WO2016147575A1 - ステアリングホイール把持検出装置 - Google Patents

ステアリングホイール把持検出装置 Download PDF

Info

Publication number
WO2016147575A1
WO2016147575A1 PCT/JP2016/000997 JP2016000997W WO2016147575A1 WO 2016147575 A1 WO2016147575 A1 WO 2016147575A1 JP 2016000997 W JP2016000997 W JP 2016000997W WO 2016147575 A1 WO2016147575 A1 WO 2016147575A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
thermostat
steering wheel
heater
output
Prior art date
Application number
PCT/JP2016/000997
Other languages
English (en)
French (fr)
Inventor
信次 藤川
祐太 岡崎
浩 内藤
剛 西尾
香月 暢晴
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US15/548,998 priority Critical patent/US10640138B2/en
Priority to CN201680013978.9A priority patent/CN107428359B/zh
Priority to DE112016001183.0T priority patent/DE112016001183B4/de
Priority to JP2017506061A priority patent/JP6405542B2/ja
Publication of WO2016147575A1 publication Critical patent/WO2016147575A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/04Hand wheels
    • B62D1/06Rims, e.g. with heating means; Rim covers
    • B62D1/065Steering wheels with heating and ventilating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/037Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for occupant comfort, e.g. for automatic adjustment of appliances according to personal settings, e.g. seats, mirrors, steering wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/04Hand wheels
    • B62D1/046Adaptations on rotatable parts of the steering wheel for accommodation of switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices

Definitions

  • the present invention relates to a steering wheel grip detection device that reduces the influence on the detection output of the opening / closing state of a heater thermostat, particularly in a steering handle that detects gripping of a hand by a change in electrostatic capacity of a heater.
  • FIG. 25 shows a block circuit diagram of this detection apparatus.
  • a first signal having a frequency f1 is generated by a first oscillator 103 including a first capacitor (capacitance) 101.
  • the first capacitor 101 is provided on a steering handle (not shown) of a vehicle (not shown) as well.
  • the first capacitor 101 may be, for example, a part of an existing steering wheel heater. In such a heater, it is common to perform temperature adjustment and excessive temperature rise prevention operation by a thermostat.
  • the second signal having the second frequency f2 is generated by the second oscillator 109 having the second capacitor (capacitance) 105 and the adjustable third capacitor (capacitance) 107.
  • the first frequency f1 and the second frequency f2 are equal.
  • the mixer 111 an absolute value of the difference between the first and second frequencies f1 and f2 is formed. The absolute value of the difference is converted into an output voltage U by the frequency-voltage converter 113.
  • the driver's hand approaches the steering wheel and finally grasps it, this affects the first capacitor 101, and as a result, the first frequency f1 changes. Then, as the hand approaches the steering wheel, the voltage U increases continuously, and as soon as the voltage U exceeds the first threshold value S1, contact between the hand and the steering wheel is detected. .
  • This invention solves the conventional problem, and it aims at providing the steering wheel holding
  • the steering wheel grip detection device of the present invention includes a series circuit composed of an inductance element, a thermostat, and a heater, and an electrostatic sensor circuit.
  • the series circuit is electrically connected between the positive electrode and the negative electrode of the power supply.
  • the thermostat and heater are built in the steering wheel.
  • the electrostatic sensor circuit is electrically connected to the end of the heater on the side where the inductance element is electrically connected, or to the middle of the wiring path of the heater, and detects gripping of the steering wheel by an electric field or an electromagnetic field.
  • the steering wheel gripping detection device is provided between an inductance element, a thermostat, and a heater, between an arbitrary connection point and a positive wiring path, or between an arbitrary connection point and a negative wiring path, or an inductance.
  • a voltage detection circuit that is electrically connected to either the both ends of the element, both ends of the heater, or both ends of the thermostat is provided.
  • the steering wheel gripping detection device of the present invention includes a series circuit including an inductance element, a thermostat, and a heater, and an electrostatic sensor circuit.
  • the series circuit is electrically connected between the positive electrode and the negative electrode of the power supply.
  • the thermostat and heater are built in the steering wheel.
  • the electrostatic sensor circuit is electrically connected to the end of the heater on the side where the inductance element is electrically connected or to the middle of the heater wiring path, and detects gripping of the steering wheel by an electric field or an electromagnetic field. .
  • the steering wheel gripping detection device is provided with a current detection circuit that is electrically connected in series to the wiring path of the series circuit.
  • the open / close state of the thermostat can be detected from the output of the voltage detection circuit or the output of the current detection circuit, and the influence of the thermostat on hand contact detection can be reduced. There is an effect.
  • 1 is a schematic diagram of a vehicle interior including a steering wheel grip detection device according to Embodiment 1 of the present invention.
  • 1 is a block circuit diagram of a steering wheel grip detection device according to Embodiment 1 of the present invention.
  • Another block circuit diagram of the steering wheel grip detection device in Embodiment 1 of the present invention Still another block circuit diagram of the steering wheel grip detection device according to the first embodiment of the present invention.
  • Still another block circuit diagram of the steering wheel grip detection device according to the first embodiment of the present invention Still another block circuit diagram of the steering wheel grip detection device according to the first embodiment of the present invention.
  • FIG. 6 is a characteristic diagram with time of the sensor capacity of the steering wheel grip detection device according to the first embodiment of the present invention The time-dependent characteristic figure in the electrostatic sensor output of the steering wheel holding
  • Block circuit diagram of a steering wheel grip detection device in Embodiment 2 of the present invention Block circuit diagram of a steering wheel grip detection device in Embodiment 3 of the present invention Another block circuit diagram of the steering wheel grip detection device in Embodiment 3 of the present invention Block circuit diagram of a steering wheel grip detection device in Embodiment 4 of the present invention Block circuit diagram of a steering wheel grip detection device in Embodiment 5 of the present invention Another block circuit diagram of the steering wheel grip detection device in Embodiment 5 of the present invention Flowchart of thermostat opening / closing judgment of steering wheel grip detection device in Embodiment 5 of the present invention The flowchart which shows operation
  • FIG. 10 is a time-dependent characteristic diagram of electrostatic sensor output of the steering wheel gripping detection device according to the sixth embodiment of the present invention, and is a time-dependent characteristic diagram when there is no hand contact.
  • FIG. 24 is a time characteristic diagram of electrostatic sensor output of the steering wheel grip detection device according to the sixth embodiment of the present invention, and a time characteristic diagram when there is a hand contact; The flowchart which shows operation
  • FIG. 24 is a time characteristic diagram of electrostatic sensor output of the steering wheel grip detection device according to the seventh embodiment of the present invention, and a time characteristic characteristic when there is no hand contact;
  • FIG. 24 is a time characteristic diagram of electrostatic sensor output of the steering wheel grip detection device according to the seventh embodiment of the present invention, and a time characteristic diagram when there is a hand contact; Block circuit diagram of a conventional detection device for contact between a hand and a steering wheel
  • the contact between the hand and the steering handle is detected when the driver's hand grasps the steering handle.
  • a heater (heater) of the steering handle is used, and the change in the capacitance, that is, the change in the capacitance of the first capacitor 101 is measured with the frequency. It is detected as a change.
  • the thermostat performing the temperature adjustment or the excessive temperature rise prevention operation is opened / closed, the current repeatedly flows or does not flow in the heater accordingly, and accordingly, the capacitance of the first capacitor 101 is increased. There was a problem that an error occurred in the detection of hand contact.
  • FIG. 1 is a schematic view of a vehicle interior including a steering wheel grip detection device according to Embodiment 1 of the present invention.
  • FIG. 2 is a block circuit diagram of the steering wheel grip detection device according to Embodiment 1 of the present invention.
  • FIG. 3 is another block circuit diagram of the steering wheel grip detection device according to Embodiment 1 of the present invention.
  • FIG. 4 is still another block circuit diagram of the steering wheel grip detection device according to Embodiment 1 of the present invention.
  • FIG. 5 is still another block circuit diagram of the steering wheel grip detection device according to Embodiment 1 of the present invention.
  • FIG. 6 is still another block circuit diagram of the steering wheel grip detection device according to Embodiment 1 of the present invention.
  • FIG. 1 is a schematic view of a vehicle interior including a steering wheel grip detection device according to Embodiment 1 of the present invention.
  • FIG. 2 is a block circuit diagram of the steering wheel grip detection device according to Embodiment 1 of the present invention.
  • FIG. 3 is another
  • FIG. 7 is still another block circuit diagram of the steering wheel grip detection device according to Embodiment 1 of the present invention.
  • FIG. 8 is still another block circuit diagram of the steering wheel grip detection device according to Embodiment 1 of the present invention.
  • FIG. 9 is a time characteristic diagram of the sensor capacity of the steering wheel gripping detection apparatus according to Embodiment 1 of the present invention.
  • FIG. 10 is a time characteristic diagram of the electrostatic sensor output of the steering wheel grip detection device according to the first embodiment of the present invention.
  • FIG. 11 is still another block circuit diagram of the steering wheel grip detection device according to Embodiment 1 of the present invention.
  • FIG. 12 is still another block circuit diagram of the steering wheel grip detection device according to Embodiment 1 of the present invention.
  • FIG. 13 is still another block circuit diagram of the steering wheel gripping detection apparatus according to Embodiment 1 of the present invention.
  • the steering wheel grip detection device 11 includes an inductance element 19, a thermostat 21 built in the steering wheel, and a heater 23 built in the steering wheel, which are electrically connected between the positive electrode and the negative electrode of the power supply 13.
  • a series circuit having a configuration of Further, an electrostatic sensor that is electrically connected to the end of the heater 23 on the side where the inductance element 19 is electrically connected or the middle of the wiring path of the heater 23 and detects the grip of the steering wheel by an electric field or an electromagnetic field. Circuit 25.
  • a voltage detection circuit 31 that is electrically connected to either the both ends of the inductance element 19, both ends of the heater 23, or both ends of the thermostat 21 is provided.
  • the opening / closing of the thermostat 21 can be known based on the output of the voltage detection circuit 31, and the influence of the thermostat 21 on the detection of the contact of the hand 41 with the steering wheel 3 can be reduced.
  • the voltage detection circuit 31 is electrically connected between the arbitrary connection point 27 or 29 and the positive wiring path, or between the arbitrary connection point 27 or 29 and the negative wiring path, One end of the voltage detection circuit 31 is electrically connected to an arbitrary connection point 27 or 29, and the other end of the voltage detection circuit 31 is electrically connected to a positive wiring path or a negative wiring path. It is defined below that it represents.
  • the steering wheel grip detection device 11 is built in the inductance element 19, the thermostat 21 built in the steering wheel, and the steering wheel, which are electrically connected between the positive electrode and the negative electrode of the power supply 13.
  • a series circuit including the heater 23 is included.
  • the heater 23 is electrically connected to an end portion of the heater 23 on the side where the inductance element 19 is electrically connected, or in the middle of the wiring path of the heater 23, and detects the grip of the steering wheel by an electric field or an electromagnetic field.
  • a sensor circuit 25 is provided in the wiring path of the series circuit.
  • the current detection circuit 33 causes the current to flow through the heater 23 when the thermostat 21 is closed, and no current flows when the thermostat 21 is open. Therefore, since the output value of the current detection circuit 33 varies depending on the open / close state of the thermostat 21, the open / close state of the thermostat 21 can be known by detecting the output value, and the thermostat 21 for detecting the contact of the hand 41 with the steering wheel. It becomes possible to reduce the influence of.
  • FIG. 1 is a schematic view of a passenger compartment including a steering wheel grip detection device 11.
  • a steering wheel 3 is disposed in the vicinity of the front window 2.
  • a driver's seat 6 is disposed in the vicinity of the steering wheel 3, and a passenger's seat 8 is disposed next to the driver's seat 6 via a shift lever 7.
  • the steering wheel grip detection device 11 is built in the rim portion of the steering wheel 3. Based on such a configuration, the steering wheel grip detection device 11 detects and outputs whether or not the hand 41 is gripping the rim portion of the steering wheel 3. Details of the steering wheel grip detection device 11 will be described below. Hereinafter, the expression “gripping the rim portion of the steering wheel 3” will be simply referred to as “gripping the steering wheel 3”.
  • a power source 13 is for supplying a current for operating a heater 23 described later.
  • the power source 13 is constituted by a vehicle battery, for example, and has a positive electrode and a negative electrode.
  • the positive electrode is electrically connected to the positive electrode terminal 15, and the negative electrode is electrically connected to the negative electrode terminal 17 via the ground 35.
  • the positive terminal 15 and the negative terminal 17 are connector terminals for performing electrical connection with the power source 13, for example.
  • at least one of the positive electrode terminal 15 and the negative electrode terminal 17 may not be provided, and the following series circuit may be directly connected to the wiring path in the positive electrode or the negative electrode of the power supply 13.
  • a series circuit composed of an inductance element 19, a thermostat 21, and a heater 23 is electrically connected in order from the positive terminal 15 side.
  • the inductance element 19 is an element having inductance in an alternating current, and an inductor is used here.
  • the thermostat 21 is for controlling the heater 23 so as not to overheat, and as a specific configuration, the thermostat 21 is disposed in the vicinity of the heater 23 so that the temperature of the heater 23 can be easily transmitted.
  • the kind of heater 23 is not specifically limited, In this Embodiment 1, the thing of the structure which fixed the heater wire on the nonwoven fabric by sewing was used.
  • An electrostatic sensor circuit 25 that detects the grip of the steering wheel 3 by an electric field or an electromagnetic field is electrically connected to a connection point 29 in the wiring path from the thermostat 21 to the heater 23 via a sensor line 37.
  • the electrostatic sensor circuit 25 has a function of detecting a change in the electric field or electromagnetic field in the heater 23 caused by the contact of the hand 41 with the sensor wire 37 and outputting the change to an external circuit.
  • the external circuit is the vehicle side control circuit 39. Therefore, the vehicle-side control circuit 39 can know the contact of the hand 41 with the steering wheel 3 from the output signal of the electrostatic sensor circuit 25.
  • the vehicle-side control circuit 39 has a configuration for controlling various electrical components mounted on the vehicle, but the electrical components are not shown in FIG.
  • the switch for turning on / off the energization of the heater 23 according to the driver's intention is, for example, at least one of a wiring path from the positive electrode of the power supply 13 to the positive terminal 15 or a wiring path from the negative electrode of the power supply 13 to the negative terminal 17.
  • the switch is omitted in FIG.
  • the steering wheel grip detection device 11 of the first embodiment is defined as a range that does not include the power supply 13, the vehicle side control circuit 39, and the switch.
  • the vehicle-side control circuit 39 can determine whether or not the driver is holding the steering wheel 3.
  • the voltage detection circuit 31 is connected to the connection point 27 and the negative terminal 17, so that the voltage detection circuit 31 is connected to both ends of the series circuit of the thermostat 21 and the heater 23.
  • the voltage of the power supply 13 is applied to the steering wheel gripping detection device 11 in this state
  • the thermostat 21 is closed, the divided voltage determined by the resistance value of the inductance element 19 and the heater 23 with respect to the potential of the ground 35. Is applied to the voltage detection circuit 31.
  • the thermostat 21 is open, no current flows through the series circuit, so that the voltage of the power source 13 is applied to the voltage detection circuit 31. Therefore, basically, since the voltage detected by the voltage detection circuit 31 differs depending on the open / close state of the thermostat 21, the opening / closing of the thermostat 21 can be known from the output of the voltage detection circuit 31.
  • the voltage of the power supply 13 may fluctuate when the driver or the vehicle-side control circuit 39 uses or does not use the high power load of the vehicle. This variation may affect the opening / closing judgment of the thermostat 21. Therefore, in the configuration of FIG. 2, since the output of the voltage detection circuit 31 is input to the electrostatic sensor circuit 25, the electrostatic sensor circuit 25 has the voltage value obtained by the voltage detection circuit 31 at that time.
  • the voltage value of the power source 13 (monitored by the vehicle-side control circuit 39 and taken in from the vehicle-side control circuit 39) is multiplied by the ratio of the reference voltage (for example, 12V) to obtain a reference voltage conversion.
  • the opening and closing of the thermostat 21 is obtained by reducing the influence of the load fluctuation.
  • the electrostatic sensor circuit 25 can output to the vehicle-side control circuit 39 the result of the presence or absence of contact of the hand 41 with the heater 23 in which the influence of the open / close state of the thermostat 21 is reduced by correction described later.
  • the power supply 13 is a constant voltage source, it is not necessary to reduce the influence of the load fluctuation described above.
  • the vehicle-side control circuit 39 may perform an operation for reducing the influence of the open / close state of the thermostat 21 on the output of the electrostatic sensor circuit 25.
  • connection position of the sensor wire 37 in the series circuit is connected to the connection point 29 in FIG.
  • an AC signal for detecting a change in the capacitance of the electrostatic sensor circuit 25 flows to the ground 35 through the power supply 13, and no AC signal flows to the heater 23. It is impossible. Further, it is not possible to connect the sensor line 37 to the connection point 27 because an AC signal does not flow to the heater 23 when the thermostat 21 is open. Further, it is not possible to connect the sensor wire 37 to the negative electrode terminal 17 because an AC signal flows directly to the ground. Therefore, the sensor line 37 is connected to the connection point 29 as shown in FIG.
  • the sensor wire 37 may be connected in the middle of the wiring path of the heater 23.
  • it is equivalent to an inductance element made of the heater 23 being arranged on both sides of the sensor wire 37, so that an AC signal does not flow to the ground or flow to the heater 23.
  • the configuration in which the sensor wire 37 is connected in the middle of the wiring path of the heater 23 can be applied to any configuration described below. Details of this configuration will be described with reference to FIG.
  • the voltage detection circuit 31 is connected to both ends of each component. Initially, when connected to both ends of the inductance element 19, if the thermostat 21 is open, no current flows from the power source 13, so an equal voltage is applied to both ends of the inductance element 19. Therefore, the output of the voltage detection circuit 31 connected to both ends is 0V. On the other hand, if the thermostat 21 is closed, a current from the power source 13 flows, so that a voltage corresponding to the voltage difference between the voltage of the power source 13 and the inductance element 19 and the heater 23 is applied to the voltage detection circuit 31. . Accordingly, a voltage value corresponding to the above difference is output from the voltage detection circuit 31. Therefore, even when the voltage detection circuit 31 is connected to both ends of the inductance element 19, the open / close state of the thermostat 21 can be known.
  • the voltage detection circuit 31 is electrically connected between an arbitrary connection point 27 or 29 in the series circuit in the order of the inductance element 19, the thermostat 21, and the heater 23 and a positive wiring path (for example, the positive terminal 15). It may be configured to be connected to each other. Alternatively, it may be configured to be electrically connected between an arbitrary connection point 27 or 29 and a negative wiring path (for example, the negative terminal 17). Or what is necessary is just to set it as the structure electrically connected to either the both ends of the inductance element 19, the both ends of the heater 23, or the both ends of the thermostat 21.
  • connection position of the sensor line 37 if the connection is made to the connection point 27 as shown in FIG. 3, the AC signal output from the electrostatic sensor circuit 25 in order to detect the capacitance change is
  • the inductance element 19 and the inductance of the heater 23 do not flow to the ground 35 (including the wiring system via the power supply 13). Therefore, the configuration in which the sensor line 37 is connected to the connection point 27 enables grip detection.
  • the sensor wire 37 is connected to the connection point 29, when the thermostat 21 is closed, the sensor signal 37 is directly connected to the ground 35, so that an AC signal flows to the ground 35. Therefore, in the configuration of FIG. 3, the sensor line 37 needs to be connected to the connection point 27.
  • the difference between the series circuit of FIG. 3 and the series circuit of FIG. 2 is that the heater 23 and the thermostat 21 are replaced. Therefore, it is possible to determine whether the thermostat 21 is opened or closed by the configuration in which the voltage detection circuit 31 is connected to both ends of each component as in the case described with reference to FIG. Further, when the voltage detection circuit 31 is connected between the positive electrode terminal 15 and the connection point 29, if the thermostat 21 is open, no current flows from the power source 13, so that both ends of the voltage detection circuit 31 become equipotential and voltage detection is performed. The circuit 31 outputs 0V.
  • the connection point 29 is connected to the ground 35, so that the voltage of the power supply 13 with reference to the potential of the ground 35 is applied to both ends of the voltage detection circuit 31. Outputs the voltage value. Therefore, since the voltage value output from the voltage detection circuit 31 when the thermostat 21 is opened / closed is different, the opening / closing of the thermostat 21 can be determined.
  • the voltage detection circuit 31 is electrically connected between the connection point 27 and the negative electrode terminal 17, if the thermostat 21 is open, both ends of the voltage detection circuit 31 are connected. The voltage of the power source 13 is applied with reference to the potential of the ground 35, and the voltage detection circuit 31 outputs the voltage value.
  • the thermostat 21 If the thermostat 21 is closed, a voltage divided according to the resistance values of the inductance element 19 and the heater 23 is applied to both ends of the voltage detection circuit 31, and the voltage detection circuit 31 outputs a voltage value corresponding to the voltage division. . Therefore, since the voltage value output from the voltage detection circuit 31 when the thermostat 21 is opened / closed is different, the opening / closing of the thermostat 21 can be determined.
  • the voltage detection circuit 31 is electrically connected between any connection point 27 or 29 in the series circuit in the order of the inductance element 19, the heater 23, and the thermostat 21 and the positive wiring path (for example, the positive terminal 15). It may be configured to be connected to each other. Alternatively, it may be configured to be electrically connected between an arbitrary connection point 27 or 29 and a negative wiring path (for example, the negative terminal 17). Or what is necessary is just to set it as the structure electrically connected to either the both ends of the inductance element 19, the both ends of the heater 23, or the both ends of the thermostat 21.
  • connection position of the sensor line 37 if the connection is made to the connection point 29 as shown in FIG. 4, the AC signal output from the electrostatic sensor circuit 25 in order to detect a change in capacitance is The inductance element 19 and the inductance of the heater 23 do not flow to the ground 35 (including the wiring system via the power supply 13). Therefore, the configuration in which the sensor line 37 is connected to the connection point 29 enables grip detection.
  • the sensor line 37 when the sensor line 37 is connected to the connection point 27, when the thermostat 21 is closed, the connection is made to the ground 35 via the power supply 13, so that an AC signal flows to the ground 35. Therefore, in the configuration of FIG. 4, the sensor line 37 needs to be connected to the connection point 29.
  • the difference between the series circuit of FIG. 4 and the series circuit of FIG. 2 is that the inductance element 19 and the thermostat 21 are replaced. Therefore, it is possible to determine whether the thermostat 21 is opened or closed by the configuration in which the voltage detection circuit 31 is connected to both ends of each component as in the case described with reference to FIG. Further, when the voltage detection circuit 31 is connected between the positive electrode terminal 15 and the connection point 29, no current flows from the power supply 13 if the thermostat 21 is open, so that the potential of the ground 35 is applied to both ends of the voltage detection circuit 31. The reference voltage of the power supply 13 is applied, and the voltage detection circuit 31 outputs the voltage value.
  • the thermostat 21 If the thermostat 21 is closed, a current flows from the power supply 13, so that the voltage at the connection point 29 becomes a partial pressure determined by the resistance values of the inductance element 19 and the heater 23. Therefore, since the voltage detection circuit 31 is connected between the positive terminal 15 and the connection point 29, a voltage value of a difference between the voltage at the positive terminal 15 (voltage of the power supply 13) and the voltage at the connection point 29 is output. . Therefore, since the voltage value output from the voltage detection circuit 31 when the thermostat 21 is opened / closed is different, the opening / closing of the thermostat 21 can be determined. On the other hand, as shown in FIG.
  • the voltage detection circuit 31 is connected between an arbitrary connection point 27 or 29 in the series circuit in the order of the thermostat 21, the inductance element 19, and the heater 23 and the positive wiring path (for example, the positive terminal 15).
  • the configuration may be made. Or what is necessary is just to set it as the structure connected between the arbitrary connection points 27 or 29 and the wiring path
  • route for example, negative electrode terminal 17
  • connection position of the sensor line 37 if the connection is made to the connection point 29 as shown in FIG. 5, the AC signal output from the electrostatic sensor circuit 25 in order to detect the capacitance change is The inductance element 19 and the inductance of the heater 23 do not flow to the ground 35 (including the wiring system via the power supply 13). This is the same as the configuration of FIG. Therefore, the configuration in which the sensor line 37 is connected to the connection point 29 enables grip detection.
  • the sensor line 37 is connected to the connection point 27, as in the configuration of FIG. 4, when the thermostat 21 is closed, the thermostat 21 is connected to the ground 35 via the power supply 13, so that an AC signal flows to the ground 35. End up. Therefore, also in the configuration of FIG. 5, the sensor line 37 needs to be connected to the connection point 29.
  • the difference between the series circuit of FIG. 5 and the series circuit of FIG. 4 is that the inductance element 19 and the heater 23 are replaced. Therefore, it is possible to determine whether the thermostat 21 is opened or closed by connecting the voltage detection circuit 31 to both ends of each component as in the configuration of FIG. Further, when the voltage detection circuit 31 is connected between the positive electrode terminal 15 and the connection point 29, no current flows from the power supply 13 if the thermostat 21 is open, so that the potential of the ground 35 is applied to both ends of the voltage detection circuit 31. The reference voltage of the power supply 13 is applied, and the voltage detection circuit 31 outputs the voltage value.
  • the thermostat 21 If the thermostat 21 is closed, a current flows from the power supply 13, so that the voltage at the connection point 29 becomes a partial pressure determined by the resistance values of the inductance element 19 and the heater 23. Therefore, since the voltage detection circuit 31 is connected between the positive terminal 15 and the connection point 29, a voltage value of a difference between the voltage at the positive terminal 15 (voltage of the power supply 13) and the voltage at the connection point 29 is output. . Therefore, since the voltage value output from the voltage detection circuit 31 when the thermostat 21 is opened / closed is different, the opening / closing of the thermostat 21 can be determined. On the other hand, as shown in FIG.
  • the voltage detection circuit 31 is connected between an arbitrary connection point 27 or 29 in the series circuit of the order of the thermostat 21, the heater 23, and the inductance element 19 and the positive wiring path (for example, the positive terminal 15).
  • the configuration may be made. Or what is necessary is just to set it as the structure connected between the arbitrary connection points 27 or 29 and the wiring path
  • route for example, negative electrode terminal 17
  • the connection position of the sensor line 37 if the connection is made to the connection point 27 as shown in FIG. 6, the AC signal output from the electrostatic sensor circuit 25 in order to detect the capacitance change is
  • the thermostat 21 when the thermostat 21 is closed, it does not flow to the ground 35 (including the wiring system via the power supply 13) due to the inductance of the inductance element 19 and the heater 23.
  • the connection between the connection point 27 and the ground 35 is cut off, and the heater 23 has an inductance, so that no AC signal flows into the ground 35. Therefore, the configuration in which the sensor line 37 is connected to the connection point 27 enables grip detection.
  • the sensor line 37 when the sensor line 37 is connected to the connection point 29, the AC signal for grip detection does not flow to the heater 23 when the thermostat 21 is opened. Therefore, in the configuration of FIG. 6, the sensor line 37 needs to be connected to the connection point 27.
  • the difference between the series circuit of FIG. 6 and the series circuit of FIG. 2 is that the inductance element 19 and the heater 23 are replaced. Therefore, it is possible to determine whether the thermostat 21 is opened or closed by the configuration in which the voltage detection circuit 31 is connected to both ends of each component as in the case described with reference to FIG. Further, when the voltage detection circuit 31 is connected between the positive terminal 15 and the connection point 29, if the thermostat 21 is open, no current flows from the power supply 13, so the connection point 29 becomes the potential of the ground 35. Accordingly, the output of the voltage detection circuit 31 connected to the positive terminal 15 and the connection point 29 becomes the voltage value of the power supply 13 with the potential of the ground 35 as a reference, and the voltage detection circuit 31 outputs the voltage value.
  • the thermostat 21 If the thermostat 21 is closed, a current flows from the power supply 13, so that the voltage at the connection point 29 becomes a partial pressure determined by the resistance values of the inductance element 19 and the heater 23. Therefore, since the voltage detection circuit 31 is connected between the positive terminal 15 and the connection point 29, a voltage value of a difference between the voltage at the positive terminal 15 (voltage of the power supply 13) and the voltage at the connection point 29 is output. . Therefore, since the voltage value output from the voltage detection circuit 31 when the thermostat 21 is opened / closed is different, the opening / closing of the thermostat 21 can be determined. On the other hand, as shown in FIG.
  • the voltage detection circuit 31 in the case where the voltage detection circuit 31 is electrically connected between the connection point 27 and the negative electrode terminal 17, if the thermostat 21 is closed, current flows in the series circuit.
  • the voltage at the connection point 27 is a partial pressure determined by the resistance values of the heater 23 and the inductance element 19. Therefore, since the divided voltage with reference to the potential of the ground 35 is applied to both ends of the voltage detection circuit 31, the voltage detection circuit 31 outputs the applied voltage as a voltage value. If the thermostat 21 is open, the voltage of the power supply 13 with reference to the potential of the ground 35 is applied to both ends of the voltage detection circuit 31, and the voltage detection circuit 31 outputs the voltage value. Therefore, since the voltage value output from the voltage detection circuit 31 when the thermostat 21 is opened / closed is different, the opening / closing of the thermostat 21 can be determined.
  • the voltage detection circuit 31 is connected between an arbitrary connection point 27 or 29 in the series circuit in the order of the heater 23, the thermostat 21, and the inductance element 19 and the positive wiring path (for example, the positive terminal 15).
  • the configuration may be made. Or what is necessary is just to set it as the structure connected between the arbitrary connection points 27 or 29 and the wiring path
  • route for example, negative electrode terminal 17
  • connection position of the sensor line 37 if the connection is made to the connection point 27 as shown in FIG. 7, the AC signal output from the electrostatic sensor circuit 25 in order to detect the capacitance change is The inductance element 19 and the inductance of the heater 23 do not flow to the ground 35 (including the wiring system via the power supply 13). Therefore, the configuration in which the sensor line 37 is connected to the connection point 27 enables grip detection.
  • the sensor wire 37 is connected to the connection point 29, when the thermostat 21 is closed, the sensor signal 37 is directly connected to the ground 35, so that an AC signal flows to the ground 35. Therefore, in the configuration of FIG. 7, the sensor line 37 needs to be connected to the connection point 27 as in the configuration of FIG.
  • the difference between the series circuit of FIG. 7 and the series circuit of FIG. 3 is that the heater 23 and the inductance element 19 are replaced. Therefore, it is possible to determine whether the thermostat 21 is opened or closed by the configuration in which the voltage detection circuit 31 is connected to both ends of each component, as described with reference to FIG. Further, when the voltage detection circuit 31 is connected between the positive electrode terminal 15 and the connection point 29, if the thermostat 21 is open, no current flows from the power source 13, so that both ends of the voltage detection circuit 31 become equipotential and voltage detection is performed. The circuit 31 outputs 0V.
  • the connection point 29 is connected to the ground 35, so that the voltage of the power supply 13 with reference to the potential of the ground 35 is applied to both ends of the voltage detection circuit 31. Outputs the voltage value. Therefore, since the voltage value output from the voltage detection circuit 31 when the thermostat 21 is opened / closed is different, the opening / closing of the thermostat 21 can be determined.
  • the voltage detection circuit 31 is connected to both ends of the voltage detection circuit 31. The voltage of the power source 13 is applied with reference to the potential of the ground 35, and the voltage detection circuit 31 outputs the voltage value.
  • the thermostat 21 If the thermostat 21 is closed, a voltage divided according to the resistance values of the inductance element 19 and the heater 23 is applied to both ends of the voltage detection circuit 31, and the voltage detection circuit 31 outputs a voltage value corresponding to the voltage division. . Therefore, since the voltage value output from the voltage detection circuit 31 when the thermostat 21 is opened / closed is different, the opening / closing of the thermostat 21 can be determined.
  • the voltage detection circuit 31 is connected between an arbitrary connection point 27 or 29 in the series circuit in the order of the heater 23, the inductance element 19, and the thermostat 21 and the positive wiring path (for example, the positive terminal 15).
  • the configuration may be made. Or what is necessary is just to set it as the structure connected between the arbitrary connection points 27 or 29 and the wiring path
  • route for example, negative electrode terminal 17
  • connection positions are summarized as follows.
  • the sensor wire 37 electrically connected to the electrostatic sensor circuit 25 is electrically connected to an end of the heater 23 on the side where the inductance element 19 is electrically connected, or in the middle of the wiring path of the heater 23. Connected. Therefore, the sensor line 37 has an optimum connection portion according to the configuration of the series circuit.
  • the end of the heater 23 on the side where the inductance element 19 is electrically connected is, for example, the connection point 29 in the configuration of FIG.
  • the connection point 27 in FIG. 2 is arranged on the side of the heater 23 where the inductance element 19 is electrically connected.
  • the connection point 27 Does not correspond to the end of the heater 23. That is, the end portion of the heater 23 is defined as an arbitrary portion on the wiring path from the end of the heater 23 to some circuit component.
  • connection position of the voltage detection circuit 31 there are three configurations of the inductance element 19, the thermostat 21, and the heater 23 in any of the six types of series circuit patterns shown in FIGS. It may be either end of any one of the elements or both ends of any two directly connected series circuits of these three components. Therefore, the connection position of the voltage detection circuit 31 has a higher degree of freedom than the connection position of the sensor line 37.
  • the steering wheel grip detection device 11 shown in FIG. 8 is equivalent to the configuration of FIG.
  • the difference from FIG. 2 is that the voltage detection circuit 31 is connected between the connection point 27 and the negative terminal 17 in FIG. 2, but in the configuration of FIG. 8, the connection to the negative terminal 17 in FIG. This is performed on the wiring path between the terminal 23 and the negative terminal 17.
  • the connection of the voltage detection circuit 31 is not limited to the configuration performed at the connection point 27 or the negative electrode terminal 17.
  • FIG. 9 shows a time-dependent characteristic diagram of the sensor capacity in the steering wheel gripping detection device 11 of FIG.
  • the sensor capacity is a capacity value detected by the electrostatic sensor circuit 25 through the heater 23.
  • the horizontal axis represents time
  • the vertical axis represents sensor capacitance.
  • the sensor capacity is the first sensor capacity value C1 when the thermostat 21 is open, for example.
  • the sensor capacity increases rapidly. 2 sensor capacity value C2 is reached.
  • Such an abrupt change is larger than a change in sensor capacitance when the hand 41 is not in contact with the heater 23. Therefore, opening and closing of the thermostat 21 causes a detection error.
  • FIG. 10 is a time-dependent characteristic diagram of the electrostatic sensor output of the steering wheel gripping detection device 11.
  • the horizontal axis represents time
  • the vertical axis represents electrostatic sensor output.
  • the electrostatic sensor output is an output signal from the electrostatic sensor circuit 25.
  • FIG. 10 is a time-dependent characteristic diagram when the open / close state of the thermostat 21 is unknown to the electrostatic sensor circuit 25 and the detection error is large, as in FIG.
  • the sensor value when the thermostat 21 is open, for example, the average value of the output value of the electrostatic sensor (hereinafter referred to as the sensor value) is an A value, but the thermostat 21 is closed at time t1. In this case, the output of the electrostatic sensor suddenly increases, and the average value of the sensor values reaches the B value.
  • the reason why the electrostatic sensor output fluctuates in a short cycle is due to noise. As described above, due to the abrupt change of the sensor capacity in FIG. 9 at time t1, the electrostatic sensor output also changes abruptly at time t1, as shown in FIG. And since an electrostatic sensor output changes in this way, it turns out that the detection error whether the hand 41 is touching the heater 23 is large. Therefore, it is necessary to detect the open / closed state of the thermostat 21.
  • the electrostatic sensor circuit 25 determines whether the thermostat 21 is opened or closed using the voltage value output from the voltage detection circuit 31 as follows. First, when the switch is on and the thermostat 21 is closed, a current flows through the series circuit. Therefore, a voltage obtained by dividing the voltage of the power supply 13 by the DC resistance value of the inductance element 19 and the heater 23 is substantially applied to the voltage detection circuit 31 that is electrically connected to both ends of the heater 23. . This voltage value is input to the electrostatic sensor circuit 25. As described above, since the voltage value detected by the voltage detection circuit 31 is affected by the voltage fluctuation of the power supply 13, the electrostatic sensor circuit 25 uses the voltage of the power supply 13 acquired from the vehicle-side control circuit 39. The divided voltage is corrected based on a predetermined reference voltage ratio. Hereinafter, the voltage value obtained from the voltage detection circuit 31 is corrected in this way.
  • the electrostatic sensor circuit 25 can know the opening / closing state of the thermostat 21.
  • the sensor value is measured in advance in each state of opening and closing of the thermostat 21, and the change amount (offset value) of the sensor value is obtained and held, and the electrostatic sensor circuit 25 performs the opening and closing of the thermostat 21 in FIG.
  • the change amount (offset value) of the sensor value obtained and held in advance corresponding thereto is added to or subtracted from the sensor value detected by the electrostatic sensor circuit 25.
  • the influence of the thermostat 21 can be reduced. Specifically, when the thermostat 21 is open before time t1 in FIG.
  • the sensor value is A value.
  • the electrostatic sensor circuit 25 changes the change.
  • the offset value (B value-A value) detected from the output of the voltage detection circuit 31 and held in advance is subtracted from the sensor value.
  • the sensor value (B value) that is not corrected after time t1 is obtained by subtracting the offset value (B value ⁇ A value) from the B value, so that the sensor value remains the A value after time t1.
  • the electrostatic sensor output corrected in this way is output to the vehicle-side control circuit 39.
  • the electrostatic sensor circuit 25 includes a peripheral circuit including an interface unit with the voltage detection circuit 31 and the vehicle-side control circuit 39, and a microcomputer for performing correction.
  • the correction operation using the offset value is realized by a microcomputer, but is not limited thereto, and may be realized only by an analog circuit.
  • the offset value may be corrected according to the voltage value of the power supply 13.
  • the offset value to be held in advance a value based on the actual measured value of the offset value generated by the change in the sensor value accompanying the past opening and closing of the thermostat 21, more specifically, the actual measured value of the stored past multiple offset values. Also, it may be a value obtained by averaging measured values of the current offset value.
  • the electrostatic sensor circuit 25 continues to output the sensor value immediately before the thermostat 21 changes its open / close state. Then, the electrostatic sensor circuit 25 obtains an offset value by averaging the actually measured values of the offset values obtained a plurality of times in the past and the actually measured value of the offset value obtained this time, and then uses the obtained offset value to obtain a sensor. Correct the value. Thereby, it is possible to reduce the fluctuation of the offset value with time.
  • the offset value may also be different.
  • the electrostatic sensor circuit 25 holds in advance the offset values for both the case where the thermostat 21 is opened and closed and the case where the thermostat 21 is closed. Alternatively, correction may be made with an offset value corresponding to the operating state of the thermostat 21.
  • the voltage detection circuit 31 is directly connected to both ends of the heater 23. With this configuration, the voltage detection circuit 31 can detect the voltage across the heater 23 more accurately, and thus the electrostatic sensor circuit 25 can reduce the influence of opening and closing of the thermostat 21 with high accuracy.
  • the configuration of FIG. 11 is different from the configuration of FIG. 8 in that the electrostatic sensor circuit 25 is connected to the middle of the wiring path of the heater 23 by the sensor wire 37.
  • the middle of the wiring path of the heater 23 is not limited to the center of the wiring path of the heater 23. Even if the sensor wire 37 is connected in this manner, an electrostatic sensor output can be obtained in the same manner as the configuration of FIG. This is because an inductance element formed by a wiring path constituting the heater 23 exists on both sides of the connection point of the sensor line 37 with the heater 23.
  • the voltage detection circuit 31 may be configured to be electrically connected to both ends of the inductance element 19 as described in the configurations of FIGS. 2 to 7. In this case, when the thermostat 21 is closed, the voltage detection circuit 31 outputs a voltage value of a difference between the voltage of the power source 13 and the voltage obtained by dividing the voltage of the power source 13 by the series circuit of the inductance element 19 and the heater 23. Is output. When the thermostat 21 is open, the voltage detection circuit 31 outputs 0 V because both ends of the voltage detection circuit 31 are equal.
  • the steering wheel grip detection device 11 includes an inductance element 19, a thermostat 21 built in the steering wheel, and a heater 23 built in the steering wheel, which are electrically connected between the positive electrode and the negative electrode of the power supply 13.
  • the heater 23 is electrically connected to an end portion of the heater 23 on the side where the inductance element 19 is electrically connected, or in the middle of the wiring path of the heater 23, and detects the grip of the steering wheel by an electric field or an electromagnetic field.
  • a sensor circuit 25 has the structure which provided the current detection circuit 33 electrically connected in series to the wiring path
  • the output of the current detection circuit 33 is approximately 0 A within the error range, and when the thermostat 21 is closed, current flows through the series circuit.
  • the detection circuit 33 outputs a current value determined by the voltage of the power supply 13, the direct current resistance of the inductance element 19, and the direct current resistance of the heater 23. Therefore, since the current value of the current detection circuit 33 varies depending on whether the thermostat 21 is opened or closed, the open / closed state of the thermostat 21 can be known.
  • a current detection circuit 33 is provided in place of the voltage detection circuit 31.
  • the current detection circuit 33 is electrically connected in the wiring path of the series circuit.
  • the current detection circuit 33 is connected to the wiring path between the inductance element 19 and the thermostat 21.
  • the current detection circuit 33 is also electrically connected to the electrostatic sensor circuit 25 and outputs the detected current value to the electrostatic sensor circuit 25.
  • the connection of the sensor line 37 the optimum position is determined by the order of the circuit components in the series circuit in the same manner as in FIGS.
  • the switch is assumed to be on.
  • the current detection circuit 33 detects a current value determined by the voltage of the power supply 13, the DC resistance of the inductance element 19 and the DC resistance of the heater 23. Then, the current value is output to the electrostatic sensor circuit 25.
  • the current detection circuit 33 outputs a current value of approximately 0A.
  • the electrostatic sensor circuit 25 can reduce the influence of the thermostat 21.
  • the 12 and FIG. 13 may be corrected for opening / closing of the thermostat 21 in the same manner as in the configuration of detecting the opening / closing state of the thermostat 21 from the output of the voltage detection circuit 31. That is, since the output of the current detection circuit 33 is electrically connected to the electrostatic sensor circuit 25, the electrostatic sensor circuit 25 can obtain the open / close state of the thermostat 21 from the output of the current detection circuit 33. Since the electrostatic sensor circuit 25 holds the offset value, the offset value is added to or subtracted from the sensor value according to the open / close state of the thermostat 21. Thereby, the influence on the sensor value of the thermostat 21 can be reduced.
  • the offset value may be corrected according to at least one of the voltage value of the power supply 13 and the temperature of the heater 23.
  • the steering wheel that can detect the open / closed state of the thermostat 21 from the output of the current detection circuit 33 or the voltage detection circuit 31, and can reduce the influence of the thermostat 21 on the contact detection of the hand 41.
  • the grip detection device 11 can be realized.
  • the average value is used as the electrostatic sensor output, but is not limited thereto.
  • the maximum value or the minimum value in a predetermined period such as 0.01 seconds may be used as the electrostatic sensor output.
  • FIG. 14 is a block circuit diagram of the steering wheel grip detection device according to Embodiment 2 of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals and detailed description thereof is omitted.
  • the feature of the second embodiment is that it has another inductance element 43 electrically connected between the heater 23 and the negative electrode terminal 17 in FIG.
  • the sensor wire 37 can be connected to the wiring path from the end of the heater 23 on the ground 35 side to the other inductance element 43, the degree of freedom of wiring of the sensor wire 37 is increased.
  • another inductance element 43 is electrically connected between the connection point 45 and the negative electrode terminal 17 at the end of the heater 23 opposite to the side to which the inductance element 19 is connected.
  • the other inductance elements 43 have the same electrical characteristics as the inductance elements 19, but the invention is not limited thereto, and those having different electrical characteristics may be used.
  • the sensor wire 37 of the electrostatic sensor circuit 25 is electrically connected to a wiring path (here, the connection point 45) between the heater 23 and another inductance element 43.
  • the sensor line 37 may be connected to the connection point 29 as shown in FIG. 8, or may be connected to the middle of the wiring path of the heater 23 as shown in FIG.
  • the output of the voltage detection circuit 31 based on the opening and closing of the thermostat 21 is as follows. First, when the thermostat 21 is closed, the voltage detection circuit 31 detects the voltage across the heater 23. This is the difference between the voltage at the connection point 27 and the voltage at the connection point 45. The voltage at these connection points 27 and 45 is a partial pressure obtained from the resistance value of the inductance element 19, the heater 23, and the other inductance element 43 and the voltage of the power supply 13. Accordingly, the voltage across the heater 23 based on the partial pressure is output from the voltage detection circuit 31. On the other hand, when the thermostat 21 is open, the voltage at the connection point 27 becomes the voltage of the power supply 13 and the voltage at the connection point 45 becomes the potential of the ground 35.
  • the voltage value output from the voltage detection circuit 31 is the ground value. This is the voltage of the power supply 13 with the potential of 35 as a reference. Accordingly, since the voltage value differs when the thermostat 21 is opened and closed, it is possible to detect the opening and closing of the thermostat 21 even if another inductance element 43 is provided.
  • the connection of the voltage detection circuit 31 is based on the configuration described with reference to FIGS. 2 to 7, and both ends of each circuit component (inductance element 19, thermostat 21, heater 23, other inductance element 43) are connected in series. What is necessary is just to connect to either of the both ends of the arbitrary two circuit components connected directly, or the both ends of the arbitrary three circuit components connected in series.
  • FIG. 15 is a block circuit diagram of a steering wheel grip detection device according to Embodiment 3 of the present invention.
  • FIG. 16 is another block circuit diagram of the steering wheel grip detection device according to Embodiment 3 of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the feature of the third embodiment is that, in FIG. 15, the circuit is equivalent to the configuration of FIG. 6, but the sensor wire 37 is connected as close to the heater 23 as possible instead of the connection point 27.
  • the other configuration is the same as in FIG. With this configuration, the electrostatic sensor circuit 25 can detect a change in the capacitance of the heater 23 with higher accuracy. 15 is equivalent to FIG. 6 as described above, the electrostatic sensor circuit 25 can know the open / closed state of the thermostat 21 in the same manner as the configuration of FIG.
  • the third embodiment may have the same configuration as that of the second embodiment. That is, another inductance element 43 that is electrically connected between the heater 23 and the positive electrode terminal 15 is provided.
  • another inductance element 43 is electrically connected between the terminal on the power source 13 side of the heater 23 and the positive terminal 15. The reason for this connection is that the heater 23 is connected to the positive electrode side of the power supply 13 in the third embodiment. Then, the sensor wire 37 may be connected to a wiring path between the heater 23 and another inductance element 43.
  • the current detection circuit 33 may be used in place of the voltage detection circuit 31.
  • FIG. FIG. 16 is an example in which the voltage detection circuit 31 of FIG. 15 is removed and a current detection circuit 33 is inserted in series in the wiring path between the heater 23 and the thermostat 21. With such a configuration, the current flowing through the heater 23 changes according to the opening and closing of the thermostat 21, and the electrostatic sensor circuit 25 detects the opening and closing of the thermostat 21 by detecting the change with the current detection circuit 33. Can be detected.
  • the current detection circuit 33 may be provided anywhere in the series circuit, and therefore, the degree of freedom in arrangement in the circuit is greater than that of the voltage detection circuit 31.
  • the steering wheel gripping detection device 11 that can detect the open / closed state of the thermostat 21 and can reduce the influence of the thermostat 21 on the contact detection of the hand 41 can be realized.
  • FIG. 17 is a block circuit diagram of a steering wheel grip detection device according to Embodiment 4 of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the feature of the fourth embodiment is that it has a voltage detection circuit 31 and a current detection circuit 33 simultaneously as shown in FIG. Thereby, the precision which detects the open / close state of the thermostat 21 can be improved.
  • a current detection circuit 33 is connected in series to the wiring path of the thermostat 21 and the inductance element 19 with respect to the configuration of FIG. Accordingly, as shown in FIG. 17, the voltage detection circuit 31 and the current detection circuit 33 are provided at the same time. Since these outputs are configured to be input to the electrostatic sensor circuit 25, the electrostatic sensor circuit 25 can obtain both a voltage value and a current value.
  • connection position of the voltage detection circuit 31 and the current detection circuit 33 is as described in the first embodiment. Specifically, in the case of the configuration of FIG. 17, as described in the second embodiment, the voltage detection circuit 31 has both ends of each circuit component and both ends of any two circuit components directly connected in series. Alternatively, it may be connected to either end of any three circuit components directly connected in series.
  • connection position of the current detection circuit 33 may be anywhere in the series circuit including the inductance element 19, the thermostat 21, and the heater 23 from the positive terminal 15 to the negative terminal 17, as described in the first embodiment. Further, in the case of FIG. 17, since there is another inductance element 43, the connection position of the current detection circuit 33 is the inductance element 19 from the positive terminal 15 to the negative terminal 17, the thermostat 21, the heater 23, and the other inductance element 43. It can be anywhere in a series circuit consisting of
  • the electrostatic sensor circuit 25 can obtain both the voltage value and the current value associated with the opening and closing of the thermostat 21, and therefore, the influence of the thermostat 21 on the contact detection of the hand 41 is reduced with high accuracy. Therefore, it is possible to realize the steering wheel gripping detection device 11 that can be used.
  • the other inductance element 43 is connected. However, this is not provided with the other inductance element 43.
  • the current detection circuit 33 is provided in the structure shown in FIGS. You may do it. In this case, the same effect as in the fourth embodiment can be obtained.
  • FIG. 18 is a block circuit diagram of a steering wheel grip detection device according to Embodiment 5 of the present invention.
  • FIG. 19 is another block circuit diagram of the steering wheel grip detection device according to Embodiment 5 of the present invention.
  • FIG. 20 is a flowchart of thermostat opening / closing determination of the steering wheel grip detection device according to the fifth embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the feature of the fifth embodiment is that the switch 47 is electrically connected in parallel with the inductance element 19 and the other switch 49 is electrically connected instead of the other inductance element 43. is there. Further, a thermistor 51 as a temperature detection unit in the vicinity of the heater 23 is arranged. In the fifth embodiment, the temperature output of the thermistor 51 is input to the vehicle-side control circuit 39, but this may be input to the electrostatic sensor circuit 25. In the fifth embodiment, the thermistor 51 is used as the temperature detection unit. However, the thermistor 51 is not limited to this, and may be anything that can detect temperature, such as a thermocouple. With such a configuration, the switch 47 and the other switch 49 can be turned on and off at high speed according to the temperature output of the thermistor 51, so that the accuracy is better than the temperature adjustment by the thermostat 21.
  • the configuration of FIG. 18 differs from the configuration of FIG. 17 in the following points. That is, the series circuit of the current detection circuit 33 and the switch 47 is connected to both ends of the inductance element 19, and another switch 49 is connected instead of the other inductance element 43. Further, the on / off control signals of the switch 47 and the other switch 49 are configured to be output from the vehicle side control circuit 39. Further, a thermistor 51 that is electrically connected to the vehicle-side control circuit 39 is disposed in the vicinity of the heater 23. Therefore, the vehicle side control circuit 39 can know the temperature near the heater 23. Except for the above, the configuration is the same as in FIG.
  • the switch 47 and the other switch 49 can be configured to be controlled on and off from the outside, for example, a relay or a semiconductor switch.
  • a semiconductor switch field effect transistor
  • the vehicle-side control circuit 39 performs on / off control of at least one of the switch 47 and the other switch 49 so that the heater 23 reaches a predetermined temperature based on the temperature output of the thermistor 51. As a result, the current flowing through the heater 23 is on / off controlled.
  • the switch 47 and the other switch 49 are for adjusting the temperature of the heater 23 by performing the above-described operation, and thus are different from the switch for manually operating the heater 23 by the driver.
  • the switch 47 and another switch 49 are connected. According to the temperature output of the thermistor 51, at least one of these switches repeatedly turns on and off, thereby adjusting the temperature of the heater 23. Therefore, higher accuracy can be achieved as compared with temperature control by the thermostat 21. This temperature adjustment is performed by the vehicle side control circuit 39.
  • the sensor line 37 is connected to the wiring path of the heater 23 and another switch 49. Therefore, the grip detection of the hand 41 can be performed while the other switch 49 is off, but the grip detection AC signal from the electrostatic sensor circuit 25 flows to the ground 35 while the other switch 49 is on. As a result, gripping of the hand 41 cannot be detected. Therefore, the electrostatic sensor circuit 25 may detect the grip of the hand 41 while the other switch 49 is off.
  • the switch 47 is deleted and only the other switch 49 is provided, that is, the other end of the heater 23 that is electrically connected to the end opposite to the side to which the inductance element 19 is connected.
  • a configuration including the switch 49 may be employed. Also in this case, since the AC signal from the electrostatic sensor circuit 25 flows to the ground 35 while the other switch 49 is on, the electrostatic sensor circuit 25 detects the grip of the hand 41 while the other switch 49 is off. Should be done.
  • the sensor line 37 may be connected to the connection point 29 or the middle of the wiring path of the heater 23.
  • the switch 47 is electrically connected in parallel with the inductance element 19.
  • the switch 47 is deleted and another switch 49 is connected in parallel with the other inductance element 43. May be configured to be electrically connected. Even with such a configuration, it is possible to detect the grip of the hand 41. Therefore, either a configuration in which the switch 47 is electrically connected in parallel with the inductance element 19 or a configuration in which the other switch 49 is electrically connected in parallel with the other inductance element 43 may be employed.
  • a configuration in which the switch 47 is electrically connected in parallel with the inductance element 19 and a configuration in which another switch 49 is electrically connected in parallel with the other inductance element 43 are provided. May be.
  • the voltage at the connection point 45 is determined even when the other switch 49 is off, so that the voltage detection circuit 31 is connected to the connection point 27 and the connection point 45 regardless of the state of the other switch 49. Can be detected. Therefore, the detection accuracy of the open / close state of the thermostat 21 is increased.
  • the opening / closing detection of the thermostat 21 in the configuration of FIG. 18 includes the on / off operation of the switch 47 and the other switch 49, and therefore the operation shown in the flowchart of FIG. 20 is performed.
  • the flowchart of FIG. 20 is a subroutine executed by the microcomputer every predetermined interval (for example, 0.1 second) from a main routine (not shown) in the electrostatic sensor circuit 25.
  • the electrostatic sensor circuit 25 first determines whether or not the heater 23 is on (step number: S11). For this purpose, it is only necessary to determine whether the switch 47 is on. Note that, for voltage detection by the voltage detection circuit 31 to be described later, the other switches 49 are controlled to remain on before the execution of the subroutine of FIG. Further, the switch 47 and the other switch 49 are both turned on and off by the vehicle-side control circuit 39, and further, the vehicle-side control circuit 39 and the electrostatic sensor circuit 25 exchange data, so that the electrostatic sensor circuit 25 can easily know the state of the switch 47 and the other switch 49 from the vehicle-side control circuit 39, or the electrostatic sensor circuit 25 can instruct the vehicle-side control circuit 39 to turn on the other switch 49. It is.
  • the electrostatic sensor circuit 25 measures the current flowing through the heater 23 from the output of the current detection circuit 33 (S13). Then, the electrostatic sensor circuit 25 compares the current (measurement current) measured in S13 with the threshold current ITH.
  • the threshold current ITH is a minimum current value that flows through the heater 23 when the thermostat 21 is closed, and is obtained in advance and stored in a memory included in a peripheral circuit of the electrostatic sensor circuit 25. . Therefore, if the measured current is equal to or less than the threshold current ITH, it can be seen that the thermostat 21 is open.
  • the electrostatic sensor circuit 25 outputs a thermostat opening signal to the vehicle side control circuit 39 (S19).
  • the electrostatic sensor circuit 25 measures the voltage of the heater 23 by the voltage detection circuit 31 (S21). Next, the electrostatic sensor circuit 25 compares the voltage (measurement voltage) measured in S21 with the threshold voltage VTH (S23). Here, the threshold voltage VTH will be described. In the stage of S21, the heater 23 is off. Therefore, the measurement voltage changes as follows according to the open / close state of the thermostat 21. First, if the thermostat 21 is closed, the other switches 49 are also on as described above, so that the voltage detection circuit 31 outputs a value obtained by dividing the voltage of the power supply 13 by the inductance element 19 and the heater 23. .
  • the electrostatic sensor circuit 25 corrects the divided voltage value based on the voltage fluctuation of the power source 13, but the description of the correction operation is omitted in the flowchart of FIG. This correction operation is performed by the electrostatic sensor circuit 25 in the same manner every time an output from the voltage detection circuit 31 is obtained, but the description thereof is omitted in the following description.
  • the threshold voltage VTH is an average value of these voltages. That is, if the measured voltage is greater than the threshold voltage VTH, the thermostat 21 is open, and if the measured voltage is equal to or lower than the threshold voltage VTH, it is understood that the thermostat 21 is closed.
  • the threshold voltage VTH is not limited to an average value, and may be, for example, near a resistance-divided value or near the voltage of the power supply 13.
  • the electrostatic sensor circuit 25 outputs a thermostat open signal to the vehicle-side control circuit 39 (S25). On the other hand, if the measured voltage is equal to or lower than the threshold voltage VTH (No in S23), the electrostatic sensor circuit 25 outputs a thermostat closing signal to the vehicle side control circuit 39 (S27).
  • the open / close state of the thermostat 21 can be detected from the output of the current detection circuit 33 or the voltage detection circuit 31 in either case of the on / off state of the switch 47, and the influence thereof can be reduced. It becomes possible.
  • the configuration until the open / close state of the thermostat 21 is output from the electrostatic sensor circuit 25 to the vehicle-side control circuit 39 has been described.
  • this may be controlled in the electrostatic sensor circuit 25 as follows, for example.
  • the opening / closing cycle of the thermostat 21 is short or the hysteresis in opening / closing the thermostat 21 is small
  • the detection of the contact of the hand 41 in the electrostatic sensor circuit 25 is stopped when the thermostat 21 is closed.
  • contact detection of the hand 41 is performed only while the heater 23 is turned off by the thermostat 21, so that the influence of the power source 13 can be removed, and the detection accuracy in the electrostatic sensor circuit 25 can be improved. It becomes possible to raise.
  • the current detection circuit 33 is connected to both ends of the inductance element 19 in a state where the current detection circuit 33 is connected in series with the switch 47.
  • the present invention is not limited thereto, and is not limited to FIGS. As shown in FIG. 17, it may be configured to be arranged in series somewhere in the wiring path from the positive terminal 15 to the negative terminal 17.
  • the switch 47 and the current detection circuit 33 are configured separately, but this may be integrated. This can be realized by using a switching element incorporating the current detection circuit 33. That is, in the field effect transistor used as the switching element (semiconductor switch) in the fifth embodiment, the current flowing between the drain and the source when the field effect transistor is on is obtained from the resistance value between the drain and the source. be able to. Therefore, by obtaining the voltage between the drain and the source, the current flowing through the switching element, that is, the current flowing through the heater 23 can be measured. Therefore, the current detection circuit 33 is substantially a circuit that measures the voltage between the source and the drain.
  • the 18 and 19 described above includes at least one of the switch 47 or another switch 49 and adjusts the temperature of the heater 23 in accordance with the temperature output of the thermistor 51. This is performed by on / off control of at least one of the switches 49. However, if this is a configuration in which the error in the temperature rise characteristic and the heat retention characteristic of the heater 23 is small, for example, the thermistor 51 may be deleted and the on / off control may be performed over time.
  • a switch (not shown) operated by the driver for supplying the electric power from the power source 13 to the heater 23 is provided.
  • the sensor line 37 is connected to a position where an AC signal does not flow to the ground 35, the electrostatic sensor circuit 25 is not connected regardless of the on / off state of the switch. 41 grips can be detected.
  • the detection flowchart at this time is as follows. First, since the switch 47 and the other switch 49 are not provided, electric power is always applied to the heater 23. Therefore, S11 in FIG. 20 is not necessary, and the operation after S21 for measuring the voltage of the heater 23 may be performed.
  • the open / close state of the thermostat 21 is detected only by the current detection circuit 33.
  • the detection flowchart at that time is as follows. First, since the switch 47 and the other switch 49 are not provided, electric power is always applied to the heater 23. Therefore, S11 in FIG. 20 is not necessary, and the operation after S13 for measuring the current of the heater 23 may be performed.
  • the open / close state of the thermostat 21 is detected by the voltage detection circuit 31 and the current detection circuit 33.
  • the detection flowchart at this time is as follows. become. First, since the switch 47 and the other switch 49 are not provided, electric power is always applied to the heater 23. Therefore, S11 of FIG. 20 becomes unnecessary, and first, the operation after S13 is performed in order to measure the current of the heater 23. And after S17 or S19, the operation
  • the vehicle-side control circuit 39 obtains two types of signals: an open / close state of the thermostat 21 based on the result of current measurement, and an open / close state of the thermostat 21 based on the result of voltage measurement.
  • the vehicle-side control circuit 39 adopts the result when both are the same, and if both are different, for example, the transition of the results of the respective open / closed states obtained so far is used. Refer to and use the more probable result.
  • the probable one is that the change rate of the current and voltage due to the opening and closing of the thermostat 21 is much faster than the execution interval (0.1 seconds) of the flowchart of FIG.
  • the vehicle side control circuit 39 determines that the state of the thermostat 21 has changed. Therefore, the vehicle side control circuit 39 can detect the open / closed state of the thermostat 21 with high accuracy.
  • the output of the voltage detection circuit 31 is electrically connected to the electrostatic sensor circuit 25.
  • the electrostatic sensor circuit 25 is connected to the output of the voltage detection circuit 31. Based on the open / closed state of the obtained thermostat 21, the reference value when the hand 41 is not touching the steering wheel 3 in the electrostatic sensor circuit 25 is updated as described below. Thereby, the influence of the opening and closing of the thermostat 21 on the output of the electrostatic sensor circuit 25 can be reduced.
  • the output of the current detection circuit 33 is electrically connected to the electrostatic sensor circuit 25, and the electrostatic sensor circuit 25 is in an open / closed state of the thermostat 21. Based on this, the reference value when the hand 41 is not touching the steering wheel 3 in the electrostatic sensor circuit 25 is updated as described below. Also by this, the influence of opening and closing of the thermostat 21 on the output of the electrostatic sensor circuit 25 can be reduced.
  • the output of the voltage detection circuit 31 and the output of the current detection circuit 33 are electrically connected to the electrostatic sensor circuit 25.
  • the electrostatic sensor circuit 25 is based on the output of the voltage detection circuit 31 and the open / close state of the thermostat 21 obtained from the output of the current detection circuit 33, as described below, in the steering wheel 3 in the electrostatic sensor circuit 25.
  • the reference value when the hand 41 is not touching is updated. Thereby, since the open / close state of the thermostat 21 based on the voltage value and the current value is obtained, the influence of the open / close of the thermostat 21 on the output of the electrostatic sensor circuit 25 can be reduced with high accuracy.
  • the flowchart of FIG. 20 is executed by the electrostatic sensor circuit 25.
  • the electrostatic sensor circuit 25 is electrically connected to the vehicle-side control circuit 39 and can exchange various signals. Since it is configured, the vehicle-side control circuit 39 may execute the flowchart of FIG. Furthermore, the electrostatic sensor circuit 25 may be built in the vehicle-side control circuit 39. In this case, space saving can be achieved.
  • FIG. 21 is a flowchart showing the operation of the steering wheel grip detection device according to the sixth embodiment of the present invention.
  • 22A and 22B are time-dependent characteristics diagrams of the electrostatic sensor output of the steering wheel gripping detection apparatus according to Embodiment 6 of the present invention
  • FIG. 22A is a time-dependent characteristics diagram when there is no hand contact
  • FIG. It is a time-dependent characteristic figure in case there exists. Since the configuration of the sixth embodiment is the same as FIGS. 18 and 19 described in the fifth embodiment and their modified configurations, detailed description thereof is omitted. That is, the feature of the sixth embodiment is that 1) The output of the voltage detection circuit 31 is electrically connected to the electrostatic sensor circuit 25.
  • the electrostatic sensor circuit 25 includes an opening / closing state of the thermostat 21 obtained from the output of the voltage detection circuit 31, steering Based on whether or not the wheel 3 is gripped, 2)
  • the output of the current detection circuit 33 is electrically connected to the electrostatic sensor circuit 25.
  • the electrostatic sensor circuit 25 includes an opening / closing state of the thermostat 21 obtained from the output of the current detection circuit 33, and steering. Based on whether or not the wheel 3 is gripped, 3)
  • the output of the voltage detection circuit 31 and the output of the current detection circuit 33 are configured to be electrically connected to the electrostatic sensor circuit 25.
  • the electrostatic sensor circuit 25 includes the output of the voltage detection circuit 31 and Based on the open / close state of the thermostat 21 obtained from the output of the current detection circuit 33 and the presence or absence of gripping of the steering wheel 3, In any of the above 1) to 3), the reference value when the hand 41 is not touching the steering wheel 3 in the electrostatic sensor circuit 25 is updated. Thereby, in addition to the detection of the open / closed state of the thermostat 21, the influence on the reference value by the thermostat 21 having a particularly large change can be reduced, and the contact detection of the hand 41 can be highly accurate.
  • FIG. 21 is a flowchart showing an operation that is a feature of the sixth embodiment. 21 is a subroutine executed by the microcomputer every predetermined period (for example, 0.1 second) from the main routine.
  • the electrostatic sensor circuit 25 determines whether or not the open / close state of the thermostat 21 has changed (S31). In order to determine a change in the open / closed state of the thermostat 21, the electrostatic sensor circuit 25 stores the previous execution result of the subroutine of FIG. 20 in a memory. Therefore, at the stage of S31, the electrostatic sensor circuit 25 can know the open / closed state of the thermostat 21 when the subroutine of FIG. 20 was executed last time. Here, if there is no change in the open / closed state (No in S31), there is no influence on the electrostatic sensor circuit 25 by the thermostat 21, so the subroutine of FIG. 21 is terminated and the process returns to the main routine.
  • the electrostatic sensor circuit 25 then moves the heater 41, that is, the hand 41 to the steering wheel 3 when the subroutine of FIG. It is determined whether or not there is any contact (S33).
  • the electrostatic sensor circuit 25 takes in the presence / absence of the current contact of the hand 41 from the output of the electrostatic sensor circuit 25 and stores it in the memory. If there is no contact of the hand 41 at the previous execution (No in S33), the state of the thermostat 21 changes, but there is no electrostatic sensor output by the hand 41. Such a state is shown in FIG. 22A. In FIG.
  • the horizontal axis represents time
  • the vertical axis represents electrostatic sensor output (output of the electrostatic sensor circuit 25, sensor value).
  • the sensor value B greatly changed by the thermostat 21 may be used as the base value as it is (S35).
  • the electrostatic sensor circuit 25 ends the subroutine of FIG. 21 and returns to the main routine.
  • the signal value Y due to the contact of the hand 41 is added to the base value for the sensor value.
  • the sensor value changed by these is referred to as sensor value D.
  • the sensor value D output value from the electrostatic sensor circuit 25
  • the signal value Y may be subtracted from the sensor value D that has largely changed by the thermostat 21 (S37).
  • the electrostatic sensor circuit 25 ends the subroutine of FIG. 21 and returns to the main routine.
  • a steering wheel that can reduce the influence on the reference value by the thermostat 21 that has a particularly large change and can increase the accuracy of contact detection of the hand 41.
  • the grip detection device 11 can be realized.
  • FIG. 23 is a flowchart showing the operation of the steering wheel grip detection device according to the seventh embodiment of the present invention.
  • 24A and 24B are time-dependent characteristics diagrams of the electrostatic sensor output of the steering wheel gripping detection apparatus according to Embodiment 7 of the present invention, FIG. 24A is a time-dependent characteristics diagram when there is no hand contact, and FIG. It is a time-dependent characteristic figure in case there exists. Since the configuration of the seventh embodiment is the same as FIGS. 18 and 19 described in the fifth embodiment and their modified configurations, detailed description thereof is omitted. That is, the feature of the seventh embodiment is that 1) The output of the voltage detection circuit 31 is electrically connected to the electrostatic sensor circuit 25.
  • the electrostatic sensor circuit 25 is based on the open / close state of the thermostat 21 obtained from the output of the voltage detection circuit 31. , 2) The output of the current detection circuit 33 is electrically connected to the electrostatic sensor circuit 25. The electrostatic sensor circuit 25 is based on the open / close state of the thermostat 21 obtained from the output of the current detection circuit 33. , 3) The output of the voltage detection circuit 31 and the output of the current detection circuit 33 are configured to be electrically connected to the electrostatic sensor circuit 25.
  • the electrostatic sensor circuit 25 includes the output of the voltage detection circuit 31 and Based on the open / closed state of the thermostat 21 obtained from the output of the current detection circuit 33, In any of the above 1) to 3), the reference value when the hand 41 is not touching the steering wheel 3 in the electrostatic sensor circuit 25 is updated. Thereby, the detection of the open / closed state of the thermostat 21 can reduce the influence on the reference value by the thermostat 21 having a particularly large change, and it is possible to increase the accuracy of the contact detection of the hand 41.
  • the sixth embodiment is based on the open / close state of the thermostat 21 and whether or not the steering wheel 3 is gripped.
  • the open / close state of the thermostat 21 is only based on.
  • FIG. 23 is a flowchart showing an operation that is a feature of the seventh embodiment. Note that the flowchart of FIG. 23 is a subroutine executed every predetermined period (for example, 0.1 second) from the main routine.
  • the electrostatic sensor circuit 25 determines whether or not the open / close state of the thermostat 21 has changed (S39). This operation is the same as S31 in FIG. If there is no change in the open / close state (No in S39), there is no influence on the electrostatic sensor circuit 25 by the thermostat 21, so the subroutine of FIG. 23 is terminated and the process returns to the main routine.
  • the electrostatic sensor circuit 25 next determines whether or not the thermostat 21 has been closed from opening (S41). If the thermostat 21 has been changed from open to closed (Yes in S41), the fluctuation amount X is added to the base value before correction as the base value after correction (S43). Details of this operation will be described with reference to FIGS. 24A and 24B, the horizontal axis represents time, and the vertical axis represents electrostatic sensor output.
  • FIG. 24A shows a case where the hand 41 is not touched.
  • the electrostatic sensor output including immediately before and after the thermostat 21 is opened and closed is regularly monitored by the main routine. Accordingly, the base value before correction is the A value immediately before the thermostat 21 changes from open to closed.
  • the base value before correction is the average value of the fluctuation range in the noise of the electrostatic sensor output.
  • the electrostatic sensor output increases by the fluctuation amount X indicated by the thick arrow in FIG. 24A. Therefore, the corrected base value after time t1 is a B value obtained by adding the variation amount X to the base value before correction. Therefore, the correction is performed as in S43.
  • the variation amount X is obtained by subtracting the A value from the B value.
  • the operation period of the thermostat 21 is as short as 0.1 seconds or less, for example, it is assumed that the hand 41 keeps touching before and after the thermostat 21 changes from open to closed.
  • the C value obtained by adding the signal value Y to the base value is the sensor value.
  • a value obtained by adding the variation amount X and the signal value Y described in FIG. 24A to the base value before the change becomes the sensor value.
  • adding the fluctuation amount X to the base value before correction becomes the base value after correction. This operation is the same as S43.
  • the signal value Y need not be taken into account when correcting the base value. That is, the base value can be corrected by the operation of S43 regardless of whether or not the hand 41 is touched.
  • the electrostatic sensor circuit 25 ends the subroutine of FIG. 23 and returns to the main routine.
  • the electrostatic sensor circuit 25 ends the subroutine of FIG. 23 and returns to the main routine.
  • the fluctuation amount X is added to the base value before correction. This may depend on the configuration of the steering wheel 3 and the heater 23.
  • the fluctuation of the electrostatic sensor output may be reversed.
  • the operation of S47 may be performed when Yes in S41
  • the operation of S43 may be performed when No in S41.
  • the steering wheel grip capable of reducing the influence on the reference value by the thermostat 21 having a particularly large change from the detection of the open / closed state of the thermostat 21 and achieving higher accuracy in detecting the contact of the hand 41.
  • the detection device 11 can be realized.
  • the steering wheel grip detection device can detect the open / close state of the thermostat, it is particularly useful as a steering wheel grip detection device for detecting hand grip by a heater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Steering Controls (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

サーモスタットの開閉状態を検出し、手の把持検出に対する影響を低減することができるステアリングホイール把持検出装置を提供すること。ステアリングホイール把持検出装置は、インダクタンス素子、ステアリングホイールに内蔵されるサーモスタット、およびステアリングホイールに内蔵されるヒータからなる構成の直列回路と、ステアリングホイールへの接触を電場、または電磁場により検出する静電センサ回路と、サーモスタットの開閉状態を検出する電圧検出回路と、を有する。

Description

ステアリングホイール把持検出装置
 本発明は、特にヒータの静電容量の変化により手の把持を検出する操舵ハンドルにおける、ヒータ用サーモスタットの開閉状態の、検出出力への影響を低減するステアリングホイール把持検出装置に関するものである。
 従来、手と操舵ハンドルとの間の接触の検出装置が、たとえば特許文献1に提案されている。この検出装置のブロック回路図を図25に示す。
 図25において、第1のキャパシタ(容量)101を含む第1の発振器103で、周波数f1を有する第1の信号が発生される。第1のキャパシタ101は、図示されていない車両の同様に図示されていない操舵ハンドルに設けられている。第1のキャパシタ101は、例えば既に存在する操舵ハンドルの加熱器の一部分であってもよい。このような加熱器では、サーモスタットにより温度調整や過昇温防止動作を行うことが一般的である。
 また、第2のキャパシタ(容量)105および調節可能な第3のキャパシタ(容量)107を有する第2の発振器109で、第2の周波数f2を有する第2の信号が発生される。ドライバの手が操舵ハンドル上に存在していないとき、第1の周波数f1および第2の周波数f2は等しい。ミキサ111で、第1および第2の周波数f1およびf2の差の絶対値が形成される。差の絶対値は、周波数-電圧変換器113で出力電圧Uに変換される。
 ドライバの手が操舵ハンドルに接近し且つ最後にこれを握ったとすると、これにより、第1のキャパシタ101が影響を受け、この結果、第1の周波数f1が変化する。そして、手が操舵ハンドルに接近するのにしたがって、電圧Uは連続的に上昇し、電圧Uが第1のしきい値S1を超えると直ちに、手と操舵ハンドルとの間の接触が検出される。
特開2002-340712号公報
 本発明は、従来の問題を解決するもので、サーモスタットの開閉状態を検出し、手の把持検出に対する影響を低減することができるステアリングホイール把持検出装置を提供することを目的とする。
 本発明のステアリングホイール把持検出装置は、インダクタンス素子、サーモスタット、ヒータからなる構成の直列回路と、静電センサ回路とを有する。直列回路は、電源の正極と負極の間に電気的に接続される。サーモスタットとヒータは、ステアリングホイールに内蔵される。静電センサ回路は、ヒータにおけるインダクタンス素子が電気的に接続される側の端部、または、ヒータの配線経路の中間に電気的に接続され、ステアリングホイールの把持を電場、または電磁場により検出する。そして、ステアリングホイール把持検出装置は、インダクタンス素子、サーモスタット、およびヒータの間における任意の接続点と正極の配線経路との間、または、任意の接続点と負極の配線経路との間、または、インダクタンス素子の両端、または、ヒータの両端、または、サーモスタットの両端、のいずれかに電気的に接続される電圧検出回路を設けたものである。
 また、本発明のステアリングホイール把持検出装置は、インダクタンス素子、サーモスタット、ヒータからなる構成の直列回路と、静電センサ回路とを有する。直列回路は、電源の正極と負極の間に電気的に接続される。サーモスタットとヒータは、ステアリングホイールに内蔵される。静電センサ回路は、ヒータにおけるインダクタンス素子が電気的に接続される側の端部、または、ヒータの配線経路の中間に電気的に接続され、ステアリングホイールの把持を電場、または電磁場により検出するする。そして、ステアリングホイール把持検出装置は、直列回路の配線経路に電気的に直列接続される電流検出回路を設けたものである。
 本発明のステアリングホイール把持検出装置によれば、電圧検出回路の出力、または電流検出回路の出力から、サーモスタットの開閉状態を検出でき、手の接触検出に対するサーモスタットの影響を低減することが可能になるという効果を奏する。
本発明の実施の形態1におけるステアリングホイール把持検出装置を含む車室内の概略図 本発明の実施の形態1におけるステアリングホイール把持検出装置のブロック回路図 本発明の実施の形態1におけるステアリングホイール把持検出装置の他のブロック回路図 本発明の実施の形態1におけるステアリングホイール把持検出装置のさらに他のブロック回路図 本発明の実施の形態1におけるステアリングホイール把持検出装置のさらに他のブロック回路図 本発明の実施の形態1におけるステアリングホイール把持検出装置のさらに他のブロック回路図 本発明の実施の形態1におけるステアリングホイール把持検出装置のさらに他のブロック回路図 本発明の実施の形態1におけるステアリングホイール把持検出装置のさらに他のブロック回路図 本発明の実施の形態1におけるステアリングホイール把持検出装置のセンサ容量における経時特性図 本発明の実施の形態1におけるステアリングホイール把持検出装置の静電センサ出力における経時特性図 本発明の実施の形態1におけるステアリングホイール把持検出装置のさらに他のブロック回路図 本発明の実施の形態1におけるステアリングホイール把持検出装置のさらに他のブロック回路図 本発明の実施の形態1におけるステアリングホイール把持検出装置のさらに他のブロック回路図 本発明の実施の形態2におけるステアリングホイール把持検出装置のブロック回路図 本発明の実施の形態3におけるステアリングホイール把持検出装置のブロック回路図 本発明の実施の形態3におけるステアリングホイール把持検出装置の他のブロック回路図 本発明の実施の形態4におけるステアリングホイール把持検出装置のブロック回路図 本発明の実施の形態5におけるステアリングホイール把持検出装置のブロック回路図 本発明の実施の形態5におけるステアリングホイール把持検出装置の他のブロック回路図 本発明の実施の形態5におけるステアリングホイール把持検出装置のサーモスタット開閉判断のフローチャート 本発明の実施の形態6におけるステアリングホイール把持検出装置の動作を示すフローチャート 本発明の実施の形態6におけるステアリングホイール把持検出装置の静電センサ出力の経時特性図で、手の接触がない場合の経時特性図 本発明の実施の形態6におけるステアリングホイール把持検出装置の静電センサ出力の経時特性図で、手の接触がある場合の経時特性図 本発明の実施の形態7におけるステアリングホイール把持検出装置の動作を示すフローチャート 本発明の実施の形態7におけるステアリングホイール把持検出装置の静電センサ出力の経時特性図で、手の接触がない場合の経時特性図 本発明の実施の形態7におけるステアリングホイール把持検出装置の静電センサ出力の経時特性図で、手の接触がある場合の経時特性図 従来の手と操舵ハンドルとの間の接触の検出装置のブロック回路図
 本発明の実施の形態の説明に先立ち、従来の装置における問題点を簡単に説明する。上記した手と操舵ハンドルとの間の接触の検出装置によると、ドライバの手が操舵ハンドルを握ることにより、手と操舵ハンドルとの間の接触が検出されると記載されている。しかし、ここでは手と操舵ハンドルの接触を検出する場合に、操舵ハンドルの加熱器(ヒータ)を利用し、その静電容量の変化、すなわち第1のキャパシタ101の静電容量の変化を周波数の変化として検出している。この場合、温度調整や過昇温防止動作を行うサーモスタットが開閉動作すると、それに応じて加熱器に電流が流れたり流れなかったりを繰り返すので、それに起因して第1のキャパシタ101の静電容量が影響を受け、手の接触検知に対し誤差が発生するという問題があった。
 以下、本発明を実施するための形態について図面を参照しながら説明する。
 (実施の形態1)
 図1は、本発明の実施の形態1におけるステアリングホイール把持検出装置を含む車室内の概略図である。図2は、本発明の実施の形態1におけるステアリングホイール把持検出装置のブロック回路図である。図3は、本発明の実施の形態1におけるステアリングホイール把持検出装置の他のブロック回路図である。図4は、本発明の実施の形態1におけるステアリングホイール把持検出装置のさらに他のブロック回路図である。図5は、本発明の実施の形態1におけるステアリングホイール把持検出装置のさらに他のブロック回路図である。図6は、本発明の実施の形態1におけるステアリングホイール把持検出装置のさらに他のブロック回路図である。図7は、本発明の実施の形態1におけるステアリングホイール把持検出装置のさらに他のブロック回路図である。図8は、本発明の実施の形態1におけるステアリングホイール把持検出装置のさらに他のブロック回路図である。図9は、本発明の実施の形態1におけるステアリングホイール把持検出装置のセンサ容量における経時特性図である。図10は、本発明の実施の形態1におけるステアリングホイール把持検出装置の静電センサ出力における経時特性図である。図11は、本発明の実施の形態1におけるステアリングホイール把持検出装置のさらに他のブロック回路図である。図12は、本発明の実施の形態1におけるステアリングホイール把持検出装置のさらに他のブロック回路図である。図13は、本発明の実施の形態1におけるステアリングホイール把持検出装置のさらに他のブロック回路図である。
 図2において、ステアリングホイール把持検出装置11は、電源13の正極と負極の間に電気的に接続される、インダクタンス素子19、ステアリングホイールに内蔵されるサーモスタット21、およびステアリングホイールに内蔵されるヒータ23からなる構成の直列回路を有する。さらに、ヒータ23におけるインダクタンス素子19が電気的に接続される側の端部、またはヒータ23の配線経路の中間と電気的に接続され、ステアリングホイールの把持を電場、または電磁場により検出する静電センサ回路25と、を有する。そして、インダクタンス素子19、サーモスタット21、およびヒータ23の間における任意の接続点27又は29と正極の配線経路との間、または、任意の接続点27又は29と負極の配線経路との間、または、インダクタンス素子19の両端、または、ヒータ23の両端、または、サーモスタット21の両端、のいずれかに電気的に接続される電圧検出回路31を設ける。
 これにより、電圧検出回路31の出力に基づいてサーモスタット21の開閉を知ることができ、手41のステアリングホイール3への接触検出に対するサーモスタット21の影響を低減することが可能になる。
 なお、電圧検出回路31が任意の接続点27又は29と正極の配線経路との間、または任意の接続点27又は29と負極の配線経路との間に電気的に接続されるという表記は、電圧検出回路31の一端が任意の接続点27又は29と電気的に接続されるとともに、電圧検出回路31の他端が正極の配線経路、または負極の配線経路と電気的に接続されることを表すものと以下定義する。
 また、図12において、ステアリングホイール把持検出装置11は、電源13の正極と負極の間に電気的に接続される、インダクタンス素子19、ステアリングホイールに内蔵されるサーモスタット21、およびステアリングホイールに内蔵されるヒータ23からなる構成の直列回路を有する。さらに、ヒータ23におけるインダクタンス素子19が電気的に接続される側の端部、または、ヒータ23の配線経路の中間に電気的に接続され、ステアリングホイールの把持を電場、または電磁場により検出する静電センサ回路25と、を有する。そして、直列回路の配線経路に電気的に直列接続される電流検出回路33を設ける。
 これにより、図12の回路構成において、電流検出回路33は、サーモスタット21が閉の時にヒータ23に電流が流れ、サーモスタット21が開のときには電流が流れない。従って、電流検出回路33の出力値は、サーモスタット21の開閉状態により異なるので、出力値を検出することで、サーモスタット21の開閉を知ることができ、手41のステアリングホイールへの接触検出に対するサーモスタット21の影響を低減することが可能になる。
 以下、より具体的に本実施の形態1の構成、動作について説明する。
 図1はステアリングホイール把持検出装置11が含まれる車室内の概略図である。フロントウインドウ2の近傍には、ステアリングホイール3が配置される。また、ステアリングホイール3の近傍には運転席6が配置され、運転席6の隣にはシフトレバー7を介して助手席8が配置される。
 図2において、ステアリングホイール把持検出装置11は、ステアリングホイール3のリム部に内蔵される。このような構成に基づき、ステアリングホイール把持検出装置11は、手41がステアリングホイール3のリム部を把持しているか否かを検出し、出力するものである。以下、ステアリングホイール把持検出装置11の詳細について述べる。なお、「ステアリングホイール3のリム部を把持」という表記は、以下、簡単に「ステアリングホイール3の把持」と表記する。
 図2において、電源13は後述するヒータ23を動作させる電流を流すためのものである。電源13は、例えば車両のバッテリで構成され、正極と負極を有する。正極は正極端子15に、負極は、グランド35を介して負極端子17に、それぞれ電気的に接続される。なお、正極端子15と負極端子17は、例えば電源13との間での電気的接続を行うためのコネクタ端子である。しかし、このような正極端子15と負極端子17の少なくとも一方を設けず、電源13の正極や負極における配線経路に下記直列回路を直接接続するようにしてもよい。
 正極端子15と負極端子17の間には、正極端子15側から順に、インダクタンス素子19、サーモスタット21、およびヒータ23からなる構成の直列回路が電気的に接続される。インダクタンス素子19は交流的にインダクタンスを有する素子のことであり、ここではインダクタを用いた。サーモスタット21はヒータ23が過昇温しないように制御するためのもので、具体的な構成としては、ヒータ23の温度が伝達しやすいように、ヒータ23の近傍にサーモスタット21が配置される。ヒータ23の種類は特に限定されないが、本実施の形態1では不織布上にヒータ線を縫製で固定した構成のものを使用した。
 サーモスタット21からヒータ23までの配線経路における接続点29には、センサ線37を介して、ステアリングホイール3の把持を電場、または電磁場により検出する静電センサ回路25が電気的に接続される。静電センサ回路25はセンサ線37により、ヒータ23における電場、または電磁場の、手41の接触による変化を検出して、外部回路に出力する機能を有する。本実施の形態1では、外部回路を車両側制御回路39とした。従って、車両側制御回路39は、静電センサ回路25の出力信号からステアリングホイール3への手41の接触を知ることができる。なお、車両側制御回路39は車両に搭載された様々な電装品の制御を司る構成を有するが、図2では、電装品の記載を省略している。
 なお、ヒータ23への通電を運転者の意思によりオンオフするためのスイッチは、例えば電源13の正極から正極端子15までの配線経路、あるいは電源13の負極から負極端子17までの配線経路の少なくとも一方に、電気的に接続されるが、図2ではスイッチを省略している。以上で説明した構成において、本実施の形態1のステアリングホイール把持検出装置11には電源13、車両側制御回路39、および上記スイッチが含まれない範囲と定義する。
 次に、図2のステアリングホイール把持検出装置11における概略動作について述べる。まず、基本的なステアリングホイール把持の検出動作についてであるが、手41がヒータ23を把持すると、把持していない場合に比べ、手41とヒータ23との間の静電容量により、ヒータ23全体の静電容量が変化する。静電センサ回路25は、センサ線37を介して、その変化を電場、または電磁場により検出する。そして、検出結果を車両側制御回路39へ出力する。このような動作により、車両側制御回路39は運転者がステアリングホイール3を把持しているか否かを判断することができる。
 次に、サーモスタット21の開閉状態検出について述べる。図2より、電圧検出回路31は接続点27と負極端子17に接続されているので、電圧検出回路31はサーモスタット21とヒータ23の直列回路の両端に接続されることになる。この状態で電源13の電圧がステアリングホイール把持検出装置11に印加されると、サーモスタット21が閉のときは、グランド35の電位を基準とした、インダクタンス素子19とヒータ23の抵抗値により決まる分圧が電圧検出回路31に印加される。サーモスタット21が開のときは、直列回路に電流が流れないので、電圧検出回路31には電源13の電圧が印加される。従って、基本的にはサーモスタット21の開閉状態に応じて電圧検出回路31で検出される電圧が異なるので、電圧検出回路31の出力により、サーモスタット21の開閉を知ることができる。
 しかし、運転者や車両側制御回路39が車両の大電力負荷を使用したりしなかったりすることで、電源13の電圧が変動する場合がある。この変動はサーモスタット21の開閉判断に影響を及ぼす可能性がある。従って、図2の構成では、電圧検出回路31の出力が静電センサ回路25に入力される構成であるので、静電センサ回路25は、電圧検出回路31で得られた電圧値に、そのときの電源13の電圧値(車両側制御回路39がモニタしており、その電圧値を車両側制御回路39から取り込む)と基準電圧(例えば12V)との比率を乗じて、基準電圧換算とすることで、負荷変動の影響を低減してサーモスタット21の開閉を求める。そして、静電センサ回路25は後述する補正によりサーモスタット21の開閉状態の影響を低減した、手41のヒータ23への接触有無の結果を車両側制御回路39へ出力することができる。なお、電源13が定電圧源である構成などの場合は、上記した負荷変動の影響を低減しなくてもよい。
 ここで、電圧検出回路31の出力が静電センサ回路25に接続される構成について述べたが、これは、車両側制御回路39に接続する構成としてもよい。この場合は、車両側制御回路39で静電センサ回路25の出力に対するサーモスタット21の開閉状態の影響を低減する動作を行えばよい。
 次に、図2の構成における変形構成について述べる。
 まず、インダクタンス素子19、サーモスタット21、およびヒータ23からなる直列回路における、各構成要素の順序であるが、これは図2を含め6通りあるため、それぞれについて、図3から図7にて後述する。
 次に、直列回路におけるセンサ線37の接続位置であるが、図2では接続点29に接続している。これを正極端子15に接続すると、静電センサ回路25の静電容量変化を検出するための交流信号が電源13を通してグランド35に流れて、ヒータ23へは交流信号が流れないため、この構成は不可である。また、接続点27にセンサ線37を接続した場合は、サーモスタット21が開のとき、交流信号がヒータ23へ流れないため、不可である。また、負極端子17にセンサ線37を接続すると、交流信号が直接グランドへ流れるため、不可である。従って、センサ線37は、図2に示すように接続点29に接続する。
 あるいは、ヒータ23の配線経路の中間にセンサ線37を接続する構成であってもよい。この場合はセンサ線37の両側にヒータ23からなるインダクタンス素子が配されることと等価になるので、交流信号がグランドに流れたりヒータ23に流れなかったりすることがない。従って、ヒータ23の配線経路の中間にセンサ線37を接続する構成は以下に説明するどの構成にも適用できる。この構成の詳細については、図11で説明する。
 次に、電圧検出回路31の接続について述べる。
 まず、電圧検出回路31を各構成要素の両端に接続した場合について説明する。最初に、インダクタンス素子19の両端に接続した場合、サーモスタット21が開であれば、電源13からの電流が流れないので、インダクタンス素子19の両端には等電圧が印加される。従って、その両端に接続された電圧検出回路31の出力は0Vとなる。一方、サーモスタット21が閉であれば、電源13からの電流が流れるので、電源13の電圧と、インダクタンス素子19とヒータ23との分圧の差に相当する電圧が電圧検出回路31に印加される。従って、上記した差分に相当する電圧値が電圧検出回路31から出力される。ゆえに、インダクタンス素子19の両端に電圧検出回路31を接続した構成でも、サーモスタット21の開閉状態を知ることができる。
 次に、サーモスタット21の両端に接続した場合、サーモスタット21が開であれば、サーモスタット21の電源13側には電源13の電圧が印加され、サーモスタット21のヒータ23側はグランド35に接続されることになるので、電圧検出回路31の出力は電源13の電圧値となる。一方、サーモスタット21が閉であれば、サーモスタット21の両端は等電位になるので、電圧検出回路31の出力は0Vとなる。ゆえに、サーモスタット21の両端に電圧検出回路31を接続した構成でも、サーモスタット21の開閉状態を知ることができる。
 次に、ヒータ23の両端に接続した場合、サーモスタット21が開であれば、電源13からの電流が流れないので、ヒータ23の両端には等電圧が印加される。従って、その両端に接続された電圧検出回路31の出力は0Vとなる。一方、サーモスタット21が閉であれば、電源13からの電流が流れるので、インダクタンス素子19とヒータ23との分圧に相当する電圧が電圧検出回路31に印加される。ゆえに、ヒータ23の両端に電圧検出回路31を接続した構成でも、サーモスタット21の開閉状態を知ることができる。
 次に、正極端子15と接続点29の間に電圧検出回路31を接続した場合、サーモスタット21が開であれば、電源13からの電流が流れないので、インダクタンス素子19の両端には電源13の電圧が印加され、接続点29はグランド35の電位となる。従って、正極端子15と接続点29に接続された電圧検出回路31の出力はグランド35の電位を基準とした電源13の電圧値となる。一方、サーモスタット21が閉であれば、電源13からの電流が流れるので、電源13の電圧と、インダクタンス素子19とヒータ23との分圧の差に相当する電圧が電圧検出回路31に印加される。従って、上記した差分に相当する電圧値が電圧検出回路31から出力される。ゆえに、正極端子15と接続点29の間に電圧検出回路31を接続した構成でも、サーモスタット21の開閉状態を知ることができる。
 なお、接続点27と負極端子17の間に電圧検出回路31を接続した構成については上述したため、説明を省略する。
 以上をまとめると、電圧検出回路31は、インダクタンス素子19、サーモスタット21、およびヒータ23の順序の直列回路における任意の接続点27又は29と正極の配線経路(例えば正極端子15)との間に電気的に接続される構成とすればよい。または、任意の接続点27又は29と負極の配線経路(例えば負極端子17)との間に電気的に接続される構成とすればよい。または、インダクタンス素子19の両端、または、ヒータ23の両端、または、サーモスタット21の両端、のいずれかに電気的に接続される構成とすればよい。
 次に、直列回路における各構成要素が、正極端子15から負極端子17に向かって、インダクタンス素子19、ヒータ23、およびサーモスタット21の順に接続される構成について述べる。
 まず、センサ線37の接続位置であるが、図3に示すように接続点27に接続する構成であれば、静電容量変化を検出するために静電センサ回路25から出力される交流信号は、インダクタンス素子19とヒータ23のインダクタンスにより、グランド35(電源13を経由する配線系統も含む)に流れることはない。従って、接続点27にセンサ線37を接続する構成は、把持検出が可能となる。一方、接続点29にセンサ線37を接続した場合、サーモスタット21が閉になると、グランド35に直結されるので、交流信号がグランド35へ流れてしまう。ゆえに、図3の構成では、センサ線37は接続点27と接続される構成とする必要がある。
 次に、電圧検出回路31の接続についてであるが、図3の直列回路における図2の直列回路との違いは、ヒータ23とサーモスタット21を入れ替えたのみである。従って、各構成要素の両端に電圧検出回路31を接続する構成によりサーモスタット21の開閉を判断することは図2で説明したものと同様に可能である。また、電圧検出回路31を正極端子15と接続点29との間に接続した場合、サーモスタット21が開であれば電源13から電流が流れないので電圧検出回路31の両端が等電位となり、電圧検出回路31は0Vを出力する。サーモスタット21が閉であれば、接続点29がグランド35に接続されるので、電圧検出回路31の両端にはグランド35の電位を基準とした電源13の電圧が印加され、電圧検出回路31はその電圧値を出力する。ゆえに、サーモスタット21の開閉時の電圧検出回路31が出力する電圧値が異なるため、サーモスタット21の開閉を判断できる。一方、図3に示すように、電圧検出回路31が接続点27と負極端子17との間に電気的に接続される構成の場合、サーモスタット21が開であれば、電圧検出回路31の両端にはグランド35の電位を基準とした電源13の電圧が印加され、電圧検出回路31はその電圧値を出力する。サーモスタット21が閉であれば、電圧検出回路31の両端には、インダクタンス素子19とヒータ23の抵抗値に応じた分圧が印加され、電圧検出回路31は分圧に応じた電圧値を出力する。従って、サーモスタット21の開閉時の電圧検出回路31が出力する電圧値が異なるため、サーモスタット21の開閉を判断できる。
 これらのことから、電圧検出回路31は、インダクタンス素子19、ヒータ23、およびサーモスタット21の順序の直列回路における任意の接続点27又は29と正極の配線経路(例えば正極端子15)との間に電気的に接続される構成とすればよい。または、任意の接続点27又は29と負極の配線経路(例えば負極端子17)との間に電気的に接続される構成とすればよい。または、インダクタンス素子19の両端、または、ヒータ23の両端、または、サーモスタット21の両端、のいずれかに電気的に接続される構成とすればよい。
 次に、直列回路における各構成要素が、正極端子15から負極端子17に向かって、サーモスタット21、インダクタンス素子19、およびヒータ23の順に接続される構成について述べる。
 まず、センサ線37の接続位置であるが、図4に示すように接続点29に接続する構成であれば、静電容量変化を検出するために静電センサ回路25から出力される交流信号は、インダクタンス素子19とヒータ23のインダクタンスにより、グランド35(電源13を経由する配線系統も含む)に流れることはない。従って、接続点29にセンサ線37を接続する構成は、把持検出が可能となる。一方、接続点27にセンサ線37を接続した場合、サーモスタット21が閉になると、電源13を介してグランド35に接続されるので、交流信号がグランド35へ流れてしまう。ゆえに、図4の構成では、センサ線37は接続点29と接続される構成とする必要がある。
 次に、電圧検出回路31の接続についてであるが、図4の直列回路における図2の直列回路との違いは、インダクタンス素子19とサーモスタット21を入れ替えたのみである。従って、各構成要素の両端に電圧検出回路31を接続する構成によりサーモスタット21の開閉を判断することは図2で説明したものと同様に可能である。また、電圧検出回路31を正極端子15と接続点29との間に接続した場合、サーモスタット21が開であれば電源13から電流が流れないので電圧検出回路31の両端にはグランド35の電位を基準とした電源13の電圧が印加され、電圧検出回路31はその電圧値を出力する。サーモスタット21が閉であれば、電源13から電流が流れるので、接続点29の電圧はインダクタンス素子19とヒータ23の抵抗値で決まる分圧となる。従って、電圧検出回路31は正極端子15と接続点29の間に接続されているので、正極端子15の電圧(電源13の電圧)と接続点29の電圧との差分の電圧値が出力される。ゆえに、サーモスタット21の開閉時の電圧検出回路31が出力する電圧値が異なるため、サーモスタット21の開閉を判断できる。一方、図4に示すように、電圧検出回路31が接続点27と負極端子17との間に電気的に接続される構成の場合、サーモスタット21が開であれば、電圧検出回路31の両端はいずれもグランド35の電位となるため、0Vを出力する。サーモスタット21が閉であれば、電圧検出回路31の両端にはグランド35の電位を基準とした電源13の電圧が印加され、電圧検出回路31は、その電圧値を出力する。従って、サーモスタット21の開閉時の電圧検出回路31が出力する電圧値が異なるため、サーモスタット21の開閉を判断できる。
 これらのことから、電圧検出回路31は、サーモスタット21、インダクタンス素子19、およびヒータ23の順序の直列回路における任意の接続点27又は29と正極の配線経路(例えば正極端子15)との間に接続される構成とすればよい。または、任意の接続点27又は29と負極の配線経路(例えば負極端子17)との間に接続される構成とすればよい。または、インダクタンス素子19の両端、または、ヒータ23の両端、または、サーモスタット21の両端、のいずれかに電気的に接続される構成とすればよい。
 次に、直列回路における各構成要素が、正極端子15から負極端子17に向かって、サーモスタット21、ヒータ23、およびインダクタンス素子19の順に接続される構成について述べる。
 まず、センサ線37の接続位置であるが、図5に示すように接続点29に接続する構成であれば、静電容量変化を検出するために静電センサ回路25から出力される交流信号は、インダクタンス素子19とヒータ23のインダクタンスにより、グランド35(電源13を経由する配線系統も含む)に流れることはない。これは、図4の構成と同じである。従って、接続点29にセンサ線37を接続する構成は、把持検出が可能となる。一方、接続点27にセンサ線37を接続した場合は、図4の構成と同様に、サーモスタット21が閉になると、電源13を介してグランド35に接続されるので、交流信号がグランド35へ流れてしまう。ゆえに、図5の構成においても、センサ線37は接続点29と接続される構成とする必要がある。
 次に、電圧検出回路31の接続についてであるが、図5の直列回路における図4の直列回路との違いは、インダクタンス素子19とヒータ23を入れ替えたのみである。従って、各構成要素の両端に電圧検出回路31を接続する構成によりサーモスタット21の開閉を判断することは図4の構成と同様に可能である。また、電圧検出回路31を正極端子15と接続点29との間に接続した場合、サーモスタット21が開であれば電源13から電流が流れないので電圧検出回路31の両端にはグランド35の電位を基準とした電源13の電圧が印加され、電圧検出回路31はその電圧値を出力する。サーモスタット21が閉であれば、電源13から電流が流れるので、接続点29の電圧はインダクタンス素子19とヒータ23の抵抗値で決まる分圧となる。従って、電圧検出回路31は正極端子15と接続点29の間に接続されているので、正極端子15の電圧(電源13の電圧)と接続点29の電圧との差分の電圧値が出力される。ゆえに、サーモスタット21の開閉時の電圧検出回路31が出力する電圧値が異なるため、サーモスタット21の開閉を判断できる。一方、図5に示すように、電圧検出回路31が接続点27と負極端子17との間に電気的に接続される構成の場合、サーモスタット21が開であれば、電圧検出回路31の両端はいずれもグランド35の電位となるため、0Vを出力する。サーモスタット21が閉であれば、電圧検出回路31の両端にはグランド35の電位を基準とした電源13の電圧が印加され、電圧検出回路31は、その電圧値を出力する。従って、サーモスタット21の開閉時の電圧検出回路31が出力する電圧値が異なるため、サーモスタット21の開閉を判断できる。
 これらのことから、電圧検出回路31は、サーモスタット21、ヒータ23、およびインダクタンス素子19の順序の直列回路における任意の接続点27又は29と正極の配線経路(例えば正極端子15)との間に接続される構成とすればよい。または、任意の接続点27又は29と負極の配線経路(例えば負極端子17)との間に接続される構成とすればよい。または、インダクタンス素子19の両端、または、ヒータ23の両端、または、サーモスタット21の両端、のいずれかに電気的に接続される構成とすればよい。
 次に、直列回路における各構成要素が、正極端子15から負極端子17に向かって、ヒータ23、サーモスタット21、およびインダクタンス素子19の順に接続される構成について述べる。
 まず、センサ線37の接続位置であるが、図6に示すように接続点27に接続する構成であれば、静電容量変化を検出するために静電センサ回路25から出力される交流信号は、サーモスタット21が閉の場合はインダクタンス素子19とヒータ23のインダクタンスにより、グランド35(電源13を経由する配線系統も含む)に流れることはない。また、サーモスタット21が開の場合は接続点27とグランド35との接続が断たれ、かつヒータ23がインダクタンスを有することから、交流信号がグランド35に流れることはない。従って、接続点27にセンサ線37を接続する構成は、把持検出が可能となる。一方、接続点29にセンサ線37を接続した場合、サーモスタット21が開になると、把持検出のための交流信号がヒータ23に流れなくなる。ゆえに、図6の構成では、センサ線37は接続点27と接続される構成とする必要がある。
 次に、電圧検出回路31の接続についてであるが、図6の直列回路における図2の直列回路との違いは、インダクタンス素子19とヒータ23を入れ替えたのみである。従って、各構成要素の両端に電圧検出回路31を接続する構成によりサーモスタット21の開閉を判断することは図2で説明したものと同様に可能である。また、電圧検出回路31を正極端子15と接続点29との間に接続した場合、サーモスタット21が開であれば電源13から電流が流れないので接続点29はグランド35の電位となる。従って、正極端子15と接続点29に接続された電圧検出回路31の出力はグランド35の電位を基準とした電源13の電圧値となり、電圧検出回路31はその電圧値を出力する。サーモスタット21が閉であれば、電源13から電流が流れるので、接続点29の電圧はインダクタンス素子19とヒータ23の抵抗値で決まる分圧となる。従って、電圧検出回路31は正極端子15と接続点29の間に接続されているので、正極端子15の電圧(電源13の電圧)と接続点29の電圧との差分の電圧値が出力される。ゆえに、サーモスタット21の開閉時の電圧検出回路31が出力する電圧値が異なるため、サーモスタット21の開閉を判断できる。一方、図6に示すように、電圧検出回路31が接続点27と負極端子17との間に電気的に接続される構成の場合、サーモスタット21が閉であれば、直列回路に電流が流れるので、接続点27の電圧は、ヒータ23とインダクタンス素子19の抵抗値で決まる分圧となる。従って、電圧検出回路31の両端はグランド35の電位を基準とした分圧が印加されるので、電圧検出回路31は、この印加された電圧を電圧値として出力する。サーモスタット21が開であれば、電圧検出回路31の両端にはグランド35の電位を基準とした電源13の電圧が印加され、電圧検出回路31は、その電圧値を出力する。従って、サーモスタット21の開閉時の電圧検出回路31が出力する電圧値が異なるため、サーモスタット21の開閉を判断できる。
 これらのことから、電圧検出回路31は、ヒータ23、サーモスタット21、およびインダクタンス素子19の順序の直列回路における任意の接続点27又は29と正極の配線経路(例えば正極端子15)との間に接続される構成とすればよい。または、任意の接続点27又は29と負極の配線経路(例えば負極端子17)との間に接続される構成とすればよい。または、インダクタンス素子19の両端、または、ヒータ23の両端、または、サーモスタット21の両端、のいずれかに電気的に接続される構成とすればよい。
 次に、直列回路における各構成要素が、正極端子15から負極端子17に向かって、ヒータ23、インダクタンス素子19、およびサーモスタット21の順に接続される構成について述べる。
 まず、センサ線37の接続位置であるが、図7に示すように接続点27に接続する構成であれば、静電容量変化を検出するために静電センサ回路25から出力される交流信号は、インダクタンス素子19とヒータ23のインダクタンスにより、グランド35(電源13を経由する配線系統も含む)に流れることはない。従って、接続点27にセンサ線37を接続する構成は、把持検出が可能となる。一方、接続点29にセンサ線37を接続した場合、サーモスタット21が閉になると、グランド35に直結されるので、交流信号がグランド35へ流れてしまう。ゆえに、図7の構成では、図3の構成と同様に、センサ線37は接続点27と接続される構成とする必要がある。
 次に、電圧検出回路31の接続についてであるが、図7の直列回路における図3の直列回路との違いは、ヒータ23とインダクタンス素子19を入れ替えたのみである。従って、各構成要素の両端に電圧検出回路31を接続する構成によりサーモスタット21の開閉を判断することは図3で説明したものと同様に可能である。また、電圧検出回路31を正極端子15と接続点29との間に接続した場合、サーモスタット21が開であれば電源13から電流が流れないので電圧検出回路31の両端が等電位となり、電圧検出回路31は0Vを出力する。サーモスタット21が閉であれば、接続点29がグランド35に接続されるので、電圧検出回路31の両端にはグランド35の電位を基準とした電源13の電圧が印加され、電圧検出回路31はその電圧値を出力する。ゆえに、サーモスタット21の開閉時の電圧検出回路31が出力する電圧値が異なるため、サーモスタット21の開閉を判断できる。一方、図7に示すように、電圧検出回路31が接続点27と負極端子17との間に電気的に接続される構成の場合、サーモスタット21が開であれば、電圧検出回路31の両端にはグランド35の電位を基準とした電源13の電圧が印加され、電圧検出回路31はその電圧値を出力する。サーモスタット21が閉であれば、電圧検出回路31の両端には、インダクタンス素子19とヒータ23の抵抗値に応じた分圧が印加され、電圧検出回路31は分圧に応じた電圧値を出力する。従って、サーモスタット21の開閉時の電圧検出回路31が出力する電圧値が異なるため、サーモスタット21の開閉を判断できる。
 これらのことから、電圧検出回路31は、ヒータ23、インダクタンス素子19、およびサーモスタット21の順序の直列回路における任意の接続点27又は29と正極の配線経路(例えば正極端子15)との間に接続される構成とすればよい。または、任意の接続点27又は29と負極の配線経路(例えば負極端子17)との間に接続される構成とすればよい。または、インダクタンス素子19の両端、または、ヒータ23の両端、または、サーモスタット21の両端、のいずれかに電気的に接続される構成とすればよい。
 以上、図2から図7において、ステアリングホイール把持検出装置11の基本的な構成における6種類の直列回路パターンと、それぞれに対するセンサ線37、および電圧検出回路31の接続位置について詳細を述べた。この接続位置をまとめると、次のようになる。
 まず、静電センサ回路25と電気的に接続されるセンサ線37は、ヒータ23におけるインダクタンス素子19が電気的に接続される側の端部、または、ヒータ23の配線経路の中間に電気的に接続される。従って、センサ線37は直列回路の構成に応じて最適な接続部分が存在することになる。ここで、ヒータ23におけるインダクタンス素子19が電気的に接続される側の端部とは、例えば図2の構成なら接続点29のことである。図2の接続点27は、ヒータ23におけるインダクタンス素子19が電気的に接続される側に配されているが、ヒータ23と接続点27の間にサーモスタット21が接続されているため、接続点27はヒータ23の端部には相当しない。すなわち、ヒータ23の端部とは、ヒータ23の終端から何らかの回路構成要素に至るまでの配線経路上の任意の部分であると定義する。
 次に、電圧検出回路31の接続位置については、図2から図7までに示した6種類の、どの直列回路パターンであっても、インダクタンス素子19、サーモスタット21、およびヒータ23の、3つの構成要素のいずれか1つの両端、あるいはこれら3つの構成要素のうちの任意の2つの直接接続された直列回路の両端であればよい。ゆえに、電圧検出回路31の接続位置は、センサ線37の接続位置に比べ自由度が高い。
 以上までで、ステアリングホイール把持検出装置11の基本的な構成、動作について述べてきたが、次に、詳細な動作と他の構成について説明する。
 図8に示すステアリングホイール把持検出装置11は、図2の構成と等価である。図2と異なる点は、電圧検出回路31の接続を、図2では接続点27と負極端子17の間にしていたものを、図8の構成では、図2における負極端子17への接続をヒータ23と負極端子17との間の配線径路上で行っていることである。このように、電圧検出回路31の接続は、接続点27や負極端子17に行う構成に限定されるものではなく、例えばヒータ23の構造上、上記したヒータ23と負極端子17との間の配線径路上で行うようにしてもよい。これは、接続点27の接続について、サーモスタット21からインダクタンス素子19までの配線系路上に行ってもよいし、センサ線37の接続を接続点29に接続する構成に限定せずサーモスタット21からヒータ23までの配線系路上に行ってもよい。なお、これらは、図2から図7までのどの構成にも適用される。また、以下に説明する他の構成についても適用される。次に、図8のステアリングホイール把持検出装置11におけるセンサ容量の経時特性図を図9に示す。なお、センサ容量とは、ヒータ23を通して静電センサ回路25が検出する容量値のことである。図9において、横軸は時刻を、縦軸はセンサ容量を、それぞれ示す。図9は、静電センサ回路25にとってサーモスタット21の開閉状態がわからず、検出誤差が大きい場合の経時特性図である。図9において、センサ容量はサーモスタット21が例えば開であった場合に第1センサ容量値C1であったものが、時刻t1でサーモスタット21が閉になった場合にセンサ容量が急激に大きくなり、第2センサ容量値C2に至る。このような急激な変化は、ヒータ23に手41が触れていない状態から触れた状態になったときのセンサ容量の変化に比べ大きい。ゆえに、サーモスタット21の開閉は検出誤差の原因となる。
 図10は、ステアリングホイール把持検出装置11の静電センサ出力における経時特性図である。図10において、横軸は時刻を、縦軸は静電センサ出力を、それぞれ示す。なお、静電センサ出力とは、静電センサ回路25からの出力信号のことである。また、図10は、図9と同様に、静電センサ回路25にとってサーモスタット21の開閉状態がわからず、検出誤差が大きい場合の経時特性図である。図10において、静電センサ出力はサーモスタット21が例えば開であった場合に静電センサ出力値(以下、センサ値という)の平均値がA値であったものが、時刻t1でサーモスタット21が閉になった場合に静電センサ出力が急激に大きくなり、センサ値の平均値がB値に至る。なお、静電センサ出力が小周期で上下しているのは、ノイズによるためである。このように、図9のセンサ容量が時刻t1で急激に変化することに起因して、図10に示すように、静電センサ出力も時刻t1で急激に変化する。そして、静電センサ出力がこのように変化するため、手41がヒータ23に触れているか否かの検出誤差が大きいことがわかる。ゆえに、サーモスタット21の開閉状態を検出することが必要となる。
 そこで、静電センサ回路25は、電圧検出回路31から出力される電圧値を使って、次のようにしてサーモスタット21の開閉を判断する。まず、スイッチがオンでサーモスタット21が閉であった場合、直列回路には電流が流れる。従って、ヒータ23の両端に電気的に接続される電圧検出回路31には、インダクタンス素子19とヒータ23との直流抵抗値で、電源13の電圧が分圧された電圧が実質的に印加される。この電圧値は静電センサ回路25に入力される。なお、上記したように、電圧検出回路31で検出された電圧値については、電源13の電圧変動の影響を受けるため、静電センサ回路25は車両側制御回路39から取得した電源13の電圧と既定の基準電圧の比率に基づいて、分圧された電圧を補正する。以下、電圧検出回路31から得られた電圧値は、このようにして補正される。
 一方、サーモスタット21が開であった場合、直列回路にはほとんど電流が流れない。従って、電圧検出回路31には電源13の電圧値が印加される。電圧検出回路31は、この電圧値を静電センサ回路25へ出力する。
 これらの結果に基づき、サーモスタット21の開閉により電圧検出回路31の出力が異なることから、静電センサ回路25はサーモスタット21の開閉状態を知ることができる。つまり、予めサーモスタット21の開閉それぞれの状態において、センサ値を測定し、センサ値の変化量(オフセット値)を求めて保持しておき、静電センサ回路25は、サーモスタット21の開閉による図10のような静電センサ出力の大きな変化に対しても、それに対応して予め求めて保持されたセンサ値の変化量(オフセット値)を、静電センサ回路25で検出したセンサ値に対し加減算して補正をすることでサーモスタット21の影響を低減することが可能となる。具体的には、図10の時刻t1以前においてサーモスタット21が開のときはセンサ値がA値であったものが、時刻t1でサーモスタット21が閉になると、静電センサ回路25は、その変化を電圧検出回路31の出力から検出し、予め保持されたオフセット値(B値-A値)をセンサ値から減算する。これにより、時刻t1以降で補正しない場合のセンサ値(B値)は、B値からオフセット値(B値-A値)を差し引かれるので、時刻t1以降もセンサ値はA値となる。その結果、サーモスタット21の開閉状態の影響が低減される。このように補正された静電センサ出力は、車両側制御回路39へ出力される。上記のような動作を行うために、静電センサ回路25は電圧検出回路31や車両側制御回路39とのインターフェース部を含む周辺回路と、補正を行うためのマイクロコンピュータを内蔵している。
 なお、上記したオフセット値による補正動作については、マイクロコンピュータにより実現されているが、それに限定されるものではなく、アナログ回路のみで実現してもよい。
 また、電源13の電圧変動の影響をさらに低減するために、オフセット値についても電源13の電圧値に応じて補正するようにしてもよい。
 また、予め保持するオフセット値については、過去のサーモスタット21の開閉に伴うセンサ値の変化で発生したオフセット値の実測値に基づく値、具体的には記憶された過去複数回のオフセット値の実測値と今回のオフセット値の実測値を平均した値であっても良い。この場合、今回のオフセット値の実測値を求める際は、静電センサ回路25はサーモスタット21の開閉状態が変化する直前のセンサ値を出力し続ける。そして、静電センサ回路25は、過去複数回のオフセット値の実測値と今回得られたオフセット値の実測値とを平均することでオフセット値を求め、その後、得られたオフセット値を用いてセンサ値を補正する。これにより、経時的なオフセット値の変動を低減することが可能となる。
 さらに、サーモスタット21が開から閉になる場合と、閉から開になる場合とでは、サーモスタット21の開閉動作におけるヒステリシスが存在するため、ヒータ23の温度が異なる。それに起因して、オフセット値も異なる場合があるので、その際は、静電センサ回路25は、サーモスタット21の開から閉の場合と、閉から開の場合の両方のオフセット値を予め保持しておき、サーモスタット21の動作状態に応じたオフセット値により補正するようにしてもよい。
 ここで、本実施の形態1の他の構成について、図11を用いて説明する。図8の構成と異なる点は、まず、電圧検出回路31がヒータ23の両端に直接接続される。このような構成とすることで、電圧検出回路31は、より正確にヒータ23の両端電圧を検出することができるため、静電センサ回路25はサーモスタット21の開閉の影響を精度よく低減できる。
 次に、図11の構成で図8の構成と異なる点は、静電センサ回路25がセンサ線37によりヒータ23の配線経路の中間と接続される点である。ここで、ヒータ23の配線経路の中間は、ヒータ23の配線経路の中央に限定されるものではない。このようにセンサ線37を接続しても、図8の構成と同様に静電センサ出力を得ることができる。これは、センサ線37のヒータ23との接続点の両側にはヒータ23を構成する配線経路により形成されるインダクタンス素子が存在するからである。なお、センサ線37をヒータ23のグランド35側末端から負極端子17までの配線経路に接続すると、手41の把持を計測するための交流信号がグランド35へ流れてしまい、ヒータ23での検出ができなくなるので、ヒータ23のグランド35側末端から負極端子17までの配線経路にはセンサ線37を接続しないようにする必要がある。
 なお、図8、または、図11の構成において、電圧検出回路31は、図2から図7の構成で説明したように、インダクタンス素子19の両端に電気的に接続する構成としてもよい。この場合、サーモスタット21が閉の場合は、電圧検出回路31からは、電源13の電圧と、電源13の電圧をインダクタンス素子19とヒータ23との直列回路で分圧した電圧との差分の電圧値が出力される。サーモスタット21が開の場合は、電圧検出回路31は、電圧検出回路31の両端が等電圧となるため、0Vを出力する。
 また、図11の構成において、図8の構成から2箇所の変更を行っているが、これらは、いずれか1箇所の変更だけを行う構成としてもよい。
 次に、本実施の形態1のさらに他の構成について、図12を用いて説明する。
 図12において、ステアリングホイール把持検出装置11は、電源13の正極と負極の間に電気的に接続される、インダクタンス素子19、ステアリングホイールに内蔵されるサーモスタット21、およびステアリングホイールに内蔵されるヒータ23からなる構成の直列回路を有する。さらに、ヒータ23におけるインダクタンス素子19が電気的に接続される側の端部、または、ヒータ23の配線経路の中間に電気的に接続され、ステアリングホイールの把持を電場、または電磁場により検出する静電センサ回路25と、を有する。そして、直列回路の配線経路に電気的に直列接続される電流検出回路33を設けた構成を有する。
 これにより、サーモスタット21が開のときは電流が直列回路に流れないので、電流検出回路33の出力は誤差範囲内で略0Aとなり、サーモスタット21が閉のときは電流が直列回路に流れるので、電流検出回路33は電源13の電圧と、インダクタンス素子19の直流抵抗分とヒータ23の直流抵抗分により決まる電流値を出力する。従って、サーモスタット21の開閉により電流検出回路33の電流値が異なるので、サーモスタット21の開閉状態を知ることができる。
 以下、図12の構成、動作の詳細について述べる。
 まず、図8の構成と異なる点は、電圧検出回路31に替えて、電流検出回路33を設けた点である。電流検出回路33は、直列回路の配線経路内に電気的に接続される。図12では、電流検出回路33はインダクタンス素子19とサーモスタット21との間の配線経路に接続されている。また、電流検出回路33は、静電センサ回路25とも電気的に接続され、検出した電流値を静電センサ回路25に出力する。センサ線37の接続については、図2から図7と同様にして、直列回路における回路構成要素の順序によって最適な位置が決まる。
 このような構成におけるサーモスタット21の開閉状態の検出について述べる。この際、スイッチはオンであるとする。まず、サーモスタット21が閉の場合は、電源13からの電流がヒータ23へ流れる。従って、電源13の電圧と、インダクタンス素子19の直流抵抗分とヒータ23の直流抵抗分により決まる電流値を電流検出回路33が検出する。そして、その電流値を静電センサ回路25へ出力する。
 一方、サーモスタット21が開の場合は殆ど電流が流れないので、電流検出回路33は略0Aの電流値を出力する。
 これらのことから、サーモスタット21の開閉状態が電流値からわかるので、静電センサ回路25はサーモスタット21の影響を低減することができる。
 次に、図12に対して、本実施の形態1のさらに他の構成について、図13を用いて説明する。図12の構成と異なる点は、まず、電流検出回路33をヒータ23のグランド35側末端から負極端子17までの配線経路に設けたことである。これによってもサーモスタット21の開閉状態を知ることができる。これは、直列回路のうち、どこに電流検出回路33を設けても同じ電流値が得られることによる。従って、電圧検出回路31よりも回路内の配置自由度が大きいことがわかる。
 次に、図12と異なる点は、センサ線37をヒータ23の配線経路の中間に接続した点である。この構成は図11と同じであり、得られる効果も同じであるため、詳細な説明を省略する。
 また、図13の構成において、図12の構成から2箇所の変更を行っているが、これらは、いずれか1箇所の変更だけを行う構成としてもよい。
 図12、および図13の構成における、サーモスタット21の開閉に対する補正については、電圧検出回路31の出力からサーモスタット21の開閉状態を検出する構成の場合と同様にすればよい。すなわち、電流検出回路33の出力は静電センサ回路25と電気的に接続されるので、静電センサ回路25は、電流検出回路33の出力からサーモスタット21の開閉状態を得ることができる。そして、静電センサ回路25はオフセット値を保持しているので、サーモスタット21の開閉状態に応じてセンサ値にオフセット値を加減算する。これにより、サーモスタット21のセンサ値への影響を低減できる。なお、オフセット値は、電源13の電圧値、およびヒータ23の温度の少なくとも一方に応じて補正するようにしてもよい。
 以上の構成、動作により、電流検出回路33、または電圧検出回路31の出力から、サーモスタット21の開閉状態を検出でき、手41の接触検出に対するサーモスタット21の影響を低減することが可能になるステアリングホイール把持検出装置11を実現できる。
 なお、図10では、静電センサ出力の基となる値がノイズの影響により短周期に変動しているため、その平均値を静電センサ出力としているが、これに限定されるものではなく、例えば所定期間(0.01秒など)における最大値、または、最小値を静電センサ出力としてもよい。
 (実施の形態2)
 図14は、本発明の実施の形態2におけるステアリングホイール把持検出装置のブロック回路図である。なお、本実施の形態2において、実施の形態1と同じ構成には同じ符号を付して詳細な説明を省略する。
 すなわち、本実施の形態2の特徴は、図14において、ヒータ23と負極端子17との間に電気的に接続される他のインダクタンス素子43を有する点である。
 これにより、他のインダクタンス素子43のヒータ23側にセンサ線37を接続しても、手41の把持検出用の交流信号が、他のインダクタンス素子43の存在により、グランド35へ流れなくなる。従って、ヒータ23のグランド35側末端から他のインダクタンス素子43までの間の配線経路にセンサ線37を接続することができるので、センサ線37の配線自由度が増す。
 以下、本実施の形態2の詳細について述べる。
 図14において、ヒータ23における、インダクタンス素子19が接続される側と反対側の端部における接続点45と負極端子17との間には、他のインダクタンス素子43が電気的に接続される。ここで、他のインダクタンス素子43はインダクタンス素子19と同等の電気特性のものとしたが、それに限定されるものではなく、異なる電気特性のものを用いてもよい。
 次に、静電センサ回路25のセンサ線37は、ヒータ23と他のインダクタンス素子43の間の配線経路(ここでは接続点45)へ電気的に接続される。なお、センサ線37は図8に示すように接続点29に接続してもよいし、図11に示すようにヒータ23の配線経路の中間に接続してもよい。
 サーモスタット21の開閉に基づく電圧検出回路31の出力は次のようになる。まず、サーモスタット21が閉の場合、電圧検出回路31はヒータ23の両端電圧を検出することになる。これは、接続点27の電圧と接続点45の電圧の差分となる。これら接続点27、45の電圧は、インダクタンス素子19、ヒータ23、および他のインダクタンス素子43の抵抗値と電源13の電圧から得られる分圧である。従って、分圧に基づくヒータ23の両端電圧が電圧検出回路31から出力される。一方、サーモスタット21が開の場合は、接続点27の電圧が電源13の電圧に、接続点45の電圧がグランド35の電位に、それぞれなるので、電圧検出回路31から出力される電圧値はグランド35の電位を基準とした電源13の電圧である。従って、サーモスタット21の開閉時において、電圧値が異なるので、他のインダクタンス素子43を設けてもサーモスタット21の開閉を検出することは可能である。なお、電圧検出回路31の接続については、図2から図7で説明した構成を基本とし、各回路構成要素(インダクタンス素子19、サーモスタット21、ヒータ23、他のインダクタンス素子43)の両端、直列に直接接続される任意の2つの回路構成要素の両端、あるいは直列に直接接続される任意の3つの回路構成要素の両端のいずれかに接続すればよい。
 このようなステアリングホイール把持検出装置11において、上記したように他のインダクタンス素子43を設けたことにより、センサ線37の配線自由度が増す。これにより、例えば図14に示すブロック図において、ヒータ23の末端、センサ線37、および電圧検出回路31の配線を1箇所にまとめ、他のインダクタンス素子43が実装された配線基板に接続することで、省スペース化することが可能となり、ステアリングホイール3に配線基板を内蔵することも可能となる。
 以上の構成、動作により、手41の接触検出に対するサーモスタット21の影響を低減することが可能になるとともに、センサ線37の配線自由度が増すステアリングホイール把持検出装置11が実現できる。
 (実施の形態3)
 図15は、本発明の実施の形態3におけるステアリングホイール把持検出装置のブロック回路図である。図16は、本発明の実施の形態3におけるステアリングホイール把持検出装置の他のブロック回路図である。なお、本実施の形態3において、実施の形態1と同じ構成要素には同じ符号を付して詳細な説明を省略する。
 すなわち、本実施の形態3の特徴は、図15において、回路的には図6の構成と等価だが、センサ線37を接続点27ではなく、できるだけヒータ23の近くに接続した点である。これ以外の構成は図8と同じである。このような構成とすることで、静電センサ回路25はヒータ23の静電容量の変化をより高精度に検出できる。なお、図15の構成は上記のように図6と等価であるので、図6の構成と同様にして、静電センサ回路25は、サーモスタット21の開閉状態を知ることができる。
 なお、本実施の形態3においても、実施の形態2と同様な構成としてもよい。すなわち、ヒータ23と正極端子15との間に電気的に接続される他のインダクタンス素子43を有する。
 具体的には、ヒータ23の電源13側の末端と、正極端子15との間に他のインダクタンス素子43を電気的に接続する。このように接続する理由は、本実施の形態3ではヒータ23が電源13の正極側と接続される構造のためである。そして、ヒータ23と他のインダクタンス素子43との間の配線経路にセンサ線37を接続してもよい。
 このような構成とすることで、実施の形態2で述べたように配線自由度が上がるとともに、ヒータ23の末端とセンサ線37とを、他のインダクタンス素子43が実装された回路基板に接続することで、省スペース化が図れる。
 また、本実施の形態3においても、実施の形態1と同様に、電圧検出回路31に替わって電流検出回路33を用いる構成としてもよい。この具体例を図16に示す。図16は、図15の電圧検出回路31を外し、ヒータ23とサーモスタット21の間の配線経路に電流検出回路33を直列に挿入した例である。このような構成とすることで、サーモスタット21の開閉に応じて、ヒータ23に流れる電流が変化するので、その変化を電流検出回路33で検出することにより、静電センサ回路25がサーモスタット21の開閉を検出できる。
 なお、電流検出回路33は実施の形態1で述べたように、直列回路のうち、どこに電流検出回路33を設けてもよいため、電圧検出回路31よりも回路内の配置自由度が大きい。
 以上の構成、動作により、サーモスタット21の開閉状態を検出でき、手41の接触検出に対するサーモスタット21の影響を低減することが可能なステアリングホイール把持検出装置11を実現できる。
 (実施の形態4)
 図17は、本発明の実施の形態4におけるステアリングホイール把持検出装置のブロック回路図である。本実施の形態4において、実施の形態1と同じ構成要素には同じ符号を付して詳細な説明を省略する。
 すなわち、本実施の形態4の特徴は、図17に示すように、電圧検出回路31と電流検出回路33を同時に有する点である。これにより、サーモスタット21の開閉状態を検出する精度を向上することができる。
 以下、本実施の形態4の詳細について説明する。
 本実施の形態4の構成は、図14の構成に対し、サーモスタット21とインダクタンス素子19の配線経路に直列に電流検出回路33を接続したものである。従って、図17に示すように、電圧検出回路31と電流検出回路33を同時に有する構成となる。これらの出力はいずれも静電センサ回路25に入力される構成となっているため、静電センサ回路25は電圧値と電流値の両方を得ることができる。
 なお、電圧検出回路31と電流検出回路33の接続位置は、実施の形態1で述べたとおりである。具体的には、図17の構成の場合、電圧検出回路31は、実施の形態2で述べたように、各回路構成要素の両端、直列に直接接続される任意の2つの回路構成要素の両端、あるいは直列に直接接続される任意の3つの回路構成要素の両端のいずれかに接続すればよい。
 電流検出回路33の接続位置は、実施の形態1で述べたように、正極端子15から負極端子17までのインダクタンス素子19、サーモスタット21、およびヒータ23からなる直列回路のどこでもよい。さらに、図17の場合は他のインダクタンス素子43を有するので、電流検出回路33の接続位置は、正極端子15から負極端子17までのインダクタンス素子19、サーモスタット21、ヒータ23、および他のインダクタンス素子43からなる直列回路のどこでもよい。
 以上の構成、動作により、静電センサ回路25はサーモスタット21の開閉に伴う電圧値と電流値の両方を得ることができるので、高精度に、手41の接触検出に対するサーモスタット21の影響を低減することが可能になるステアリングホイール把持検出装置11を実現できる。
 なお、本実施の形態4では、他のインダクタンス素子43を接続する構成としたが、これは、他のインダクタンス素子43がない、例えば図2から図7までの構成に、電流検出回路33を設けるようにしてもよい。この場合も本実施の形態4と同等の効果を得ることができる。
 (実施の形態5)
 図18は、本発明の実施の形態5におけるステアリングホイール把持検出装置のブロック回路図である。図19は、本発明の実施の形態5におけるステアリングホイール把持検出装置の他のブロック回路図である。図20は、本発明の実施の形態5におけるステアリングホイール把持検出装置のサーモスタット開閉判断のフローチャートである。本実施の形態5において、実施の形態1と同じ構成要素には同じ符号を付して詳細な説明を省略する。
 すなわち、本実施の形態5の特徴は、インダクタンス素子19と並列にスイッチ47を電気的に接続するとともに、他のインダクタンス素子43に替えて他のスイッチ49を電気的に接続するようにした点である。さらに、ヒータ23近傍の温度検出部としてのサーミスタ51が配される。本実施の形態5では、サーミスタ51の温度出力は車両側制御回路39に入力される構成としているが、これは静電センサ回路25に入力されるようにしてもよい。また、本実施の形態5では、温度検出部としてサーミスタ51を用いたが、これに限定されるものではなく、例えば熱電対など温度を検出できるものであればよい。このような構成により、サーミスタ51の温度出力に応じて、スイッチ47と他のスイッチ49の高速オンオフが可能となるので、サーモスタット21による温度調節よりも精度がよくなる。
 以下、本実施の形態5の詳細について、図18により説明する。
 まず、図18の構成は、図17の構成に対し、以下の点が異なる。すなわち、電流検出回路33とスイッチ47の直列回路をインダクタンス素子19の両端に接続するとともに、他のインダクタンス素子43に替えて他のスイッチ49を接続した。また、スイッチ47と他のスイッチ49のオンオフ制御信号は車両側制御回路39から出力される構成とした。さらに、車両側制御回路39と電気的に接続されるサーミスタ51をヒータ23の近傍に配した。従って、車両側制御回路39はヒータ23の近傍温度を知ることができる。上記以外は図17と同じ構成である。なお、スイッチ47と他のスイッチ49は外部からオンオフが制御できる構成のもの、例えばリレーや半導体スイッチが適用できる。ここでは、半導体スイッチ(電界効果トランジスタ)を用いた。これにより、車両側制御回路39はサーミスタ51の温度出力に基づいて、ヒータ23が所定温度になるようにスイッチ47と他のスイッチ49の少なくとも一方をオンオフ制御する。その結果、ヒータ23に流れる電流がオンオフ制御される。
 スイッチ47と他のスイッチ49は上記した動作を行うことで、ヒータ23の温度調節を行うためのものであるので、運転者が手動でヒータ23のオンオフを操作するスイッチとは異なる。
 次に、動作について説明する。本実施の形態5ではスイッチ47と他のスイッチ49が接続されている。これらのスイッチはサーミスタ51の温度出力に応じて、少なくとも一方がオンオフを繰り返すことで、ヒータ23の温度調節を行う。従って、サーモスタット21による温度調節に比べ、高精度化が図れる。なお、この温度調節は車両側制御回路39によって行われる。
 なお、本実施の形態5の構成では、センサ線37がヒータ23と他のスイッチ49の配線経路に接続されている。従って、他のスイッチ49がオフの間は、手41の把持検出が可能であるが、他のスイッチ49がオンの間は、静電センサ回路25からの把持検出用交流信号がグランド35に流れてしまい、手41の把持検出ができない。従って、他のスイッチ49がオフの期間に静電センサ回路25が手41の把持検出を行うようにすればよい。
 なお、他のスイッチ49を削除して、接続点45と負極端子17が直接接続される構成とする場合は、静電センサ回路25からの交流信号が常にグランド35に流れてしまうので、接続点45と負極端子17の間に他のインダクタンス素子43を接続するか、センサ線37を接続点29やヒータ23の配線経路の中間に接続すればよい。
 また、図18において、スイッチ47を削除し、他のスイッチ49のみを有する構成、すなわち、ヒータ23における、インダクタンス素子19が接続される側と反対側の端部に電気的に接続される他のスイッチ49を有する構成としてもよい。この場合も他のスイッチ49がオンの期間は静電センサ回路25からの交流信号がグランド35に流れてしまうので、他のスイッチ49がオフの期間に静電センサ回路25が手41の把持検出を行うようにすればよい。あるいは、センサ線37を接続点29やヒータ23の配線経路の中間に接続すればよい。
 また、本実施の形態5では、インダクタンス素子19と並列にスイッチ47を電気的に接続した構成としているが、これは、スイッチ47を削除して、他のインダクタンス素子43と並列に他のスイッチ49を電気的に接続する構成としてもよい。このような構成としても手41の把持検出が可能となる。従って、インダクタンス素子19と並列にスイッチ47を電気的に接続する構成と、他のインダクタンス素子43と並列に他のスイッチ49を電気的に接続する構成のいずれの構成としてもよい。
 さらに、図19に示すように、インダクタンス素子19と並列にスイッチ47を電気的に接続した構成と、他のインダクタンス素子43と並列に他のスイッチ49を電気的に接続した構成を同時に有するようにしてもよい。この場合、図18の構成と比べ、他のスイッチ49がオフのときにも接続点45の電圧が定まるので、他のスイッチ49の状態にかかわらず電圧検出回路31が接続点27と接続点45との間の電圧を検出することができる。ゆえに、サーモスタット21の開閉状態の検出精度が高まる。
 ここで、図18の構成におけるサーモスタット21の開閉検出は、スイッチ47と他のスイッチ49のオンオフ動作が含まれるため、図20のフローチャートに示すような動作を行う。なお、図20のフローチャートは静電センサ回路25内の、マイクロコンピュータにより図示しないメインルーチンから所定間隔(例えば0.1秒)ごとに実行されるサブルーチンである。
 図20のサブルーチンが実行されると、まず静電センサ回路25は、ヒータ23がオンであるか否かを判断する(ステップ番号:S11)。このためにはスイッチ47がオン状態であるかを判断すればよい。なお、後述する電圧検出回路31による電圧検出のために、図20のサブルーチン実行の前には他のスイッチ49がオンのままになるように制御される。また、スイッチ47と他のスイッチ49はいずれも車両側制御回路39でオンオフが制御され、さらに、車両側制御回路39と静電センサ回路25はデータのやり取りがなされているので、静電センサ回路25が車両側制御回路39からスイッチ47と他のスイッチ49の状態を知ったり、あるいは静電センサ回路25が他のスイッチ49をオンにしたりするように車両側制御回路39へ指示することは容易である。
 もし、ヒータ23がオンでなければ(S11のNo)、後述するS21へジャンプする。
 一方、ヒータ23がオンであれば(S11のYes)、静電センサ回路25は、電流検出回路33の出力から、ヒータ23に流れる電流を測定する(S13)。そして、静電センサ回路25は、S13で測定した電流(測定電流)と閾値電流ITHとを比較する。ここで、閾値電流ITHとは、サーモスタット21が閉のときにヒータ23に流れる最小の電流値のことであり、あらかじめ求めて、静電センサ回路25の周辺回路に含まれるメモリに記憶してある。従って、測定電流が閾値電流ITH以下であれば、サーモスタット21は開であることがわかる。
 S15において、測定電流が閾値電流ITHより大きければ(S15のYes)、サーモスタット21は閉であることがわかる。従って、静電センサ回路25はサーモスタット閉信号を車両側制御回路39へ出力する(S17)。
 一方、測定電流が閾値電流ITH以下であれば(S15のNo)、サーモスタット21は開であることがわかる。従って、静電センサ回路25はサーモスタット開信号を車両側制御回路39へ出力する(S19)。
 その後、S17、S19ともに、図20のサブルーチンを終了し、メインルーチンに戻る。
 なお、S11でYesの場合、ヒータ23がオンであることから、スイッチ47がオンである。また、上記したように、電圧検出回路31が電圧を測定できるように、他のスイッチ49をオンのままとしている。このような状態であれば、サーモスタット21の開閉にかかわらず、接続点27の電圧は電源13の電圧に、接続点45の電圧はグランド35の電位に、それぞれ固定される。従って、図18の構成において、ヒータ23がオンの場合は電圧検出回路31によるサーモスタット21の開閉を判断することはできない。ゆえに、図20のS11でYesの場合は電流検出回路33の出力からサーモスタット21の開閉状態を検出する。ここで、S11でNoであった場合、静電センサ回路25は電圧検出回路31により、ヒータ23の電圧を測定する(S21)。次に静電センサ回路25は、S21で測定した電圧(測定電圧)と閾値電圧VTHとを比較する(S23)。ここで、閾値電圧VTHについて説明する。S21の段階では、ヒータ23がオフである。従って、サーモスタット21の開閉状態に応じて測定電圧は次のように変化する。まず、サーモスタット21が閉であれば、上記したように他のスイッチ49もオンであるので、電圧検出回路31は、電源13の電圧をインダクタンス素子19とヒータ23とで抵抗分割した値を出力する。なお、上記したようにして、静電センサ回路25は、電源13の電圧変動に基づく分圧値を補正するが、図20のフローチャートでは補正動作の記載を省略している。この補正動作については、電圧検出回路31からの出力が得られるたびに、同様にして静電センサ回路25にて行われるが、以下の説明において、その記載を省略する。
 一方、サーモスタット21が開の場合は、電圧検出回路31には電源13の電圧が印加される。従って、閾値電圧VTHはこれらの電圧の平均値としている。すなわち、測定電圧が閾値電圧VTHより大きければ、サーモスタット21は開であり、測定電圧が閾値電圧VTH以下であれば、サーモスタット21は閉であることがわかる。なお、閾値電圧VTHは平均値に限定されるものではなく、例えば抵抗分割した値付近としてもよいし、電源13の電圧付近としてもよい。
 上記より、S23において、測定電圧が閾値電圧VTHより大きければ(S23のYes)、静電センサ回路25はサーモスタット開信号を車両側制御回路39へ出力する(S25)。一方、測定電圧が閾値電圧VTH以下であれば(S23のNo)、静電センサ回路25はサーモスタット閉信号を車両側制御回路39へ出力する(S27)。
 その後、S25、S27ともに、図20のサブルーチンを終了し、メインルーチンに戻る。
 なお、ヒータ23がオフであれば(S11のNo)、ヒータ23に電流が流れないため、サーモスタット21の開閉にかかわらず電流検出回路33の出力は略0Aとなる。従って、S11でNoの場合は電圧検出回路31の出力によりサーモスタット21の開閉を検出する必要がある。
 以上の構成、動作により、電流検出回路33、または電圧検出回路31の出力から、スイッチ47の状態がオン、オフのいずれの場合もサーモスタット21の開閉状態を検出でき、その影響を低減することが可能となる。
 なお、本実施の形態5では、サーモスタット21の開閉状態を静電センサ回路25から車両側制御回路39へ出力するまでの構成について述べた。しかし、これは、静電センサ回路25内で、例えば次のように制御してもよい。サーモスタット21の開閉サイクルが短かったり、サーモスタット21の開閉におけるヒステリシスが小さかったりする場合、サーモスタット21が閉のときに、静電センサ回路25における手41の接触検出を停止する。このように制御することにより、ヒータ23がサーモスタット21によりオフになっている間だけ手41の接触検出を行うので、電源13の影響を除去することができ、静電センサ回路25における検出精度を高めることが可能となる。
 また、本実施の形態5では、電流検出回路33をスイッチ47と直列に接続した状態で、インダクタンス素子19の両端に接続する構成としているが、それに限らず、図12、図13、図16、図17に示したように、正極端子15から負極端子17までの配線経路のどこかに直列に配する構成としてもよい。
 また、本実施の形態5では、スイッチ47と電流検出回路33を別体構成としているが、これは一体構成としてもよい。これは、電流検出回路33を内蔵したスイッチング素子を用いることで実現できる。すなわち、本実施の形態5でスイッチング素子(半導体スイッチ)として用いている電界効果トランジスタにおいて、電界効果トランジスタがオンのときにドレインとソースの間に流れる電流を、ドレインとソース間の抵抗値から求めることができる。ゆえに、ドレインとソース間の電圧を求めることで、スイッチング素子に流れる電流、すなわち、ヒータ23に流れる電流を測定することができる。従って、電流検出回路33は、実質的には、ソースとドレイン間の電圧を測定する回路ということになる。
 このような構成とすることで、電流検出回路33を別体にする構成に比べて小型化を図ることが可能で、サーモスタット21の開閉状態の検出ができるステアリングホイール把持検出装置11を実現することが可能となる。
 以上に述べた図18、図19の構成においては、スイッチ47、または他のスイッチ49の少なくとも一方を有するとともに、サーミスタ51の温度出力に応じたヒータ23の温度調節を、スイッチ47、または他のスイッチ49の少なくとも一方のオンオフ制御により行っている。しかし、これは、ヒータ23の昇温特性や保温特性の誤差が少ない構成であれば、例えばサーミスタ51を削除し、経時的にオンオフ制御を行うようにしてもよい。
 また、図2から図19までの構成においては、いずれも電源13からの電力をヒータ23へ供給するための、運転者が操作するスイッチ(図示せず)が設けられている。しかし、図2から図19までで説明したように、センサ線37は交流信号がグランド35へ流れない位置に接続しているので、スイッチのオンオフ状態にかかわらず、静電センサ回路25は、手41の把持を検出することができる。
 また、スイッチ47と他のスイッチ49、および電流検出回路33を含まない図2から図8、図11、図14、図15に示す各構成については、電圧検出回路31のみでサーモスタット21の開閉状態を検出するが、このときの検出フローチャートは次のようになる。まず、スイッチ47と他のスイッチ49がないため、ヒータ23には常に電力が印加される。そのため、図20のS11は不要となり、ヒータ23の電圧を測定するS21以降の動作を行えばよい。
 一方、スイッチ47と他のスイッチ49、および電圧検出回路31を含まない図12、図13、図16に示す各構成については、電流検出回路33のみでサーモスタット21の開閉状態を検出するが、このときの検出フローチャートは次のようになる。まず、スイッチ47と他のスイッチ49がないため、ヒータ23には常に電力が印加される。そのため、図20のS11は不要となり、ヒータ23の電流を測定するS13以降の動作を行えばよい。
 また、スイッチ47と他のスイッチ49を含まない図17に示す構成については、電圧検出回路31と電流検出回路33とでサーモスタット21の開閉状態を検出するが、このときの検出フローチャートは次のようになる。まず、スイッチ47と他のスイッチ49がないため、ヒータ23には常に電力が印加される。そのため、図20のS11は不要となり、まず、ヒータ23の電流を測定するためにS13以降の動作を行う。そして、S17、またはS19の後に、S21以降の動作を行う。その結果、車両側制御回路39は、電流測定の結果に基づくサーモスタット21の開閉状態と、電圧測定の結果に基づくサーモスタット21の開閉状態の2種類の信号を得る。これに対し、車両側制御回路39は、両者が同じ結果であった場合は、その結果を採用し、両者が異なる結果であれば、例えばそれまでに得られた各開閉状態の結果の推移を参照して、より確からしい方の結果を採用する。確からしい方とは、サーモスタット21の開閉による電流、電圧の変化速度は、図20のフローチャートの実行間隔(0.1秒)より遥かに速いので、一方が開閉状態の変化を出力しているのに、もう一方が変化を出力していなければ、前者が確からしいことになる。従って、車両側制御回路39は、サーモスタット21の状態が変わったと判断する。ゆえに、車両側制御回路39はサーモスタット21の開閉状態を高精度に検出できる。
 なお、上記した3例とも、静電センサ回路25におけるステアリングホイール3に手41が触れていない際の基準値の更新方法は同じであるので、その詳細は後述する。
 以上をまとめると次のようになる。
 まず、電圧検出回路31のみを有する場合は、電圧検出回路31の出力が静電センサ回路25と電気的に接続される構成を有し、静電センサ回路25は、電圧検出回路31の出力から得られるサーモスタット21の開閉状態に基づいて、以下に述べるようにして、静電センサ回路25におけるステアリングホイール3に手41が触れていない際の基準値を更新する。これにより、静電センサ回路25の出力におけるサーモスタット21の開閉の影響を低減することができる。
 次に、電流検出回路33のみを有する場合は、電流検出回路33の出力が静電センサ回路25と電気的に接続される構成を有し、静電センサ回路25は、サーモスタット21の開閉状態に基づいて、以下に述べるようにして、静電センサ回路25におけるステアリングホイール3に手41が触れていない際の基準値を更新する。これによっても、静電センサ回路25の出力におけるサーモスタット21の開閉の影響を低減することができる。
 次に、電圧検出回路31と電流検出回路33の両方を有する場合は、電圧検出回路31の出力、および、電流検出回路33の出力が静電センサ回路25と電気的に接続される構成を有する。静電センサ回路25は、電圧検出回路31の出力、および、電流検出回路33の出力から得られるサーモスタット21の開閉状態に基づいて、以下に述べるようにして、静電センサ回路25におけるステアリングホイール3に手41が触れていない際の基準値を更新する。これにより、電圧値、および電流値に基づくサーモスタット21の開閉状態が得られるので、静電センサ回路25の出力におけるサーモスタット21の開閉の影響を高精度に低減することができる。
 ここで、サーモスタット21の開閉に基づく静電センサ回路25のセンサ値の補正について述べる。まず、本実施の形態5で述べた、いずれの構成においても、実施の形態1で述べたように、サーモスタット21の開閉状態に基づく、予め静電センサ回路25に保持されたオフセット値をセンサ値に対して、加減算する補正が挙げられる。
 次に、静電センサ回路25におけるステアリングホイール3に手41が触れていない際の基準値を更新する補正内容の詳細については、実施の形態6において説明する。
 また、本実施の形態5では、図20のフローチャートは静電センサ回路25で実行されるが、静電センサ回路25は車両側制御回路39と電気的に接続され、各種信号のやり取りが可能な構成としているので、車両側制御回路39により図20のフローチャートが実行されるようにしてもよい。さらに、静電センサ回路25が車両側制御回路39に内蔵される構成としてもよい。この場合は、省スペース化を図ることができる。
 (実施の形態6)
 図21は、本発明の実施の形態6におけるステアリングホイール把持検出装置の動作を示すフローチャートである。図22A、22Bは、本発明の実施の形態6におけるステアリングホイール把持検出装置の静電センサ出力の経時特性図で、図22Aは手の接触がない場合の経時特性図、図22Bは手の接触がある場合の経時特性図である。本実施の形態6の構成は、実施の形態5で説明した図18、図19、および、それらの変形構成と同じであるので、詳細な説明を省略する。すなわち、本実施の形態6の特徴は、
1)電圧検出回路31の出力が静電センサ回路25と電気的に接続される構成を有し、静電センサ回路25は、電圧検出回路31の出力から得られるサーモスタット21の開閉状態と、ステアリングホイール3の把持の有無に基づいて、
2)電流検出回路33の出力が静電センサ回路25と電気的に接続される構成を有し、静電センサ回路25は、電流検出回路33の出力から得られるサーモスタット21の開閉状態と、ステアリングホイール3の把持の有無に基づいて、
3)電圧検出回路31の出力、および、電流検出回路33の出力は静電センサ回路25と電気的に接続される構成を有し、静電センサ回路25は、電圧検出回路31の出力、および、電流検出回路33の出力から得られるサーモスタット21の開閉状態と、ステアリングホイール3の把持の有無に基づいて、
上記1)~3)のいずれかについて、静電センサ回路25におけるステアリングホイール3に手41が触れていない際の基準値を更新するようにした点である。これにより、サーモスタット21の開閉状態の検出に加え、特に変化の大きいサーモスタット21による基準値への影響を低減し、手41の接触検出の高精度化を図ることが可能となる。
 以下、本実施の形態6の詳細について説明する。
 図21は、本実施の形態6における特徴となる動作を示すフローチャートである。なお、図21のフローチャートはマイクロコンピュータによりメインルーチンから所定期間(例えば0.1秒)ごとに実行されるサブルーチンである。
 図21のサブルーチンが実行されると、静電センサ回路25は、サーモスタット21の開閉状態に変化があったか否かを判断する(S31)。なお、サーモスタット21の開閉状態の変化を判断するために、静電センサ回路25は、前回の図20のサブルーチンの実行結果をメモリに記憶するようにしている。従って、S31の段階では、静電センサ回路25は、前回に図20のサブルーチンを実行したときのサーモスタット21の開閉状態を知ることができる。ここで、開閉状態に変化がなければ(S31のNo)、サーモスタット21による静電センサ回路25への影響はないので、そのまま図21のサブルーチンを終了してメインルーチンへ戻る。
 一方、サーモスタット21の開閉状態に変化があった場合(S31のYes)、次に静電センサ回路25は、前回、図21のサブルーチンを実行したときにヒータ23、すなわちステアリングホイール3への手41の接触があったか否かを判断する(S33)。なお、S33の段階で、静電センサ回路25は、今回の手41の接触の有無を静電センサ回路25の出力から取り込んでメモリに記憶するようにしている。もし、前回の実行時に手41の接触がなければ(S33のNo)、サーモスタット21の状態は変化したものの、手41による静電センサ出力はない状態となる。このような状態を図22Aに示す。図22Aにおいて、横軸は時刻、縦軸は静電センサ出力(静電センサ回路25の出力、センサ値)を示す。今、サーモスタット21の状態が変化しているので、S33のNoは、図22Aにおいて、時刻t1となる。すなわち、サーモスタット21の開閉状態が変化したため、静電センサ出力(センサ値)は時刻t1でA値からB値へ急激に大きくなる。この変化したセンサ値をセンサ値Bという。しかし、センサ値(静電センサ回路25からの出力値)は、ベース値(手41の接触が無いときのセンサ値で、基準値のこと)とほぼ同じ経時特性を示す。従って、ベース値を補正するには、サーモスタット21で大きく変化したセンサ値Bをそのままベース値とすればよい(S35)。こうして更新されたベース値に対して手41の接触の有無を判断することで、ベース値のサーモスタット21による変動を抑制することができる。その後、静電センサ回路25は図21のサブルーチンを終了し、メインルーチンに戻る。
 一方、前回の実行時に手41の接触があれば(S33のYes)、サーモスタット21の状態が変化し、かつ、手41によるセンサ出力もある状態となる。そのため、ベース値はセンサ値とシグナル値(手41の接触による感度)により補正される必要がある。この補正の状態を図22Bに示す。図22Bにおいて、横軸は時刻、縦軸は静電センサ出力を示す。今、サーモスタット21の状態が変化しているので、S33のYesは、図22Bにおいて、時刻t1となる。すなわち、サーモスタット21の開閉状態が変化したため、静電センサ出力(センサ値)は時刻t1でC値からD値へ急激に大きくなる。さらに、センサ値にはベース値に対し手41の接触によるシグナル値Yが加わる。これらにより変化したセンサ値をセンサ値Dという。ここで、センサ値D(静電センサ回路25からの出力値)は、ベース値(基準値)にシグナル値Yを加えたものとほぼ同じ経時特性を示す。従って、ベース値を補正するには、図22Bの矢印で示すように、サーモスタット21で大きく変化したセンサ値Dからシグナル値Yを差し引けばよい(S37)。こうして更新されたベース値に対して、手41の接触の有無を判断することで、ベース値のサーモスタット21による変動を抑制することができる。その後、静電センサ回路25は図21のサブルーチンを終了し、メインルーチンに戻る。
 以上の構成、動作により、サーモスタット21の開閉状態の検出に加え、特に変化の大きいサーモスタット21による基準値への影響を低減し、手41の接触検出の高精度化を図ることが可能なステアリングホイール把持検出装置11が実現できる。
 (実施の形態7)
 図23は、本発明の実施の形態7におけるステアリングホイール把持検出装置の動作を示すフローチャートである。図24A、24Bは、本発明の実施の形態7におけるステアリングホイール把持検出装置の静電センサ出力の経時特性図で、図24Aは手の接触がない場合の経時特性図、図24Bは手の接触がある場合の経時特性図である。本実施の形態7の構成は、実施の形態5で説明した図18、図19、および、それらの変形構成と同じであるので、詳細な説明を省略する。すなわち、本実施の形態7の特徴は、
1)電圧検出回路31の出力が静電センサ回路25と電気的に接続される構成を有し、静電センサ回路25は、電圧検出回路31の出力から得られるサーモスタット21の開閉状態に基づいて、
2)電流検出回路33の出力が静電センサ回路25と電気的に接続される構成を有し、静電センサ回路25は、電流検出回路33の出力から得られるサーモスタット21の開閉状態に基づいて、
3)電圧検出回路31の出力、および、電流検出回路33の出力は静電センサ回路25と電気的に接続される構成を有し、静電センサ回路25は、電圧検出回路31の出力、および、電流検出回路33の出力から得られるサーモスタット21の開閉状態に基づいて、
上記1)~3)のいずれかについて、静電センサ回路25におけるステアリングホイール3に手41が触れていない際の基準値を更新するようにした点である。これにより、サーモスタット21の開閉状態の検出から、特に変化の大きいサーモスタット21による基準値への影響を低減し、手41の接触検出の高精度化を図ることが可能となる。
 なお、実施の形態6の構成との相違点は次のとおりである。基準値を更新するために、実施の形態6ではサーモスタット21の開閉状態とステアリングホイール3の把持の有無に基づいているが、本実施の形態7では以下に説明するように、サーモスタット21の開閉状態のみに基づいている。
 以下、本実施の形態7の詳細について説明する。
 図23は、本実施の形態7における特徴となる動作を示すフローチャートである。なお、図23のフローチャートはメインルーチンから所定期間(例えば0.1秒)ごとに実行されるサブルーチンである。
 図23のサブルーチンが実行されると、静電センサ回路25は、サーモスタット21の開閉状態に変化があったか否かを判断する(S39)。なお、この動作は図21のS31と同じである。開閉状態に変化がなければ(S39のNo)、サーモスタット21による静電センサ回路25への影響はないので、そのまま図23のサブルーチンを終了してメインルーチンへ戻る。
 一方、サーモスタット21の開閉状態に変化があった場合(S39のYes)、次に静電センサ回路25は、サーモスタット21が開から閉になったか否かを判断する(S41)。もし、サーモスタット21が開から閉になっていれば(S41のYes)、補正後のベース値として、補正前のベース値に変動量Xを加える(S43)。この動作の詳細を図24A、Bにより説明する。なお、図24A、24Bとも横軸は時刻を、縦軸は静電センサ出力を、それぞれ示す。まず、図24Aは手41の接触がない場合である。ここで、サーモスタット21の開閉が行われる直前、直後を含む静電センサ出力は、メインルーチンにより定期的に監視されている。従って、補正前ベース値はサーモスタット21が開から閉に変化する直前のA値となる。なお、補正前ベース値は、静電センサ出力のノイズにおける変動幅の平均値としている。
 時刻t1でサーモスタット21が開から閉になると、静電センサ出力は図24Aの太矢印で示した変動量Xだけ増大する。ゆえに、時刻t1以降の補正後ベース値は補正前ベース値に変動量Xを加えたB値となる。従って、S43のようにして補正を行っている。なお、変動量XはB値からA値を差し引くことで求められる。
 次に、手41が触れていた場合の補正について、図24Bにより説明する。サーモスタット21の動作期間は例えば0.1秒以下と短いため、サーモスタット21が開から閉に変化する前後において、手41は接触し続けているものとする。この場合、時刻t1より前ではベース値にシグナル値Yを加えたC値がセンサ値となる。そして、サーモスタット21が開から閉に変化した時刻t1では、変化前のベース値に、図24Aで述べた変動量Xと、シグナル値Yとを加えた値がセンサ値となる。ここで、シグナル値Yはサーモスタット21の開閉前後で変化がないため、ベース値のみを考えると、補正前ベース値に変動量Xを加えることで、補正後ベース値になる。この動作はS43と同じである。
 従って、本実施の形態7ではベース値を補正するに当たり、シグナル値Yを考慮しなくてよい。すなわち、手41の接触の有無にかかわらず、S43の動作でベース値を補正することができる。
 S43の後、静電センサ回路25は図23のサブルーチンを終了し、メインルーチンに戻る。
 一方、サーモスタット21が開から閉でなければ(S41のNo)、すなわち、閉から開であれば、補正後ベース値は補正前ベース値から変動量Xを差し引く(S47)。これは、サーモスタット21が閉から開であれば、図24A、24Bとは逆に、静電センサ出力が時刻t1で急激に小さくなることによる。それ以外の補正の考え方は図24A、24Bの場合と同じである。
 S47の後、静電センサ回路25は図23のサブルーチンを終了し、メインルーチンに戻る。
 なお、本実施の形態7では、サーモスタット21が開から閉になった場合に、補正前ベース値に変動量Xを加えるようにしているが、これは、ステアリングホイール3とヒータ23の構成によってはサーモスタット21が開から閉になった場合に、静電センサ出力の変動が逆方向になる場合がある。この際には、S41でYesのときにS47の動作を、S41でNoのときにS43の動作を、それぞれ行えばよい。
 以上の構成、動作により、サーモスタット21の開閉状態の検出から、特に変化の大きいサーモスタット21による基準値への影響を低減し、手41の接触検出の高精度化を図ることが可能なステアリングホイール把持検出装置11が実現できる。
 本発明にかかるステアリングホイール把持検出装置は、サーモスタットの開閉状態を検出することができるので、特にヒータにより手の把持を検出するステアリングホイール把持検出装置等として有用である。
2 フロントウインドウ
3 ステアリングホイール
6 運転席
7 シフトレバー
8 助手席
11 ステアリングホイール把持検出装置
13 電源
15 正極端子
17 負極端子
19 インダクタンス素子
21 サーモスタット
23 ヒータ
25 静電センサ回路
27,29,45 接続点
31 電圧検出回路
33 電流検出回路
35 グランド
37 センサ線
39 車両側制御回路
41 手
43 他のインダクタンス素子
47 スイッチ
49 他のスイッチ
51 サーミスタ
101 キャパシタ
103 発振器
109 発振器
111 ミキサ
113 電圧変換器

Claims (14)

  1.  電源の正極と負極の間に電気的に接続される、第一のインダクタンス素子、ステアリングホイールに内蔵されるサーモスタット、および前記ステアリングホイールに内蔵されるヒータからなる構成の直列回路と、
     前記ヒータにおける前記第一のインダクタンス素子が電気的に接続される側の端部、または、前記ヒータの配線経路の中間に電気的に接続され、前記ステアリングホイールへの接触を電場、または電磁場により検出する静電センサ回路と、を備え、
     前記第一のインダクタンス素子、前記サーモスタット、および前記ヒータの各々の間の接続点における任意の接続点と前記正極の配線経路との間、または、前記接続点のうち任意の接続点と前記負極の配線経路との間、または、前記第一のインダクタンス素子の両端、または、前記ヒータの両端、または、前記サーモスタットの両端、のいずれかに電気的に接続される電圧検出回路を設けたステアリングホイール把持検出装置。
  2.  前記ヒータにおける、前記第一のインダクタンス素子が電気的に接続される側と反対側の端部に電気的に接続される第二のインダクタンス素子を備え、前記電圧検出回路の接続を、前記第一のインダクタンス素子、前記サーモスタット、前記ヒータ、前記第二のインダクタンス素子の回路構成要素各々の両端のうちいずれか、または、任意の2つの前記回路構成要素を直列に直接接続したその両端のうちいずれか、または、任意の3つの前記回路構成要素を直列に直接接続したその両端のうちいずれかに接続された請求項1に記載のステアリングホイール把持検出装置。
  3.  前記第一のインダクタンス素子と並列に第一のスイッチを電気的に接続した請求項1に記載のステアリングホイール把持検出装置。
  4.  前記第二のインダクタンス素子と並列に第二のスイッチを電気的に接続した請求項2に記載のステアリングホイール把持検出装置。
  5.  前記ヒータにおける、前記第一のインダクタンス素子が電気的に接続される側と反対側の端部に電気的に接続される第二のスイッチを備えた請求項1に記載のステアリングホイール把持検出装置。
  6.  前記電圧検出回路の出力は前記静電センサ回路と電気的に接続される構成を有し、前記静電センサ回路は、前記電圧検出回路の出力から得られる前記サーモスタットの開閉状態に基づいて、前記ステアリングホイールに手が触れていない時の前記静電センサ回路の出力を基準値とし、前記基準値を更新するようにした請求項1に記載のステアリングホイール把持検出装置。
  7.  前記電圧検出回路の出力は前記静電センサ回路と電気的に接続される構成を有し、前記静電センサ回路は、前記電圧検出回路の出力から得られる前記サーモスタットの開閉状態に基づく、前記静電センサ回路の出力から得られるセンサ値におけるオフセット値を保持しており、前記開閉状態の変化に応じて前記センサ値に前記オフセット値を加減算するようにした請求項1に記載のステアリングホイール把持検出装置。
  8.  前記直列回路の配線経路に電気的に直列接続される電流検出回路を設けた請求項1に記載のステアリングホイール把持検出装置。
  9.  前記電圧検出回路の出力、および、前記電流検出回路の出力は前記静電センサ回路と電気的に接続される構成を有し、
     前記静電センサ回路は、前記電圧検出回路の出力、および、前記電流検出回路の出力から得られる前記サーモスタットの開閉状態に基づいて、前記ステアリングホイールに手が触れていない時の前記静電センサ回路の出力を基準値とし、前記基準値を更新するようにした請求項8に記載のステアリングホイール把持検出装置。
  10.  前記電圧検出回路の出力、および、前記電流検出回路の出力は前記静電センサ回路と電気的に接続される構成を有し、
     前記静電センサ回路は、前記電圧検出回路の出力、および、前記電流検出回路の出力から得られる前記サーモスタットの開閉状態に基づく、前記静電センサ回路の出力から得られるセンサ値におけるオフセット値を保持しており、前記開閉状態の変化に応じて前記センサ値に前記オフセット値を加減算するようにした請求項8に記載のステアリングホイール把持検出装置。
  11.  電源の正極と負極の間に電気的に接続される、第一のインダクタンス素子、ステアリングホイールに内蔵されるサーモスタット、および前記ステアリングホイールに内蔵されるヒータからなる構成の直列回路と、
     前記ヒータにおける前記第一のインダクタンス素子が電気的に接続される側の端部、または、前記ヒータの配線経路の中間に電気的に接続され、前記ステアリングホイールへの接触を電場、または電磁場により検出する静電センサ回路と、を備え、
    前記直列回路の配線経路に電気的に直列接続される電流検出回路を設けたステアリングホイール把持検出装置。
  12.  前記電流検出回路の出力は前記静電センサ回路と電気的に接続される構成を有し、
     前記静電センサ回路は、前記電流検出回路の出力から得られる前記サーモスタットの開閉状態に基づいて、前記ステアリングホイールに手が触れていない時の前記静電センサ回路の出力を基準値とし、前記基準値を更新するようにした請求項11に記載のステアリングホイール把持検出装置。
  13.  前記電流検出回路の出力は前記静電センサ回路と電気的に接続される構成を有し、
     前記静電センサ回路は、前記電流検出回路の出力から得られる前記サーモスタットの開閉状態に基づく、前記静電センサ回路の出力から得られるセンサ値におけるオフセット値を保持しており、前記開閉状態の変化に応じて前記センサ値に前記オフセット値を加減算するようにした請求項11に記載のステアリングホイール把持検出装置。
  14.  前記オフセット値は、過去の前記サーモスタットの開閉に伴う前記センサ値の変化で発生した前記オフセット値の実測値に基づいて求められる請求項7、10、および13のいずれか一項に記載のステアリングホイール把持検出装置。
PCT/JP2016/000997 2015-03-13 2016-02-25 ステアリングホイール把持検出装置 WO2016147575A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/548,998 US10640138B2 (en) 2015-03-13 2016-02-25 Steering wheel grip detection device
CN201680013978.9A CN107428359B (zh) 2015-03-13 2016-02-25 方向盘握持检测装置
DE112016001183.0T DE112016001183B4 (de) 2015-03-13 2016-02-25 Lenkradgrifferfassungsvorrichtung
JP2017506061A JP6405542B2 (ja) 2015-03-13 2016-02-25 ステアリングホイール把持検出装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-050838 2015-03-13
JP2015050838 2015-03-13

Publications (1)

Publication Number Publication Date
WO2016147575A1 true WO2016147575A1 (ja) 2016-09-22

Family

ID=56918681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000997 WO2016147575A1 (ja) 2015-03-13 2016-02-25 ステアリングホイール把持検出装置

Country Status (5)

Country Link
US (1) US10640138B2 (ja)
JP (1) JP6405542B2 (ja)
CN (1) CN107428359B (ja)
DE (1) DE112016001183B4 (ja)
WO (1) WO2016147575A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018069935A (ja) * 2016-10-28 2018-05-10 本田技研工業株式会社 ステアリングユニット
LU100509B1 (en) * 2017-11-03 2019-05-08 Iee Sa System for Hand Detection on a Steering Wheel
CN110383084A (zh) * 2017-02-08 2019-10-25 松下知识产权经营株式会社 静电电容传感器和握持传感器
JP2020185130A (ja) * 2019-05-14 2020-11-19 Toto株式会社 便座装置
JP2021511500A (ja) * 2018-01-24 2021-05-06 ゲンサーム インコーポレイテッド ハンドル上の乗員の手または座席内の乗員の存在を感知するためのハンドルまたは座席用の静電容量感知・加熱システム
JP2022553721A (ja) * 2019-10-25 2022-12-26 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー 複合型容量センサ・加熱装置、センサ・加熱装置を動作させるための方法、センサ・加熱装置を有するステアリング入力装置アセンブリ、及びステアリング入力装置アセンブリを有する車両
JP2023528878A (ja) * 2020-06-04 2023-07-06 オートリブ ディベロップメント エービー 車両ステアリングホイール測定装置を校正する方法
JP7426455B1 (ja) 2022-09-30 2024-02-01 住友理工株式会社 接触検知装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6594997B2 (ja) * 2015-11-13 2019-10-23 オートリブ ディベロップメント エービー プログラム及び制御装置
JP6489091B2 (ja) * 2016-09-23 2019-03-27 トヨタ自動車株式会社 把持状態検出装置
IT201700048117A1 (it) * 2017-05-04 2018-11-04 Irca Spa Dispositivo di riscaldamento e rilevamento capacitivo per il volante di un veicolo
LU100330B1 (en) * 2017-06-29 2019-01-08 Iee Sa Capacitive Sensor Arrangement
LU100755B1 (en) * 2018-03-30 2019-10-01 Iee Sa Sensor Arrangement for Capacitive Position Detection of an Object
US20210163055A1 (en) * 2018-06-06 2021-06-03 Autoliv Development Ab Steering, steering system, method for controlling steering, and non-temporary computer readable storage media
DE102019203633B4 (de) * 2019-03-18 2020-10-22 Joyson Safety Systems Germany Gmbh Anordnung mit einem Fahrzeuglenkrad und Verfahren zu deren Betrieb
DE102019124294B4 (de) * 2019-09-10 2022-05-25 Valeo Schalter Und Sensoren Gmbh Kombinierte, kapazitive Sensor- und Heizvorrichtung, Verfahren zum Betrieb einer Sensor- und Heizvorrichtung, Lenkradbaugruppe mit einer Sensor- und Heizvorrichtung und Fahrzeug mit einer Lenkradbaugruppe
CN113247078B (zh) * 2021-05-26 2022-08-23 上海弘遥电子研究开发有限公司 一种方向盘离手检测的方法以及系统
JP2023022683A (ja) * 2021-08-03 2023-02-15 アルプスアルパイン株式会社 接触判定装置、及び、接触判定方法
CN113815707B (zh) * 2021-09-27 2023-04-07 同济大学 一种驾驶员方向盘握持姿态监测方法及系统
CN116022236A (zh) * 2022-09-28 2023-04-28 上海类比半导体技术有限公司 一种方向盘离手检测系统
DE102022131516A1 (de) * 2022-11-29 2024-05-29 Valeo Schalter Und Sensoren Gmbh Vorrichtung und Verfahren zur Handkontakterkennung und zum Beheizen eines Lenkrads eines Kraftfahrzeugs

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023649A (ja) * 2008-07-18 2010-02-04 Nippon Plast Co Ltd ステアリングホイール
JP2010215140A (ja) * 2009-03-18 2010-09-30 Panasonic Corp ステアリングホイール
US20130092677A1 (en) * 2011-09-21 2013-04-18 Iee International Electronics & Engineering S.A. Capacitive sensing system able of using heating element as antenna electrode
US20130098890A1 (en) * 2011-09-21 2013-04-25 Iee International Electronics & Engineering S.A. Capacitive sensing system configured for using heating element as antenna electrode
JP2014190856A (ja) * 2013-03-27 2014-10-06 Nidec Elesys Corp ハンドル手放検知装置
WO2015040864A1 (ja) * 2013-09-19 2015-03-26 パナソニックIpマネジメント株式会社 ハンドルヒータ、ハンドルヒータ装置および操舵ハンドル
JP2015131544A (ja) * 2014-01-10 2015-07-23 パナソニックIpマネジメント株式会社 車両用制御装置
WO2016009584A1 (ja) * 2014-07-17 2016-01-21 パナソニックIpマネジメント株式会社 静電式ステアリングホイール把持検出装置
WO2016013180A1 (ja) * 2014-07-23 2016-01-28 パナソニックIpマネジメント株式会社 ヒータ装置、ステアリングホイール、および運輸装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525843A (en) 1994-02-14 1996-06-11 Ab Volvo Seat occupant detection system
DE10121693C2 (de) 2001-05-04 2003-04-30 Bosch Gmbh Robert Verfahren und Vorrichtung zum Detektieren des Kontakts von Händen mit dem Lenkrad
DE102009055424A1 (de) * 2009-12-30 2011-07-07 Takata-Petri Ag, 63743 Kapazitive Sensorbaugruppe
US8738224B2 (en) * 2011-01-12 2014-05-27 GM Global Technology Operations LLC Steering wheel system
KR101484207B1 (ko) * 2013-03-15 2015-01-16 현대자동차 주식회사 차량의 탑재기기의 조작 장치
JP5784061B2 (ja) * 2013-03-27 2015-09-24 本田技研工業株式会社 入力装置、入力方法及び入力プログラム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023649A (ja) * 2008-07-18 2010-02-04 Nippon Plast Co Ltd ステアリングホイール
JP2010215140A (ja) * 2009-03-18 2010-09-30 Panasonic Corp ステアリングホイール
US20130092677A1 (en) * 2011-09-21 2013-04-18 Iee International Electronics & Engineering S.A. Capacitive sensing system able of using heating element as antenna electrode
US20130098890A1 (en) * 2011-09-21 2013-04-25 Iee International Electronics & Engineering S.A. Capacitive sensing system configured for using heating element as antenna electrode
JP2014190856A (ja) * 2013-03-27 2014-10-06 Nidec Elesys Corp ハンドル手放検知装置
WO2015040864A1 (ja) * 2013-09-19 2015-03-26 パナソニックIpマネジメント株式会社 ハンドルヒータ、ハンドルヒータ装置および操舵ハンドル
JP2015131544A (ja) * 2014-01-10 2015-07-23 パナソニックIpマネジメント株式会社 車両用制御装置
WO2016009584A1 (ja) * 2014-07-17 2016-01-21 パナソニックIpマネジメント株式会社 静電式ステアリングホイール把持検出装置
WO2016013180A1 (ja) * 2014-07-23 2016-01-28 パナソニックIpマネジメント株式会社 ヒータ装置、ステアリングホイール、および運輸装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018069935A (ja) * 2016-10-28 2018-05-10 本田技研工業株式会社 ステアリングユニット
CN110383084A (zh) * 2017-02-08 2019-10-25 松下知识产权经营株式会社 静电电容传感器和握持传感器
CN110383084B (zh) * 2017-02-08 2021-07-06 松下知识产权经营株式会社 静电电容传感器和握持传感器
CN111315631A (zh) * 2017-11-03 2020-06-19 Iee国际电子工程股份公司 用于在方向盘上的手检测的系统
WO2019086388A1 (en) * 2017-11-03 2019-05-09 Iee International Electronics & Engineering S.A. System for hand detection on a steering wheel
CN111315631B (zh) * 2017-11-03 2021-04-20 Iee国际电子工程股份公司 用于在方向盘上的手检测的系统及方法
LU100509B1 (en) * 2017-11-03 2019-05-08 Iee Sa System for Hand Detection on a Steering Wheel
US11097764B2 (en) 2017-11-03 2021-08-24 Iee International Electronics & Engineering S.A. System for hand detection on a steering wheel
JP2021511500A (ja) * 2018-01-24 2021-05-06 ゲンサーム インコーポレイテッド ハンドル上の乗員の手または座席内の乗員の存在を感知するためのハンドルまたは座席用の静電容量感知・加熱システム
JP7226694B2 (ja) 2018-01-24 2023-02-21 ゲンサーム インコーポレイテッド ハンドル上の乗員の手または座席内の乗員の存在を感知するためのハンドルまたは座席用の静電容量感知・加熱システム
JP2020185130A (ja) * 2019-05-14 2020-11-19 Toto株式会社 便座装置
JP7330431B2 (ja) 2019-05-14 2023-08-22 Toto株式会社 便座装置
JP2022553721A (ja) * 2019-10-25 2022-12-26 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー 複合型容量センサ・加熱装置、センサ・加熱装置を動作させるための方法、センサ・加熱装置を有するステアリング入力装置アセンブリ、及びステアリング入力装置アセンブリを有する車両
JP7407923B2 (ja) 2019-10-25 2024-01-04 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー 複合型容量センサ・加熱装置、センサ・加熱装置を動作させるための方法、センサ・加熱装置を有するステアリング入力装置アセンブリ、及びステアリング入力装置アセンブリを有する車両
JP2023528878A (ja) * 2020-06-04 2023-07-06 オートリブ ディベロップメント エービー 車両ステアリングホイール測定装置を校正する方法
JP7426455B1 (ja) 2022-09-30 2024-02-01 住友理工株式会社 接触検知装置

Also Published As

Publication number Publication date
CN107428359B (zh) 2019-07-30
US20180022374A1 (en) 2018-01-25
JPWO2016147575A1 (ja) 2017-12-28
DE112016001183B4 (de) 2020-07-30
DE112016001183T5 (de) 2017-11-23
US10640138B2 (en) 2020-05-05
JP6405542B2 (ja) 2018-10-17
CN107428359A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
JP6405542B2 (ja) ステアリングホイール把持検出装置
JP6435525B2 (ja) ステアリングホイール把持検出装置
US9593932B2 (en) Capacitive sensor device with associated evaluation circuit
US7573275B2 (en) Temperature sensor control apparatus
JP5448706B2 (ja) 電流検出装置及び電流検出方法
US9250294B2 (en) Method for detecting a switching position of a switching device
KR102526134B1 (ko) 스티어링, 스티어링 시스템, 스티어링을 제어하는 방법 및 비일시적인 컴퓨터 판독가능 기억 매체
US20150035549A1 (en) Capacitance sensor
EP3071978B1 (en) Battery fuel gauges using fet segment control to increase low current measurement accuracy
JPWO2015186295A1 (ja) 静電式把持検出装置
JP5848415B2 (ja) 負温度係数サーミスタを利用した温度測定装置
JP6267866B2 (ja) 絶縁状態検出装置
CN115923915A (zh) 用于交替操作加热工作方式和电容式测量工作方式的电路构造以及相关的方法
US9541590B2 (en) Circuit arrangement and method for detecting a capacitance and/or a change in a capacitance of a capacitive component
US20200181953A1 (en) Operation input device and door handle
US20240230761A1 (en) Monitoring assembly for an electrical component, semiconductor switch assembly having a monitoring function, and energy system
JP2009250613A (ja) 温度検出装置
KR20170001184U (ko) 감지 회로, 하이브리드 구동 회로, 및 센서 어셈블리
US20160315464A1 (en) Control device
JP2017015511A (ja) 粒子状物質検出システム
JP2004045209A (ja) 物理量検出装置
KR102001197B1 (ko) 인체 감지에 따른 전열 센서 제어 장치 및 그 방법
JP4161873B2 (ja) 静電容量型距離センサ
WO2018211872A1 (ja) マイコン入出力回路
JP5861834B2 (ja) ガス検知素子用通電制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506061

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15548998

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016001183

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764408

Country of ref document: EP

Kind code of ref document: A1