WO2016146415A1 - Torsional damper - Google Patents

Torsional damper Download PDF

Info

Publication number
WO2016146415A1
WO2016146415A1 PCT/EP2016/054751 EP2016054751W WO2016146415A1 WO 2016146415 A1 WO2016146415 A1 WO 2016146415A1 EP 2016054751 W EP2016054751 W EP 2016054751W WO 2016146415 A1 WO2016146415 A1 WO 2016146415A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
rotation
torque
support member
torsion damper
Prior art date
Application number
PCT/EP2016/054751
Other languages
French (fr)
Inventor
Karthik Krishnasamy
Original Assignee
Valeo Embrayages
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Embrayages filed Critical Valeo Embrayages
Publication of WO2016146415A1 publication Critical patent/WO2016146415A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/133Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
    • F16F15/1331C-shaped springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/133Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
    • F16F15/1333Spiral springs, e.g. lying in one plane, around axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/133Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
    • F16F15/1336Leaf springs, e.g. radially extending

Definitions

  • the invention relates to the field of transmissions for a motor vehicle and relates, more particularly, a double damping flywheel. State of the art
  • torsion damping torque transmission devices for absorbing and damping vibrations and acyclisms generated by an internal combustion engine.
  • the torsion dampers comprise an input member and an output member rotatable about a common axis of rotation and resilient damping means for transmitting the torque and damping rotational acyclisms between the input member. and the output element.
  • Such torsion dampers equip including double damping flywheels (DVA) and / or friction clutch, in the case of a manual or robotic transmission, or locking clutches, also called “lock-up” clutches, equipping hydraulic coupling devices, in the case of an automatic transmission.
  • DVA double damping flywheels
  • friction clutch in the case of a manual or robotic transmission
  • locking clutches also called “lock-up” clutches
  • equipping hydraulic coupling devices in the case of an automatic transmission.
  • the document FR3000155 illustrates a torsion damper comprising elastic damping means formed of two resilient blades mounted on the input element and each cooperating with a respective cam follower mounted on the output element.
  • the blades and cam followers are arranged such that, for angular displacement between the input member and the output member, on either side of a relative angular position of rest, the follower of cam moves along the blade and, in doing so, exerts a bending force on the resilient blade.
  • the resilient blade exerts on the cam follower a restoring force which tends to return the input and output elements to their angular rest position. The bending of the elastic blade thus makes it possible to damp the vibrations and rotational irregularities between the input member and the output member while providing torque transmission.
  • the characteristic curves of transmission of the torque as a function of the deflection in the forward and backward directions can not be completely decorrelated so that certain complex curves of transmission of the torque as a function of the angular displacement can not to be realized.
  • One aspect of the invention is based on the idea of solving the disadvantages of the prior art by providing a particularly effective torsion damper.
  • the invention provides a torsion damper for a torque transmission device comprising:
  • a blade damping means adapted to transmit a rotational torque between the first member and the second member and damping rotation acyclisms between the first member and the second member; the blade damping means comprising:
  • first elastically deformable blade and a second elastically deformable blade a first elastically deformable blade and a second elastically deformable blade, the first blade and the second blade being integral in rotation with the first element
  • first support member, the first blade and the second blade are arranged such that: the first support member cooperates with the first blade by bending it to transmit a torque from the second element to the first element, and the first support member cooperates with the second blade by bending it to transmit a torque of the first element to the second element.
  • the damper according to the invention thus makes it possible to prevent the same support member from requesting the same blade to alternately transmit a torque from the first element to the second element and from the second element to the first element.
  • the damper according to the invention thus makes it possible to avoid the biasing of the same blade portion to transmit, alternately, a torque from the first element to the second element and from the second element to the first element.
  • This system reduces the fatigue of the blades of the torsion damper.
  • the transmission of a torque in a first direction impacts a portion of the blade different from the portion of blade biased during the transmission of a torque in the opposite direction.
  • the torsion damper also makes it possible to transmit a torque with an acceptable stress.
  • the system of two separate blades biased according to the direction of transmission of the torque thus makes it possible to increase the length of the blades and thus to reduce the stresses on each of the blades.
  • the damper also makes it possible to offer a greater variety of torque transmission curves because the portions of the blades biased for each direction of transmission of the torque are disjoint.
  • such a system may have one or more of the following characteristics:
  • the first support member, the first blade and the second blade are arranged such that the first support member cooperates only with the first blade when a torque is transmitted from the second element to the first element and only with the second. blade when a torque is transmitted from the first element to the second element.
  • the first support member, the first blade and the second blade are arranged such that at least a portion of the torque is transmitted by the first blade regardless of the value of a torque transmitted from the second element to the first element and that at least a part of the couple is transmitted by the second blade regardless of the value of a torque transmitted from the first element to the second element.
  • the first support member cooperates with at least one of the first and second blades, the first support member is simultaneously in contact with the first blade and with the second blade in the angular position of rest, the blade damping means is arranged such that, for a transmission of a torque from the second element to the first element, a relative rotation in a first direction of rotation between the first and second elements from an angular rest position occurs and the blade damping means exerts a first restoring force for biasing the first and second members towards their angular rest position, and for transmitting a torque of the first member to the second element, a relative rotation in a second direction of rotation opposite the first direction of rotation between the first and second elements from the angular position of rest is and the blade damping means exerts a second biasing force to bias the first and second members toward their angular rest position; the first support member, the first blade and the second blade being arranged such that:
  • the first support member cooperates with the first blade and exerts a bending force on said first blade, bending the first blade producing on the first support member the first restoring force,
  • each blade comprises:
  • the damper further comprises a second support member carried by the second element, the first support member, the second support member, the first blade; and the second blade being arranged such that:
  • the first support member cooperates with the first deformable section of the first blade by bending it and the second support member cooperates with the second deformable section of the second blade by bending it to transmit a torque of the second element towards the first element
  • the second support member cooperates with the second deformable section of the first blade by bending it and the first support member cooperates with the first deformable section of the second blade by bending it to transmit a torque of the first element towards the second element.
  • the first and second blades are arranged so that:
  • the first support member exerts a bending force on the first deformable section of the first blade and the second member of support exerts a bending force on the second deformable section of the second blade, the bending of the first deformable section of the first blade and the bending of the second deformable section of the second blade jointly producing the first return force
  • the second support member exerts a bending force on the second deformable section of the first blade and the first member d 'support exerts a bending on the first deformable section of the second blade, the bending of the second deformable section of the first me and the bending of the first deformable section of the second blade jointly forming the second restoring force
  • the damper further comprises an end stop so as to limit the relative rotation between the first element and the second element.
  • the damper further comprises:
  • the second support member cooperates with the third blade and exerts a bending force on said third blade, the first force of recall being produced jointly by the bending of the first and third blades respectively on the first support member and on the second support member,
  • each blade comprises:
  • the damper further comprises a second support member carried by the second element, the first support member being arranged to cooperate with the first deformable section of the first and second blades, the second support member being arranged to cooperate with the second deformable section of the first and second blades, the first and second bearing members and the first and second blades being arranged such that:
  • the first support member exerts a bending force on the first deformable section of the first blade and the second support member exerts a bending force on the second deformable section of the second blade, the bending of the first deformable section of the first blade and the bending of the second section of the second blade jointly producing the first return force
  • the second support member exerts a bending force on the second deformable section of the first blade and the first member of support exerts bending on the first deformable section of the second blade, bending the second deformable section of the first blade and bending the first section of the second blade jointly forming the second restoring force
  • each blade is located between the first deformable section and the second deformable section of said blade.
  • each blade has an axis of symmetry, a projection of the first blade in a plane perpendicular to the axis of rotation X being symmetrical to a projection of the second blade in said plane perpendicular to the axis of rotation X with respect to the X axis of rotation
  • each blade has an axis of symmetry, a projection of the first blade in a plane perpendicular to the axis of rotation X being asymmetrical to a projection of the second blade in said plane perpendicular to the axis of rotation X relative to to the axis of rotation X.
  • each blade is asymmetrical, a projection of the first blade in a plane perpendicular to the axis of rotation X being symmetrical to a projection of the second blade in said plane perpendicular to the axis of rotation X with respect to the axis of rotation X
  • the first and second blades are fixed independently of one another on the first element.
  • the first blade and the second blade are stacked axially.
  • the torsion damper further comprising a spacer, the second blade being fixed on the first element bearing axially against the spacer, the spacer being axially interposed between the second blade and the first element, a portion of the first blade and a portion of the second blade being axially superimposed,
  • each blade is fixed on the first element by two rivets
  • each first and second blade has a cam surface and the first bearing member comprises a cam follower arranged to cooperate with the cam surface of the first blade to transmit a torque of the second member to the first member and the surface of the first member; cam of the second blade for transmitting a torque from the first member to the second member.
  • the cam follower is a roller mounted to rotate on the second element by means of a rolling bearing.
  • the first support member is arranged radially outside the first and second resilient blades.
  • Such an arrangement makes it possible to retain the elastic blade radially when it is subjected to centrifugal force.
  • the elastic blade is arranged to deform in a plane perpendicular to the axis of rotation.
  • Figure 1 is a schematic perspective view of a double damping flywheel in the mounted state
  • FIG. 2 is a schematic perspective view of the double damping flywheel of FIG. 1 in which the secondary flywheel is partially shown so as to display the means for fixing the blades;
  • Figure 3 is a schematic representation of the blades and cam followers in a rest position of the double damping flywheel.
  • FIG. 4 is a front view of a double damping flywheel of FIG. 1 represented in an angular displacement position of the steering wheels according to a direct direction relative to their rest position and in which the secondary flywheel is not shown to view the blades;
  • FIG. 5 is a front view of a double damping flywheel of FIG. 1 represented in a position of maximum angular displacement of the flywheels in a direct direction with respect to their rest position in which the secondary flywheel is not shown in order to to visualize the blades;
  • Figure 6 is a front view of the double damping flywheel of Figure 1 shown in a position of maximum angular displacement in a retro direction and wherein the secondary flywheel is not shown to view the blades;
  • FIG. 7 is a front view of a double damping flywheel according to another embodiment shown in a rest position and wherein the secondary flywheel is not shown to view the blades;
  • FIG. 8 is a front view of the double damping flywheel of FIG. 7 represented in a position of maximum angular displacement in the direct direction between the primary flywheel and the secondary flywheel and in which the secondary flywheel is not shown in order to visualize the blades;
  • FIG. 9 is a front view of the double damping flywheel of FIG. 7 represented in a position of maximum angular displacement in the retro direction having a maximum relative rotation in the second direction of rotation between the primary flywheel and the secondary flywheel and in which the secondary flywheel is not shown to view the blades.
  • the terms "external” and “internal” as well as the “axial” and “radial” orientations will be used to designate, according to the definitions given in the description, elements of the torsion damper.
  • the "radial” orientation is directed orthogonally to the X axis of rotation of the torsion damping elements determining the "axial” orientation and, from the inside to the outside, away from said axis.
  • the "circumferential” orientation is directed orthogonally to the X axis of rotation of the torsion damper and orthogonal to the radial direction.
  • an element described as circumferentially developing is an element whose component develops in a circumferential direction.
  • external and “internal” are used to define the relative position of one element relative to another, with reference to the axis of rotation X of the damper, an element close to the axis is thus described as internal as opposed to an external element located radially at the periphery.
  • the description below is for illustrative purposes in the context of a double damping flywheel.
  • the invention applies to any torsion damper intended to be disposed in the transmission chain of a motor vehicle, between the internal combustion engine and the gearbox.
  • Such a torsion damper can be integrated in many torque transmission devices such as a double damping flywheel, a coupling clutch of a hydraulic coupling device or a clutch friction.
  • first element may designate a torque input element of a shock absorber, such as a primary flywheel of a double damping flywheel and the term “second element”.
  • a torque output element such as a secondary flywheel of a double damping flywheel, or vice versa.
  • FIG. 1 shows a schematic perspective view of a double damping flywheel 1 in the assembled state.
  • a double damping flywheel 1 comprises a primary flywheel 2, intended to be fixed at the end of a crankshaft of an internal combustion engine, not shown, and a secondary flywheel 3 which is centered and guided on the primary flywheel 2 by means of a ball bearing.
  • the secondary flywheel 3 is intended to form the reaction plate for a clutch, not shown, ensuring the transmission of torque to the input shaft of a gearbox.
  • the flywheels of primary inertia 2 and secondary 3 are movably mounted about an axis of rotation X and are further movable in rotation relative to each other about said axis X.
  • the primary flywheel 2 comprises a radially inner hub supporting the rolling bearing ball which cooperates with an inner hub of the secondary flywheel 3. Ports for the passage of fastening screws are provided on the primary flywheel 2 and the secondary flywheel 3 in order to allow the attachment of the primary flywheel 2 to the crankshaft of the engine.
  • the secondary flywheel 3 also has holes for passage for fixing a damping means on the secondary flywheel 3 using fastening means 4 such as rivets.
  • the primary flywheel 2 carries, on its outer periphery, a ring gear 5 for driving in rotation of the primary flywheel 2 with a starter.
  • the secondary flywheel 3 has a flat annular surface 6, turned away from the primary flywheel 2, forming a bearing surface for a friction lining of a clutch disc (not shown).
  • the secondary flywheel 3 comprises, close to its outer edge, pads 7 and orifices 8 for mounting a clutch cover.
  • the primary flywheels 2 and secondary 3 are coupled in rotation by a damping means which transmits torque and dampen rotation acyclisms between the primary flywheel 2 and secondary 3 to reduce vibrations from the engine.
  • the damping means is capable of transmitting a driving torque from the primary flywheel to the secondary flywheel and a resistant torque from the secondary flywheel to the primary flywheel.
  • the transmission of a driving torque from the primary flywheel to the secondary flywheel causes relative rotation of the primary flywheel relative to the secondary flywheel from the angular position of rest in a direct direction of rotation, while the transmission of a resistant torque causes a relative rotation of the primary flywheel relative to the secondary flywheel from the angular position of rest in a direction of retro rotation.
  • the arrows 24, 124 represent the relative rotation in the direct direction of the primary flywheel with respect to the secondary flywheel from the angular position of rest while the arrows 21, 121 represent the relative rotation according to the retro direction of the primary flywheel relative to the secondary flywheel from the angular position of rest.
  • the damping means is an elastic means which exerts between the primary flywheel and the secondary flywheel a return force which tends to bring the flywheels of primary and secondary inertia to their angular position of rest.
  • the damping means thus makes it possible to damp the vibrations and irregularities of rotation between the flywheels of primary and secondary inertia while ensuring the transmission of the torque.
  • FIG. 2 represents a schematic perspective view of the double damping flywheel 1 of FIG. 1 in which the secondary flywheel 3 is partially shown so as to display the attachment of elastic blades 9 of a damping means on the secondary flywheel 3.
  • this damping means comprises two resilient blades 9 mounted integral in rotation with the secondary flywheel 3. Each blade 9 is fixed on the secondary flywheel by means of rivets 4.
  • a fixing section of each blade is arranged to remain rigid and does not cooperate with the cam follower 1 1 which will be described later.
  • the blades 9 are axially superimposed.
  • a first blade 9a is fixed directly in contact against the secondary flywheel 3.
  • a second blade 9b is fixed on the secondary flywheel 3 via a spacer 10.
  • This spacer 10 is interposed axially between the secondary flywheel 3 and the second blade 9b.
  • the spacer 10 has an axial thickness substantially equal to the thickness of the first blade 9a. The thickness of the spacer 10 avoids excessive friction between the first blade 9a and the second blade 9b during bending of the blades 9.
  • the fastening rivets 4 of the first blade 9a are symmetrical to the fastening rivets 4 of the the second blade 9b with respect to the axis of rotation X of the torsion damper 1.
  • FIG. 3 shows schematically the blades 9 cooperating with cam follower 1 1.
  • the blades 9 and the cam followers 1 1 of FIG. 3 are represented in a rest position of the double damping flywheel 1.
  • the rest position of the double damping flywheel 1 corresponds to an equilibrium position taken by the flywheels when no torque is transmitted between the primary and secondary flywheels.
  • the first blade 9a has a general shape of crescent moon or horseshoe.
  • the first blade 9a comprises, from a first end 12 to a second end 13, a first arcuate portion 14, a fixing portion 15 and a second arcuate portion 16.
  • the first blade 9a may, as desired, be made of in one piece or be composed of a plurality of lamellae arranged axially against each other.
  • the attachment portion 15 has two through-passages 17 intended to cooperate with the rivets 4 to ensure the attachment of the first blade 9a on the secondary flywheel 3.
  • the radius of curvature of the first arcuate portion 14 and the length of this first arcuate portion 14 are determined according to the desired stiffness characteristic of the first blade 9a.
  • the first arcuate portion 14 extends substantially circumferentially from the attachment portion 15 to the first end 12.
  • the first arcuate portion 14 has an increasing radial dimension from the first end 12 to the attachment portion 15.
  • the first blade 9a is symmetrical about an axis 22 perpendicular to the axis of rotation X and passing through the axis of rotation X.
  • this axis of symmetry 22 passes in the center of the fixing portion of the first blade 9a, between the first arcuate portion 14 and the second arcuate portion 16.
  • the second arcuate portion 16 has a shape similar to that of the first arcuate portion 14.
  • the first arcuate portion 14 has on a radially outer face a cam surface 18.
  • This cam surface 18 cooperates with a first cam follower 11a.
  • the cam surface 18 develops from the first end 12 to a rest zone 19 of the radially outer face of the first arcuate portion 14.
  • the resting zone 19 corresponds to the zone of the first arcuate portion 14 against which the first cam follower 1 1a is supported when the double damping flywheel 1 is in the rest position.
  • the first cam follower 11a is carried by the primary flywheel 2.
  • the first cam follower 11a here is a roller 20 rotatably mounted on the primary flywheel 2.
  • the first cam follower 11a is held in position. bearing against the cam surface 18.
  • the roller 20 is arranged to roll against the cam surface 18 during a relative movement between the primary flywheels 2 and secondary 3 in the forward direction 24.
  • the first cam follower 1 1 a is disposed radially outside the first arcuate portion 14 so as to radially maintain the first arcuate portion 14 when subjected to centrifugal force.
  • the cam surface 18 is arranged such that, for a relative rotation between the primary flywheel 2 and the secondary flywheel 3 in the forward direction 24 from the rest position as shown in Figure 3, the first cam follower 1 1 a moves on the cam surface 18 exerting a bending force on the first arcuate portion 14.
  • the first arcuate portion 14 exerts on the first cam follower 1 1 has a restoring force having a circumferential component which tends to return the primary flywheels 2 and secondary 3 to the rest position.
  • the first arcuate portion 14 is able to transmit a driving torque from the primary flywheel 2 to the secondary flywheel 3.
  • the torsional vibrations and the irregularities of torque that are produced by the engine and transmitted by the crankshaft to the primary flywheel 2 are damped by the bending of the first arcuate portion 14.
  • the second arcuate portion 16 has a cam surface 23.
  • the cam surface 23 cooperates with a second follower cam 1 1 b.
  • the second cam follower 11a is symmetrical to the first cam follower 11a relative to the axis of rotation X.
  • the cooperation between the cam surface 23 and the second cam follower 11b during a rotation relative between the primary flywheel 2 and the secondary flywheel 3 in the retro direction 21 is similar to the cooperation between the cam surface 18 of the first arcuate portion 14 and the first cam follower January 1 at a relative rotation between the primary flywheel 2 and secondary flywheel 3 in the forward direction 24.
  • first blade 9a and the second blade 9b illustrated in FIG. 3 have a similar shape.
  • first blade 9a and the second blade 9b are fixed on the secondary flywheel 3 in opposite orientations. More particularly, there is a symmetry of the blades relative to each other when they are projected in a plane orthogonal to the X axis.
  • the projection of the first blade 9a in a plane perpendicular to the axis of rotation X is symmetrical with respect to the axis of rotation X at the projection of the second blade 9b in this same plane perpendicular to the axis of rotation X.
  • the first blade 9a and the second blade 9b are also symmetrical in projection in a plane perpendicular to the axis of rotation X, with respect to a parallel plane. to the axis of rotation X and passing through the positions taken by the cam followers in the angular position of rest. This allows symmetrical damping in live and in retro.
  • a first arcuate portion 25 of the second blade 9b cooperates with the first cam follower 11a during a relative rotation between the primary flywheel 2 and the secondary flywheel 3 in the retro direction 21 and a second arcuate portion 26 of the second blade 9b cooperates with the second cam follower 1 1b during a relative rotation between the primary flywheel 2 and the secondary flywheel 3 in the forward direction 24.
  • the cooperation between the arcuate portions 25 and 26 of the second blade 9b and the first and second cam followers 11a and 11b is similar to the cooperation between the arcuate portions 14 and 16 of the first blade 9a and the first and second cam followers 1 1 a and 1 1 b.
  • a relative rotation between the primary flywheel 2 and the secondary flywheel 3 in the forward direction 24 from the rest position causes the first cam follower 11a to cooperate with the cam surface 18 of the first arcuate portion 14 of the first blade 9a and simultaneously the cooperation of the second cam follower 11b with a cam surface 27 of the second arcuate portion 26 of the second blade 9b.
  • a relative rotation between the primary flywheel 2 and the secondary flywheel 3 in the retro direction 21 from the rest position causes the second cam follower 1 1b to cooperate with the cam surface 23 of the second arcuate portion 16 of the first blade 9a and, simultaneously, the cooperation of the first cam follower 11a with a cam surface 28 of the first arcuate portion 25 of the second blade 9b.
  • the cooperation between the cam followers 1 1 and the blades 9 exerts a force capable of returning the primary flywheels 2 and secondary 3 to the rest position.
  • the cam surfaces of the blades are of identical circumferential length in the embodiments illustrated in Figures 2 to 6.
  • the first cam follower 11a in the rest position of the double damping flywheel 1, the first cam follower 11a is in simultaneous contact with the first arcuate portion 14 and 25 respectively of the first blade 9a and of the second blade 9b.
  • the second cam follower 11b is in simultaneous contact with the second arcuate portion 16 and 26 respectively of the first blade 9a and the second blade 9b.
  • the radii of curvature and the stiffness of the arcuate portions are such that, in the rest position, each cam follower 11 is located at the end of the cam surfaces of the two arcuate portions with which it cooperates.
  • each cam follower January 1 cooperates with only one arcuate portion of the blades 9, the other arcuate portion not being solicited.
  • each cam follower 1 1 bends only one of the first and second blades during a relative rotation between the primary flywheel and the secondary flywheel 3.
  • each cam follower 1 1 cooperates with one or other of the blades 9a, 9b.
  • Such a configuration of the damping means reduces the stress of the blades in use. More particularly, this configuration of the damping means prevents a same portion of the blade 9 is constrained both during a transmission of torque between the primary flywheel 2 and the secondary flywheel 3 in the retro direction 21 that in the direct direction 24.
  • the portion of the blade 9 biased during a transmission of torque between the primary flywheel 2 and the secondary flywheel 3 in the retro direction 21 is "independent" of the portion of the blade 9 requested during a transmission of torque between the primary flywheel 2 and the secondary flywheel 3 in the forward direction 24.
  • This independence of the portions of the blade 9 biased according to the direction of transmission of torque between the primary flywheel 2 and the secondary flywheel 3 also makes it possible to achieve independent cam surfaces. That is, the cam surfaces being carried by distinct arcuate portions, they may have distinct stiffness and radius of curvature characteristics so that the cooperation between the cam surface of a cam is portion of the blade 9 and the corresponding cam follower is not related to the cooperation between the cam surface of the other portion of the blade 9 and the corresponding cam follower.
  • the axial superposition of the blades 9 makes it possible to lengthen the circumferential length of the blades 9 and thus to obtain a better damping of vibrations and acyclisms with a large angular displacement.
  • the damping flywheel 1 can also be equipped with a friction assembly arranged to exert a friction-resistant torque during the relative rotation between the primary and secondary flywheels 3.
  • the friction assembly is thus able to dissipate by friction the energy accumulated in the blades 9.
  • Figure 4 is a front view of a double damping flywheel in Figure 1 having a relative rotation between the primary flywheel and the secondary flywheel and wherein the secondary flywheel is not shown to view the blades.
  • the first cam follower 11a moves from the angular position of rest along the cam surface 18 of the first portion. arcuate 14 of the first blade 9a.
  • the second blade 9b is shown in dashed lines in areas where the first blade 9a and the second blade 9b are axially superimposed.
  • the radius of curvature of the first arcuate portion 25 of the second blade 9b is such that the first cam follower 11a does not cooperate with said first arcuate portion 25 of the second blade 9b.
  • the second cam follower 1 1 b cooperates with the second arcuate portion 26 of the second blade 9b only.
  • the restoring force reminding the primary flywheel 2 and the secondary flywheel 3 to their rest position results from the bending of the first arcuate portion 14 of the first blade 9a and the bending of the second arcuate portion 26 of the second blade 9b which are the only portions urged during a relative rotation between the primary flywheel 2 and the secondary flywheel 3 in the forward direction 24.
  • the roller 20 is advantageously rotatably mounted on the primary flywheel 2 by means of rolling members (not shown), such as only balls, rollers or needles.
  • the roller 20 is for example carried by a cylindrical rod 29 extending parallel to the axis of rotation X and one end of which is fixed inside a bore (not shown) formed in the primary flywheel 2.
  • the cylindrical rod 29 is received inside a through orifice formed in a sleeve 30.
  • the roller 20 is rotatably mounted around the sleeve 30.
  • FIGS. 5 and 6 are front views of a double damping flywheel of FIG. 1 having a maximum relative rotation between the primary flywheel 2 and the secondary flywheel 3 respectively in the forward direction 24 and in the retro direction 21.
  • the secondary flywheel is not shown in order to visualize the blades 9.
  • the double damping flywheel 1 advantageously has a stop capable of limiting the relative movement between the primary flywheel 2 and the secondary flywheel.
  • the abutment surfaces 32 are for example formed around each cam follower 1 1 as illustrated in FIGS. 5 and 6.
  • Figure 7 is a front view of a double damping flywheel according to another embodiment in which the secondary flywheel is not shown to view the blades.
  • the elements of the double damping flywheel having a shape and / or function similar to the corresponding elements illustrated with reference to FIGS. 1 to 6 bear the same references increased by 100.
  • each blade 109a is asymmetrical. Which means the first arcuate portion 114 of the first blade 109a and the second arcuate portion 116 of the first blade 109a are not symmetrical.
  • the second arcuate portion 1 16 on which the second support member rests is shorter than the first arcuate portion 1 14 on which the first support member rests.
  • the first blade 109a and the second blade 109b in projection in a plane perpendicular to the axis of rotation X remain however symmetrical with respect to the axis of rotation X.
  • a second variant provides on the contrary that the first arcuate portion and the second arcuate portion 116 of the first blade 109a are symmetrical but that the first blade 109a and the second blade 109b project in a plane perpendicular to the axis.
  • rotation X are not symmetrical with respect to the axis of rotation X.
  • the asymmetry of the damping means causes a difference in circumferential length of the cam surfaces of the blades 109 between the direct direction 124 and the retro direction 121.
  • the cam surface 118 of the first arcuate portion 14 of the first blade 109a has a circumferential length greater than the circumferential length of the cam surface 123 of the second arcuate portion 1 16 of said first blade 109a.
  • the cam surface 127 of the second arcuate portion 126 of the second blade 109b has a circumferential length greater than the circumferential length of the cam surface 128 of the first arcuate portion 125 of the second blade 109b.
  • FIGS 8 and 9 show a front view of a double damping flywheel 101 of Figure 7 in a position of maximum relative rotation respectively in retro and forward direction. In these figures 8 and 9, the secondary flywheel 103 is not shown in order to view the blades 109.
  • each blade 109 is fixed by means of two rivets 104 or else, in the rest position, the cam followers 11 1 are simultaneously in contact with the corresponding cam surfaces of the two blades 109.
  • the structure is reversed and the blades are fixed on the primary flywheel 2 while the rollers are carried by the secondary flywheel 3.

Abstract

The invention relates to a torsional damper comprising: a first element and a second element that can be rotatably moved about an axis X; and a damping means (9) with plates, for transmitting torque and damping the rotational acyclisms between the first element and the second element, the damping means with plates comprising: a first and a second plate (9a, 9b) secured to the first element; and a first bearing body (11a) carried by the second element; and wherein, for a rotation in a first direction of rotation (21), bending of the first plate (9a) generates the first return force on the first bearing body (11a); and for a relative rotation in the second direction of rotation (24) opposing the first direction of rotation, bending of the second plate (9b) generates the second return force on the first bearing body.

Description

AMORTISSEUR DE TORSION  TORSION DAMPER
Domaine technique de l'invention Technical field of the invention
L'invention se rapporte au domaine des transmissions pour véhicule automobile et concerne, plus particulièrement, un double volant amortisseur. Etat de la technique The invention relates to the field of transmissions for a motor vehicle and relates, more particularly, a double damping flywheel. State of the art
Dans le domaine des transmissions automobiles, il est connu de munir les dispositifs de transmission de couple d'amortisseurs de torsion permettant d'absorber et d'amortir les vibrations et acyclismes générés par un moteur à combustion interne. Les amortisseurs de torsion comportent un élément d'entrée et un élément de sortie mobiles en rotation autour d'un axe de rotation commun et des moyens élastiques d'amortissement pour transmettre le couple et amortir les acyclismes de rotation entre l'élément d'entrée et l'élément de sortie. In the field of automotive transmissions, it is known to provide torsion damping torque transmission devices for absorbing and damping vibrations and acyclisms generated by an internal combustion engine. The torsion dampers comprise an input member and an output member rotatable about a common axis of rotation and resilient damping means for transmitting the torque and damping rotational acyclisms between the input member. and the output element.
De tels amortisseurs de torsion équipent notamment les doubles volants amortisseurs (DVA) et/ou les frictions d'embrayage, dans le cas d'une transmission manuelle ou robotisée, ou les embrayages de verrouillage, également appelés embrayages « lock-up », équipant les dispositifs d'accouplement hydraulique, dans le cas d'une transmission automatique. Such torsion dampers equip including double damping flywheels (DVA) and / or friction clutch, in the case of a manual or robotic transmission, or locking clutches, also called "lock-up" clutches, equipping hydraulic coupling devices, in the case of an automatic transmission.
Le document FR3000155 illustre un amortisseur de torsion comportant des moyens élastiques d'amortissement formés de deux lames élastiques montées sur l'élément d'entrée et coopérant chacune avec un suiveur de came respectif monté sur l'élément de sortie. The document FR3000155 illustrates a torsion damper comprising elastic damping means formed of two resilient blades mounted on the input element and each cooperating with a respective cam follower mounted on the output element.
Les lames et les suiveurs de came sont agencés de telle sorte que, pour un débattement angulaire entre l'élément d'entrée et l'élément de sortie, de part et d'autre d'une position angulaire relative de repos, le suiveur de came se déplace le long de la lame et, ce faisant, exerce un effort de flexion sur la lame élastique. Par réaction, la lame élastique exerce sur le suiveur de came une force de rappel qui tend à ramener les éléments d'entrée et de sortie vers leur position angulaire de repos. La flexion de la lame élastique permet ainsi d'amortir les vibrations et irrégularités de rotation entre l'élément d'entrée et l'élément de sortie tout en assurant la transmission de couple. The blades and cam followers are arranged such that, for angular displacement between the input member and the output member, on either side of a relative angular position of rest, the follower of cam moves along the blade and, in doing so, exerts a bending force on the resilient blade. By reaction, the resilient blade exerts on the cam follower a restoring force which tends to return the input and output elements to their angular rest position. The bending of the elastic blade thus makes it possible to damp the vibrations and rotational irregularities between the input member and the output member while providing torque transmission.
Cependant, les portions des lames soumises aux efforts de flexion provoqués par le suiveur de came sont sollicitées et soumises à des contraintes importantes quel que soit le sens de rotation relatif entre les éléments d'entrée et de sortie, c'est à dire qu'un couple entraînant soit transmis du volant primaire vers le volant secondaire ou qu'un couple résistant soit transmis du volant secondaire vers le volant primaire. However, the portions of the blades subjected to the bending forces caused by the cam follower are stressed and subjected to significant stresses whatever the relative direction of rotation between the input and output elements, that is to say that a driving torque is transmitted from the primary flywheel to the secondary flywheel or a resistant torque is transmitted from the secondary flywheel to the primary flywheel.
De plus, compte-tenu de cet agencement, les courbes caractéristiques de transmission du couple en fonction du débattement selon les sens direct et rétro ne peuvent être totalement décorrélées de telle sorte que certaines courbes complexes de transmission du couple en fonction du débattement angulaire ne peuvent être réalisées. Moreover, in view of this arrangement, the characteristic curves of transmission of the torque as a function of the deflection in the forward and backward directions can not be completely decorrelated so that certain complex curves of transmission of the torque as a function of the angular displacement can not to be realized.
Résumé Un aspect de l'invention part de l'idée de résoudre les inconvénients de l'art antérieur en proposant un amortisseur de torsion particulièrement efficace. SUMMARY One aspect of the invention is based on the idea of solving the disadvantages of the prior art by providing a particularly effective torsion damper.
Selon un mode de réalisation, l'invention fournit un amortisseur de torsion pour dispositif de transmission de couple comportant : According to one embodiment, the invention provides a torsion damper for a torque transmission device comprising:
un premier élément et un second élément mobiles en rotation l'un par rapport à l'autre autour d'un axe de rotation X, et  a first element and a second element movable in rotation relative to one another about an axis of rotation X, and
un moyen d'amortissement à lames apte à transmettre un couple de rotation entre le premier élément et le second élément et à amortir les acyclismes de rotation entre le premier élément et le second élément ; le moyen d'amortissement à lames comportant :  a blade damping means adapted to transmit a rotational torque between the first member and the second member and damping rotation acyclisms between the first member and the second member; the blade damping means comprising:
o une première lame élastiquement déformable et une seconde lame élastiquement déformable, la première lame et la seconde lame étant solidaires en rotation du premier élément, et  a first elastically deformable blade and a second elastically deformable blade, the first blade and the second blade being integral in rotation with the first element, and
o un premier organe d'appui porté par le second élément,  a first support member carried by the second element,
dans lequel le premier organe d'appui, la première lame et la seconde lame sont agencés de telle sorte que : le premier organe d'appui coopère avec la première lame en la faisant fléchir pour transmettre un couple du second élément vers le premier élément, et le premier organe d'appui coopère avec la seconde lame en la faisant fléchir pour transmettre un couple du premier élément vers le second élément. L'amortisseur selon l'invention permet ainsi d'éviter qu'un même organe d'appui sollicite une même lame pour transmettre, alternativement un couple du premier élément au second élément et du second élément au premier élément. L'amortisseur selon l'invention permet ainsi d'éviter la sollicitation d'une même portion de lame pour transmettre, alternativement un couple du premier élément au second élément et du second élément au premier élément wherein the first support member, the first blade and the second blade are arranged such that: the first support member cooperates with the first blade by bending it to transmit a torque from the second element to the first element, and the first support member cooperates with the second blade by bending it to transmit a torque of the first element to the second element. The damper according to the invention thus makes it possible to prevent the same support member from requesting the same blade to alternately transmit a torque from the first element to the second element and from the second element to the first element. The damper according to the invention thus makes it possible to avoid the biasing of the same blade portion to transmit, alternately, a torque from the first element to the second element and from the second element to the first element.
Ce système permet de réduire la fatigue des lames de l'amortisseur de torsion. En particulier, la transmission d'un couple selon un premier sens impacte une portion de la lame différente de la portion de lame sollicitée lors de la transmission d'un couple dans le sens opposé. This system reduces the fatigue of the blades of the torsion damper. In particular, the transmission of a torque in a first direction impacts a portion of the blade different from the portion of blade biased during the transmission of a torque in the opposite direction.
L'amortisseur de torsion permet également de transmettre un couple avec une contrainte acceptable. Le système de deux lames distinctes sollicitées selon le sens de transmission du couple permet ainsi d'augmenter la longueur des lames et donc de diminuer les contraintes subies par chacune des lames.  The torsion damper also makes it possible to transmit a torque with an acceptable stress. The system of two separate blades biased according to the direction of transmission of the torque thus makes it possible to increase the length of the blades and thus to reduce the stresses on each of the blades.
Par ailleurs, l'amortisseur permet également d'offrir une plus grande variété de courbes de transmission de couple du fait que les portions de lames sollicitées pour chaque sens de transmission du couple sont disjointes.  In addition, the damper also makes it possible to offer a greater variety of torque transmission curves because the portions of the blades biased for each direction of transmission of the torque are disjoint.
Selon d'autres modes de réalisation avantageux, un tel système peut présenter une ou plusieurs des caractéristiques suivantes : According to other advantageous embodiments, such a system may have one or more of the following characteristics:
le premier organe d'appui, la première lame et la seconde lame sont agencées de telle sorte que le premier organe d'appui coopère uniquement avec la première lame lorsqu'un couple est transmis du second élément vers le premier élément et uniquement avec la seconde lame lorsqu'un couple est transmis du premier élément vers le second élément.  the first support member, the first blade and the second blade are arranged such that the first support member cooperates only with the first blade when a torque is transmitted from the second element to the first element and only with the second. blade when a torque is transmitted from the first element to the second element.
le premier organe d'appui, la première lame et la seconde lame sont agencées de telle sorte que au moins une partie du couple soit transmis par la première lame quelle que soit la valeur d'un couple transmis du second élément vers le premier élément et que au moins une partie du couple soit transmis par la seconde lame quelle que soit la valeur d'un couple transmis du premier élément vers le second élément. the first support member, the first blade and the second blade are arranged such that at least a portion of the torque is transmitted by the first blade regardless of the value of a torque transmitted from the second element to the first element and that at least a part of the couple is transmitted by the second blade regardless of the value of a torque transmitted from the first element to the second element.
pour toute la plage de fonctionnement de l'amortisseur, le premier organe d'appui, coopère avec au moins l'une des première et seconde lames, le premier organe d'appui est simultanément en contact avec la première lame et avec la seconde lame dans la position angulaire de repos, le moyen d'amortissement à lames est agencé de telle sorte que, pour une transmission d'un couple du second élément vers le premier élément, une rotation relative selon un premier sens de rotation entre les premier et second éléments depuis une position angulaire de repos se produit et le moyen d'amortissement à lames exerce une première force de rappel pour rappeler les premier et second éléments vers leur position angulaire de repos, et que pour une transmission d'un couple du premier élément vers le second élément, une rotation relative selon un second sens de rotation opposé au premier sens de rotation entre les premier et second éléments depuis la position angulaire de repos se fait et le moyen d'amortissement à lames exerce une seconde force de rappel pour rappeler les premier et second éléments vers leur position angulaire de repos ; le premier organe d'appui, la première lame et la seconde lame étant agencées de telle sorte que : for the entire operating range of the damper, the first support member cooperates with at least one of the first and second blades, the first support member is simultaneously in contact with the first blade and with the second blade in the angular position of rest, the blade damping means is arranged such that, for a transmission of a torque from the second element to the first element, a relative rotation in a first direction of rotation between the first and second elements from an angular rest position occurs and the blade damping means exerts a first restoring force for biasing the first and second members towards their angular rest position, and for transmitting a torque of the first member to the second element, a relative rotation in a second direction of rotation opposite the first direction of rotation between the first and second elements from the angular position of rest is and the blade damping means exerts a second biasing force to bias the first and second members toward their angular rest position; the first support member, the first blade and the second blade being arranged such that:
o pour une rotation relative selon le premier sens de rotation entre les premier et second éléments depuis la position angulaire de repos, le premier organe d'appui coopère avec la première lame et exerce un effort de flexion sur ladite première lame, la flexion de la première lame produisant sur le premier organe d'appui la première force de rappel,  o for a relative rotation according to the first direction of rotation between the first and second elements from the angular position of rest, the first support member cooperates with the first blade and exerts a bending force on said first blade, bending the first blade producing on the first support member the first restoring force,
o pour une rotation relative selon le second sens de rotation opposé au premier sens de rotation entre les premier et second éléments depuis la position angulaire de repos, le premier organe d'appui exerce un effort de flexion sur la seconde lame, la flexion de la seconde lame produisant sur le premier organe d'appui la seconde force de rappel, chaque lame comporte :  o for a relative rotation in the second direction of rotation opposite the first direction of rotation between the first and second elements from the angular position of rest, the first support member exerts a bending force on the second blade, the bending of the second blade producing on the first support member the second restoring force, each blade comprises:
o une première section élastiquement déformable,  a first elastically deformable section,
o une seconde section élastiquement déformable, o une section de fixation fixe par rapport au premier élément, et dans lequel l'amortisseur comporte en outre un second organe d'appui porté par le second élément, le premier organe d'appui, le second organe d'appui, la première lame et la seconde lame étant agencées de telle sorte que : a second elastically deformable section, a fixing section fixed relative to the first element, and wherein the damper further comprises a second support member carried by the second element, the first support member, the second support member, the first blade; and the second blade being arranged such that:
o le premier organe d'appui coopère avec la première section déformable de la première lame en la faisant fléchir et le second organe d'appui coopère avec la seconde section déformable de la seconde lame en la faisant fléchir pour transmettre un couple du second élément vers le premier élément, et  the first support member cooperates with the first deformable section of the first blade by bending it and the second support member cooperates with the second deformable section of the second blade by bending it to transmit a torque of the second element towards the first element, and
o le second organe d'appui coopère avec la seconde section déformable de la première lame en la faisant fléchir et le premier organe d'appui coopère avec la première section déformable de la seconde lame en la faisant fléchir pour transmettre un couple du premier élément vers le second élément.  the second support member cooperates with the second deformable section of the first blade by bending it and the first support member cooperates with the first deformable section of the second blade by bending it to transmit a torque of the first element towards the second element.
Les premières et secondes lames sont agencées de telle sorte que :  The first and second blades are arranged so that:
o pour une rotation relative selon le premier sens de rotation entre les premier et second éléments depuis la position angulaire de repos, le premier organe d'appui exerce un effort de flexion sur la première section déformable de la première lame et le second organe d'appui exerce un effort de flexion sur la seconde section déformable de la seconde lame, la flexion de la première section déformable de la première lame et la flexion de la seconde section déformable de la seconde lame produisant conjointement la première force de rappel, o pour une rotation relative selon le second sens de rotation entre les premier et second éléments depuis la position angulaire depuis la position angulaire de repos, le second organe d'appui exerce un effort de flexion sur la seconde section déformable de la première lame et le premier organe d'appui exerce une flexion sur la première section déformable de la seconde lame, la flexion de la seconde section déformable de la première lame et la flexion de la première section déformable de la seconde lame formant conjointement la seconde force de rappel,  o for a relative rotation in the first direction of rotation between the first and second elements from the angular position of rest, the first support member exerts a bending force on the first deformable section of the first blade and the second member of support exerts a bending force on the second deformable section of the second blade, the bending of the first deformable section of the first blade and the bending of the second deformable section of the second blade jointly producing the first return force, o for a relative rotation according to the second direction of rotation between the first and second elements from the angular position from the angular position of rest, the second support member exerts a bending force on the second deformable section of the first blade and the first member d 'support exerts a bending on the first deformable section of the second blade, the bending of the second deformable section of the first me and the bending of the first deformable section of the second blade jointly forming the second restoring force,
l'amortisseur comporte en outre une butée de fin de course de manière à limiter la rotation relative entre le premier élément et le second élément. L'amortisseur comporte en outre: the damper further comprises an end stop so as to limit the relative rotation between the first element and the second element. The damper further comprises:
o une troisième et une quatrième lames élastiquement déformables solidaires en rotation du premier élément,  a third and a fourth elastically deformable blades integral in rotation with the first element,
o un second organe d'appui porté par le second élément,  a second support member carried by the second element,
dans lequel le second organe d'appui, la troisième lame et la quatrième lame sont agencées de telle sorte que :  wherein the second bearing member, the third blade and the fourth blade are arranged such that:
o pour une rotation relative selon le premier sens de rotation entre les premier et second éléments depuis la position angulaire de repos, le second organe d'appui coopère avec la troisième lame et exerce un effort de flexion sur ladite troisième lame, la première force de rappel étant produite conjointement par la flexion des première et troisième lames respectivement sur le premier organe d'appui et sur le second organe d'appui,  o for a relative rotation in the first direction of rotation between the first and second elements from the angular position of rest, the second support member cooperates with the third blade and exerts a bending force on said third blade, the first force of recall being produced jointly by the bending of the first and third blades respectively on the first support member and on the second support member,
o pour une rotation relative selon le second sens de rotation opposé au premier sens de rotation entre les premier et second éléments depuis la position angulaire depuis la position angulaire de repos, le second organe d'appui exerce un effort de flexion sur la quatrième lame, la seconde force de rappel étant produite conjointement par la flexion des seconde et quatrième lames respectivement sur le premier organe d'appui et sur le second organe d'appui. chaque lame comporte :  o for a relative rotation in the second direction of rotation opposite the first direction of rotation between the first and second elements from the angular position from the angular position of rest, the second support member exerts a bending force on the fourth blade, the second restoring force being produced jointly by the bending of the second and fourth blades respectively on the first support member and the second support member. each blade comprises:
o une première section élastiquement déformable  a first elastically deformable section
o une seconde section élastiquement déformable  o a second elastically deformable section
o une section de fixation fixe par rapport au premier élément, et l'amortisseur comporte en outre un second organe d'appui porté par le second élément, le premier organe d'appui étant agencé pour coopérer avec la première section déformable des première et seconde lames, le second organe d'appui étant agencé pour coopérer avec la seconde section déformable des première et seconde lames, les premier et second organes d'appuis et les premières et secondes lames étant agencées de telle sorte que :  a fixing section fixed relative to the first element, and the damper further comprises a second support member carried by the second element, the first support member being arranged to cooperate with the first deformable section of the first and second blades, the second support member being arranged to cooperate with the second deformable section of the first and second blades, the first and second bearing members and the first and second blades being arranged such that:
o pour une rotation relative selon le premier sens de rotation entre les premier et second éléments depuis la position angulaire de repos, le premier organe d'appui exerce un effort de flexion sur la première section déformable de la première lame et le second organe d'appui exerce un effort de flexion sur la seconde section déformable de la seconde lame, la flexion de la première section déformable de la première lame et la flexion de la seconde section de la seconde lame produisant conjointement la première force de rappel, o for a relative rotation in the first direction of rotation between the first and second elements from the angular position of rest, the first support member exerts a bending force on the first deformable section of the first blade and the second support member exerts a bending force on the second deformable section of the second blade, the bending of the first deformable section of the first blade and the bending of the second section of the second blade jointly producing the first return force,
o pour une rotation relative selon le second sens de rotation entre les premier et second éléments depuis la position angulaire de repos, le second organe d'appui exerce un effort de flexion sur la seconde section déformable de la première lame et le premier organe d'appui exerce une flexion sur la première section déformable de la seconde lame, la flexion de la seconde section déformable de la première lame et la flexion de la première section de la seconde lame formant conjointement la seconde force de rappel,  o for a relative rotation according to the second direction of rotation between the first and second elements from the angular position of rest, the second support member exerts a bending force on the second deformable section of the first blade and the first member of support exerts bending on the first deformable section of the second blade, bending the second deformable section of the first blade and bending the first section of the second blade jointly forming the second restoring force,
la section de fixation de chaque lame est située entre la première section déformable et la seconde section déformable de ladite lame.  the attachment section of each blade is located between the first deformable section and the second deformable section of said blade.
chaque lame présente un axe de symétrie, une projection de la première lame dans un plan perpendiculaire à l'axe de rotation X étant symétrique à une projection de la seconde lame dans ledit plan perpendiculaire à l'axe de rotation X par rapport à l'axe de rotation X.  each blade has an axis of symmetry, a projection of the first blade in a plane perpendicular to the axis of rotation X being symmetrical to a projection of the second blade in said plane perpendicular to the axis of rotation X with respect to the X axis of rotation
- en variante chaque lame présente un axe de symétrie, une projection de la première lame dans un plan perpendiculaire à l'axe de rotation X étant asymétrique à une projection de la seconde lame dans ledit plan perpendiculaire à l'axe de rotation X par rapport à l'axe de rotation X. alternatively, each blade has an axis of symmetry, a projection of the first blade in a plane perpendicular to the axis of rotation X being asymmetrical to a projection of the second blade in said plane perpendicular to the axis of rotation X relative to to the axis of rotation X.
chaque lame est asymétrique, une projection de la première lame dans un plan perpendiculaire à l'axe de rotation X étant symétrique à une projection de la seconde lame dans ledit plan perpendiculaire à l'axe de rotation X par rapport à l'axe de rotation X  each blade is asymmetrical, a projection of the first blade in a plane perpendicular to the axis of rotation X being symmetrical to a projection of the second blade in said plane perpendicular to the axis of rotation X with respect to the axis of rotation X
la première et la seconde lame sont fixées de manière indépendante l'une de l'autre sur le premier élément.  the first and second blades are fixed independently of one another on the first element.
- la première lame et la seconde lame sont empilées axialement. the first blade and the second blade are stacked axially.
la première lame est fixée sur le premier élément en appui axial contre ledit premier élément, l'amortisseur de torsion comportant en outre une entretoise, la seconde lame étant fixée sur le premier élément en appui axial contre l'entretoise, l'entretoise étant axialement intercalée entre la seconde lame et le premier élément, une portion de la première lame et une portion de la seconde lame étant axialement superposées, the first blade is fixed on the first element bearing axially against said first element, the torsion damper further comprising a spacer, the second blade being fixed on the first element bearing axially against the spacer, the spacer being axially interposed between the second blade and the first element, a portion of the first blade and a portion of the second blade being axially superimposed,
chaque lame est fixée sur le premier élément par deux rivets,  each blade is fixed on the first element by two rivets,
chaque première et seconde lames comporte une surface de came et le premier organe d'appui comporte un suiveur de came agencé pour coopérer avec la surface de came de la première lame pour transmettre un couple du second élément vers le premier élément et avec la surface de came de la seconde lame pour transmettre un couple du premier élément vers le second élément.  each first and second blade has a cam surface and the first bearing member comprises a cam follower arranged to cooperate with the cam surface of the first blade to transmit a torque of the second member to the first member and the surface of the first member; cam of the second blade for transmitting a torque from the first member to the second member.
- le suiveur de came est un galet monté mobile en rotation sur le second élément par l'intermédiaire d'un palier à roulement.  - The cam follower is a roller mounted to rotate on the second element by means of a rolling bearing.
le premier organe d'appui est disposé radialement à l'extérieur des première et seconde lames élastiques. Une telle disposition permet de retenir radialement la lame élastique lorsqu'elle est soumise à la force centrifuge. - la lame élastique est agencée pour se déformer dans un plan perpendiculaire à l'axe de rotation.  the first support member is arranged radially outside the first and second resilient blades. Such an arrangement makes it possible to retain the elastic blade radially when it is subjected to centrifugal force. - The elastic blade is arranged to deform in a plane perpendicular to the axis of rotation.
Brève description des figures Brief description of the figures
L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux figures annexées. The invention will be better understood, and other objects, details, characteristics and advantages thereof will appear more clearly in the course of the following description of several particular embodiments of the invention, given solely for illustrative and non-limiting purposes. with reference to the appended figures.
Sur ces figures : In these figures:
La figure 1 est une vue en perspective schématique d'un double volant amortisseur à l'état monté; Figure 1 is a schematic perspective view of a double damping flywheel in the mounted state;
- La figure 2 est une vue en perspective schématique du double volant amortisseur de la figure 1 dans lequel le volant secondaire est partiellement représenté de manière à visualiser les moyens de fixation des lames ;  FIG. 2 is a schematic perspective view of the double damping flywheel of FIG. 1 in which the secondary flywheel is partially shown so as to display the means for fixing the blades;
La figure 3 est une représentation schématique des lames et des suiveurs de came dans une position de repos du double volant amortisseur.  Figure 3 is a schematic representation of the blades and cam followers in a rest position of the double damping flywheel.
- La figure 4 est une vue de face d'un double volant amortisseur de la figure 1 représenté dans une position de débattement angulaire des volants selon un sens direct par rapport à leur position de repos et dans lequel le volant secondaire n'est pas représenté afin de visualiser les lames ; FIG. 4 is a front view of a double damping flywheel of FIG. 1 represented in an angular displacement position of the steering wheels according to a direct direction relative to their rest position and in which the secondary flywheel is not shown to view the blades;
La figure 5 est une vue de face d'un double volant amortisseur de la figure 1 représenté dans une position de débattement angulaire maximal des volants selon un sens direct par rapport à leur position de repos dans lequel le volant secondaire n'est pas représenté afin de visualiser les lames ;  FIG. 5 is a front view of a double damping flywheel of FIG. 1 represented in a position of maximum angular displacement of the flywheels in a direct direction with respect to their rest position in which the secondary flywheel is not shown in order to to visualize the blades;
La figure 6 est une vue de face du double volant amortisseur de la figure 1 représenté dans une position de débattement angulaire maximal selon un sens rétro et dans lequel le volant secondaire n'est pas représenté afin de visualiser les lames;  Figure 6 is a front view of the double damping flywheel of Figure 1 shown in a position of maximum angular displacement in a retro direction and wherein the secondary flywheel is not shown to view the blades;
La figure 7 est une vue de face d'un double volant amortisseur selon un autre mode de réalisation représenté dans une position de repos et dans lequel le volant secondaire n'est pas représenté afin de visualiser les lames; La figure 8 est une vue de face du double volant amortisseur de la figure 7 représenté dans une position de débattement angulaire maximal dans le sens direct entre le volant primaire et le volant secondaire et dans lequel le volant secondaire n'est pas représenté afin de visualiser les lames;  Figure 7 is a front view of a double damping flywheel according to another embodiment shown in a rest position and wherein the secondary flywheel is not shown to view the blades; FIG. 8 is a front view of the double damping flywheel of FIG. 7 represented in a position of maximum angular displacement in the direct direction between the primary flywheel and the secondary flywheel and in which the secondary flywheel is not shown in order to visualize the blades;
La figure 9 est une vue de face du double volant amortisseur de la figure 7 représenté dans une position de débattement angulaire maximal dans le sens rétro présentant une rotation relative maximale selon le second sens de rotation entre le volant primaire et le volant secondaire et dans lequel le volant secondaire n'est pas représenté afin de visualiser les lames.  FIG. 9 is a front view of the double damping flywheel of FIG. 7 represented in a position of maximum angular displacement in the retro direction having a maximum relative rotation in the second direction of rotation between the primary flywheel and the secondary flywheel and in which the secondary flywheel is not shown to view the blades.
Description détaillée de modes de réalisation Detailed description of embodiments
Dans la description et les revendications, on utilisera, les termes "externe" et "interne" ainsi que les orientations "axiale" et "radiale" pour désigner, selon les définitions données dans la description, des éléments de l'amortisseur de torsion. Par convention, l'orientation "radiale" est dirigée orthogonalement à l'axe X de rotation des éléments de Γ amortisseur de torsion déterminant l'orientation "axiale" et, de l'intérieur vers l'extérieur en s'éloignant dudit axe. L'orientation "circonférentielle" est dirigée orthogonalement à l'axe X de rotation de l'amortisseur de torsion et orthogonalement à la direction radiale. Ainsi, un élément décrit comme se développant circonférentiellement est un élément dont une composante se développe selon une direction circonférentielle. Les termes "externe" et "interne" sont utilisés pour définir la position relative d'un élément par rapport à un autre, par référence à l'axe de rotation X de l'amortisseur, un élément proche de l'axe est ainsi qualifié d'interne par opposition à un élément externe situé radialement en périphérie. La description ci-après est réalisée à titre illustratif dans le cadre d'un double volant amortisseur. Cependant, l'invention s'applique à tout amortisseur de torsion destiné à être disposé dans la chaîne de transmission d'un véhicule automobile, entre le moteur à explosion et la boîte de vitesse. Un tel amortisseur de torsion peut être intégré à de nombreux dispositifs de transmission de couple tels qu'un double volant amortisseur, un embrayage de pontage d'un dispositif d'accouplement hydraulique ou encore une friction d'embrayage. Au sens de la présente description et des revendications, le terme de « premier élément » pourra désigner un élément d'entrée de couple d'un amortisseur, tel qu'un volant primaire d'un double volant amortisseur et le terme de « second élément » un élément de sortie de couple, tel qu'un volant secondaire d'un double volant amortisseur, ou inversement. In the description and the claims, the terms "external" and "internal" as well as the "axial" and "radial" orientations will be used to designate, according to the definitions given in the description, elements of the torsion damper. By convention, the "radial" orientation is directed orthogonally to the X axis of rotation of the torsion damping elements determining the "axial" orientation and, from the inside to the outside, away from said axis. The "circumferential" orientation is directed orthogonally to the X axis of rotation of the torsion damper and orthogonal to the radial direction. Thus, an element described as circumferentially developing is an element whose component develops in a circumferential direction. The terms "external" and "internal" are used to define the relative position of one element relative to another, with reference to the axis of rotation X of the damper, an element close to the axis is thus described as internal as opposed to an external element located radially at the periphery. The description below is for illustrative purposes in the context of a double damping flywheel. However, the invention applies to any torsion damper intended to be disposed in the transmission chain of a motor vehicle, between the internal combustion engine and the gearbox. Such a torsion damper can be integrated in many torque transmission devices such as a double damping flywheel, a coupling clutch of a hydraulic coupling device or a clutch friction. For the purposes of the present description and of the claims, the term "first element" may designate a torque input element of a shock absorber, such as a primary flywheel of a double damping flywheel and the term "second element". A torque output element, such as a secondary flywheel of a double damping flywheel, or vice versa.
La figure 1 représente une vue en perspective schématique d'un double volant amortisseur 1 à l'état monté. Un double volant amortisseur 1 comporte un volant d'inertie primaire 2, destiné à être fixé en bout d'un vilebrequin d'un moteur à combustion interne, non représenté, et un volant d'inertie secondaire 3 qui est centré et guidé sur le volant primaire 2 au moyen d'un palier à roulement à billes. Le volant secondaire 3 est destiné à former le plateau de réaction pour un embrayage, non représenté, assurant la transmission du couple vers l'arbre d'entrée d'une boîte de vitesse. Les volants d'inertie primaire 2 et secondaire 3 sont montés mobiles autour d'un axe de rotation X et sont, en outre, mobiles en rotation l'un par rapport à l'autre autour dudit axe X. Figure 1 shows a schematic perspective view of a double damping flywheel 1 in the assembled state. A double damping flywheel 1 comprises a primary flywheel 2, intended to be fixed at the end of a crankshaft of an internal combustion engine, not shown, and a secondary flywheel 3 which is centered and guided on the primary flywheel 2 by means of a ball bearing. The secondary flywheel 3 is intended to form the reaction plate for a clutch, not shown, ensuring the transmission of torque to the input shaft of a gearbox. The flywheels of primary inertia 2 and secondary 3 are movably mounted about an axis of rotation X and are further movable in rotation relative to each other about said axis X.
Le volant primaire 2 comporte un moyeu radialement interne supportant le palier à roulement billes qui coopère avec un moyeu interne du volant secondaire 3. Des orifices pour le passage de vis de fixation sont prévus sur le volant primaire 2 et sur le volant secondaire 3 afin de permettre la fixation du volant primaire 2 sur le vilebrequin du moteur. Le volant secondaire 3 présente également des orifices de passage pour la fixation d'un moyen d'amortissement sur le volant secondaire 3 à l'aide de moyens de fixation 4 tels que des rivets. Le volant primaire 2 porte, sur sa périphérie extérieure, une couronne dentée 5 pour l'entraînement en rotation du volant primaire 2 à l'aide d'un démarreur. Le volant secondaire 3 comporte une surface annulaire plane 6, tournée du côté opposé au volant primaire 2, formant une surface d'appui pour une garniture de friction d'un disque d'embrayage (non représenté). Le volant secondaire 3 comporte, à proximité de son bord externe, des plots 7 et des orifices 8 servant au montage d'un couvercle d'embrayage. Les volants primaire 2 et secondaire 3 sont couplés en rotation par un moyen d'amortissement qui permet de transmettre un couple et d'amortir les acyclismes de rotation entre les volants primaire 2 et secondaire 3 afin de réduire les vibrations provenant du moteur thermique. Le moyen d'amortissement est apte à transmettre un couple entraînant du volant primaire vers le volant secondaire et un couple résistant du volant secondaire vers le volant primaire. La transmission d'un couple entraînant du volant primaire vers le volant secondaire entraîne une rotation relative du volant primaire par rapport au volant secondaire depuis la position angulaire de repos selon un sens de rotation direct, alors que la transmission d'un couple résistant entraîne une rotation relative du volant primaire par rapport au volant secondaire depuis la position angulaire de repos selon un sens de rotation rétro. Sur les figures 3 à 9, ci-dessous, les flèches 24, 124 représentent la rotation relative selon le sens direct du volant primaire par rapport au volant secondaire depuis la position angulaire de repos alors que les flèches 21 , 121 représentent la rotation relative selon le sens rétro du volant primaire par rapport au volant secondaire depuis la position angulaire de repos. Le moyen d'amortissement est un moyen élastique qui exerce entre le volant primaire et le volant secondaire une force de rappel qui tend à ramener les volants d'inertie primaire et secondaire vers leur position angulaire de repos. Le moyen d'amortissement permet ainsi d'amortir les vibrations et irrégularités de rotation entre les volants d'inertie primaire et secondaire tout en assurant la transmission du couple. The primary flywheel 2 comprises a radially inner hub supporting the rolling bearing ball which cooperates with an inner hub of the secondary flywheel 3. Ports for the passage of fastening screws are provided on the primary flywheel 2 and the secondary flywheel 3 in order to allow the attachment of the primary flywheel 2 to the crankshaft of the engine. The secondary flywheel 3 also has holes for passage for fixing a damping means on the secondary flywheel 3 using fastening means 4 such as rivets. The primary flywheel 2 carries, on its outer periphery, a ring gear 5 for driving in rotation of the primary flywheel 2 with a starter. The secondary flywheel 3 has a flat annular surface 6, turned away from the primary flywheel 2, forming a bearing surface for a friction lining of a clutch disc (not shown). The secondary flywheel 3 comprises, close to its outer edge, pads 7 and orifices 8 for mounting a clutch cover. The primary flywheels 2 and secondary 3 are coupled in rotation by a damping means which transmits torque and dampen rotation acyclisms between the primary flywheel 2 and secondary 3 to reduce vibrations from the engine. The damping means is capable of transmitting a driving torque from the primary flywheel to the secondary flywheel and a resistant torque from the secondary flywheel to the primary flywheel. The transmission of a driving torque from the primary flywheel to the secondary flywheel causes relative rotation of the primary flywheel relative to the secondary flywheel from the angular position of rest in a direct direction of rotation, while the transmission of a resistant torque causes a relative rotation of the primary flywheel relative to the secondary flywheel from the angular position of rest in a direction of retro rotation. In FIGS. 3 to 9, below, the arrows 24, 124 represent the relative rotation in the direct direction of the primary flywheel with respect to the secondary flywheel from the angular position of rest while the arrows 21, 121 represent the relative rotation according to the retro direction of the primary flywheel relative to the secondary flywheel from the angular position of rest. The damping means is an elastic means which exerts between the primary flywheel and the secondary flywheel a return force which tends to bring the flywheels of primary and secondary inertia to their angular position of rest. The damping means thus makes it possible to damp the vibrations and irregularities of rotation between the flywheels of primary and secondary inertia while ensuring the transmission of the torque.
La figure 2 représente une vue en perspective schématique du double volant amortisseur 1 de la figure 1 dans lequel le volant secondaire 3 est partiellement représenté de manière à visualiser la fixation de lames élastiques 9 d'un moyen d'amortissement sur le volant secondaire 3. FIG. 2 represents a schematic perspective view of the double damping flywheel 1 of FIG. 1 in which the secondary flywheel 3 is partially shown so as to display the attachment of elastic blades 9 of a damping means on the secondary flywheel 3.
Dans le mode de réalisation représenté sur les figures 2 à 9, ce moyen d'amortissement comporte deux lames élastiques 9 montées solidaires en rotation du volant secondaire 3. Chaque lame 9 est fixée sur le volant secondaire à l'aide de rivets 4. In the embodiment shown in FIGS. 2 to 9, this damping means comprises two resilient blades 9 mounted integral in rotation with the secondary flywheel 3. Each blade 9 is fixed on the secondary flywheel by means of rivets 4.
Une section de fixation de chaque lame est agencée pour rester rigide et ne coopère pas avec les suiveurs de came 1 1 qui seront décrits par la suite. A fixing section of each blade is arranged to remain rigid and does not cooperate with the cam follower 1 1 which will be described later.
Les lames 9 sont axialement superposées. Une première lame 9a est fixée directement en contact contre le volant secondaire 3. Une seconde lame 9b est fixée sur le volant secondaire 3 par l'intermédiaire d'une entretoise 10. Cette entretoise 10 est intercalée axialement entre le volant secondaire 3 et la seconde lame 9b. L'entretoise 10 présente une épaisseur axiale sensiblement égale à l'épaisseur de la première lame 9a. L'épaisseur de l'entretoise 10 évite des frottements trop importants entre la première lame 9a et la seconde lame 9b lors d'une flexion des lames 9. Les rivets de fixation 4 de la première lame 9a sont symétriques aux rivets de fixation 4 de la seconde lame 9b par rapport à l'axe de rotation X de l'amortisseur de torsion 1 . The blades 9 are axially superimposed. A first blade 9a is fixed directly in contact against the secondary flywheel 3. A second blade 9b is fixed on the secondary flywheel 3 via a spacer 10. This spacer 10 is interposed axially between the secondary flywheel 3 and the second blade 9b. The spacer 10 has an axial thickness substantially equal to the thickness of the first blade 9a. The thickness of the spacer 10 avoids excessive friction between the first blade 9a and the second blade 9b during bending of the blades 9. The fastening rivets 4 of the first blade 9a are symmetrical to the fastening rivets 4 of the the second blade 9b with respect to the axis of rotation X of the torsion damper 1.
La figure 3 représente schématiquement les lames 9 coopérant avec des suiveurs de came 1 1 . Figure 3 shows schematically the blades 9 cooperating with cam follower 1 1.
Les lames 9 et les suiveurs de came 1 1 de la figure 3 sont représentés dans une position de repos du double volant amortisseur 1 . La position de repos du double volant amortisseur 1 correspond à une position d'équilibre prise par les volants lorsqu'aucun couple n'est transmis entre les volants primaire et secondaire. La première lame 9a présente une forme générale de croissant de lune ou de fer à cheval. La première lame 9a comporte, depuis une première extrémité 12 jusqu'à une seconde extrémité 13, une première portion arquée 14, une portion de fixation 15 et une seconde portion arquée 16. La première lame 9a peut, au choix, être réalisée d'un seul tenant ou être composée d'une pluralité de lamelles disposées axialement les unes contre les autres. La portion de fixation 15 comporte deux passages 17 traversant destinés à coopérer avec les rivets 4 afin d'assurer la fixation de la première lame 9a sur le volant secondaire 3. The blades 9 and the cam followers 1 1 of FIG. 3 are represented in a rest position of the double damping flywheel 1. The rest position of the double damping flywheel 1 corresponds to an equilibrium position taken by the flywheels when no torque is transmitted between the primary and secondary flywheels. The first blade 9a has a general shape of crescent moon or horseshoe. The first blade 9a comprises, from a first end 12 to a second end 13, a first arcuate portion 14, a fixing portion 15 and a second arcuate portion 16. The first blade 9a may, as desired, be made of in one piece or be composed of a plurality of lamellae arranged axially against each other. The attachment portion 15 has two through-passages 17 intended to cooperate with the rivets 4 to ensure the attachment of the first blade 9a on the secondary flywheel 3.
Le rayon de courbure de la première portion arquée 14 ainsi que la longueur de cette première portion arquée 14 sont déterminées en fonction de la caractéristique de raideur souhaitée de la première lame 9a. La première portion arquée 14 s'étend de manière sensiblement circonférentielle depuis la portion de fixation 15 jusqu'à la première extrémité 12. La première portion arquée 14 présente une dimension radiale croissante depuis la première extrémité 12 jusqu'à la portion de fixation 15. The radius of curvature of the first arcuate portion 14 and the length of this first arcuate portion 14 are determined according to the desired stiffness characteristic of the first blade 9a. The first arcuate portion 14 extends substantially circumferentially from the attachment portion 15 to the first end 12. The first arcuate portion 14 has an increasing radial dimension from the first end 12 to the attachment portion 15.
La première lame 9a est symétrique par rapport à un axe 22 perpendiculaire à l'axe de rotation X et passant par l'axe de rotation X. Dans le mode de réalisation illustré, cet axe de symétrie 22 passe au centre de la portion de fixation de la première lame 9a, entre la première portion arquée 14 et la seconde portion arquée 16. Ainsi, la seconde portion arquée 16 présente une forme analogue à celle de la première portion arquée 14. The first blade 9a is symmetrical about an axis 22 perpendicular to the axis of rotation X and passing through the axis of rotation X. In the illustrated embodiment, this axis of symmetry 22 passes in the center of the fixing portion of the first blade 9a, between the first arcuate portion 14 and the second arcuate portion 16. Thus, the second arcuate portion 16 has a shape similar to that of the first arcuate portion 14.
La première portion arquée 14 présente sur une face radialement externe une surface de came 18. Cette surface de came 18 coopère avec un premier suiveur de came 1 1 a. La surface de came 18 se développe depuis la première extrémité 12 jusqu'à une zone de repos 19 de la face radialement externe de la première portion arquée 14. La zone de repos 19 correspond à la zone de la première portion arquée 14 contre laquelle le premier suiveur de came 1 1 a est en appui lorsque le double volant amortisseur 1 est en position de repos. The first arcuate portion 14 has on a radially outer face a cam surface 18. This cam surface 18 cooperates with a first cam follower 11a. The cam surface 18 develops from the first end 12 to a rest zone 19 of the radially outer face of the first arcuate portion 14. The resting zone 19 corresponds to the zone of the first arcuate portion 14 against which the first cam follower 1 1a is supported when the double damping flywheel 1 is in the rest position.
Le premier suiveur de came 1 1 a est porté par le volant primaire 2. Le premier suiveur de came 1 1 a est ici un galet 20 monté mobile en rotation sur le volant primaire 2. Le premier suiveur de came 1 1 a est maintenu en appui contre la surface de came 18. Le galet 20 est agencé pour rouler contre la surface de came 18 lors d'un mouvement relatif entre les volants primaire 2 et secondaire 3 selon le sens direct 24. Le premier suiveur de came 1 1 a est disposé radialement à l'extérieur de la première portion arquée 14 de sorte à maintenir radialement la première portion arquée 14 lorsqu'elle est soumise à la force centrifuge. La surface de came 18 est agencée de telle sorte que, pour une rotation relative entre le volant primaire 2 et le volant secondaire 3 selon le sens direct 24 depuis la position de repos telle que représentée sur la figure 3, le premier suiveur de came 1 1 a se déplace sur la surface de came 18 en exerçant un effort de flexion sur la première portion arquée 14. Par réaction, la première portion arquée 14 exerce sur le premier suiveur de came 1 1 a une force de rappel ayant une composante circonférentielle qui tend à ramener les volants primaire 2 et secondaire 3 vers la position de repos. Ainsi, la première portion arquée 14 est apte à transmettre un couple entraînant du volant primaire 2 vers le volant secondaire 3. En outre, les vibrations de torsion et les irrégularités de couple qui sont produites par le moteur et transmises par le vilebrequin au volant primaire 2 sont amorties par la flexion de la première portion arquée 14. The first cam follower 11a is carried by the primary flywheel 2. The first cam follower 11a here is a roller 20 rotatably mounted on the primary flywheel 2. The first cam follower 11a is held in position. bearing against the cam surface 18. The roller 20 is arranged to roll against the cam surface 18 during a relative movement between the primary flywheels 2 and secondary 3 in the forward direction 24. The first cam follower 1 1 a is disposed radially outside the first arcuate portion 14 so as to radially maintain the first arcuate portion 14 when subjected to centrifugal force. The cam surface 18 is arranged such that, for a relative rotation between the primary flywheel 2 and the secondary flywheel 3 in the forward direction 24 from the rest position as shown in Figure 3, the first cam follower 1 1 a moves on the cam surface 18 exerting a bending force on the first arcuate portion 14. By reaction, the first arcuate portion 14 exerts on the first cam follower 1 1 has a restoring force having a circumferential component which tends to return the primary flywheels 2 and secondary 3 to the rest position. Thus, the first arcuate portion 14 is able to transmit a driving torque from the primary flywheel 2 to the secondary flywheel 3. In addition, the torsional vibrations and the irregularities of torque that are produced by the engine and transmitted by the crankshaft to the primary flywheel 2 are damped by the bending of the first arcuate portion 14.
La seconde portion arquée 16 présente une surface de came 23. Lors d'une rotation relative entre le volant primaire 2 et le volant secondaire 3 depuis la position angulaire de repos selon le sens rétro 21 , la surface de came 23 coopère avec un second suiveur de came 1 1 b. Le second suiveur de came 1 1 a est symétrique au premier suiveur de came 1 1 a par rapport à l'axe de rotation X. La coopération entre la surface de came 23 et le second suiveur de came 1 1 b lors d'une rotation relative entre le volant primaire 2 et le volant secondaire 3 selon le sens rétro 21 est analogue à la coopération entre la surface de came 18 de la première portion arquée 14 et le premier suiveur de came 1 1 a lors d'une rotation relative entre le volant primaire 2 et le volant secondaire 3 selon le sens direct 24. The second arcuate portion 16 has a cam surface 23. During a relative rotation between the primary flywheel 2 and the secondary flywheel 3 from the angular position of rest in the retro direction 21, the cam surface 23 cooperates with a second follower cam 1 1 b. The second cam follower 11a is symmetrical to the first cam follower 11a relative to the axis of rotation X. The cooperation between the cam surface 23 and the second cam follower 11b during a rotation relative between the primary flywheel 2 and the secondary flywheel 3 in the retro direction 21 is similar to the cooperation between the cam surface 18 of the first arcuate portion 14 and the first cam follower January 1 at a relative rotation between the primary flywheel 2 and secondary flywheel 3 in the forward direction 24.
Par ailleurs, la première lame 9a et la seconde lame 9b illustrées sur la figure 3 présentent une forme analogue. Cependant, la première lame 9a et la seconde lame 9b sont fixées sur le volant secondaire 3 selon des orientations opposées. Plus particulièrement, il y a une symétrie des lames l'une par rapport à l'autre lorsqu'elles sont projetées dans un plan orthogonal à l'axe X. On the other hand, the first blade 9a and the second blade 9b illustrated in FIG. 3 have a similar shape. However, the first blade 9a and the second blade 9b are fixed on the secondary flywheel 3 in opposite orientations. More particularly, there is a symmetry of the blades relative to each other when they are projected in a plane orthogonal to the X axis.
D'une part, la projection de la première lame 9a dans un plan perpendiculaire à l'axe de rotation X est symétrique par rapport à l'axe de rotation X à la projection de la seconde lame 9b dans ce même plan perpendiculaire à l'axe de rotation X. Ce qui permet d'équilibrer l'amortisseur. D'autre part, dans le mode de réalisation illustré sur les figures 2 à 6, la première lame 9a et la seconde lame 9b sont également symétriques en projection dans un plan perpendiculaire à l'axe de rotation X, par rapport à un plan parallèle à l'axe de rotation X et passant par les positions prises par les suiveurs de came en position angulaire de repos. Cela permet d'avoir un amortissement symétrique en direct et en rétro. On the one hand, the projection of the first blade 9a in a plane perpendicular to the axis of rotation X is symmetrical with respect to the axis of rotation X at the projection of the second blade 9b in this same plane perpendicular to the axis of rotation X. This allows to balance the damper. On the other hand, in the embodiment illustrated in FIGS. 2 to 6, the first blade 9a and the second blade 9b are also symmetrical in projection in a plane perpendicular to the axis of rotation X, with respect to a parallel plane. to the axis of rotation X and passing through the positions taken by the cam followers in the angular position of rest. This allows symmetrical damping in live and in retro.
Du fait de l'orientation opposée entre la première lame 9a et la seconde lame 9b, une première portion arquée 25 de la seconde lame 9b coopère avec le premier suiveur de came 1 1 a lors d'une rotation relative entre le volant primaire 2 et le volant secondaire 3 selon le sens rétro 21 et une seconde portion arquée 26 de la seconde lame 9b coopère avec le second suiveur de came 1 1 b lors d'une rotation relative entre le volant primaire 2 et le volant secondaire 3 selon le sens direct 24. La coopération entre les portions arquées 25 et 26 de la seconde lame 9b et les premier et second suiveurs de came 1 1 a et 1 1 b est analogue à la coopération entre les portions arquées 14 et 16 de la première lame 9a et les premier et le second suiveurs de came 1 1 a et 1 1 b. Ainsi, une rotation relative entre le volant primaire 2 et le volant secondaire 3 selon le sens direct 24 depuis la position de repos entraîne la coopération du premier suiveur de came 1 1 a avec la surface de came 18 de la première portion arquée 14 de la première lame 9a et, simultanément, la coopération du second suiveur de came 1 1 b avec une surface de came 27 de la seconde portion arquée 26 de la seconde lame 9b. De même, une rotation relative entre le volant primaire 2 et le volant secondaire 3 selon le sens rétro 21 depuis la position de repos entraîne la coopération du second suiveur de came 1 1 b avec la surface de came 23 de la seconde portion arquée 16 de la première lame 9a et, simultanément, la coopération du premier suiveur de came 1 1 a avec une surface de came 28 de la première portion arquée 25 de la seconde lame 9b. Comme décrit ci- dessus, la coopération entre les suiveurs de came 1 1 et les lames 9 exerce une force apte à ramener les volants primaire 2 et secondaire 3 vers la position de repos. Par ailleurs, par symétrie des lames 9 en projection par rapport au plan décrit ci-dessus, les surfaces de came des lames sont de longueur circonférentielle identique dans les modes de réalisation illustrés sur les figures 2 à 6. Dans un mode de réalisation préférentiel illustré sur la figure 3, en position de repos du double volant amortisseur 1 , le premier suiveur de came 1 1 a est en contact simultané avec la première portion arquée 14 et 25 respectivement de la première lame 9a et de la seconde lame 9b. De même, dans cette position de repos, le second suiveur de came 1 1 b est en contact simultané avec la seconde portion arquée 16 et 26 respectivement de la première lame 9a et de la seconde lame 9b. Due to the opposite orientation between the first blade 9a and the second blade 9b, a first arcuate portion 25 of the second blade 9b cooperates with the first cam follower 11a during a relative rotation between the primary flywheel 2 and the secondary flywheel 3 in the retro direction 21 and a second arcuate portion 26 of the second blade 9b cooperates with the second cam follower 1 1b during a relative rotation between the primary flywheel 2 and the secondary flywheel 3 in the forward direction 24. The cooperation between the arcuate portions 25 and 26 of the second blade 9b and the first and second cam followers 11a and 11b is similar to the cooperation between the arcuate portions 14 and 16 of the first blade 9a and the first and second cam followers 1 1 a and 1 1 b. Thus, a relative rotation between the primary flywheel 2 and the secondary flywheel 3 in the forward direction 24 from the rest position causes the first cam follower 11a to cooperate with the cam surface 18 of the first arcuate portion 14 of the first blade 9a and simultaneously the cooperation of the second cam follower 11b with a cam surface 27 of the second arcuate portion 26 of the second blade 9b. Likewise, a relative rotation between the primary flywheel 2 and the secondary flywheel 3 in the retro direction 21 from the rest position causes the second cam follower 1 1b to cooperate with the cam surface 23 of the second arcuate portion 16 of the first blade 9a and, simultaneously, the cooperation of the first cam follower 11a with a cam surface 28 of the first arcuate portion 25 of the second blade 9b. As described above, the cooperation between the cam followers 1 1 and the blades 9 exerts a force capable of returning the primary flywheels 2 and secondary 3 to the rest position. Moreover, by symmetry of the blades 9 in projection relative to the plane described above, the cam surfaces of the blades are of identical circumferential length in the embodiments illustrated in Figures 2 to 6. In a preferred embodiment illustrated in FIG. 3, in the rest position of the double damping flywheel 1, the first cam follower 11a is in simultaneous contact with the first arcuate portion 14 and 25 respectively of the first blade 9a and of the second blade 9b. Similarly, in this rest position, the second cam follower 11b is in simultaneous contact with the second arcuate portion 16 and 26 respectively of the first blade 9a and the second blade 9b.
Selon un mode de réalisation avantageux, les rayons de courbure et la raideur des portions arquées sont telles que, dans la position de repos, chaque suiveur de came 1 1 est situé à l'extrémité des surfaces de cames des deux portions arquées avec lesquelles il coopère. Ainsi, lors d'une rotation relative entre le volant primaire 2 et le volant secondaire 3, chaque suiveur de came 1 1 ne coopère qu'avec une seule portion arquée des lames 9, l'autre portion arquée n'étant pas sollicitée. Typiquement, chaque suiveur de came 1 1 ne fait fléchir que l'une des première et seconde lame lors d'une rotation relative entre le volant primaire et le volant secondaire 3. Autrement dit sur toute la plage de fonctionnement de double volant amortisseur, c'est-à-dire quel que soit le couple transmis entre le volant primaire 2 et le volant secondaire 3, chaque suiveur de came 1 1 coopère avec l'une ou l'autre des lames 9a, 9b. Une telle configuration du moyen d'amortissement permet de réduire le stress des lames à l'usage. Plus particulièrement, cette configuration du moyen d'amortissement évite qu'une même portion de la lame 9 ne soit contraint aussi bien lors d'une transmission de couple entre le volant primaire 2 et le volant secondaire 3 dans le sens rétro 21 que dans le sens direct 24. La portion de la lame 9 sollicitée lors d'une transmission de couple entre le volant primaire 2 et le volant secondaire 3 selon le sens rétro 21 est donc « indépendante » de la portion de la lame 9 sollicitée lors d'une transmission de couple entre le volant primaire 2 et le volant secondaire 3 dans le sens direct 24. Cette indépendance des portions de la lame 9 sollicitées en fonction du sens de transmission de couple entre le volant primaire 2 et le volant secondaire 3 permet également de réaliser des surfaces de cames indépendantes. C'est-à-dire que les surfaces de cames étant portées par des portions arquées distinctes, elles peuvent présenter des caractéristiques de raideur et de rayon de courbure distinctes de sorte que la coopération entre la surface de came d'une portion de la lame 9 et le suiveur de came correspondant n'est pas liée à la coopération entre la surface de came de l'autre portion de la lame 9 et le suiveur de came correspondant. En outre, la superposition axiale des lames 9 permet d'allonger la longueur circonférentielle des lames 9 et donc d'obtenir un meilleur amortissement des vibrations et acyclismes avec un débattement angulaire important. According to an advantageous embodiment, the radii of curvature and the stiffness of the arcuate portions are such that, in the rest position, each cam follower 11 is located at the end of the cam surfaces of the two arcuate portions with which it cooperates. Thus, during relative rotation between the primary flywheel 2 and the secondary flywheel 3, each cam follower January 1 cooperates with only one arcuate portion of the blades 9, the other arcuate portion not being solicited. Typically, each cam follower 1 1 bends only one of the first and second blades during a relative rotation between the primary flywheel and the secondary flywheel 3. In other words over the entire operating range of double damping flywheel, that is to say, whatever the torque transmitted between the primary flywheel 2 and the secondary flywheel 3, each cam follower 1 1 cooperates with one or other of the blades 9a, 9b. Such a configuration of the damping means reduces the stress of the blades in use. More particularly, this configuration of the damping means prevents a same portion of the blade 9 is constrained both during a transmission of torque between the primary flywheel 2 and the secondary flywheel 3 in the retro direction 21 that in the direct direction 24. The portion of the blade 9 biased during a transmission of torque between the primary flywheel 2 and the secondary flywheel 3 in the retro direction 21 is "independent" of the portion of the blade 9 requested during a transmission of torque between the primary flywheel 2 and the secondary flywheel 3 in the forward direction 24. This independence of the portions of the blade 9 biased according to the direction of transmission of torque between the primary flywheel 2 and the secondary flywheel 3 also makes it possible to achieve independent cam surfaces. That is, the cam surfaces being carried by distinct arcuate portions, they may have distinct stiffness and radius of curvature characteristics so that the cooperation between the cam surface of a cam is portion of the blade 9 and the corresponding cam follower is not related to the cooperation between the cam surface of the other portion of the blade 9 and the corresponding cam follower. In addition, the axial superposition of the blades 9 makes it possible to lengthen the circumferential length of the blades 9 and thus to obtain a better damping of vibrations and acyclisms with a large angular displacement.
Le volant amortisseur 1 peut également être équipé d'un ensemble de frottement agencé pour exercer un couple résistant de frottement lors de la rotation relative entre les volants primaire 2 et secondaire 3. L'ensemble de frottement est ainsi apte à dissiper par frottement l'énergie accumulée dans les lames 9. The damping flywheel 1 can also be equipped with a friction assembly arranged to exert a friction-resistant torque during the relative rotation between the primary and secondary flywheels 3. The friction assembly is thus able to dissipate by friction the energy accumulated in the blades 9.
La figure 4 est une vue de face d'un double volant amortisseur de la figure 1 présentant une rotation relative entre le volant primaire et le volant secondaire et dans lequel le volant secondaire n'est pas représenté afin de visualiser les lames. Figure 4 is a front view of a double damping flywheel in Figure 1 having a relative rotation between the primary flywheel and the secondary flywheel and wherein the secondary flywheel is not shown to view the blades.
Lors d'une rotation relative entre le volant primaire 2 et le volant secondaire dans le sens direct 24, le premier suiveur de came 1 1 a se déplace, depuis la position angulaire de repos le long de la surface de came 18 de la première portion arquée 14 de la première lame 9a. La seconde lame 9b est illustrée en pointillé dans les zones ou la première lame 9a et la seconde lame 9b sont axialement superposées. Le rayon de courbure de la première portion arquée 25 de la seconde lame 9b est tel que le premier suiveur de came 1 1 a ne coopère pas avec ladite première portion arquée 25 de la seconde lame 9b. During a relative rotation between the primary flywheel 2 and the secondary flywheel in the forward direction 24, the first cam follower 11a moves from the angular position of rest along the cam surface 18 of the first portion. arcuate 14 of the first blade 9a. The second blade 9b is shown in dashed lines in areas where the first blade 9a and the second blade 9b are axially superimposed. The radius of curvature of the first arcuate portion 25 of the second blade 9b is such that the first cam follower 11a does not cooperate with said first arcuate portion 25 of the second blade 9b.
De même, le second suiveur de came 1 1 b coopère avec la seconde portion arquée 26 de la seconde lame 9b uniquement. Ainsi, la force de rappel rappelant le volant primaire 2 et le volant secondaire 3 vers leur position de repos résulte de la flexion de la première portion arquée 14 de la première lame 9a et de la flexion de la seconde portion arquée 26 de la seconde lame 9b qui sont les seules portions sollicitées lors d'une rotation relative entre le volant primaire 2 et le volant secondaire 3 dans le sens direct 24. Similarly, the second cam follower 1 1 b cooperates with the second arcuate portion 26 of the second blade 9b only. Thus, the restoring force reminding the primary flywheel 2 and the secondary flywheel 3 to their rest position results from the bending of the first arcuate portion 14 of the first blade 9a and the bending of the second arcuate portion 26 of the second blade 9b which are the only portions urged during a relative rotation between the primary flywheel 2 and the secondary flywheel 3 in the forward direction 24.
De façon à réduire les frottements parasitaires susceptibles d'affecter la fonction d'amortissement, le galet 20 est avantageusement monté en rotation sur le volant primaire 2 par l'intermédiaire d'organes de roulement (non représentés), tel que des billes, des rouleaux ou des aiguilles. Le galet 20 est par exemple porté par une tige cylindrique 29 s'étendant parallèlement à l'axe de rotation X et dont une extrémité est fixée à l'intérieur d'un alésage (non représenté) ménagé dans le volant primaire 2. Par ailleurs, la tige cylindrique 29 est reçue à l'intérieur d'un orifice traversant formé dans un manchon 30. Le galet 20 est monté mobile en rotation autour du manchon 30. Pour ce faire, les organes de roulement coopèrent, d'une part, avec une piste de roulement ménagée sur la périphérie extérieure du manchon 30 et, d'autre part, avec une piste de roulement ménagée sur la périphérie intérieure du galet 20. Les figures 5 et 6 sont des vues de face d'un double volant amortisseur de la figure 1 présentant une rotation relative maximale entre le volant primaire 2 et le volant secondaire 3 respectivement selon le sens direct 24 et selon le sens rétro 21 . Dans ces figures 5 et 6, le volant secondaire n'est pas représenté afin de visualiser les lames 9. Le double volant amortisseur 1 présente avantageusement une butée apte à limiter le débattement relatif entre le volant primaire 2 et le volant secondaire Cette butée comporte par exemple deux saillies 31 fixes sur le volant secondaire qui coopèrent chacune avec une surface de butée 32 respective lorsqu'ils arrivent en butée, lesdites surfaces de butée 32 étant fixes sur le volant primaire 2. Les surfaces de butée 32 sont par exemple formés autour de chaque suiveur de came 1 1 comme illustré sur les figures 5 et 6. In order to reduce the parasitic friction likely to affect the damping function, the roller 20 is advantageously rotatably mounted on the primary flywheel 2 by means of rolling members (not shown), such as only balls, rollers or needles. The roller 20 is for example carried by a cylindrical rod 29 extending parallel to the axis of rotation X and one end of which is fixed inside a bore (not shown) formed in the primary flywheel 2. Moreover, , the cylindrical rod 29 is received inside a through orifice formed in a sleeve 30. The roller 20 is rotatably mounted around the sleeve 30. To do this, the rolling members cooperate, on the one hand, with a rolling track formed on the outer periphery of the sleeve 30 and, on the other hand, with a rolling track formed on the inner periphery of the roller 20. FIGS. 5 and 6 are front views of a double damping flywheel of FIG. 1 having a maximum relative rotation between the primary flywheel 2 and the secondary flywheel 3 respectively in the forward direction 24 and in the retro direction 21. In these FIGS. 5 and 6, the secondary flywheel is not shown in order to visualize the blades 9. The double damping flywheel 1 advantageously has a stop capable of limiting the relative movement between the primary flywheel 2 and the secondary flywheel. two projections 31 fixed on the secondary flywheel which each cooperate with a respective abutment surface 32 when they come into abutment, said abutment surfaces 32 being fixed on the primary flywheel 2. The abutment surfaces 32 are for example formed around each cam follower 1 1 as illustrated in FIGS. 5 and 6.
La figure 7 est une vue de face d'un double volant amortisseur selon un autre mode de réalisation dans lequel le volant secondaire n'est pas représenté afin de visualiser les lames. En regard des figures 7 à 9, les éléments du double volant amortisseur ayant une forme et/ou une fonction analogue aux éléments correspondant illustrés en regard des figures 1 à 6 portent les mêmes références augmentées de 100. Figure 7 is a front view of a double damping flywheel according to another embodiment in which the secondary flywheel is not shown to view the blades. With reference to FIGS. 7 to 9, the elements of the double damping flywheel having a shape and / or function similar to the corresponding elements illustrated with reference to FIGS. 1 to 6 bear the same references increased by 100.
Dans ce second mode de réalisation, le moyen d'amortissement présente une asymétrie. Dans le mode de réalisation représenté, afin d'obtenir un moyen d'amortissement asymétrique, chaque lame 109a est asymétrique. C'est-à-dire que la première portion arquée 1 14 de la première lame 109a et la seconde portion arquée 1 16 de la première lame 109a ne sont pas symétriques. Ici on remarque que la seconde portion arquée 1 16 sur laquelle s'appuie le second organe d'appui est plus courte que la première portion arquée 1 14 sur laquelle s'appuie le premier organe d'appui. La première lame 109a et la seconde lame 109b en projection dans un plan perpendiculaire à l'axe de rotation X restent cependant symétriques par rapport à l'axe de rotation X. In this second embodiment, the damping means has an asymmetry. In the embodiment shown, in order to obtain an asymmetric damping means, each blade 109a is asymmetrical. Which means the first arcuate portion 114 of the first blade 109a and the second arcuate portion 116 of the first blade 109a are not symmetrical. Here we note that the second arcuate portion 1 16 on which the second support member rests is shorter than the first arcuate portion 1 14 on which the first support member rests. The first blade 109a and the second blade 109b in projection in a plane perpendicular to the axis of rotation X remain however symmetrical with respect to the axis of rotation X.
Une seconde variante non représentée prévoit au contraire que la première portion arquée et 1 14 la seconde portion arquée 1 16 de la première lame 109a sont symétriques mais que la première lame 109a et la seconde lame 109b en projection dans un plan perpendiculaire à l'axe de rotation X ne sont pas symétriques par rapport à l'axe de rotation X. A second variant, not shown, provides on the contrary that the first arcuate portion and the second arcuate portion 116 of the first blade 109a are symmetrical but that the first blade 109a and the second blade 109b project in a plane perpendicular to the axis. rotation X are not symmetrical with respect to the axis of rotation X.
Dans chacune de ces variantes, l'asymétrie du moyen d'amortissement entraîne une différence de longueur circonférentielle des surfaces de cames des lames 109 entre le sens direct 124 et le sens rétro 121 . Ainsi, en position de repos telle qu'illustrée sur la figure 7, la surface de came 1 18 de la première portion arquée 1 14 de la première lame 109a présente une longueur circonférentielle supérieure à la longueur circonférentielle de la surface de came 123 de la seconde portion arquée 1 16 de ladite première lame 109a. De même, la surface de came 127 de la seconde portion arquée 126 de la seconde lame 109b présente une longueur circonférentielle supérieure à la longueur circonférentielle de la surface de came 128 de la première portion arquée 125 de la seconde lame 109b. In each of these variants, the asymmetry of the damping means causes a difference in circumferential length of the cam surfaces of the blades 109 between the direct direction 124 and the retro direction 121. Thus, in the rest position as illustrated in FIG. 7, the cam surface 118 of the first arcuate portion 14 of the first blade 109a has a circumferential length greater than the circumferential length of the cam surface 123 of the second arcuate portion 1 16 of said first blade 109a. Likewise, the cam surface 127 of the second arcuate portion 126 of the second blade 109b has a circumferential length greater than the circumferential length of the cam surface 128 of the first arcuate portion 125 of the second blade 109b.
L'asymétrie du moyen d'amortissement permet ainsi d'obtenir des caractéristique de raideur et/ou des angles de débattement maximum qui soit différent selon qu'une couple entraînant soit transmis (sens direct) ou selon qu'un couple résistant soit transmis (sens rétro).. Les figures 8 et 9 représentent une vue de face d'un double volant amortisseur 101 de la figure 7 dans une position de rotation relative maximale respectivement en sens rétro et en sens direct. Dans ces figures 8 et 9, le volant secondaire 103 n'est pas représenté afin de visualiser les lames 109. The asymmetry of the damping means thus makes it possible to obtain stiffness characteristics and / or maximum deflection angles that are different depending on whether a driving torque is transmitted (direct direction) or whether a resisting torque is transmitted ( Retro direction). Figures 8 and 9 show a front view of a double damping flywheel 101 of Figure 7 in a position of maximum relative rotation respectively in retro and forward direction. In these figures 8 and 9, the secondary flywheel 103 is not shown in order to view the blades 109.
Comme illustré sur les figures 8 et 9, le double volant amortisseur selon le second mode de réalisation, le débattement angulaire entre le volant primaire 102 et le volant secondaire 103 est supérieur dans le sens direct 124 par rapport au sens rétro 121 . Les autres caractéristiques des lames et des suiveurs de cames restent cependant les même que celles du premier mode de réalisation. Par exemple, chaque lame 109 est fixée à l'aide de deux rivets 104 ou encore, en position de repos, les suiveurs de came 1 1 1 sont simultanément en contact avec les surfaces de cames correspondantes des deux lames 109. As illustrated in FIGS. 8 and 9, the double damping flywheel according to the second embodiment, the angular displacement between the primary flywheel 102 and the secondary flywheel 103 is superior in the forward direction 124 with respect to the retro direction 121. The other characteristics of the blades and cam followers, however, remain the same as those of the first embodiment. For example, each blade 109 is fixed by means of two rivets 104 or else, in the rest position, the cam followers 11 1 are simultaneously in contact with the corresponding cam surfaces of the two blades 109.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention. Although the invention has been described in connection with several particular embodiments, it is obvious that it is not limited thereto and that it comprises all the technical equivalents of the means described and their combinations if they are within the scope of the invention.
En particulier, dans un mode de réalisation alternatif non représenté, la structure est inversée et les lames sont fixées sur le volant primaire 2 alors que les galets sont portés par le volant secondaire 3. In particular, in an alternative embodiment not shown, the structure is reversed and the blades are fixed on the primary flywheel 2 while the rollers are carried by the secondary flywheel 3.
L'usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication. L'usage de l'article indéfini « un » ou « une » pour un élément ou une étape n'exclut pas, sauf mention contraire, la présence d'une pluralité de tels éléments ou étapes. The use of the verb "to include", "to understand" or "to include" and its conjugated forms does not exclude the presence of other elements or steps other than those set out in a claim. The use of the indefinite article "a" or "an" for an element or a step does not exclude, unless otherwise stated, the presence of a plurality of such elements or steps.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication. In the claims, any reference sign in parentheses can not be interpreted as a limitation of the claim.

Claims

REVENDICATIONS
1 . Amortisseur de torsion pour dispositif de transmission de couple comportant : 1. Torsion damper for a torque transmission device comprising:
- un premier élément (3, 103) et un second élément (2, 102) mobiles en rotation l'un par rapport à l'autre autour d'un axe de rotation X, et  a first element (3, 103) and a second element (2, 102) rotatable relative to one another about an axis of rotation X, and
un moyen d'amortissement à lames (9, 109) apte à transmettre un couple de rotation entre le premier élément et le second élément et à amortir les acyclismes de rotation entre le premier élément (3, 103) et le second élément (2, 102) ; le moyen d'amortissement à lames comportant :  a blade damping means (9, 109) adapted to transmit a rotational torque between the first member and the second member and damping rotation acyclisms between the first member (3, 103) and the second member (2, 102); the blade damping means comprising:
o une première lame (9a, 109a) élastiquement déformable et une seconde lame (9b, 109b) élastiquement déformable, la première lame (9a, 109a) et la seconde lame (9b, 109b) étant solidaires en rotation du premier élément (3, 103), et  a first elastically deformable blade (9a, 109a) and a second elastically deformable blade (9b, 109b), the first blade (9a, 109a) and the second blade (9b, 109b) being integral in rotation with the first element (3, 103), and
o un premier organe d'appui (1 1 a, 1 1 1 a) porté par le second élément o a first support member (1 1 a, 1 1 1 a) carried by the second element
(2, 102), (2, 102),
dans lequel le premier organe d'appui (1 1 a, 1 1 1 a), la première lame (9a, 109a) et la seconde lame (9b, 109b) sont agencés de telle sorte que : wherein the first bearing member (11a, 11a), the first blade (9a, 109a) and the second blade (9b, 109b) are arranged such that:
le premier organe d'appui (1 1 a, 1 1 1 a) coopère avec la première lame (9a, 109a) en la faisant fléchir pour transmettre un couple du second élément vers le premier élément, et  the first support member (11a, 11a) cooperates with the first blade (9a, 109a) by flexing it to transmit a torque from the second member to the first member, and
le premier organe d'appui (1 1 a, 1 1 1 a) coopère avec la seconde lame (9b, 109b) en la faisant fléchir pour transmettre un couple du premier élément vers le second élément.  the first support member (11a, 11a) cooperates with the second blade (9b, 109b) by bending it to transmit a torque from the first member to the second member.
2. Amortisseur de torsion selon la revendication 1 , dans lequel le premier organe d'appui (1 1 a, 1 1 1 a), la première lame (9a, 109a) et la seconde lame (9b, 109b) sont agencées de telle sorte que le premier organe d'appui (1 1 a, 1 1 1 a) coopère uniquement avec la première lame (9a, 109a) lorsqu'un couple est transmis du second élément vers le premier élément et uniquement avec la seconde lame (9b, 109b) lorsqu'un couple est transmis du premier élément vers le second élément. A torsion damper according to claim 1, wherein the first support member (11a, 11a), the first blade (9a, 109a) and the second blade (9b, 109b) are arranged such that so that the first support member (11a, 11a) cooperates only with the first blade (9a, 109a) when a torque is transmitted from the second member to the first member and only with the second blade (9b , 109b) when a torque is transmitted from the first element to the second element.
3. Amortisseur de torsion selon la revendication 1 ou 2, dans lequel le premier organe d'appui (1 1 a, 1 1 1 a), la première lame (9a, 109a) et la seconde lame (9b, 109b) sont agencées de telle sorte qu'au moins une partie du couple soit transmis par la première lame quelle que soit la valeur d'un couple transmis du second élément vers le premier élément et qu'au moins une partie du couple soit transmis par la seconde lame quelle que soit la valeur d'un couple transmis du premier élément vers le second élément. A torsion damper according to claim 1 or 2, wherein the first support member (11a, 11a), the first blade (9a, 109a) and the second blade (9b, 109b) are arranged so that at least a portion of the torque is transmitted by the first blade regardless of the value of a torque transmitted from the second element to the first element and that at least a portion of the torque is transmitted by the second blade regardless of the value of a torque transmitted from the first element to the second element.
4. Amortisseur de torsion selon l'une quelconque des revendications 1 à 3, dans lequel, pour toute la plage de fonctionnement de l'amortisseur, le premier organe d'appui (1 1 a, 1 1 1 a), coopère avec au moins l'une des première et seconde lames. 4. torsion damper according to any one of claims 1 to 3, wherein for the entire range of operation of the damper, the first support member (1 1 a, 1 1 1 a), cooperates with least one of the first and second blades.
5. Amortisseur de torsion selon l'une quelconque des revendications 1 àTorsion damper according to one of Claims 1 to 5
4, dans lequel le moyen d'amortissement à lames est agencé de telle sorte que, pour une transmission d'un couple du second élément vers le premier élément, une rotation relative selon un premier sens de rotation (21 , 121 ) entre les premier et second éléments (2, 102, 3, 103) depuis une position angulaire de repos se produit et le moyen d'amortissement à lames exerce une première force de rappel pour rappeler les premier et second éléments (2, 102, 3, 103) vers leur position angulaire de repos, et que pour une transmission d'un couple du premier élément vers le second élément, une rotation relative selon un second sens de rotation (24, 124) opposé au premier sens de rotation entre les premier et second éléments (2, 102, 3, 103) depuis la position angulaire de repos se fait et le moyen d'amortissement à lames exerce une seconde force de rappel pour rappeler les premier et second éléments (2, 102, 3, 103) vers leur position angulaire de repos ; 4, wherein the blade damping means is arranged such that, for transmission of a torque from the second member to the first member, a relative rotation in a first direction of rotation (21, 121) between the first and second members (2, 102, 3, 103) from an angular position of rest occurs and the blade damping means exerts a first restoring force to recall the first and second members (2, 102, 3, 103) to their angular position of rest, and that for a transmission of a torque from the first element to the second element, a relative rotation in a second direction of rotation (24, 124) opposite the first direction of rotation between the first and second elements (2, 102, 3, 103) from the angular position of rest is made and the blade damping means exerts a second restoring force to return the first and second members (2, 102, 3, 103) to their position angular rest;
le premier organe d'appui (1 1 a, 1 1 1 a), la première lame (9a, 109a) et la seconde lame (9b, 109b) étant agencées de telle sorte que : the first support member (11a, 11a), the first blade (9a, 109a) and the second blade (9b, 109b) being arranged such that:
- pour une rotation relative selon le premier sens de rotation (21 , 121 ) entre les premier et second éléments (2, 102, 3, 103) depuis la position angulaire de repos, le premier organe d'appui (1 1 a, 1 1 1 a) coopère avec la première lame (9a, 109a) et exerce un effort de flexion sur ladite première lame (9a, 109a), la flexion de la première lame (9a, 109a) produisant sur le premier organe d'appui (1 1 a, 1 1 1 a) la première force de rappel, pour une rotation relative selon le second sens de rotation (24, 124) opposé au premier sens de rotation (21, 121) entre les premier et second éléments (2, 102, 3, 103) depuis la position angulaire de repos, le premier organe d'appui (11a, 111a) exerce un effort de flexion sur la seconde lame (9b, 109b), la flexion de la seconde lame (9b, 109b) produisant sur le premier organe d'appui (11a, 111 a) la seconde force de rappel. for a relative rotation in the first direction of rotation (21, 121) between the first and second elements (2, 102, 3, 103) from the angular position of rest, the first support member (1 1 a, 1 1 1 a) cooperates with the first blade (9a, 109a) and exerts a bending force on said first blade (9a, 109a), flexing the first blade (9a, 109a) producing on the first bearing member ( 1 1 a, 1 1 1 a) the first restoring force, for a relative rotation in the second direction of rotation (24, 124) opposite the first direction of rotation (21, 121) between the first and second elements (2, 102, 3, 103) from the angular position of rest, the first bearing member (11a, 111a) exerts a bending force on the second blade (9b, 109b), the bending of the second blade (9b, 109b) producing on the first bearing member (11a, 111a) the second restoring force.
6. Amortisseur de torsion selon la revendication 5, dans lequel le premier organe d'appui (11a, 111a) est simultanément en contact avec la première lame (9a, 109a) et avec la seconde lame (9b, 109b) dans la position angulaire de repos. The torsion damper according to claim 5, wherein the first support member (11a, 111a) is simultaneously in contact with the first blade (9a, 109a) and with the second blade (9b, 109b) in the angular position. rest.
7. Amortisseur de torsion selon l'une quelconque des revendications 1 à 6, dans lequel chaque lame (9, 9a, 9b, 109, 109a, 109b) comporte : A torsion damper according to any one of claims 1 to 6, wherein each blade (9, 9a, 9b, 109, 109a, 109b) comprises:
- une première section élastiquement déformable (14, 114, 25, 125),  a first elastically deformable section (14, 114, 25, 125),
une seconde section élastiquement déformable (16, 116, 26, 126), une section de fixation (15) fixe par rapport au premier élément (3, 103), et dans lequel l'amortisseur comporte en outre un second organe d'appui (11b, 111b) porté par le second élément (2, 102),  a second elastically deformable section (16, 116, 26, 126), an attachment section (15) fixed with respect to the first element (3, 103), and wherein the damper further comprises a second support member ( 11b, 111b) carried by the second element (2, 102),
le premier organe d'appui (11a, 111a), le second organe d'appui (11b, the first support member (11a, 111a), the second support member (11b,
111b), la première lame (9a, 109a) et la seconde lame (9b, 109b) étant agencées de telle sorte que : 111b), the first blade (9a, 109a) and the second blade (9b, 109b) being arranged such that:
le premier organe d'appui (11a, 111a) coopère avec la première section déformable (14, 114) de la première lame (9a, 109a) en la faisant fléchir et le second organe d'appui (11b, 111b) coopère avec la seconde section déformable (26, 126) de la seconde lame (9b, 109b) en la faisant fléchir pour transmettre un couple du second élément vers le premier élément, et le second organe d'appui (11b, 111b) coopère avec la seconde section déformable (16, 116) de la première lame (9a, 109a) en la faisant fléchir et le premier organe (11a, 111a) d'appui coopère avec la première section déformable (26, 126) de la seconde lame (9b, 109b) en la faisant fléchir pour transmettre un couple du premier élément vers le second élément. the first support member (11a, 111a) cooperates with the first deformable section (14, 114) of the first blade (9a, 109a) by bending it and the second support member (11b, 111b) cooperates with the second deformable section (26, 126) of the second blade (9b, 109b) flexing it to transmit torque from the second member to the first member, and the second member (11b, 111b) cooperating with the second section deformable (16, 116) of the first blade (9a, 109a) by bending it and the first bearing member (11a, 111a) cooperates with the first deformable section (26, 126) of the second blade (9b, 109b) ) by flexing it to transmit a torque from the first element to the second element.
8. Amortisseur de torsion selon la revendication 7, dans lequel la section de fixation (15) de chaque lame (9, 109) est située entre la première section déformable (14, 1 14, 25, 125) et la seconde section déformable (16, 1 16, 26, 126) de ladite lame (9, 109). A torsion damper according to claim 7, wherein the securing section (15) of each blade (9, 109) is located between the first deformable section (14, 14, 25, 125) and the second deformable section ( 16, 1, 16, 26, 126) of said blade (9, 109).
9. Amortisseur de torsion selon la revendication 7 ou 8, dans lequel chaque lame présente un axe de symétrie, une projection de la première lame dans un plan perpendiculaire à l'axe de rotation X étant symétrique à une projection de la seconde lame dans ledit plan perpendiculaire à l'axe de rotation X par rapport à l'axe de rotation X. A torsion damper according to claim 7 or 8, wherein each blade has an axis of symmetry, a projection of the first blade in a plane perpendicular to the axis of rotation X being symmetrical to a projection of the second blade in said plane perpendicular to the axis of rotation X with respect to the axis of rotation X.
10. Amortisseur de torsion selon l'une des revendications 7 à 9, dans lequel chaque lame est asymétrique, une projection de la première lame dans un plan perpendiculaire à l'axe de rotation X étant symétrique à une projection de la seconde lame dans ledit plan perpendiculaire à l'axe de rotation X par rapport à l'axe de rotation X. Torsion damper according to one of claims 7 to 9, wherein each blade is asymmetrical, a projection of the first blade in a plane perpendicular to the axis of rotation X being symmetrical to a projection of the second blade in said plane perpendicular to the axis of rotation X with respect to the axis of rotation X.
1 1 . Amortisseur de torsion selon l'une des revendications 1 à 10, dans lequel la première et la seconde lame (9a, 109a, 9b, 109b) sont fixées de manière indépendante l'une de l'autre sur le premier élément (3, 103). 1 1. A torsion damper according to one of claims 1 to 10, wherein the first and second blades (9a, 109a, 9b, 109b) are attached independently of one another to the first member (3, 103). ).
12. Amortisseur de torsion selon l'une des revendications 1 à 1 1 , dans lequel la première lame et la seconde lame sont (9a, 109a, 9b, 109b) empilées axialement. 12. torsion damper according to one of claims 1 to 1 1, wherein the first blade and the second blade are (9a, 109a, 9b, 109b) stacked axially.
13. Amortisseur de torsion selon l'une des revendications 1 à 12, dans lequel la première lame (9a, 109a) est fixée sur le premier élément (3, 103) en appui axial contre ledit premier élément (3, 103), l'amortisseur de torsion comportant en outre une entretoise (10), la seconde lame (9b, 109b) étant fixée sur le premier élément (3, 103) en appui axial contre l'entretoise (10), l'entretoise (10) étant axialement intercalée entre la seconde lame (9b, 109b) et le premier élément (3, 103), une portion de la première lame (9a, 109a) et une portion de la seconde lame (9b, 109b) étant axialement superposées. 13. torsion damper according to one of claims 1 to 12, wherein the first blade (9a, 109a) is fixed on the first member (3, 103) in axial abutment against said first element (3, 103), torsion damper further comprising a spacer (10), the second blade (9b, 109b) being fixed on the first element (3, 103) in axial abutment against the spacer (10), the spacer (10) being axially interposed between the second blade (9b, 109b) and the first element (3, 103), a portion of the first blade (9a, 109a) and a portion of the second blade (9b, 109b) being axially superimposed.
14. Amortisseur de torsion selon l'une quelconque des revendications 1 à 13, comportant en outre une butée (31 , 32) de fin de course de manière à limiter la rotation relative entre le premier élément (3, 103) et le second élément (2, 102,). A torsion damper according to any one of claims 1 to 13, further comprising an end stop (31, 32) so as to limit the relative rotation between the first member (3, 103) and the second member (2, 102,).
15. Amortisseur de torsion selon l'une des revendications 1 à 14, dans lequel chaque lame (9, 109) est fixée sur le premier élément par deux rivets (4, 104). 15. torsion damper according to one of claims 1 to 14, wherein each blade (9, 109) is fixed on the first element by two rivets (4, 104).
16. Amortisseur de torsion selon l'une quelconque des revendications 1 àTorsion damper according to one of Claims 1 to
15, dans lequel chaque première et second lames comporte une surface de came et le premier organe d'appui comporte un suiveur de came agencé pour coopérer avec la surface de came de la première lame (9a, 109a) pour transmettre un couple du second élément vers le premier élément et avec la surface de came de la seconde lame (9b, 109b) pour transmettre un couple du premier élément vers le second élément. 15, wherein each first and second blades has a cam surface and the first support member has a cam follower arranged to cooperate with the cam surface of the first blade (9a, 109a) to transmit a torque of the second member. to the first member and the cam surface of the second blade (9b, 109b) for transmitting a torque from the first member to the second member.
PCT/EP2016/054751 2015-03-16 2016-03-07 Torsional damper WO2016146415A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1552113A FR3033857B1 (en) 2015-03-16 2015-03-16 TORSION DAMPER
FR1552113 2015-03-16

Publications (1)

Publication Number Publication Date
WO2016146415A1 true WO2016146415A1 (en) 2016-09-22

Family

ID=53008769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/054751 WO2016146415A1 (en) 2015-03-16 2016-03-07 Torsional damper

Country Status (2)

Country Link
FR (1) FR3033857B1 (en)
WO (1) WO2016146415A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017137320A1 (en) * 2016-02-11 2017-08-17 Valeo Embrayages Torque transmission device
FR3057323A1 (en) * 2016-10-06 2018-04-13 Valeo Embrayages TORSION DAMPER WITH BLADES
FR3069601A1 (en) * 2017-07-28 2019-02-01 Valeo Embrayages LIMIT SWITCH DEVICE FOR A TORSION DAMPER

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3061252A1 (en) * 2016-12-23 2018-06-29 Valeo Embrayages TORSION DAMPER WITH BLADES

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176785B1 (en) * 1998-05-08 2001-01-23 Ellergon Antriebstechnik Gmbh Torsional vibration damper or torsionally elastic and vibration damping coupling
FR2838490A1 (en) * 2002-04-10 2003-10-17 Valeo Automobile double damping flywheel comprises two coaxial flywheels connected by radial strips elastically deformable in bending, strips encastered at external radial end in intermediate ring free to rotate relative to flywheels
DE102012015014A1 (en) * 2012-07-28 2014-01-30 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Dual mass flywheel for vehicle drive train of motor vehicle, has primary rotational flywheel mass coupled with drive shaft of vehicle drive train, where secondary rotational flywheel mass is coupled to output shaft of vehicle drive train
FR3000155A1 (en) 2012-12-21 2014-06-27 Valeo Embrayages TORSION DAMPER FOR A TORQUE TRANSMISSION DEVICE OF A MOTOR VEHICLE
FR3002605A1 (en) * 2013-02-22 2014-08-29 Valeo Embrayages TORSION DAMPER FOR CLUTCH FRICTION DISC

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176785B1 (en) * 1998-05-08 2001-01-23 Ellergon Antriebstechnik Gmbh Torsional vibration damper or torsionally elastic and vibration damping coupling
FR2838490A1 (en) * 2002-04-10 2003-10-17 Valeo Automobile double damping flywheel comprises two coaxial flywheels connected by radial strips elastically deformable in bending, strips encastered at external radial end in intermediate ring free to rotate relative to flywheels
DE102012015014A1 (en) * 2012-07-28 2014-01-30 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Dual mass flywheel for vehicle drive train of motor vehicle, has primary rotational flywheel mass coupled with drive shaft of vehicle drive train, where secondary rotational flywheel mass is coupled to output shaft of vehicle drive train
FR3000155A1 (en) 2012-12-21 2014-06-27 Valeo Embrayages TORSION DAMPER FOR A TORQUE TRANSMISSION DEVICE OF A MOTOR VEHICLE
FR3002605A1 (en) * 2013-02-22 2014-08-29 Valeo Embrayages TORSION DAMPER FOR CLUTCH FRICTION DISC

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017137320A1 (en) * 2016-02-11 2017-08-17 Valeo Embrayages Torque transmission device
US10288144B2 (en) 2016-02-11 2019-05-14 Valeo Embrayages Transmission torque converter device
FR3057323A1 (en) * 2016-10-06 2018-04-13 Valeo Embrayages TORSION DAMPER WITH BLADES
FR3069601A1 (en) * 2017-07-28 2019-02-01 Valeo Embrayages LIMIT SWITCH DEVICE FOR A TORSION DAMPER

Also Published As

Publication number Publication date
FR3033857A1 (en) 2016-09-23
FR3033857B1 (en) 2017-10-20

Similar Documents

Publication Publication Date Title
EP2824361B1 (en) Dual mass flywheel with improved damping means
EP3332147B1 (en) Device for damping torsional oscillations
EP3201490B1 (en) Torsional damper with blade
WO2016071185A1 (en) Vibration damper comprising damping means with a blade
WO2016050611A1 (en) Torsional damper with blade
FR3044059A1 (en) PENDULAR DAMPING DEVICE
WO2016020585A1 (en) Damper, in particular for a motor vehicle clutch
WO2016146415A1 (en) Torsional damper
WO2016050593A1 (en) Damper, in particular for a motor vehicle clutch
FR3057323A1 (en) TORSION DAMPER WITH BLADES
FR3031365A1 (en) DAMPER, IN PARTICULAR FOR A CLUTCH OF A MOTOR VEHICLE
FR3036759A1 (en) TORSION DAMPER WITH DOUBLE BLADE
WO2016139157A1 (en) Damping device having a resilient blade and method for assembling such a damping device
EP3205901B1 (en) Vibration damper
FR3053087B1 (en) BLADE TORSION SHOCK ABSORBER
FR3075288B1 (en) TRANSMISSION DEVICE WITH BALANCING MEANS
WO2016050592A1 (en) Shock absorber, especially for a clutch of a motor vehicle
FR3061252A1 (en) TORSION DAMPER WITH BLADES
WO2017046547A1 (en) Vibration damper
FR3058492A1 (en) TORSION DAMPER WITH BLADES
FR3037113A1 (en) TORSION DAMPER
WO2018108870A1 (en) Leaf spring torsion damper
FR3130338A1 (en) TORSION DAMPING DEVICE
EP2492539A1 (en) Torsion damper for a clutch
FR3075295A1 (en) TORSION DAMPER WITH FLEXIBLE BLADES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16709321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16709321

Country of ref document: EP

Kind code of ref document: A1