WO2016147842A1 - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
WO2016147842A1
WO2016147842A1 PCT/JP2016/055956 JP2016055956W WO2016147842A1 WO 2016147842 A1 WO2016147842 A1 WO 2016147842A1 JP 2016055956 W JP2016055956 W JP 2016055956W WO 2016147842 A1 WO2016147842 A1 WO 2016147842A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
block
tire
circumferential groove
airflow
Prior art date
Application number
PCT/JP2016/055956
Other languages
English (en)
French (fr)
Inventor
正志 山口
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to EP16764672.8A priority Critical patent/EP3272555B1/en
Priority to US15/552,518 priority patent/US20180022164A1/en
Priority to CN201680014622.7A priority patent/CN107405962B/zh
Priority to JP2017506179A priority patent/JP6717802B2/ja
Publication of WO2016147842A1 publication Critical patent/WO2016147842A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/11Tread patterns in which the raised area of the pattern consists only of isolated elements, e.g. blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1307Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1369Tie bars for linking block elements and bridging the groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0353Circumferential grooves characterised by width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0365Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by width

Definitions

  • the present invention relates to a tire having a plurality of blocks in a tread portion.
  • a block pattern having a plurality of blocks has been formed on tread portions of various tires such as heavy duty tires.
  • tread portions of various tires such as heavy duty tires.
  • distortion occurs in the tread portion due to deformation of the member in the tread portion of the tire.
  • the tread portion generates heat and the temperature of the tread portion rises.
  • the strain and temperature of the tread portion are main factors affecting the durability of the tread portion, and in order to improve the durability of the tread portion, it is necessary to cope with the strain and temperature rise generated in the tread portion.
  • a reinforcing member is mainly added in the tread portion, or the rigidity of the tread portion is increased to suppress the occurrence of distortion in the tread portion.
  • the number of members in the tire and the weight of the tire increase, and the cost of the tire may increase. Therefore, regarding the durability of the tread portion, it is required to effectively cool the tread portion and suppress the temperature rise.
  • cooling of the tread part may be more important on the tread central part side than on the shoulder part side. It is done.
  • a plurality of blocks are arranged between two circumferential grooves, and a plurality of lateral grooves are formed between the blocks.
  • heat dissipation is promoted by the airflow generated in the circumferential groove, and the tread portion is cooled.
  • heat dissipation may increase. In this case, the cooling effect of the tread portion by the circumferential groove on the tread central portion side cannot be increased. Therefore, it is difficult to suppress the temperature rise at the tread portion on the tread central portion side.
  • Patent Document 1 Conventionally, there is known a tire that suppresses an increase in temperature of a tread portion by a block groove formed in a shoulder block row (see Patent Document 1).
  • Patent Document 1 it is necessary to form the block groove on the tread surface of the block along the tire circumferential direction. Therefore, depending on the shape of the block and the performance required for the block, the block groove may not be formed.
  • the present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a plurality of blocks in a tire including a plurality of blocks between a circumferential groove on the tread central portion side and a circumferential groove on the shoulder portion side.
  • the heat dissipation of the circumferential groove on the tread center portion side is improved, and the cooling effect of the tread portion by the circumferential groove on the tread center portion side is enhanced.
  • the present invention includes a first circumferential groove disposed between a tread central portion and a shoulder portion, a second circumferential groove disposed on the tread central portion side of the first circumferential groove, and a first circumferential groove.
  • a tire including a plurality of lateral grooves that open to the second circumferential groove, a first circumferential groove, a second circumferential groove, and a plurality of blocks that are partitioned into a tread portion by the plurality of lateral grooves.
  • Each block of the plurality of blocks includes a first wall surface formed toward the upstream side of the airflow from a position where the lateral groove on the downstream side of the airflow opens in the first circumferential groove, and a lateral groove on the downstream side of the airflow has a second circumference.
  • the virtual plane obtained by extending the first wall surface of the upstream block on the downstream side of the airflow is the block corner of the downstream block. Or passes through the position in the first circumferential groove on the shoulder side of the block corner.
  • the groove width of the second circumferential groove gradually increases toward the downstream side of the airflow on the second wall surface of the block.
  • the tire according to the present embodiment is a pneumatic tire for a vehicle (for example, a heavy load tire or a passenger car tire), and is formed in a known structure by a general tire constituent member. That is, the tire includes a pair of bead portions, a pair of sidewall portions located outside the tire radius of the pair of bead portions, a tread portion in contact with a road surface, and a pair located between the tread portion and the pair of sidewall portions. Has a shoulder.
  • the tire includes a pair of bead cores, a carcass disposed between the pair of bead cores, a belt disposed on the outer peripheral side of the carcass, and a tread rubber having a predetermined tread pattern.
  • FIG. 1 is a plan view showing a tread pattern of the tire 1 of the present embodiment, and schematically shows a part of the tread portion 2 in the tire circumferential direction S.
  • the tire 1 is a tire in which the rotation direction when the vehicle moves forward is specified, and rotates in the tire rotation direction R when the vehicle moves forward.
  • the tire rotation direction R is designated corresponding to the tread pattern of the tire 1.
  • the tire 1 is mounted on the vehicle so that the tire rotation direction R is suitable.
  • the tire 1 includes a plurality of circumferential grooves 11, 12, a plurality of lug grooves 13, a plurality of lateral grooves 14, and a plurality of block rows 20, 30, 40 in the tread portion 2.
  • the plurality of circumferential grooves 11 and 12 are main grooves (circumferential main grooves) extending in the tire circumferential direction S, and are continuously formed along the tire circumferential direction S, respectively. Further, the plurality of circumferential grooves 11 and 12 are disposed on the first circumferential groove 11 disposed between the tread central portion 3 and the shoulder portion 4 and on the tread central portion 3 side of the first circumferential groove 11. It consists of a second circumferential groove 12.
  • the tread central portion 3 is a central portion in the tire width direction K of the tread portion 2, and the tire equatorial plane is located in the tread central portion 3.
  • the shoulder portion 4 is located outside the tread portion 2 in the tire width direction K.
  • the first circumferential groove 11 is an outer circumferential groove formed on the outer side (shoulder part 4 side) of the second circumferential groove 12 in the tire width direction K, and the second circumferential groove 12 and the shoulder part 4 (tread). Between the end).
  • the tire 1 includes two first circumferential grooves 11 formed on the inner side in the tire width direction K of both shoulder portions 4.
  • the second circumferential groove 12 is a central circumferential groove formed on the inner side (tread central portion 3 side) of the first circumferential groove 11 in the tire width direction K, and the first circumferential groove 11 and the tread central portion. 3 is arranged.
  • the tire 1 includes two second circumferential grooves 12 formed on both sides of the tread central portion 3 in the tire width direction K.
  • a pair of first circumferential grooves 11 and second circumferential grooves 12 are disposed between the tread central portion 3 and the shoulder portion 4 and are formed on both sides of the tread central portion 3 in the tire width direction K.
  • the tread portion 2 is partitioned by the plurality of circumferential grooves 11, 12, and the plurality of block rows 20, 30, 40 are formed in the tread portion 2.
  • the plurality of block rows 20, 30, and 40 are land portions extending along the tire circumferential direction S, and have a plurality of blocks 21, 31, and 41, respectively.
  • the plurality of block rows 20, 30, and 40 include one central block row 20, two shoulder block rows 30, and two intermediate block rows 40.
  • the central block row 20 has a plurality of connecting grooves 22 and one circumferential sub-groove 23 extending in the tire circumferential direction S, and is disposed in the tread central portion 3.
  • the circumferential sub-groove 23 is a circumferential narrow groove that is thinner than the circumferential grooves 11 and 12, and is connected to the two second circumferential grooves 12 by a plurality of connecting grooves 22.
  • the central block row 20 is partitioned by the plurality of connecting grooves 22 and one circumferential sub-groove 23, and a plurality of blocks 21 are formed in the central block row 20.
  • the shoulder block row 30 has a plurality of lug grooves 13 and is disposed on the outermost side (the shoulder portion 4 side) in the tire width direction K within the tread portion 2.
  • the lug groove 13 extends in the tire width direction K and is formed from the first circumferential groove 11 to the shoulder portion 4.
  • the plurality of blocks 31 of the shoulder block row 30 are sequentially arranged in the tire circumferential direction S, and the lug grooves 13 are formed between the blocks 31 adjacent in the tire circumferential direction S.
  • the lug groove 13 is formed on the shoulder portion 4 side of the first circumferential groove 11 and opens into the first circumferential groove 11.
  • the tire 1 includes a raised portion 15 formed in each lug groove 13.
  • the raised portion 15 rises from the groove bottom of the lug groove 13 and connects groove walls (wall surfaces of the block 31) on both sides of the lug groove 13.
  • the raised portion 15 is a tie bar.
  • At least a part of the lug groove 13 is shallower than the first circumferential groove 11 by the raised portion 15.
