the determination unit 15 in the initiative control unit, the code processing unit 16 creates a license request signal for requesting the function authentication key from the management apparatus 3 as in Step 1-2 in the first and second embodiments. And transmitted to the operation terminal 2 via the management interface unit 6.
  • the license request signal includes the number of necessary licenses, the management apparatus 3 is requested to increase the number of valid licenses to the number of necessary licenses.
  • Step 1-3 License request signal transfer step
  • the operation terminal 2 that has received the license request signal transfers the license request signal to the management device 3 in the same manner as in Steps 1-3 of the first and second embodiments.
  • Step 2 License issue step
  • the management device 3 that has received the license request signal decodes all device identifiers, requested functions, the number of licenses issued, and the number of required licenses from the license request signal, as in Step 2 in the first and second embodiments.
  • the management device 3 verifies the validity of enabling the required functions by the number of required licenses with respect to the digital coherent DSP-LSI 10 corresponding to the decrypted device identifier.
  • the management apparatus 3 issues a function authentication key for remotely setting the requested functions.
  • the issued function authentication key is held in a license code which is a signal format for transmission to the optical transmission apparatus 1 and transmitted to the operation terminal 2.
  • the function authentication key is a license issuance decrypted from all device identifiers and license request signals of all control target digital coherent DSP-LSIs 10-1 to 10-n installed in the optical transmission device 1.
  • the number of times, the required function, and the number of valid licenses to be given to the optical transmission apparatus 1 are included.
  • the number of valid licenses is, for example, the number of necessary licenses decrypted from the license request signal, thereby enabling the requested function of the digital coherent DSP-LSI 10 by the number desired by the customer of the optical transmission apparatus 1. it can.
  • the number of licenses required according to the customer's payment amount may be set based on the billing information.
  • the required number of licenses may be set to “0”.
  • Step 3 Function setting step
  • Step3-1 License code transfer step
  • the operation terminal 2 that has received the license code transfers the license code to the optical transmission apparatus 1 connected to itself, as in Step 3-1 in the first and second embodiments.
  • FIG. 19 is a diagram showing a processing flow of the function authentication key application step and the requested function validation step according to Embodiment 3 of the present invention.
  • the receiving unit of the management interface unit 6 of the optical transmission apparatus 1 receives the license code
  • the license code is sent to the control units 13-1 to 13-n of all the control target digital coherent DSP-LSIs 10-1 to 10-n. It is done. Any one of the control units becomes the initiative control unit by the processing in Step 1-1-0 described above.
  • the received license code is sent to the decryption processing unit 20.
  • the decryption processing unit 20 decrypts the license code and generates a function authentication key.
  • the decryption processing unit 20 transmits the decrypted function authentication key to the code separation unit 21.
  • the code separation unit 21 separates and extracts all device identifiers, license issuance times, and valid license numbers from the received function authentication key, and sends the device identifiers, license issuance times, valid license numbers, and function authentication keys to the determination unit 15. Send.
  • the determination unit 15 (Step 3-2-1) that has received all the device identifiers, the number of license issuances, the number of valid licenses, and the function authentication key stores all the device identifiers transferred from the code separation unit 21 and the information holding unit 11. All the held device identifiers are compared (Step 3-2-2-1). If all device identifiers match, the determination unit 15 determines that the previous license code has been transmitted to itself, and proceeds to the next process. If the two device identifiers are different, the determination unit 15 discards the received function authentication key and ends the determination processing flow.
  • the determination unit 15 compares the license issuance number transferred from the code separation unit 21 with the license issuance number held in the information holding unit 11 (Step 3-2-2-2). If the number of licenses issued is different, the determination unit 15 determines that an unauthorized function authentication key has been sent, discards the received function authentication key, and ends the determination processing flow. On the other hand, if the number of licenses issued is the same, the determination unit 15 determines that a regular function authentication key has been sent, and proceeds to the next process.
  • the determination unit 15 transmits the function authentication key transferred from the code processing unit 16 to the information holding unit 11 and holds it (Step 3-2-3). If the previous function authentication key related to the same requested function is already held in the information holding unit 11, it is replaced with a new function authentication key. However, as long as it is possible to determine which is the latest function authentication key for a certain function, the old key and the new key may be mixed. For example, the function authentication key with the maximum number of licenses issued may be determined as the “latest” key.
  • FIG. 20 is a diagram showing transition of information held in the information holding unit according to Embodiment 3 of the present invention. If the example used in the explanation of the license issuance necessity confirmation step (Step 1-1) in the present embodiment is adopted again and explained, it is held in the information holding unit 11 at the time before the processing of Step 3-2-3-1.
  • the device information (this is the same as the state before execution of this processing flow) is in a state as shown in FIG. That is, DSP-3 and 4 are activated.
  • Step 3-2-3-1 the license application destination information for DSP-1, 2, 3 is rewritten from “0, 0, 1” to “1, 1, 0” according to the function setting signal of FIG. .
  • DSP-4 and 5 are maintained as they are.
  • the device information is in the state shown in FIG.
  • Step 3-2-3-1 the determination unit 15 of the initiative control unit provides a function authentication key to the information holding unit 11 with respect to the function selection unit 17 included in itself and the function selection unit 17 in all other control units. Is newly added (Step 3-2-4).
  • Step3-3 Request function enabling step
  • All the function selection units 17 access the information holding unit 11 based on the notification from the determination unit 15 of the initiative control unit, and refer to the license application destination corresponding to its own device identifier in the license information. If it is designated as the license application destination (for example, DSP1, 2, 4 in the case of FIG. 20B), the function selection unit 17 receives the function authentication key included in the information holding unit 11 (Step3- 3-1).
  • the license application destination for example, DSP1, 2, 4 in the case of FIG. 20B
  • the function selection unit 17 that has received the function authentication key applies the received function authentication key and validates the function specified by the function authentication key (Step 3-3-2). On the other hand, the function selection unit 17 that has not received the function authentication key invalidates the function. After performing the above-described function setting, the function selection unit 17 transmits a signal for notifying that the function setting has been successful to the determination unit 15 (Step 3-3-3).
  • the determination unit 15 that has received the notification from the function selection unit 17 is a function for a function for which function setting (including both validation and invalidation) has been newly performed among the device status information held in the information holding unit 11.
  • the usage status is updated, and the number of licenses issued for the function is increased by “1” (Step 3-3-4).
  • the device information in the information holding unit 11 becomes the state shown in FIG.
  • the determination unit 15 generates a function setting completion notification signal for notifying the operation terminal 2 that the function specified by the function authentication key has been enabled for the digital coherent DSP-LSI 10, and transmits the function interface 6 to the management interface unit 6. To the operation terminal 2 (Step 3-3-5).
  • Step 4 Operation termination step Processing similar to Step 4 in the first and second embodiments is performed.
  • the remote management system performs the processing without replacing the devices in the processing apparatus even after the use of the processing apparatus is started, as in the first embodiment. Some or all of the functions of the device can be enabled or disabled. Furthermore, since the same function in a plurality of digital coherent DSP-LSIs 10-1 to 10-n can be set (validated or invalidated) in a batch using one function authentication key, the remote management system can Flexible and low-cost operation is possible.
  • an optical transceiver that can be hot-plugged may be used as the WAN interface unit 5.
  • the optical transceiver used in the slot 1 here, the digital function unit 7-1 in FIG. 14 is connected
  • the optical transmission apparatus 1 already has a license to use the “QPSK demodulation” function in the digital coherent DSP-LSI 10-1 corresponding to the slot 1, but the license is not granted to the slot n.
  • a license is required to newly activate the “QPSK demodulation” function in the digital coherent DSP-LSI 10-n corresponding to the slot n.
  • the desired “number of required licenses” is compared with the “number of valid licenses” already possessed. If “necessary number of licenses ⁇ number of valid licenses” is determined, it is determined that it is not necessary to issue a new license. In the case of the above assumption example, it is not necessary to request an additional license.
  • Embodiment 4 FIG.
  • a processing flow for activating or deactivating a specific function implemented in the digital coherent DSP-LSI 10 of the optical transmission apparatus 1 triggered by an instruction from the operation terminal 2 has been described.
  • the present invention is not limited to this, and the present invention can be applied to various types of processing flows.
  • the optical transmission device 1 when the optical transmission device 1 is activated in a state where the function authentication key generated by the management device 3 is held in the information holding unit 11 in advance, the optical transmission device 1 starts processing from the function authentication key application step of Step 3-2. Just start.
  • the optical transmission device 1 holds in advance a setting file in which the functions to be enabled or disabled are collected in advance in a nonvolatile memory.
  • the determination unit 15 in the digital coherent DSP-LSI 10 of the optical transmission apparatus 1 first reads a setting file and grasps which function should be validated or invalidated. Next, the determination unit 15 starts the processing of Step 3-2. However, in Step 3-2, in place of Step 3-2-1, a process of acquiring a function authentication key corresponding to a function to be enabled or disabled from the information holding unit 11 is performed. Then, the determination unit 15 processes the steps after Step 3-2-2.
  • Embodiment 5 an example of the processing flow when the optical transmission device 1 is activated in a state where the function authentication key generated by the management device 3 is held in the information holding unit 11 in advance has been described.
  • the optical transmission device 1 when the optical transmission device 1 is in an initial state immediately after purchase, the information holding unit 11 does not hold any function authentication key, and there is a need to temporarily use the device for verification or demonstration. Cannot handle when it occurs.
  • the optical transmission device 1 can try all the functions immediately after starting in the initial state, but the functions are automatically disabled after a predetermined time and are used continuously.
  • the optical transmission device 1 may have a function authentication key to enable the function.
  • a state in which all functions can be used without a function authentication key for a predetermined time after startup from the initial state is referred to as a “timed mode”, and an example of a processing flow in this timed mode will be described.
  • FIG. 21 is a diagram showing a processing flow in the timed mode of the remote management system according to the fifth embodiment of the present invention.
  • the configurations of the remote management system and the devices (the optical transmission device 1, the operation terminal 2, and the management device 3) that configure them are the same as those in the first to third embodiments.
  • the information holding unit 11, the determination unit 15, and the function selection unit 17 of the optical transmission device 1 are activated (Step A-0).
  • the determination unit 15 accesses the information holding unit 11 and searches for all function authentication keys corresponding to the implemented functions (Step A-1).
  • Step A-2 If a function authentication key exists in a certain function, the flow for processing the timed mode is terminated for the function, and the normal mode is entered (for example, to the fourth embodiment) (Step A-2). On the other hand, if there is no function authentication key for a certain function, the process proceeds to the next Step A-3.
  • the determination unit 15 accesses the information holding unit 11 and searches for the state of a timer that measures the time that can be operated in the timed mode (Step A-3).
  • Step A-4 If the timer does not exceed the preset time, it is determined that the timer is still operating in the timed mode, and the process proceeds to the next Step A-6 (Step A-4). On the other hand, if the time limit is exceeded, it is determined that the timed mode has ended, the function selection unit 17 is instructed to disable the corresponding function (Step A-5), and the flow ends.
  • the determination unit 15 instructs the function selection unit 17 to validate all functions implemented in the digital coherent DSP-LSI 10 (Step A-6). Then, the determination unit 15 updates the function usage status for all functions in the device status information held in the information holding unit 11 to “1” (validated). As a result, the optical transmission device 1 can use all of the mounted functions.
  • the determination unit 15 accesses the information holding unit 11 and searches for the state of the timer (Step A-7). If the timer is not operating, the process proceeds to the next Step A-9 (Step A-8). On the other hand, if it is halfway, the process proceeds to Step A-9-1.
  • the determination unit 15 starts a timer that defines the time that can be operated as the timed mode, and proceeds to Step A-10 (Step A-9).
  • the determination unit 15 restarts the timer that defines the time that can be operated as the timed mode, and proceeds to Step A-10 (Step A-9-1).
  • the determination unit 15 accesses the information holding unit 11 and inquires about the function usage status regarding the function for which the function authentication key does not exist, and confirms whether or not the function is being used (Step A-10). If the function is being used, the determination unit 15 determines that the function is being used, and transmits a function unapproved notification signal that prompts the user to issue a license for the function (Step A-10-1). ). On the other hand, when it is confirmed that the function is not used, the determination unit 15 determines that the trial of the function is stopped, ends the flow for processing the timed mode related to the function, and enters the normal mode. (For example, go to Embodiment 4).
  • the determination unit 15 confirms whether or not the timer started in Step A-9 or A-9-1 has exceeded a predetermined time set in advance (Step A-11). If not, it is determined that the time mode is still in effect, and the process returns to Step A-10 again. On the other hand, if it exceeds, it is determined that the timed mode has ended, and the function selection unit 17 is instructed to invalidate the corresponding function. The function selection unit 17 invalidates the function (Step A-5), and ends the flow for processing the timed mode.
  • the optical transmission device 1 can provide an operation terminal 2 with a warning so that the operator can be warned that the optical transmission device 1 is in the timed mode.
  • a function for notifying an alarm may be provided.
  • Step A-5 the procedure for forcibly disabling a function at Step A-5 when the timed mode has elapsed has been described.
  • the present invention is not limited to this.
  • the entire optical transmission apparatus 1 is You may make it restart forcibly.
  • Step A-5 it is sufficient that the optical transmission apparatus 1 cannot be appropriately used in a state where the required function authentication key is not held.
  • 1 Optical transmission device 2 operation terminal, 3 management device, 4,4-1 to 4-n LAN interface unit, 5,5-1 to 5-n WAN interface unit, 6 management interface unit, 7,7-1 to 7-n Digital Function Unit, 8, 8-1 to 8-n Client Signal Processing LSI, 9, 9-1 to 9-n OTN Framer LSI, 10, 10-1 to 10-n Digital Coherent DSP-LSI, 11 Information holding unit, 12, 12-1 to 12-n digital signal processing unit, 13, 13-1 to 13-n control unit, 14 device identifier holding unit, 15 determination unit, 16 code processing unit, 17 function selection unit, 18 code generation unit, 19 encryption processing unit, 20 decryption processing unit, 21 code separation unit, 22-1 to 22-n optical transmission processing unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Technology Law (AREA)
  • Multimedia (AREA)
  • Computer Hardware Design (AREA)
  • Computer Security & Cryptography (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Computer And Data Communications (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

 処理装置は、複数の機能を持つ処理部(12)を備える。保持部(11)は処理装置を識別可能な装置識別子を保持する。インタフェース部(6)は複数の機能のうちの特定の機能を有効又は無効に設定するためのコードである機能認証鍵を外部から受信する。制御部(13)は、受信した機能認証鍵に含まれる装置識別子と保持部(11)に保持された装置識別子が一致した場合に機能認証鍵に従って特定の機能を有効又は無効に設定する。

Description

処理装置及び遠隔管理システム
 本発明は、光伝送装置などの処理装置及びそれを遠隔管理する遠隔管理システムに関する。
 大容量のデータを扱うブロードバンドアクセスの急速な普及に伴い、通信トラヒックは年々増加する傾向にある。急増する通信トラヒックに対応するため、光伝送技術の革新が続けられている。近年、1波長あたり100Gbit/s超の伝送容量を実現する伝送技術として、デジタルコヒーレント光伝送技術が開発された(例えば、非特許文献1参照)。
 デジタルコヒーレント光伝送技術を用いた光伝送装置は、例えば100GbE(ギガビット・イーサネット)(イーサネットは登録商標)などのクライアント信号を入出力するLANインタフェース部と、対向する光伝送装置と接続されOTN(Optical Transport Network)信号を入出力するWANインタフェース部と、デジタル機能部とを備える。デジタル機能部は、クライアント信号の終端処理を行うクライアント信号処理LSIと、クライアント信号をOTNフレームにトランスペアレントに収容するOTNフレーマLSIと、デジタルコヒーレントDSP-LSIとを備える。
 従来のコヒーレント光通信方式では、受信装置に局発光源(LO)を具備し、受信光信号とのビート信号をベースバンド又は中間周波数帯に変換し、受信等化波形の識別再生を行う。この構成により、高感度な受信特性や、伝送路である光ファイバの固定的な波長分散補償(遅延等化)などを行うことができる。しかし、従来のコヒーレント光通信方式では、送信光信号と局発光との周波数/位相の同期や偏波トラッキングなどが大きな技術課題となっていた。デジタルコヒーレント光伝送技術では、このような処理をデジタルコヒーレントDSP-LSIを用いたデジタル信号処理によって実現している。デジタルコヒーレントDSP-LSIは、これ以外にも、デジタルフィルタによる波長分散(CD: Chromatic Dispersion)補償や偏波モード分散(PMD: Polarization Mode Dispersion)補償、QPSK(Quadrature Phase Shift Keying)やQAM(Quadrature Amplitude Modulation)といった変調信号の復調処理、誤り訂正(FEC: Forward Error Correction)処理などを行う。このように、デジタルコヒーレントDSP-LSIは、受信光信号のコヒーレント検波を行うために必要な種々の機能が実装されている。
宮本裕、佐野明秀、吉田英二、坂野寿和、「超大容量デジタルコヒーレント光伝送技術」、NTT技術ジャーナル、Vol.23、No.3、PP.13-18(2011年3月)
 光伝送装置を使用する顧客は、光伝送装置に実装されている全ての機能を必要としているわけではない。例えば、顧客Aは、対向する光伝送装置を比較的長い距離で接続し、100Gbit/sの速度で信号を伝送させる。この場合、顧客Aは、変復調フォーマットとして16QAMを用い、より強力な誤り訂正機能であるEFEC(Enhanced FEC)機能を用いたい。一方、顧客Bは、対向する光伝送装置を比較的短い距離で接続し、10Gbit/sの速度で信号を伝送させる。この場合、顧客Bは、変復調フォーマットとしてQPSKを用い、通常のFEC機能で足りる。また、装置間距離が短い場合は、波長分散補償機能は不要である。
 光伝送装置に対する顧客の様々な要望に応えるためには、デジタルコヒーレントDSP-LSIの製造業者は、顧客の嗜好に応じた多様な製品ラインナップを用意する必要があった。また、光伝送装置の製造業者と販売業者は、個々の顧客に応じて機能をカスタマイズした光伝送装置を製造し、供給する必要があった。顧客の要望に応じた製品ラインナップの充実は、デジタルコヒーレントDSP-LSI及び光伝送装置全体の価格を高騰させる要因となっていた。
 さらに、他の顧客Cは、購入当初は10Gbit/sの伝送速度で光伝送装置を運用していたが、通信トラヒックの増大に伴い、伝送速度を100Gbit/sにアップグレードしたいと考えている。この場合、顧客Cは、光伝送装置における機能をアップグレードするため、コヒーレントDSP-LSIをより高機能なものに置換する必要があった。このように、機能のアップグレードには相当に煩雑な作業を伴うという問題があった。
 上述の問題は、光伝送装置に限らず、多様な機能を実装した各種の処理装置について共通の問題となっていた。
 本発明は、上述のような課題を解決するためになされたもので、その目的は処理装置を利用開始した後であっても、処理装置内のデバイス等を置換することなく、その処理装置の機能の一部又は全てを有効化又は無効化できる処理装置及び遠隔管理システムを得るものである。
 本発明に係る処理装置は、複数の機能を持つ処理部を備えた処理装置であって、前記処理装置を識別可能な装置識別子を保持した保持部と、前記複数の機能のうちの特定の機能を有効又は無効に設定するためのコードである機能認証鍵を外部から受信するインタフェース部と、受信した前記機能認証鍵に含まれる装置識別子と前記保持部に保持された前記装置識別子が一致した場合に前記機能認証鍵に従って前記特定の機能を有効又は無効に設定する制御部とを備えることを特徴とする。
 本発明により、処理装置を利用開始した後であっても、処理装置内のデバイス等を置換することなく、その処理装置の機能の一部又は全てを有効化又は無効化できる。
本発明の実施の形態1に係る遠隔管理システムを示す図である。 本発明の実施の形態1に係る光伝送装置を示す図である。 情報保持部に保持される情報の例を示す図である。 本発明の実施の形態1に係る遠隔管理システムの処理フローを示す図である。 本発明の実施の形態1に係るライセンス発行要否確認ステップの処理フローを示す図である。 本発明の実施の形態1に係る機能認証鍵適用ステップ及び要求機能有効化ステップの処理フローを示す図である。 本発明の実施の形態2に係る光伝送装置の情報保持部に保持される情報の例を示す図である。 本発明の実施の形態2に係る光伝送装置の情報保持部に保持される情報の例を示す図である。 本発明の実施の形態2に係る光伝送装置の情報保持部に保持される情報の例を示す図である。 本発明の実施の形態2に係る光伝送装置の情報保持部に保持される情報の例を示す図である。 本発明の実施の形態2に係る遠隔管理システムの処理フローを示す図である。 本発明の実施の形態2に係るライセンス発行要否確認ステップの処理フローの一部を示す図である。 本発明の実施の形態2に係る機能認証鍵適用ステップ及び要求機能有効化ステップの処理フローを示す図である。 本発明の実施の形態3に係る光伝送装置を示す図である。 本発明の実施の形態3に係る光伝送装置の情報保持部に保持される情報を示す図である。 本発明の実施の形態3に係る遠隔管理システムの処理フローを示す図である。 本発明の実施の形態3に係るライセンス発行要否確認ステップの処理フローを示す図である。 本発明の実施の形態3に係る必要ライセンス数の算定ステップの処理を示す図である。 本発明の実施の形態3に係る機能認証鍵適用ステップ及び要求機能有効化ステップの処理フローを示す図である。 本発明の実施の形態3に係る情報保持部に保持される情報の遷移を示す図である。 本発明の実施の形態5に係る遠隔管理システムの時限モードにおける処理フローを示す図である。
 本発明は、多様な機能を実装した処理装置に対し、遠隔から送付されるライセンスコードに基づいて、その処理装置の機能の一部又は全てを有効化/無効化する遠隔管理システムに関するものである。または、遠隔から送付される機能認証鍵に基づいて、自身に実装された機能の一部又は全てを有効化/無効化可能とする処理装置に関するものである。以下では、デジタルコヒーレント光伝送技術を用いた光伝送装置を処理装置の一例として用いて本発明の実施の形態を説明するが、本発明が適用可能な処理装置としては、光伝送装置に限定されるものではない。また、同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。
実施の形態1.
(遠隔管理システムの構成)
 図1は、本発明の実施の形態1に係る遠隔管理システムを示す図である。遠隔管理システムは、光伝送装置1と、操作端末2と、管理装置3とを備える。
 光伝送装置1は、例えば100GbE(ギガビット・イーサネット)(イーサネットは登録商標)などのクライアント信号をOTNフレームにトランスペアレントに収容し、搬送波であるレーザ光に重畳して光伝送路に送信する処理装置である。光伝送装置1の構成の詳細は後述する。
 操作端末2は、操作者(以下、オペレータという。)による操作により、自身と接続された光伝送装置1に対して、光伝送装置1が既に実装している特定の機能を有効化又は無効化するよう指示するコンピュータ装置である。また、操作端末2は、必要に応じて、光伝送装置1が実装している複数の機能のうちの特定の機能を有効又は無効に設定するためのコードである機能認証鍵の発行を管理装置3に依頼し、かつ、管理装置3が発行した機能認証鍵を光伝送装置1へ転送する。
 操作端末2は、一般的な汎用コンピュータ装置であれば必要な機能を充足しうる。この場合、操作端末2には、オペレータの操作に基づき、光伝送装置1及び管理装置3との間で各種信号又は情報をやり取りするためのソフトウェア(以下、管理ソフトウェアという。)がインストールされる。また、図1の例では操作端末2が光伝送装置1とは別の装置として記載されているが、操作端末2の持つ機能が光伝送装置1の内部に実装され、かつオペレータによる操作が光伝送装置1内部の機能により自動的に実施する構成でもよい。
 操作端末2は光伝送装置1の管理インタフェース部に接続されているが、光伝送装置1と操作端末2との接続として多様な形態を採用しうる。例えば、管理インタフェース部がRS-232シリアルインタフェースであり、光伝送装置1と操作端末2とがシリアルケーブルで接続される。または、管理インタフェース部が各種LANインタフェースであり、光伝送装置1と操作端末2とがLANを介して接続されてもよい。後者の場合、光伝送装置1と操作端末2とはTCP/IPプロトコルを用いて情報の送受を行う。接続がシリアルケーブルである場合、操作端末2は典型的には光伝送装置1の設置されたサイト近傍に配置される。接続がLANである場合、操作端末2は光伝送装置1が設置されたサイト近傍のみならず、遠隔位置に設置することができる。
 管理装置3は、操作端末2から機能認証鍵の発行依頼を受け、装置情報に基づいて発行の是非(即ち、操作端末2に接続された光伝送装置1に実装されたある特定の機能を有効化することの妥当性)を検証し、検証結果に応じて対応する機能認証鍵を発行するコンピュータ装置である。管理装置3は、機能認証鍵を発行するために必要な情報を保持するデータベース(DB)を備えており、操作端末2と各種信号や情報をやり取り可能である。管理装置3と操作端末2との間の情報のやり取りは、例えばLAN、インターネット、専用回線などを介した通信によって行う。TCP/IPプロトコルを用いれば両装置間の通信は容易に実現できる。ただし、管理装置3と操作端末2との間で各種信号や情報をやり取りする方法は、通信に限定されるものではない。例えば、光学ディスクやフラッシュメモリなどの媒体に情報を記憶させ、その媒体を移動させて両装置間で情報をやり取りするようにしてもよい。
 本実施の形態に係る遠隔管理システムの動作を説明するため、「光伝送装置1を運用開始する時点では、光伝送装置1が備える機能の一部のみを使用していたものの、時間の経過とともに、より優位な機能の使用を所望するようになった」というシナリオを想定する。この場合、遠隔管理システムは以下の処理を行う。
(Step0:機能設定ステップ)
 操作端末2は、オペレータの操作に基づき、自身に接続された光伝送装置1に対して、光伝送装置1が実装している機能のうち、使用を所望する機能の有効化を指示する。
(Step1:ライセンス要求ステップ)
 光伝送装置1は、操作端末2が指定した機能を有効化するためには追加で機能認証鍵を発行してもらう必要があると判断した場合、情報保持部11に保持された装置識別子と必要な装置情報を操作端末2に送信し、機能認証鍵の発行を操作端末2に依頼する。操作端末2は、所望する機能の情報と、装置情報とを管理装置3に送り、機能認証鍵の発行を依頼する。
(Step2:ライセンス発行ステップ)
 管理装置3は、光伝送装置1に対して要求のあった機能を有効化することの妥当性を検証する。妥当であると判断された場合、管理装置3は光伝送装置1の機能を有効化するための機能認証鍵を発行し、操作端末2へ送る。
(Step3:機能設定ステップ)
 操作端末2は、機能認証鍵を光伝送装置1に送信する。光伝送装置1は、機能認証鍵を受け取り、適用することで、操作端末2が指定した機能が有効化される。
 遠隔管理システムにおける処理の詳細は後述する。なお、上記以外の他のシナリオに対しても本実施の形態に係る遠隔管理システムが有効に働くことは当業者であれば当然に理解できる。
(処理装置である光伝送装置の構成)
 図2は、本発明の実施の形態1に係る光伝送装置を示す図である。光伝送装置1は、LANインタフェース部4と、WANインタフェース部5と、管理インタフェース部6と、デジタル機能部7とを備える。デジタル機能部7は、クライアント信号処理LSI8と、OTNフレーマLSI9と、デジタルコヒーレントDSP-LSI10と、情報保持部11とを備える。デジタルコヒーレントDSP-LSI10は、デジタル信号処理部12と制御部13を備える。
 LANインタフェース部4は、クライアント信号を入出力するインタフェースである。クライアント信号処理LSI8は、クライアント信号の終端処理を行う。OTNフレーマLSI9は、クライアント信号をOTNフレームにトランスペアレントに収納し、OTNフレームを形成する。デジタル信号処理部12は、WANインタフェース部5を介して光信号のコヒーレント検波を行うために必要な複数の機能を持つ。コヒーレント検波に必要な機能とは、例えば波長分散(CD)補償や偏波モード分散(PMD)補償、偏波分離、変調信号の復調処理、誤り訂正(FEC)処理などである。WANインタフェース部5は、搬送波であるレーザ光にOTNフレームを重畳したOTN信号を、対向する光伝送装置1との間で送受信する。ここまでの構成は、従来のデジタルコヒーレント技術を用いた光伝送装置1の構成と同じである。
 制御部13は、情報保持部11と共働し、本発明を実施するうえで最も重要な役割を果たす。制御部13は、装置識別子保持部14と、判定部15と、コード処理部16と、機能選択部17とを備える。コード処理部16は、コード生成部18と、暗号処理部19と、復号処理部20と、コード分離部21とを備える。コード生成部18と暗号処理部19は、管理インタフェース部6を介して操作端末2に送信するための各種信号を生成する。復号処理部20とコード分離部21は、操作端末2が送信し管理インタフェース部6を介して受信した各種信号を解読する。装置識別子保持部14は、制御対象であるデジタルコヒーレントDSP-LSI10に対して一意に割り振られ光伝送装置1を識別可能な装置識別子(ID)を保持する。装置識別子は、本発明を実施する者が適切に管理又は付与できるものであればどのような様式でもよい。装置識別子は、デジタルコヒーレントDSP-LSI10の製造時に固定的に設定した値でもよい。または、装置識別子保持部14内に乱数生成器を備え、運用上は他のデジタルコヒーレントDSP-LSI10の装置識別子と重複しない程度にランダム化された乱数を用いるようにしてもよい。制御部13の具体的な実施の形態は、後述する処理フローの説明にて詳述する。
 図2では、デジタル信号処理部12と制御部13が同じハードウェア・プロセッサ(デジタルコヒーレントDSP-LSI10)に実装される。ただし、これに限らず、デジタル信号処理部12と制御部13を異なるハードウェア・プロセッサに実装してもよい。または、制御部13は、ソフトウェア処理可能な汎用プロセッサでもよい。例えば、デジタル信号処理部12がハードウェア処理可能なネットワーク・プロセッサであり、これと電気的に接続された汎用プロセッサを制御部13として、当該ネットワーク・プロセッサの外部に設けるようにしてもよい。この場合、制御部13の機能を実行するための制御ソフトウェアは、汎用プロセッサに電気的に接続されたリードオンリーメモリー(ROM)やフラッシュメモリなどの不揮発性メモリに記憶されており、光伝送装置1の起動時に汎用プロセッサが当該不揮発性メモリから制御ソフトウェアを読み出し、実行する。
(情報保持部の構成)
 情報保持部11は、制御部13から取得したデジタルコヒーレントDSP-LSI10のIDである装置識別子や装置ステータス情報などの装置情報を保持する。さらに、管理装置3が発行した機能認証鍵も保持する。これらの情報は、判定部15の指示に応じて制御部13に提供される。情報保持部11は、例えばEEPROM(Electrically Erasable Programmable Read-Only Memory)などの不揮発性メモリであればよい。なお、遠隔管理システムの用途によっては、情報保持部11として揮発性メモリを用いることも可能である。情報保持部11が不揮発性メモリである場合、情報保持部11は、制御部13に備わる装置識別子保持部14の機能を兼ね備えるようにしてもよい。この場合は、制御部13に装置識別子保持部14を備える必要はない。このように情報保持部11には光伝送装置1の機能の遠隔管理・設定に必要な重要な情報が保持される。従って、詐称や盗聴によって悪意ある第三者に保持された情報を詐取されることを防止するため、または、悪意ある第三者によって保持された情報の書き換えを防止するため、情報保持部11は情報を暗号化して保持するなどの適切な管理を行うことが望ましい。
 図3は、情報保持部に保持される情報の例を示す図である。前述のように制御部13の装置識別子保持部14に保持された装置識別子が情報保持部11にコピーされ保持される。
 装置ステータス情報は、少なくともデジタルコヒーレントDSP-LSI10が製造時点で既に実装している機能(以下、実装機能という。)と、これらの機能の現在の利用状況(有効化又は無効化)とを含む。なお、図3における「機能利用状況」欄は、0が無効(無効化)、1が有効(有効化)の状態であることを示している。上記以外に、装置ステータス情報として、デジタルコヒーレントDSP-LSI10のバージョン情報、エラー情報や電源投入経過時間など、デジタルコヒーレントDSP-LSI10の態様によって様々な情報を採用しうる。これらの情報は、制御部13と連携して生成され、制御部13により読み取り可能な形式に符号化されて情報保持部11に保持される。
 機能認証鍵は、管理装置3が発行し、光伝送装置1が備えるデジタルコヒーレントDSP-LSI10が実装している機能を有効化又は無効化するために用いられる認証鍵である。機能認証鍵には、少なくとも、当該機能認証鍵が作用すべきデジタルコヒーレントDSP-LSI10の装置識別子(図3中の対象装置識別子に相当)と、有効化させるべき機能の情報(図3中の対象機能に相当)が含まれる。それ以外に、例えば当該機能認証鍵が有効に働く期間に関する情報(図3中の有効期限に相当)など、デジタルコヒーレントDSP-LSI10及び遠隔管理システムの態様によって様々な情報を採用しうる。デジタルコヒーレントDSP-LSI10に対して機能の有効化と無効化の双方の処理を可能とするためには、機能認証鍵に、対象機能の有効化及び無効化の何れかを指示する機能設定フラグを含めるようにすればよい。なお、対象機能やその他の装置情報は、光伝送装置1や管理装置3が解読可能とされた適切な符号に変換され、機能認証鍵に含まれる。
 機能認証鍵は、後述するとおり、暗号化して光伝送装置1へ送信するための信号形式であるライセンスコードとして光伝送装置1へ供給される。情報漏えい防止の観点から、機能認証鍵は復号化された状態ではなく、ライセンスコードのままの形式、即ち暗号化された状態で情報保持部11に保持されるようにしてもよい。
 なお、管理装置3に備わるDBには、当該管理装置3が管理すべき光伝送装置1に含まれる全デジタルコヒーレントDSP-LSI10に関連する装置識別子、装置ステータス情報などの装置情報が事前に保持されている。図1の説明の際に述べた、管理装置3に備わるDBが保有する「機能認証鍵を発行するために必要な情報」は、これらの情報を含む。
(遠隔管理システムの処理の説明)
 以下、図面を参照しながら、本実施の形態に係る遠隔管理システムの処理を詳細に説明する。図4は、本発明の実施の形態1に係る遠隔管理システムの処理フローを示す図である。なお、以下では、図2のように1台の光伝送装置1に1つのデジタルコヒーレントDSP-LSI10が実装された光伝送装置1を対象に、デジタルコヒーレントDSP-LSI10にて有効化されていないある特定の機能を、操作端末2による指示をきっかけとして有効化する処理について説明する。デジタルコヒーレントDSP-LSI10に対する機能の有効化と無効化の双方の処理を行うためには、以下で示す処理フローにおいて各装置間で交信される信号に、前述の機能設定フラグを含めるようにすればよい。
(Step0:機能設定ステップ)
 操作端末2は、オペレータの操作によって管理ソフトウェアを起動し、自身と接続された光伝送装置1に対し、当該光伝送装置1が実装している機能の遠隔管理に関する処理を受け付けられるようにする。操作端末2は、オペレータによる管理ソフトウェアの操作に応じて、自身に接続された光伝送装置1のデジタルコヒーレントDSP-LSI10が実装している機能のうち使用を所望する機能(以下、要求機能という。)を特定し、当該光伝送装置1の管理インタフェース部6に対して、要求機能の有効化を指示するための信号である機能設定信号を送付する。
(Step1:ライセンス要求ステップ)
(Step1-1:ライセンス発行要否確認ステップ)
 光伝送装置1の管理インタフェース部6の受信部が機能設定信号を受信すると、当該機能設定信号は判定部15へ送られる。なお、図2には、機能設定信号がコード処理部16を経由して判定部15へ送られる構成が記載されているが、必ずしもこのような構成に限定する必要はない。デジタルコヒーレントDSP-LSI10の実装形態に基づき、判定部15が適切に機能設定信号を受信できるようになっていればよい。
 図5は、本発明の実施の形態1に係るライセンス発行要否確認ステップの処理フローを示す図である。機能設定信号を受信した判定部15は、当該機能設定信号から要求機能を特定する(Step1-1-1)。判定部15は、情報保持部11にアクセスして特定した要求機能に関連する機能認証鍵を検索し(Step1-1-2)、情報保持部11に該当する機能認証鍵が存在するか否かを確認する(Step1-1-3)。該当する機能認証鍵が存在する場合、判定部15は、要求機能は既に有効化されており新たに機能認証鍵を得る必要はないと判断し、機能設定完了通知信号を生成し、管理インタフェース部6の送信部を介して、操作端末2へ送信する。一方、情報保持部11には要求機能に関連する機能認証鍵がない場合、判定部15は、次のステップStep1-2を処理する。なお、図3のように機能認証鍵が有効に働く期間(有効期間)を含んでいる場合、前述のStep1-1-3では、機能認証鍵の存在の確認だけでなく、機能を利用可能な期間内であるか否かも確認する。
(Step1-2:ライセンス発行要求ステップ)
 判定部15は、情報保持部11又は装置識別子保持部14から少なくとも装置識別子を取得する。さらに、判定部15は、取得した装置識別子と、機能設定信号から特定された要求機能に関する情報とをコード処理部16に送付するとともに、当該装置識別子及び要求機能の情報を含むライセンス要求信号を生成するよう指示する。
 ライセンス要求信号は、少なくとも装置識別子及び要求機能の情報を含み、当該装置識別子を管理装置3に通知するための信号である。ただし、光伝送装置1の外部でライセンス要求信号を盗み見られたとしても装置識別子を含むコードの内容が把握されないよう、後述のとおり適切な秘匿手段にて内容が秘匿されるべきである。
 判定部15の指示を受けたコード処理部16は、コード生成部18により装置識別子及び要求機能を含むコードを生成する。コード生成部18は、例えば装置識別子や要求機能の前後に、所定の長さで所定の符号からなる区切りコードを付与する。この区切りコードは管理装置3も把握しており、管理装置3はその区切りコードを目印に装置識別子と要求機能とを解読する。なお、コード生成部18は、装置識別子の情報と他の情報とを一体としてコードを作成するようにしてもよい。その場合も、適切に区切りコードを付与しておけば、管理装置3は光伝送装置1が送信してきた種々の情報を解読することができる。
 コード生成部18が生成したコードはコード処理部16の暗号処理部19に送られる。暗号処理部19は、このコードを所定のアルゴリズムで暗号化し、管理装置3へ送るためのライセンス要求信号を作成する。ライセンス要求信号を生成するための暗号化手段として、例えば公開鍵暗号方式における公開鍵を用いてコードを暗号化する。公開鍵暗号方式を用いることで、デジタルコヒーレントDSP-LSI10には秘密鍵を実装する必要がなくなるため、盗聴などによる秘密鍵の流出を防ぐことができ、装置識別子の漏えいを防ぐことができる。暗号化されたライセンス要求信号は、暗号処理部19から管理インタフェース部6の送信部へ送られる。管理インタフェース部6の送信部は、ライセンス要求信号を操作端末2へ送信する。
 なお、共通鍵方式、公開鍵方式などの何れの暗号化アルゴリズムであったとしても、それらの暗号化鍵は、デジタルコヒーレントDSP-LSI10中にハードウェア実装として埋め込むことで、第三者が外部から暗号化鍵を読み取ることが困難になる。また、ワンタイムプログラマブル等出荷時に一度だけ書き込むことができる機能を利用することで、デジタルコヒーレントDSP-LSI10の出荷時に書き込む暗号化鍵をチップごとに異ならせることも可能となる。その場合、あるチップの暗号化鍵が漏えいしたとしても、他のチップに書き込まれた暗号化鍵まで第三者に知られてしまうリスクを低減することができる。
(Step1-3:ライセンス要求信号転送ステップ)
 機能設定信号の応答としてライセンス要求信号を受信した操作端末2は、受信したライセンス要求信号を、必要に応じて管理装置3と交信可能な適切な信号フォーマットに変換し、管理装置3に送信する。操作端末2は、管理ソフトウェアに記載された命令に沿って、ライセンス要求信号を受信した後、当該ライセンス要求信号を自動的に送信してもよい。または、操作端末2は、オペレータによる管理ソフトウェアの操作を待ち、オペレータの指示に基づきライセンス要求信号を送信してもよい。
 なお、操作端末2はライセンス要求信号を復号化するための復号鍵(公開鍵暗号方式を用いた場合は秘密鍵に相当)を保持していないため、操作端末2はライセンス要求信号を復号できず、装置識別子を検知することができない。また、前述のとおり、操作端末2と管理装置3との間でライセンス要求信号を交信する手段として無線又は有線による通信を用いてもよい。または、記憶媒体を操作端末2から管理装置3へ移動させることでライセンス要求信号を受け渡すようにしてもよい。
(Step2:ライセンス発行ステップ)
 ライセンス要求信号を受信した管理装置3は、当該ライセンス要求信号を復号鍵を用いて復号し、装置識別子と要求機能とを解読する。ライセンス要求信号の暗号化に公開鍵暗号方式が用いられている場合、ライセンス要求信号は秘密鍵を用いて復号化する。この場合、秘密鍵は管理装置3のみに実装されており、他の装置又は端末ではライセンス要求信号を復号することができず、装置識別子の漏えいを防止することができる。管理装置3は、解読した装置識別子に対応するデジタルコヒーレントDSP-LSI10に対して所望の要求機能を有効化することの妥当性を検証する。
 管理装置3は、解読した装置識別子をキーとして自身が備えるデータベース(DB)を検索し、当該装置識別子が存在するか否かを確認する。存在しない場合、要求機能の有効化は無効と判断し、遠隔管理システムの処理フローを中止する。または、所定の終端処理を行うようにしてもよい。
 ライセンス要求信号に記載された装置識別子が存在する場合、管理装置3はDBをさらに検索し、当該装置識別子に対応するデジタルコヒーレントDSP-LSI10の「実装機能一覧」を確認する。機能を有効化すべきデジタルコヒーレントDSP-LSI10に当該機能が実装されていないことが確認された場合、要求機能の有効化は無効と判断し、遠隔管理システムの処理フローを中止する。または、所定の終端処理を行うようにしてもよい。さらに、管理装置3はDBを検索し、当該装置識別子に対応する「現在有効化されている機能一覧」を確認する。デジタルコヒーレントDSP-LSI10の所望の機能が既に有効化されていることが確認された場合、要求機能の有効化は不要と判断し、遠隔管理システムの処理フローを中止する。または、所定の終端処理を行うようにしてもよい。
 上述の処理にて、ライセンス要求信号に記載された装置識別子に対応するデジタルコヒーレントDSP-LSI10に要求機能が実装されており、かつ、当該要求機能が現時点で有効化されていないことが確認された場合、管理装置3は、所望の要求機能を有効化することは妥当と判断する。ただし、上述した要求機能が有効化されているかどうかを確認するプロセスは、必ずしも実行する必要はない。
 なお、例えば管理装置3と公知の課金システムを組合せ、上述の妥当性判断を行うにあたり、要求機能を利用するためのロイヤルティ支払いの有無なども判断材料に用いてもよい。
 検証の結果、要求機能の有効化は妥当と判断された場合、管理装置3は、当該要求機能を有効化するために光伝送装置1へ届けられる機能認証鍵を発行する。管理装置3は、発行した機能認証鍵を、光伝送装置1へ送信するための信号形式であるライセンスコードに保持し、操作端末2に送信する。
 機能認証鍵は、少なくとも制御対象である光伝送装置1が送信した装置識別子と、有効化すべき要求機能を示す情報とを含む。機能認証鍵は、例えば装置識別子や要求機能の前後に、所定の長さで所定の符号からなる区切りコードを付与するような構成としてもよい。
 光伝送装置1又は管理装置3の外部でライセンスコードを盗み見られたとしても機能認証鍵の内容が把握されないよう、あるいは、ライセンスコードが書き換えられて異なる装置識別子に改ざんされることがないよう、ライセンスコードは適切な暗号化手段にて秘匿されることが望ましい。
(Step3:機能設定ステップ)
(Step3-1:ライセンスコード転送ステップ)
 ライセンス要求信号の応答としてライセンスコードを受信した操作端末2は、当該ライセンスコードを、自身に接続された光伝送装置1の管理インタフェース部6へ転送する。
 なお、操作端末2はライセンスコードを復号化するための復号鍵を保持していないため、操作端末2はライセンスコードを復号することができない。よって、操作端末2のオペレータがライセンスコードの中身を読み取ることはできず、ライセンスコードの内容が漏えいすることを防止できる。
 ただし、操作端末2はライセンスコードが到来したことを知ることができるため、指定したデジタルコヒーレントDSP-LSI10に対する要求機能の有効化が管理装置3によって承認されたことは伺い知ることができる。
(Step3-2:機能認証鍵適用ステップ)
 光伝送装置1の管理インタフェース部6の受信部がライセンスコードを受信すると、当該ライセンスコードはコード処理部16の復号処理部20へ送られる。ライセンスコードを受信した復号処理部20は、当該ライセンスコードを復号化し、機能認証鍵を生成する。復号処理部20は、復号化され平文となった機能認証鍵をコード分離部21に送信する。コード分離部21は、受信した機能認証鍵から装置識別子を分離して抽出し、装置識別子と機能認証鍵を判定部15に送信する。
 図6は、本発明の実施の形態1に係る機能認証鍵適用ステップ及び要求機能有効化ステップの処理フローを示す図である。装置識別子と機能認証鍵を受信した判定部15(Step3-2-1)は、コード分離部21から転送された装置識別子と、情報保持部11又は装置識別子保持部14に保持された装置識別子とを比較する(Step3-2-2)。両装置識別子が一致した場合、判定部15は先のライセンスコードが自身に対して送信されたものと判定し、次の処理へ進む。両装置識別子が異なっていた場合、判定部15は受信した装置識別子及び機能認証鍵とを破棄し、判定処理フローを終了する。
 機能認証鍵が自身に向けて送信されたものと判定された場合、判定部15は、コード処理部16から転送された機能認証鍵を情報保持部11へ保持する(Step3-2-3)。または、判定部15は、管理装置3から送信された、暗号化された状態の機能認証鍵(ライセンスコード)を情報保持部11へ保持するようにしてもよい。同時に、判定部15は機能選択部17に対し、機能認証鍵が情報保持部11に新たに追加されたことを通知する(Step3-2-4)。
(Step3-3:要求機能有効化ステップ)
 機能選択部17は、判定部15からの通知に基づき、情報保持部11にアクセスし、情報保持部11に含まれる全ての機能認証鍵を受信する(Step3-3-1)。機能認証鍵が暗号化された状態であるライセンスコードとして情報保持部11に保持されている場合は、機能選択部17はライセンスコードをいったん復号処理部20に送って復号化させた後、機能認証鍵を受信するようにしてもよい。
 機能選択部17は、受信した全ての機能認証鍵を適用し、機能認証鍵にて指定された機能を個々に有効化する(Step3-3-2)。機能選択部17は、上述の機能設定を行った後、機能設定が成功したことを通知するための信号を判定部15に送信する(Step3-3-3)。機能選択部17からの通知を受信した判定部15は、情報保持部11に保持された装置ステータス情報のうち、新たに有効化した機能に対する機能利用状況を「1」に更新する(Step3-3-4)。
 判定部15は、デジタルコヒーレントDSP-LSI10に対して機能認証鍵で指定された機能を有効化したことを操作端末2へ通知するための機能設定完了通知信号を生成し、管理インタフェース部6の送信部を介して、操作端末2へ送信する(Step3-3-5)。
(Step4:操作終端ステップ)
 機能設定完了通知信号を受信した操作端末2は、管理ソフトウェアの命令で開始された、光伝送装置1における機能の遠隔設定に関する処理を終端する。
 以上述べたとおり、本実施の形態に係る遠隔管理システムでは、処理装置である光伝送装置1を利用開始した後であっても、光伝送装置1内のデジタルコヒーレントDSP-LSI10を置換することなく、そのLSIに実装された機能の一部又は全てを、遠隔からの操作により有効化又は無効化できる。
 また、デジタル信号処理部12(デジタルコヒーレントDSP-LSI10)を遠隔からの操作により機能設定するための機能認証鍵を管理装置3が発行する際、機能認証鍵には光伝送装置1が送信したデジタルコヒーレントDSP-LSI10の装置識別子を含めるため、他の処理装置に対して発行された機能認証鍵の流用を防止することができる。そして、光伝送装置1に保持された装置識別子が秘匿されて保持され、かつ、光伝送装置1と管理装置3とで交信する情報が暗号化されていれば、装置識別子は第三者が容易に認知することができなくなるため、機能認証鍵の偽造も防止することができる。
実施の形態2.
 本発明の実施の形態2に係る遠隔管理システム及び光伝送装置1(処理装置)の構成は実施の形態1と同様である。ただし、情報保持部11に保持される装置情報及び機能認証鍵の構成が実施の形態1と異なる。
 図7~10は、本発明の実施の形態2に係る光伝送装置の情報保持部に保持される情報の例を示す図である。実施の形態1と異なり、装置ステータス情報と機能認証鍵には、デジタルコヒーレントDSP-LSI10が実装する複数の機能のそれぞれに対して発行された機能認証鍵の総数である「ライセンス発行回数」が含まれる。
(遠隔管理システムの処理の説明)
 以下、図面を参照しながら、本実施の形態に係る遠隔管理システムの処理を詳細に説明する。図11は、本発明の実施の形態2に係る遠隔管理システムの処理フローを示す図である。なお、以下では、デジタルコヒーレントDSP-LSI10に対して有効化されていない機能を有効化する設定と、有効化されている機能を無効化する設定の双方の処理フローについて説明する。
(Step0:機能設定ステップ)
 実施の形態1と同様に、操作端末2がオペレータの操作に応じて、自身に接続された光伝送装置1のデジタルコヒーレントDSP-LSI10が実装している機能のうち有効化又は無効化する機能(以下、要求機能という。)を特定し、要求機能と、当該要求機能を有効化又は無効化を指示する機能設定情報を含む機能設定信号を光伝送装置1へ送付する。
(Step1:ライセンス要求ステップ)
(Step1-1:ライセンス発行要否確認ステップ)
 本実施の形態におけるライセンス発行要否確認ステップは、実施の形態1におけるそれとほぼ同じであるが、Step1-1-3の処理が異なる。図12は、本発明の実施の形態2に係るライセンス発行要否確認ステップの処理フローの一部を示す図である。実施の形態1では、Step1-1-3にて、光伝送装置1の制御部13が「情報保持部11に要求機能に該当する機能認証鍵が存在する場合、当該要求機能は既に有効化されているため新たな機能認証鍵を得る必要はないと判断し、処理フローを終了する」という動作を行っていた。一方、実施の形態2では、光伝送装置1における機能の無効化の処理を可能とするため、実施の形態1のStep1-1-3に代えて、図12のStep1-1-3’を採用する。即ち、判定部15は、情報保持部11にアクセスして要求機能に関連する機能認証鍵を検索した後(Step1-1-2)、機能設定信号が有効化の設定を指示しているのか、又は無効化の設定を指定しているのかを確認する(Step1-1-3-1)。有効化の設定を指示していると確認した場合、情報保持部11に要求機能に関連する機能認証鍵が存在するか否かを確認する(Step1-1-3-2)。機能認証鍵が存在しない場合は、該当する機能は初期状態である、即ち現時点では無効化されている(情報保持部11の内容は図7に相当)ため、判定部15は次のステップStep1-2を処理する。
 情報保持部11に要求機能に関連する機能認証鍵が存在する場合、当該機能認証鍵における設定フラグを確認する(Step1-1-3-3)。それが有効化のフラグである場合(情報保持部11の内容は図8又は図10に相当)、判定部15は、当該要求機能は既に有効化されており新たに機能認証鍵を得る必要はないと判断し、機能設定完了通知信号を生成して操作端末2へ送信し、処理フローを終了する。
 一方、Step1-1-3-3にて、確認した設定フラグが無効化である場合(情報保持部11の内容は図9に相当)、判定部15は次のステップStep1-2を処理する。
 Step1-1-3-1にて、機能設定信号が無効化の設定を指示していると確認した場合、情報保持部11に要求機能に関連する機能認証鍵が存在するか否かを確認する(Step1-1-3-4)。機能認証鍵が存在しない場合は、該当する機能は初期状態である、即ち現時点では無効化されている(情報保持部11の内容は図7に相当)ため、判定部15は無効化のための機能認証鍵を得る必要はないと判断し、機能設定完了通知信号を生成して操作端末2へ送信し、処理フローを終了する。
 情報保持部11に要求機能に関連する機能認証鍵が存在する場合、当該機能認証鍵における設定フラグを確認する(Step1-1-3-5)。それが無効化のフラグである場合(情報保持部11の内容は図9に相当)、判定部15は、無効化のための機能認証鍵を得る必要はないと判断し、機能設定完了通知信号を生成して操作端末2へ送信し、処理フローを終了する。
 一方、Step1-1-3-5にて、確認した設定フラグが有効化である場合(情報保持部11の内容は図8又は図10に相当)、判定部15は無効化のための機能認証鍵を得るため、次のステップStep1-2を処理する。
 上述した図11の処理フローは、総括すると表1の処理を行うことと等価である。
Figure JPOXMLDOC01-appb-T000001
(Step1-2:ライセンス発行要求ステップ)
 実施の形態1のStep1-2と同様の処理を行う。ただし、判定部15が生成するライセンス要求信号が、少なくとも装置識別子、ライセンス発行回数、要求機能、及び当該要求機能の有効化/無効化の何れの設定を行うのかを示す機能設定情報を含む点で相違する。
 ライセンス発行回数とは、デジタルコヒーレントDSP-LSI10が実装する機能のそれぞれに対して、これまでに発行され、かつ自装置に適用済みの機能認証鍵の総数である。詳細は後述するが、「ライセンス発行回数」を装置ステータス情報として含み、かつその「ライセンス発行回数」の情報をライセンス要求信号に加えて管理装置3に通知することで、過去に発行された機能認証鍵を再度適用して要求機能を有効化することを防止することができる。
(Step1-3:ライセンス要求信号転送ステップ)
 実施の形態1のStep1-3と同様の処理を行う。ただし、この処理で扱うライセンス要求信号は、上述のとおり、少なくとも装置識別子、ライセンス発行回数、要求機能、及び機能設定情報を含む。
(Step2:ライセンス発行ステップ)
 実施の形態1のStep2と同様の処理を行う。ただし、要求機能を無効化する場合には、管理装置3が、DBにおける設定対象の装置識別子に対応する「現在有効化されている機能一覧」を参照し、当該要求機能が有効化されていることを確認したことをもって、機能認証鍵の発行が妥当であると判断する。
 さらに、管理装置3が発行する機能認証鍵には、図8~10に示したように、少なくとも制御対象である装置識別子、要求機能に関して光伝送装置1が送信したライセンス発行回数、要求機能、及び当該要求機能を有効化/無効化の何れの設定を行うのかを指示する設定フラグを含む点で相違する。
(Step3:機能設定ステップ)
(Step3-1:ライセンスコード転送ステップ)
 実施の形態1のStep3-1と同様の処理を行う。ただし、この処理で扱うライセンスコードに含まれる機能認証鍵は、上述のとおり、少なくとも装置識別子、ライセンス発行回数、要求機能、及び設定フラグを含む。
(Step3-2:機能認証鍵適用ステップ)
 図13は、本発明の実施の形態2に係る機能認証鍵適用ステップ及び要求機能有効化ステップの処理フローを示す図である。実施の形態2では、光伝送装置1における機能の無効化の処理を可能とするため、実施の形態1のStep3-2(Step3-2-1~Step3-2-3)に代えて、図13のStep3-2’を採用する。その詳細は以下の通りである。
 光伝送装置1の管理インタフェース部6の受信部がライセンスコードを受信すると、当該ライセンスコードはコード処理部16の復号処理部20へ送られる。ライセンスコードを受信した復号処理部20は、当該ライセンスコードを復号化し、機能認証鍵を生成する。復号処理部20は、復号化され平文となった機能認証鍵をコード分離部21に送信する。コード分離部21は、受信した機能認証鍵から装置識別子及びライセンス発行回数を分離して抽出し、装置識別子、ライセンス発行回数と機能認証鍵を判定部15に送信する。
 装置識別子、ライセンス発行回数と機能認証鍵とを受信した判定部15(図13のStep3-2-1’)は、まず、コード分離部21から転送された装置識別子と、情報保持部11に保持されている装置識別子とを比較する(Step3-2-2-1)。両装置識別子が一致した場合、判定部15は先のライセンスコードが自身に対して送信されたものと判定し、次の処理へ進む。両装置識別子が異なっていた場合、判定部15は受信した機能認証鍵を破棄し、判定処理フローを終了する。
 次に、判定部15は、コード分離部21から転送されたライセンス発行回数と、情報保持部11に保持されているライセンス発行回数とを比較する(Step3-2-2-2)。両ライセンス発行回数が異なっていた場合、判定部15は不正な機能認証鍵が送付されたと判断し、受信した機能認証鍵を破棄し、判定処理フローを終了する。一方、両ライセンス発行回数が一致した場合、判定部15は正規の機能認証鍵が送付されたと判断し、次の処理へ進む。
 判定部15は、コード処理部16から転送された機能認証鍵を情報保持部11へ送信して保持する(Step3-2-3)。なお、既に情報保持部11に同じ要求機能に関する従前の機能認証鍵が保持されている場合は、新しい機能認証鍵に置換する。もっとも、ある機能における最新の機能認証鍵がどれであるかを判別できるようにされていれば、古い鍵と新しい鍵とを混在させてあっても構わない。例えば、機能認証鍵のライセンス発行回数が最大のものを「最新」の鍵と判断すればよい。同時に、判定部15は機能選択部17に対し、機能認証鍵が情報保持部11に新たに追加されたことを通知する(Step3-2-4)。これらは実施の形態1と同様の処理である。
(Step3-3:要求機能有効化ステップ)
 実施の形態2では、実施の形態1のStep3-3(Step3-3-1~Step3-3-4)に代えて、図13のStep3-3’を採用する。その詳細は以下の通りである。
 機能選択部17は、判定部15からの通知に基づき、情報保持部11にアクセスし、情報保持部11に含まれる全ての機能認証鍵を受信する(Step3-3-1)。機能選択部17は、受信した全ての機能認証鍵のうち最新の鍵を適用し、当該機能認証鍵にて指定された機能のそれぞれを、機能認証鍵の設定フラグの情報に基づき、要求機能を有効化又は無効化する(Step3-3-2)。機能選択部17は、上述の機能設定を行った後、機能設定が成功したことを通知するための信号を判定部15に送信する(Step3-3-3)。
 機能選択部17からの通知を受信した判定部15は、情報保持部11に保持された装置ステータス情報のうち、新たに機能設定(これは、有効化及び無効化の両者を含む)を行った機能に対する機能利用状況を更新するとともに、当該機能に対するライセンス発行回数を「1」だけ増加させる(Step3-3-4)。判定部15は、デジタルコヒーレントDSP-LSI10に対して機能認証鍵で指定された機能を有効化したことを操作端末2へ通知するための機能設定完了通知信号を生成し、管理インタフェース部6の送信部を介して、操作端末2へ送信する(Step3-3-5)。
(Step4:操作終端ステップ)
 実施の形態1のStep4と同様の処理を行う。
 以上述べたとおり、本実施の形態に係る遠隔管理システムでは、処理装置である光伝送装置1を利用開始した後であっても、光伝送装置1内のデジタルコヒーレントDSP-LSI10を置換することなく、そのLSIに実装された機能の一部又は全てを、遠隔から送付される機能認証鍵により有効化又は無効化することができる。さらに、光伝送装置1はライセンス発行回数を保持し、機能の設定にはこのライセンス発行回数を含む機能認証鍵を用いるようにすることで、無効化されている機能を有効化する際、過去に発行された機能認証鍵を再度適用して要求機能を有効化するといった不正な行為を防止することができる。後者の効果が期待できる理由を、図7~10を用いて説明する。
 図7は、光伝送装置1の初期状態(最初の起動時)における情報保持部11内の情報の例を示している。まだ何れの機能も有効化されていないことから、機能認証鍵は1つも保持されていない。そして、装置ステータス情報におけるライセンス発行回数も、全て「0」となっている。
 図8は、光伝送装置1を最初に起動した後、図11の処理を行い「QPSK復調機能」を有効化したときの、情報保持部11内の情報の例を示している。この状態は、例えば、光伝送装置1を起動後、まずはこの機能を無償で試用し、性能を評価している段階である。図7における「QPSK復調機能」のライセンス発行回数は「0」であったため、図11の処理の結果として管理装置3が生成する機能認証鍵(図8の機能認証鍵に相当)は、ライセンス発行回数が「0」となっている。そして、図8の機能認証鍵を適用したため、装置ステータス情報の「QPSK復調機能」の欄は、判定部15によって機能利用状況が「1」(有効化)に、ライセンス発行回数が「1」(1回目の機能認証鍵を適用)に更新されている。
 図9は、「QPSK復調機能」を1回有効化した後、図11の処理を再度行い無効化したときの、情報保持部11内の情報の例を示している。この状態は、例えば、ある機能を評価したが、実運用では使用する必要がないと判断し、試用をとりやめた段階である。図8における「QPSK復調機能」のライセンス発行回数は「1」であったため、図11の処理の結果として管理装置3が生成する機能認証鍵(図9の機能認証鍵に相当)は、ライセンス発行回数が「1」となっている。そして、図9の機能認証鍵を適用したため、装置ステータス情報の「QPSK復調機能」の欄は、判定部15によって機能利用状況が「0」(無効化)に、ライセンス発行回数が「2」(2回目の機能認証鍵を適用)に更新されている。
 図10は、「QPSK復調機能」を1回有効化してさらに無効化した後、図11の処理を再度行い有効化したときの、情報保持部11内の情報の例を示している。この状態は、例えば、実運用を行っていたところ、当初は不要と思われたある機能がやはり必要となったため、当該機能のライセンスを買い求めた段階である。図9における「QPSK復調機能」のライセンス発行回数は「2」であったため、図11の処理の結果として管理装置3が生成する機能認証鍵(図10の機能認証鍵に相当)は、ライセンス発行回数が「2」となっている。そして、図10の機能認証鍵を適用したため、装置ステータス情報の「QPSK復調機能」の欄は、判定部15によって機能利用状況が「1」(有効化)に、ライセンス発行回数が「3」(2回目の機能認証鍵を適用)に更新されている。
 ここで、情報保持部11がライセンス発行回数を保持しておらず、かつ、光伝送装置1と管理装置3とが交信した結果として生成される機能認証鍵にライセンス発行回数が含まれていなかったと仮定する。この場合、図8の機能認証鍵(これは、前述の例では「試用ライセンス」に相当する)は、情報保持部11に図9の情報が保持された光伝送装置1に容易に適用することができる。この結果として「QPSK復調機能」を無償で有効化することができてしまう。
 一方、本実施の形態では、情報保持部11がデジタルコヒーレントDSP-LSI10に実装された個々の機能に対するライセンス発行回数を保持しており、かつ、光伝送装置1に機能の遠隔設定を与える機能認証鍵がライセンス発行回数を含むため、情報保持部11に図9の情報が保持された光伝送装置1に対して図8の機能認証鍵を適用しようとしても、図10におけるStep3-2’の処理によって不正の機能認証鍵であることを判別することができるため、過去に発行された機能認証鍵を再度適用して要求機能を有効化するといった不正な行為を防ぐことができる。
 実施の形態2は、図2のように1台の光伝送装置1に1つのデジタルコヒーレントDSP-LSI10が実装された光伝送装置1(処理装置)を対象とし、この光伝送装置1に備わる機能を遠隔より設定する遠隔管理システムを開示している。本実施の形態は、実施の形態1と同様に、処理装置を利用開始した後であっても、処理装置内のデバイス等を置換することなく、その処理装置の機能の一部又は全てを有効化又は無効化できる。さらに、不正の機能認証鍵であることを判別することができるため、過去に発行された機能認証鍵を再度適用して要求機能を有効化するといった不正な行為を防ぐことができる。
実施の形態3.
 本発明の実施の形態3に係る遠隔管理システムは、実施の形態1,2と異なり、1台の光伝送装置1に複数のデジタルコヒーレントDSP-LSI10が実装された光伝送装置1(処理装置)も対象とし、この光伝送装置1に備わる機能を遠隔より設定する。実施の形態3では、1つの機能認証鍵を用いて、複数のデジタルコヒーレントDSP-LSI10における同一の機能を一括で設定(有効化又は無効化)することができるため、遠隔管理システムのより柔軟かつ低コストな運用が可能となる。
 本実施の形態に係る遠隔管理システムの構成は実施の形態1の図1と同様であり、本実施の形態に係る光伝送装置1(処理装置)は実施の形態1の図2の構成のみならず、1台の光伝送装置1に複数のデジタルコヒーレントDSP-LSI10が実装された構成を含んでもよい。さらに、情報保持部11に保持される装置情報及び機能認証鍵の構成が、実施の形態1,2と異なる。具体的な相違点は後述する。
(処理装置である光伝送装置の構成)
 図14は、本発明の実施の形態3に係る光伝送装置を示す図である。また、図15は、本発明の実施の形態3に係る光伝送装置の情報保持部に保持される情報を示す図である。
 本実施の形態に係る光伝送装置1は、LANインタフェース部、WANインタフェース部及びデジタル機能部を1組の光伝送処理部とし、複数の光伝送処理部22-1~22-nを備える。光伝送処理部22-1~22-nのそれぞれは、LANインタフェース部4-1~4-nと、WANインタフェース部5-1~5-nと、デジタル機能部7-1~7-nとを備える。デジタル機能部7-1~7-nのそれぞれは、クライアント信号処理LSI8-1~8-nと、OTNフレーマLSI9-1~9-nと、デジタルコヒーレントDSP-LSI10-1~10-nとを備える。デジタルコヒーレントDSP-LSI10-1~10-nのそれぞれはデジタル信号処理部12-1~12-nと制御部13-1~13-nを備える。これらデジタル機能部の構成及び接続形態は実施の形態1と同様であり、その詳細な説明は省略する。
 なお、実施の形態1ではデジタルコヒーレントDSP-LSI10のデジタル信号処理部12及び制御部13の構成として、「デジタル信号処理部12はハードウェア処理可能なネットワーク・プロセッサであり、制御部13はネットワーク・プロセッサと電気的に接続された汎用プロセッサ(及び制御部13の機能を実行するための制御ソフトウェア)とする」構成を例示した。本実施の形態でも、このような構成例を採用することができる。この場合、図14の構成と異なり、1台の光伝送装置1に対して物理的には1つの制御部(汎用プロセッサ等)を設けるようにし、この1つの制御部がデジタルコヒーレントDSP-LSI10-1~10-nのそれぞれを個別に制御する構成とする。
 本実施の形態に係る光伝送装置1は、複数の光伝送処理部22-1~22-nが共用する管理インタフェース部6及び情報保持部11を更に備える。管理インタフェース部6及び情報保持部11の構成は実施の形態1と同様である。管理インタフェース部6は、デジタルコヒーレントDSP-LSI10-1~10-nのそれぞれが備える制御部13-1~13-nと接続されており、複数の制御部13-1~13-nが操作端末2と交信する各種信号を送受信するための共用の入出力インタフェースである。情報保持部11は、デジタルコヒーレントDSP-LSI10-1~10-nのそれぞれが備える制御部13-1~13-nと接続されており、複数のデジタルコヒーレントDSP-LSI10-1~10-nによって共用され、デジタルコヒーレントDSP-LSI10-1~10-nのそれぞれに関する装置識別子や装置情報、機能認証鍵などを保持する。
 図15に示すように、情報保持部11には少なくとも装置情報と機能認証鍵とが保持される。装置情報は、少なくとも装置識別子、装置ステータス情報及びライセンス情報を含む。装置識別子は、1つのデジタルコヒーレントDSP-LSIに対して一意に割り振られた識別子(ID)情報である。情報保持部11には、光伝送装置1に備わり、既に実装された機能の有効化/無効化の設定を機能させたい全てのデジタルコヒーレントDSP-LSI10-1~10-n(以下、制御対象デジタルコヒーレントDSP-LSIという。)に対する装置識別子が保持される点で、実施の形態1,2と異なる。なお、図15では、これら装置識別子を「DSP-1,DSP-2,・・・,DSP-n」(nは正数)と示している。
 装置ステータス情報は、制御対象デジタルコヒーレントDSP-LSI10-1~10-nが製造時点で既に実装している機能(以下、実装機能という。)と、これら機能の現在の利用状況(有効化又は無効化)との組合せを少なくとも含む。図15では、「0」は無効(無効化)、「1」は有効(有効化)の状態であることを示している。本実施の形態に係る情報保持部11には、全ての制御対象デジタルコヒーレントDSP-LSI10-1~10-nに対する装置ステータス情報が保持される。
 ライセンス情報は、1台の光伝送装置1に備わる制御対象デジタルコヒーレントDSP-LSI10-1~10-nが実装している全ての機能(実装機能)のそれぞれに対する、ライセンス発行回数、及びライセンス適用先の情報を少なくとも含む。これらのライセンス情報は本実施の形態において特に有用な情報である。
 ライセンス発行回数は、実装機能のそれぞれに対してこれまでに発行され、自装置に適用された機能認証鍵の総数を意味する情報である。ライセンス適用先は、実装機能のそれぞれに対し、現時点で機能が有効化されている制御対象デジタルコヒーレントDSP-LSIを特定する情報である。例えば、図15のように、有効化されている制御対象デジタルコヒーレントDSP-LSIの装置識別子を含む。なお、図15においてライセンス適用先の情報で「(null)」と記載されたところは、該当する機能が何れの制御対象デジタルコヒーレントDSP-LSIでも有効化されていないことを意味している。
 図15に示すように、装置ステータス情報は個々の制御対象デジタルコヒーレントDSP-LSI10-1~10-nごとに用意され、ライセンス情報は全ての制御対象デジタルコヒーレントDSP-LSI10-1~10-nに対して1組用意される。
 機能認証鍵は、少なくとも、光伝送装置1に実装されている全ての制御対象デジタルコヒーレントDSP-LSI10-1~10-nの装置識別子と、対象機能と、有効ライセンス数の情報とを含む。有効ライセンス数とは、1台の光伝送装置1において、ある特定の機能を有効化することができる制御対象デジタルコヒーレントDSP-LSIの最大数を示すものであり、本実施の形態において特に有用な情報である。仮に、有効化ライセンス数が「2」と記載された機能認証鍵を適用した場合、1台の光伝送装置1に実装された制御対象デジタルコヒーレントDSP-LSIの数に関わらず、要求機能に関して2台までの制御対象デジタルコヒーレントDSP-LSIを有効化することができる。なお、機能の無効化も行いたい場合には、実施の形態2で説明したように、ライセンス発行回数も含めるようにすればよい。ただし、設定フラグについては、有効ライセンス数が「0」の場合が、全てのデジタルコヒーレントDSP-LSI10における対象機能が無効化されることと等価であるため、必ずしも設ける必要はない。
(遠隔管理システムの処理の説明)
 本実施の形態に係る遠隔管理システムの処理フローは、実施の形態1の図4又は実施の形態2の図11と同様である。ただし、実施の形態1,2とは各装置・端末間で交信する信号が相違する。以下では、図面を参照しながら本実施の形態に係る遠隔管理システムの処理を詳細に説明する。図16は、本発明の実施の形態3に係る遠隔管理システムの処理フローを示す図である。
(Step0:機能設定ステップ)
 操作端末2がオペレータの操作に応じて、自身に接続された光伝送装置1の制御対象デジタルコヒーレントDSP-LSI10-1~10-nのうち機能を設定(有効化又は無効化の制御を行うこと)したい制御対象デジタルコヒーレントDSP-LSI(以下、設定対象デジタルコヒーレントDSP-LSIという。)と、当該制御対象デジタルコヒーレントDSP-LSIが実装している機能のうち有効化又は無効化したい機能(以下、要求機能という。)を特定し、設定対象デジタルコヒーレントDSP-LSIの情報、要求機能、及び当該要求機能を有効化又は無効化を指示する機能設定情報を含む機能設定信号を光伝送装置1へ送信する。
 操作端末2は、ある要求機能に対し、複数の設定対象デジタルコヒーレントDSP-LSIを指定し、これら複数の設定対象デジタルコヒーレントDSP-LSIに対して当該要求機能の有効化又は無効化を行うよう、機能設定信号を用いて光伝送装置1に指示する。光伝送装置1の管理インタフェース部6は当該機能設定信号を受信する。この場合、1つの機能設定信号に、複数の設定対象デジタルコヒーレントDSP-LSIの情報を含めて光伝送装置1に送信してもよいし、複数の設定対象デジタルコヒーレントDSP-LSIのそれぞれに対応する複数の機能設定信号を送信してもよい。前者の実施の形態を採用した場合の機能設定信号のフォーマット例を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 ここでは、「QPSK復調」機能に対し、DSP-1及びDSP-2は有効、DSP-3は無効となるよう設定することを指示する機能設定信号の例を示している。このように、同一の要求機能であれば、複数の設定対象デジタルコヒーレントDSP-LSIに対し、有効化と無効化の機能設定を混在させることもできる。
(Step1:ライセンス要求ステップ)
(Step1-1:ライセンス発行要否確認ステップ)
 図17は、本発明の実施の形態3に係るライセンス発行要否確認ステップの処理フローを示す図である。光伝送装置1の管理インタフェース部6は、受信した機能設定信号を、全ての制御対象デジタルコヒーレントDSP-LSI10-1~10-nの制御部13-1~13-nに送る。
 以降、主としてデジタルコヒーレントDSP-LSI10-1の制御部13-1が、機能設定に係る処理を遂行していくが、図14に示すように制御部13-1~13-nがそれぞれデジタルコヒーレントDSP-LSI10-1~10-nに備えられる場合、これら複数の制御部13-1~13-nのうち何れか1つが、機能設定の処理を主導していくように設計される必要がある。そこで、例えば機能設定信号に含まれる設定対象デジタルコヒーレントDSP-LSIのうち、装置識別子が最も小さな値のものに該当するデジタルコヒーレントDSP-LSI10-1の制御部13-1が、機能設定に係る処理を主導する制御部(以下、主導制御部という。)とすればよい。もちろん、主導制御部の選定方法は、これに限定されるものではない。なお、実施の形態1で説明したように1つの制御部13が複数のデジタルコヒーレントDSP-LSI10で共用される場合には、この共用の制御部13が機能設定に係る処理の全てを行うため、何れかの制御部13を選定する必要性はない。
 全ての制御部13-1~13-nでは、受信した機能設定信号が自身の備える判定部15に送られる。判定部15はそれぞれ、必要に応じて、受信した機能設定信号を解読し、自身が主導制御部となるべきか、所定のアルゴリズムに従って判断する(Step1-1-0、不図示)。
 主導制御部とされた制御部13-1の判定部15は、受信した機能設定信号から、要求機能と、設定対象デジタルコヒーレントDSP-LSIに対する設定指示を特定する(Step1-1-1)。判定部15は、情報保持部11にアクセスして特定した要求機能に関連する機能認証鍵を検索し(Step1-1-2)、情報保持部11に該当する機能認証鍵が存在するか否かを確認する(Step1-1-3)。情報保持部11に要求機能に関連する機能認証鍵がない場合、判定部15は新たに機能認証鍵を要求する必要があると判断し、次のステップStep1-2を処理する。
 一方、情報保持部11に要求機能に関連する機能認証鍵が存在する場合、判定部15は、「必要ライセンス数」の算定ステップ(Step1-1-4)を処理する。このステップにおいて判定部15は、機能設定信号に基づいて光伝送装置1を設定した場合に有効化される制御対象デジタルコヒーレントDSP-LSIの数(以下、これを必要ライセンス数という。)を算定する。
 図18は、本発明の実施の形態3に係る必要ライセンス数の算定ステップの処理を示す図である。まず、判定部15は、受信した機能設定信号の情報から、図18の右表のような、どの設定対象デジタルコヒーレントDSP-LSIが有効化又は無効化されるかを確認する。次に、判定部15は、情報保持部11にアクセスし、そこに保持されている装置情報及び機能認証鍵の情報から、図18の左表のような、全ての制御対象デジタルコヒーレントDSP-LSI10-1~10-nにおける要求機能の利用状況と、有効ライセンス数の情報とを確認する。そして、判定部15は、図18の左表の情報を右表の情報で上書きする。その結果から、機能設定信号に基づき光伝送装置1を設定した場合の、要求機能を利用することになる制御対象デジタルコヒーレントDSP-LSIの数、即ち必要ライセンス数が求められる。図18の例では、下表のとおり、DSP-1,2,4が有効であり、DSP-3,5が無効となるため、必要ライセンス数は「3」となる。
 次に、判定部15は、前記Step1-1-4で算定した必要ライセンス数と、情報保持部11に保持されている機能認証鍵から得た有効ライセンス数とを比較する(Step1-1-5)。(必要ライセンス数)>(有効ライセンス数)であった場合、判定部15は新たに機能認証鍵を要求する必要があると判断し、次のステップStep1-2に推移する。一方、(必要ライセンス数)≦(有効ライセンス数)であった場合、判定部15は新たに機能認証鍵を要求する必要がないと判断し、後述するStep3-2-3-1に遷移してライセンス情報を更新し、要求機能有効化ステップStep3-3に遷移する。
(Step1-2:ライセンス発行要求ステップ)
 主導制御部の判定部15は、情報保持部11から、光伝送装置1に実装されている制御対象デジタルコヒーレントDSP-LSI10-1~10-nに関する全ての装置識別子と、要求機能に対するライセンス発行回数とを取得する。さらに、判定部15は、情報保持部11から取得した装置識別子及びライセンス発行回数に加え、機能設定信号から特定された要求機能に関する情報及びStep1-1-4で算定した必要ライセンス数とをコード処理部16に送付するとともに、これらの情報を含むライセンス要求信号を生成するよう指示する。
 主導制御部にて判定部15の指示を受けたコード処理部16は、実施の形態1,2におけるStep1-2と同様に、管理装置3に機能認証鍵を要求するためのライセンス要求信号を作成し、管理インタフェース部6を介して操作端末2へ送信する。ここで、ライセンス要求信号が必要ライセンス数を含むため、有効ライセンス数を必要ライセンス数の数に増やすように管理装置3に依頼することになる。
(Step1-3:ライセンス要求信号転送ステップ)
 ライセンス要求信号を受信した操作端末2は、実施の形態1,2のStep1-3と同様に、当該ライセンス要求信号を管理装置3へ転送する。
(Step2:ライセンス発行ステップ)
 ライセンス要求信号を受信した管理装置3は、実施の形態1,2におけるStep2と同様に、当該ライセンス要求信号から全ての装置識別子と要求機能、ライセンス発行回数及び必要ライセンス数を解読する。
 管理装置3は、解読した装置識別子に対応するデジタルコヒーレントDSP-LSI10に対して、要求機能を必要ライセンス数の数だけ有効化することの妥当性を検証する。
 検証の結果、要求機能を必要ライセンス数の数だけ有効化することが妥当と判断された場合、管理装置3は、当該要求機能を遠隔設定するための機能認証鍵を発行する。発行された機能認証鍵は、光伝送装置1へ送信するための信号形式であるライセンスコードに保持され、操作端末2へ送信される。
 機能認証鍵は、図15に示すように、光伝送装置1に実装されている全ての制御対象デジタルコヒーレントDSP-LSI10-1~10-nの全装置識別子と、ライセンス要求信号から解読したライセンス発行回数と、要求機能と、光伝送装置1に対して与えるべき有効ライセンス数とが含まれる。
 ここで、有効ライセンス数には、例えばライセンス要求信号から解読した必要ライセンス数とすることで、光伝送装置1の顧客が所望した数だけ、デジタルコヒーレントDSP-LSI10の要求機能を有効化することができる。または、課金情報に基づき、顧客の支払い金額に応じた必要ライセンス数とすることも考えられる。さらには、全ての制御対象デジタルコヒーレントDSP-LSI10-1~10-nに対して当該要求機能を無効化したいときには、必要ライセンス数は「0」とすればよい。
(Step3:機能設定ステップ)
(Step3-1:ライセンスコード転送ステップ)
 ライセンスコードを受信した操作端末2は、実施の形態1,2におけるStep3-1と同様に、当該ライセンスコードを、自身に接続された光伝送装置1へ転送する。
(Step3-2:機能認証鍵適用ステップ)
 図19は、本発明の実施の形態3に係る機能認証鍵適用ステップ及び要求機能有効化ステップの処理フローを示す図である。光伝送装置1の管理インタフェース部6の受信部がライセンスコードを受信すると、当該ライセンスコードは全ての制御対象デジタルコヒーレントDSP-LSI10-1~10-nの制御部13-1~13-nへ送られる。前述のStep1-1-0の処理により、何れかの制御部が主導制御部となる。
 主導制御部の判定部15では、受信したライセンスコードが復号処理部20に送られる。復号処理部20は、当該ライセンスコードを復号化し、機能認証鍵を生成する。復号処理部20は、復号化され平文となった機能認証鍵をコード分離部21に送信する。
 コード分離部21は、受信した機能認証鍵から全ての装置識別子、ライセンス発行回数及び有効ライセンス数を分離して抽出し、装置識別子、ライセンス発行回数、有効ライセンス数と機能認証鍵を判定部15に送信する。
 全ての装置識別子、ライセンス発行回数、有効ライセンス数と機能認証鍵を受信した判定部15(Step3-2-1)は、コード分離部21から転送された全ての装置識別子と、情報保持部11に保持されている全ての装置識別子とを比較する(Step3-2-2-1)。全装置識別子が一致した場合、判定部15は先のライセンスコードが自身に対して送信されたものと判定し、次の処理へ進む。両装置識別子が異なっていた場合、判定部15は受信した機能認証鍵を破棄し、判定処理フローを終了する。
 次に、判定部15は、コード分離部21から転送されたライセンス発行回数と、情報保持部11に保持されているライセンス発行回数とを比較する(Step3-2-2-2)。両ライセンス発行回数が異なっていた場合、判定部15は不正な機能認証鍵が送付されたと判断し、受信した機能認証鍵を破棄し、判定処理フローを終了する。一方、両ライセンス発行回数が一致した場合、判定部15は正規の機能認証鍵が送付されたと判断し、次の処理へ進む。
 判定部15は、コード処理部16から転送された機能認証鍵を情報保持部11へ送信して保持する(Step3-2-3)。なお、既に情報保持部11に同じ要求機能に関する従前の機能認証鍵が保持されている場合は、新しい機能認証鍵に置換する。もっとも、ある機能における最新の機能認証鍵がどれであるかを判別できるようにされていれば、古い鍵と新しい鍵とを混在させてもよい。例えば、機能認証鍵のライセンス発行回数が最大のものを「最新」の鍵と判断すればよい。
 同時に、判定部15は、情報保持部11に保持されたライセンス情報のうちライセンス適用先の情報を、機能設定信号に保持されていた機能設定情報で上書き更新する(Step3-2-3-1)。図20は、本発明の実施の形態3に係る情報保持部に保持される情報の遷移を示す図である。本実施の形態におけるライセンス発行要否確認ステップ(Step1-1)の説明で用いた例を再度採用して説明すると、Step3-2-3-1の処理前の時点で情報保持部11に保持された装置情報(これは、本処理フローの実行前の状態と同じ)は、書式を書き換えると、図20(a)のような状態となっている。即ち、DSP-3,4が有効化されている。Step3-2-3-1の処理では、DSP-1,2,3に対するライセンス適用先の情報を、図14の機能設定信号に従って「0,0,1」から「1,1,0」と書き換える。一方、DSP-4,5についてはそのまま維持する。その結果、装置情報は図20(b)の状態となる。
 Step3-2-3-1の処理後、主導制御部の判定部15は、自身に備わる機能選択部17及び他の全ての制御部における機能選択部17に対し、機能認証鍵が情報保持部11に新たに追加されたことを通知する(Step3-2-4)。
(Step3-3:要求機能有効化ステップ)
 全ての機能選択部17は、主導制御部の判定部15からの通知に基づき、情報保持部11にアクセスし、ライセンス情報における自身の装置識別子に対応するライセンス適用先を参照する。自身がライセンス適用先として指定されていれば(例えば、図20(b)の場合におけるDSP1,2,4)、機能選択部17は情報保持部11に含まれる機能認証鍵を受信する(Step3-3-1)。
 機能認証鍵を受信した機能選択部17は、受信した機能認証鍵を適用し、当該機能認証鍵にて指定された機能を有効化する(Step3-3-2)。一方、機能認証鍵を受信しなかった機能選択部17は、当該機能を無効化する。機能選択部17は、上述の機能設定を行った後、機能設定が成功したことを通知するための信号を判定部15に送信する(Step3-3-3)。
 機能選択部17からの通知を受信した判定部15は、情報保持部11に保持された装置ステータス情報のうち、新たに機能設定(有効化及び無効化の両者を含む)を行った機能に対する機能利用状況を更新するとともに、当該機能に対するライセンス発行回数を「1」だけ増加させる(Step3-3-4)。このステップにより、情報保持部11における装置情報は、図20(c)の状態になる。
 判定部15は、デジタルコヒーレントDSP-LSI10に対して機能認証鍵で指定された機能を有効化したことを操作端末2へ通知するための機能設定完了通知信号を生成し、管理インタフェース部6の送信部を介して、操作端末2へ送信する(Step3-3-5)。
(Step4:操作終端ステップ)
 実施の形態1,2のStep4と同様の処理を行う。
 以上述べたとおり、本実施の形態に係る遠隔管理システムは、実施の形態1と同様に、処理装置を利用開始した後であっても、処理装置内のデバイス等を置換することなく、その処理装置の機能の一部又は全てを有効化又は無効化できる。さらに、1つの機能認証鍵を用いて、複数のデジタルコヒーレントDSP-LSI10-1~10-nにおける同一の機能を一括で設定(有効化又は無効化)することができるため、遠隔管理システムのより柔軟かつ低コストな運用が可能となる。
 処理装置が光伝送装置1である場合、WANインタフェース部5として、活線挿抜可能な光トランシーバが用いられることがある。ここで、光伝送装置1において、スロット1(ここには、図14におけるデジタル機能部7-1が接続されている)で利用していた光トランシーバを、サービス提供上の何らかの理由により、スロットnに差し替えることになったと仮定する。光伝送装置1では、既にスロット1に対応するデジタルコヒーレントDSP-LSI10-1で「QPSK復調」機能を利用するライセンスを有しているが、スロットnに対してはそのライセンスは供与されていないとすると、新たにスロットnに対応するデジタルコヒーレントDSP-LSI10-nで「QPSK復調」機能を有効化するために、ライセンスが必要となる。
 しかし、本実施の形態では、図17に示したライセンス発行要否確認ステップ(Step1-1)にて、所望する「必要ライセンス数」と、既に有している「有効ライセンス数」とを比較し、「必要ライセンス数≦有効ライセンス数」であれば新たにライセンスの発行は必要ないと判断するようにしたことで、上記の想定例の場合であれば、追加のライセンスを要求する必要はなくなる。
実施の形態4.
 実施の形態1~3では、光伝送装置1のデジタルコヒーレントDSP-LSI10に実装されているある特定の機能を、操作端末2の指示をきっかけとして有効化又は無効化する処理フローの例について説明した。しかし、これに限らず、本発明は様々な態様の処理フローに適用することができる。例えば、管理装置3が生成した機能認証鍵が予め情報保持部11に保持された状態で光伝送装置1を起動した場合、光伝送装置1は、Step3-2の機能認証鍵適用ステップから処理フローを始めればよい。
 光伝送装置1は、予め自身が有効化又は無効化すべき機能を取りまとめた設定ファイルを不揮発性メモリに保持しておく。光伝送装置1が起動された場合、当該光伝送装置1のデジタルコヒーレントDSP-LSI10における判定部15は、まず設定ファイルを読み込み、どの機能を有効化又は無効化すべきかを把握する。次に、判定部15はStep3-2の処理を開始する。ただし、Step3-2では、Step3-2-1のステップに代えて、有効化又は無効化すべき機能に対応する機能認証鍵を情報保持部11より取得する処理を行う。そして、判定部15はStep3-2-2以降のステップを処理する。
実施の形態5.
 実施の形態4では、管理装置3が生成した機能認証鍵が予め情報保持部11に保持された状態で光伝送装置1を起動した場合の処理フローの例を説明した。しかし、例えば光伝送装置1が購入直後の初期状態であった場合、情報保持部11には何ら機能認証鍵が保持されておらず、当該装置を検証やデモンストレーション等で一時的に利用したいニーズが発生した場合に対応できない。これに対応するには、初期状態で起動した直後に光伝送装置1が全ての機能を試用できるが所定の時間後には当該機能が自動的に無効化するようにし、継続的に利用する際には光伝送装置1に機能認証鍵を保持して当該機能を有効化するしくみを取ればよい。以下、初期状態より起動後、所定の時間は全ての機能を機能認証鍵がなくとも利用することができる状態を「時限モード」と呼び、この時限モードにおける処理フローの例を説明する。
 図21は、本発明の実施の形態5に係る遠隔管理システムの時限モードにおける処理フローを示す図である。なお、遠隔管理システム及びそれらを構成する各装置(光伝送装置1・操作端末2・管理装置3)の構成は実施の形態1~3と同様である。
 光伝送装置1が初期状態で起動されると同時に、光伝送装置1の情報保持部11、判定部15、機能選択部17は起動される(StepA-0)。判定部15は、情報保持部11にアクセスして、実装されている機能に対応する全ての機能認証鍵を検索する(StepA-1)。
 ある機能において機能認証鍵が存在する場合は、当該機能に対しては、時限モードを処理するフローを終了し、通常モードに入る(例えば、実施の形態4へ)(StepA-2)。一方、ある機能において機能認証鍵が存在しない場合は、次のStepA-3に進む。判定部15は、情報保持部11にアクセスして、時限モードとして運用可能な時間を計測するタイマの状態を検索する(StepA-3)。
 タイマが、予め設定された所定の時間を超過していない場合は、まだ時限モードで運用されていると判断し、次のStepA-6に進む(StepA-4)。一方、超過している場合は、時限モードが終了したと判断し、機能選択部17に対し、該当する機能の無効化を指示し(StepA-5)、フローを終了する。
 判定部15は機能選択部17に指示し、デジタルコヒーレントDSP-LSI10に実装されている全ての機能を有効化する(StepA-6)。そして、判定部15は、情報保持部11に保持された装置ステータス情報のうち、全ての機能に対する機能利用状況を「1」(有効化)に更新する。これにより、光伝送装置1は実装された全ての機能が利用可能になる。
 判定部15は、情報保持部11にアクセスして、タイマの状態を検索する(StepA-7)。タイマが未動作の場合、次のStepA-9に進む(StepA-8)。一方、途中の場合は、StepA-9-1に進む。判定部15は、時限モードとして運用可能な時間を定義するタイマを開始し、StepA-10に進む(StepA-9)。判定部15は、時限モードとして運用可能な時間を定義するタイマを再開し、StepA-10に進む(StepA-9-1)。
 判定部15は、情報保持部11にアクセスして、機能認証鍵が存在しない機能に関する機能利用状況を照会し、当該機能が利用中であるか否かを確認する(StepA-10)。機能を利用中である場合は、判定部15は当該機能を試用している状態と判断し、当該機能のライセンス発行を促す機能未承認通知信号を操作端末2へ送信する(StepA-10-1)。一方、当該機能を利用していないことが確認された場合は、判定部15は当該機能の試用を中止したものと判断し、当該機能に関する時限モードを処理するフローを終了し、通常モードに入る(例えば、実施の形態4へ)。
 判定部15は、StepA-9又はA-9-1で開始したタイマが、予め設定された所定の時間を超過したか否かを確認する(StepA-11)。超過していない場合は、いまだ時限モードにあると判断し、再びStepA-10に戻る。一方、超過した場合は、時限モードが終了したと判断し、機能選択部17に対し、該当する機能の無効化を指示する。機能選択部17は当該機能を無効化し(StepA-5)、時限モードを処理するフローを終了する。
 なお、実施の形態5に記載した時限モードを実装する場合においては、光伝送装置1が時限モードであることをオペレータに警告することができるように、例えば光伝送装置1から操作端末2に対してアラームを通知する機能を備えるようにしてもよい。
 また、上記のフローでは、時限モードが経過した場合に、StepA-5にてある機能を強制的に無効化する手順を説明したが、これに限定する必要はなく、例えば光伝送装置1全体を強制的に再起動してしまうようにしてもよい。いずれにしても、StepA-5では、光伝送装置1が必要な機能認証鍵を保持しない状態では適切に利用できないようにすればよい。
1 光伝送装置、2 操作端末、3 管理装置、4,4-1~4-n LANインタフェース部、5,5-1~5-n WANインタフェース部、6 管理インタフェース部、7,7-1~7-n デジタル機能部、8,8-1~8-n クライアント信号処理LSI、9,9-1~9-n OTNフレーマLSI、10,10-1~10-n デジタルコヒーレントDSP-LSI、11 情報保持部、12,12-1~12-n デジタル信号処理部、13,13-1~13-n 制御部、14 装置識別子保持部、15 判定部、16 コード処理部、17 機能選択部、18 コード生成部、19 暗号処理部、20 復号処理部、21 コード分離部、22-1~22-n 光伝送処理部

Claims (9)

  1.  複数の機能を持つ処理部を備えた処理装置であって、
     前記処理装置を識別可能な装置識別子を保持した保持部と、
     前記複数の機能のうちの特定の機能を有効又は無効に設定するためのコードである機能認証鍵を外部から受信するインタフェース部と、
     受信した前記機能認証鍵に含まれる装置識別子と前記保持部に保持された前記装置識別子が一致した場合に前記機能認証鍵に従って前記特定の機能を有効又は無効に設定する制御部とを備えることを特徴とする処理装置。
  2.  前記保持部は、前記複数の機能のそれぞれに対して発行された機能認証鍵の総数であるライセンス発行回数を保持し、
     前記制御部は、受信した前記機能認証鍵に含まれるライセンス発行回数と前記保持部に保持された前記ライセンス発行回数が一致した場合に前記特定の機能を有効又は無効に設定することを特徴とする請求項1に記載の処理装置。
  3.  前記処理装置は、それぞれが前記複数の機能を持つ複数の処理部を有し、
     前記機能認証鍵は、前記複数の機能のそれぞれについて有効化することができる処理部の最大数を示す有効ライセンス数を含み、
     前記インタフェース部は、前記複数の処理部に対して前記特定の機能を有効化又は無効化を行うよう指示する機能設定信号を外部から受信し、
     前記制御部は、前記機能設定信号に基づいて設定した場合に有効化される処理部の数を必要ライセンス数として算出し、前記必要ライセンス数が前記有効ライセンス数以下の場合に前記複数の処理部に対して前記特定の機能を有効又は無効に設定することを特徴とすることを特徴とする請求項1又は2に記載の処理装置。
  4.  前記保持部に保持された前記装置識別子は秘匿されていることを特徴とする請求項1~3の何れか1項に記載の処理装置。
  5.  複数の機能を持つ処理部を備えた処理装置であって、前記処理装置を識別可能な装置識別子を保持した保持部と、前記複数の機能のうちの特定の機能を有効又は無効に設定するためのコードである機能認証鍵を外部から受信するインタフェース部と、受信した前記機能認証鍵に含まれる装置識別子と前記保持部に保持された前記装置識別子が一致した場合に前記機能認証鍵に従って前記特定の機能を有効又は無効に設定する制御部とを備える処理装置と、
     前記機能認証鍵を発行する管理装置とを備え、
     前記処理装置は、前記保持部に保持された前記装置識別子と有効化又は無効化したい前記特定の機能に関する情報とを含む要求信号を前記管理装置に送信し、
     前記要求信号を受信した前記管理装置は、前記処理装置が送信した前記装置識別子を含む前記機能認証鍵を発行することを特徴とする遠隔管理システム。
  6.  前記保持部は、前記複数の機能のそれぞれに対して発行された機能認証鍵の総数であるライセンス発行回数を保持し、
     前記処理装置は、前記要求信号に前記保持部に保持された前記特定の機能の前記ライセンス発行回数をさらに含めて前記管理装置に送信し、
     前記管理装置は、前記処理装置が送信した前記ライセンス発行回数をさらに含む前記機能認証鍵を発行し、
     前記制御部は、前記機能認証鍵に含まれる前記ライセンス発行回数と前記保持部に保持された前記ライセンス発行回数が一致した場合に前記特定の機能を有効又は無効に設定することを特徴とする請求項5に記載の遠隔管理システム。
  7.  前記処理装置は、それぞれが前記複数の機能を持つ複数の処理部を有し、
     前記機能認証鍵は、前記複数の機能のそれぞれについて有効化することができる処理部の最大数を示す有効ライセンス数を含み、
     前記インタフェース部は、前記複数の処理部に対して前記特定の機能を有効化又は無効化を行うよう指示する機能設定信号を外部から受信し、
     前記制御部は、前記機能設定信号に基づいて設定した場合に有効化される処理部の数を必要ライセンス数として算出し、前記必要ライセンス数が前記有効ライセンス数以下の場合に前記複数の処理部に対して前記特定の機能を有効又は無効に設定し、
     前記処理装置は、前記必要ライセンス数が前記有効ライセンス数より大きい場合、前記要求信号に前記必要ライセンス数の数をさらに含めて前記管理装置に送信し、
     前記管理装置は、前記処理装置が送信した前記必要ライセンス数をさらに含む前記機能認証鍵を発行することを特徴とする請求項5又は6に記載の遠隔管理システム。
  8.  前記保持部に保持された前記装置識別子は秘匿されていることを特徴とする請求項5~7の何れか1項に記載の遠隔管理システム。
  9.  前記処理装置と前記管理装置とで交信する情報が暗号化されていることを特徴とする請求項5~8の何れか1項に記載の遠隔管理システム。
PCT/JP2016/056642 2015-03-19 2016-03-03 処理装置及び遠隔管理システム WO2016147892A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16764722.1A EP3273376B1 (en) 2015-03-19 2016-03-03 Processing device and remote management system
CA2976184A CA2976184C (en) 2015-03-19 2016-03-03 Processing equipment and remote management system
US15/551,691 US10685095B2 (en) 2015-03-19 2016-03-03 Processing equipment and remote management system
CN201680016582.XA CN107408165B (zh) 2015-03-19 2016-03-03 处理装置及远程管理系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015055749A JP2016177417A (ja) 2015-03-19 2015-03-19 処理装置及び遠隔管理システム
JP2015-055749 2015-03-19

Publications (1)

Publication Number Publication Date
WO2016147892A1 true WO2016147892A1 (ja) 2016-09-22

Family

ID=56920090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056642 WO2016147892A1 (ja) 2015-03-19 2016-03-03 処理装置及び遠隔管理システム

Country Status (6)

Country Link
US (1) US10685095B2 (ja)
EP (1) EP3273376B1 (ja)
JP (1) JP2016177417A (ja)
CN (1) CN107408165B (ja)
CA (1) CA2976184C (ja)
WO (1) WO2016147892A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10657239B2 (en) * 2017-05-25 2020-05-19 Oracle International Corporation Limiting access to application features in cloud applications
CN108183794B (zh) * 2017-12-25 2020-08-28 中科稀土(长春)有限责任公司 一种基于光信息的认证方法
CN108416193B (zh) * 2018-03-14 2020-10-30 北京车和家信息技术有限公司 鉴权方法、装置及车辆
FR3079343B1 (fr) * 2018-03-22 2021-07-09 Schneider Electric Ind Sas Procede de consignation d'une fonction d'un appareil electrique et appareil electrique mettant en oeuvre ce procede
EP4089599B1 (en) * 2020-01-06 2023-10-04 InsuRTAP Inc. Processing device, processing method, and program
JP7506488B2 (ja) * 2020-02-25 2024-06-26 東芝テック株式会社 情報処理装置、情報処理システム及びプログラム
WO2021234820A1 (ja) * 2020-05-19 2021-11-25 三菱電機株式会社 機器、ネットワーク機器及びコマンド実行方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004213469A (ja) * 2003-01-07 2004-07-29 Canon Inc 画像形成装置
WO2009075181A1 (ja) * 2007-12-10 2009-06-18 Nec Corporation デジタル機器のオプション管理システム、オプション管理方法、及び記録媒体
JP2009224826A (ja) * 2008-03-13 2009-10-01 Konica Minolta Business Technologies Inc 画像形成装置およびライセンス管理システム
JP2010218465A (ja) * 2009-03-18 2010-09-30 Ricoh Co Ltd ライセンス管理システム、ライセンス管理サーバ、情報処理装置、画像形成装置、ライセンス管理方法、およびライセンス管理プログラム

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7110984B1 (en) * 1998-08-13 2006-09-19 International Business Machines Corporation Updating usage conditions in lieu of download digital rights management protected content
JP4899248B2 (ja) * 2001-04-02 2012-03-21 富士通セミコンダクター株式会社 半導体集積回路
JP2003122537A (ja) * 2001-10-15 2003-04-25 Minolta Co Ltd ライセンス管理装置及び同管理システム
JP4217455B2 (ja) * 2002-10-15 2009-02-04 キヤノン株式会社 周辺装置、情報処理方法、および制御プログラム
JP3826100B2 (ja) 2002-11-27 2006-09-27 株式会社東芝 通信中継装置、通信システム及び通信制御プログラム
JP4458807B2 (ja) * 2002-12-06 2010-04-28 富士通テン株式会社 デジタル信号処理装置、システム、方法およびホスト装置
US7589850B2 (en) * 2002-12-30 2009-09-15 Lexmark International, Inc. Licensing method for use with an imaging device
JP4227565B2 (ja) * 2004-06-11 2009-02-18 キヤノン株式会社 印刷システム、管理サーバ装置、それらの制御方法、プログラム及び記憶媒体
JP2006014035A (ja) * 2004-06-28 2006-01-12 Toshiba Corp 記憶媒体処理方法、記憶媒体処理装置及びプログラム
US20050289072A1 (en) * 2004-06-29 2005-12-29 Vinay Sabharwal System for automatic, secure and large scale software license management over any computer network
US7899754B2 (en) * 2004-12-03 2011-03-01 International Business Machines Corporation Enablement of system features with improved feature key
US7884961B2 (en) * 2006-03-24 2011-02-08 Kyocera Mita Corporation Image forming apparatus with optional routine activated by memory key
JP4353221B2 (ja) * 2006-08-31 2009-10-28 ダイキン工業株式会社 複数機器における機能有効化のための装置、ネットワークシステム、方法及びコンピュータプログラム
US20080134319A1 (en) * 2006-11-30 2008-06-05 Kestrelink Corporation License verification
JP2008217773A (ja) * 2007-02-07 2008-09-18 Hitachi Ltd 組み込みソフトウェア動作装置及び組み込みソフトウェアのライセンス判定方法
JP2008197795A (ja) * 2007-02-09 2008-08-28 Nec Infrontia Corp 機能ライセンス認証方法及び機能ライセンス認証システム
US20080208754A1 (en) * 2007-02-22 2008-08-28 Aladdin Knowledge Systems Method for detecting duplicated instances of a software license
US8285646B2 (en) * 2007-03-19 2012-10-09 Igt Centralized licensing services
WO2009073969A1 (en) 2007-12-13 2009-06-18 Certicom Corp. System and method for controlling features on a device
CN101256607B (zh) * 2008-03-10 2011-08-10 北京深思洛克软件技术股份有限公司 一种对软件保护装置进行远程更新和使用控制的方法
JP5331354B2 (ja) * 2008-03-17 2013-10-30 日立コンシューマエレクトロニクス株式会社 コンテンツ送信装置、コンテンツ受信装置
US8316423B2 (en) * 2008-06-17 2012-11-20 Kyocera Document Solutions Inc. Image forming apparatus, key management server, activation system, and deactivation system
JP5284136B2 (ja) * 2009-02-18 2013-09-11 キヤノン株式会社 電子機器、ショートカット管理方法及びプログラム
JP4856223B2 (ja) * 2009-09-03 2012-01-18 シャープ株式会社 画像形成装置に推奨オプション機能を提示する情報処理装置、その情報処理装置と通信可能な画像形成装置およびそれらを備えた画像形成システム
JP5454035B2 (ja) * 2009-09-15 2014-03-26 株式会社リコー 画像処理装置、遠隔管理システム、ライセンス更新方法、およびライセンス更新プログラム
JP5723530B2 (ja) * 2010-01-20 2015-05-27 株式会社日立製作所 光通信カード及び通信装置
US8898469B2 (en) * 2010-02-05 2014-11-25 Motorola Mobility Llc Software feature authorization through delegated agents
US9449324B2 (en) * 2010-11-11 2016-09-20 Sony Corporation Reducing TV licensing costs
US9135610B2 (en) * 2011-03-29 2015-09-15 Microsoft Technology Licensing, Llc Software application license roaming
CN102833593B (zh) * 2012-07-17 2015-12-16 晨星软件研发(深圳)有限公司 一种智能电视应用的授权方法、系统及智能电视
JP2014071695A (ja) * 2012-09-28 2014-04-21 Murata Mach Ltd 画像形成装置
JP6112903B2 (ja) * 2013-02-22 2017-04-12 キヤノン株式会社 通信装置、通信装置の制御方法、コンピュータプログラム
US20160048774A1 (en) * 2014-08-18 2016-02-18 Arris Enterprises, Inc. Method and apparatus for localized management of feature licenses
US9826060B1 (en) * 2015-02-17 2017-11-21 Amazon Technologies, Inc. Predictive transmission of digital content

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004213469A (ja) * 2003-01-07 2004-07-29 Canon Inc 画像形成装置
WO2009075181A1 (ja) * 2007-12-10 2009-06-18 Nec Corporation デジタル機器のオプション管理システム、オプション管理方法、及び記録媒体
JP2009224826A (ja) * 2008-03-13 2009-10-01 Konica Minolta Business Technologies Inc 画像形成装置およびライセンス管理システム
JP2010218465A (ja) * 2009-03-18 2010-09-30 Ricoh Co Ltd ライセンス管理システム、ライセンス管理サーバ、情報処理装置、画像形成装置、ライセンス管理方法、およびライセンス管理プログラム

Also Published As

Publication number Publication date
US20180068095A1 (en) 2018-03-08
CN107408165B (zh) 2020-09-01
JP2016177417A (ja) 2016-10-06
CN107408165A (zh) 2017-11-28
CA2976184C (en) 2021-06-01
US10685095B2 (en) 2020-06-16
EP3273376A1 (en) 2018-01-24
EP3273376A4 (en) 2018-11-07
CA2976184A1 (en) 2016-09-22
EP3273376B1 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
WO2016147892A1 (ja) 処理装置及び遠隔管理システム
US9043604B2 (en) Method and apparatus for key provisioning of hardware devices
CN100380274C (zh) 用于对上下文加密密钥进行备份和恢复的方法和系统
US8660964B2 (en) Secure device licensing
US10469491B2 (en) Access control in an information centric network
KR100911111B1 (ko) 다운로더블 제한 수신 서비스를 위한 헤드엔드 시스템 및그 동작 방법
CN106603461A (zh) 一种业务认证的方法、装置和系统
JP2003087238A (ja) 家庭内ネットワークにおけるセキュリティ実現方式
US20210328799A1 (en) Automated authentication of a new network element
JPWO2006082812A1 (ja) デジタルケーブルテレビ放送受信機
CN104811303B (zh) 双向认证的方法、装置及系统
US10396989B2 (en) Method and server for providing transaction keys
CN100426753C (zh) 一种基于snmp的网络管理方法
US20180227143A1 (en) Procedes mis en oeuvre par un dispositif et dans un reseau, entite electronique associee
CN111885091B (zh) 安全通信方法、装置、设备及存储介质
CN111371734A (zh) 身份校验及升级方法、介质、云平台、设备和升级服务器
JP6206544B2 (ja) 処理装置及び遠隔管理システム
KR101771484B1 (ko) 보안 토큰을 효율적으로 사용하기 위한 서명 키 생성방법
JPH11355268A (ja) 情報処理装置および方法、情報処理システム、並びに提供媒体
JP2014504120A (ja) セキュリティドメインの制御方法
JP5175541B2 (ja) ネットワークを介した動作をセキュリティ保護する方法および関連装置
JP2001273133A (ja) ソフトウェア送信装置及び方法
KR20150124427A (ko) 네트워크 기반 모바일 오티피 처리 방법
KR101834514B1 (ko) 고객측 단말과 서비스 제공 단말 간의 통신에 보안을 제공하는 보안 관리 장치
KR101110678B1 (ko) 다운로드 가능한 제한수신시스템에서 제한수신시스템 소프트웨어의 보안 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764722

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2976184

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2016764722

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15551691

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE