FR3037113A1 - TORSION DAMPER - Google Patents

TORSION DAMPER Download PDF

Info

Publication number
FR3037113A1
FR3037113A1 FR1555197A FR1555197A FR3037113A1 FR 3037113 A1 FR3037113 A1 FR 3037113A1 FR 1555197 A FR1555197 A FR 1555197A FR 1555197 A FR1555197 A FR 1555197A FR 3037113 A1 FR3037113 A1 FR 3037113A1
Authority
FR
France
Prior art keywords
stiffness
damper
angular
blade
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
FR1555197A
Other languages
French (fr)
Inventor
Carlos Lopez-Perez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Embrayages SAS
Original Assignee
Valeo Embrayages SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Embrayages SAS filed Critical Valeo Embrayages SAS
Priority to FR1555197A priority Critical patent/FR3037113A1/en
Priority to PCT/EP2016/063037 priority patent/WO2016198452A1/en
Publication of FR3037113A1 publication Critical patent/FR3037113A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/133Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
    • F16F15/1336Leaf springs, e.g. radially extending
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/133Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
    • F16F15/1333Spiral springs, e.g. lying in one plane, around axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/06Stiffness
    • F16F2228/063Negative stiffness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/12Functional characteristics, e.g. variability, frequency-dependence degressive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/0052Physically guiding or influencing
    • F16F2230/0064Physically guiding or influencing using a cam

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

Amortisseur de torsion pour dispositif de transmission de couple, notamment pour automobile, en particulier pour un dispositif d'embrayage, l'amortisseur étant agencé de sorte que la raideur torsionnelle de l'amortisseur décroit sur une plage angulaire prédéterminée de raideur décroissante (P2 ; P5) en s'éloignant d'une position angulaire relative de repos (PO).A torsion damper for a torque transmission device, particularly for a motor vehicle, in particular for a clutch device, the damper being arranged such that the torsional stiffness of the damper decreases over a predetermined angular range of decreasing stiffness (P2; P5) away from a relative angular position of repose (PO).

Description

1 AMORTISSEUR DE TORSION Domaine technique de l'invention L'invention se rapporte à un amortisseur de torsion destiné à équiper un dispositif de transmission de couple. L'invention se rapporte plus particulièrement au domaine des transmissions pour véhicule automobile. Cet amortisseur peut être appliqué aussi bien à un dispositif de transmission pour automobile à boite manuelle, tel qu'un disque de friction amorti ou un double volant amortisseur, ainsi qu'à un dispositif de transmission pour automobile à boite automatique, tel qu'un convertisseur de couple ou lock-up.TECHNICAL FIELD OF THE INVENTION The invention relates to a torsion damper intended to equip a torque transmission device. The invention relates more particularly to the field of transmissions for a motor vehicle. This damper can be applied to a transmission device for a manual gearbox automobile, such as a damped friction disc or a double damping flywheel, as well as to a transmission device for an automobile with an automatic gearbox, such as a gearbox. torque converter or lock-up.

Etat de la technique On connait des amortisseurs de torsion dont les éléments d'entrée et de sortie sont couplés en rotation par des moyens d'amortissement permettant de transmettre un couple et d'amortir les acyclismes de rotation. Les moyens d'amortissement sont généralement des ressorts hélicoïdaux, cintrés, disposés, de façon circonférentielle, dans une chambre annulaire, étanche, qui est formée entre les éléments d'entrée et de sortie. L'amortissement proposé par ces amortisseurs n'est pas tout à fait satisfaisant, notamment en raison des frottements importants, et il a été proposé également de réaliser des amortisseurs de torsion à lame, comme cela est décrit dans le document FR3000155 qui illustre un amortisseur de torsion comportant des moyens élastiques d'amortissement formés par une lame élastique dotée d'une came, et coopérant avec un suiveur de came. On connait aussi l'amortisseur du document FR2938030.STATE OF THE ART Twist dampers are known whose input and output elements are coupled in rotation by damping means for transmitting a torque and damping the rotation acyclisms. The damping means are generally helical, bent, circumferentially disposed springs in an annular, sealed chamber which is formed between the input and output members. The damping proposed by these dampers is not entirely satisfactory, in particular because of the high friction, and it has also been proposed to produce torsion dampers with a blade, as described in document FR3000155 which illustrates a damper torsion device comprising elastic damping means formed by an elastic blade provided with a cam, and cooperating with a cam follower. We also know the damper document FR2938030.

Objet de l'invention Un aspect de l'invention part de l'idée de résoudre les inconvénients de l'art antérieur en proposant un amortisseur de torsion à lame élastique qui soit 3037113 2 particulièrement efficace et dans lequel les performances de l'amortissement sont améliorées. L'invention concerne ainsi un amortisseur de torsion pour dispositif de transmission de couple, notamment pour automobile, en particulier pour un dispositif 5 d'embrayage, l'amortisseur étant agencé de sorte que la raideur torsionnelle de l'amortisseur décroit sur une plage angulaire prédéterminée de raideur décroissante en s'éloignant d'une position angulaire relative de repos. La raideur angulaire de l'amortisseur est décroissante dans la plage 10 angulaire prédéterminée de raideur décroissante. Autrement dit, sur cette plage angulaire, la raideur angulaire de l'amortisseur décroit lorsque le débattement angulaire de l'amortisseur augmente par rapport à la position angulaire relative de repos. La raideur angulaire est définie comme étant la dérivée de la courbe caractéristique couple/angle.OBJECT OF THE INVENTION One aspect of the invention proceeds from the idea of solving the drawbacks of the prior art by proposing an elastic blade torsion damper which is particularly effective and in which the performances of the damping are improved. The invention thus relates to a torsion damper for a torque transmission device, in particular for a motor vehicle, in particular for a clutch device, the damper being arranged in such a way that the torsional stiffness of the damper decreases over an angular range. predetermined decreasing stiffness away from a relative angular position of rest. The angular stiffness of the damper is decreasing in the predetermined angular range of decreasing stiffness. In other words, in this angular range, the angular stiffness of the damper decreases when the angular displacement of the damper increases relative to the relative angular position of rest. Angular stiffness is defined as the derivative of the torque / angle characteristic curve.

15 Ainsi, la présence de plages angulaires de raideur décroissante permet de faire diminuer la raideur angulaire dans certaines plages de débattement angulaire pour lesquelles un meilleur amortissement est souhaité. Lorsque la raideur décroit suffisamment jusqu'à une valeur minimale, le filtrage torsionnel est fortement amélioré.Thus, the presence of angular ranges of decreasing stiffness makes it possible to reduce the angular stiffness in certain ranges of angular displacement for which better damping is desired. When the stiffness decreases sufficiently to a minimum value, the torsional filtering is greatly improved.

20 L'aptitude de l'amortisseur à faire décroître la raideur sur certaines plages angulaires de fonctionnement permet de personnaliser la courbe d'amortissement souhaitée en fonction des spécificités du moteur. Selon d'autres modes de réalisation avantageux, un tel amortisseur à torsion peut présenter une ou plusieurs des caractéristiques suivantes : 25 De préférence, l'amortisseur comporte : un premier élément et un second élément mobiles en rotation l'un par rapport à l'autre autour d'un axe de rotation X ; les premier et second éléments étant en position angulaire relative de repos en l'absence de transmission de couple, 3037113 3 un organe de transmission porté par l'un des premier et second éléments, cet organe de transmission comportant une lame élastique agencée pour fléchir pour transmettre un couple de rotation entre ces deux éléments, la flexion de la lame élastique étant accompagnée d'une rotation relative entre 5 les premier et second éléments, selon l'axe de rotation X, pour amortir les acyclismes de rotation entre le premier élément et le second élément, un élément d'appui porté par l'autre desdits premier et second éléments et agencé pour coopérer avec la lame l'un des éléments d'appui et de la lame élastique comporte une surface de 10 came et l'autre de l'élément d'appui et de la lame élastique comporte un suiveur de came agencé pour se déplacer sur la surface de came lors d'une rotation relative entre les premier et second éléments, De préférence, la plage angulaire prédéterminée de raideur décroissante 15 est séparée de la position angulaire relative de repos d'au moins 10 degrés, notamment d'au moins 20 degrés, par exemple d'au moins 30 degrés. De préférence, la surface de came est agencée de sorte que la raideur torsionnelle de l'amortisseur décroit sur la plage angulaire prédéterminée de raideur 20 décroissante. Ainsi, on peut modifier la raideur de l'amortissement en modifiant la surface de came. Avantageusement, la raideur angulaire de l'amortisseur est fonction du profil de la surface de came. Ainsi une modification du profil de la surface de came 25 se traduit par une modification de la courbe d'amortissement. La raideur angulaire de l'amortisseur ne dépend pas notamment d'autres organes élastiques tels que des ressorts à spires. De préférence, la plage angulaire prédéterminée de raideur décroissante 30 est séparée de la position angulaire relative de repos par au moins une plage angulaire de raideur constante ou croissante. De préférence, la plage angulaire prédéterminée de raideur décroissante est adjacente à la plage angulaire de raideur constante ou croissante.The ability of the damper to decrease stiffness over certain angular operating ranges allows the desired damping curve to be customized to suit the specific characteristics of the engine. According to other advantageous embodiments, such a torsion damper may have one or more of the following characteristics: Preferably, the damper comprises: a first element and a second element movable in rotation with respect to the other around an axis of rotation X; the first and second elements being in the relative angular position of rest in the absence of torque transmission, a transmission member carried by one of the first and second elements, this transmission member comprising an elastic blade arranged to flex for transmitting a torque between these two elements, the bending of the elastic blade being accompanied by a relative rotation between the first and second elements, along the axis of rotation X, to dampen the rotation acyclisms between the first element and the second element, a bearing element carried by the other of said first and second elements and arranged to cooperate with the blade one of the support elements and the elastic blade has a cam surface and the other of the support member and the resilient blade have a cam follower arranged to move on the cam surface during relative rotation between the first and second members, reference, the predetermined angular range of decreasing stiffness 15 is separated from the relative angular position of rest by at least 10 degrees, in particular by at least 20 degrees, for example by at least 30 degrees. Preferably, the cam surface is arranged so that the torsional stiffness of the damper decreases over the predetermined angular range of decreasing stiffness. Thus, the stiffness of the damping can be modified by modifying the cam surface. Advantageously, the angular stiffness of the damper is a function of the profile of the cam surface. Thus a modification of the profile of the cam surface 25 results in a modification of the damping curve. The angular stiffness of the damper does not depend in particular on other elastic members such as coil springs. Preferably, the predetermined angular range of decreasing stiffness 30 is separated from the relative angular rest position by at least one angular range of constant or increasing stiffness. Preferably, the predetermined angular range of decreasing stiffness is adjacent to the angular range of constant or increasing stiffness.

3037113 4 De préférence, la plage angulaire prédéterminée de raideur décroissante est comprise entre deux plages angulaires de raideur constante ou croissante. De préférence, l'amortisseur comporte plusieurs plages angulaires de 5 raideur décroissantes. Avantageusement, deux plages angulaires de raideur décroissantes sont prévues du même côté de la position angulaire relative de repos.Preferably, the predetermined angular range of decreasing stiffness is between two angular ranges of constant or increasing stiffness. Preferably, the damper has several decreasing angular ranges of stiffness. Advantageously, two angular ranges of decreasing stiffness are provided on the same side of the relative angular position of rest.

10 Avantageusement, ces deux plages de raideur décroissante sont séparées l'une de l'autre. Avantageusement, ces deux plages de raideur décroissante sont espacées de la position angulaire relative de repos. De préférence, l'amortisseur comporte une position de débattement 15 angulaire maximum. De préférence, l'amortisseur comporte des butées agencées pour venir en contact l'une contre l'autre dans la position angulaire de débattement maximum.Advantageously, these two decreasing stiffness ranges are separated from each other. Advantageously, these two decreasing stiffness ranges are spaced apart from the relative angular position of rest. Preferably, the damper comprises a maximum angular displacement position. Preferably, the damper comprises stops arranged to come into contact with each other in the angular position of maximum displacement.

20 De préférence, ces butées sont solidaires en rotation des premier et second éléments. De préférence, la plage angulaire prédéterminées de raideur décroissante est séparée de la position de débattement angulaire maximum d'au moins 10 25 degrés, notamment d'au moins 20 degrés, par exemple d'au moins 30 degrés. De préférence, l'amortisseur est agencé de sorte que la raideur torsionnelle de l'amortisseur est sensiblement égale à 0 pour une position angulaire relative prédéterminée de raideur nulle, éloignée de la position angulaire relative de repos, 30 la raideur torsionnelle de l'amortisseur étant différente de 0 entre la position angulaire de repos et la position de raideur nulle. La position angulaire relative prédéterminée de raideur nulle est un point d'inflexion de la courbe d'amortissement de l'amortisseur.Preferably, these stops are integral in rotation with the first and second elements. Preferably, the predetermined angular range of decreasing stiffness is separated from the maximum angular deflection position by at least 25 degrees, in particular by at least 20 degrees, for example by at least 30 degrees. Preferably, the damper is arranged so that the torsional stiffness of the damper is substantially equal to 0 for a predetermined relative angular position of zero stiffness, remote from the relative angular position of rest, the torsional stiffness of the damper being different from 0 between the angular rest position and the zero stiffness position. The predetermined relative angular position of zero stiffness is a point of inflection of the damping curve of the damper.

3037113 5 De préférence, la raideur torsionnelle de l'amortisseur est sensiblement égale à 0 sur au moins une plage angulaire de raideur nulle qui comprend ladite position angulaire de raideur nulle.Preferably, the torsional stiffness of the damper is substantially equal to 0 over at least one angular range of zero stiffness which comprises said angular position of zero stiffness.

5 De préférence, l'amortisseur comporte plusieurs plages angulaires de raideur nulle séparées les unes des autres. Autrement dit, la courbe de couple Couple/angle de l'amortisseur comporte 10 au moins une zone de couple sensiblement constant dans au moins une plage de débattement angulaire. Ainsi, la présence de plages angulaires de raideur nulle ou sensiblement égale à 0 permet d'améliorer la qualité de filtration de l'amortisseur. Dans ces 15 plages angulaires, les propriétés de filtrage de l'amortisseur sont nettement améliorées. Il est possible d'éviter les phénomènes de résonnance. Dans les plages angulaires de raideur sensiblement égale à 0, le filtrage des vibrations torsionnelles devient idéal.Preferably, the damper has several angular ranges of zero stiffness separated from each other. In other words, the torque / angle torque curve of the damper comprises at least a substantially constant torque zone in at least one angular range of deflection. Thus, the presence of angular ranges of zero stiffness or substantially equal to 0 improves the filter quality of the damper. In these 15 angular ranges, the filtering properties of the damper are significantly improved. It is possible to avoid resonance phenomena. In the angular ranges of stiffness substantially equal to 0, the filtering of torsional vibrations becomes ideal.

20 Si on le souhaite, l'amortisseur est agencé de sorte que la plage angulaire de raideur nulle est obtenue pour un couple compris entre 20% et 60% du couple moteur maximum, notamment compris entre 25% et 50% du couple moteur maximum, par exemple 30% du couple moteur maximum.If desired, the damper is arranged so that the angular range of zero stiffness is obtained for a torque comprised between 20% and 60% of the maximum engine torque, in particular between 25% and 50% of the maximum engine torque, for example 30% of the maximum engine torque.

25 De préférence, l'amortisseur est agencé de sorte qu'une plage angulaire de raideur nulle est obtenue pour un couple sensiblement égal au couple moteur maximum. De préférence, la position de débattement angulaire maximum est située 30 sur une plage angulaire de raideur nulle. De préférence, la plage angulaire prédéterminée de raideur décroissante est comprise entre ladite au moins une plage de raideur constante ou croissante et la plage angulaire de raideur nulle.Preferably, the damper is arranged so that an angular range of zero stiffness is obtained for a torque substantially equal to the maximum engine torque. Preferably, the maximum angular deflection position is on an angular range of zero stiffness. Preferably, the predetermined angular range of decreasing stiffness is between said at least one constant or increasing stiffness range and the zero stiffness angular range.

35 3037113 6 De préférence, la plage de raideur nulle est adjacente à la plage angulaire prédéterminée de raideur décroissante. De préférence, la plage de raideur nulle est adjacente à la plage angulaire 5 prédéterminée de raideur décroissante, du côté opposé à la position angulaire relative de repos. De préférence, la plage de raideur nulle est adjacente à ladite au moins une plage angulaire de raideur constante ou croissante.Preferably, the zero stiffness range is adjacent to the predetermined angular range of decreasing stiffness. Preferably, the zero stiffness range is adjacent to the predetermined angular range of decreasing stiffness on the opposite side to the relative angular position of rest. Preferably, the zero stiffness range is adjacent to said at least one angular range of constant or increasing stiffness.

10 De préférence, la plage de raideur nulle est comprise entre la plage angulaire prédéterminée de raideur décroissante et ladite au moins une plage angulaire de raideur constante ou croissante.Preferably, the zero stiffness range is between the predetermined angular range of decreasing stiffness and said at least one angular range of constant or increasing stiffness.

15 Avantageusement, la raideur torsionnelle est comprise entre 0 N.m/degré et 3 N.m/degré, notamment entre 0 N.m/degré et 2 N.m/degré, notamment entre 0 N.m/degré et 1 N.m/degré, en particulier entre 0 N.m/degré et 0,5 N.m/degré sur la plage angulaire de raideur nulle.Advantageously, the torsional stiffness is between 0 Nm / degree and 3 Nm / degree, in particular between 0 Nm / degree and 2 Nm / degree, in particular between 0 Nm / degree and 1 Nm / degree, in particular between 0 Nm / degree. and 0.5 Nm / degree over the angular range of zero stiffness.

20 Si on le souhaite, la plage angulaire de raideur nulle présente une amplitude comprise entre 1 et 30 degrés, notamment entre 2 et 20 degrés, par exemple entre 3 et 10 degrés. De préférence, la surface de came est agencée de manière à ce que la 25 raideur torsionnelle de l'amortisseur est sensiblement égale à 0 dans la plage angulaire de raideur nulle. De préférence, l'amortisseur comporte plusieurs plages angulaires de raideur nulle entre lesquelles la raideur de l'amortisseur est supérieure à 5 30 N.m/degré, notamment supérieure à 10 N.m/degré. Si on le souhaite, l'amortisseur comporte une plage angulaire de raideur nulle pour un couple compris entre 25% et 50% du couple moteur maximum, et une autre plage angulaire de raideur nulle pour un couple compris entre 80% et 100% 35 du couple moteur maximum.If desired, the angular range of zero stiffness has an amplitude of between 1 and 30 degrees, especially between 2 and 20 degrees, for example between 3 and 10 degrees. Preferably, the cam surface is arranged so that the torsional stiffness of the damper is substantially equal to 0 in the angular range of zero stiffness. Preferably, the damper comprises several angular ranges of zero stiffness between which the stiffness of the damper is greater than 5 Nm / degree, especially greater than 10 Nm / degree. If desired, the damper comprises an angular range of zero stiffness for a torque of between 25% and 50% of the maximum engine torque, and another zero stiffness range for a torque of between 80% and 100% of the torque. maximum engine torque.

3037113 7 De préférence, l'amortisseur est agencé de sorte que la plage angulaire de raideur nulle est obtenue pour un couple sensiblement égal au couple moteur maximum.Preferably, the damper is arranged such that the angular range of zero stiffness is obtained for a torque substantially equal to the maximum engine torque.

5 Si on le souhaite, l'amortisseur est agencé de sorte que la plage angulaire de raideur nulle est comprise dans une plage intermédiaire de débattement angulaire comprise entre 30% et 70% de la plage de débattement angulaire maximum considéré dans un sens donné de rotation par rapport à la position 10 angulaire relative de repos, notamment comprise entre 40% et 60% de cette plage. De préférence, la lame élastique et l'élément d'appui sont agencés de telle sorte qu'en fonctionnement, l'élément d'appui exerce un effort de flexion sur la lame et produisant en réaction une force de réaction de la lame sur l'élément d'appui apte 15 à rappeler les premier et second éléments vers ladite position angulaire de repos. Avantageusement, l'amortisseur est agencé de sorte que, dans les plages de raideur constante ou croissante, l'élément d'appui fait fléchir la lame lorsque la position angulaire des premier et second éléments s'écarte de la position angulaire 20 de repos. Avantageusement, la flexion de la lame est accompagnée d'une rotation relative entre les premier et second éléments.If desired, the damper is arranged so that the angular range of zero stiffness is within an intermediate range of angular displacement of between 30% and 70% of the maximum range of angular displacement considered in a given direction of rotation. relative to the relative angular rest position, in particular between 40% and 60% of this range. Preferably, the resilient blade and the bearing member are arranged such that in operation the bearing member exerts a bending force on the blade and responsively produces a reaction force of the blade on the blade. support member adapted to recall the first and second elements to said angular position of rest. Advantageously, the damper is arranged such that, in the regions of constant or increasing stiffness, the support element bends the blade when the angular position of the first and second elements deviates from the angular position 20 of rest. Advantageously, the bending of the blade is accompanied by a relative rotation between the first and second elements.

25 Avantageusement, la lame élastique comporte une zone d'extrémité libre et l'amortisseur est agencé de sorte que cette extrémité libre se déplace avec une composante radiale lorsque l'élément d'appui fait fléchir la lame élastique. Avantageusement, la surface de came est agencée de sorte que 30 l'amortisseur comporte au moins une plage prédéterminée de raideur décroissante. Avantageusement, la surface de came est agencée de sorte que l'amortisseur comporte au moins une plage prédéterminée de raideur nulle.Advantageously, the elastic blade has a free end zone and the damper is arranged so that this free end moves with a radial component when the bearing element bends the elastic blade. Advantageously, the cam surface is arranged so that the damper has at least one predetermined range of decreasing stiffness. Advantageously, the cam surface is arranged so that the damper comprises at least a predetermined range of zero stiffness.

3037113 8 Avantageusement, la surface de came est agencée de sorte que l'amortisseur comporte au moins une plage prédéterminée de raideur constante ou croissante.Advantageously, the cam surface is arranged so that the damper comprises at least a predetermined range of constant or increasing stiffness.

5 De préférence, la surface de came comporte au moins une zone de raideur croissante agencée de sorte que la raideur angulaire de l'amortisseur augmente lorsque le suiveur de came se déplace sur cette zone en s'éloignant de la position relative de repos.Preferably, the cam surface has at least one region of increasing stiffness arranged so that the angular stiffness of the damper increases as the cam follower moves over that area away from the relative rest position.

10 De préférence, la surface de came comporte deux zones de raideur croissante distantes l'une de l'autre. De préférence, la surface de came comporte au moins une zone de raideur décroissante agencée de sorte que la raideur angulaire de l'amortisseur diminue 15 lorsque le suiveur de came se déplace sur cette zone en s'éloignant de la position relative de repos. De préférence, la surface de came comporte deux zones de raideur décroissante distantes l'une de l'autre.Preferably, the cam surface has two zones of increasing stiffness spaced apart from each other. Preferably, the cam surface has at least one decreasing stiffness zone arranged so that the angular stiffness of the damper decreases as the cam follower moves over this area away from the relative rest position. Preferably, the cam surface has two zones of decreasing stiffness distant from each other.

20 De préférence, la surface de came comporte autant de zones de raideur décroissante que l'amortisseur comporte de plages angulaires de raideur décroissante.Preferably, the cam surface has as many zones of decreasing stiffness as the damper has angular ranges of decreasing stiffness.

25 Avantageusement, la surface de came comporte au moins une zone de raideur nulle agencée de sorte que la raideur angulaire de l'amortisseur soit sensiblement égale à 0 lorsque le suiveur de came se déplace sur cette zone en s'éloignant de la position relative de repos.Advantageously, the cam surface comprises at least one zone of zero stiffness arranged so that the angular stiffness of the damper is substantially equal to 0 when the cam follower moves on this zone away from the relative position of the cam. rest.

30 Avantageusement, la surface de came comporte deux zones de raideur nulle distantes l'une de l'autre. Avantageusement, la surface de came est agencée de sorte que l'élément d'appui exerce sur la lame élastique une charge dont le support, normal au point de 3037113 9 contact entre la lame et l'élément d'appui, est séparé de l'axe de rotation de l'amortisseur d'une distance appelée bras de levier, de sorte que le couple égal au produit de la charge et du bras de levier soit non nul. On appelle ici support de la force, la droite passant par le point de contact de la force et parallèle au vecteur de 5 la force. De préférence, la surface de came est portée par la lame élastique et le suiveur de came est porté par l'élément d'appui. Ainsi, on peut modifier la raideur de l'amortissement en modifiant uniquement la lame de l'amortisseur.Advantageously, the cam surface has two zones of zero stiffness spaced apart from each other. Advantageously, the cam surface is arranged so that the bearing element exerts on the spring blade a load whose support, normal at the point of contact between the blade and the support element, is separated from the spring. the axis of rotation of the damper a distance called lever arm, so that the torque equal to the product of the load and the lever arm is not zero. Here we call support of the force, the straight line passing through the point of contact of the force and parallel to the vector of the force. Preferably, the cam surface is carried by the resilient blade and the cam follower is carried by the bearing member. Thus, one can modify the stiffness of the damping by modifying only the blade of the shock absorber.

10 Avantageusement, le suiveur de came est formé par un galet monté mobile en rotation sur lui-même sur l'un des premier et second éléments. Si on le souhaite, le suiveur de came est solidaire en rotation de l'un des 15 premier et second éléments par rapport à l'axe de rotation de l'amortisseur. En variante, le suiveur de came est un corps roulant mobile en rotation par rapport aux premier et second éléments. Le corps roulant se déplace d'une part sur la lame élastique portée par l'un des premier et second éléments, notamment en 20 roulant et en la faisant fléchir, d'autre part sur l'autre des premier et second éléments. De préférence, en roulant sur la lame élastique portée par l'un des premier et second éléments, le corps roulant accomplit un trajet curviligne sur l'autre des premier et second éléments sur au moins un secteur angulaire prédéterminé, notamment en roulant.Advantageously, the cam follower is formed by a roller rotatably mounted on itself on one of the first and second elements. If desired, the cam follower is rotationally secured to one of the first and second members relative to the axis of rotation of the damper. Alternatively, the cam follower is a rolling body movable in rotation with respect to the first and second members. The rolling body moves on the one hand on the elastic blade carried by one of the first and second elements, in particular by rolling and by bending, on the other hand on the other of the first and second elements. Preferably, by rolling on the elastic blade carried by one of the first and second elements, the rolling body accomplishes a curvilinear path on the other of the first and second elements on at least one predetermined angular sector, including rolling.

25 Avantageusement, la surface de came est agencée de sorte que le suiveur de came exerce sur la lame élastique une charge dont le support, normal au point de contact entre la lame et le suiveur de came, est séparé de l'axe de rotation de l'amortisseur d'une distance appelée bras de levier, de sorte que le couple égal au 30 produit de la charge et du bras de levier soit non nul. On appelle ici support de la force, la droite passant par le point de contact de la force et parallèle au vecteur de la force. Grâce à cette condition, la plage angulaire de raideur nulle de l'amortisseur 35 ne se comporte pas comme une position angulaire de repos.Advantageously, the cam surface is arranged so that the cam follower exerts on the spring blade a load whose support, normal to the point of contact between the blade and the cam follower, is separated from the axis of rotation of the cam. the damper of a distance called lever arm, so that the torque equal to the product of the load and the lever arm is not zero. Here we call support of the force, the line passing through the point of contact of the force and parallel to the vector of the force. Thanks to this condition, the angular range of zero stiffness of the damper 35 does not behave like an angular position of rest.

3037113 10 Autrement dit, en fonctionnement, c'est-à-dire en dehors de la position angulaire de repos, y compris dans la plage de raideur nulle, la surface de came est agencée de sorte que l'élément d'appui produise en effort associé à un bras de 5 levier non nul. Autrement dit, en fonctionnement, c'est-à-dire en dehors de la position angulaire de repos, y compris dans la plage de raideur nulle, la surface de came est agencée de sorte que la droite suivant laquelle l'élément d'appui produit un effort de 10 flexion sur la lame est distante de l'axe de rotation de l'amortisseur. Pour faire en sorte que, sur la plage angulaire de raideur nulle, le couple transmis soit sensiblement le même, il faut que le produit de la charge appliquée par l'élément d'appui sur la lame et du bras de levier soit constant. La charge 15 considérée ici est la force nécessaire pour faire fléchir, sur un point de contact donné de la lame, ce point de contact jusqu'à la trajectoire circulaire suivie par l'élément d'appui, notamment le suiveur de came. De même, la surface de came est agencée de sorte que les valeurs de la 20 charge et du bras de levier soient maintenus supérieurs à 0 dans la plage de raideur nulle. Ainsi, l'amortisseur reste réversible en dehors de sa position angulaire relative de repos, c'est-à-dire que le suiveur de came ne reste pas bloqué sur la plage angulaire de raideur nulle.In other words, in operation, that is to say outside the angular position of rest, including in the zero stiffness range, the cam surface is arranged so that the support element produces effort associated with a non-zero lever arm. In other words, in operation, that is to say outside the angular position of rest, including in the zero stiffness range, the cam surface is arranged so that the line along which the support element produces a bending force on the blade is distant from the axis of rotation of the damper. To ensure that, in the angular range of zero stiffness, the transmitted torque is substantially the same, it is necessary that the product of the load applied by the support element on the blade and the lever arm is constant. The load 15 considered here is the force required to bend, at a given contact point of the blade, this point of contact to the circular path followed by the support element, in particular the cam follower. Likewise, the cam surface is arranged so that the values of the load and the lever arm are kept greater than 0 in the zero stiffness range. Thus, the damper remains reversible outside its relative angular position of rest, that is to say that the cam follower does not remain blocked on the angular range of zero stiffness.

25 Selon un deuxième mode de réalisation, la surface de came est portée par l'élément d'appui et le suiveur de came est porté par la lame élastique, notamment sur sa zone d'extrémité libre. Le cas échéant, la lame comporte une extrémité distale libre mobile 30 radialement de telle sorte que la distance radiale séparant l'axe de rotation de ladite extrémité distale libre varie en fonction du débattement angulaire entre le premier et le second éléments. L'amortisseur à torsion peut présenter en outre une ou plusieurs des 35 caractéristiques suivantes : 3037113 11 la lame est agencée pour se déformer dans un plan perpendiculaire à l'axe de rotation X. l'organe de transmission peut être formé par un empilement de lamelles. 5 l'organe de transmission comporte deux lames agencées de façon symétrique par rapport à l'axe de rotation. l'organe de transmission comporte plusieurs lames régulièrement disposées autour de l'axe de rotation. le cas échéant, l'organe de transmission avec ses lames sont formés d'un 10 seul tenant sur une même pièce, cette pièce pouvant elle-même être formée par un empilement de lamelles. en variante, l'amortisseur comporte deux organes de transmission agencés de façon symétrique par rapport à l'axe de rotation. Le cas échéant, les deux organes de transmission sont montés à distance 15 l'un de l'autre, ces organes de transmission étant formés sur des pièces séparées l'amortisseur comporte plusieurs organes de transmission régulièrement disposées autour de l'axe de rotation. chaque organe de transmission comporte une seule lame. 20 pour un secteur angulaire prédéterminé, l'organe de transmission comporte deux régions de lame flexibles décalées radialement l'une de l'autre selon une direction radiale, un espace libre séparant radialement lesdites deux régions de lame flexibles. l'une des régions de lame flexibles est située entre l'axe de rotation et l'autre 25 des régions de lame flexibles. la zone d'extrémité libre est mobile radialement de telle sorte que la distance radiale séparant l'axe de rotation de ladite extrémité distale libre varie en fonction du débattement angulaire entre les premier et second éléments. le secteur angulaire le long duquel les deux régions de lame flexibles sont 30 décalées radialement l'une de l'autre s'étend sur au moins 1°, par exemple sur au moins 5°, de préférence au moins 10°, notamment au moins 30°. l'organe de transmission comporte une portion de fixation sur l'un des premier et second éléments et une portion flexible comprenant la lame élastique. 3037113 12 de préférence, la portion de fixation reste fixe, autrement dit elle ne fléchit pas, lorsque les premier et second éléments tournent l'un par rapport à l'autre. la lame élastique comporte un brin interne et un brin externe reliés par un 5 coude, le brin interne se développant depuis la portion de fixation jusqu'au coude et le brin externe se développant circonférentiellement depuis le coude jusqu'à l'extrémité distale libre, le brin interne comportant l'une des deux régions de lame flexibles et radialement décalées de l'organe de transmission et le brin externe comportant l'autre des deux régions de lame 10 flexibles et radialement décalées de l'organe de transmission. la portion de fixation se développe circonférentiellement sur une longueur inférieure à la longueur du brin externe de la lame élastique. la portion de fixation se développe circonférentiellement sur une longueur inférieure à 50% de la longueur du brin externe, de préférence inférieure à 15 30 %. ledit au moins un élément d'appui est disposé radialement à l'extérieur du brin externe de ladite au moins une lame. le brin externe s'étend circonférentiellement sur au moins 45° et peut s'étendre circonférentiellement jusqu'à 180° dans un état fléchi de la lame 20 correspondant à un débattement angulaire maximal entre le premier élément et le second élément, l'amortisseur comporte deux lames élastiquement déformables montées solidaires de l'un desdits premier et second éléments et l'amortisseur comporte deux éléments d'appui portés par l'autre desdits premier et second 25 éléments, les éléments d'appui étant respectivement agencés pour coopérer avec l'une et l'autre des deux lames élastiquement déformables, et chaque lame comporte deux régions de lame flexibles décalées radialement l'une de l'autre, un espace libre séparant radialement lesdites régions de lame flexibles de chacune des lames. 30 les lames élastiquement déformables sont symétriques par rapport à l'axe de rotation. l'extrémité distale de chaque lame élastiquement deformable comporte un dégagement interne, le dégagement d'une lame présentant un rayon de courbure supérieur au rayon de courbure d'une surface externe de l'autre 3037113 13 lame de sorte que ladite surface externe de l'autre lame puisse s'insérer dans le dégagement. les lames élastiquement déformables sont fixées à distance l'une de l'autre au premier ou second élément. 5 la lame de la portion flexible comporte une surface de came et ledit au moins un élément d'appui comporte un suiveur de came agencé pour coopérer avec la surface de came. le suiveur de came est un galet monté mobile en rotation sur le premier ou second élément, par l'intermédiaire d'un palier à roulement.According to a second embodiment, the cam surface is carried by the support element and the cam follower is carried by the elastic blade, in particular on its free end zone. Where appropriate, the blade has a radially free, free distal end 30 such that the radial distance between the axis of rotation of said free distal end varies as a function of the angular displacement between the first and second members. The torsion damper may furthermore have one or more of the following features: the blade is arranged to deform in a plane perpendicular to the axis of rotation X. The transmission member may be formed by a stack of lamellae. The transmission member comprises two blades arranged symmetrically with respect to the axis of rotation. the transmission member comprises a plurality of blades regularly arranged around the axis of rotation. if necessary, the transmission member with its blades are formed in one piece on the same piece, this piece itself being formed by a stack of lamellae. alternatively, the damper comprises two transmission members arranged symmetrically with respect to the axis of rotation. Where appropriate, the two transmission members are mounted at a distance from each other, these transmission members being formed on separate parts, the damper comprises a plurality of transmission members regularly arranged around the axis of rotation. each transmission member comprises a single blade. For a predetermined angular sector, the transmission member comprises two flexible blade regions radially offset from one another in a radial direction, a free space radially separating said two flexible blade regions. one of the flexible blade regions is located between the axis of rotation and the other of the flexible blade regions. the free end region is radially movable such that the radial distance between the axis of rotation of said free distal end varies as a function of the angular displacement between the first and second members. the angular sector along which the two flexible blade regions are radially offset from one another extends over at least 1 °, for example over at least 5 °, preferably at least 10 °, especially at least 30 °. the transmission member comprises a fixing portion on one of the first and second elements and a flexible portion comprising the elastic blade. Preferably, the attachment portion remains fixed, that is, it does not flex when the first and second members rotate relative to each other. the resilient blade has an inner and outer strand connected by a bend, the inner strand developing from the attachment portion to the elbow and the outer strand developing circumferentially from the bend to the free distal end, the inner strand having one of the two radially and radially offset blade regions of the transmission member and the outer strand having the other of the two radially and radially offset blade regions of the transmission member. the fixing portion develops circumferentially over a length less than the length of the outer strand of the elastic blade. the fixing portion develops circumferentially over a length less than 50% of the length of the outer strand, preferably less than 30%. said at least one support element is arranged radially outside the outer strand of said at least one blade. the outer strand extends circumferentially over at least 45 ° and can extend circumferentially up to 180 ° in a bent state of the blade 20 corresponding to a maximum angular displacement between the first element and the second element, the shock absorber comprises two elastically deformable blades mounted integral with one of said first and second elements and the damper comprises two support elements carried by the other of said first and second elements, the support elements being respectively arranged to cooperate with the one and the other of the two elastically deformable blades, and each blade has two flexible blade regions radially offset from one another, a free space radially separating said flexible blade regions of each of the blades. The elastically deformable blades are symmetrical with respect to the axis of rotation. the distal end of each elastically deformable blade has an internal clearance, the clearance of a blade having a radius of curvature greater than the radius of curvature of an outer surface of the other blade so that said outer surface of the blade other blade can fit into the clearance. the elastically deformable blades are fixed at a distance from one another to the first or second element. The blade of the flexible portion has a cam surface and the at least one bearing member has a cam follower arranged to cooperate with the cam surface. the cam follower is a roller rotatably mounted on the first or second element, by means of a rolling bearing.

10 L'invention porte également sur un élément de transmission de couple, notamment pour véhicule automobile, comportant un amortisseur de torsion précité. L'invention concerne aussi un amortisseur de torsion pour dispositif de transmission de couple, notamment pour automobile, en particulier pour un dispositif d'embrayage, l'amortisseur étant agencé de sorte que la raideur torsionnelle de 15 l'amortisseur est sensiblement égale à 0 sur une plage angulaire prédéterminée de raideur nulle. De préférence, cet amortisseur comporte : un premier élément et un second élément mobiles en rotation l'un par 20 rapport à l'autre autour d'un axe de rotation X ; les premier et second éléments étant en position angulaire relative de repos en l'absence de transmission de couple, un organe de transmission porté par l'un des premier et second éléments, cet organe de transmission comportant une lame élastique agencée pour 25 fléchir pour transmettre un couple de rotation entre ces deux éléments, la flexion de la lame élastique étant accompagnée d'une rotation relative entre les premier et second éléments, selon l'axe de rotation X, pour amortir les acyclismes de rotation entre le premier élément et le second élément, un élément d'appui porté par l'autre desdits premier et second éléments et 30 agencé pour coopérer avec la lame l'un des éléments d'appui et de la lame élastique comporte une surface de came et l'autre de l'élément d'appui et de la lame élastique comporte un 3037113 14 suiveur de came agencé pour se déplacer sur la surface de came lors d'une rotation relative entre les premier et second éléments, Cette plage angulaire de raideur nulle est séparée de la position angulaire relative de repos par une plage angulaire de raideur non nulle, constante ou 5 croissante. Un aspect de l'invention part de l'idée de réduire la raideur de l'amortisseur sur certaines plages de débattement angulaire afin de permettre un meilleur amortissement des acyclismes. Un aspect de l'invention part de l'idée d'augmenter le débattement angulaire maximal entre l'élément d'entrée et l'élément de sortie. Un 10 objet de l'invention est de fournir un amortisseur de torsion permettant une filtration des acyclismes de qualité. Un objet de l'invention est de fournir une lame élastique présentant une longueur importante. Un objet de l'invention est de fournir une lame présentant une surface de came de grande longueur. L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques 15 et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux figures annexées. Sur ces figures : La figure 1 est une vue de face d'un double volant amortisseur illustrant le 20 fonctionnement général d'un amortisseur de torsion, dans laquelle le volant d'inertie secondaire est représenté, de manière transparente, de sorte à visualiser l'organe de transmission. La figure 2 est une vue en coupe du double volant amortisseur de la figure 1, selon ll-ll.The invention also relates to a torque transmission element, in particular for a motor vehicle, comprising a torsion damper mentioned above. The invention also relates to a torsion damper for a torque transmission device, in particular for an automobile, in particular for a clutch device, the damper being arranged so that the torsional stiffness of the damper is substantially equal to 0 over a predetermined angular range of zero stiffness. Preferably, this damper comprises: a first element and a second element movable in rotation with respect to each other about an axis of rotation X; the first and second elements being in the relative angular position of rest in the absence of torque transmission, a transmission member carried by one of the first and second elements, this transmission member comprising an elastic blade arranged to flex to transmit a torque between these two elements, the flexion of the elastic blade being accompanied by a relative rotation between the first and second elements, along the axis of rotation X, to dampen the rotation acyclisms between the first element and the second element; element, a bearing element carried by the other of said first and second elements and arranged to cooperate with the blade one of the support elements and the elastic blade has a cam surface and the other of the support member and the resilient blade includes a cam follower arranged to move on the cam surface upon relative rotation between the first and second members, This angular range of zero stiffness is separated from the relative angular position of rest by a non-zero, constant or increasing angular range of stiffness. One aspect of the invention is based on the idea of reducing the stiffness of the damper on certain ranges of angular displacement in order to allow a better damping of the acyclisms. One aspect of the invention is based on the idea of increasing the maximum angular deflection between the input element and the output element. An object of the invention is to provide a torsion damper for filtering quality acyclisms. An object of the invention is to provide an elastic blade having a large length. An object of the invention is to provide a blade having a cam surface of great length. The invention will be better understood, and other objects, details, features and advantages thereof will become more apparent in the following description of several particular embodiments of the invention, given solely for illustrative purposes and not limiting, with reference to the appended figures. In these figures: FIG. 1 is a front view of a double damping flywheel illustrating the general operation of a torsion damper, in which the secondary flywheel is shown, in a transparent manner, so as to visualize the transmission organ. Figure 2 is a sectional view of the double damping flywheel of Figure 1, according 11-ll.

25 La figure 3 est une vue en perspective du double volant amortisseur de la figure 1. La figure 4 est une vue en perspective du double volant amortisseur des figures 1 à 3, dans laquelle le volant d'inertie secondaire est représenté, partiellement arraché, et désassemblé du volant d'inertie primaire.FIG. 3 is a perspective view of the double damping flywheel of FIG. 1. FIG. 4 is a perspective view of the double damping flywheel of FIGS. 1 to 3, in which the secondary flywheel is shown, partially broken away, and disassembling the primary flywheel.

3037113 15 La figure 5 est une vue schématique d'un amortisseur de torsion selon un premier mode de réalisation de l'invention en position de repos. La figure 6 est une vue schématique de l'amortisseur de torsion de la figure 5 dans une position maximale de débattement angulaire entre le premier 5 élément et le second élément. La figure 7 est un exemple de courbe caractéristique obtenu avec un double volant amortisseur selon le premier mode de réalisation, représentant le couple transmis en fonction du débattement angulaire. La figure 8 est une vue schématique et partielle de la lame et du suiveur de 10 came du premier mode de réalisation. La figure 9 est une vue schématique de l'organe de transmission à lame du premier mode de réalisation illustrant le fléchissement de la lame lors d'un débattement angulaire entre les volants d'inertie, primaire et secondaire, dans un sens direct.FIG. 5 is a schematic view of a torsion damper according to a first embodiment of the invention in the rest position. Figure 6 is a schematic view of the torsion damper of Figure 5 in a maximum angular displacement position between the first member and the second member. FIG. 7 is an example of a characteristic curve obtained with a double damping flywheel according to the first embodiment, representing the torque transmitted as a function of the angular displacement. Fig. 8 is a schematic and partial view of the blade and the cam follower of the first embodiment. Figure 9 is a schematic view of the blade transmission member of the first embodiment illustrating the deflection of the blade during an angular deflection between the flywheels, primary and secondary, in a forward direction.

15 La figure 10 est une vue schématique et partielle d'un amortisseur à lame, selon un second mode de réalisation. Dans la description et les revendications, on utilisera, les termes "externe" et "interne" ainsi que les orientations "axiale" et "radiale" pour désigner, selon les définitions données dans la description, des éléments de l'amortisseur de torsion.Figure 10 is a schematic and partial view of a blade damper according to a second embodiment. In the description and the claims, the terms "external" and "internal" as well as the "axial" and "radial" orientations will be used to designate, according to the definitions given in the description, elements of the torsion damper.

20 Par convention, l'orientation "radiale" est dirigée orthogonalement à l'axe (X) de rotation des éléments de l'amortisseur de torsion déterminant l'orientation "axiale" et, de l'intérieur vers l'extérieur en s'éloignant dudit axe, l'orientation "circonférentielle" est dirigée orthogonalement à l'axe de rotation de l'amortisseur de torsion et orthogonalement à la direction radiale. Ainsi, un élément décrit comme se 25 développant circonférentiellement est un élément dont une composante se développe selon une direction circonférentielle. De même, l'indication d'un angle s'interprète comme délimité par deux droites d'un plan perpendiculaire à l'axe de rotation X et sécante au niveau dudit axe de rotation X. Les termes "externe" et "interne" sont utilisés pour définir la position relative d'un élément par rapport à un 30 autre, par référence à l'axe de rotation de l'amortisseur de torsion, un élément proche de l'axe est ainsi qualifié d'interne par opposition à un élément externe situé radialement en périphérie.By convention, the "radial" orientation is directed orthogonally to the axis (X) of rotation of the torsion damper elements determining the "axial" orientation and from the inside to the outside in the direction of rotation. away from said axis, the "circumferential" orientation is directed orthogonally to the rotational axis of the torsion damper and orthogonal to the radial direction. Thus, an element described as circumferentially developing is an element whose component develops in a circumferential direction. Similarly, the indication of an angle is interpreted as delimited by two lines of a plane perpendicular to the axis of rotation X and secant at said axis of rotation X. The terms "external" and "internal" are used to define the relative position of one element relative to another, with reference to the axis of rotation of the torsion damper, an element close to the axis is thus described as internal as opposed to an element. external located radially periphery.

3037113 16 On se réfère d'abord aux figures 1 à 4 qui illustrent le fonctionnement général d'un amortisseur de torsion à lames élastiquement déformables équipant un double volant amortisseur 1. Les premier et second éléments sont formés ici par les volants d'inertie primaire et secondaire. Le double volant amortisseur 1 comprend 5 un volant d'inertie primaire 2, destiné à être fixé en bout d'un vilebrequin d'un moteur à combustion interne, non représenté, et un volant d'inertie secondaire 3 qui est centré et guidé sur le volant primaire 2 au moyen d'un palier à roulement à billes 4. Le volant secondaire 3 est destiné à former le plateau de réaction d'un embrayage, non représenté, relié à l'arbre d'entrée d'une boîte de vitesse. Les 10 volants d'inertie primaire 2 et secondaire 3 sont destinés à être montés mobiles autour d'un axe de rotation X et sont, en outre, mobiles en rotation l'un par rapport à l'autre autour dudit axe X. Le volant primaire 2 comporte un moyeu 5 radialement interne supportant le palier à roulement 4, une portion annulaire 6 s'étendant radialement depuis le 15 moyeu 5 et une portion cylindrique 7 s'étendant axialement, du côté opposé au moteur, depuis la périphérie externe de la portion annulaire 6. La portion annulaire 6 est pourvue, d'une part, d'orifices de passage de vis 8 de fixation, destinés à la fixation du volant primaire 2 sur le vilebrequin du moteur et, d'autre part, d'orifices de passage de rivets 9 pour la fixation d'un organe de transmission sur le volant 20 primaire 2. Le volant primaire 2 porte, sur sa périphérie extérieure, une couronne dentée 10 pour l'entraînement en rotation du volant primaire 2, à l'aide d'un démarreur. Le moyeu 5 du volant primaire comporte un épaulement 11 servant à l'appui d'une bague interne du palier à roulement 4 et qui retient ladite bague interne 25 en direction du moteur. De même, le volant secondaire 3 comporte sur sa périphérie interne un épaulement 12 servant à l'appui d'une bague externe du palier à roulement 4 et retenant ladite bague externe en direction opposée au moteur. Le volant secondaire 3 comporte une surface annulaire plane 13, tournée du côté opposé au volant primaire 2, formant une surface d'appui pour une garniture 30 de friction d'un disque d'embrayage, non représenté. Le volant secondaire 3 comporte, à proximité de son bord externe, des plots 14 et des orifices 15 servant au montage d'un couvercle d'embrayage. Le volant secondaire 3 comporte en outre 3037113 17 des orifices 16, disposés en vis-à-vis des orifices formés dans le volant primaire 2, et destinés au passage des vis 8, lors du montage du double volant amortisseur 1 sur le vilebrequin. Les volants primaire 2 et secondaire 3 sont couplés en rotation par un 5 organe de transmission 30. Dans le mode de réalisation représenté sur les figures 1 à 4, ce moyen d'amortissement comporte deux lames élastiques 17a, 17b montées solidaires en rotation du volant primaire 2. Pour ce faire, les lames élastiques 17a, 17b sont portées par un corps annulaire 18 pourvu d'orifices permettant le passage des rivets 9 de fixation au volant primaire 2. Le corps annulaire 18 comporte en 10 outre des orifices 19 pour le passage des vis 8 de fixation du double volant amortisseur 1 au nez du vilebrequin. Les deux lames élastiques 17a, 17b sont symétriques par rapport à l'axe de rotation X du disque d'embrayage. Les lames élastiques 17a, 17b présentent une surface de came 20. Le volant secondaire 3 comporte deux éléments d'appui 24 qui comportent chacun un 15 suiveur de came 21 agencé pour coopérer chacun avec une surface de came qui leur est propre. Les lames élastiques 17a, 17b comportent une portion courbe s'étendant de manière sensiblement circonférentielle. Le rayon de courbure de la portion courbe ainsi que la longueur de cette portion courbe sont déterminés en fonction de la raideur souhaité de chaque lame élastique 17a, 17b. Chaque lame 20 élastique 17a, 17b peut, au choix, être réalisée d'un seul tenant ou être composée d'une pluralité de lamelles disposées axialement les unes contre les autres. Les éléments d'appui comportent des suiveurs de came formés par des galets 21 portés par des tiges cylindriques 22 fixées d'une part au volant secondaire 3 et d'autre part à un voile 23. Les galets 21 sont montés mobiles en rotation sur les 25 tiges cylindriques 22 autour d'un axe de rotation parallèle à l'axe de rotation X. Les galets 21 sont maintenus en appui contre leur surface de came 20 respective et sont agencés pour rouler contre ladite surface de came 20 lors d'un mouvement relatif entre les volants primaire 2 et secondaire 3. Les galets 21 sont disposés radialement à l'extérieur de leur surface de came 20 respective de sorte à maintenir 30 radialement les lames élastiques 17a, 17b lorsqu'elles sont soumises à la force centrifuge. De façon à réduire les frottements parasitaires susceptibles d'affecter la fonction d'amortissement, les galets 21 sont avantageusement montés en rotation 3037113 18 sur les tiges cylindriques par l'intermédiaire d'un palier à roulement. A titre d'exemple, le palier à roulement pourra être un roulement à billes ou à rouleaux. Dans un mode de réalisation, les galets 21 présentent un revêtement anti-friction. Chaque surface de came 20 est agencée de telle sorte que, pour un 5 débattement angulaire entre le volant primaire 2 et le volant secondaire 3, par rapport à une position angulaire relative de repos, chaque galet 21 se déplace sur la surface de came 20 qui lui est propre et, ce faisant, exerce un effort de flexion sur la lame élastique 17a, 17b. Par réaction, la lame élastique 17a, 17b exerce sur le galet 21 une force de rappel qui tend à ramener les volants primaire 2 et secondaire 3 10 vers leur position angulaire relative de repos. Ainsi, les lames élastiques 17a, 17b sont aptes à transmettre un couple entraînant du volant primaire 2 vers le volant secondaire 3 (sens direct) et un couple résistant du volant secondaire 3 vers le volant primaire 2 (sens rétro). Les vibrations de torsion et les irrégularités de couple qui sont produites 15 par le moteur à combustion interne sont transmises par l'arbre de vilebrequin au volant primaire 2 et génèrent des rotations relatives entre les volants primaire 2 et secondaire 3. Ces vibrations et irrégularités sont amorties par la flexion des lames élastiques 17a et 17b de l'organe de transmission. La figure 5 représente une vue schématique d'un amortisseur de torsion 20 selon l'invention en position de repos selon un premier mode de réalisation de l'invention. La figure 6 représente une vue schématique de cet amortisseur en position de débattement angulaire maximum, dans le sens rétro. En regard des figures 5 et 6, les éléments identiques ou analogues aux éléments des figures 1 à 4, c'est-à-dire remplissant la même fonction, portent le 25 même chiffre de référence augmenté de 100. Sur les figures 5 et 6, l'amortisseur comporte deux organes de transmission 130a, 130b montés distants l'un de l'autre sur le volant secondaire 103, de façon symétrique autour de l'axe de rotation X, et chaque organe de transmission 130a, 130b comporte une seule lame élastique 117.First of all, reference is made to FIGS. 1 to 4 which illustrate the general operation of a torsion damper with elastically deformable blades fitted to a double damping flywheel 1. The first and second elements are formed here by the primary flywheels and secondary. The double damping flywheel 1 comprises a primary flywheel 2 intended to be fixed at the end of a crankshaft of an internal combustion engine, not shown, and a secondary flywheel 3 which is centered and guided on the primary flywheel 2 by means of a rolling bearing with ball bearings 4. The secondary flywheel 3 is intended to form the reaction plate of a clutch, not shown, connected to the input shaft of a gearbox . The 10 flywheels primary 2 and secondary 3 are intended to be mounted movable about an axis of rotation X and are further rotatable relative to each other about said axis X. The steering wheel 2 comprises a radially inner hub 5 supporting the rolling bearing 4, an annular portion 6 extending radially from the hub 5 and a cylindrical portion 7 extending axially on the opposite side to the motor from the outer periphery of the annular portion 6. The annular portion 6 is provided, on the one hand, with fastening screw holes 8 for securing the primary flywheel 2 to the crankshaft of the engine and, on the other hand, orifices 9 for the fastening of a transmission member on the primary flywheel 2. The primary flywheel 2 carries, on its outer periphery, a ring gear 10 for driving in rotation the primary flywheel 2, to the using a starter. The hub 5 of the primary flywheel has a shoulder 11 serving to support an inner ring of the rolling bearing 4 and which retains said inner ring 25 towards the engine. Similarly, the secondary flywheel 3 has on its inner periphery a shoulder 12 serving to support an outer ring of the rolling bearing 4 and retaining said outer ring in the opposite direction to the motor. The secondary flywheel 3 has a flat annular surface 13, turned on the opposite side to the primary flywheel 2, forming a bearing surface for a friction lining 30 of a clutch disc, not shown. The secondary flywheel 3 has, close to its outer edge, pads 14 and orifices 15 for mounting a clutch cover. The secondary flywheel 3 further comprises orifices 16, arranged vis-a-vis the orifices formed in the primary flywheel 2, and for the passage of the screws 8, when mounting the double damping flywheel 1 on the crankshaft. The primary and secondary flywheels 3 are coupled in rotation by a transmission member 30. In the embodiment shown in FIGS. 1 to 4, this damping means comprises two resilient blades 17a, 17b mounted integral with the rotation of the steering wheel. 2. To do this, the elastic blades 17a, 17b are carried by an annular body 18 provided with orifices for the passage of the fastening rivets 9 to the primary flywheel 2. The annular body 18 further comprises orifices 19 for the passage of screws 8 fixing the double damping flywheel 1 to the nose of the crankshaft. The two resilient blades 17a, 17b are symmetrical with respect to the axis of rotation X of the clutch disc. The resilient blades 17a, 17b have a cam surface 20. The secondary flywheel 3 has two support members 24 each having a cam follower 21 arranged to cooperate each with a cam surface of their own. The resilient blades 17a, 17b have a curved portion extending substantially circumferentially. The radius of curvature of the curved portion and the length of this curved portion are determined according to the desired stiffness of each elastic blade 17a, 17b. Each elastic blade 17a, 17b may optionally be made in one piece or be composed of a plurality of lamellae arranged axially against each other. The bearing elements comprise cam followers formed by rollers 21 carried by cylindrical rods 22 fixed on the one hand to the secondary flywheel 3 and on the other hand to a web 23. The rollers 21 are mounted to rotate on the 25 cylindrical rods 22 about an axis of rotation parallel to the axis of rotation X. The rollers 21 are held in abutment against their respective cam surface 20 and are arranged to roll against said cam surface 20 during a movement The rollers 21 are disposed radially outwardly from their respective cam surfaces 20 so as to radially maintain the resilient blades 17a, 17b when subjected to centrifugal force. In order to reduce the parasitic friction likely to affect the damping function, the rollers 21 are advantageously rotatably mounted on the cylindrical rods by means of a rolling bearing. For example, the rolling bearing may be a ball bearing or roller. In one embodiment, the rollers 21 have an anti-friction coating. Each cam surface 20 is arranged such that, for angular displacement between the primary flywheel 2 and the secondary flywheel 3, relative to a relative angular position of rest, each roller 21 moves on the cam surface 20 which it is clean and, in doing so, exerts a bending force on the elastic blade 17a, 17b. By reaction, the elastic blade 17a, 17b exerts on the roller 21 a return force which tends to bring the primary flywheels 2 and secondary 3 10 to their relative angular position of rest. Thus, the resilient blades 17a, 17b are able to transmit a driving torque from the primary flywheel 2 to the secondary flywheel 3 (forward direction) and a resistant torque of the secondary flywheel 3 to the primary flywheel 2 (retro direction). The torsional vibrations and the irregularities of torque which are produced by the internal combustion engine are transmitted by the crank shaft to the primary flywheel 2 and generate relative rotations between the primary and secondary flywheels 3. These vibrations and irregularities are damped by the bending of the elastic blades 17a and 17b of the transmission member. Figure 5 shows a schematic view of a torsion damper 20 according to the invention in the rest position according to a first embodiment of the invention. FIG. 6 represents a schematic view of this damper in the position of maximum angular deflection, in the retro direction. With reference to FIGS. 5 and 6, elements identical or similar to the elements of FIGS. 1 to 4, that is to say fulfilling the same function, bear the same reference numeral increased by 100. In FIGS. , the damper comprises two transmission members 130a, 130b mounted remote from each other on the secondary flywheel 103, symmetrically about the axis of rotation X, and each transmission member 130a, 130b comprises a single elastic blade 117.

3037113 19 Chaque organe de transmission 130a, 130b présente une portion de fixation 118 fixe par rapport au volant secondaire 103 afin de permettre l'entrainement en rotation des lames élastiques 117 avec le volant secondaire 103. Une surface de came 120 est portée par chaque lame élastique 117. Le 5 volant primaire 102 comporte un élément d'appui 124 qui comporte un suiveur de came formé par un galet 121 mobile en rotation autour d'une tige 122 fixée sur le volant primaire 102. Le galet est donc monté mobile en rotation sur lui-même sur le volant primaire 102. Le suiveur de came 121 est solidaire en rotation du volant primaire 102 par rapport à l'axe de rotation de l'amortisseur.Each transmission member 130a, 130b has a fixing portion 118 fixed relative to the secondary flywheel 103 to allow the rotation of the elastic blades 117 with the secondary flywheel 103. A cam surface 120 is carried by each blade 117. The primary flywheel 102 comprises a support element 124 which comprises a cam follower formed by a roller 121 movable in rotation about a rod 122 fixed on the primary flywheel 102. The roller is therefore rotatably mounted on itself on the primary flywheel 102. The cam follower 121 is integral in rotation with the primary flywheel 102 with respect to the axis of rotation of the damper.

10 En variante, pour augmenter le débattement angulaire, le suiveur de came pourrait être mobile en rotation par rapport aux premier et second éléments. Le suiveur de came, ou corps roulant, se déplacerait d'une part sur la lame élastique portée par le volant secondaire, notamment en roulant et en la faisant fléchir, d'autre 15 part sur le volant primaire. De préférence, en roulant sur la lame élastique portée par le volant secondaire, le corps roulant accomplirait un trajet curviligne sur le volant primaire sur au moins un secteur angulaire prédéterminé, notamment en roulant. Un palier à roulement à bille 104 est monté entre le volant primaire 102 et 20 le volant secondaire 103. Ce palier à roulement à bille 104 comporte une bague externe 127 portée par le volant secondaire 103 qui coopère avec une bague interne 128 portée par le volant primaire 102. La portion de fixation 118 des organes de transmission 130a, 130b se développe circonférentiellement autour de la bague externe 127. La bague interne 128 du palier à roulement à bille 104 est portée par le 25 moyeu 105 du volant primaire 102. La portion de fixation 118 de chaque organe de transmission 130a, 130b est fixée au volant secondaire 103 par trois rivets 129. La portion de fixation 118 fixée sur le volant secondaire 103 est prolongée par une portion flexible. La portion flexible déformable comporte une lame 30 élastiquement déformable 117. La lame 117 porte sur une face radialement externe une surface de came 120 coopérant avec le suiveur de came 121.Alternatively, to increase the angular deflection, the cam follower could be rotatable relative to the first and second members. The cam follower, or rolling body, would move on the one hand on the elastic blade carried by the secondary flywheel, including rolling and bending, on the other hand on the primary flywheel. Preferably, rolling on the elastic blade carried by the secondary flywheel, the rolling body would perform a curvilinear path on the primary flywheel on at least one predetermined angular sector, including rolling. A rolling bearing 104 is mounted between the primary flywheel 102 and the secondary flywheel 103. This rolling bearing 104 has an outer ring 127 carried by the secondary flywheel 103 which cooperates with an inner ring 128 carried by the flywheel The attachment portion 118 of the transmission members 130a, 130b develops circumferentially around the outer ring 127. The inner ring 128 of the ball bearing 104 is carried by the hub 105 of the primary flywheel 102. each fixing member 118 of each transmission member 130a, 130b is fixed to the secondary flywheel 103 by three rivets 129. The attachment portion 118 fixed on the secondary flywheel 103 is extended by a flexible portion. The deformable flexible portion comprises an elastically deformable blade 117. The blade 117 carries on a radially outer face a cam surface 120 cooperating with the cam follower 121.

3037113 20 Chaque lame élastique 117 comporte un brin interne 132, un coude 133 et un brin externe 134. Le brin interne 132 d'une lame 117 prolonge la portion de fixation 118. Le coude 133 prolonge le brin interne 132 et le brin externe 134 prolonge le coude 133.Each elastic blade 117 has an inner strand 132, a bend 133 and an outer strand 134. The inner strand 132 of a blade 117 extends the attachment portion 118. The bend 133 extends the inner strand 132 and the outer strand 134 extends the elbow 133.

5 Le brin interne 132 se développe de façon circonférentielle autour de la bague externe 127 depuis la portion de fixation 118 jusqu'au coude 133. Le brin interne 132 n'étant pas fixé à l'aide des rivets 129 sur le volant secondaire 103 il peut se déformer lors d'un débattement angulaire entre le volant primaire 102 et le volant secondaire103. Ainsi, le brin interne 133 absorbe une partie des contraintes 10 subies par la lame élastique 117 lors de ce débattement angulaire. Le coude 133 forme un angle d'environ 180° de sorte qu'une première extrémité 135 du coude 133 jointive du brin interne 132 est située radialement entre l'axe de rotation X et une seconde extrémité 136 du coude 133 jointive du brin externe 134. La lame élastique 117 présente ainsi une forme générale d'épingle à 15 cheveux dont une branche est formée par le brin externe 134 et l'autre branche est formée conjointement par la portion de fixation 118 et le brin interne 132. En d'autre terme, la lame 117 comporte deux régions de lame flexible radialement décalées l'une de l'autre et séparées par un espace vide. Le brin externe 134 se développe circonférentiellement depuis le coude 20 133 jusqu'à l'extrémité libre 137 de la lame élastique 117. Le brin externe 134 se développe sur une circonférence d'au moins 45° et pouvant aller jusqu'à 180° à l'état fléchi de la lame élastique 117. La surface de came 120 se développe sur une face externe du brin externe 134. Avantageusement, la surface de came 120 se développe circonférentiellement sur un angle d'environ 125° à 130°. La surface de 25 came 120 se développe circonférentiellement selon un rayon de courbure déterminé en fonction de la raideur souhaitée de la lame élastique 117. Cette surface de came 120 peut présenter des rayons de courbure différents selon les raideurs ponctuelles souhaitées, afin de permettre des variations de pente de la courbe caractéristique de l'amortisseur de torsion, représentant le couple transmis en fonction du 30 débattement angulaire.The inner strand 132 develops circumferentially around the outer ring 127 from the attachment portion 118 to the elbow 133. The inner strand 132 is not secured by the rivets 129 to the secondary flywheel 103. can be deformed during an angular travel between the primary flywheel 102 and the secondary flywheel 103. Thus, the internal strand 133 absorbs part of the stresses 10 experienced by the elastic blade 117 during this angular deflection. The elbow 133 forms an angle of approximately 180 ° so that a first end 135 of the contiguous elbow 133 of the inner strand 132 is located radially between the axis of rotation X and a second end 136 of the contiguous elbow 133 of the outer strand 134 The elastic blade 117 thus has a general hairpin shape, one leg of which is formed by the outer strand 134 and the other leg is formed together by the attachment portion 118 and the inner strand 132. In the end, the blade 117 has two flexible blade regions radially offset from one another and separated by a void space. The outer strand 134 develops circumferentially from the bend 133 to the free end 137 of the resilient blade 117. The outer strand 134 develops over a circumference of at least 45 ° and up to 180 ° to the bent state of the resilient blade 117. The cam surface 120 develops on an outer face of the outer strand 134. Advantageously, the cam surface 120 develops circumferentially at an angle of about 125 ° to 130 °. The cam surface 120 develops circumferentially with a radius of curvature determined according to the desired stiffness of the resilient blade 117. This cam surface 120 may have different radii of curvature depending on the desired point stiffnesses, in order to allow variations. slope of the characteristic curve of the torsion damper, representing the torque transmitted as a function of the angular displacement.

3037113 21 Les organes de transmission 130a et 130b et leur lame élastique 117 représentés schématiquement sur la figure 5 sont symétriques par rapport à l'axe de rotation X. Sur la figure 6, on voit que lorsqu'un couple résistant est transmis du volant 5 primaire 102 vers le volant secondaire 103 (sens rétro), le couple à transmettre entraîne un débattement relatif entre le volant primaire 102 et le volant secondaire 103 selon une première direction. Les galets 121 sont alors déplacés d'un angle Q par rapport aux lames élastiques 117. Le déplacement des galets 121 sur les surfaces de came 120 entraîne une flexion des lames élastique 117.The transmission members 130a and 130b and their elastic blade 117 shown schematically in FIG. 5 are symmetrical with respect to the axis of rotation X. FIG. 6 shows that when a resisting torque is transmitted from the flywheel 5 primary 102 to the secondary flywheel 103 (retro direction), the torque to be transmitted causes a relative movement between the primary flywheel 102 and the secondary flywheel 103 in a first direction. The rollers 121 are then moved at an angle Q with respect to the elastic blades 117. The displacement of the rollers 121 on the cam surfaces 120 causes the resilient blades 117 to bend.

10 La flexion des lames élastique 117 entraine le rapprochement d'une part des brins externes 134 des lames 117 avec la portion de fixation 118 de leur organe de transmission et, d'autre part, le rapprochement de l'extrémité libre 137 de la lame 117 de l'un des organes de transmission 130a, 130b avec le coude 133 de la lame 117 de l'autre des organes de transmission 130a, 130b. De préférence, ces 15 rapprochements ne doivent pas occasionner de contacts entre le brin externe 134 et la portion de fixation 118, de tels contacts générant des perturbations dans l'amortissement des acyclismes et des vibrations. Pour éviter de tels contacts, la longueur circonférentielle de la portion de fixation 118 est limitée de sorte que, en position de repos illustrée sur la figure 5, la 20 portion de fixation 118 ne se développe pas circonférentiellement au-delà de l'axe formé par l'alignement entre le suiveur de came 121 et l'axe de rotation X. De préférence, une extrémité 138 de la portion de fixation 118 opposée à la portion flexible comprenant la lame 117 est située entre le suiveur de came 121 correspondant et l'axe de rotation X lors d'un débattement angulaire maximal en 25 sens retro entre le volant primaire 102 et le volant secondaire 103, comme représenté par l'axe 143. Un tel débattement angulaire maximal est par exemple limité par une butée de fin de course comportant une butée 139 sur le volant primaire 102 en vis-à-vis circonférentiel d'une butée 140 sur le volant secondaire 103. Dans un autre mode de réalisation, non représenté, pour éviter le contact entre 30 le brin externe 134 d'une lame élastique 117 et la portion de fixation 118 de l'organe de transmission 130, l'épaisseur de la portion de fixation 118 est réduite par rapport à l'épaisseur de la lame élastique 117, et plus particulièrement au moins l'épaisseur 3037113 22 de l'extrémité 138 de la portion de fixation 118 est réduite par rapport à l'épaisseur de la portion flexible. Pour éviter le contact entre l'extrémité libre 137 de la lame 117 d'un des organes de transmission 130a et le coude 133 de la lame 117 de l'autres des 5 organes de transmission 130b, l'extrémité libre 137 des lames 117 comporte un dégagement 141. La longueur de la lame élastique 117 ainsi que l'agencement du brin externe 134, du coude 133 et du brin interne 132 de la lame élastique 117 permet la transmission d'un couple élevé sans risque de dégradation des lames élastiques 10 117 ou de perte de coopération entre les suiveurs de came 121 et les surfaces de came 120. Les lames élastiques 117 et les éléments d'appui, ici les suiveurs de cames 121, sont agencés de telle sorte qu'en fonctionnement, chaque suiveur de came 121 exerce un effort de flexion sur chaque lame 117 les faisant fléchir, et produisant 15 en réaction une force de réaction de la lame sur le suiveur de came apte à rappeler les les volants primaire et secondaire 102 et 103 vers ladite position angulaire de repos. L'amortisseur est agencé de sorte que les éléments d'appui 121 font fléchir 20 les lames 117 lorsque la position angulaire des volants primaire et secondaire s'écarte de la position angulaire de repos. La flexion des lames 117 est accompagnée d'une rotation relative entre les volants primaire et secondaire 102 et 103.The flexion of the resilient blades 117 brings about the approximation, on the one hand, of the outer strands 134 of the blades 117 with the attachment portion 118 of their transmission member and, on the other hand, the approach of the free end 137 of the blade. 117 of one of the transmission members 130a, 130b with the elbow 133 of the blade 117 of the other transmission members 130a, 130b. Preferably, these 15 approximations must not cause contacts between the outer strand 134 and the attachment portion 118, such contacts generating disturbances in the damping of acyclisms and vibrations. To avoid such contacts, the circumferential length of the fixing portion 118 is limited so that, in the rest position shown in FIG. 5, the fixing portion 118 does not develop circumferentially beyond the formed axis. by the alignment between the cam follower 121 and the axis of rotation X. Preferably, an end 138 of the attachment portion 118 opposite the flexible portion including the blade 117 is located between the corresponding cam follower 121 and the cam follower 121. X axis of rotation during a maximum angular deflection in retro direction between the primary flywheel 102 and the secondary flywheel 103, as represented by the axis 143. Such maximum angular movement is for example limited by a stop end of stroke comprising a stop 139 on the primary flywheel 102 facing circumferentially a stop 140 on the secondary flywheel 103. In another embodiment, not shown, to avoid contact between 30 e external strand 134 of an elastic blade 117 and the attachment portion 118 of the transmission member 130, the thickness of the fixing portion 118 is reduced relative to the thickness of the elastic blade 117, and more particularly at least the thickness of the end 138 of the attachment portion 118 is reduced with respect to the thickness of the flexible portion. To avoid contact between the free end 137 of the blade 117 of one of the transmission members 130a and the bend 133 of the blade 117 of the other of the transmission members 130b, the free end 137 of the blades 117 comprises A clearance 141. The length of the elastic blade 117 and the arrangement of the outer strand 134, the elbow 133 and the inner strand 132 of the elastic blade 117 allows the transmission of a high torque without risk of degradation of the elastic blades 10 117 or loss of cooperation between the cam followers 121 and the cam surfaces 120. The resilient blades 117 and the support members, here the cam followers 121, are arranged such that in operation each follower Cam 121 exerts a bending force on each blade 117 causing them to bend, and producing a reaction force of the blade on the cam follower to bias the primary and secondary flywheels 102 and 103 toward said angular position. e of rest. The damper is arranged so that the support members 121 bend the blades 117 when the angular position of the primary and secondary flywheels departs from the angular position of rest. The bending of the blades 117 is accompanied by a relative rotation between the primary and secondary flywheels 102 and 103.

25 Chaque lame élastique 117 comporte une zone d'extrémité libre 137 et l'amortisseur est agencé de sorte que cette extrémité libre 137 se déplace avec une composante radiale lorsque 1"élément d'appui 121 fait fléchir la lame élastique 117.Each resilient blade 117 has a free end region 137 and the damper is arranged such that this free end 137 moves with a radial component when the backing member 121 bends the resilient blade 117.

30 Ce double volant amortisseur comporte donc : un volant primaire 102 et un volant secondaire 103 mobiles en rotation l'un par rapport à l'autre autour d'un axe de rotation X ; les volants primaire et 3037113 23 secondaire étant en position angulaire relative de repos PO en l'absence de transmission de couple, deux organes de transmission 130a et 130b portés par le volant secondaire, chaque organe de transmission 130a, 130b comportant une lame élastique 5 117 agencée pour fléchir pour transmettre un couple de rotation entre ces deux volants 102 et 103, la flexion de la lame élastique 117 étant accompagnée d'une rotation relative entre les volants primaire et secondaire 102 et 103, selon l'axe de rotation X, pour amortir les acyclismes de rotation entre le volant primaire et le volant secondaire, 10 deux éléments d'appui 124 portés par le volant primaire, chaque élément d'appui étant agencé pour coopérer avec chaque lame 117, la lame élastique 117 comportant une surface de came 120 et l'élément d'appui 124 comportant un suiveur de came 121 agencé pour se déplacer sur la surface de came lors d'une rotation relative entre les volants primaire 15 et secondaire, La figure 7 illustre la variation du couple (C) en N.m transmis en fonction de l'angle (A) en degrés, grâce à la courbe Cl pour l'amortisseur 1 de l'invention et grâce à la courbe C2 pour un amortisseur dépourvu de plage angulaire de raideur décroissante.This double damping flywheel thus comprises: a primary flywheel 102 and a secondary flywheel 103 movable in rotation relative to each other about an axis of rotation X; the primary and secondary flywheels being in relative angular rest position PO in the absence of torque transmission, two transmission members 130a and 130b carried by the secondary flywheel, each transmission member 130a, 130b having an elastic blade 117 arranged to flex to transmit a torque between these two flywheels 102 and 103, the flexion of the elastic blade 117 being accompanied by a relative rotation between the primary and secondary flywheels 102 and 103, along the axis of rotation X, for damping rotation acyclisms between the primary flywheel and the secondary flywheel, two support elements 124 carried by the primary flywheel, each support element being arranged to cooperate with each blade 117, the elastic blade 117 having a cam surface; 120 and the support element 124 having a cam follower 121 arranged to move on the cam surface during a relative rotation between the primary flywheels e 15 and secondary, Figure 7 illustrates the variation of the torque (C) in Nm transmitted as a function of the angle (A) in degrees, thanks to the curve C1 for the damper 1 of the invention and thanks to the curve C2 for a damper devoid of angular range of decreasing stiffness.

20 Comme on peut le voir sur cette figure 7, l'amortisseur 1 de l'invention présente différentes plages d'amortissements caractérisées par des évolutions de la raideur angulaire distinctes d'une plage à l'autre. La raideur angulaire est définie comme étant la dérivée de la courbe caractéristique couple/angle, l'angle considéré étant la position relative des premier et second éléments par rapport à la position 25 angulaire de repos. Par exemple, la raideur est croissante sur une plage angulaire, lorsque, sur cette plage, la raideur angulaire augmente lorsque l'angle, par rapport à la position angulaire de repos, augmente. Autrement dit, dans ce cas de figure, la dérivée seconde de la courbe caractéristique couple/angle est positive. Inversement, la raideur est décroissante sur une plage angulaire, lorsque, sur cette 30 plage, la raideur angulaire diminue lorsque l'angle, par rapport à la position angulaire de repos, augmente. Autrement dit, dans ce deuxième cas de figure, la dérivée seconde de la courbe caractéristique couple/angle est négative.As can be seen in this figure 7, the damper 1 of the invention has different damping ranges characterized by changes in the angular stiffness distinct from one range to another. The angular stiffness is defined as the derivative of the torque / angle characteristic curve, the angle being the relative position of the first and second members with respect to the angular position of repose. For example, the stiffness is increasing over an angular range, when, in this range, the angular stiffness increases as the angle, relative to the angular position of rest, increases. In other words, in this case, the second derivative of the torque / angle characteristic curve is positive. Conversely, the stiffness is decreasing over an angular range when, in this range, the angular stiffness decreases as the angle, relative to the angular rest position, increases. In other words, in this second case, the second derivative of the torque / angle characteristic curve is negative.

3037113 24 Comme on le voit sur la figure 7, l'amortisseur est agencé de sorte que la raideur angulaire de l'amortisseur est décroissante dans des plages angulaires prédéterminées de raideur décroissante P2 et P5, en s'éloignant d'une position angulaire relative de repos P0.As can be seen in FIG. 7, the damper is arranged so that the angular stiffness of the damper is decreasing in predetermined angular ranges of decreasing stiffness P2 and P5, moving away from a relative angular position. rest P0.

5 Autrement dit, sur ces plages angulaires, la raideur angulaire de l'amortisseur décroit en s'éloignant la position angulaire relative de repos. La plage angulaire prédéterminée de raideur décroissante est séparée de 10 la position angulaire relative de repos d'environ 40 degrés. Sur la figure 7, on voit que l'amortisseur comporte, dans le sens de transmission direct, successivement, en s'éloignant de la position angulaire relative de repos : 15 une première plage angulaire de raideur croissante (PI), une première plage angulaire de raideur décroissante (P2), une première plage angulaire de raideur nulle ou sensiblement égale à 0 (P3), une deuxième plage angulaire de raideur croissante (P4), 20 une deuxième plage angulaire de raideur décroissante (P5), une deuxième plage angulaire de raideur nulle ou sensiblement égale à 0 (P6). Pour obtenir les plages angulaires de raideur décroissante P2 et P5, la 25 surface de came est agencée de sorte que la raideur torsionnelle de l'amortisseur décroit sur la plage angulaire prédéterminée de raideur décroissante P2 ou P5. La plage angulaire prédéterminée de raideur décroissante P2 est séparée de la position angulaire relative de repos PO par une plage angulaire de raideur 30 constante ou croissante Pl. La plage angulaire prédéterminée de raideur décroissante P2 est adjacente à la plage angulaire de raideur constante ou croissante Pl.In other words, on these angular ranges, the angular stiffness of the damper decreases away from the relative angular position of rest. The predetermined angular range of decreasing stiffness is separated from the relative angular position of rest by about 40 degrees. In FIG. 7, it can be seen that, in the direction of direct transmission, the damper successively moves away from the relative angular position of rest: a first angular range of increasing stiffness (PI), a first angular range of decreasing stiffness (P2), a first angular range of zero stiffness or substantially equal to 0 (P3), a second angular range of increasing stiffness (P4), a second angular range of decreasing stiffness (P5), a second angular range of stiffness zero or substantially equal to 0 (P6). To obtain the decreasing stiffness angular ranges P2 and P5, the cam surface is arranged such that the torsional stiffness of the damper decreases over the predetermined angular range of decreasing stiffness P2 or P5. The predetermined angular range of decreasing stiffness P2 is separated from the relative angular rest position PO by an angular range of constant or increasing stiffness P1. The predetermined angular range of decreasing stiffness P2 is adjacent to the angular range of constant or increasing stiffness. .

3037113 25 On constate que les deux plages angulaires de raideur décroissantes P2 et P5 sont séparées l'une de l'autre. La deuxième plage angulaire prédéterminée de raideur décroissante P5 est 5 séparée de la position angulaire relative de repos PO par la deuxième plage angulaire de raideur constante ou croissante P4. La deuxième plage angulaire prédéterminée de raideur décroissante P5 est adjacente à la deuxième plage angulaire de raideur constante ou croissante P4.It will be seen that the two decreasing angular ranges of decreasing stiffness P2 and P5 are separated from each other. The second predetermined angular range of decreasing stiffness P5 is separated from the relative angular rest position PO by the second constant or increasing angular range P4. The second predetermined angular range of decreasing stiffness P5 is adjacent to the second angular range of constant or increasing stiffness P4.

10 La première plage angulaire prédéterminée de raideur décroissante P2 est comprise entre les deux plages angulaires de raideur constante ou croissante P1 et P4. L'amortisseur comporte une position de débattement angulaire maximum 15 Pmax. Pour ce faire, les butées 139 et 140, qui sont visibles sur les figures 5 et 6, sont solidaires en rotation des premier et second éléments et sont agencées pour venir en contact l'une contre l'autre dans la position angulaire de débattement 20 maximum. La première plage angulaire prédéterminée de raideur décroissante P2 est séparée de la position de débattement angulaire maximum Pmax d'environ 30 degrés.The first predetermined angular range of decreasing stiffness P2 is between the two angular ranges of constant or increasing stiffness P1 and P4. The damper has a maximum angular displacement position of 15 Pmax. To this end, the stops 139 and 140, which are visible in FIGS. 5 and 6, are integral in rotation with the first and second elements and are arranged to come into contact with one another in the angular displacement position. maximum. The first predetermined angular range of decreasing stiffness P2 is separated from the maximum angular deflection position Pmax by about 30 degrees.

25 On voit également sur la figure 7 que l'amortisseur est agencé de sorte que la raideur torsionnelle de l'amortisseur est sensiblement égale à 0 pour une position angulaire relative prédéterminée de raideur nulle [3, éloignée de la position angulaire relative de repos P0, la raideur torsionnelle de l'amortisseur étant différente de 0 30 entre la position angulaire de repos PO et la position de raideur nulle R. La position angulaire relative prédéterminée de raideur nulle [3 est un point d'inflexion de la courbe Cl.FIG. 7 also shows that the damper is arranged in such a way that the torsional stiffness of the damper is substantially equal to 0 for a predetermined relative angular position of zero stiffness [3, distant from the relative angular position of rest P0 , the torsional stiffness of the damper being different from 0 between the angular rest position PO and the zero stiffness position R. The predetermined relative angular position of zero stiffness [3 is an inflection point of the curve C1.

3037113 26 La raideur torsionnelle de l'amortisseur est sensiblement égale à 0 sur deux plages angulaires de raideur nulle P3 et P6. La première plage angulaire de raideur nulle P3 comprend ladite position angulaire de raideur nulle.The torsional stiffness of the damper is substantially equal to 0 over two angular ranges of zero stiffness P3 and P6. The first angular range of zero stiffness P3 comprises said angular position of zero stiffness.

5 Ainsi, dans ces plages angulaires de raideur sensiblement égale à 0, les propriétés de filtrage de l'amortisseur sont nettement améliorées. L'amortisseur est agencé ici de sorte que la plage angulaire de raideur nulle P3 est obtenue pour un couple égal à environ 30% du couple moteur 10 maximum. L'amortisseur est agencé de sorte que la deuxième plage angulaire de raideur nulle P6 est obtenue pour un couple sensiblement égal au couple moteur maximum.Thus, in these angular ranges of stiffness substantially equal to 0, the filtering properties of the damper are significantly improved. The damper is arranged here so that the angular range of zero stiffness P3 is obtained for a torque equal to about 30% of the maximum engine torque. The damper is arranged so that the second zero stiffness range P6 is obtained for a torque substantially equal to the maximum engine torque.

15 Les plages angulaires de raideur nulle P3 et P6 sont des zones de couple constant. La présence de plages angulaires de raideur nulle ou sensiblement égale à 20 0 permet d'améliorer la qualité de filtration de l'amortisseur. La position de débattement angulaire maximum Pmax est située sur la plage angulaire de raideur nulle P6.The angular ranges of zero stiffness P3 and P6 are areas of constant torque. The presence of angular ranges of zero stiffness or substantially equal to 20 0 improves the filter quality of the damper. The maximum angular deflection position Pmax is located on the angular range of zero stiffness P6.

25 La première plage angulaire prédéterminée de raideur décroissante P2 est comprise entre la première plage angulaire de raideur constante P1 et la première plage angulaire de raideur nulle P3. De même, la deuxième plage angulaire prédéterminée de raideur décroissante P5 est comprise entre la deuxième plage angulaire de raideur constante P4 et la deuxième plage angulaire de raideur nulle 30 P6. Chaque plage angulaire de raideur nulle P3 et P6 est adjacente à la plage angulaire prédéterminée de raideur décroissante P2 et P5.The first predetermined angular decreasing stiffness range P2 is between the first constant stiffness angular range P1 and the first zero stiffness angular range P3. Similarly, the second predetermined angular decreasing stiffness range P5 is between the second angular range of constant stiffness P4 and the second zero stiffness range P6. Each angular range of zero stiffness P3 and P6 is adjacent to the predetermined angular range of decreasing stiffness P2 and P5.

3037113 27 La première plage de raideur nulle P3 est adjacente à la deuxième plage angulaire de raideur constante ou croissante P4. La première plage de raideur nulle P3 est comprise entre la première plage 5 angulaire prédéterminée de raideur décroissante P2 et la deuxième plage angulaire de raideur constante ou croissante P4. Dans la plage angulaire de raideur nulle, la raideur torsionnelle est sensiblement égale à 0, c'est-à-dire comprise ici entre 0 N.m/degré et 2 N.m/degré.The first zero stiffness range P3 is adjacent to the second angular range of constant or increasing stiffness P4. The first zero stiffness range P3 is between the first predetermined angular range of decreasing stiffness P2 and the second constant or increasing angular range P4. In the angular range of zero stiffness, the torsional stiffness is substantially equal to 0, that is to say between here 0 N.m / degree and 2 N.m / degree.

10 La plage angulaire de raideur nulle P3 présente une amplitude d'environ 5 degrés. Pour obtenir cette courbe d'amortissement, la surface de came est agencée de 15 manière à ce que la raideur torsionnelle de l'amortisseur est sensiblement égale à 0 dans la plage angulaire de raideur nulle. Les plages angulaires de raideur nulle P3 et P6 sont séparées l'une de l'autre.The angular range of zero stiffness P3 has an amplitude of about 5 degrees. To obtain this damping curve, the cam surface is arranged in such a way that the torsional stiffness of the damper is substantially equal to 0 in the angular range of zero stiffness. The angular ranges of zero stiffness P3 and P6 are separated from each other.

20 Entre les plages angulaires de raideur nulle, la raideur de l'amortisseur est non nulle, ici supérieure à 20 N.m/degré, pour un débattement angulaire d'environ 55 degrés. L'amortisseur est agencé de sorte que la première plage angulaire de 25 raideur nulle P3 est obtenue pour un couple équivalent à environ 30% du couple moteur maximum, et la deuxième plage angulaire de raideur nulle P6 est obtenue pour un couple égal au couple moteur maximum. L'amortisseur est agencé de sorte que la première plage angulaire de 30 raideur nulle est comprise dans une plage intermédiaire de débattement angulaire comprise entre 50% et 70% de la plage de débattement angulaire maximum considéré dans le sens de rotation direct par rapport à la position angulaire relative de repos.Between the angular ranges of zero stiffness, the stiffness of the damper is non-zero, here greater than 20 Nm / degree, for an angular displacement of about 55 degrees. The damper is arranged so that the first zero-stiffness angular range P3 is obtained for a torque equivalent to approximately 30% of the maximum engine torque, and the second zero-stiffness angular range P6 is obtained for a torque equal to the engine torque. maximum. The damper is arranged so that the first angular range of zero stiffness is within an intermediate range of angular displacement of between 50% and 70% of the maximum angular displacement range considered in the direct direction of rotation relative to the relative angular position of rest.

3037113 28 La surface de came est agencée de sorte que la courbe d'amortissement de l'amortisseur comporte les deux plages prédéterminées de raideur décroissante P2 et P5.The cam surface is arranged so that the damping curve of the damper comprises the two predetermined ranges of decreasing stiffness P2 and P5.

5 La surface de came est agencée de sorte que la courbe d'amortissement de l'amortisseur comporte les deux plages prédéterminées de raideur nulle P3 et P6. La surface de came est agencée de sorte que la courbe d'amortissement 10 de l'amortisseur comporte les deux plages prédéterminées de raideur constante ou croissante P1 et P4. La figure 8 présente comment la surface de came peut être agencée pour obtenir la courbe d'amortissement de la figure 7. La surface de came comporte deux zones de raideur croissante S1 et S4 agencées de sorte que la raideur angulaire de l'amortisseur augmente lorsque le suiveur de came se déplace sur ces zones en s'éloignant de la position relative de repos. Les deux zones de raideur croissante S1 et S4 sont distantes l'un de l'autre. La surface de came comporte deux zones de raideur décroissante S2 et S5 25 agencées de sorte que la raideur angulaire de l'amortisseur diminue lorsque le suiveur de came se déplace sur ces zones en s'éloignant de la position relative de repos. Les deux zones de raideur décroissante S2 et S5 sont distantes l'un de 30 l'autre. La surface de came comporte deux zones de raideur nulle S3 et S6 distantes de la zone de la surface de came occupée par le suiveur de came dans la position angulaire relative de repos, ces deux zones étant agencées de sorte que la 15 20 3037113 29 raideur angulaire de l'amortisseur soit sensiblement égale à 0 lorsque le suiveur de came se déplace sur ces deux zones en s'éloignant de la position relative de repos. Les deux zones de raideur nulle S3 et S6 sont distantes l'une de l'autre.The cam surface is arranged such that the damper curve of the damper has the two predetermined zero stiffness ranges P3 and P6. The cam surface is arranged such that the damping curve of the damper comprises the two predetermined constant or increasing stiffness ranges P1 and P4. FIG. 8 shows how the cam surface can be arranged to obtain the damping curve of FIG. 7. The cam surface has two zones of increasing stiffness S1 and S4 arranged so that the angular stiffness of the damper increases when the cam follower moves on these areas away from the relative position of rest. The two zones of increasing stiffness S1 and S4 are distant from each other. The cam surface has two zones of decreasing stiffness S2 and S5 arranged so that the angular stiffness of the damper decreases as the cam follower moves over these areas away from the relative rest position. The two areas of decreasing stiffness S2 and S5 are spaced from each other. The cam surface has two areas of zero stiffness S3 and S6 spaced from the area of the cam surface occupied by the cam follower in the relative angular position of rest, both areas being arranged so that the stiffness angular of the damper is substantially equal to 0 when the cam follower moves on these two zones away from the relative position of rest. The two areas of zero stiffness S3 and S6 are distant from each other.

5 La figure 9 présente le comportement de la lame 117 sous l'action de l'élément d'appui 124. Lorsqu'un couple moteur entraînant est transmis du volant primaire vers le volant secondaire (sens direct), le couple à transmettre entraîne un débattement 10 relatif entre le volant primaire et le volant secondaire selon une première direction D1. Le galet 121 est alors déplacé d'un angle 0 par rapport à la lame élastique 117. Le déplacement du galet 121 sur la surface de came 120 entraîne une flexion de la lame élastique 117 selon une flèche f. Pour illustrer la flexion de la lame élastique 117, la lame élastique 117 est représentée en traits pleins dans sa position 15 angulaire de repos et en traits pointillés, avec les mêmes références suivies d'un r, lors d'un débattement angulaire d'angle 0. L'effort de flexion P dépend notamment de la géométrie de la lame élastique 117 et de sa matière, en particulier de son module d'élasticité transversal. L'effort de flexion P se décompose en une composante radiale et en une 20 composante tangentielle. La composante tangentielle permet la transmission du couple moteur. En réaction, la lame élastique 117 exerce sur le galet 121 une force de réaction dont la composante tangentielle constitue une force de rappel qui tend à ramener les volants primaire et secondaire vers leur position angulaire relative de repos.FIG. 9 shows the behavior of the blade 117 under the action of the bearing element 124. When a driving motor torque is transmitted from the primary flywheel to the secondary flywheel (forward direction), the torque to be transmitted causes a relative movement 10 between the primary flywheel and the secondary flywheel in a first direction D1. The roller 121 is then moved at an angle θ relative to the elastic blade 117. The displacement of the roller 121 on the cam surface 120 causes a flexion of the elastic blade 117 along an arrow f. To illustrate the flexion of the elastic blade 117, the elastic blade 117 is shown in solid lines in its angular position of rest and in dashed lines, with the same references followed by a r, during an angular deflection of angle 0. The bending force P depends in particular on the geometry of the elastic blade 117 and its material, in particular its transverse modulus of elasticity. The bending force P is decomposed into a radial component and a tangential component. The tangential component allows the transmission of the engine torque. In response, the elastic blade 117 exerts on the roller 121 a reaction force whose tangential component constitutes a restoring force which tends to bring the primary and secondary flywheels towards their relative angular position of rest.

25 L'amortisseur est agencé de sorte que, dans les plages de raideur constante ou croissante, l'élément d'appui 124 fait fléchir la lame 117 lorsque la position angulaire des volants primaire et secondaire s'écarte de la position angulaire de repos.The damper is arranged such that, in the regions of constant or increasing stiffness, the support element 124 bends the blade 117 when the angular position of the primary and secondary flywheels deviates from the angular position of rest.

30 La surface de came est agencée de sorte que le suiveur de came 121 exerce sur la lame élastique 117 une charge P dont le support, normal au point de contact entre la lame et le suiveur de came, est à distance E (bras de levier) de 3037113 30 l'axe de rotation de l'amortisseur de sorte que le couple C égal au produit de la charge P et la distance E soit non nul. On appelle support de la force, la droite passant par le point de contact de la force et parallèle au vecteur de la force. Grâce à cette condition, la plage angulaire de raideur nulle de l'amortisseur ne se 5 comporte pas comme une position angulaire de repos. Autrement dit, en fonctionnement, c'est-à-dire en dehors de la position angulaire de repos P0, y compris dans la plage de raideur nulle, la surface de came est agencée de sorte que l'élément d'appui produise en effort associé à un bras de 10 levier non nul par rapport à l'axe de rotation. Autrement dit, la surface de came est agencée de sorte que la droite suivant laquelle l'élément d'appui produit un effort de flexion sur la lame est distante de l'axe de rotation de l'amortisseur.The cam surface is arranged so that the cam follower 121 exerts on the spring blade 117 a load P whose support, normal at the point of contact between the blade and the cam follower, is at a distance E (lever arm ) the axis of rotation of the damper so that the torque C equal to the product of the load P and the distance E is not zero. The force support is called the line passing through the point of contact of the force and parallel to the vector of the force. Thanks to this condition, the angular range of zero stiffness of the damper does not act as an angular position of rest. In other words, in operation, that is to say outside the angular position of rest P0, including in the zero stiffness range, the cam surface is arranged so that the support element produces in effort associated with a non-zero lever arm relative to the axis of rotation. In other words, the cam surface is arranged so that the straight line along which the support member produces a bending force on the blade is spaced from the axis of rotation of the damper.

15 Le déplacement radial "f" de la lame au niveau des suiveurs de came est fonction du débattement angulaire"0", de la géométrie de la surface de came de la Lame"y = F(x)", de la position initiale et du diamètre du roulement de suiveur de Came. Ces paramètres interviennent aussi dans le calcul du bras de levier"E".The radial displacement "f" of the blade at the cam followers is a function of the angular displacement "0", the cam surface geometry of the blade "y = F (x)", the initial position and the diameter of the cam follower bearing. These parameters are also involved in the calculation of the lever arm "E".

20 Pour un débattement angulaire donné, la charge "P" exercée par l'élément d'appui sur la lame pour atteindre un déplacement radial "f" désiré, est donnée par la relation : f * 3 * Elame * 'lame ' L3 Avec "Eiame" et "lame" le module d'Young et le moment quadratique de la 25 lame, et "L" la longeur entre le contact « élément d'appui / lame » et l'encastrement de la lame. En résumé : le couple transmis par l'amortisseur avec un galet suiveur de came de dimension donnée dépend du débattement angulaire"0" par rapport à la position angulaire de repos, de la géométrie de contact de surface de came de la 30 lame"y = F(x)" (qui détermine aussi le déplacement radial "f" et le bras de levier "E"), et de la géométrie et du matériau de la lame "Eiame" , "lame" et "L". "P = 3037113 31 Pour un amortisseur donné, on peut calculer la courbe de caractéristique Couple/Angle en considérant ces paramètres. On obtient ainsi la valeur de la raideur torsionnelle (évolution du couple par degré de débattement angualaire) qui varie selon ces mêmes paramètres.For a given angular deflection, the load "P" exerted by the bearing element on the blade to achieve a desired radial displacement "f" is given by the relation: f * 3 * Elame * 'blade' L3 With "Eiame" and "blade" the Young's modulus and the quadratic moment of the blade, and "L" the length between the contact "bearing element / blade" and the embedding of the blade. In summary: the torque transmitted by the damper with a cam follower roller of given dimension depends on the angular displacement "0" relative to the angular position of rest, the cam surface contact geometry of the blade "y". = F (x) "(which also determines the radial displacement" f "and the lever arm" E "), and the geometry and material of the blade" Eiame "," blade "and" L ". For a given damper, it is possible to calculate the Torque / Angle characteristic curve by considering these parameters, thus obtaining the value of the torsional stiffness (evolution of the torque per degree of angular deflection) which varies according to these same parameters. .

5 Ainsi on peut modifier la raideur torsionnelle de l'amortisseur en modifiant la géométrie de la lame 117, et en particulier de la surface de came 120. On peut ainsi arriver à obtenir la caractéristique d'une lame de double 10 volant amortisseur dont le gradient de raideur torsionnelle est sensiblement nul dans certaines plages de débattement angulaire. Pour faire en sorte que sur la plage angulaire de raideur nulle, le couple transmis "C" soit le même, il faut que le produit de la charge "P" normale appliquée 15 par l'élément d'appui sur la lame et du bras de levier "E" soit constant. La charge considérée ici est la force nécessaire pour faire fléchir, sur un point de contact donné de la lame, ce point de contact jusqu'à la trajectoire circulaire suivie par l'élément d'appui, notamment le suiveur de came.Thus, the torsional stiffness of the damper can be modified by modifying the geometry of the blade 117, and in particular of the cam surface 120. It is thus possible to obtain the characteristic of a double damper flywheel blade whose Torsional stiffness gradient is substantially zero in certain ranges of angular deflection. To ensure that in the angular range of zero stiffness the transmitted torque "C" is the same, the product of the normal "P" load applied by the bearing member to the blade and the arm lever "E" is constant. The load considered here is the force necessary to bend, on a given contact point of the blade, this point of contact to the circular path followed by the support element, in particular the cam follower.

20 De même, la surface de came est agencée de sorte que les valeurs de la charge (P) et du bras de levier (E) soient maintenus supérieurs à 0 dans la plage de raideur nulle. Ainsi, l'amortisseur reste réversible en dehors de sa position angulaire 25 relative de repos, c'est-à-dire que le suiveur de came ne reste pas bloqué sur la plage angulaire de raideur nulle. La figure 10 présente un second mode de réalisation de l'invention.Likewise, the cam surface is arranged so that the values of the load (P) and the lever arm (E) are kept greater than 0 in the zero stiffness range. Thus, the damper remains reversible outside its relative angular position of rest, that is to say that the cam follower does not remain stuck on the angular range of zero stiffness. Figure 10 shows a second embodiment of the invention.

30 En regard de la figure 10, les éléments identiques ou analogues aux éléments des figures 1 à 4, c'est-à-dire remplissant la même fonction, portent le même chiffre de référence augmenté de 200. Il s'agit d'un pré-amortisseur 201 comportant : 3037113 32 un voile 202 et un moyeu cannelé 203 mobiles en rotation l'un par rapport à l'autre autour d'un axe de rotation X ; les voile et moyeu étant en position angulaire relative de repos en l'absence de transmission de couple, un organe de transmission 230 porté par moyeu cannelé et comportant deux 5 lames élastique 217a et 217b agencées pour fléchir pour transmettre un couple de rotation entre le voile 202 et le moyeu 203, la flexion des lames élastiques 217a et 217b étant accompagnée d'une rotation relative entre le voile 202 et le moyeu 203, selon l'axe de rotation X, pour amortir les acyclismes de rotation entre le voile et le moyeu, 10 un élément d'appui 224 porté par le voile 202 et étant agencé pour coopérer avec chacune des lames 217a, 217b, par l'intermédiaire de deux surfaces de came 220a et 220b (non représentée), chaque lame 217a, 217b comportant un suiveur de came 221a, 221b (non représenté) agencé pour se déplacer sur sa surface de came qui lui est 15 propre 220a, 220b lors d'une rotation relative entre le voile 202 et le moyeu 203. La surface de came est donc portée ici par l'élément d'appui 224 et le suiveur de came 221 est porté par la lame élastique 217a, notamment sur sa zone 20 d'extrémité libre 237. Ce type d'amortisseur est décrit dans la demande FR2938030. L'organe de transmission 230 comporte une portion annulaire de fixation 218 liée en rotation à un élément de sortie, ici le moyeu cannelé 203, et les deux lames élastiques flexibles incurvées 217a et 217b s'étendent autour de la portion 25 annulaire de fixation 218 sur un peu moins de 180 degrés. Les enseignements et caractéristiques d'amortissement évoquées précédemment peuvent être appliqués à cet amortisseur. Lorsque l'un des deux éléments rotatifs commence a tourner par rapport a 30 l'autre, dans un sens ou dans l'autre, l'extrémité libre 237 de chaque lame élastique 217a glisse sur la surface de came 220a, ce qui tend a rapprocher cette extrémité libre 237 de la portion de fixation 218, et se traduit par une flexion de la lame élastique 217a.With reference to FIG. 10, elements identical or similar to the elements of FIGS. 1 to 4, that is to say fulfilling the same function, bear the same reference number increased by 200. This is a pre-damper 201 comprising: a sail 202 and a splined hub 203 movable in rotation relative to each other about an axis of rotation X; the sail and hub being in the relative angular position of rest in the absence of torque transmission, a transmission member 230 carried by hub spline and having two resilient blades 217a and 217b arranged to flex to transmit a torque between the veil 202 and the hub 203, the bending of the elastic blades 217a and 217b being accompanied by a relative rotation between the web 202 and the hub 203, along the axis of rotation X, to dampen the rotation acyclisms between the web and the hub A bearing element 224 carried by the web 202 and being arranged to cooperate with each of the blades 217a, 217b, via two cam surfaces 220a and 220b (not shown), each blade 217a, 217b having a cam follower 221a, 221b (not shown) arranged to move on its own cam surface 220a, 220b upon relative rotation between the web 202 and the hub 203. The cam surface is thus moved to ci by the support element 224 and the cam follower 221 is carried by the elastic blade 217a, in particular on its free end zone 237. This type of damper is described in the application FR2938030. The transmission member 230 comprises an annular fixing portion 218 rotatably connected to an output member, here the splined hub 203, and the two curved flexible resilient blades 217a and 217b extend around the annular fixing portion 218 on a little less than 180 degrees. The teachings and damping characteristics mentioned above can be applied to this damper. When one of the two rotating members begins to rotate relative to each other, in either direction, the free end 237 of each resilient blade 217a slides on the cam surface 220a, which tends to bring this free end 237 closer to the fastening portion 218, and results in a flexion of the elastic blade 217a.

3037113 33 La surface de came 220a comporte successivement, dans un sens donné de rotation par rapport à la position angulaire relative de repos : une première zone de raideur constante ou croissante S1', une première zone de raideur décroissante S2', une première zone de raideur nulle S3', une deuxième zone de raideur 5 constante ou croissante S4', une deuxième zone de raideur décroissante S5', et une deuxième zone de raideur nulle S6'. Ainsi on obtient le même type de courbe d'amortissement que celle de la figure 7, avec un débattement angulaire qui est ici plus petit. Bien que l'invention ait été décrite en liaison avec plusieurs modes de 10 réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention. En particulier, les lames du moyen d'amortissement peuvent être indépendantes l'une de l'autre ou liées l'une à l'autre par un tronçon central. De 15 même, il est possible de solidariser l'une des lames du moyen d'amortissement à l'un des éléments et l'autre des lames du moyen d'amortissement à l'autre des éléments. Par ailleurs, les figures illustrent un amortisseur de torsion dans le cadre d'un double volant amortisseur mais un tel amortisseur de torsion peut être installé 20 sur tout dispositif adapté. Ainsi, de tels amortisseurs de torsion peuvent équiper les frictions d'embrayage, dans le cas d'une transmission manuelle ou robotisée, ou les embrayages de verrouillage, également appelés embrayages « lock-up », équipant les dispositifs d'accouplement hydraulique, dans le cas d'une transmission automatique.The cam surface 220a comprises successively, in a given direction of rotation relative to the relative angular position of rest: a first zone of constant or increasing stiffness S1 ', a first zone of decreasing stiffness S2', a first zone of zero stiffness S3 ', a second zone of constant or increasing stiffness S4', a second zone of decreasing stiffness S5 ', and a second zone of zero stiffness S6'. Thus we obtain the same type of damping curve as that of Figure 7, with an angular clearance which is here smaller. Although the invention has been described in connection with several particular embodiments, it is quite obvious that it is in no way limited thereto and that it comprises all the technical equivalents of the means described as well as their combinations if these These are within the scope of the invention. In particular, the blades of the damping means may be independent of one another or linked to one another by a central section. Likewise, it is possible to secure one of the blades of the damping means to one of the elements and the other of the blades of the damping means to the other of the elements. Moreover, the figures illustrate a torsion damper in the context of a double damping flywheel, but such a torsion damper can be installed on any suitable device. Thus, such torsion dampers can equip the clutch friction, in the case of a manual or robotic transmission, or the locking clutches, also called "lock-up" clutches, equipping the hydraulic coupling devices, in the case of an automatic transmission.

25 L'usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication. L'usage de l'article indéfini « un » ou « une » pour un élément ou une étape n'exclut pas, sauf mention contraire, la présence d'une pluralité de tels éléments ou étapes.The use of the verb "to include", "to understand" or "to include" and its conjugated forms does not exclude the presence of other elements or steps other than those set forth in a claim. The use of the indefinite article "a" or "an" for an element or a step does not exclude, unless otherwise stated, the presence of a plurality of such elements or steps.

3037113 34 Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.In the claims, any reference sign in parentheses can not be interpreted as a limitation of the claim.

Claims (17)

REVENDICATIONS1. Amortisseur de torsion (101, 201) pour dispositif de transmission de couple, notamment pour automobile, en particulier pour un dispositif d'embrayage, l'amortisseur étant agencé de sorte que la raideur torsionnelle de l'amortisseur décroit sur une plage angulaire prédéterminée de raideur décroissante (P2; P5) en s'éloignant d'une position angulaire relative de repos P0.REVENDICATIONS1. Torsional damper (101, 201) for a torque transmission device, in particular for a motor vehicle, in particular for a clutch device, the damper being arranged in such a way that the torsional stiffness of the damper decreases over a predetermined angular range of decreasing stiffness (P2, P5) away from a relative angular position of rest P0. 2. Amortisseur selon la revendication précédente comportant : un premier élément (102 ; 202) et un second élément (103 ; 203) mobiles en rotation l'un par rapport à l'autre autour d'un axe de rotation X ; les premier et second éléments étant en position angulaire relative de repos (P0) en l'absence de transmission de couple, un organe de transmission (130 ; 230) porté par l'un des premier et second éléments, cet organe de transmission comportant une lame élastique (117 ; 217a ; 217b) agencée pour fléchir pour transmettre un couple de rotation entre ces deux éléments, la flexion de la lame élastique étant accompagnée d'une rotation relative entre les premier et second éléments, selon l'axe de rotation X, pour amortir les acyclismes de rotation entre le premier élément et le second élément, un élément d'appui (124, 224) porté par l'autre desdits premier et second éléments et agencé pour coopérer avec la lame, l'un des élément d'appui et de la lame élastique comporte une surface de came (120 ; 220a) et l'autre de l'élément d'appui et de la lame élastique comporte un suiveur de came (121 ; 221a) agencé pour se déplacer sur la surface de came lors d'une rotation relative entre les premier et second éléments,2. Shock absorber according to the preceding claim comprising: a first element (102; 202) and a second element (103; 203) movable in rotation relative to each other about an axis of rotation X; the first and second elements being in the relative angular position of rest (P0) in the absence of torque transmission, a transmission member (130; 230) carried by one of the first and second elements, this transmission member comprising a elastic blade (117; 217a; 217b) arranged to flex to transmit a torque between these two elements, the bending of the elastic blade being accompanied by a relative rotation between the first and second elements, along the axis of rotation X , to dampen the rotation acyclisms between the first element and the second element, a support element (124, 224) carried by the other of said first and second elements and arranged to cooperate with the blade, one of the element d and the resilient blade has a cam surface (120; 220a) and the other of the support member and the resilient blade includes a cam follower (121; 221a) arranged to move on the surface cam during a burst relative relationship between the first and second elements, 3. Amortisseur selon la revendication 2, caractérisé en ce que la surface de came (120 ; 220a) est agencée de sorte que la raideur torsionnelle de l'amortisseur décroit sur la plage angulaire prédéterminée de raideur décroissante (P2 ; P5). 3037113 36Shock absorber according to claim 2, characterized in that the cam surface (120; 220a) is arranged such that the torsional stiffness of the damper decreases over the predetermined angular range of decreasing stiffness (P2; P5). 3037113 36 4. Amortisseur selon l'une des revendications précédentes, caractérisé en ce que la plage angulaire prédéterminée de raideur décroissante (P2; P5) est séparée de la position angulaire relative de repos par au moins une plage angulaire de raideur constante ou croissante (P1 ; P4). 54. Shock absorber according to one of the preceding claims, characterized in that the predetermined angular range of decreasing stiffness (P2; P5) is separated from the relative angular rest position by at least one angular range of constant or increasing stiffness (P1; P4). 5 5. Amortisseur selon l'une des revendications précédentes, caractérisé en ce que l'amortisseur comporte plusieurs plages angulaires de raideur décroissante (P2, P5) séparées les unes des autres. 105. Shock absorber according to one of the preceding claims, characterized in that the damper comprises several angular ranges of decreasing stiffness (P2, P5) separated from each other. 10 6. Amortisseur selon l'une des revendications précédentes, caractérisé en ce que l'amortisseur est agencé de sorte que la raideur torsionnelle de l'amortisseur est sensiblement égale à 0 pour une position angulaire relative prédéterminée de raideur nulle ([3), éloignée de la position angulaire relative de 15 repos (P0), la raideur torsionnelle de l'amortisseur étant différente de 0 entre la position angulaire de repos (P0) et la position de raideur nulle ([3).6. Shock absorber according to one of the preceding claims, characterized in that the damper is arranged so that the torsional stiffness of the damper is substantially equal to 0 for a predetermined relative angular position of zero stiffness ([3), remote the relative angular position of rest (P0), the torsional stiffness of the damper being different from 0 between the angular position of rest (P0) and the position of zero stiffness ([3). 7. Amortisseur selon la revendication précédente, caractérisé en ce que la raideur torsionnelle de l'amortisseur est sensiblement égale à 0 sur au moins une 20 plage angulaire de raideur nulle (P3 ; P6) qui comprend ladite position angulaire de raideur nulle.7. Shock absorber according to the preceding claim, characterized in that the torsional stiffness of the damper is substantially equal to 0 over at least one angular range of zero stiffness (P3; P6) which comprises said angular position of zero stiffness. 8. Amortisseur selon la combinaison des revendications 4 et 7, caractérisé en ce que la plage angulaire prédéterminée de raideur décroissante 25 (P2 ; P5) est comprise entre ladite au moins une plage de raideur constante ou croissante (P1 ; P3) et la plage angulaire de raideur nulle (P3 ; P6).8. Damper according to the combination of claims 4 and 7, characterized in that the predetermined angular range of decreasing stiffness (P2, P5) is between said at least one constant or increasing stiffness range (P1; P3) and the range angular zero stiffness (P3; P6). 9. Amortisseur selon la combinaison des revendications 2 et 7, caractérisé en ce que la surface de came est agencée de manière à ce que la 30 raideur torsionnelle de l'amortisseur est sensiblement égale à 0 dans la plage angulaire de raideur nulle (P3 ; P6).Shock absorber according to the combination of claims 2 and 7, characterized in that the cam surface is arranged in such a way that the torsional stiffness of the damper is substantially equal to 0 in the angular range of zero stiffness (P3; P6). 10. Amortisseur selon la revendication 7, caractérisé en ce que l'amortisseur comporte plusieurs plages angulaires de raideur nulle (P3 ; P6) 35 séparées les unes des autres. 3037113 3710. Shock absorber according to claim 7, characterized in that the damper comprises several angular ranges of zero stiffness (P3; P6) 35 separated from each other. 3037113 37 11. Amortisseur selon la revendication 2, caractérisé en ce que la lame élastique (117 ; 217a ; 217b) et l'élément d'appui (124, 224) sont agencés de telle sorte qu'en fonctionnement, l'élément d'appui exerce un effort de flexion sur la lame 5 élastique et produisant en réaction une force de réaction de la lame sur l'élément d'appui apte à rappeler les premier et second éléments vers ladite position angulaire de repos.Shock absorber according to Claim 2, characterized in that the elastic blade (117; 217a; 217b) and the support element (124,224) are arranged in such a way that, in operation, the bearing element exerts a bending force on the elastic blade and producing in reaction a reaction force of the blade on the bearing element adapted to return the first and second elements to said angular position of rest. 12. Amortisseur selon la revendication 2, caractérisé en ce que la surface 10 de came (120 ; 220a) comporte au moins une zone de raideur décroissante (S2; S5, S2' ; S5') agencé de sorte que la raideur angulaire de l'amortisseur diminue lorsque le suiveur de came se déplace sur cette zone en s'éloignant de la position relative de repos. 15Damper according to Claim 2, characterized in that the cam surface (120; 220a) comprises at least one decreasing stiffness area (S2; S5, S2 '; S5') arranged so that the angular stiffness of the the damper decreases when the cam follower moves over this area away from the relative rest position. 15 13. Amortisseur selon la revendication 2, caractérisé en ce que la surface de came (120) est portée par la lame élastique (117) et le suiveur de came (121) est porté par l'élément d'appui (124).13. Damper according to claim 2, characterized in that the cam surface (120) is carried by the resilient blade (117) and the cam follower (121) is carried by the support member (124). 14. Amortisseur selon la revendication 2, caractérisé en ce que le suiveur 20 de came est formé par un galet (121) monté mobile en rotation sur l'un des premier et second éléments.14. Shock absorber according to claim 2, characterized in that the cam follower 20 is formed by a roller (121) rotatably mounted on one of the first and second elements. 15. Amortisseur selon la revendication 2, caractérisé en ce que la surface de came est agencée de sorte que le suiveur de came exerce sur la lame élastique 25 une charge (P) dont le support, normal au point de contact entre la lame et le suiveur de came, est à distance (E) de l'axe de rotation de l'amortisseur de sorte que le couple (C), égal au produit de la charge (P) et de la distance (E) soit non nul.15. Damper according to claim 2, characterized in that the cam surface is arranged so that the cam follower exerts on the elastic blade 25 a load (P) whose support, normal to the point of contact between the blade and the blade. cam follower, is at distance (E) from the axis of rotation of the damper so that the torque (C), equal to the product of the load (P) and the distance (E) is not zero. 16. Amortisseur selon la revendication 2, caractérisé en ce que la surface 30 de came (220a) est porté par l'élément d'appui (224) et le suiveur de came (221a) est porté par la lame élastique (217a), notamment sur sa zone d'extrémité libre (237). 3037113 38A shock absorber according to claim 2, characterized in that the cam surface (220a) is carried by the support member (224) and the cam follower (221a) is carried by the resilient blade (217a), especially on its free end zone (237). 3037113 38 17. Amortisseur selon la revendication 2, caractérisé en ce que ladite au moins une lame comporte une extrémité distale libre (137, 237) mobile radialement de telle sorte que la distance radiale séparant l'axe de rotation de ladite extrémité distale libre varie en fonction du débattement angulaire entre les premier et second 5 éléments.17. Damper according to claim 2, characterized in that said at least one blade has a free distal end (137, 237) radially movable so that the radial distance separating the axis of rotation of said free distal end varies according to angular deflection between the first and second elements.
FR1555197A 2015-06-08 2015-06-08 TORSION DAMPER Pending FR3037113A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR1555197A FR3037113A1 (en) 2015-06-08 2015-06-08 TORSION DAMPER
PCT/EP2016/063037 WO2016198452A1 (en) 2015-06-08 2016-06-08 Torsion damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1555197A FR3037113A1 (en) 2015-06-08 2015-06-08 TORSION DAMPER

Publications (1)

Publication Number Publication Date
FR3037113A1 true FR3037113A1 (en) 2016-12-09

Family

ID=54356434

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1555197A Pending FR3037113A1 (en) 2015-06-08 2015-06-08 TORSION DAMPER

Country Status (2)

Country Link
FR (1) FR3037113A1 (en)
WO (1) WO2016198452A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112696458A (en) * 2019-10-21 2021-04-23 舍弗勒技术股份两合公司 Torsional vibration damper and drive train

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2685746A1 (en) * 1991-12-27 1993-07-02 Dana Corp CLUTCH DISC ASSEMBLY WITH SHOCK ABSORBER.
FR3000155A1 (en) * 2012-12-21 2014-06-27 Valeo Embrayages TORSION DAMPER FOR A TORQUE TRANSMISSION DEVICE OF A MOTOR VEHICLE
EP2824361A1 (en) * 2013-07-08 2015-01-14 Valeo Embrayages Dual mass flywheel with improved damping means

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2938030B1 (en) 2008-11-05 2011-11-25 Valeo Embrayages TORQUE TRANSMISSION DEVICE.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2685746A1 (en) * 1991-12-27 1993-07-02 Dana Corp CLUTCH DISC ASSEMBLY WITH SHOCK ABSORBER.
FR3000155A1 (en) * 2012-12-21 2014-06-27 Valeo Embrayages TORSION DAMPER FOR A TORQUE TRANSMISSION DEVICE OF A MOTOR VEHICLE
EP2824361A1 (en) * 2013-07-08 2015-01-14 Valeo Embrayages Dual mass flywheel with improved damping means

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112696458A (en) * 2019-10-21 2021-04-23 舍弗勒技术股份两合公司 Torsional vibration damper and drive train

Also Published As

Publication number Publication date
WO2016198452A1 (en) 2016-12-15

Similar Documents

Publication Publication Date Title
EP2824361B1 (en) Dual mass flywheel with improved damping means
EP2935935B1 (en) Vibration damper for a torque transmission device of a motor vehicle
EP3201490B1 (en) Torsional damper with blade
EP2678583B1 (en) Torsional damper for a clutch
EP3201489A1 (en) Torsional damper with blade
WO2016020585A1 (en) Damper, in particular for a motor vehicle clutch
FR3027988A1 (en) DAMPER, IN PARTICULAR FOR A CLUTCH OF A MOTOR VEHICLE
WO2016050593A1 (en) Damper, in particular for a motor vehicle clutch
FR3057323A1 (en) TORSION DAMPER WITH BLADES
FR3031365A1 (en) DAMPER, IN PARTICULAR FOR A CLUTCH OF A MOTOR VEHICLE
FR3037113A1 (en) TORSION DAMPER
FR3072434B1 (en) TORQUE TRANSMISSION DEVICE COMPRISING A DYNAMIC VIBRATION ABSORBER
EP3205901B1 (en) Vibration damper
EP2492539B1 (en) Torsion damper for a clutch
FR2862730A1 (en) Vibration damper for motor vehicles torque transmission device, has two flywheels, and springs including leaves integrated at their one end to one flywheel and linked at their other end to another flywheel by links
FR3069601B1 (en) LIMIT SWITCH DEVICE FOR A TORSION DAMPER
FR3053087B1 (en) BLADE TORSION SHOCK ABSORBER
WO2016050592A1 (en) Shock absorber, especially for a clutch of a motor vehicle
EP4019803A1 (en) Clutch disc with flexible arms
WO2017102622A1 (en) Vibration damper comprising a flexible leaf
WO2018108870A1 (en) Leaf spring torsion damper
FR3058492A1 (en) TORSION DAMPER WITH BLADES
FR3058769A1 (en) ASSEMBLY FOR A TORQUE TRANSMISSION DEVICE
FR3050245A1 (en) TORSION DAMPER FOR A TORQUE TRANSMISSION DEVICE OF A MOTOR VEHICLE
EP2783129A1 (en) Tortion damper for a clutch, particularly of a motor vehicle

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20161209

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

RX Complete rejection

Effective date: 20200403