  • the intermediate block row 40 has a plurality of lateral grooves 14 and is arranged between the central block row 20 and the shoulder block row 30 in the tread portion 2.
  • the plurality of lateral grooves 14 are width direction grooves extending in the tire width direction K, and are formed from the first circumferential groove 11 to the second circumferential groove 12.
  • the plurality of blocks 41 of the intermediate block row 40 are sequentially arranged in the tire circumferential direction S, and the lateral grooves 14 are formed between the blocks 41 adjacent in the tire circumferential direction S. Further, the lateral groove 14 is formed between the first circumferential groove 11 and the second circumferential groove 12 and opens to the first circumferential groove 11 and the second circumferential groove 12.
  • the tire 1 includes a plurality of blocks 41 in the intermediate block row 40 disposed between the tread central portion 3 and the shoulder portion 4.
  • the first circumferential groove 11 extends along the wall surface on the shoulder portion 4 side of the plurality of blocks 41
  • the second circumferential groove 12 extends along the wall surface on the tread central portion 3 side of the plurality of blocks 41.
  • the plurality of lateral grooves 14 are spaced apart in the tire circumferential direction S and cross the intermediate block row 40 between the first circumferential groove 11 and the second circumferential groove 12.
  • a plurality of blocks 41 are partitioned into the tread portion 2 by the first circumferential groove 11, the second circumferential groove 12, and the plurality of lateral grooves 14, and each block 41 is formed in a predetermined polygonal shape when viewed from the outside in the tire radial direction. Is done.
  • the tire 1 is attached to the vehicle and rotates in the tire rotation direction R as the vehicle travels (forward).
  • an airflow in a predetermined direction is generated in the first circumferential groove 11 and the second circumferential groove 12.
  • the airflow is a relative air flow (wind) generated by the rotation of the tire 1 and is generated in a direction opposite to the tire rotation direction R.
  • An arrow F shown in FIG. 1 is a direction of airflow generated in the first circumferential groove 11 and the second circumferential groove 12. Airflow in the same direction is generated in the first circumferential groove 11 and the second circumferential groove 12.
  • the air flow is controlled by the plurality of blocks 41 formed between the first circumferential groove 11 and the second circumferential groove 12, and the first circumferential groove 11 and the second circumferential direction are controlled.
  • the heat dissipation of the groove 12 is adjusted. Thereby, the heat dissipation of the 2nd circumferential groove 12 located in the tread center part 3 side is improved.
  • adjustment of heat dissipation will be described in detail.
  • FIG. 2 is a plan view showing a part of the tread pattern of the present embodiment, and shows a portion including the block 41 in a state where FIG. 1 is rotated 90 ° clockwise.
  • the central block row 20 is simplified.
  • FIG. 3 is a perspective view of the tread portion 2 shown in FIG.
  • each block 41 of the plurality of blocks 41 includes a first wall surface 42 on the shoulder portion 4 side, a second wall surface 43 on the tread center portion 3 side, and a first block corner portion 44 on the shoulder portion 4 side.
  • the second block corner 45 on the tread central portion 3 side is provided.
  • the first wall surface 42 of the block 41 is formed from the position where the lateral groove 14 on the downstream side H of the airflow opens to the first circumferential groove 11 toward the upstream side G of the airflow.
  • the second wall surface 43 of the block 41 is formed from the position where the lateral groove 14 on the downstream side H of the airflow opens to the second circumferential groove 12 toward the upstream side G of the airflow.
  • the first wall surface 42 is located in the first circumferential groove 11, and the second wall surface 43 is located in the second circumferential groove 12.
  • the 1st wall surface 42 is a plane which inclines to the tread center part 3 side with respect to the tire circumferential direction S toward the downstream H of an airflow.
  • the second wall surface 43 is a curved surface that is inclined toward the shoulder portion 4 with respect to the tire circumferential direction S toward the downstream side H of the airflow.
  • the second wall surface 43 is a convex surface that is curved in an arc shape, and is smoothly connected to the wall surface of the surrounding block 41.
  • the second wall surface 43 curves toward the inside of the lateral groove 14 on the downstream side H of the airflow.
  • the first block corner portion 44 of the block 41 is a corner portion of the block 41 formed at a position where the lateral groove 14 on the upstream side G of the airflow opens to the first circumferential groove 11, and the wall surface of the block 41 in the lateral groove 14 And the wall surface of the block 41 in the first circumferential groove 11 is formed at a position where it intersects.
  • the second block corner 45 of the block 41 is a corner of the block 41 formed at a position where the lateral groove 14 on the upstream side G of the airflow opens to the second circumferential groove 12, and the wall surface of the block 41 in the lateral groove 14. And the wall surface of the block 41 in the second circumferential groove 12 are formed at a position where they intersect.
  • the wall surface of the block 41 is formed in different directions with the first block corner 44 and the second block corner 45 as a boundary.
  • a virtual surface (first virtual surface) 46 obtained by extending the first wall surface 42 of the upstream G block 41 is It is located outside the lateral groove 14 (the lateral groove 14 on the downstream side H) between the two blocks 41.
  • the first virtual surface 46 is an extension surface (virtual extension surface) obtained by virtually extending the first wall surface 42 on the downstream side H of the airflow, and extends from the first wall surface 42 so as to be flush with the first wall surface 42. Smoothly continuous.
  • the first virtual surface 46 extends toward the block 41 on the downstream side H and is disposed along the first circumferential groove 11.
  • the first virtual surface 46 of the upstream G block 41 intersects with the first block corner 44 of the downstream H block 41 or the first block corner 44 of the first block corner 44. It passes through the position in the first circumferential groove 11 on the shoulder portion 4 side. When the first virtual surface 46 passes through the position in the first circumferential groove 11, the first virtual surface 46 intersects the block 41 (the wall surface of the block 41) on the downstream side H in the first circumferential groove 11. .
  • the groove width W of the second circumferential groove 12 gradually increases in the second wall surface 43 of the block 41 toward the downstream side H of the airflow (the lateral groove 14 on the downstream side H). Further, when the two blocks 41 on the upstream side G and the downstream side H of the airflow adjacent to each other in the tire circumferential direction S are viewed, a virtual surface (second virtual surface) obtained by extending the second wall surface 43 of the block 41 on the upstream side G. 47 is extended toward the shoulder portion 4 side.
  • the second virtual surface 47 is an extension surface (virtual extension surface) obtained by virtually extending the second wall surface 43 on the downstream side H of the airflow, and extends from the second wall surface 43 so as to be flush with the second wall surface 43. Smoothly continuous.
  • the second virtual surface 47 of the block 41 on the upstream side G does not intersect the second block corner 45 of the block 41 on the downstream side H between the two blocks 41. It extends toward the inside of the lateral groove 14 (the lateral groove 14 on the downstream side H).
  • the second virtual surface 47 passes through the lateral groove 14 and intersects the block 41 on the downstream side H (the wall surface of the block 41) in the lateral groove 14.
  • the second imaginary surface 47 extends through the lateral groove 14 to the first circumferential groove 11.
  • the first imaginary surface 46 intersects with the first block corner portion 44 or passes through a position in the first circumferential groove 11, so that the air flowing along the first wall surface 42 is a lateral groove. 14 becomes difficult to flow into. Therefore, the air is suppressed from flowing from the first circumferential groove 11 into the lateral groove 14 and the second circumferential groove 12, and air backflow, vortex flow, and stagnation occur in the second circumferential groove 12. Is prevented.
  • the air in the second circumferential groove 12 smoothly flows toward the downstream side H in the second circumferential groove 12 without being disturbed by the air flowing in from the lateral groove 14. Accordingly, the flow rate of air as a cooling medium is increased in the second circumferential groove 12, and the cooling of the tread portion 2 is promoted. Further, the air flow in the first circumferential groove 11 deviates from the first block corner portion 44, whereby the increase in air pressure at the first block corner portion 44 is suppressed.
  • the pressure of the air around the second wall surface 43 on the second circumferential groove 12 side of one block 41 is the second block. It becomes lower than the pressure of the air around the corner 45. Accordingly, in the second circumferential groove 12, air is drawn from the upstream side G of the second wall surface 43 toward the periphery of the second wall surface 43, and the airflow is accelerated. Further, when the airflow hits the second block corner 45, the air pressure increases at the second block corner 45. As a result, the air pressure in the second block corner 45 becomes higher than the air pressure in the first block corner 44 in the lateral groove 14, and the air flows from the second block corner 45 to the first block corner 44. It flows toward.
  • the heat dissipation of the first circumferential groove 11 and the second circumferential groove 12 can be adjusted by controlling the airflow during vehicle travel. Moreover, heat dissipation can be promoted by accelerating the air flow in the second circumferential groove 12 on the tread central portion 3 side. Therefore, the heat dissipation of the second circumferential groove 12 can be improved, and the cooling effect of the tread portion 2 by the second circumferential groove 12 can be enhanced. Accordingly, the tread portion 2 can be cooled on the tread central portion 3 side to suppress an increase in the temperature of the tread portion 2. The durability of the tread portion 2 can be effectively improved by lowering the temperature around the belt that easily generates heat in the tread portion 2.
  • the air that has flowed along the second wall surface 43 easily flows into the lateral groove 14. Further, since the second wall surface 43 is inclined toward the shoulder portion 4, air can easily flow from the second circumferential groove 12 toward the lateral groove 14.
  • the second wall surface 43 is a curved surface, air flows smoothly along the second wall surface 43, and an air flow toward the lateral groove 14 is likely to occur. Accordingly, the air pressure can be reliably lowered around the second wall surface 43, and the airflow in the second circumferential groove 12 can be further accelerated.
  • the groove width W of the second circumferential groove 12 is preferably wider than the groove width of the lateral groove 14, and the groove width of the lateral groove 14 is preferably wider than the groove width of the first circumferential groove 11. Thereby, the backflow of air can be suppressed more reliably.
  • the groove width W of the second circumferential groove 12 is wider than the groove width of the lateral groove 14 and the groove width of the first circumferential groove 11, the air flow rate in the second circumferential groove 12 is increased, The cooling effect by the two circumferential grooves 12 can be improved.
  • the groove width W of the second circumferential groove 12 only needs to gradually increase toward the downstream side H of the airflow at least on the second wall surface 43. Therefore, in addition to the second wall surface 43, the groove width W of the second circumferential groove 12 may be gradually increased toward the downstream side H of the airflow on the upstream side G of the second wall surface 43.
  • the first block corner portion 44 and the second block corner portion 45 may be corner portions formed in a bent shape, or may be corner portions formed in a curved shape.
  • FIG. 4 is a plan view showing the first block corner portion 44 formed in a curved shape.
  • the first virtual surface 46 intersects the first block corner 44 through, for example, a virtual intersection position 48.
  • the virtual intersection position 48 is a position where virtual surfaces obtained by extending the wall surfaces 41 ⁇ / b> A and 41 ⁇ / b> B of the block 41 on both sides of the first block corner 44 intersect.
  • One wall surface 41 ⁇ / b> A is a wall surface of the block 41 in the lateral groove 14
  • the other wall surface 41 ⁇ / b> B is a wall surface of the block 41 in the first circumferential groove 11.
  • FIGS. 5 to 7 are plan views showing blocks 51, 61, and 71 of other embodiments, and show a part of a tread pattern including the blocks 51, 61, and 71 as in FIG.
  • the fifth includes a first wall surface 52, a second wall surface 53, a first block corner portion 54, and a second block corner portion 55.
  • the first virtual surface 56 is an extended surface obtained by extending the first wall surface 52
  • the second virtual surface 57 is an extended surface obtained by extending the second wall surface 53.
  • the second wall surface 53 of the block 51 is a flat surface inclined toward the shoulder portion 4 with respect to the tire circumferential direction S toward the downstream side H of the airflow.
  • the second wall surface 53 is inclined toward the inside of the lateral groove 14 on the downstream side H of the airflow. In the second wall surface 53, air easily flows from the second circumferential groove 12 toward the lateral groove 14. Therefore, the air pressure can be reliably reduced around the second wall surface 53, and the airflow in the second circumferential groove 12 can be further accelerated.
  • the block 61 is formed symmetrically with respect to a center line 68 passing through the center in the tire circumferential direction S in a plan view of the block 61 viewed from the outside in the tire radial direction. Therefore, the block 61 has a first wall surface 62, a second wall surface 63, a first block corner portion 64, and a second block corner portion 65 on both sides of the center line 68.
  • the first virtual surface 66 is an extended surface that extends from the first wall surface 62 on both sides of the center line 68
  • the second virtual surface 67 is an extended surface that extends from the second wall surface 63 on both sides of the center line 68. is there.
  • the first wall surface 62 is a curved surface that is recessed in the block 61, and the two first wall surfaces 62 intersect at a center line 68.
  • the tire rotation direction R can be set to both directions of the tire circumferential direction S. That is, even when the airflow direction F is the opposite direction, the block 61 satisfies the same conditions as the block 41 and acts in the same manner as the block 41. Therefore, it is not necessary to specify the tire rotation direction R when the tire is mounted, and the convenience for the user is improved.
  • the first virtual surface 76 is an extended surface obtained by extending the first wall surfaces 72 on both sides of the center line 78
  • the second virtual surface 77 is an extended surface obtained by extending the second wall surfaces 73 on both sides of the center line 78. is there.
  • the first wall surface 72 is a curved surface that is recessed in the block 71, and the two first wall surfaces 72 intersect at a center line 78.
  • the second wall surface 73 of the block 71 is a plane that is inclined toward the shoulder portion 4 with respect to the tire circumferential direction S toward the downstream side H of the airflow.
  • the second wall surface 73 is inclined toward the inside of the lateral groove 14 on the downstream side H of the airflow.
  • the tire rotation direction R can be set in both the tire circumferential direction S. That is, even when the airflow direction F is the opposite direction, the block 71 satisfies the same conditions as the block 41 and exhibits the same effects as the block 41. Therefore, it is not necessary to specify the tire rotation direction R when the tire is mounted, and the convenience for the user is improved.
  • the present invention is suitable for heavy duty tires.
  • the present invention can be applied to various tires other than heavy duty tires.
  • the groove width W of the second circumferential groove 12 is wider than the groove width of the lateral groove 14, and the groove width of the lateral groove 14 is wider than the groove width of the first circumferential groove 11. That is, in the working product 2, the entire second circumferential groove 12 is wider than the widest portion of the lateral groove 14, and the entire lateral groove 14 is wider than the widest portion of the first circumferential groove 11.
  • the condition of the groove width of the working product 1 is different from the condition of the groove width of the working product 2. Specifically, in the product 1, the widest portion of the second circumferential groove 12 is wider than the lateral groove 14 and the first circumferential groove 11, and the lateral groove 14 and the first circumferential groove 11 are formed to have the same groove width. Has been. In the conventional product, a plurality of blocks in the intermediate block row 40 are different from the implementation product 1.
  • FIG. 8 is a plan view showing a tread pattern of a conventional product, and shows a part of the tread pattern similarly to FIG.
  • the block 91 is formed symmetrically with respect to a center line 98 passing through the center in the tire circumferential direction S in a plan view of the block 91 of the intermediate block row 40 as viewed from the outer side in the tire radial direction.
  • the block 91 has a first wall surface 92, a second wall surface 93, a first block corner portion 94, and a second block corner portion 95 on both sides of the center line 98.
  • the first virtual surface 96 is an extended surface obtained by extending the first wall surfaces 92 on both sides of the center line 98.
  • the first virtual surface 96 of the block 91 on the upstream side G is formed by the lateral groove 14 between the two blocks 91. It extends inward and intersects with the block 91 on the downstream side H in the lateral groove 14.
  • the groove width W of the second circumferential groove 12 is a constant width on the second wall surface 93.
  • the drum endurance test was carried out under the following conditions using Examples 1 and 2 and the conventional product.
  • Tire size 11R22.5
  • Tire internal pressure 700 kPa
  • Drum speed 65km / h
  • Temperature during the test 38 ° C
  • the implemented products 1 and 2 and the conventional product were brought into contact with the outer peripheral surface of the drum, and the same load was applied to the implemented products 1 and 2 and the conventional product. In this state, the drum was rotated, and the products 1 and 2 and the conventional product were rotated (runned) by the drum.
  • the running distances that the belts of the implemented products 1 and 2 and the conventional product could withstand were measured, and the belt durability of the implemented products 1 and 2 and the conventional product was evaluated.
  • channel 12 was measured in the implementation products 1 and 2 and the conventional product, and the heat dissipation of the 2nd circumferential groove
  • Table 1 shows the test results of the implemented products 1 and 2 and the conventional product. The test results are expressed as an index with the conventional product as 100, and the larger the value, the higher the performance. As shown in Table 1, the heat transfer coefficient (140) of the implementation product 1 and the heat transfer coefficient (145) of the implementation product 2 were significantly higher than those of the conventional product. From this, it was found that the heat dissipation of the second circumferential groove 12 was improved in the products 1 and 2. Further, the belt durability (115) of the implementation product 1 and the belt durability (117) of the implementation product 2 were higher than the belt durability of the conventional product. In the products 1 and 2, it was found that the cooling effect by the second circumferential groove 12 was increased and the belt durability was improved.
  • the heat transfer coefficient of the implementation product 2 is higher than that of the implementation product 1, and the belt durability of the implementation product 2 is higher than the belt durability of the implementation product 1. From this, it was found that in the product 2, the heat dissipation of the second circumferential groove 12 was further improved, and the cooling effect by the second circumferential groove 12 was further increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 複数のブロックのトレッド中央部側の周方向溝の放熱性を向上させる。 ブロック(41)は、横溝(14)が第1周方向溝(11)に開口する位置から気流の上流側(G)に向かって形成された第1壁面(42)と、横溝(14)が第2周方向溝(12)に開口する位置から気流の上流側(G)に向かって形成された第2壁面(43)と、横溝(14)が第1周方向溝(11)に開口する位置に形成されたブロック角部(44)を有する。上流側(G)のブロック(41)の第1壁面(42)を延長した仮想面(46)は、下流側(H)のブロック(41)のブロック角部(44)と交わり、又は、ブロック角部(44)のショルダー部(4)側で第1周方向溝(11)内の位置を通過する。第2周方向溝(12)の溝幅(W)は、第2壁面(43)において、気流の下流側(H)に向かって次第に広くなる。

Description

タイヤ
 本発明は、トレッド部に複数のブロックを備えたタイヤに関する。
 従来、複数のブロックを有するブロックパターンは、重荷重用タイヤ等の様々なタイヤのトレッド部に形成されている。このようなタイヤを装着した車両の走行時には、タイヤのトレッド部内で部材が変形することで、トレッド部に歪が生じる。また、ゴムの粘弾特性に起因して、トレッド部が発熱し、トレッド部の温度が上昇する。トレッド部の歪と温度はトレッド部の耐久性に影響する主要な因子であり、トレッド部の耐久性を向上するためには、トレッド部に生じる歪と温度上昇に対処する必要がある。
 これに対し、従来のタイヤでは、主に、補強部材をトレッド部内に追加し、或いは、トレッド部の剛性を高くして、トレッド部での歪の発生を抑制している。ところが、この場合には、タイヤ内の部材の数とタイヤの重量が増加するとともに、タイヤのコストが高くなる虞がある。そのため、トレッド部の耐久性に関しては、トレッド部を効果的に冷却して、温度の上昇を抑制することが求められている。また、トレッド部の内部構造やタイヤの使用条件等によっては、ショルダー部側に比べて、トレッド中央部側で、トレッド部の冷却がより重要となることがあり、そのような要求の実現も求められる。
 ここで、複数のブロックを備えたタイヤにおいては、一般に、複数のブロックが2つの周方向溝の間に配置されて、複数の横溝がブロックの間に形成される。このようなタイヤでは、周方向溝内に生じる気流により、放熱が促進されて、トレッド部が冷却される。しかしながら、周方向溝内の気流を制御して、周方向溝の放熱性を調整するのは難しい。そのため、トレッド中央部側の周方向溝とショルダー部側の周方向溝の間に複数のブロックを備えたタイヤにおいては、トレッド中央部側の周方向溝に比べて、ショルダー部側の周方向溝で、放熱が多くなることがある。この場合には、トレッド中央部側の周方向溝によるトレッド部の冷却効果を高くできない。従って、トレッド中央部側のトレッド部で、温度の上昇を抑制するのは難しい。
 また、従来、ショルダーブロック列に形成したブロック溝により、トレッド部の温度の上昇を抑制するタイヤが知られている(特許文献1参照)。
 ところが、特許文献1に記載された従来のタイヤでは、ブロック溝をブロックの踏面にタイヤ周方向に沿って形成する必要がある。そのため、ブロックの形状やブロックに求められる性能によっては、ブロック溝を形成できないことがある。
特開2010-125998号公報
 本発明は、前記従来の問題に鑑みなされたもので、その目的は、トレッド中央部側の周方向溝とショルダー部側の周方向溝の間に複数のブロックを備えたタイヤにおいて、複数のブロックのトレッド中央部側の周方向溝の放熱性を向上させて、トレッド中央部側の周方向溝によるトレッド部の冷却効果を高くすることである。
 本発明は、トレッド中央部とショルダー部の間に配置された第1周方向溝と、第1周方向溝のトレッド中央部側に配置された第2周方向溝と、第1周方向溝と第2周方向溝に開口する複数の横溝と、第1周方向溝、第2周方向溝、及び、複数の横溝によりトレッド部に区画された複数のブロックと、を備えたタイヤである。車両走行時に、タイヤ回転方向の反対方向の気流が第1周方向溝と第2周方向溝内に生じる。複数のブロックの各ブロックは、気流の下流側の横溝が第1周方向溝に開口する位置から気流の上流側に向かって形成された第1壁面と、気流の下流側の横溝が第2周方向溝に開口する位置から気流の上流側に向かって形成された第2壁面と、気流の上流側の横溝が第1周方向溝に開口する位置に形成されたブロック角部と、を有する。タイヤ周方向に隣り合う気流の上流側と下流側の2つのブロックをみたときに、上流側のブロックの第1壁面を気流の下流側で延長した仮想面は、下流側のブロックのブロック角部と交わり、又は、ブロック角部のショルダー部側で第1周方向溝内の位置を通過する。第2周方向溝の溝幅は、ブロックの第2壁面において、気流の下流側に向かって次第に広くなる。
 本発明によれば、トレッド中央部側の周方向溝とショルダー部側の周方向溝の間に複数のブロックを備えたタイヤにおいて、複数のブロックのトレッド中央部側の周方向溝の放熱性を向上させて、トレッド中央部側の周方向溝によるトレッド部の冷却効果を高くすることができる。
本実施形態のタイヤのトレッドパターンを示す平面図である。 本実施形態のトレッドパターンの一部を示す平面図である。 図2に示すトレッド部の斜視図である。 湾曲形状に形成された第1ブロック角部を示す平面図である。 他の実施形態のブロックを示す平面図である。 他の実施形態のブロックを示す平面図である。 他の実施形態のブロックを示す平面図である。 従来品のトレッドパターンを示す平面図である。
 本発明のタイヤの一実施形態について、図面を参照して説明する。
 本実施形態のタイヤは、車両用の空気入りタイヤ(例えば、重荷重用タイヤ、乗用車用タイヤ)であり、一般的なタイヤ構成部材により、周知の構造に形成されている。即ち、タイヤは、一対のビード部と、一対のビード部のタイヤ半径外側に位置する一対のサイドウォール部と、路面に接するトレッド部と、トレッド部と一対のサイドウォール部の間に位置する一対のショルダー部を備えている。また、タイヤは、一対のビードコアと、一対のビードコアの間に配置されたカーカスと、カーカスの外周側に配置されたベルトと、所定のトレッドパターンを有するトレッドゴムを備えている。
 図1は、本実施形態のタイヤ1のトレッドパターンを示す平面図であり、トレッド部2のタイヤ周方向Sの一部を模式的に示している。
 なお、タイヤ1は、車両前進時の回転方向が指定されるタイヤであり、車両前進時にタイヤ回転方向Rに回転する。タイヤ回転方向Rは、タイヤ1のトレッドパターンに対応して指定される。タイヤ1は、タイヤ回転方向Rが適合するように車両に装着される。
 図示のように、タイヤ1は、トレッド部2に、複数の周方向溝11、12と、複数のラグ溝13と、複数の横溝14と、複数のブロック列20、30、40を備えている。複数の周方向溝11、12は、タイヤ周方向Sに延びる主溝(周方向主溝)であり、それぞれタイヤ周方向Sに沿って連続して形成されている。また、複数の周方向溝11、12は、トレッド中央部3とショルダー部4の間に配置された第1周方向溝11と、第1周方向溝11のトレッド中央部3側に配置された第2周方向溝12からなる。トレッド中央部3は、トレッド部2のタイヤ幅方向Kの中央部であり、タイヤ赤道面は、トレッド中央部3に位置する。ショルダー部4は、トレッド部2のタイヤ幅方向Kの外側に位置する。
 第1周方向溝11は、第2周方向溝12のタイヤ幅方向Kの外側(ショルダー部4側)に形成された外側周方向溝であり、第2周方向溝12とショルダー部4(トレッド端)の間に配置されている。タイヤ1は、両ショルダー部4のタイヤ幅方向Kの内側に形成された2つの第1周方向溝11を備えている。第2周方向溝12は、第1周方向溝11のタイヤ幅方向Kの内側(トレッド中央部3側)に形成された中央側周方向溝であり、第1周方向溝11とトレッド中央部3の間に配置されている。タイヤ1は、トレッド中央部3のタイヤ幅方向Kの両側に形成された2つの第2周方向溝12を備えている。一対の第1周方向溝11と第2周方向溝12が、トレッド中央部3とショルダー部4の間に配置されるとともに、トレッド中央部3のタイヤ幅方向Kの両側に形成されている。複数の周方向溝11、12により、トレッド部2が区画されて、複数のブロック列20、30、40がトレッド部2に形成されている。
 複数のブロック列20、30、40は、タイヤ周方向Sに沿って延びる陸部であり、それぞれ複数のブロック21、31、41を有する。また、複数のブロック列20、30、40は、1つの中央ブロック列20と、2つのショルダーブロック列30と、2つの中間ブロック列40からなる。中央ブロック列20は、複数の連結溝22と、タイヤ周方向Sに延びる1つの周方向副溝23を有し、トレッド中央部3に配置されている。周方向副溝23は、周方向溝11、12よりも細い周方向細溝であり、複数の連結溝22により、2つの第2周方向溝12に連結されている。複数の連結溝22と1つの周方向副溝23により、中央ブロック列20が区画されて、複数のブロック21が中央ブロック列20内に形成されている。
 ショルダーブロック列30は、複数のラグ溝13を有し、トレッド部2内でタイヤ幅方向Kの最外側(ショルダー部4側)に配置されている。ラグ溝13は、タイヤ幅方向Kに延び、第1周方向溝11からショルダー部4まで形成されている。ショルダーブロック列30の複数のブロック31は、タイヤ周方向Sに順次配置され、ラグ溝13は、タイヤ周方向Sに隣り合うブロック31の間に形成されている。また、ラグ溝13は、第1周方向溝11のショルダー部4側に形成されて、第1周方向溝11に開口する。タイヤ1は、各ラグ溝13内に形成された隆起部15を備えている。隆起部15は、ラグ溝13の溝底から隆起して、ラグ溝13の両側の溝壁(ブロック31の壁面)を連結する。ここでは、隆起部15は、タイバーである。ラグ溝13の少なくとも一部は、隆起部15により第1周方向溝11よりも浅くなっている。
 中間ブロック列40は、複数の横溝14を有し、トレッド部2内で、中央ブロック列20とショルダーブロック列30の間に配置されている。複数の横溝14は、タイヤ幅方向Kに延びる幅方向溝であり、第1周方向溝11から第2周方向溝12まで形成されている。中間ブロック列40の複数のブロック41は、タイヤ周方向Sに順次配置され、横溝14は、タイヤ周方向Sに隣り合うブロック41の間に形成されている。また、横溝14は、第1周方向溝11と第2周方向溝12の間に形成されて、第1周方向溝11と第2周方向溝12に開口する。
 このように、タイヤ1は、トレッド中央部3とショルダー部4の間に配置された中間ブロック列40の複数のブロック41を備えている。第1周方向溝11は、複数のブロック41のショルダー部4側の壁面に沿って延び、第2周方向溝12は、複数のブロック41のトレッド中央部3側の壁面に沿って延びる。複数の横溝14は、タイヤ周方向Sに離して配置されて、第1周方向溝11と第2周方向溝12の間の中間ブロック列40を横断する。第1周方向溝11、第2周方向溝12、及び、複数の横溝14により、複数のブロック41がトレッド部2に区画され、各ブロック41がタイヤ半径方向外側からみて所定の多角形状に形成される。
 タイヤ1は、車両に装着されて、車両の走行(前進)に伴い、タイヤ回転方向Rに回転する。車両の前進による車両走行時(タイヤ回転時)には、所定方向の気流が第1周方向溝11と第2周方向溝12内に生じる。気流は、タイヤ1の回転により生じる相対的な空気の流れ(風)であり、タイヤ回転方向Rの反対方向に生じる。図1に示す矢印Fが、第1周方向溝11と第2周方向溝12内に生じる気流の方向である。同じ方向の気流が、第1周方向溝11と第2周方向溝12内に生じる。本実施形態のタイヤ1では、第1周方向溝11と第2周方向溝12の間に形成された複数のブロック41により、気流を制御して、第1周方向溝11と第2周方向溝12の放熱性を調整する。これにより、トレッド中央部3側に位置する第2周方向溝12の放熱性を向上させている。以下、放熱性の調整について詳しく説明する。
 図2は、本実施形態のトレッドパターンの一部を示す平面図であり、図1を右回りに90°回転させた状態で、ブロック41を含む部分を示している。また、図2では、中央ブロック列20を簡略化している。図3は、図2に示すトレッド部2の斜視図である。
 図示のように、複数のブロック41の各ブロック41は、ショルダー部4側の第1壁面42と、トレッド中央部3側の第2壁面43と、ショルダー部4側の第1ブロック角部44と、トレッド中央部3側の第2ブロック角部45を有する。第1周方向溝11と第2周方向溝12内で(気流方向F参照)、空気は、気流の上流側Gから気流の下流側Hに向かって流れて、トレッド部2を冷却する。
 ブロック41の第1壁面42は、気流の下流側Hの横溝14が第1周方向溝11に開口する位置から、気流の上流側Gに向かって形成されている。ブロック41の第2壁面43は、気流の下流側Hの横溝14が第2周方向溝12に開口する位置から、気流の上流側Gに向かって形成されている。第1壁面42は、第1周方向溝11内に位置し、第2壁面43は、第2周方向溝12内に位置する。ここでは、第1壁面42は、気流の下流側Hに向かって、タイヤ周方向Sに対してトレッド中央部3側に傾斜する平面である。これに対し、第2壁面43は、気流の下流側Hに向かって、タイヤ周方向Sに対してショルダー部4側に傾斜する湾曲面である。また、第2壁面43は、円弧状に湾曲する凸面であり、周囲のブロック41の壁面に滑らかに接続する。ブロック41のトレッド中央部3側で、第2壁面43は、気流の下流側Hの横溝14の内側に向かって湾曲する。
 ブロック41の第1ブロック角部44は、気流の上流側Gの横溝14が第1周方向溝11に開口する位置に形成されたブロック41の角部であり、横溝14内のブロック41の壁面と第1周方向溝11内のブロック41の壁面とが交わる位置に形成されている。ブロック41の第2ブロック角部45は、気流の上流側Gの横溝14が第2周方向溝12に開口する位置に形成されたブロック41の角部であり、横溝14内のブロック41の壁面と第2周方向溝12内のブロック41の壁面とが交わる位置に形成されている。ブロック41の壁面は、第1ブロック角部44と第2ブロック角部45を境界として、それぞれ異なる方向に向かって形成されている。
 タイヤ周方向Sに隣り合う気流の上流側Gと下流側Hの2つのブロック41をみたときに、上流側Gのブロック41の第1壁面42を延長した仮想面(第1仮想面)46は、2つのブロック41の間の横溝14(下流側Hの横溝14)の外側に位置する。第1仮想面46は、第1壁面42を気流の下流側Hで仮想的に延長した延長面(仮想延長面)であり、第1壁面42と同一面をなすように、第1壁面42から滑らかに連続する。また、第1仮想面46は、下流側Hのブロック41に向かって延長されて、第1周方向溝11に沿って配置される。中間ブロック列40の全てのブロック41において、上流側Gのブロック41の第1仮想面46は、下流側Hのブロック41の第1ブロック角部44と交わり、又は、第1ブロック角部44のショルダー部4側で第1周方向溝11内の位置を通過する。第1仮想面46が第1周方向溝11内の位置を通過するときには、第1仮想面46は、第1周方向溝11内で、下流側Hのブロック41(ブロック41の壁面)と交わる。
 第2周方向溝12の溝幅Wは、ブロック41の第2壁面43において、気流の下流側H(下流側Hの横溝14)に向かって次第に広くなる。また、タイヤ周方向Sに隣り合う気流の上流側Gと下流側Hの2つのブロック41をみたときに、上流側Gのブロック41の第2壁面43を延長した仮想面(第2仮想面)47は、ショルダー部4側に向かって延長される。第2仮想面47は、第2壁面43を気流の下流側Hで仮想的に延長した延長面(仮想延長面)であり、第2壁面43と同一面をなすように、第2壁面43から滑らかに連続する。中間ブロック列40の全てのブロック41において、上流側Gのブロック41の第2仮想面47は、下流側Hのブロック41の第2ブロック角部45に交わることなく、2つのブロック41の間の横溝14(下流側Hの横溝14)の内側に向かって延長される。第2仮想面47は、横溝14を通過して、横溝14内で下流側Hのブロック41(ブロック41の壁面)と交わる。或いは、第2仮想面47は、横溝14を通過して、第1周方向溝11まで延長される。
 以上説明したタイヤ1では、第1仮想面46が第1ブロック角部44と交わり、又は、第1周方向溝11内の位置を通過するため、第1壁面42に沿って流れた空気が横溝14内に流入し難くなる。そのため、空気が第1周方向溝11から横溝14及び第2周方向溝12に流入するのが抑制され、第2周方向溝12内で、空気の逆流、渦流、及び、滞留が生じるのが防止される。第2周方向溝12内の空気は、横溝14から流入する空気により乱されることなく、第2周方向溝12内を下流側Hに向かって円滑に流れる。これに伴い、第2周方向溝12内で、冷却媒体である空気の流量が増加して、トレッド部2の冷却が促進される。また、第1周方向溝11内の気流が第1ブロック角部44を逸れることで、第1ブロック角部44で空気の圧力が上昇するのが抑制される。
 第2周方向溝12の溝幅Wが第2壁面43において次第に広くなるため、1つのブロック41の第2周方向溝12側で、第2壁面43の周辺の空気の圧力が、第2ブロック角部45の周辺の空気の圧力よりも低くなる。これに伴い、第2周方向溝12内で、空気が第2壁面43の上流側Gから第2壁面43の周辺に向かって引かれて、気流が加速される。また、気流が第2ブロック角部45に当たることで、第2ブロック角部45で空気の圧力が上昇する。その結果、横溝14内で、第2ブロック角部45における空気の圧力が第1ブロック角部44における空気の圧力よりも高くなり、空気が第2ブロック角部45から第1ブロック角部44に向かって流れる。これにより、第2周方向溝12から横溝14に向かう気流が生じて、空気が横溝14から第2周方向溝12に流入するのが抑制される。また、第2周方向溝12内の気流が、より加速される。
 このように、本実施形態のタイヤ1では、車両走行時の気流を制御して、第1周方向溝11と第2周方向溝12の放熱性を調整することができる。また、トレッド中央部3側の第2周方向溝12内で、気流を加速することで、放熱を促進することができる。従って、第2周方向溝12の放熱性を向上させて、第2周方向溝12によるトレッド部2の冷却効果を高くすることができる。これに伴い、トレッド中央部3側で、トレッド部2を冷却して、トレッド部2の温度の上昇を抑制することができる。トレッド部2内で、発熱が生じ易いベルトの周辺の温度を低下させることで、トレッド部2の耐久性を効果的に向上することもできる。
 第2仮想面47が横溝14の内側に向かって延長されるときには、第2壁面43に沿って流れた空気が横溝14内に流入し易くなる。また、第2壁面43がショルダー部4側に傾斜することで、空気が第2周方向溝12から横溝14に向かって流れ易くなる。第2壁面43が湾曲面であるときには、空気が第2壁面43に沿って円滑に流れて、横溝14に向かう気流が生じ易くなる。これらに伴い、第2壁面43の周辺で空気の圧力を確実に低くできるとともに、第2周方向溝12内の気流を更に加速することができる。ショルダーブロック列30のラグ溝13に隆起部15を形成することで、第1周方向溝11内を流れる空気がラグ溝13を通して流出するのを抑制することができる。その結果、気流を第1周方向溝11に集中することができる。
 横溝14の溝幅が第2周方向溝12の溝幅Wよりも広いときには、第1周方向溝11からの空気の流入が多くなり、第2周方向溝12内で空気の逆流が生じ易くなる。同様に、第1周方向溝11の溝幅が横溝14の溝幅よりも広いときには、第2周方向溝12への空気の逆流が生じ易くなり、第2周方向溝12による冷却効果に影響が生じる虞がある。従って、第2周方向溝12の溝幅Wは、横溝14の溝幅よりも広いのが好ましく、横溝14の溝幅は、第1周方向溝11の溝幅よりも広いのが好ましい。これにより、空気の逆流をより確実に抑制することができる。また、第2周方向溝12の溝幅Wが横溝14の溝幅及び第1周方向溝11の溝幅よりも広いため、第2周方向溝12内の空気の流量を増加させて、第2周方向溝12による冷却効果を向上させることができる。
 なお、第2周方向溝12の溝幅Wは、少なくとも第2壁面43において、気流の下流側Hに向かって次第に広くなっていればよい。従って、第2壁面43に加えて、第2壁面43の上流側Gで、第2周方向溝12の溝幅Wを気流の下流側Hに向かって次第に広くしてもよい。また、第1ブロック角部44と第2ブロック角部45は、屈曲形状に形成された角部であってもよく、湾曲形状に形成された角部であってもよい。
 図4は、湾曲形状に形成された第1ブロック角部44を示す平面図である。
 この場合には、図示のように、第1仮想面46は、例えば、仮想交差位置48を通って、第1ブロック角部44と交わる。仮想交差位置48は、第1ブロック角部44の両側のブロック41の壁面41A、41Bを延長した仮想面が交差する位置である。一方の壁面41Aは、横溝14内のブロック41の壁面であり、他方の壁面41Bは、第1周方向溝11内のブロック41の壁面である。第1ブロック角部44を湾曲形状に形成することで、空気が横溝14から第1周方向溝11に流れ易くなる。
 次に、他の実施形態のブロックについて説明する。以下の各ブロックは、ブロック41の一部の形状を変更した例であり、上記した効果と同様の効果を発揮する。各ブロックについて、ブロック41と同じ構成にはブロック41と同じ名称を付し、各構成の詳細な説明は省略する。また、以下の説明では、既に説明した事項と同じ事項の説明は省略する。
 図5~図7は、他の実施形態のブロック51、61、71を示す平面図であり、図2と同様に、ブロック51、61、71を含むトレッドパターンの一部を示している。
 図5に示すブロック51は、第1壁面52と、第2壁面53と、第1ブロック角部54と、第2ブロック角部55を有する。第1仮想面56は、第1壁面52を延長した延長面であり、第2仮想面57は、第2壁面53を延長した延長面である。ここでは、第2壁面53のみが、ブロック41の第2壁面43と相違する。ブロック51の第2壁面53は、気流の下流側Hに向かって、タイヤ周方向Sに対してショルダー部4側に傾斜する平面である。第2壁面53は、気流の下流側Hの横溝14の内側に向かって傾斜する。この第2壁面53では、空気が第2周方向溝12から横溝14に向かって流れ易くなる。そのため、第2壁面53の周辺で空気の圧力を確実に低くできるとともに、第2周方向溝12内の気流を更に加速することができる。
 図6に示すブロック61では、ブロック61をタイヤ半径方向外側からみた平面図において、ブロック61が、タイヤ周方向Sの中心を通る中心線68に関し線対称に形成されている。そのため、ブロック61は、中心線68の両側に、第1壁面62と、第2壁面63と、第1ブロック角部64と、第2ブロック角部65を有する。また、第1仮想面66は、中心線68の両側の第1壁面62を延長した延長面であり、第2仮想面67は、中心線68の両側の第2壁面63を延長した延長面である。第1壁面62は、ブロック61内に窪んだ湾曲面であり、2つの第1壁面62は、中心線68で交わる。このブロック61では、タイヤ回転方向Rをタイヤ周方向Sの両方向に設定することができる。即ち、気流方向Fが反対方向になったときでも、ブロック61は、ブロック41と同様の条件を満たし、ブロック41と同様に作用する。従って、タイヤ装着時に、タイヤ回転方向Rを指定する必要がなく、ユーザの利便性が向上する。
 図7に示すブロック71では、ブロック61と同様に、ブロック71をタイヤ半径方向外側からみた平面図において、ブロック71が、タイヤ周方向Sの中心を通る中心線78に関し線対称に形成されている。そのため、ブロック71は、中心線78の両側に、第1壁面72と、第2壁面73と、第1ブロック角部74と、第2ブロック角部75を有する。また、第1仮想面76は、中心線78の両側の第1壁面72を延長した延長面であり、第2仮想面77は、中心線78の両側の第2壁面73を延長した延長面である。第1壁面72は、ブロック71内に窪んだ湾曲面であり、2つの第1壁面72は、中心線78で交わる。ブロック71の第2壁面73は、ブロック51の第2壁面53と同様に、気流の下流側Hに向かって、タイヤ周方向Sに対してショルダー部4側に傾斜する平面である。第2壁面73は、気流の下流側Hの横溝14の内側に向かって傾斜する。このブロック71では、ブロック61と同様に、タイヤ回転方向Rをタイヤ周方向Sの両方向に設定することができる。即ち、気流方向Fが反対方向になったときでも、ブロック71は、ブロック41と同様の条件を満たし、ブロック41と同様の効果を発揮する。従って、タイヤ装着時に、タイヤ回転方向Rを指定する必要がなく、ユーザの利便性が向上する。
 なお、タイヤ1が重荷重用タイヤ(例えば、トラック・バス用タイヤ)であるときには、トレッド部2の発熱量が多くなる傾向がある。そのため、本発明は、重荷重用タイヤに好適である。ただし、本発明は、重荷重用タイヤ以外の種々のタイヤに適用することができる。
 (タイヤ試験)
 本発明の効果を確認するため、2つの実施例のタイヤ(実施品1、2という)と従来例のタイヤ(従来品という)を作製して、それらの性能を評価した。実施品1、2は、中間ブロック列40に、図6に示す複数のブロック61を備えている。また、実施品2では、第2周方向溝12の溝幅Wが横溝14の溝幅よりも広く、横溝14の溝幅が第1周方向溝11の溝幅よりも広い。即ち、実施品2では、第2周方向溝12の全体が横溝14の最も広い部分よりも広く、横溝14の全体が第1周方向溝11の最も広い部分よりも広い。実施品1の溝幅の条件は、実施品2の溝幅の条件と相違する。具体的には、実施品1では、第2周方向溝12の最も広い部分が横溝14及び第1周方向溝11よりも広く、横溝14と第1周方向溝11が同等の溝幅に形成されている。従来品では、中間ブロック列40の複数のブロックが実施品1と相違する。
 図8は、従来品のトレッドパターンを示す平面図であり、図6と同様に、トレッドパターンの一部を示している。
 図示のように、従来品のタイヤ90では、中間ブロック列40のブロック91をタイヤ半径方向外側からみた平面図において、ブロック91が、タイヤ周方向Sの中心を通る中心線98に関し線対称に形成されている。また、ブロック91は、中心線98の両側に、第1壁面92と、第2壁面93と、第1ブロック角部94と、第2ブロック角部95を有する。第1仮想面96は、中心線98の両側の第1壁面92を延長した延長面である。タイヤ周方向Sに隣り合う気流の上流側Gと下流側Hの2つのブロック91をみたときに、上流側Gのブロック91の第1仮想面96は、2つのブロック91の間の横溝14の内側に向かって延長されて、横溝14内で下流側Hのブロック91と交わる。第2周方向溝12の溝幅Wは、第2壁面93において、一定の幅である。
 実施品1、2と従来品を用いて、以下の条件でドラム耐久試験を実施した。
 タイヤサイズ:11R22.5
 タイヤの荷重:2740kgf(=26.9kN)
 タイヤの内圧:700kPa
 ドラムの速度:65km/h
 試験中の気温:38℃
 試験では、実施品1、2と従来品をドラムの外周面に接触させて、実施品1、2と従来品に同じ荷重を加えた。その状態で、ドラムを回転させて、実施品1、2と従来品をドラムにより回転(走行)させた。これにより、実施品1、2と従来品のベルトが耐えられる走行距離を測定して、実施品1、2と従来品のベルト耐久性を評価した。また、実施品1、2と従来品において、第2周方向溝12の溝底における熱伝達率を測定して、第2周方向溝12の放熱性を評価した。
Figure JPOXMLDOC01-appb-T000001
 表1に実施品1、2と従来品の試験結果を示す。試験結果は、従来品を100とした指数で表しており、数値が大きいほど性能が高いことを示している。
 表1に示すように、実施品1の熱伝達率(140)と実施品2の熱伝達率(145)は、従来品の熱伝達率よりも大幅に高くなった。これより、実施品1、2では、第2周方向溝12の放熱性が向上することが分かった。また、実施品1のベルト耐久性(115)と実施品2のベルト耐久性(117)は、従来品のベルト耐久性よりも高くなった。実施品1、2では、第2周方向溝12による冷却効果が高くなり、ベルト耐久性が向上することが分かった。実施品2の熱伝達率は実施品1の熱伝達率よりも高く、実施品2のベルト耐久性は実施品1のベルト耐久性よりも高い。これより、実施品2では、第2周方向溝12の放熱性がより向上して、第2周方向溝12による冷却効果がより高くなることが分かった。
 1・・・タイヤ、2・・・トレッド部、3・・・トレッド中央部、4・・・ショルダー部、11・・・第1周方向溝、12・・・第2周方向溝、13・・・ラグ溝、14・・・横溝、15・・・隆起部、20・・・中央ブロック列、21・・・ブロック、22・・・連結溝、23・・・周方向副溝、30・・・ショルダーブロック列、31・・・ブロック、40・・・中間ブロック列、41・・・ブロック、42・・・第1壁面、43・・・第2壁面、44・・・第1ブロック角部、45・・・第2ブロック角部、46・・・第1仮想面、47・・・第2仮想面、48・・・仮想交差位置、51・・・ブロック、52・・・第1壁面、53・・・第2壁面、54・・・第1ブロック角部、55・・・第2ブロック角部、56・・・第1仮想面、57・・・第2仮想面、61・・・ブロック、62・・・第1壁面、63・・・第2壁面、64・・・第1ブロック角部、65・・・第2ブロック角部、66・・・第1仮想面、67・・・第2仮想面、68・・・中心線、71・・・ブロック、72・・・第1壁面、73・・・第2壁面、74・・・第1ブロック角部、75・・・第2ブロック角部、76・・・第1仮想面、77・・・第2仮想面、78・・・中心線、F・・・気流方向、G・・・上流側、H・・・下流側、K・・・タイヤ幅方向、R・・・タイヤ回転方向、S・・・タイヤ周方向、W・・・溝幅。

Claims (7)

  1.  トレッド中央部とショルダー部の間に配置された第1周方向溝と、第1周方向溝のトレッド中央部側に配置された第2周方向溝と、第1周方向溝と第2周方向溝に開口する複数の横溝と、第1周方向溝、第2周方向溝、及び、複数の横溝によりトレッド部に区画された複数のブロックと、を備え、車両走行時に、タイヤ回転方向の反対方向の気流が第1周方向溝と第2周方向溝内に生じるタイヤであって、
     複数のブロックの各ブロックは、気流の下流側の横溝が第1周方向溝に開口する位置から気流の上流側に向かって形成された第1壁面と、気流の下流側の横溝が第2周方向溝に開口する位置から気流の上流側に向かって形成された第2壁面と、気流の上流側の横溝が第1周方向溝に開口する位置に形成されたブロック角部と、を有し、
     タイヤ周方向に隣り合う気流の上流側と下流側の2つのブロックをみたときに、上流側のブロックの第1壁面を気流の下流側で延長した仮想面は、下流側のブロックのブロック角部と交わり、又は、ブロック角部のショルダー部側で第1周方向溝内の位置を通過し、
     第2周方向溝の溝幅は、ブロックの第2壁面において、気流の下流側に向かって次第に広くなるタイヤ。
  2.  請求項1に記載されたタイヤにおいて、
     タイヤ周方向に隣り合う気流の上流側と下流側の2つのブロックをみたときに、上流側のブロックの第2壁面を気流の下流側で延長した仮想面は、2つのブロックの間の横溝の内側に向かって延長されるタイヤ。
  3.  請求項1又は2に記載されたタイヤにおいて、
     ブロックの第2壁面は、気流の下流側に向かって、タイヤ周方向に対してショルダー部側に傾斜するタイヤ。
  4.  請求項1ないし3のいずれかに記載されたタイヤにおいて、
     ブロックの第2壁面は、気流の下流側の横溝の内側に向かって湾曲する湾曲面であるタイヤ。
  5.  請求項1ないし3のいずれかに記載されたタイヤにおいて、
     ブロックの第2壁面は、気流の下流側に向かって、タイヤ周方向に対してショルダー部側に傾斜する平面であるタイヤ。
  6.  請求項1ないし5のいずれかに記載されたタイヤにおいて、
     第1周方向溝のショルダー部側に形成されて、第1周方向溝に開口するラグ溝と、
     ラグ溝の溝底から隆起して、ラグ溝の両側の溝壁を連結する隆起部と、
     を備えたタイヤ。
  7.  請求項1ないし6のいずれかに記載されたタイヤにおいて、
     第2周方向溝の溝幅は、横溝の溝幅よりも広く、
     横溝の溝幅は、第1周方向溝の溝幅よりも広いタイヤ。
PCT/JP2016/055956 2015-03-18 2016-02-26 タイヤ WO2016147842A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16764672.8A EP3272555B1 (en) 2015-03-18 2016-02-26 Tire
US15/552,518 US20180022164A1 (en) 2015-03-18 2016-02-26 Tire
CN201680014622.7A CN107405962B (zh) 2015-03-18 2016-02-26 轮胎
JP2017506179A JP6717802B2 (ja) 2015-03-18 2016-02-26 タイヤ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-054700 2015-03-18
JP2015054700 2015-03-18

Publications (1)

Publication Number Publication Date
WO2016147842A1 true WO2016147842A1 (ja) 2016-09-22

Family

ID=56918981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055956 WO2016147842A1 (ja) 2015-03-18 2016-02-26 タイヤ

Country Status (5)

Country Link
US (1) US20180022164A1 (ja)
EP (1) EP3272555B1 (ja)
JP (1) JP6717802B2 (ja)
CN (1) CN107405962B (ja)
WO (1) WO2016147842A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005067267A (ja) * 2003-08-28 2005-03-17 Yokohama Rubber Co Ltd:The 回転方向を指定されたブロックパターンを有する空気入りタイヤ
JP2010000883A (ja) * 2008-06-19 2010-01-07 Bridgestone Corp 空気入りラジアルタイヤ
WO2011145721A1 (ja) * 2010-05-20 2011-11-24 株式会社ブリヂストン 重荷重用タイヤ
CN102887039A (zh) * 2012-10-23 2013-01-23 厦门正新橡胶工业有限公司 一种防夹石轮胎
JP2013233834A (ja) * 2012-05-08 2013-11-21 Yokohama Rubber Co Ltd:The 空気入りタイヤ
WO2014099491A1 (en) * 2012-12-20 2014-06-26 Bridgestone Americas Tire Operations, Llc Tire heat exchange features
WO2014142349A1 (ja) * 2013-03-13 2014-09-18 株式会社ブリヂストン 空気入りタイヤ
JP2015040023A (ja) * 2013-08-23 2015-03-02 株式会社ブリヂストン 空気入りタイヤ
WO2016009912A1 (ja) * 2014-07-15 2016-01-21 株式会社ブリヂストン タイヤ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4479525A (en) * 1983-09-14 1984-10-30 The Goodyear Tire & Rubber Company Pneumatic tire tread
US5198047A (en) * 1990-11-14 1993-03-30 The Goodyear Tire & Rubber Company Winter type tire tread
JPH05254313A (ja) * 1992-03-16 1993-10-05 Bridgestone Corp 空気入りタイヤ
FI944892A (fi) * 1993-11-18 1995-08-18 Bridgestone Corp Pneumaattinen rengas
JPH11286204A (ja) * 1998-04-01 1999-10-19 Bridgestone Corp 空気入りタイヤ
JP2000108615A (ja) * 1998-10-07 2000-04-18 Bridgestone Corp 方向性傾斜溝を備えた乗用車用空気入りラジアル・タイヤ
JP4718294B2 (ja) * 2005-10-14 2011-07-06 株式会社ブリヂストン 空気入りタイヤ
JP5497662B2 (ja) * 2008-11-27 2014-05-21 株式会社ブリヂストン タイヤ
JP5404378B2 (ja) * 2009-12-28 2014-01-29 株式会社ブリヂストン 空気入りタイヤ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005067267A (ja) * 2003-08-28 2005-03-17 Yokohama Rubber Co Ltd:The 回転方向を指定されたブロックパターンを有する空気入りタイヤ
JP2010000883A (ja) * 2008-06-19 2010-01-07 Bridgestone Corp 空気入りラジアルタイヤ
WO2011145721A1 (ja) * 2010-05-20 2011-11-24 株式会社ブリヂストン 重荷重用タイヤ
JP2013233834A (ja) * 2012-05-08 2013-11-21 Yokohama Rubber Co Ltd:The 空気入りタイヤ
CN102887039A (zh) * 2012-10-23 2013-01-23 厦门正新橡胶工业有限公司 一种防夹石轮胎
WO2014099491A1 (en) * 2012-12-20 2014-06-26 Bridgestone Americas Tire Operations, Llc Tire heat exchange features
WO2014142349A1 (ja) * 2013-03-13 2014-09-18 株式会社ブリヂストン 空気入りタイヤ
JP2015040023A (ja) * 2013-08-23 2015-03-02 株式会社ブリヂストン 空気入りタイヤ
WO2016009912A1 (ja) * 2014-07-15 2016-01-21 株式会社ブリヂストン タイヤ

Also Published As

Publication number Publication date
JPWO2016147842A1 (ja) 2018-01-11
EP3272555B1 (en) 2019-07-10
CN107405962B (zh) 2019-08-23
US20180022164A1 (en) 2018-01-25
JP6717802B2 (ja) 2020-07-08
CN107405962A (zh) 2017-11-28
EP3272555A4 (en) 2018-02-28
EP3272555A1 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
US10391820B2 (en) Pneumatic tire
JP6412461B2 (ja) ランフラットタイヤ
WO2016009912A1 (ja) タイヤ
JP6611373B2 (ja) タイヤ
US10730350B2 (en) Pneumatic tire
JP2017087858A (ja) 空気入りタイヤ
WO2016143477A1 (ja) 空気入りタイヤ
WO2016147842A1 (ja) タイヤ
WO2018147459A1 (ja) 建設車両用タイヤ
WO2016147843A1 (ja) タイヤ
WO2014167859A1 (ja) 空気入りタイヤ
JP6534300B2 (ja) タイヤ
US11331954B2 (en) Heavy duty tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764672

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016764672

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15552518

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017506179

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE