WO2016147310A1 - 回転機械の羽根車、コンプレッサ、過給機及び回転機械の羽根車の製造方法 - Google Patents
回転機械の羽根車、コンプレッサ、過給機及び回転機械の羽根車の製造方法 Download PDFInfo
- Publication number
- WO2016147310A1 WO2016147310A1 PCT/JP2015/057825 JP2015057825W WO2016147310A1 WO 2016147310 A1 WO2016147310 A1 WO 2016147310A1 JP 2015057825 W JP2015057825 W JP 2015057825W WO 2016147310 A1 WO2016147310 A1 WO 2016147310A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- impeller
- surface layer
- compressor
- rotary machine
- plating film
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/48—Coating with alloys
- C23C18/50—Coating with alloys with alloys based on iron, cobalt or nickel
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1646—Characteristics of the product obtained
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/04—EGR systems specially adapted for supercharged engines with a single turbocharger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/02—Selection of particular materials
- F04D29/023—Selection of particular materials especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/284—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/30—Manufacture with deposition of material
- F05D2230/31—Layer deposition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
- F05D2300/12—Light metals
- F05D2300/121—Aluminium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
- F05D2300/17—Alloys
- F05D2300/173—Aluminium alloys, e.g. AlCuMgPb
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/50—Intrinsic material properties or characteristics
- F05D2300/502—Thermal properties
- F05D2300/5021—Expansivity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/604—Amorphous
Definitions
- the present disclosure relates to an impeller of a rotating machine, a compressor including the impeller, a supercharger, and a method of manufacturing the impeller.
- An exhaust gas recirculation (EGR) system is often used in automobile internal combustion engines, particularly diesel engines. Since a part of the exhaust gas is introduced into the compressor of the turbocharger provided in the internal combustion engine adopting the EGR system, erosion (erosion) due to droplets contained in the exhaust gas is generated in the compressor impeller. It's easy to do. For this reason, Ni—P plating is applied to compressor impellers made of Al alloy or the like as a measure against erosion. In addition, the compressor impeller of the turbocharger generates stress due to centrifugal force generated at high speed rotation and stress due to the difference in thermal elongation between the Ni-P plating film and the Al alloy. Not only erosion properties but also crack resistance (fatigue strength) and peel resistance (interface strength) are required. Once a crack is generated in the plating film, the crack then propagates to the base material, leading to damage to the base material.
- EGR exhaust gas recirculation
- Ni-P alloy plating is applied to the compressor impeller of a turbocharger installed in a marine diesel engine adopting an EGR system in order to improve erosion resistance and corrosion resistance (corrosion). Is disclosed.
- At least one embodiment of the present invention improves the erosion resistance and crack resistance by forming a plating film in an impeller of a rotary machine, thereby preventing generation of cracks.
- the purpose is to prevent.
- An impeller of a rotary machine is: An impeller of a rotating machine, A base material of the impeller constituted by Al or Al alloy; A surface layer of the impeller formed by an electroless plating film of a Ni-P alloy; An underlayer provided between the substrate and the surface layer and having a Vickers hardness smaller than that of the surface layer.
- the surface layer formed of a Ni—P alloy has high Vickers hardness and excellent erosion resistance. Since the surface layer is an electroless plating film, a uniform film thickness can be formed, and the erosion resistance of the plating film can be uniformly exhibited over a wide range.
- the underlayer Since the underlayer has a Vickers hardness smaller than that of the surface layer, the underlayer has higher ductility than the surface layer, and thereby has an action of suppressing the progress of a crack generated in the surface layer. Therefore, even if a crack is generated in the surface layer, the progress of the crack can be suppressed by the underlayer, and the progress of the crack to the base material can be suppressed.
- the surface layer has an amorphous structure. According to the configuration (2), since the surface layer has an amorphous structure, it has high strength and can improve erosion resistance. Further, by adopting a surface layer having an amorphous structure, the fatigue strength of the surface layer itself is improved.
- the P content in the surface layer is 4% by weight or more and 10% by weight or less.
- the surface layer has a P content of 4% by weight or more and 10% by weight or less, it has a high Vickers hardness and can further improve the erosion resistance.
- the fatigue strength of a surface layer improves by making P content rate into the said range.
- the foundation layer is a plating film containing Ni.
- the underlayer since the underlayer contains the same Ni as the surface layer, both layers are familiar, so that the surface layer can be easily applied to the underlayer, and both layers Can improve the adhesion.
- the underlayer may be an electroless plating film or an electrolytic plating film.
- the electrolytic plating film is inferior to the electroless plating film in terms of film uniformity such as film thickness, it has a very high ductility and has an action of suppressing the growth of cracks generated in the surface layer. Therefore, even if a crack is generated in the surface layer, the progress of the crack can be suppressed by the underlayer, and the progress of the crack to the base material can be suppressed.
- the plating film as the underlayer is an Ni—P alloy having an amorphous structure and a P content in the underlayer of 10 wt% or more and 13 wt% or less.
- the underlayer since the underlayer has an amorphous structure, it has high strength and has a high ductility because the P content is 10 wt% or more and 13 wt% or less. Therefore, it has the effect of suppressing the growth of cracks generated in the surface layer, and even if cracks occur in the surface layer, the growth of cracks can be suppressed in the base layer, and Can be suppressed.
- the Ni plating film as the underlayer is an electrolytic plating film having a Vickers hardness of 350 HV or less, preferably 200 HV or more and 300 HV or less.
- the underlayer is an electrolytic plating film having a Vickers hardness of 350 HV or less, it has a very high ductility. Therefore, it has the effect of suppressing the growth of cracks generated in the surface layer, and even if cracks occur in the surface layer, the crack growth can be suppressed in this base layer, Progress can be suppressed.
- the underlayer is a plating film containing Cu or Sn.
- Cu and Sn have high ductility, when used as an underlayer, they have an action of suppressing the progress of cracks generated in the surface layer. For this reason, even if a crack occurs in the surface layer, the progress of the crack can be suppressed by the underlayer, and the progress of the crack to the base material can be suppressed.
- the underlayer has a linear expansion coefficient between the base material and the surface layer.
- the base layer since the base layer has a linear expansion coefficient between the base material and the surface layer, the base layer is interposed between the base material and the surface layer of the impeller. Can alleviate the difference in thermal elongation between the two. Therefore, the stress applied to the surface layer due to the difference in thermal elongation can be relaxed, thereby suppressing the occurrence of cracks in the surface layer.
- the film thickness of the surface layer is 15 ⁇ m or more and 60 ⁇ m or less. If the thickness of the surface layer is less than 15 ⁇ m, it may be difficult to sufficiently exhibit erosion resistance. On the other hand, even if the thickness of the surface layer exceeds 60 ⁇ m, the effect of improving the erosion resistance is limited, and conversely, the time required for the plating treatment becomes longer and the cost is increased. According to the configuration (9), the erosion resistance can be exhibited by setting the thickness of the surface layer to 15 ⁇ m or more, and the plating process can be reduced in cost by setting the thickness to 60 ⁇ m or less.
- the surface layer has a Vickers hardness of 500 to 700 HV. According to the configuration (10), since the surface layer has a large Vickers hardness of 500 to 700 HV, it can have high erosion resistance.
- the underlayer has a thickness of 15 ⁇ m or more and 60 ⁇ m or less.
- the film thickness of the underlayer is less than 15 ⁇ m, it may be difficult to sufficiently exhibit the function of preventing cracks generated in the surface layer.
- the thickness of the underlayer exceeds 60 ⁇ m, the effect of improving crack prevention is limited, and conversely, the time required for the plating treatment becomes longer and the cost is increased.
- the crack prevention function can be exhibited by setting the film thickness of the underlayer to 15 ⁇ m or more, and the plating process can be reduced in cost by setting the film thickness to 60 ⁇ m or less.
- the impeller is a compressor impeller of a supercharger.
- the configuration (12) by using the impeller of the configuration as a compressor impeller of a supercharger that rotates at a high speed, the erosion resistance of the supercharger can be improved, and the progress of cracks can be suppressed. The life of the turbocharger can be extended.
- a compressor according to at least one embodiment of the present invention includes: A compressor impeller having any one of the configurations (1) to (11) is provided. According to the said structure (13), a long-life compressor is realizable by providing the compressor impeller which has a high erosion resistance and a crack growth suppression function.
- the supercharger according to at least one embodiment of the present invention is: A compressor having the configuration (13); A turbine for driving the compressor; It has. According to the configuration (14), a long-life supercharger that can withstand high-speed rotation for a long period of time can be realized by including a compressor having a compressor impeller having high erosion resistance and crack growth suppression function.
- the compressor in the configuration (14), is provided in an intake passage of an internal combustion engine,
- the turbine is configured to be driven by exhaust from the internal combustion engine; A part of the exhaust gas is circulated in the intake passage upstream of the compressor.
- intake air including exhaust gas containing droplets and high erosion is introduced into the compressor.
- the compressor having the configuration (13) and having improved erosion resistance and crack resistance is provided, it has a long life that can withstand high-speed rotation for a long period of time.
- a turbocharger can be realized.
- a method of manufacturing an impeller for a rotary machine includes: Forming a base layer on the base material so as to cover the base material of the impeller made of Al or Al alloy; On the foundation layer, comprising a step of forming an electroless plating film as a surface layer of the impeller,
- the underlayer has a Vickers hardness smaller than the surface layer,
- the surface layer is an electroless plating film of a Ni—P alloy having an amorphous structure and having a P content in the surface layer of 4 wt% or more and 10 wt% or less.
- the surface layer having high erosion resistance by having a high Vickers hardness, the high ductility, and the action of suppressing the growth of cracks generated in the surface layer Since the plating film containing the formation is formed on the base material of the impeller, the erosion resistance and crack resistance of the impeller can be improved, and a long-life impeller can be realized.
- a plating film capable of simultaneously improving erosion resistance and crack resistance on an impeller of a rotary machine composed of Al or an Al alloy, Long service life is possible.
- an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
- expressions representing shapes such as quadrangular shapes and cylindrical shapes represent not only geometrically strict shapes such as quadrangular shapes and cylindrical shapes, but also irregularities and chamfers as long as the same effects can be obtained. A shape including a part or the like is also expressed.
- the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of other constituent elements.
- FIG. 12 shows a compressor impeller of a supercharger provided in an internal combustion engine for a vehicle.
- a strain distribution generated in a compressor impeller 100 with a conventional Ni—P plating film is applied to the rear surface 102 a of the hub 102.
- the projected analysis results are shown. From FIG. 12, it can be seen that the largest strain, that is, stress is generated in the region 102b of the bab 102 where the root portion of the blade 104 is projected.
- This stress is mainly generated by the centrifugal force generated by the high-speed rotation of the turbocharger, and is generated by the difference in thermal elongation between the Ni—P-based plating film and the base material composed of an Al alloy or the like. Things are added.
- the supercharger 12 is provided in a vehicular internal combustion engine, for example, a diesel engine 10 employing an EGR system.
- the supercharger 12 is provided in the exhaust passage 20 of the diesel engine 10, and includes an exhaust turbine 14 that is rotated by exhaust e, and a compressor 16 that is linked to the exhaust turbine 14 via a rotary shaft 13.
- the compressor 16 is provided in the intake passage 22 and supplies intake air a to the diesel engine 10. A part of the exhaust gas is circulated to the intake passage 22 upstream of the compressor 16.
- a high pressure EGR system 24 branches from an exhaust passage 20 upstream of the exhaust turbine 14 and is connected to an intake passage 22 downstream of the compressor 16.
- a part of the exhaust e discharged from the diesel engine 10 is returned to the intake passage 22 on the inlet side of the diesel engine 10 via the high pressure EGR passage 26.
- an EGR cooler 28 and an EGR valve 30 are provided in the high-pressure EGR path 26.
- the low pressure EGR system 32 has a low pressure EGR path 34 that branches from the exhaust path 20 downstream of the exhaust turbine 14 and is connected to an intake path 22 upstream of the compressor 16.
- a part of the exhaust e discharged from the diesel engine 10 is returned to the intake passage 22 on the inlet side of the compressor 16 via the low pressure EGR passage 34.
- an EGR cooler 36 and an EGR valve 38 are provided in the low pressure EGR path 34.
- an air cleaner 40 is provided in the intake passage 22 upstream of the compressor 16, and an intercooler 42 is provided in the intake passage 22 downstream of the compressor 16.
- an exhaust bypass path 20 a is connected to the exhaust path 20 so as to straddle the exhaust turbine 14.
- a waste valve 44 is provided in the exhaust bypass passage 20a, and an actuator 44a for adjusting the opening degree of the waste valve 44 is provided.
- the compressor is, for example, the compressor 16 provided in the supercharger 12 shown in FIG.
- the compressor 16 includes a compressor impeller 50 provided at one end of the rotary shaft 13 inside a compressor housing (not shown).
- the compressor impeller 50 has a surface layer 54 formed of an electroless plating film of a Ni—P alloy on the surface of a base 52 made of Al or an Al alloy,
- An underlayer 56 is provided between the substrate 52 and the surface layer 54 and has a Vickers hardness smaller than that of the surface layer 54.
- the surface layer 54 formed by the electroless plating film of the Ni—P alloy has high Vickers hardness and excellent erosion resistance. Further, since the surface layer 54 is an electroless plating film, a uniform film thickness can be formed, and erosion resistance can be uniformly exhibited over a wide range. As shown in FIG. 2, foreign matter such as droplets L may be mixed in the intake air a. For example, when the low-pressure EGR system 32 shown in FIG. 1 is employed, the exhaust e containing water droplets L is circulated through the low-pressure EGR passage 34 and supplied to the compressor together with the intake air a. As described above, even when foreign matter (for example, droplets L) is mixed in the intake air a, the surface layer 54 has good erosion resistance, and is not easily eroded by the exhaust e.
- the centrifugal force acts on the base material 52 by the rotation of the compressor impeller 50, and a strain S is generated on the base material 52 by this centrifugal force.
- the surface layer 54 has high Vickers hardness from the viewpoint of erosion resistance. Therefore, the surface layer 54 has low ductility.
- the strain S is generated in the substrate 52, the surface layer 54 cannot follow the strain S, and there is a possibility that a crack C is generated.
- the base layer 56 has higher ductility (Vickers hardness smaller than the surface layer 54) than the surface layer 54, even if a crack C occurs in the surface layer 54, a crack is generated. Can be suppressed by the base layer 56, and the progress of cracks to the base material 52 can be suppressed.
- surface layer 54 has an amorphous structure.
- the surface layer 54 has high strength and can improve erosion resistance.
- the surface layer 54 further has a P content in the surface layer 54 of 4 wt% or more and 10 wt% or less. If the P content is 4 wt% or more and 10 wt% or less, the surface layer 54 has high Vickers hardness and can further improve erosion resistance.
- FIG. 3 shows the test results showing the relationship between the P content of the electroless plating film and the erosion resistance.
- FIG. 4 shows the P content of the electroless plating film and the rupture life of the low cycle fatigue (LCF) test. It is a test result shown.
- Low cycle fatigue (LCF) refers to fatigue failure that occurs in a member when a large repetitive load that causes plastic deformation is applied to the member.
- FIG. 5 shows an example of a repetitive load applied to the compressor impeller in the LCF test.
- the horizontal axis represents time, and the vertical axis represents the rotational speed of the supercharger equipped with the compressor impeller.
- the stress acting on the surface layer 54 increases or decreases as the number of rotations of the supercharger increases or decreases. As shown in FIG. 3 and FIG.
- the surface layer 54 has a P content of not less than 4 wt% and not more than 10 wt% from the viewpoint of achieving both erosion resistance and LCF fracture life.
- FIG. 6 is a test result showing the relationship between the difference in crystal structure of the surface layer 54 and the erosion resistance
- FIG. 7 is a test result showing the relationship between the difference in crystal structure of the surface layer 54 and the LCF fracture life. is there.
- “Crystallation” in the figure indicates that the surface layer 54 having an amorphous structure is crystallized by heat treatment. As shown in FIGS. 6 and 7, when the surface layer 54 is crystallized, the erosion resistance and the LCF rupture life are rapidly reduced. Based on the above results, the surface layer 54 has an amorphous structure and a P content of 4 to 10% by weight from the viewpoint of improving erosion resistance and LCF fracture life.
- the foundation layer 56 is a plating film containing Ni.
- the underlayer 56 may be an electroless plating film or an electrolytic plating film.
- the electrolytic plating film is inferior to the electroless plating film in terms of film uniformity such as film thickness, but has an extremely high ductility and has an action of suppressing the growth of a crack generated in the surface layer 54. Therefore, even if a crack is generated in the surface layer 54, the progress of the crack can be suppressed by the base layer 56, and the progress of the crack to the base material 52 can be suppressed.
- the underlayer 56 is a Ni—P-based alloy having an amorphous structure and having a P content of 10 wt% or more and 13 wt% or less.
- the underlayer 56 may be an electroless plating film of a Ni—P based alloy having a P content within the above range and having an amorphous structure. Since the underlayer 56 has an amorphous structure, it has high strength, and as described above, the erosion resistance and the LCF fracture life are rapidly improved as compared with the crystallized structure.
- it since it has high ductility when the P content of the underlayer 56 is 10 wt% or more and 13 wt% or less, it has an action of suppressing the progress of cracks generated in the surface layer 54. Therefore, even if a crack is generated in the surface layer 54, the progress of the crack can be suppressed by the base layer 56, and the progress of the crack to the base material 52 can be suppressed.
- the underlayer 56 when the underlayer 56 includes Ni, the underlayer 56 is an electrolytic plating film having a Vickers hardness of 350 HV or less, preferably 200 HV or more and 300 HV or less.
- the underlayer 56 since the underlayer 56 has a very high ductility, it has an action of suppressing the growth of cracks generated in the surface layer 54. Therefore, even if a crack is generated in the surface layer 54, the progress of the crack can be suppressed by the base layer 56, and the progress of the crack to the base material 52 can be suppressed.
- the base layer 56 is a plating film containing Cu or Sn. Since Cu and Sn have high ductility, when used as the base layer 56, they have an action of suppressing the growth of cracks generated in the surface layer 54. Therefore, even if a crack is generated in the surface layer 54, the progress of the crack can be suppressed by the base layer 56, and the progress of the crack to the base material 52 can be suppressed.
- underlayer 56 has a coefficient of linear expansion between substrate 52 and surface layer 54.
- the difference in thermal expansion between the base material 52 and the surface layer 54 can be reduced. Therefore, the stress applied to the surface layer 54 due to the difference in thermal elongation can be relaxed, and the generation of cracks in the surface layer can be suppressed.
- FIG. 8 shows an example of linear expansion coefficients of the base material 52, the surface layer 54, and the base layer 56.
- the thickness of the surface layer 54 is 15 ⁇ m or more and 60 ⁇ m or less. If the thickness of the surface layer 54 is less than 15 ⁇ m, the erosion resistance cannot be exhibited. On the other hand, even if the thickness of the surface layer 54 is more than 60 ⁇ m, the effect of improving the erosion resistance is limited, and conversely, the time required for the plating process becomes longer and the cost is increased. Therefore, the erosion resistance can be exhibited by setting the film thickness of the surface layer 54 to 15 ⁇ m or more, and the cost of the plating process can be reduced by setting the film thickness to 60 ⁇ m or less.
- FIG. 9 is a test result showing the relationship between the film thickness of the surface layer 54 and the erosion resistance
- FIG. 10 is a test result showing the relationship between the corrosion resistance of the surface layer 54 and the film thickness.
- FIG. 9 when the thickness of the surface layer 54 is about 1 to 2 ⁇ m, the erosion resistance cannot be exhibited, and when the thickness is 15 to 60 ⁇ m, the high erosion resistance satisfying the required value can be exhibited.
- Lines A, B, and C in FIG. 10 indicate the degree of corrosion of the surface layer 54 under different conditions of the corrosive environment.
- FIG. 10 shows that when the thickness of the surface layer 54 is 15 ⁇ m or more, the required life can be satisfied even in the most severe corrosive environment.
- the surface layer 54 has a Vickers hardness of 500 to 700 HV. Accordingly, the surface layer 54 has a high Vickers hardness, and thus can have a high erosion resistance.
- the film thickness of the foundation layer 56 is 15 ⁇ m or more and 60 ⁇ m or less. If the film thickness of the underlayer 56 is less than 15 ⁇ m, the function of preventing cracks generated in the surface layer 54 cannot be sufficiently exerted. On the other hand, even if the film thickness exceeds 60 ⁇ m, the effect of improving erosion resistance is limited, On the other hand, the time required for the plating process becomes longer and the cost is increased. Therefore, the crack prevention function can be exhibited by setting the film thickness of the underlayer 56 to 15 ⁇ m or more, and the plating process can be reduced in cost by setting it to 60 ⁇ m or less.
- the compressor impeller 50 having the above-described configuration as a compressor impeller of the compressor 16 constituting the supercharger 12 that rotates at a high speed, the erosion resistance of the supercharger 12 and the compressor 16 can be improved, and cracks can propagate. And the life of these devices can be extended. Further, even when the turbocharger 12 is provided in the diesel engine 10 having the low pressure EGR system 32 and the intake air a including the droplets and the exhaust having high erosion property is introduced into the compressor 16, the turbocharger 12 can withstand high-speed rotation for a long period of time. Can extend the service life.
- the entire surface of the compressor impeller 50 is substantially covered with the base material 52 constituting the compressor impeller 50.
- the underlayer 56 is formed (S12).
- an electroless plating film is formed as the surface layer 54 on the base layer 56 (S14).
- the underlayer 56 has a Vickers hardness smaller than that of the surface layer 54.
- the surface layer 54 is an electroless plating film of a Ni—P alloy having an amorphous structure and a P content of 4 to 10% by weight. is there.
- a pretreatment S ⁇ b> 10 of the surface of the substrate 52 is performed prior to step S ⁇ b> 12.
- the pretreatment S10 includes, for example, an alkaline degreasing step S10a that removes oils and fats adhering to the surface of the substrate 52 using an alkaline solution, and the surface of the substrate 52 after degreasing using an acid solution or an alkaline solution
- Step S16 for performing surface finishing of the surface layer 54 and Inspection Step S18 for inspecting the surface layer 54 after finishing are performed.
- one base layer 56 is formed between the base material 52 and the surface layer 54, but two or more base layers may be formed.
- an impeller of a rotating machine composed of Al or an Al alloy by forming a plating film that can simultaneously improve erosion resistance and crack resistance on the impeller.
- the impeller and the equipment including the impeller can be extended in life.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Supercharger (AREA)
- Chemically Coating (AREA)
Abstract
Description
また、過給機のコンプレッサ羽根車には、高速回転で発生する遠心力による応力と、Ni-P系めっき皮膜とAl合金との熱伸び差による応力とが発生するため、めっき皮膜には耐エロージョン性だけでなく、耐き裂性(疲労強度)及び耐剥離性(界面強度)が要求される。
一旦、めっき皮膜にき裂が発生すると、その後、該き裂は母材に進展し、母材の破損につながる。
このように、耐エロージョン性と耐き裂性とはトレードオフの関係にあり、これらの要求を同時に満足させることは容易ではない。
回転機械の羽根車であって、
Al又はAl合金によって構成される前記羽根車の基材と、
Ni-P系合金の無電解めっき皮膜により形成される前記羽根車の表面層と、
前記基材と前記表面層との間に設けられ、前記表面層よりも小さいビッカース硬さを有する下地層と、を備える。
前記構成(1)によれば、Ni-P系合金で形成される前記表面層は高いビッカース硬さを有し、耐エロージョン性が優れている。前記表面層は無電解めっき皮膜であるため、均一な膜厚形成が可能となり、広範囲にわたってめっき皮膜の耐エロージョン性を均一に発揮できる。
前記下地層は、前記表面層よりも小さいビッカース硬さを有するため、該表面層より高い延性を備え、これによって、表面層に発生したき裂の進展を抑止する作用を有する。そのため、表面層で仮にき裂が発生しても、き裂の進展をこの下地層で抑制し、母材へのき裂の進展を抑制できる。
前記表面層は、アモルファス構造を有する。
前記構成(2)によれば、前記表面層はアモルファス構造を有するので、高強度となり、耐エロージョン性を向上できる。また、アモルファス構造の表面層を採用することで、表面層自体の疲労強度が向上する。
前記表面層は、前記表面層中におけるP含有率が4重量%以上10重量%以下である。
前記構成(3)によれば、前記表面層はP含有率が4重量%以上10重量%以下であるため、高いビッカース硬さを有し、耐エロージョン性をさらに向上できる。また、P含有率を前記範囲とすることで、表面層の疲労強度が向上する。
前記下地層は、Niを含むめっき皮膜である。
前記構成(4)によれば、前記下地層は前記表面層と同じNiを含むため、両層のなじみが良く、そのため、前記表面層の前記下地層への施工が容易になると共に、両層間の密着性を向上できる。
下地層は無電解めっき皮膜又は電解めっき皮膜であってもよい。電解めっき皮膜は、膜厚など皮膜の均一性では無電解めっき皮膜に劣るが、非常な高延性があり、表面層に発生したき裂の進展を抑止する作用を有する。そのため、前記表面層で仮にき裂が発生しても、き裂の進展をこの下地層で抑制でき、母材へのき裂の進展を抑制できる。
前記下地層としての前記めっき皮膜は、アモルファス構造を有し、且つ、前記下地層中におけるP含有率が10重量%以上13重量%以下であるNi-P系合金である。
前記構成(5)によれば、前記下地層はアモルファス構造を有するため高強度となり、かつP含有率が10重量%以上13重量%以下であるため高い延性を有する。そのため、表面層に発生したき裂の進展を抑止する作用を有し、前記表面層で仮にき裂が発生しても、き裂の進展をこの下地層で抑制でき、母材へのき裂の進展を抑制できる。
前記下地層としての前記Niめっき皮膜は、350HV以下、好ましくは、200HV以上300HV以下のビッカース硬さを有する電解めっき皮膜である。
前記構成(6)によれば、前記下地層は350HV以下のビッカース硬さを有する電解めっき皮膜であるため、非常な高延性を有する。そのため、表面層に発生したき裂の進展を抑止する作用を有し、表面層で仮にき裂が発生しても、き裂の進展をこの下地層で抑制でき、母材へのき裂の進展を抑制できる。
前記下地層は、Cu又はSnを含むめっき皮膜である。
前記構成(7)によれば、Cu及びSnは高延性を有するため、下地層として用いられると、表面層に発生したき裂の進展を抑止する作用を有する。そのため、表面層で仮にき裂が発生しても、き裂の進展を下地層で抑制でき、母材へのき裂の進展を抑制できる。
前記下地層は、前記基材と前記表面層との間の線膨張係数を有している。
前記構成(6)によれば、前記下地層は、前記基材と前記表面層との間の線膨張係数を有しているので、羽根車の基材と表面層との間に介在することで両者の熱伸び差を緩和できる。そのため、前記熱伸び差に起因して表面層に付加される応力を緩和でき、これによって、表面層のき裂発生を抑制できる。
前記表面層の膜厚は15μm以上60μm以下である。
表面層の膜厚が15μm未満では、耐エロージョン性を十分に発揮することが難しい場合がある。他方、表面層を60μmを超える膜厚としても耐エロージョン性の改善効果は限定的であり、逆に、めっき処理に要する時間が長くなり、高コストとなる。
前記構成(9)によれば、表面層の膜厚を15μm以上とすることで、耐エロージョン性を発揮でき、かつ60μm以下とすることで、めっき処理を低コスト化できる。
前記表面層は500~700HVのビッカース硬さを有する。
前記構成(10)によれば、表面層が500~700HVという大きなビッカース硬さを有することで、高い耐エロージョン性をもつことができる。
前記下地層の膜厚は15μm以上60μm以下である。
下地層の膜厚が15μm未満では、表面層で発生したき裂の阻止機能を十分に発揮することが難しい場合がある。他方、下地層を60μmを超える膜厚としてもき裂阻止性の改善効果は限定的であり、逆に、めっき処理に要する時間が長くなり、高コストとなる。
前記構成(9)によれば、下地層の膜厚を15μm以上とすることで、き裂阻止機能を発揮でき、かつ60μm以下とすることで、めっき処理を低コスト化できる。
前記羽根車は、過給機のコンプレッサ羽根車である。
前記構成(12)によれば、前記構成の羽根車を高速回転する過給機のコンプレッサ羽根車として用いることで、過給機の耐エロージョン性を向上できると共に、き裂の進展を抑制でき、過給機を長寿命化できる。
前記構成(1)~(11)の何れかを有するコンプレッサ羽根車を有している。
前記構成(13)によれば、高い耐エロージョン性及びき裂進展抑制機能を有するコンプレッサ羽根車を備えることで、長寿命なコンプレッサを実現できる。
前記構成(13)を有するコンプレッサと、
前記コンプレッサを駆動するためのタービンと、
を備えている。
前記構成(14)によれば、高い耐エロージョン性及びき裂進展抑制機能を有するコンプレッサ羽根車を有するコンプレッサを備えることで、高速回転に長期間耐え得る長寿命な過給機を実現できる。
前記コンプレッサは、内燃機関の吸気路に設けられ、
前記タービンは、前記内燃機関からの排気によって駆動されるように構成され、
前記コンプレッサの上流側において、前記排気の一部が前記吸気路に循環されるように構成される。
前記構成(15)において、前記コンプレッサには液滴を含みエロージョン性が高い排気を含む吸気が導入される。
これに対し、前記構成(15)によれば、前記構成(13)を有し、耐エロージョン性及び耐き裂性が向上したコンプレッサを備えているので、高速回転に長期間耐え得る長寿命な過給機を実現できる。
Al又はAl合金によって構成される前記羽根車の基材を覆うように、前記基材上に下地層を形成するステップと、
前記下地層の上に、前記羽根車の表面層として無電解めっき皮膜を形成するステップを備え、
前記下地層は、前記表面層よりも小さいビッカース硬さを有し、
前記表面層は、アモルファス構造を有し、且つ、前記表面層中におけるP含有率が4重量%以上10重量%以下であるNi-P系合金の無電解めっき皮膜である。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
過給機12は、ディーゼルエンジン10の排気路20に設けられ、排気eによって回転する排気タービン14と、排気タービン14と回転軸13を介して連動するコンプレッサ16とを備えている。コンプレッサ16は吸気路22に設けられ、吸気aをディーゼルエンジン10に供給する。排気の一部はコンプレッサ16の上流側の吸気路22に循環される。
高圧EGRシステム24において、ディーゼルエンジン10から排出された排気eの一部は、高圧EGR路26を介してディーゼルエンジン10の入口側で吸気路22に戻される。
例示的な構成では、高圧EGR路26にEGRクーラ28及びEGRバルブ30が設けられる。
低圧EGRシステム32において、ディーゼルエンジン10から排出された排気eの一部は、低圧EGR路34を介してコンプレッサ16の入口側の吸気路22に戻される。
例示的な構成では、低圧EGR路34にEGRクーラ36及びEGRバルブ38が設けられる。
また、排気タービン14を跨ぐように、排気路20に排気バイパス路20aが接続されている。排気バイパス路20aにウェイストバルブ44が設けられ、ウェイストバルブ44の開度を調整するアクチュエータ44aが設けられる。
さらに、排気タービン14の下流側の排気路20に、排気中の粒子状物質を捕捉するDPFフィルタ48と、排気中のNOxをNO2に酸化し、NO2の酸化作用でDPFフィルタ48に捕捉された粒子状物質を燃焼させる酸化触媒46が設けられる。
コンプレッサ羽根車50は、図2に模式的に示すように、Al又はAl合金で構成される基材52の表面に、Ni-P系合金の無電解めっき皮膜により形成される表面層54と、基材52と表面層54との間に設けられ、表面層54より小さいビッカース硬さを有する下地層56とを備えている。
図2に示すように、吸気aには液滴Lなどの異物が混入している場合がある。例えば、図1に示す低圧EGRシステム32を採用する場合、水滴Lを含む排気eが低圧EGR路34を介して循環されて吸気aとともにコンプレッサに供給される。このように、吸気a中に異物(例えば、液滴L)が混ざっている場合においても、表面層54は良好な耐エロージョン性を有するため、排気eに対して浸食されにくい。
しかし、上述の実施形態によれば、下地層56は表面層54より高延性(表面層54より小さいビッカース硬さ)を有するので、表面層54で仮にき裂Cが発生しても、き裂の進展を下地層56で抑制し、基材52へのき裂の進展を抑制できる。
例示的な実施形態では、さらに、表面層54は、表面層54中におけるP含有率が4重量%以上10重量%以下である。表面層54はP含有率が4重量%以上10重量%以下であると、高いビッカース硬さを有し、耐エロージョン性をさらに向上できる。
図5は、LCF試験においてコンプレッサ羽根車に加えられる繰り返し荷重の一例を示し、横軸は時間を、縦軸は該コンプレッサ羽根車を備えた過給機の回転数を示している。過給機の回転数の増減により表面層54に作用する応力が増減する。
図3及び図4に示すように、P含有率が10重量%を超えると耐エロージョン性が急激に低下し、LCF破断寿命は、P含有率が4重量%未満又は10重量%を超えると短縮する。以上の結果を踏まえて、表面層54は、耐エロージョン性及びLCF破断寿命が両立する観点から、P含有率を4重量%以上10重量%以下としている。
図6及び図7に示すように、表面層54が結晶化すると、耐エロージョン性及びLCF破断寿命が急激に低下する。以上の結果を踏まえて、表面層54は、耐エロージョン性およびLCF破断寿命の向上の観点から、アモルファス構造とし、かつP含有率を4乃至10重量%としている。
なお、下地層56は無電解めっき皮膜又は電解めっき皮膜であってもよい。電解めっき皮膜は、膜厚など皮膜の均一性では無電解めっき皮膜に劣るが、非常な高延性があり、表面層54に発生したき裂の進展を抑止する作用を有する。そのため、表面層54で仮にき裂が発生しても、き裂の進展をこの下地層56で抑制でき、基材52へのき裂の進展を抑制できる。
下地層56はアモルファス構造を有するため高強度となり、前述のように、結晶化した構造と比べて耐エロージョン性及びLCF破断寿命が急激に向上する。
また、下地層56のP含有率が10重量%以上13重量%以下であると高い延性を有するため、表面層54に発生したき裂の進展を抑止する作用を有する。そのため、表面層54で仮にき裂が発生しても、き裂の進展を下地層56で抑制でき、基材52へのき裂の進展を抑制できる。
図8は、基材52、表面層54及び下地層56の線膨張係数の例を示す。
そのため、表面層54の膜厚を15μm以上とすることで、耐エロージョン性を発揮でき、かつ60μm以下とすることで、めっき処理を低コスト化できる。
図9に示すように、表面層54の膜厚が1~2μm程度では耐エロージョン性を発揮できず、膜厚が15~60μmの範囲では要求値を満たす高い耐エロージョン性を発揮できる。
図10中のラインA、B及びCは、腐食環境が異なる条件での表面層54の腐食の進行度を示している。図10から、表面層54の膜厚が15μm以上のとき、最も厳しい腐食環境でも要求寿命を満足できることがわかる。
そのため、下地層56の膜厚を15μm以上とすることで、き裂阻止機能を発揮でき、かつ60μm以下とすることで、めっき処理を低コスト化できる。
また、過給機12が低圧EGRシステム32を備えたディーゼルエンジン10に設けられ、コンプレッサ16に液滴を含みエロージョン性が高い排気を含む吸気aが導入される場合でも、高速回転に長期間耐えることができ、長寿命化できる。
下地層56は表面層54よりも小さいビッカース硬さを有し、表面層54はアモルファス構造を有し、且つP含有率が4乃至10重量%であるNi-P系合金の無電解めっき皮膜である。
前処理S10は、例えば、基材52の表面に付着した油脂類をアルカリ液などを使って除去するアルカリ脱脂ステップS10aと、脱脂後の基材52に対し、酸液又はアルカリ液を用いて表面に形成された不動態膜(アルミナ膜)を除去するエッチング処理S10bと、エッチング処理後、酸などに溶解しにくいCやSiが黒い微粉末状となって残るスマットを除去するスマット除去ステップS10cとを行う。
例示的な実施形態では、ステップS14の後、表面層54の表面仕上げを行うステップS16及び仕上げ後の表面層54を検査する検査ステップS18を行う。
なお、上述の実施形態では、基材52と表面層54との間に1層の下地層56を形成したが、2層以上の下地層を形成してもよい。
12 過給機
13 回転軸
14 排気タービン
16 コンプレッサ
20 排気路
22 吸気路
24 高圧EGRシステム
26 高圧EGR路
28、36 EGRクーラ
30、38 EGRバルブ
32 低圧EGRシステム
34 低圧EGR路
40 エアクリーナ
42 インタクーラ
44 ウェイストバルブ
44a アクチュエータ
46 酸化触媒
48 DPFフィルタ
50、100 コンプレッサ羽根車
52 基材
54 表面層
56 下地層
102 ハブ
102a 背面
104 ブレード
C き裂
S 歪み
a 吸気
e 排気
Claims (16)
- 回転機械の羽根車であって、
Al又はAl合金によって構成される前記羽根車の基材と、
Ni-P系合金の無電解めっき皮膜により形成される前記羽根車の表面層と、
前記基材と前記表面層との間に設けられ、前記表面層よりも小さいビッカース硬さを有する下地層と、を備えることを特徴とする回転機械の羽根車。 - 前記表面層は、アモルファス構造を有することを特徴とする請求項1に記載の回転機械の羽根車。
- 前記表面層は、前記表面層中におけるP含有率が4重量%以上10重量%以下であることを特徴とする請求項1又は2に記載の回転機械の羽根車。
- 前記下地層は、Niを含むめっき皮膜であることを特徴とする請求項1乃至3の何れか1項に記載の回転機械の羽根車。
- 前記下地層としての前記めっき皮膜は、アモルファス構造を有し、且つ、前記下地層中におけるP含有率が10重量%以上13重量%以下であるNi-P系合金であることを特徴とする請求項4に記載の回転機械の羽根車。
- 前記下地層としての前記Niめっき皮膜は、350HV以下のビッカース硬さを有する電解めっき皮膜であることを特徴とする請求項4又は5に記載の回転機械の羽根車。
- 前記下地層は、Cu又はSnを含むめっき皮膜であることを特徴とする請求項1に記載の回転機械の羽根車。
- 前記下地層は、前記基材と前記表面層との間の線膨張係数を有していることを特徴とする請求項1乃至7の何れか1項に記載の回転機械の羽根車。
- 前記表面層の膜厚は15μm以上60μm以下であることを特徴とする請求項1乃至8の何れか1項に記載の回転機械の羽根車。
- 前記表面層は500~700HVのビッカース硬さを有することを特徴とする請求項1乃至9の何れか1項に記載の回転機械の羽根車。
- 前記下地層の膜厚は15μm以上60μm以下であることを特徴とする請求項1乃至10の何れか1項に記載の回転機械の羽根車。
- 前記羽根車は、過給機のコンプレッサ羽根車であることを特徴とする請求項1乃至11の何れか1項に記載の回転機械の羽根車。
- 請求項1乃至11の何れか1項に記載の羽根車によって形成されるコンプレッサ羽根車を有することを特徴とするコンプレッサ。
- 請求項13に記載のコンプレッサと、
前記コンプレッサを駆動するためのタービンと、
を備えることを特徴とする過給機。 - 前記コンプレッサは、内燃機関の吸気路に設けられ、
前記タービンは、前記内燃機関からの排気によって駆動されるように構成され、
前記コンプレッサの上流側において、前記排気の一部が前記吸気路に循環されるように構成されたことを特徴とする請求項14に記載の過給機。 - 回転機械の羽根車の製造方法であって、
Al又はAl合金によって構成される前記羽根車の基材を覆うように、前記基材上に下地層を形成するステップと、
前記下地層の上に、前記羽根車の表面層として無電解めっき皮膜を形成するステップを備え、
前記下地層は、前記表面層よりも小さいビッカース硬さを有し、
前記表面層は、アモルファス構造を有し、且つ、前記表面層中におけるP含有率が4重量%以上10重量%以下であるNi-P系合金の無電解めっき皮膜であることを特徴とする回転機械の羽根車の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580075409.2A CN107208655B (zh) | 2015-03-17 | 2015-03-17 | 旋转机械的叶轮、压缩机、增压器以及旋转机械的叶轮的制造方法 |
US15/541,879 US11015250B2 (en) | 2015-03-17 | 2015-03-17 | Impeller for rotary machine, compressor, supercharger, and method for producing impeller for rotary machine |
EP15885406.7A EP3273065B1 (en) | 2015-03-17 | 2015-03-17 | Impeller for rotary machine, compressor, turbocharger, and method for manufacturing impeller for rotary machine |
JP2017505917A JP6295008B2 (ja) | 2015-03-17 | 2015-03-17 | 回転機械の羽根車、コンプレッサ、過給機及び回転機械の羽根車の製造方法 |
PCT/JP2015/057825 WO2016147310A1 (ja) | 2015-03-17 | 2015-03-17 | 回転機械の羽根車、コンプレッサ、過給機及び回転機械の羽根車の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/057825 WO2016147310A1 (ja) | 2015-03-17 | 2015-03-17 | 回転機械の羽根車、コンプレッサ、過給機及び回転機械の羽根車の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016147310A1 true WO2016147310A1 (ja) | 2016-09-22 |
Family
ID=56919754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/057825 WO2016147310A1 (ja) | 2015-03-17 | 2015-03-17 | 回転機械の羽根車、コンプレッサ、過給機及び回転機械の羽根車の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11015250B2 (ja) |
EP (1) | EP3273065B1 (ja) |
JP (1) | JP6295008B2 (ja) |
CN (1) | CN107208655B (ja) |
WO (1) | WO2016147310A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018080652A (ja) * | 2016-11-17 | 2018-05-24 | 株式会社名光精機 | インペラ及びその製造方法 |
WO2022181165A1 (ja) * | 2021-02-24 | 2022-09-01 | パナソニックIpマネジメント株式会社 | 摺動部材およびそれを用いた圧縮機および冷凍装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3805523A1 (en) * | 2018-06-06 | 2021-04-14 | IHI Corporation | Turbine impeller |
JP7333247B2 (ja) | 2019-11-01 | 2023-08-24 | 三菱重工コンプレッサ株式会社 | アンモニアプラント合成ガス圧縮機トレイン |
US11225876B2 (en) * | 2019-12-19 | 2022-01-18 | Raytheon Technologies Corporation | Diffusion barrier to prevent super alloy depletion into nickel-CBN blade tip coating |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09303289A (ja) * | 1996-05-14 | 1997-11-25 | Osaka Shinku Kiki Seisakusho:Kk | 分子ポンプの表面処理方法 |
JPH1182377A (ja) * | 1997-09-02 | 1999-03-26 | Ebara Corp | 羽根車の製造方法 |
JP2007245567A (ja) * | 2006-03-16 | 2007-09-27 | Fujifilm Corp | 機能性膜含有構造体及びその製造方法 |
JP2010202900A (ja) * | 2009-03-02 | 2010-09-16 | Alps Electric Co Ltd | 電気接点の製造方法 |
JP2014163345A (ja) * | 2013-02-27 | 2014-09-08 | Mitsubishi Heavy Ind Ltd | 舶用ディーゼル機関の排気再循環システム |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2822107B2 (ja) | 1991-12-06 | 1998-11-11 | 東京製綱株式会社 | 疲労性の良好な亜鉛−アルミニウム合金めっき鉄鋼線状材及びその製造法 |
JP3034147B2 (ja) | 1993-05-06 | 2000-04-17 | 三菱電機株式会社 | 耐食性摺接部材およびその製造方法 |
EP0927776B1 (en) | 1997-01-20 | 2005-06-01 | Taiho Kogyo Co., Ltd. | Sliding member, method of treating surface of the sliding member and rotary compressor vane |
CN2427647Y (zh) | 2000-03-06 | 2001-04-25 | 岳勇 | 高耐腐蚀高耐磨耗的防砂抽油泵 |
JP3912206B2 (ja) * | 2002-07-05 | 2007-05-09 | 株式会社日立製作所 | 筒内直接燃料噴射装置用燃料ポンプ |
JP2004176082A (ja) | 2002-11-25 | 2004-06-24 | Osaka Gas Co Ltd | 高耐食性部材及びその製造方法 |
US8529738B2 (en) * | 2005-02-08 | 2013-09-10 | The Trustees Of Columbia University In The City Of New York | In situ plating and etching of materials covered with a surface film |
JP4709731B2 (ja) | 2006-11-17 | 2011-06-22 | 三菱重工業株式会社 | 耐食性めっき層形成方法および回転機械 |
US8499558B2 (en) * | 2007-02-05 | 2013-08-06 | Borgwarner Inc. | Turbocharger with mixing device upstream of compressor inlet |
EP2090788A1 (en) * | 2008-02-14 | 2009-08-19 | Napier Turbochargers Limited | Impeller and turbocharger |
JP5213511B2 (ja) | 2008-05-07 | 2013-06-19 | 株式会社中山製鋼所 | 高耐食性アモルファス合金 |
US20110027576A1 (en) | 2009-07-28 | 2011-02-03 | General Electric Company | Sealing of pinholes in electroless metal coatings |
US8274988B2 (en) * | 2009-07-29 | 2012-09-25 | New Jersey Institute Of Technology | Forwarding data through a three-stage Clos-network packet switch with memory at each stage |
US20110206532A1 (en) | 2010-02-23 | 2011-08-25 | General Electric Company | Electroless metal coatings |
-
2015
- 2015-03-17 WO PCT/JP2015/057825 patent/WO2016147310A1/ja active Application Filing
- 2015-03-17 JP JP2017505917A patent/JP6295008B2/ja active Active
- 2015-03-17 CN CN201580075409.2A patent/CN107208655B/zh active Active
- 2015-03-17 US US15/541,879 patent/US11015250B2/en active Active
- 2015-03-17 EP EP15885406.7A patent/EP3273065B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09303289A (ja) * | 1996-05-14 | 1997-11-25 | Osaka Shinku Kiki Seisakusho:Kk | 分子ポンプの表面処理方法 |
JPH1182377A (ja) * | 1997-09-02 | 1999-03-26 | Ebara Corp | 羽根車の製造方法 |
JP2007245567A (ja) * | 2006-03-16 | 2007-09-27 | Fujifilm Corp | 機能性膜含有構造体及びその製造方法 |
JP2010202900A (ja) * | 2009-03-02 | 2010-09-16 | Alps Electric Co Ltd | 電気接点の製造方法 |
JP2014163345A (ja) * | 2013-02-27 | 2014-09-08 | Mitsubishi Heavy Ind Ltd | 舶用ディーゼル機関の排気再循環システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3273065A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018080652A (ja) * | 2016-11-17 | 2018-05-24 | 株式会社名光精機 | インペラ及びその製造方法 |
WO2022181165A1 (ja) * | 2021-02-24 | 2022-09-01 | パナソニックIpマネジメント株式会社 | 摺動部材およびそれを用いた圧縮機および冷凍装置 |
Also Published As
Publication number | Publication date |
---|---|
CN107208655B (zh) | 2019-09-10 |
JP6295008B2 (ja) | 2018-03-14 |
US11015250B2 (en) | 2021-05-25 |
EP3273065A4 (en) | 2018-07-11 |
EP3273065B1 (en) | 2021-06-16 |
US20180002812A1 (en) | 2018-01-04 |
JPWO2016147310A1 (ja) | 2017-07-27 |
EP3273065A1 (en) | 2018-01-24 |
CN107208655A (zh) | 2017-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6386162B2 (ja) | 回転機械の羽根車、コンプレッサ、過給機及び回転機械の羽根車の製造方法 | |
JP6295008B2 (ja) | 回転機械の羽根車、コンプレッサ、過給機及び回転機械の羽根車の製造方法 | |
WO2006126993A1 (en) | Turbocharger compressor having improved erosion-corrosion resistance | |
JP2008111425A (ja) | ガスタービンエンジン圧縮機用摩擦皮膜 | |
US20140272166A1 (en) | Coating system for improved leading edge erosion protection | |
CN115126720B (zh) | 具有双层涂层的涡轮增压器压缩机叶轮和用于制造其的方法 | |
US10266958B2 (en) | Hot corrosion-protected articles and manufacture methods | |
US20200116032A1 (en) | Impeller for rotary machine, compressor, forced induction device, and method for manufacturing impeller for rotary machine | |
US11492692B2 (en) | Thermal barrier coating with high corrosion resistance | |
JP2014163345A (ja) | 舶用ディーゼル機関の排気再循環システム | |
EP3839096A1 (en) | Diffusion barrier to prevent super alloy depletion into nickel-cbn blade tip coating | |
US20180058228A1 (en) | Hot corrosion-resistant coatings for gas turbine components | |
US9297089B2 (en) | Coatings for gas turbine components | |
JP6486978B2 (ja) | 積層部材、並びに、これを用いた羽根車、圧縮機及びエンジン | |
EP3839095A1 (en) | Barrier to prevent super alloy depletion into nickel-cbn blade tip coating | |
JP6625959B2 (ja) | インペラ及びその製造方法 | |
EP3090075B1 (en) | Hot corrosion-protected article and manufacture method therefor | |
US20130323066A1 (en) | Maskant for fluoride ion cleaning | |
CN118755294A (zh) | 防渗氮耐高温涂层及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15885406 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017505917 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15541879 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2015885406 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |