WO2016145677A1 - 物联网中的数据传输方法、系统、物联网设备、终端 - Google Patents

物联网中的数据传输方法、系统、物联网设备、终端 Download PDF

Info

Publication number
WO2016145677A1
WO2016145677A1 PCT/CN2015/075539 CN2015075539W WO2016145677A1 WO 2016145677 A1 WO2016145677 A1 WO 2016145677A1 CN 2015075539 W CN2015075539 W CN 2015075539W WO 2016145677 A1 WO2016145677 A1 WO 2016145677A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
relay
internet
things
priority
Prior art date
Application number
PCT/CN2015/075539
Other languages
English (en)
French (fr)
Inventor
郑倩
张晨璐
雷艺学
张云飞
何成名
Original Assignee
宇龙计算机通信科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇龙计算机通信科技(深圳)有限公司 filed Critical 宇龙计算机通信科技(深圳)有限公司
Publication of WO2016145677A1 publication Critical patent/WO2016145677A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of Internet of Things technologies, and in particular, to a data transmission method in an Internet of Things, a data transmission system in an Internet of Things, an Internet of Things device, a terminal, and an Internet of Things system.
  • the Internet of Things (MTC) application is recognized as the main requirement of 5G networks and the main driving force of 5G networks.
  • massive, low-cost, small data packets, low latency, low power consumption are Its important features, for example, in IOT scenarios such as smart meter reading (water meters, electricity meters, gas meters), smart homes, etc., the number of IoT devices is far greater than the data of smart terminals (such as mobile phones, pads, etc.), therefore, users Very sensitive to the cost and power consumption of the Internet of Things.
  • relay terminals such as mobile phones and pads with Relay function
  • the relay terminals will aggregate and relay data of IoT devices to make things
  • Networked devices can upload data to the base station.
  • the current selection algorithm of the relay terminal is mainly based on the centralized control scheme of the eNB (base station), that is, the eNB selects an optimal relay according to the channel quality of the available relay terminal and the base station and the Internet of Things device.
  • the terminal acts as an aid.
  • the centralized control scheme based on eNB can effectively meet the low power consumption or low cost requirements of IoT devices, when the Internet of Things contains massive IoT devices, the management complexity of such schemes is very high.
  • the technical solution does not consider the relay capability to be limited, but in fact, the relay terminal aggregates the forwarding traffic, which involves the traffic of the relay terminal and the carrier network, the signaling processing capability and the energy consumption of the relay terminal.
  • the relay terminal cannot be assumed to be a relay entity that can serve as an IoT device without restriction. For example, in some application scenarios, the relay terminal can only support 15 IoT devices to access at the same time.
  • the invention is based on the above problems, and proposes a new technical solution, which can realize the signaling processing capability and energy consumption of each terminal in the Internet of Things system when selecting a relay terminal, and each terminal separately With the channel quality of IoT devices and base stations and the data service requirements of IoT devices, the optimal relay terminal is selected for the IoT devices, and the optimal relay path is selected for the IoT devices.
  • an aspect of the present invention provides a data transmission method in an Internet of Things, for the Internet of Things device in the Internet of Things, comprising: determining whether uplink data needs to be transmitted and/or receiving in a current cell. Whether the reference signal received power of the device having the base station function is less than or equal to whether the preset received power and/or the signal strength is less than or equal to the preset signal strength; when the determination result is yes, sending to multiple terminals in the current cell Retrieving the signaling; receiving the relay seeking signaling feedback sent by the at least one terminal; determining whether the any terminal is to be used according to the relay seeking signaling feedback sent by any one of the at least one terminal As a relay terminal, after determining that any of the terminals is used as a relay terminal, sending a relay application signaling to the relay terminal, to apply for forwarding by the relay terminal to send the device with the base station function Uplink data, wherein the plurality of terminals includes the at least one terminal.
  • the IoT device when the IoT device needs to send uplink data and/or the reference signal received by the device with the base station function in the current cell, the received power is less than or equal to the preset received power and/or the signal strength is less than or equal to the preset.
  • the relay seeking signaling may be sent to multiple terminals in the serving cell where the IoT device is located, so that multiple terminals can be based on their current relay conditions.
  • the time-frequency resources required for the data, the maximum number of relay connections supported by the terminal, etc.) determine whether to respond to the relay of the IoT device to find signaling, if the current relay conditions are ideal, And responding, and sending a relay to find signaling feedback, so that the IoT device determines whether the terminal that sends the relay to find the signaling feedback is used as the relay terminal, and if the IoT device uses the terminal as the relay terminal,
  • the relay terminal sends the relay application signaling to apply for the uplink data sent by the relay terminal with better relay conditions such as the relay capability to the device with the base station function in the serving cell, thereby implementing signaling processing of the integrated terminal.
  • the capacity and energy consumption situation select a better relay path to achieve data forwarding.
  • the device having the function of the base station includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.), and the like.
  • the relay seeking signaling feedback includes: a first channel quality of the IoT device to the any terminal, and any one of the terminals to the device with the base station function a second channel quality, at least one piece of information of a preset direct communication time-frequency resource used by the IoT device to communicate with any one of the terminals; and the terminal according to any one of the at least one terminal
  • the sending the relay to find the signaling feedback determining whether to use any one of the terminals as the relay terminal, specifically: calculating, according to the first channel quality and/or the second channel quality, And an equivalent channel quality of the IoT device corresponding to the terminal to the device having the function of the base station, to determine whether to use any one of the terminals as the relay terminal according to the equivalent channel quality.
  • the first channel quality and/or the second channel quality corresponding to the any terminal can accurately calculate the equivalent of the IoT device corresponding to the any terminal to the device with the base station function.
  • Channel quality and then accurately determining the signaling processing capability and power consumption of the any terminal and the channel quality of the IoT device to the base station corresponding to the any terminal according to the equivalent channel quality, thereby further accurately determining whether The terminal is used as a relay terminal to avoid erroneous determination.
  • equivalent channel quality which may be some mathematical statistical methods or curve fitting functions, and may be simplified to take the first channel quality and the second. A weighted average of the channel qualities.
  • the determining whether to use any one of the terminals as the relay terminal includes: determining, according to the equivalent channel quality, a candidate of the any terminal in the Internet of Things device. Determining the priority of the candidate in the relay terminal; determining whether the candidate priority of the terminal is higher than the preset candidate priority, and determining that the terminal is the relay terminal when the determination result is yes And determining a target relay terminal set of the IoT device; otherwise, Determining that any of the terminals is not the relay terminal, wherein the target relay terminal set is composed of the relay terminal, the candidate relay terminal set is composed of the at least one terminal, and the relay The candidate priority of the terminal in the target relay terminal set is the same as the candidate priority of the relay terminal in the candidate relay terminal set.
  • the candidate priority of any terminal in the candidate relay terminal set of the IoT device can be accurately determined according to the equivalent channel quality.
  • the higher the equivalent channel quality the candidate priority If the candidate priority of any of the terminals is higher than the preset candidate priority, the channel quality of the IoT device to the any terminal and any of the terminals to the device with the base station function is higher.
  • the terminal may be further used as a relay terminal in the target relay terminal group with better current relay conditions, so as to implement signaling processing capability and energy consumption of each terminal in the integrated Internet of Things system, and each terminal separately Compared with the channel quality of IoT devices and base stations, select a better relay terminal for IoT devices, and then select a better relay path for IoT devices, and finally improve the rate and efficiency of data forwarding, and improve the entire IoT device. System data processing rate.
  • the relay application signaling is sent to the relay terminal, and if the relay application signaling feedback information sent by the relay terminal is received, determining the relay application Whether the signaling feedback information is the first received relay application signaling feedback information in the received at least one relay application signaling feedback information, and when the determination result is yes, the relay terminal is used as the final relay a terminal, by which the uplink data sent to the device having the base station function is forwarded by the final relay terminal; and after the relay application signaling is sent to each relay terminal in the target relay terminal set And if the relay application signaling feedback information sent by any relay terminal in the target relay terminal set is not received within a predetermined time, the relay seeking signaling is resent to the multiple terminals, where
  • the relay application signaling includes: a candidate priority of the relay terminal and/or a service priority of the IoT device.
  • the relay terminal after receiving the relay application signaling to the relay terminal, if receiving the relay application signaling feedback information sent by the relay terminal, further determining the relay application signaling feedback information sent by the relay terminal Whether it is the first relay application signaling feedback information received in the received at least one relay application signaling feedback information, and if yes, the relay terminal is the relay with the best relay condition in the target relay terminal set.
  • the forwarding path corresponding to the relay terminal is also the Internet of Things
  • the optimal relay path for data forwarding by the device is correspondingly the highest rate and efficiency of data forwarding. Therefore, the relay terminal can be selected as the final relay terminal to implement each of the integrated IoT systems.
  • the signaling processing capability and energy consumption of the terminal, the channel quality of each terminal and the IoT device and the base station, and the service requirements of the IoT device select the optimal relay terminal for the IoT device, and then select the IoT device.
  • the optimal relay path conversely, if the relay application signaling feedback information sent by any relay terminal in the target relay terminal set is not received within a predetermined time, each relay of the target relay terminal set is illustrated. If the current relay condition of the terminal is insufficient to provide the relay service for the IoT device, the relay search signaling needs to be re-sent to the multiple terminals to re-apply the relay terminal with better relay conditions to complete the data forwarding.
  • the relay application signaling includes: a time-frequency location in a time-frequency resource occupied by the discovery reference signal, the discovery reference signal, and the Internet of Things, and the Internet of Things At least one of the scrambling sequence used and the feature information of the IoT device when the communication information of the device and the any terminal is encrypted; and the scrambling sequence includes: the identifier of the IoT device
  • the information and/or the identification information of the relay terminal, the feature information of the Internet of Things device includes: at least one of data bandwidth, service type, identity information, and geographic location required for forwarding the uplink data.
  • the IoT device can quickly apply to the terminal that best meets the service requirement and the optimal relay condition as the relay terminal, so as to complete the data forwarding quickly, wherein the reference signal is found.
  • the time-frequency location in the time-frequency resource occupied by the relay finding signaling may be a predefined limited set, so that the participation of the eNB is not required, and the UE may receive the discovery of the peer-to-peer IoT device through blind detection.
  • the reference signal, and the spectrum used by the IoT device to send the relay to find the signaling may be some of the pre-planned spectrum, for example, may be communicated on the system pre-planned D2D (Device to Device) spectrum.
  • the eNB is not required to perform spectrum resource configuration, and the identifier information of the IoT device may be an IPV6 address, a C-RNTI, or the like.
  • Another aspect of the present invention provides a data transmission system in an Internet of Things, for the Internet of Things device in the Internet of Things, comprising: a determining unit, determining whether uplink data needs to be sent and/or receiving in a current cell Whether the reference signal received power of the device having the base station function is less than or equal to the preset received power and/or the signal strength is less than or equal to the preset signal strength; a unit, when the determination result is yes, sending a relay finding signaling to a plurality of terminals in the current cell; the receiving unit receiving a relay seeking signaling feedback sent by the at least one terminal; and determining, according to the at least The relay, which is sent by any terminal in a terminal, searches for signaling feedback, determines whether any of the terminals is used as a relay terminal, and the second sending unit determines that any of the terminals is used as a relay terminal. And transmitting, by the relay terminal, uplink data sent to the device having the function of the base station, where the multiple terminals include the at least one terminal.
  • the IoT device when the IoT device needs to send uplink data and/or the reference signal received by the device with the base station function in the current cell, the received power is less than or equal to the preset received power and/or the signal strength is less than or equal to the preset.
  • the relay seeking signaling may be sent to multiple terminals in the serving cell where the IoT device is located, so that multiple terminals can be based on their current relay conditions.
  • the terminal supports the uplink data sent by the IoT device to the device with the base station function in the current cell, whether the terminal starts to forward the uplink data, whether the terminal is idle, and whether the current time-frequency resource of the terminal is higher than the forwarding uplink.
  • the time-frequency resources required for the data, the maximum number of relay connections supported by the terminal, etc. determine whether to respond to the relay of the IoT device to find signaling, if the current relay condition is ideal, respond, and send the relay to find signaling feedback. So that the IoT device determines whether the terminal that sends the relay to find signaling feedback is used as the relay terminal.
  • the IoT device uses the terminal as a relay terminal, it sends a relay application signaling to the relay terminal to apply for forwarding to the serving cell through a relay terminal with better relay conditions such as relay capability.
  • the uplink data sent by the device of the base station function realizes the signaling processing capability and the energy consumption of the integrated terminal, and selects a superior relay path to implement data forwarding.
  • the device having the function of the base station includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.), and the like.
  • the relay seeking signaling feedback includes: a first channel quality of the IoT device to the any terminal, and any one of the terminals to the device with the base station function a second channel quality, at least one of the preset direct communication time-frequency resources used by the IoT device to communicate with any one of the terminals; and the determining unit is specifically configured to: according to the first Channel quality and/or the second channel quality calculating an equivalent channel quality of the IoT device corresponding to any one of the terminals to the device having the base station function, Based on the equivalent channel quality, it is determined whether any of the terminals is used as the relay terminal.
  • the first channel quality and/or the second channel quality corresponding to the any terminal can accurately calculate the equivalent of the IoT device corresponding to the any terminal to the device with the base station function.
  • Channel quality and then accurately determining the signaling processing capability and power consumption of the any terminal and the channel quality of the IoT device to the base station corresponding to the any terminal according to the equivalent channel quality, thereby further accurately determining whether The terminal is used as a relay terminal to avoid erroneous determination.
  • equivalent channel quality which may be some mathematical statistical methods or curve fitting functions, and may be simplified to take the first channel quality and the second. A weighted average of the channel qualities.
  • the determining unit is further configured to: determine, according to the equivalent channel quality, a candidate priority of the terminal in the candidate relay terminal set of the Internet of Things device; Determining whether the candidate priority of any of the terminals is higher than a preset candidate priority, and determining that the terminal is the relay terminal and determining the target relay of the Internet of Things device when the determination result is yes a terminal set; otherwise, determining that any one of the terminals is not the relay terminal, wherein the target relay terminal set is composed of the relay terminal, and the candidate relay terminal set is composed of the at least one terminal, And the candidate priority of the relay terminal in the target relay terminal set is the same as the candidate priority of the relay terminal in the candidate relay terminal set.
  • the candidate priority of any terminal in the candidate relay terminal set of the IoT device can be accurately determined according to the equivalent channel quality.
  • the higher the equivalent channel quality the candidate priority If the candidate priority of any of the terminals is higher than the preset candidate priority, the channel quality of the IoT device to the any terminal and any of the terminals to the device with the base station function is higher.
  • the terminal may be further used as a relay terminal in the target relay terminal group with better current relay conditions, so as to implement signaling processing capability and energy consumption of each terminal in the integrated Internet of Things system, and each terminal separately Compared with the channel quality of IoT devices and base stations, select a better relay terminal for IoT devices, and then select a better relay path for IoT devices, and finally improve the rate and efficiency of data forwarding, and improve the entire IoT device. System data processing rate.
  • the determining unit is further configured to: the second sending list And sending the relay application signaling to the relay terminal, and if receiving the relay application signaling feedback information sent by the relay terminal, determining whether the relay application signaling feedback information is received
  • the relay terminal forwards the uplink data sent to the device having the base station function
  • the first sending unit is further configured to send the relay application letter to each relay terminal in the centralized relay terminal set After the command, if the relay application signaling feedback information sent by any relay terminal in the target relay terminal set is not received within a predetermined time, the relay seeking signaling is resent to the multiple terminals, where
  • the relay application signaling includes: a candidate priority of the relay terminal and/or a service priority of the IoT device.
  • the relay terminal after receiving the relay application signaling to the relay terminal, if receiving the relay application signaling feedback information sent by the relay terminal, further determining the relay application signaling feedback information sent by the relay terminal Whether it is the first relay application signaling feedback information received in the received at least one relay application signaling feedback information, and if yes, the relay terminal is the relay with the best relay condition in the target relay terminal set.
  • the terminal, the forwarding path corresponding to the relay terminal is also the optimal relay path for the IoT device to forward data, and the corresponding data forwarding rate and efficiency are also the highest. Therefore, the relay terminal can be selected as the final medium.
  • the channel quality of each terminal and the IoT device and the base station, and the service requirements of the Internet of Things device select the IoT device The optimal relay terminal, and then select the optimal relay path for the IoT device; conversely, if the target relay terminal is not received within the predetermined time
  • the relay application signaling feedback information sent by any of the relay terminals indicates that the current relay condition of each relay terminal of the target relay terminal set is insufficient to provide a relay service for the IoT device, and then needs to be redirected.
  • a plurality of terminals send relay lookup signaling to re-subscribe the relay terminal with better current relay conditions to complete data forwarding.
  • a further aspect of the present invention provides an Internet of Things device, comprising: a data transmission system in the Internet of Things according to any one of the above technical solutions.
  • the technical solution by setting a data transmission system in the Internet of Things on the Internet of Things device, it is possible to realize the signaling processing capability and energy consumption of each terminal in the IoT system when the relay terminal is selected, Channel quality and object of each terminal with IoT devices and base stations
  • the data service requirement of the networked device selects the optimal relay terminal for the IoT device, and then selects the optimal relay path for the IoT device.
  • a further aspect of the present invention provides a data transmission method in an Internet of Things, which is used in a terminal in the Internet of Things, the terminal is connected to an Internet of Things device in the above technical solution, and the data transmission method includes
  • the data transmission method includes
  • the relay seeking signaling sent by the plurality of IoT devices determining, according to the current relay condition of the terminal, whether to respond to the relay search sent by any one of the plurality of Internet of Things devices Signaling; when the determination result is yes, sending a relay seeking signaling feedback to any of the Internet of Things devices, so that any of the Internet of Things devices determines whether the terminal is used as a relay terminal, and After the terminal functions as a relay terminal, the relay application signaling is sent to the terminal; when receiving the relay application signaling sent by any one of the Internet of Things devices in the Internet of Things, according to The priority information in the relay application signaling of each of the any one of the Internet of Things devices determines the identifier of each of the plurality of the Internet of Things devices Feedback priority And determining, by each
  • the current relaying conditions when receiving the relay seeking signaling sent by the multiple IoT devices, the current relaying conditions may be used according to the current relaying conditions (such as whether the terminal supports the IoT device to forward the function to the base station in the current cell)
  • the uplink data sent by the device whether the terminal starts the service of forwarding the uplink data, whether the terminal is idle, whether the current time-frequency resource of the terminal is higher than the time-frequency resource required for forwarding the uplink data, and the maximum number of relay connections supported by the terminal, etc.
  • the terminal automatically automatically prioritizes the relay application signaling according to each of the plurality of IoT devices.
  • each of the plurality of IoT devices determines whether to forward the uplink through the terminal according to the feedback priority Data, so that when the relay terminal is selected, the signaling processing capability and energy consumption of each terminal in the IoT system can be integrated, the channel quality of each terminal and the IoT device and the base station, and the Internet of Things device
  • the data service needs to select the optimal relay terminal for the IoT device, and then select the optimal relay path for the IoT device.
  • the priority information includes: a candidate priority of the terminal in a candidate relay terminal set of each of the any IoT devices, and/or each of the any ones a service priority of the Internet of Things device; and determining, by the priority information in the relay application signaling of each of the one of the plurality of IoT devices
  • the feedback priority of each of the IoT devices in the networked device includes: a feedback priority of each of the IoT devices and a candidate priority of each of the IoT devices and/or The service priority is positively correlated; and if the terminal is in a candidate priority of the target relay terminal set of the first IoT device among the plurality of the IoT devices, the terminal is in the plurality of The target relay terminal set of the second IoT device in any IoT device is in the same priority, and/or the service priority of the first IoT device and the service of the second IoT device The same priority, it is true The same feedback priority network device and the second device to the first things thereof.
  • the feedback priority of each of the IoT devices is positively correlated with the candidate priority and/or service priority of each of the IoT devices, that is, each of the described
  • the relay application signaling feedback sent by the terminal, and the service priority of the IoT device may be mapped to a QCI (QoS Class Identifier) table based on its QoS (Quality of Service) requirement, and the value ranges from 1 to 9.
  • QCI QoS Class Identifier
  • the relay application signaling feedback information is sent to each of the IoT devices in turn.
  • the feedback priority may be sequentially performed in the order of high to low. Any IoT device sends the relay application signaling feedback information, so that any IoT device with higher feedback priority receives the relay application signaling feedback sent by the terminal.
  • the method before the sending the relay application signaling feedback information to each of the IoT devices in sequence, the method further includes: sequentially determining, according to the feedback priority from high to low, sequentially determining Whether the currently available time-frequency resource of the terminal is smaller than the required time-frequency resource of each of the plurality of IoT devices; if it is determined that the currently available time-frequency resource is smaller than the first designation
  • the required time-frequency resource of the Internet of Things device does not send the relay application signaling feedback information to the first designated Internet of Things device, and sequentially determines the order according to the feedback priority from high to low.
  • the current available time-frequency resource is greater than or equal to the required time-frequency resource of the second designated IoT device and/or the total number of the relay application signaling feedback information currently sent by the terminal is greater than the maximum number of relay connections
  • the total number of required time-frequency resources and/or the relay application signaling feedback information that is greater than or equal to the second designated IoT device is less than the maximum Sending the relay application signaling feedback information to the second designated IoT device, and not transmitting the relay application signaling feedback information to the second designated Internet of Things device, where
  • the feedback priority of the second designated IoT device is less than or equal to the feedback priority of the first IoT device, wherein the first designated IoT device is a device in the plurality of the IoT devices Networked devices.
  • the current available time-frequency resources of the terminal may be sequentially determined according to the order of the feedback priority from high to low. And a required time-frequency resource that is less than the required time-frequency resource of each of the any one of the Internet of Things devices, if the currently available time-frequency resource is smaller than the required time-frequency resource of the first designated IoT device, The current available time-frequency resource of the terminal is insufficient to provide the relay service for the first designated IoT device, and the current available time-frequency resource is further determined to be greater than or equal to the feedback priority according to the order of the feedback priority from high to low.
  • the total required time-frequency resource of the lower second designated IoT device and/or the total amount of relay application signaling feedback information sent by the terminal Whether the number is less than or equal to the maximum number of relay connections, if the currently available time-frequency resource is greater than or equal to the required time-frequency resource of the second designated IoT device with lower feedback priority and/or the relay application signaling sent by the terminal If the total number of feedback information is less than or equal to the maximum number of trunk connections, the current relay condition of the terminal is good, the trunk resources are sufficient, the relay capability has not reached the upper limit, and the relay capability is still sufficient, which is sufficient for the feedback priority to be lower.
  • the second designated IoT device provides a relay service. Otherwise, the current relay condition of the terminal is relatively poor, and the relay capability is insufficient to provide a relay service for the second designated IoT device with a lower feedback priority.
  • the second designated IoT device sends the relay application signaling feedback information.
  • the method further includes: obtaining a system information block from the broadcast information of the device having the function of the base station, determining whether a trigger signal is generated, and if the determination result is yes, triggering the terminal to sequentially determine whether the currently available time-frequency resource of the terminal is The required time-frequency resource is smaller than the required time-frequency resource of each of the any one of the Internet of Things devices. Otherwise, the trigger signal is not generated, where the system information block includes: the broadcast information A system information block associated with the synchronous clock and/or a predefined priority processing system information block.
  • the synchronization time message may be an SIB message related to the synchronization clock in the eNB broadcast, for example, may be used for
  • the timeAlignmentTimerCommon that controls the UE to be in the uplink clock synchronization may also be an SIB message related to the synchronization clock in the special predefined new SIB message type, that is, the priority processing system information block.
  • the current relay condition includes: whether the terminal supports forwarding, for the any Internet of Things device, uplink data sent to a device having a base station function in a current cell, the terminal Whether the service for forwarding the uplink data is enabled, whether the terminal is idle, whether the power of the terminal is higher than the preset power, and whether the current time-frequency resource of the terminal is higher than the time-frequency resource required for forwarding the uplink data.
  • the maximum number of relay connections supported by the terminal, the quality of the first channel of the any IoT device to the terminal, and the terminal to the location At least one of a second channel quality of the device having the base station function and mobility of the terminal.
  • the terminal can accurately determine whether to respond to the relay of the IoT device to find the signaling, and then filter the relay for the current relay condition such as the relay capability of the integrated terminal of the Internet of Things device. Terminals with better conditions and relay paths provide the necessary preconditions as relay terminals.
  • the relay seeking signaling the relay is sent or received through a physical layer, a radio resource control protocol layer or a non-access stratum of the Internet of Things according to the received transceiving instruction.
  • signaling feedback the relay application signaling, or the relay application signaling feedback information.
  • the relay seeking signaling, the relay seeking signaling feedback, the relay application signaling, or the relay application signaling feedback information may all pass through the physical layer of the Internet of Things and the radio resource control protocol (RRC, Radio Resource). Control layer or non-access stratum layer is sent and received.
  • RRC radio resource control protocol
  • the power of the uplink data is amplified and then sent to the device having the function of the base station; and/or according to Determining, by the terminal, the second channel quality of the device having the function of the base station, whether the uplink data is re-modulated, to send the re-modulated target uplink data to the device with the base station function.
  • the terminal forwards the uplink data of any IoT device, including but not limited to power amplification of the uplink data. And transmitting to the device having the function of the base station and the transmission mode of determining whether to remodulate the uplink data according to the second channel quality of the terminal to the device having the function of the base station. Regardless of the transmission mode, the purpose is to prevent the uplink data from being transmitted. The medium power loss is too much, so that the base station cannot receive 100% of the uplink data sent by the IoT device or can ensure that the received uplink data is not distorted, thereby ensuring that the received uplink data is high fidelity uplink data.
  • the uplink data needs to be remodulated, according to demodulation and modulation signals from the any IoT device. And modulating the uplink data, and transmitting the modulated target uplink data to the device with the base station function.
  • the demodulation and modulation information of any IoT device needs to be used to complete the modulation of the uplink data, thereby ensuring the uplink received by the device having the base station function.
  • the data is high fidelity uplink data.
  • a further aspect of the present invention provides a data transmission system in an Internet of Things, which is used for a terminal in the Internet of Things, the terminal is connected to an IoT device in the above technical solution, and the data transmission system includes a judging unit, when receiving the relay seeking signaling sent by the plurality of IoT devices, determining, according to the current relay condition of the terminal, whether to respond to any one of the plurality of Internet of Things devices Retrieving the signaling; the sending unit, when the determination result is yes, sending a relay seeking signaling feedback to the any IoT device, so that the any IoT device determines whether to use the terminal as a relay a terminal, and after determining that the terminal is used as a relay terminal, sending the relay application signaling to the terminal; and determining, by the determining, the receiving, by the plurality of the Internet of Things devices in the Internet of Things Determining, in the relay application signaling, determining, according to priority information in the relay application signaling of each of the one of the plurality of IoT devices
  • the current relaying conditions when receiving the relay seeking signaling sent by the multiple IoT devices, the current relaying conditions may be used according to the current relaying conditions (such as whether the terminal supports the IoT device to forward the function to the base station in the current cell)
  • the uplink data sent by the device whether the terminal starts the service of forwarding the uplink data, whether the terminal is idle, whether the current time-frequency resource of the terminal is higher than the time-frequency resource required for forwarding the uplink data, and the maximum number of relay connections supported by the terminal, etc.
  • the relay of the Internet of Things device seeks signaling, and if the current relay condition is ideal, responds and sends a relay seeking signaling feedback to any IoT device, so that the IoT device determines whether the terminal is used as a relay terminal. If the terminal is used as a relay terminal by the IoT device, the relay application signaling is received, and if the relay application signaling is multiple, the terminal automatically automatically according to each of the plurality of Internet of Things devices.
  • Determining priority information in relay application signaling of any of the IoT devices determining a feedback priority of each of the IoT devices to enable each of the plurality of the IoT devices
  • Any IoT device finally determines whether to forward the uplink data through the terminal according to the feedback priority, so that the signaling processing capability and the energy consumption of each terminal in the IoT system can be integrated when the relay terminal is selected,
  • Each terminal separately selects the optimal relay terminal for the IoT device with the channel quality of the IoT device and the base station and the data service requirements of the IoT device, and then the IoT device. Select the optimal relay route.
  • the priority information includes: a candidate priority of the terminal in a candidate relay terminal set of each of the any IoT devices, and/or each of the any ones a service priority of the IoT device; and the determining unit is specifically configured to: a feedback priority of each of the IoT devices and a candidate priority and/or a service priority of each of the IoT devices a positive correlation; and if the terminal is in a candidate priority of the target relay terminal set of the first Internet of Things device in the plurality of the Internet of Things devices, and the terminal is in the plurality of the ones
  • the target relay terminal of the second IoT device in the networked device is in the same candidate priority, and/or the service priority of the first IoT device is the same as the service priority of the second IoT device And determining that the feedback priority of the first Internet of Things device and the second Internet of Things device are the same.
  • the feedback priority of each of the IoT devices is positively correlated with the candidate priority and/or service priority of each of the IoT devices, that is, each of the described
  • the relay application signaling feedback sent by the terminal, and the service priority of the IoT device may be mapped to a QCI (QoS Class Identifier) table based on its QoS (Quality of Service) requirement, and the value ranges from 1 to 9.
  • QCI QoS Class Identifier
  • the sending unit is further configured to: determine to the plurality of After the IoT device sends the feedback priority of the relay application signaling feedback information, the feedback priority of each of the IoT devices is sequentially changed from high to low. Any IoT device sends relay application signaling feedback information.
  • the feedback priority may be sequentially performed in the order of high to low. Any IoT device sends the relay application signaling feedback information, so that any IoT device with higher feedback priority receives the relay application signaling feedback sent by the terminal.
  • the determining unit is further configured to: before sending the relay application signaling feedback information to each of the IoT devices in sequence, according to the feedback priority from high to low a sequence, determining, in sequence, whether the currently available time-frequency resource of the terminal is smaller than a required time-frequency resource of each of the plurality of IoT devices; and the data transmission system further includes The processing unit, if it is determined that the currently available time-frequency resource is smaller than the required time-frequency resource of the first designated IoT device, not sending the relay application signaling feedback information to the first designated IoT device, and Determining, according to the order in which the feedback priorities are from high to low, whether the currently available time-frequency resource is greater than or equal to a required time-frequency resource of the second designated IoT device and/or the current sent by the terminal Whether the total number of the relay application signaling feedback information is greater than the maximum number of relay connections; the sending unit is further configured to: when the currently available time-frequency resource is greater than or equal to the second
  • the current available time-frequency resources of the terminal may be sequentially determined according to the order of the feedback priority from high to low. And a required time-frequency resource that is less than the required time-frequency resource of each of the any one of the Internet of Things devices, if the currently available time-frequency resource is smaller than the required time-frequency resource of the first designated IoT device, The current available time-frequency resources of the terminal are insufficient to provide a relay service for the first designated IoT device, and may further follow the order of feedback priority from high to low.
  • the networked device provides the relay service. Otherwise, the current relay condition of the terminal is relatively poor.
  • the relay capability is insufficient to provide the relay service for the second designated IoT device with lower feedback priority, and the second designated Internet of things is not provided.
  • the device sends the relay application signaling feedback information.
  • the determining unit is further configured to: sequentially determine whether the currently available time-frequency resource of the terminal is smaller than each of the plurality of Internet of Things devices Before the required time-frequency resource of the device, the system information block is obtained from the broadcast information of the device having the function of the base station, and it is determined whether a trigger signal is generated. If the determination result is yes, the terminal is triggered to start to sequentially determine the terminal. Whether the currently available time-frequency resource is smaller than the required time-frequency resource of each of the plurality of IoT devices, otherwise, the trigger signal is not generated, wherein the system information block The system information block and/or the predefined priority processing system information block related to the synchronous clock in the broadcast information is included.
  • the synchronization time message may be an SIB message related to the synchronization clock in the eNB broadcast, for example, may be used for
  • the timeAlignmentTimerCommon that controls the UE to be in the uplink clock synchronization may also be an SIB message related to the synchronization clock in the special predefined new SIB message type, that is, the priority processing system information block.
  • the current relay condition includes: whether the terminal supports forwarding, for the any Internet of Things device, uplink data sent to a device having a base station function in a current cell, the terminal Whether to enable the service for forwarding the uplink data, whether the terminal is idle, whether the power of the terminal is higher than a preset power, and the current time-frequency resource of the terminal Whether it is higher than a time-frequency resource required for forwarding the uplink data, a maximum number of relay connections supported by the terminal, a first channel quality of the any IoT device to the terminal, and the terminal to the At least one of a second channel quality of the device functioning by the base station and mobility of the terminal.
  • the terminal can accurately determine whether to respond to the relay of the IoT device to find the signaling, and then filter the relay for the current relay condition such as the relay capability of the integrated terminal of the Internet of Things device. Terminals with better conditions and relay paths provide the necessary preconditions as relay terminals.
  • the transceiver unit further sends or receives the relay search signal through the physical layer of the Internet of Things, the radio resource control protocol layer or the non-access layer according to the received transceiver command.
  • the relay searches for signaling feedback, the relay application signaling, or the relay application signaling feedback information.
  • the relay seeking signaling, the relay seeking signaling feedback, the relay application signaling, or the relay application signaling feedback information may all pass through the physical layer of the Internet of Things and the radio resource control protocol (RRC, Radio Resource). Control layer or non-access stratum layer is sent and received.
  • RRC radio resource control protocol
  • the sending unit is further configured to: after receiving the uplink data sent by the any IoT device, amplify power of the uplink data and send the data to the base station a functional device; and/or determining whether to re-modulate the uplink data according to a second channel quality of the terminal to the device having the base station function, to transmit the re-modulated target uplink data to the base station Functional device.
  • the terminal forwards the uplink data of any IoT device, including but not limited to power amplification of the uplink data. And transmitting to the device having the function of the base station and the transmission mode of determining whether to remodulate the uplink data according to the second channel quality of the terminal to the device having the function of the base station. Regardless of the transmission mode, the purpose is to prevent the uplink data from being transmitted. The medium power loss is too much, so that the base station cannot receive 100% of the uplink data sent by the IoT device or can ensure that the received uplink data is not distorted, thereby ensuring that the received uplink data is high fidelity uplink data.
  • the modulating unit determines, after remodulating the uplink data according to the second channel quality, according to demodulation and modulation information from the any IoT device.
  • the uplink data is modulated, and the modulated target uplink data is sent to the device with the base station function.
  • the demodulation and modulation information of any IoT device needs to be used to complete the modulation of the uplink data, thereby ensuring the uplink received by the device having the base station function.
  • the data is high fidelity uplink data.
  • a further aspect of the present invention provides a terminal, comprising: the data transmission system in the Internet of Things according to any one of the above technical solutions.
  • each The terminal selects the optimal relay terminal for the IoT device and the optimal relay path for the IoT device, respectively, with the channel quality of the IoT device and the base station and the data service requirements of the IoT device.
  • a further aspect of the present invention provides an Internet of Things system, comprising: a device having a base station function; the Internet of Things device as described in the above technical solution; and the terminal as described in the above technical solution.
  • the Internet of Things system consisting of a device having a base station function, an Internet of Things device, and a terminal, it is possible to realize the signaling processing capability of each terminal in the IoT system when the relay terminal is selected.
  • the energy consumption situation, the channel quality of each terminal and the IoT device and the base station, and the data service requirements of the IoT device select the optimal relay terminal for the IoT device, and then select the optimal relay path for the IoT device.
  • the Internet of Things system comprises an Internet of Things system based on an LTE network.
  • the Internet of Things system includes, but is not limited to, an Internet of Things system based on an LTE network, and may also be an Internet of Things system based on a 3G network, or although the advancement of technology may be an Internet of Things system based on a network such as 5G.
  • the technical solution of the present invention it is possible to realize the signaling processing capability and the energy consumption situation of each terminal in the Internet of Things system when selecting the relay terminal, and each terminal and the Internet of Things device respectively And the channel quality of the base station and the data service requirements of the IoT device, select the optimal relay terminal for the IoT device, and then select the optimal relay path for the IoT device.
  • FIG. 1 is a flow chart showing a data transmission method in an Internet of Things according to an embodiment of the present invention
  • FIG. 2 is a flow chart showing a data transmission method in an Internet of Things according to another embodiment of the present invention.
  • FIG. 3 is a flow chart showing a data transmission method in an Internet of Things according to still another embodiment of the present invention.
  • FIG. 4 is a block diagram showing the structure of a data transmission system in the Internet of Things according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of an Internet of Things device according to an embodiment of the present invention.
  • FIG. 6 is a block diagram showing the structure of a data transmission system in the Internet of Things according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 8 is a block diagram showing the structure of an Internet of Things system according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing the principle of a data transmission system in the Internet of Things according to an embodiment of the present invention.
  • FIG. 1 is a flow chart showing a data transmission method in an Internet of Things according to an embodiment of the present invention.
  • a data transmission method in an Internet of Things includes: Step 102: determining whether uplink data needs to be transmitted and/or receiving a reference signal of a device having a base station function in a current cell.
  • Step 104 when the determination result is yes, sending the relay seeking signaling to multiple terminals in the current cell
  • Step 106 Receive relay search signaling feedback sent by at least one terminal;
  • Step 108 determine, according to the relay seeking signaling feedback sent by any one of the at least one terminal, whether to The terminal is used as a relay terminal; in step 110, after determining that any of the terminals is used as a relay terminal, sending a relay application signaling to the relay terminal to apply for forwarding to the base station by using the relay terminal.
  • the IoT device when the IoT device needs to send uplink data and/or the reference signal received by the device with the base station function in the current cell, the received power is less than or equal to the preset received power and/or the signal strength is less than or equal to the preset.
  • the relay seeking signaling may be sent to multiple terminals in the serving cell where the IoT device is located, so that multiple terminals can be based on their current relay conditions.
  • the terminal supports the uplink data sent by the IoT device to the device with the base station function in the current cell, whether the terminal starts to forward the uplink data, whether the terminal is idle, and whether the current time-frequency resource of the terminal is higher than the forwarding uplink.
  • the time-frequency resources required for the data, the maximum number of relay connections supported by the terminal, etc. determine whether to respond to the relay of the IoT device to find signaling, if the current relay condition is ideal, respond, and send the relay to find signaling feedback. So that the IoT device determines whether the terminal that sends the relay to find signaling feedback is used as the relay terminal.
  • the IoT device uses the terminal as a relay terminal, it sends a relay application signaling to the relay terminal to apply for forwarding to the serving cell through a relay terminal with better relay conditions such as relay capability.
  • the uplink data sent by the device of the base station function realizes the signaling processing capability and the energy consumption of the integrated terminal, and selects a superior relay path to implement data forwarding.
  • the device having the function of the base station includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.), and the like.
  • the relay finding signaling feedback includes: a first channel quality of the IoT device to the any terminal, the any terminal to the base station function At least one of the second channel quality of the capable device, the preset direct communication time-frequency resource used by the IoT device to communicate with the any of the terminals; and the according to the at least one terminal Determining whether to use any one of the terminals as a relay terminal, the method includes: calculating, according to the first channel quality and/or the second channel quality, An equivalent channel quality of the IoT device corresponding to any one of the terminals to the device having the function of the base station, to determine whether to use any one of the terminals as the relay terminal according to the equivalent channel quality .
  • the first channel quality and/or the second channel quality corresponding to the any terminal can accurately calculate the equivalent of the IoT device corresponding to the any terminal to the device with the base station function.
  • Channel quality and then accurately determining the signaling processing capability and power consumption of the any terminal and the channel quality of the IoT device to the base station corresponding to the any terminal according to the equivalent channel quality, thereby further accurately determining whether The terminal is used as a relay terminal to avoid erroneous determination.
  • equivalent channel quality which may be some mathematical statistical methods or curve fitting functions, and may be simplified to take the first channel quality and the second. A weighted average of the channel qualities.
  • the determining whether to use any one of the terminals as the relay terminal includes: determining, according to the equivalent channel quality, a candidate of the any terminal in the Internet of Things device. Determining the priority of the candidate in the relay terminal; determining whether the candidate priority of the terminal is higher than the preset candidate priority, and determining that the terminal is the relay terminal when the determination result is yes And determining a target relay terminal set of the IoT device; otherwise, determining that the any terminal is not the relay terminal, wherein the target relay terminal set is composed of the relay terminal, where the candidate is The terminal set is composed of the at least one terminal, and the candidate priority of the relay terminal in the target relay terminal set and the candidate priority of the relay terminal in the candidate relay terminal set are The same level.
  • the candidate priority of any terminal in the candidate relay terminal set of the IoT device can be accurately determined according to the equivalent channel quality.
  • the higher the equivalent channel quality the candidate priority If the candidate priority of any of the terminals is higher than the preset candidate priority, the channel quality of the IoT device to the any terminal and any of the terminals to the device with the base station function is higher. Any one of the terminals can be further used as the current relay condition.
  • Good target relay terminal centralized relay terminal to realize the signaling processing capability and energy consumption of each terminal in the integrated IoT system, the channel quality of each terminal and the IoT device and the base station, and the Internet of Things
  • the device selects a better relay terminal, and then selects a better relay path for the IoT device, and finally improves the data forwarding rate and efficiency, and improves the system data processing rate of the entire IoT device.
  • the relay application signaling is sent to the relay terminal, and if the relay application signaling feedback information sent by the relay terminal is received, determining the relay application Whether the signaling feedback information is the first received relay application signaling feedback information in the received at least one relay application signaling feedback information, and when the determination result is yes, the relay terminal is used as the final relay a terminal, by which the uplink data sent to the device having the base station function is forwarded by the final relay terminal; and after the relay application signaling is sent to each relay terminal in the target relay terminal set And if the relay application signaling feedback information sent by any relay terminal in the target relay terminal set is not received within a predetermined time, the relay seeking signaling is resent to the multiple terminals, where
  • the relay application signaling includes: a candidate priority of the relay terminal and/or a service priority of the IoT device.
  • the relay terminal after receiving the relay application signaling to the relay terminal, if receiving the relay application signaling feedback information sent by the relay terminal, further determining the relay application signaling feedback information sent by the relay terminal Whether it is the first relay application signaling feedback information received in the received at least one relay application signaling feedback information, and if yes, the relay terminal is the relay with the best relay condition in the target relay terminal set.
  • the terminal, the forwarding path corresponding to the relay terminal is also the optimal relay path for the IoT device to forward data, and the corresponding data forwarding rate and efficiency are also the highest. Therefore, the relay terminal can be selected as the final medium.
  • the channel quality of each terminal and the IoT device and the base station, and the service requirements of the Internet of Things device select the IoT device The optimal relay terminal, and then select the optimal relay path for the IoT device; conversely, if the target relay terminal is not received within the predetermined time
  • the relay application signaling feedback information sent by any of the relay terminals indicates that the current relay condition of each relay terminal of the target relay terminal set is insufficient to provide a relay service for the IoT device, and then needs to be redirected.
  • a plurality of terminals send relay lookup signaling to re-subscribe the relay terminal with better current relay conditions to complete data forwarding.
  • the relay application signaling includes: a time-frequency location in a time-frequency resource occupied by the discovery reference signal, the discovery reference signal, and the Internet of Things, and the Internet of Things At least one of the scrambling sequence used and the feature information of the IoT device when the communication information of the device and the any terminal is encrypted; and the scrambling sequence includes: the identifier of the IoT device
  • the information and/or the identification information of the relay terminal, the feature information of the Internet of Things device includes: at least one of data bandwidth, service type, identity information, and geographic location required for forwarding the uplink data.
  • the IoT device can quickly apply to the terminal that best meets the service requirement and the optimal relay condition as the relay terminal, so as to complete the data forwarding quickly, wherein the reference signal is found.
  • the time-frequency location in the time-frequency resource occupied by the relay finding signaling may be a predefined limited set, so that the participation of the eNB is not required, and the UE may receive the discovery of the peer-to-peer IoT device through blind detection.
  • the reference signal, and the spectrum used by the IoT device to send the relay to find the signaling may be some of the pre-planned spectrum, for example, may be communicated on the system pre-planned D2D (Device to Device) spectrum.
  • the eNB is not required to perform spectrum resource configuration, and the identifier information of the IoT device may be an IPV6 address, a C-RNTI, or the like.
  • FIG. 2 is a flow chart showing a data transmission method in the Internet of Things according to another embodiment of the present invention.
  • a data transmission method in the Internet of Things includes: Step 202, when receiving relay seeking signaling sent by multiple IoT devices, according to the terminal The current relay condition determines whether to respond to the relay seeking signaling sent by any one of the plurality of Internet of Things devices; and in step 204, when the determination result is yes, sending to any of the Internet of Things devices And then searching for signaling feedback, so that any of the Internet of Things devices determines whether the terminal is used as a relay terminal, and after determining that the terminal is used as a relay terminal, sending the relay application letter to the terminal.
  • Step 206 when receiving the relay application signaling sent by any one of the Internet of Things devices in the Internet of Things, according to each of the plurality of Internet of Things devices
  • the priority information in the relay application signaling of the device determines a feedback priority of each of the any one of the Internet of Things devices, so that the plurality of the IoT devices Each of the aforementioned Internet of Things Determine whether to forward through the terminal
  • the uplink data sent by the device with the function of the base station in the current cell where the relay application signaling feedback information includes: the time-frequency resource used by the any IoT device to communicate with the terminal and/or a scrambling sequence
  • the relay seeking signaling feedback includes: a first channel quality of the IoT device to the any terminal, and a second channel quality of the any terminal to the device with the base station function
  • the current relaying conditions when receiving the relay seeking signaling sent by the multiple IoT devices, the current relaying conditions may be used according to the current relaying conditions (such as whether the terminal supports the IoT device to forward the function to the base station in the current cell)
  • the uplink data sent by the device whether the terminal starts the service of forwarding the uplink data, whether the terminal is idle, whether the current time-frequency resource of the terminal is higher than the time-frequency resource required for forwarding the uplink data, and the maximum number of relay connections supported by the terminal, etc.
  • the IoT device determines whether to use the terminal As the relay terminal, if the terminal is used as the relay terminal by the IoT device, the relay application signaling is received, and if there are multiple relay application signaling, the terminal automatically according to any one of the multiple Determining priority information in the relay application signaling of each of the IoT devices in the networked device, determining the feedback superiority of each of the IoT devices Level, so that each of the plurality of IoT devices can finally accurately determine whether to forward the uplink data through the terminal according to the feedback priority, so that when the relay terminal is selected, Optimize the signaling processing capability and energy consumption of each terminal in the IoT system, the channel quality of each terminal and the IoT device and the base station, and the data service requirements of the IoT device, and select the optimal relay for the IoT device.
  • the terminal Optimize the signaling processing capability and energy consumption of each terminal in the IoT system, the channel quality of each terminal and the IoT device and the base station, and the data service requirements of
  • the priority information includes: a candidate priority of the terminal in a candidate relay terminal set of each of the any IoT devices, and/or each of the any ones a service priority of the Internet of Things device; and determining, by the priority information in the relay application signaling of each of the one of the plurality of IoT devices
  • the feedback priority of each of the IoT devices in the networked device includes: a feedback priority of each of the IoT devices and a candidate for each of the IoT devices
  • the priority level and/or the service priority are positively correlated; and if the terminal is in a candidate priority level of the target relay terminal set of the first IoT device among the plurality of the Internet of Things devices, and the terminal
  • the candidate priorities of the target relay terminal set of the second IoT device in the plurality of the IoT devices are the same, and/or the service priority of the first IoT device and the second
  • the service priority of the IoT device is the same, and the feedback priority of the first IoT device and the second I
  • the feedback priority of each of the IoT devices is positively correlated with the candidate priority and/or service priority of each of the IoT devices, that is, each of the described
  • the relay application signaling feedback sent by the terminal, and the service priority of the IoT device may be mapped to a QCI (QoS Class Identifier) table based on its QoS (Quality of Service) requirement, and the value ranges from 1 to 9.
  • QCI QoS Class Identifier
  • the feedback priority is sent from the highest to the lowest, and the relay application signaling feedback information is sent to each of the IoT devices in turn.
  • the feedback priority may be sequentially performed in the order of high to low. Any IoT device sends the relay application signaling feedback information, so that any IoT device with higher feedback priority receives the relay application signaling feedback sent by the terminal.
  • the method before the sending the relay application signaling feedback information to each of the IoT devices in sequence, the method further includes: sequentially determining, according to the feedback priority from high to low, sequentially determining Whether the currently available time-frequency resource of the terminal is smaller than the required time-frequency resource of each of the plurality of IoT devices; if it is determined that the currently available time-frequency resource is smaller than the first designation
  • the required time-frequency resource of the Internet of Things device does not send the relay application signaling feedback information to the first designated Internet of Things device, and sequentially determines the order according to the feedback priority from high to low.
  • the relay application signaling feedback information is sent to the second designated Internet of Things device when the total number is less than the maximum number of relay connections, otherwise the relay is not sent to the second designated Internet of Things device Applying signaling feedback information, wherein the feedback priority of the second designated IoT device is less than or equal to a feedback priority of the first IoT device, wherein the first designated IoT device is a plurality of Any IoT device in an IoT device.
  • the current available time-frequency resources of the terminal may be sequentially determined according to the order of the feedback priority from high to low. And a required time-frequency resource that is less than the required time-frequency resource of each of the any one of the Internet of Things devices, if the currently available time-frequency resource is smaller than the required time-frequency resource of the first designated IoT device, The current available time-frequency resource of the terminal is insufficient to provide the relay service for the first designated IoT device, and the current available time-frequency resource is further determined to be greater than or equal to the feedback priority according to the order of the feedback priority from high to low.
  • the required time-frequency resource of the second second designated IoT device and/or the total number of relay application signaling feedback information sent by the terminal is less than or equal to the maximum number of relay connections, if the currently available time-frequency resource is greater than or The total number of required time-frequency resources equal to the second designated IoT device with lower feedback priority and/or the relay application signaling feedback information sent by the terminal. If the number of the maximum number of trunk connections is equal to or greater than the maximum number of trunk connections, the current relay condition of the terminal is good, the trunk resources are sufficient, the relay capability has not reached the upper limit, and the relay capability is still sufficient, which is sufficient for the second designated object with lower feedback priority. The networked device provides the relay service. Otherwise, the current relay condition of the terminal is relatively poor. The relay capability is insufficient to provide the relay service for the second designated IoT device with lower feedback priority, and the second designated Internet of things is not provided. The device sends the relay application signaling feedback information.
  • the method further includes: obtaining a system information block from the broadcast information of the device having the function of the base station, determining whether a trigger signal is generated, and if the determination result is yes, triggering the terminal to sequentially determine whether the currently available time-frequency resource of the terminal is Less than the required time-frequency resource of each of the any one of the Internet of Things devices, otherwise, the trigger signal is not generated.
  • the system information block includes: a system information block related to a synchronization clock in the broadcast information and/or a predefined priority processing system information block.
  • the synchronization time message may be an SIB message related to the synchronization clock in the eNB broadcast, for example, may be used for
  • the timeAlignmentTimerCommon that controls the UE to be in the uplink clock synchronization may also be an SIB message related to the synchronization clock in the special predefined new SIB message type, that is, the priority processing system information block.
  • the current relay condition includes: whether the terminal supports forwarding, for the any Internet of Things device, uplink data sent to a device having a base station function in a current cell, the terminal Whether the service for forwarding the uplink data is enabled, whether the terminal is idle, whether the power of the terminal is higher than the preset power, and whether the current time-frequency resource of the terminal is higher than the time-frequency resource required for forwarding the uplink data.
  • the maximum number of relay connections supported by the terminal, the first channel quality of the any IoT device to the terminal, the second channel quality of the terminal to the device having the base station function, and the terminal At least one condition in mobility.
  • the terminal can accurately determine whether to respond to the relay of the IoT device to find the signaling, and then filter the relay for the current relay condition such as the relay capability of the integrated terminal of the Internet of Things device. Terminals with better conditions and relay paths provide the necessary preconditions as relay terminals.
  • the relay seeking signaling the relay is sent or received through a physical layer, a radio resource control protocol layer or a non-access stratum of the Internet of Things according to the received transceiving instruction.
  • signaling feedback the relay application signaling, or the relay application signaling feedback information.
  • the relay seeking signaling, the relay seeking signaling feedback, the relay application signaling, or the relay application signaling feedback information may all pass through the physical layer of the Internet of Things and the radio resource control protocol (RRC, Radio Resource). Control layer or non-access stratum layer is sent and received.
  • RRC radio resource control protocol
  • the power of the uplink data is amplified and then sent to the device having the function of the base station; and/or according to Determining, by the terminal, the second channel quality of the device having the function of the base station, whether the uplink data is re-modulated, to send the re-modulated target uplink data to the device with the base station function.
  • the terminal forwards the uplink data of any IoT device, including but not limited to power amplification of the uplink data. And transmitting to the device having the function of the base station and the transmission mode of determining whether to remodulate the uplink data according to the second channel quality of the terminal to the device having the function of the base station. Regardless of the transmission mode, the purpose is to prevent the uplink data from being transmitted. The medium power loss is too much, so that the base station cannot receive 100% of the uplink data sent by the IoT device or can ensure that the received uplink data is not distorted, thereby ensuring that the received uplink data is high fidelity uplink data.
  • the uplink data is used according to demodulation and modulation information from the any IoT device. Modulating is performed, and the modulated target uplink data is sent to the device having the base station function.
  • the demodulation and modulation information of any IoT device needs to be used to complete the modulation of the uplink data, thereby ensuring the uplink received by the device having the base station function.
  • the data is high fidelity uplink data.
  • FIG. 3 is a flow chart showing a data transmission method in the Internet of Things according to still another embodiment of the present invention.
  • a data transmission method in the Internet of Things includes:
  • Step 302 The Device (Internet of Things device) sends a relay to find signaling to find a potential UE Relay (relay terminal) set;
  • Step 304 The potential UE Relay sends a relay to find feedback signaling: the UE decides whether it becomes the UE Relay of the Device according to its own condition and sends feedback;
  • Step 306 the Device receives the feedback, and further determines the candidate UE from the potential UE Relay set. a relay set (candidate relay terminal set), and determining a target relay terminal set according to the relay seeking signaling feedback returned by each candidate relay terminal;
  • Step 308 The Device sends a relay application signaling to each target relay terminal in the target relay terminal set: the Device requests the target UE Relay to assist the forwarding data;
  • Step 310 The target UE Relay sends the relay application feedback signaling: the target UE Relay reads the time synchronization information from the system information broadcasted by the base station, and synchronously triggers the application of all the devices at the time given by the base station, and according to the priority order. Give feedback;
  • Step 312 The device selects the UE Relay corresponding to the feedback first as its optimized path, and forwards the uplink data through the UE Relay. Otherwise, the search process is re-initiated after the T period.
  • FIG. 4 is a block diagram showing the structure of a data transmission system in the Internet of Things according to an embodiment of the present invention.
  • the data transmission system 400 in the Internet of Things includes: a determining unit 402, determining whether it is necessary to transmit uplink data and/or receiving a device having a base station function in a current cell. Whether the reference signal received power is less than or equal to the preset received power and/or the signal strength is less than or equal to the preset signal strength; the first sending unit 404, when the determination result is yes, sending to multiple terminals in the current cell
  • the relay is configured to receive signaling, and the receiving unit 406 receives the relay seeking signaling feedback sent by the at least one terminal, and the determining unit 408 searches for the signaling feedback according to the relay sent by any one of the at least one terminal.
  • the second sending unit 410 sends a relay application signaling to the relay terminal to apply for The relay terminal forwards uplink data sent to the device having the base station function, wherein the plurality of terminals includes the at least one terminal.
  • the IoT device when the IoT device needs to send uplink data and/or the reference signal received by the device with the base station function in the current cell, the received power is less than or equal to the preset received power and/or the signal strength is less than or equal to the preset.
  • the relay seeking signaling may be sent to multiple terminals in the serving cell where the IoT device is located, so that multiple terminals can be based on their current relay conditions.
  • the terminal determines whether the terminal supports the uplink data sent by the IoT device to the device with the base station function in the current cell, whether the terminal starts the service for forwarding the uplink data, whether the terminal is idle, and the current time-frequency resource of the terminal. Whether it is higher than the time-frequency resource required for forwarding the uplink data, the maximum number of relay connections supported by the terminal, etc.) determines whether to respond to the relay of the IoT device to find signaling, and if the current relay condition is ideal, respond and send After finding the signaling feedback, the IoT device determines whether the terminal that sends the relay to find the signaling feedback is used as the relay terminal, and if the IoT device uses the terminal as the relay terminal, the relay terminal sends a relay to the relay terminal.
  • the device having the function of the base station includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.), and the like.
  • the relay seeking signaling feedback includes: a first channel quality of the IoT device to the any terminal, and any one of the terminals to the device with the base station function a second channel quality, at least one of the preset direct communication time-frequency resources used by the IoT device to communicate with any one of the terminals; and the determining unit 408 is specifically configured to: according to the Calculating an equivalent channel quality of the IoT device corresponding to any one of the terminals to the device having the base station function according to a channel quality and/or the second channel quality, according to the equivalent channel quality Determining whether any of the terminals is used as the relay terminal.
  • the first channel quality and/or the second channel quality corresponding to the any terminal can accurately calculate the equivalent of the IoT device corresponding to the any terminal to the device with the base station function.
  • Channel quality and then accurately determining the signaling processing capability and power consumption of the any terminal and the channel quality of the IoT device to the base station corresponding to the any terminal according to the equivalent channel quality, thereby further accurately determining whether The terminal is used as a relay terminal to avoid erroneous determination.
  • equivalent channel quality which may be some mathematical statistical methods or curve fitting functions, and may be simplified to take the first channel quality and the second. A weighted average of the channel qualities.
  • the determining unit 408 is further configured to: determine, according to the equivalent channel quality, a candidate priority of the terminal in the candidate relay terminal set of the Internet of Things device. Determining whether the candidate priority of any of the terminals is higher than a preset candidate priority, and determining that the terminal is the relay terminal and determining the target of the Internet of Things device when the determination result is yes Following the terminal set; otherwise, determining that any of the terminals is not the middle a terminal, wherein the target relay terminal set is composed of the relay terminal, the candidate relay terminal set is composed of the at least one terminal, and the relay terminal is in the target relay terminal concentration center The candidate priority at the same is the same as the candidate priority of the relay terminal in the candidate relay terminal set.
  • the candidate priority of any terminal in the candidate relay terminal set of the IoT device can be accurately determined according to the equivalent channel quality.
  • the higher the equivalent channel quality the candidate priority If the candidate priority of any of the terminals is higher than the preset candidate priority, the channel quality of the IoT device to the any terminal and any of the terminals to the device with the base station function is higher.
  • the terminal may be further used as a relay terminal in the target relay terminal group with better current relay conditions, so as to implement signaling processing capability and energy consumption of each terminal in the integrated Internet of Things system, and each terminal separately Compared with the channel quality of IoT devices and base stations, select a better relay terminal for IoT devices, and then select a better relay path for IoT devices, and finally improve the rate and efficiency of data forwarding, and improve the entire IoT device. System data processing rate.
  • the determining unit 402 is further configured to: the second sending unit 410 is configured to send the relay application signaling to the relay terminal, and if the receiving terminal sends the relay terminal, And determining, by the relay application signaling feedback information, whether the relay application signaling feedback information is the first received relay application signaling feedback information in the received at least one relay application signaling feedback information, and determining When the result is YES, the relay terminal is used as the final relay terminal to forward the uplink data sent to the device having the base station function by the final relay terminal; and the first sending unit 404 further After transmitting the relay application signaling to each relay terminal in the target relay terminal set, if any relay terminal in the target relay terminal set is not received within a predetermined time, Retransmitting the request signaling feedback information, and then retransmitting the relay seeking signaling to the multiple terminals, where the relay application signaling includes: a candidate priority of the relay terminal and/or the object Networked device Business priority.
  • the relay terminal after receiving the relay application signaling to the relay terminal, if receiving the relay application signaling feedback information sent by the relay terminal, further determining the relay application signaling feedback information sent by the relay terminal Whether it is the first received relay application signaling feedback information in the received at least one relay application signaling feedback information, and if yes, the relay terminal is a target relay terminal set
  • the relay terminal with the current relay condition is optimal, and the forwarding path corresponding to the relay terminal is also the optimal relay path for the IoT device to perform data forwarding, and the corresponding data forwarding rate and efficiency are also the highest, therefore, Selecting the relay terminal as the final relay terminal to realize the signaling processing capability and energy consumption of each terminal in the integrated IoT system, the channel quality of each terminal and the IoT device and the base station, and the Internet of Things
  • the service requirement of the device selects the optimal relay terminal for the IoT device, and then selects the optimal relay path for the IoT device; otherwise, if any relay in the target relay terminal set is not received within the predetermined
  • FIG. 5 shows a schematic structural diagram of an Internet of Things device according to an embodiment of the present invention.
  • the Internet of Things device 500 includes: the data transmission system 400 in the Internet of Things according to any one of the above technical solutions.
  • the data transmission system 400 in the Internet of Things on the Internet of Things device 500, it is possible to realize the signaling processing capability and capability of each terminal in the Internet of Things system 500 when the relay terminal is selected.
  • the consumption situation, the channel quality of each terminal and the IoT device and the base station, and the data service requirements of the IoT device select the optimal relay terminal for the IoT device, and then select the optimal relay path for the IoT device.
  • FIG. 6 is a block diagram showing the structure of a data transmission system in the Internet of Things according to another embodiment of the present invention.
  • the data transmission system 600 in the Internet of Things includes: a determining unit 602, when receiving relay seeking signaling sent by multiple IoT devices, according to the a current relay condition of the terminal, determining whether to respond to the relay seeking signaling sent by any one of the plurality of Internet of Things devices; and sending unit 604, when the determination result is yes, to any of the Internet of Things
  • the device sends a relay to find signaling feedback, so that any of the Internet of Things devices determines whether the terminal is used as a relay terminal, and after determining that the terminal is used as a relay terminal, sending the medium to the terminal.
  • the determining unit 606 when receiving the relay application signaling sent by any one of the Internet of Things devices in the Internet of Things, according to each of the plurality of the Internet of Things devices Priority letter in relay application signaling for any IoT device Determining a feedback priority of each of the plurality of IoT devices, such that each of the plurality of IoT devices determines whether And transmitting, by the terminal, uplink data sent to a device with a base station function in a current cell, where the relay application signaling feedback information includes: used by any one of the Internet of Things devices to communicate with the terminal a time-frequency resource and/or a scrambling sequence, and the relay finding signaling feedback includes: a first channel quality of the IoT device to the any terminal, the any terminal to the base station function At least one of the second channel quality of the device, the preset direct communication time-frequency resource used by the IoT device to communicate with any of the terminals, and the feedback priority is The priority of any IoT device to send relay application signaling feedback
  • the current relaying conditions when receiving the relay seeking signaling sent by the multiple IoT devices, the current relaying conditions may be used according to the current relaying conditions (such as whether the terminal supports the IoT device to forward the function to the base station in the current cell)
  • the uplink data sent by the device whether the terminal starts the service of forwarding the uplink data, whether the terminal is idle, whether the current time-frequency resource of the terminal is higher than the time-frequency resource required for forwarding the uplink data, and the maximum number of relay connections supported by the terminal, etc.
  • the IoT device determines whether to use the terminal As the relay terminal, if the terminal is used as the relay terminal by the IoT device, the relay application signaling is received, and if there are multiple relay application signaling, the terminal automatically according to any one of the multiple Determining priority information in the relay application signaling of each of the IoT devices in the networked device, determining the feedback superiority of each of the IoT devices Level, so that each of the plurality of IoT devices can finally accurately determine whether to forward the uplink data through the terminal according to the feedback priority, so that when the relay terminal is selected, Optimize the signaling processing capability and energy consumption of each terminal in the IoT system, the channel quality of each terminal and the IoT device and the base station, and the data service requirements of the IoT device, and select the optimal relay for the IoT device.
  • the terminal Optimize the signaling processing capability and energy consumption of each terminal in the IoT system, the channel quality of each terminal and the IoT device and the base station, and the data service requirements of
  • the priority information includes: a candidate priority of the terminal in a candidate relay terminal set of each of the any IoT devices, and/or each of the any ones a service priority of the IoT device; and the determining unit 606 is specifically configured to: a feedback priority of each of the any IoT devices and a candidate priority of each of the IoT devices Level and/or service priority are positively correlated; and if the terminal is in a candidate priority level of the target relay terminal set of the first IoT device among the plurality of the Internet of Things devices, The target relay terminal set of the second IoT device of the plurality of the Internet of Things devices is in the same candidate priority, and/or the service priority of the first IoT device and the second object The service priority of the networked device is the same, and the feedback priority of the first IoT device and the second IoT device is determined to be the same.
  • the feedback priority of each of the IoT devices is positively correlated with the candidate priority and/or service priority of each of the IoT devices, that is, each of the described
  • the relay application signaling feedback sent by the terminal, and the service priority of the IoT device may be mapped to a QCI (QoS Class Identifier) table based on its QoS (Quality of Service) requirement, and the value ranges from 1 to 9.
  • QCI QoS Class Identifier
  • the sending unit 604 is further configured to: after determining a feedback priority of sending the relay application signaling feedback information to the plurality of the Internet of Things devices, according to each The feedback priority of any of the Internet of Things devices is sent from the highest to the lowest, and the relay application signaling feedback information is sent to each of the IoT devices in turn.
  • the feedback priority may be sequentially performed in the order of high to low. Any IoT device sends the relay application signaling feedback information, so that any IoT device with higher feedback priority receives the relay application signaling feedback sent by the terminal.
  • the determining unit 602 is further configured to: according to the feedback priority, the feedback priority is high to low before sequentially sending the relay application signaling feedback information to each of the IoT devices. And determining, in sequence, whether the currently available time-frequency resource of the terminal is smaller than a required time-frequency resource of each of the plurality of IoT devices; and the data transmission system further
  • the processing unit 608 includes: if the current available time-frequency resource is smaller than the required time-frequency resource of the first designated Internet of Things device, the relay application signaling feedback information is not sent to the first designated Internet of Things device.
  • the sending unit 604 is further configured to: in the current When the available time-frequency resource is greater than or equal to the required time-frequency resource of the second designated IoT device and/or the total number of the relay application signaling feedback information is less than the maximum number of relay connections, to the The second designated IoT device sends the relay application signaling feedback information, otherwise, the relay application signaling feedback information is not sent to the second designated IoT device, where the second designated IoT device
  • the feedback priority is less than or equal to the feedback priority of the first IoT device, wherein the first designated IoT device is an IoT device of the plurality of the IoT devices.
  • the current available time-frequency resources of the terminal may be sequentially determined according to the order of the feedback priority from high to low. And a required time-frequency resource that is less than the required time-frequency resource of each of the any one of the Internet of Things devices, if the currently available time-frequency resource is smaller than the required time-frequency resource of the first designated IoT device, The current available time-frequency resource of the terminal is insufficient to provide the relay service for the first designated IoT device, and the current available time-frequency resource is further determined to be greater than or equal to the feedback priority according to the order of the feedback priority from high to low.
  • the required time-frequency resource of the second second designated IoT device and/or the total number of relay application signaling feedback information sent by the terminal is less than or equal to the maximum number of relay connections, if the currently available time-frequency resource is greater than or The total number of required time-frequency resources equal to the second designated IoT device with lower feedback priority and/or the relay application signaling feedback information sent by the terminal. If the number of the maximum number of trunk connections is equal to or greater than the maximum number of trunk connections, the current relay condition of the terminal is good, the trunk resources are sufficient, the relay capability has not reached the upper limit, and the relay capability is still sufficient, which is sufficient for the second designated object with lower feedback priority. The networked device provides the relay service. Otherwise, the current relay condition of the terminal is relatively poor. The relay capability is insufficient to provide the relay service for the second designated IoT device with lower feedback priority, and the second designated Internet of things is not provided. The device sends the relay application signaling feedback information.
  • the determining unit 602 is further configured to: sequentially determine whether the currently available time-frequency resource of the terminal is smaller than each of the plurality of the Internet of Things devices.
  • the system information block is obtained from the broadcast information of the device having the base station function, and it is determined whether a trigger signal is generated. If the determination result is yes, Initiating that the terminal starts to determine whether the current available time-frequency resource of the terminal is smaller than the required time-frequency resource of each of the plurality of Internet of Things devices, otherwise, does not generate The trigger signal, wherein the system information block includes: a system information block related to a synchronization clock in the broadcast information and/or a predefined priority processing system information block.
  • the synchronization time message may be an SIB message related to the synchronization clock in the eNB broadcast, for example, may be used for
  • the timeAlignmentTimerCommon that controls the UE to be in the uplink clock synchronization may also be an SIB message related to the synchronization clock in the special predefined new SIB message type, that is, the priority processing system information block.
  • the current relay condition includes: whether the terminal supports forwarding, for the any Internet of Things device, uplink data sent to a device having a base station function in a current cell, the terminal Whether the service for forwarding the uplink data is enabled, whether the terminal is idle, whether the power of the terminal is higher than the preset power, and whether the current time-frequency resource of the terminal is higher than the time-frequency resource required for forwarding the uplink data.
  • the maximum number of relay connections supported by the terminal, the first channel quality of the any IoT device to the terminal, the second channel quality of the terminal to the device having the base station function, and the terminal At least one condition in mobility.
  • the terminal can accurately determine whether to respond to the relay of the IoT device to find the signaling, and then filter the relay for the current relay condition such as the relay capability of the integrated terminal of the Internet of Things device. Terminals with better conditions and relay paths provide the necessary preconditions as relay terminals.
  • the method further includes: a transceiver unit 610, configured to send or receive the relay by using a physical layer, a radio resource control protocol layer, or a non-access layer of the Internet of Things according to the received transceiver command. Signaling, the relay looking for signaling feedback, the relay application signaling, or the relay application signaling feedback information.
  • the relay seeking signaling, the relay seeking signaling feedback, the relay application signaling, or the relay application signaling feedback information may all pass through the physical layer of the Internet of Things and the radio resource control protocol.
  • the (RRC, Radio Resource Control) layer or the non-access stratum (NAS) layer is transmitted and received.
  • the sending unit 604 is further configured to: after receiving the uplink data sent by the any IoT device, amplify the power of the uplink data and send the a device functioning as a base station; and/or determining whether to re-modulate the uplink data according to a second channel quality of the terminal to the device having the function of the base station, to transmit the re-modulated target uplink data to the Base station function device.
  • the terminal forwards the uplink data of any IoT device, including but not limited to power amplification of the uplink data. And transmitting to the device having the function of the base station and the transmission mode of determining whether to remodulate the uplink data according to the second channel quality of the terminal to the device having the function of the base station. Regardless of the transmission mode, the purpose is to prevent the uplink data from being transmitted. The medium power loss is too much, so that the base station cannot receive 100% of the uplink data sent by the IoT device or can ensure that the received uplink data is not distorted, thereby ensuring that the received uplink data is high fidelity uplink data.
  • the modulating unit 612 after determining, according to the second channel quality, that the uplink data needs to be remodulated, according to demodulation and modulation information from the any IoT device, The uplink data is modulated, and the modulated target uplink data is sent to the device with the base station function.
  • the demodulation and modulation information of any IoT device needs to be used to complete the modulation of the uplink data, thereby ensuring the uplink received by the device having the base station function.
  • the data is high fidelity uplink data.
  • FIG. 7 shows a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • a terminal 700 includes: a data transmission system 600 in the Internet of Things according to any one of the above technical solutions.
  • each terminal separately selects the optimal relay terminal for the IoT device with the channel quality of the IoT device and the base station and the data service requirements of the IoT device.
  • the IoT device selects the optimal relay path.
  • FIG. 8 shows a schematic structural diagram of an Internet of Things system according to an embodiment of the present invention.
  • an Internet of Things system 800 includes: a device 802 having a base station function; the Internet of Things device 500 as described in the above technical solution; and Terminal 700 as described.
  • the Internet of Things system 800 composed of the device 802 having the function of the base station, the Internet of Things device 500, and the terminal 700, it is possible to realize the communication of each terminal in the Internet of Things system when the relay terminal is selected.
  • the processing capability and energy consumption, the channel quality of each terminal and the IoT device and the base station, and the data service requirements of the IoT device select the optimal relay terminal for the IoT device, and then select the optimal device for the IoT device. Following the path.
  • the Internet of Things system comprises an Internet of Things system based on an LTE network.
  • the Internet of Things system includes, but is not limited to, an Internet of Things system based on an LTE network, and may also be an Internet of Things system based on a 3G network, or although the advancement of technology may be an Internet of Things system based on a network such as 5G.
  • FIG. 9 is a schematic diagram showing the principle of a data transmission system in the Internet of Things according to an embodiment of the present invention.
  • the candidate relay sets of the Internet of Things devices Device 1 and Device 2 are both ⁇ UERelay 1, UE Relay 2, UE Relay 3 ⁇ , and then, the letters of each candidate relay terminal in the IoT device are integrated.
  • the processing capability and the energy consumption situation, the first channel quality of each candidate relay terminal and the Internet of Things devices Device 1 and Device 2, and the second channel quality of the base station and the data service requirements of the Internet of Things devices Device 1 and Device 2 respectively
  • the optimal relay terminal can be selected for the Internet of Things devices Device 1 and Device 2, and then the optimal relay path is selected for the Internet of Things devices Device 1 and Device 2, that is, the Internet of Things device 1 should select UE Relay 1 as the final medium.
  • the Internet of Things device 2 should select UE Relay 2 as the final relay terminal to communicate with the base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提出了一种物联网中的数据传输方法、一种数据传输系统、一种物联网设备、一种终端和一种物联网系统,方法包括:判断是否需要发送上行数据和/或接收到当前小区中的具有基站功能的设备的参考信号接收功率是否小于或等于预设接收功率和/或信号强度是否小于或等于预设信号强度;在判断结果为是时,向当前小区中的多个终端发送中继寻找信令;接收来自至少一个终端发送的中继寻找信令反馈;根据至少一个终端中的任一终端发送的中继寻找信令反馈,确定是否将任一终端作为中继终端;在确定将任一终端作为中继终端后,向中继终端发送中继申请信令。通过本发明的技术方案,能够为物联网设备选择最优中继终端,进而为物联网设备选择最优中继路径。

Description

物联网中的数据传输方法、系统、物联网设备、终端
本申请要求于2015年3月13日提交中国专利局、申请号为201510112651.4,发明名称为“物联网中的数据传输方法、系统、物联网设备、终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及物联网技术领域,具体而言,涉及一种物联网中的数据传输方法、一种物联网中的数据传输系统、一种物联网设备、一种终端和一种物联网系统。
背景技术
物联网(MTC)应用是业界公认的5G网络的主要需求和5G网络的主要驱动力,对于大多数的物联网应用而言,海量、低成本、小数据包、低时延、低功耗是其重要特征,例如:在智能抄表(水表、电表、气表)、智能家居等物联网场景中,物联网设备的数量远远大于智能终端(例如手机、pad等)的数据,因此,用户对物联网的成本和功耗非常敏感。为了降低海量物联网设备的成本和功耗,未来网络可能采用中继终端(例如具有Relay功能的手机、pad)作为辅助,由中继终端对物联网设备的数据进行汇聚和中转,以使物联网设备能够向基站上传数据。
而目前的中继终端的选择算法主要基于eNB(基站)的集中式控制方案,即eNB根据可用中继终端与基站和物联网设备的信道质量好坏,综合来选取某个最佳的中继终端作为辅助。这样,基于eNB的集中式控制方案虽然可以有效地满足物联网设备低功耗或低成本需求,但当物联网中含有海量物联网设备时,这类方案的管理复杂度很高,此外,现有技术方案并没有考虑中继能力受限,但实际上,中继终端汇聚转发流量会涉及到中继终端与运营商网络的流量签约,中继终端的信令处理能力和能耗情况,因此,中继终端不能假定为可以无限制地充当物联网设备的中继实体。例如,在一些应用场景中,中继终端仅能支持有15个物联网设备同时接入。
因此,在选择中继终端时,如何能够综合物联网系统中的每个终端的 信令处理能力和能耗情况、每个终端分别与物联网设备和基站的信道质量以及物联网设备的数据业务需求,为物联网设备选择最优中继终端,进而为物联网设备选择最优中继路径,成为亟待解决的问题。
发明内容
本发明正是基于上述问题,提出了一种新的技术方案,可以实现在选择中继终端时,能够综合物联网系统中的每个终端的信令处理能力和能耗情况、每个终端分别与物联网设备和基站的信道质量以及物联网设备的数据业务需求,为物联网设备选择最优中继终端,进而为物联网设备选择最优中继路径。
有鉴于此,本发明的一方面提出了一种物联网中的数据传输方法,用于所述物联网中的物联网设备,包括:判断是否需要发送上行数据和/或接收到当前小区中的具有基站功能的设备的参考信号接收功率是否小于或等于预设接收功率和/或信号强度是否小于或等于预设信号强度;在判断结果为是时,向所述当前小区中的多个终端发送中继寻找信令;接收来自至少一个终端发送的中继寻找信令反馈;根据所述至少一个终端中的任一终端发送的所述中继寻找信令反馈,确定是否将所述任一终端作为中继终端;在确定将所述任一终端作为中继终端后,向所述中继终端发送中继申请信令,以申请通过所述中继终端转发向所述具有基站功能的设备发送的上行数据,其中,所述多个终端包括所述至少一个终端。
在该技术方案中,当物联网设备需要发送上行数据和/或接收到当前小区中的具有基站功能的设备的参考信号接收功率小于或等于预设接收功率和/或信号强度小于或等于预设信号强度时,说明物联网设备需要申请中继服务,此时,可以向物联网设备所在的服务小区中的多个终端发送中继寻找信令,可以使多个终端根据自身的当前中继条件(如终端是否支持为物联网设备转发向所在当前小区中的具有基站功能的设备发送的上行数据、终端是否开启转发上行数据的服务、终端是否空闲、终端的当前时频资源是否高于转发上行数据所需的时频资源、终端支持的最大中继连接数目等)决定是否响应物联网设备的中继寻找信令,如果当前中继条件比较理想, 则响应,并发送中继寻找信令反馈,以使物联网设备确定是否将发送中继寻找信令反馈的终端作为中继终端,若物联网设备将该终端作为中继终端,则会向该中继终端发送中继申请信令,以申请通过中继能力等中继条件较好的中继终端转发向服务小区中的具有基站功能的设备发送的上行数据,从而实现综合终端的信令处理能力和能耗情况,选择出较优的中继路径实现数据的转发。其中,具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
在上述技术方案中,优选地,所述中继寻找信令反馈包括:所述物联网设备至所述任一终端的第一信道质量、所述任一终端至所述具有基站功能的设备的第二信道质量、所述物联网设备与所述任一终端通信时所使用的预设直连通信时频资源中的至少一项信息;以及所述根据所述至少一个终端中的任一终端发送的所述中继寻找信令反馈,确定是否将所述任一终端作为中继终端,具体包括:根据所述第一信道质量和/或所述第二信道质量计算出与所述任一终端相对应的所述物联网设备至所述具有基站功能的设备的等效信道质量,以根据所述等效信道质量,确定是否将所述任一终端作为所述中继终端。
在该技术方案中,通过该任一终端相对应的第一信道质量和/或第二信道质量可以准确地计算出与该任一终端相对应的物联网设备至具有基站功能的设备的等效信道质量,然后根据该等效信道质量准确确定该任一终端的信令处理能力和能耗情况和该与该任一终端相对应的物联网设备至基站的信道质量,从而进一步准确确定是否将该任一终端作为中继终端,避免误确定,当然,等效信道质量的算法有多种,可以是某些数学统计方法或者曲线拟合函数,也可以简化为取第一信道质量和第二信道质量的加权平均值。
在上述技术方案中,优选地,所述确定是否将所述任一终端作为所述中继终端,具体包括:根据所述等效信道质量确定所述任一终端在所述物联网设备的候选中继终端集中所处的候选优先级;判断所述任一终端的候选优先级是否高于预设候选优先级,在判断结果为是时,确定将所述任一终端作为所述中继终端并确定所述物联网设备的目标中继终端集;否则, 确定所述任一终端不是所述中继终端,其中,所述目标中继终端集由所述中继终端组成,所述候选中继终端集由所述至少一个终端组成,且所述中继终端在所述目标中继终端集中所处的候选优先级与所述中继终端在所述候选中继终端集中所处的候选优先级相同。
在该技术方案中,通过根据等效信道质量可以准确确定该任一终端在物联网设备的候选中继终端集中所处的候选优先级,当然,等效信道质量越高,候选优先级也就越高,且若该任一终端的候选优先级高于预设候选优先级,则说明物联网设备至该任一终端和该任一终端至具有基站功能的设备的信道质量均较高,则可以将该任一终端进一步作为当前中继条件较好的目标中继终端集中的中继终端,以实现综合物联网系统中的每个终端的信令处理能力和能耗情况、每个终端分别与物联网设备和基站的信道质量,为物联网设备选择较优的中继终端,进而为物联网设备选择较优的中继路径,并最终提高数据转发的速率和效率,提高整个物联网设备的系统数据处理速率。
在上述技术方案中,优选地,在向所述中继终端发送所述中继申请信令,若接收到所述中继终端发送的中继申请信令反馈信息,则判断所述中继申请信令反馈信息是否为接收到的至少一个中继申请信令反馈信息中最先接收的中继申请信令反馈信息,并在判断结果为是时,将所述中继终端作为最终的中继终端,以通过所述最终的中继终端转发向所述具有基站功能的设备发送的上行数据;以及在向所述目标中继终端集中的每个中继终端发送所述中继申请信令后,若在预定时间内未接收到所述目标中继终端集中的任一中继终端发送的中继申请信令反馈信息,则重新向所述多个终端发送中继寻找信令,其中,所述中继申请信令包括:所述中继终端的候选优先级和/或所述物联网设备的业务优先级。
在该技术方案中,在向中继终端发送中继申请信令后,若接收中继终端发送的中继申请信令反馈信息,则进一步判断该中继终端发送的中继申请信令反馈信息是否为接收到的至少一个中继申请信令反馈信息中最先接收的中继申请信令反馈信息,若是,则说明该中继终端是目标中继终端集中当前中继条件最优的中继终端,该中继终端对应的转发路径也是物联网 设备进行数据转发的最优中继路径,对应的其数据转发的速率和效率也是最高的,因此,可以选择将该中继终端作为最终的中继终端,以实现综合物联网系统中的每个终端的信令处理能力和能耗情况、每个终端分别与物联网设备和基站的信道质量以及物联网设备的业务需求,为物联网设备选择最优的中继终端,进而为物联网设备选择最优的中继路径;反之,若在预定时间内未接收到目标中继终端集中的任一中继终端发送的中继申请信令反馈信息,则说明目标中继终端集的每个中继终端的当前中继条件都不足以为物联网设备提供中继服务,则需要重新向多个终端发送中继寻找信令,以重新申请当前中继条件较好的中继终端完成数据的转发。
在上述技术方案中,优选地,所述中继申请信令包括:发现参考信号、发现参考信号在所述中继寻找信令所占用的时频资源中的时频位置、对所述物联网设备与所述任一终端的通信信息加密时,所使用的加扰序列、所述物联网设备的特征信息中的至少一项信息;以及所述加扰序列包括:所述物联网设备的标识信息和/或所述中继终端的标识信息,所述物联网设备的特征信息包括:转发所述上行数据所需的数据带宽、业务类型、身份信息、地理位置中的至少一项信息。
在该技术方案中,通过上述中继申请信令,可以使物联网设备快速申请到最符合业务需求和中继条件最优的终端作为中继终端,以快速完成数据转发,其中,发现参考信号在所述中继寻找信令所占用的时频资源中的时频位置可以是预先定义的有限集合,从而使得不需要eNB的参与,且UE可以通过盲检测来接收对端物联网设备的发现参考信号,且物联网设备发送中继寻找信令所使用的频谱可以是预规划的某些频谱,例如,可以在系统预规划的D2D(Device to Device,终端直连通信)频谱上进行通信,在这种情况下,不需要eNB来进行频谱资源配置,物联网设备的标识信息可以为IPV6地址、C-RNTI等。
本发明的另一方面提出了一种物联网中的数据传输系统,用于所述物联网中的物联网设备,包括:判断单元,判断是否需要发送上行数据和/或接收到当前小区中的具有基站功能的设备的参考信号接收功率是否小于或等于预设接收功率和/或信号强度是否小于或等于预设信号强度;第一发送 单元,在判断结果为是时,向所述当前小区中的多个终端发送中继寻找信令;接收单元,接收来自至少一个终端发送的中继寻找信令反馈;确定单元,根据所述至少一个终端中的任一终端发送的所述中继寻找信令反馈,确定是否将所述任一终端作为中继终端;第二发送单元,在确定将所述任一终端作为中继终端后,向所述中继终端发送中继申请信令,以申请通过所述中继终端转发向所述具有基站功能的设备发送的上行数据,其中,所述多个终端包括所述至少一个终端。
在该技术方案中,当物联网设备需要发送上行数据和/或接收到当前小区中的具有基站功能的设备的参考信号接收功率小于或等于预设接收功率和/或信号强度小于或等于预设信号强度时,说明物联网设备需要申请中继服务,此时,可以向物联网设备所在的服务小区中的多个终端发送中继寻找信令,可以使多个终端根据自身的当前中继条件(如终端是否支持为物联网设备转发向所在当前小区中的具有基站功能的设备发送的上行数据、终端是否开启转发上行数据的服务、终端是否空闲、终端的当前时频资源是否高于转发上行数据所需的时频资源、终端支持的最大中继连接数目等)决定是否响应物联网设备的中继寻找信令,如果当前中继条件比较理想,则响应,并发送中继寻找信令反馈,以使物联网设备确定是否将发送中继寻找信令反馈的终端作为中继终端,若物联网设备将该终端作为中继终端,则会向该中继终端发送中继申请信令,以申请通过中继能力等中继条件较好的中继终端转发向服务小区中的具有基站功能的设备发送的上行数据,从而实现综合终端的信令处理能力和能耗情况,选择出较优的中继路径实现数据的转发。其中,具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
在上述技术方案中,优选地,所述中继寻找信令反馈包括:所述物联网设备至所述任一终端的第一信道质量、所述任一终端至所述具有基站功能的设备的第二信道质量、所述物联网设备与所述任一终端通信时所使用的预设直连通信时频资源中的至少一项信息;以及所述确定单元具体用于:根据所述第一信道质量和/或所述第二信道质量计算出与所述任一终端相对应的所述物联网设备至所述具有基站功能的设备的等效信道质量,以根 据所述等效信道质量,确定是否将所述任一终端作为所述中继终端。
在该技术方案中,通过该任一终端相对应的第一信道质量和/或第二信道质量可以准确地计算出与该任一终端相对应的物联网设备至具有基站功能的设备的等效信道质量,然后根据该等效信道质量准确确定该任一终端的信令处理能力和能耗情况和该与该任一终端相对应的物联网设备至基站的信道质量,从而进一步准确确定是否将该任一终端作为中继终端,避免误确定,当然,等效信道质量的算法有多种,可以是某些数学统计方法或者曲线拟合函数,也可以简化为取第一信道质量和第二信道质量的加权平均值。
在上述技术方案中,优选地,所述确定单元还具体用于:根据所述等效信道质量确定所述任一终端在所述物联网设备的候选中继终端集中所处的候选优先级;判断所述任一终端的候选优先级是否高于预设候选优先级,在判断结果为是时,确定将所述任一终端作为所述中继终端并确定所述物联网设备的目标中继终端集;否则,确定所述任一终端不是所述中继终端,其中,所述目标中继终端集由所述中继终端组成,所述候选中继终端集由所述至少一个终端组成,且所述中继终端在所述目标中继终端集中所处的候选优先级与所述中继终端在所述候选中继终端集中所处的候选优先级相同。
在该技术方案中,通过根据等效信道质量可以准确确定该任一终端在物联网设备的候选中继终端集中所处的候选优先级,当然,等效信道质量越高,候选优先级也就越高,且若该任一终端的候选优先级高于预设候选优先级,则说明物联网设备至该任一终端和该任一终端至具有基站功能的设备的信道质量均较高,则可以将该任一终端进一步作为当前中继条件较好的目标中继终端集中的中继终端,以实现综合物联网系统中的每个终端的信令处理能力和能耗情况、每个终端分别与物联网设备和基站的信道质量,为物联网设备选择较优的中继终端,进而为物联网设备选择较优的中继路径,并最终提高数据转发的速率和效率,提高整个物联网设备的系统数据处理速率。
在上述技术方案中,优选地,所述判断单元还用于:所述第二发送单 元在向所述中继终端发送所述中继申请信令,若接收到所述中继终端发送的中继申请信令反馈信息,则判断所述中继申请信令反馈信息是否为接收到的至少一个中继申请信令反馈信息中最先接收的中继申请信令反馈信息,并在判断结果为是时,将所述中继终端作为最终的中继终端,以通过所述最终的中继终端转发向所述具有基站功能的设备发送的上行数据;以及所述第一发送单元还用于,在向所述目标中继终端集中的每个中继终端发送所述中继申请信令后,若在预定时间内未接收到所述目标中继终端集中的任一中继终端发送的中继申请信令反馈信息,则重新向所述多个终端发送中继寻找信令,其中,所述中继申请信令包括:所述中继终端的候选优先级和/或所述物联网设备的业务优先级。
在该技术方案中,在向中继终端发送中继申请信令后,若接收中继终端发送的中继申请信令反馈信息,则进一步判断该中继终端发送的中继申请信令反馈信息是否为接收到的至少一个中继申请信令反馈信息中最先接收的中继申请信令反馈信息,若是,则说明该中继终端是目标中继终端集中当前中继条件最优的中继终端,该中继终端对应的转发路径也是物联网设备进行数据转发的最优中继路径,对应的其数据转发的速率和效率也是最高的,因此,可以选择将该中继终端作为最终的中继终端,以实现综合物联网系统中的每个终端的信令处理能力和能耗情况、每个终端分别与物联网设备和基站的信道质量以及物联网设备的业务需求,为物联网设备选择最优的中继终端,进而为物联网设备选择最优的中继路径;反之,若在预定时间内未接收到目标中继终端集中的任一中继终端发送的中继申请信令反馈信息,则说明目标中继终端集的每个中继终端的当前中继条件都不足以为物联网设备提供中继服务,则需要重新向多个终端发送中继寻找信令,以重新申请当前中继条件较好的中继终端完成数据的转发。
本发明的又一方面提出了一种物联网设备,包括:上述技术方案中的任一项物联网中的数据传输系统。
在该技术方案中,通过在物联网设备上设置物联网中的数据传输系统,可以实现在选择中继终端时,能够综合物联网系统中的每个终端的信令处理能力和能耗情况、每个终端分别与物联网设备和基站的信道质量以及物 联网设备的数据业务需求,为物联网设备选择最优中继终端,进而为物联网设备选择最优中继路径。
本发明的再一方面提出了一种物联网中的数据传输方法,用于所述物联网中的终端,所述终端与上述技术方案中的物联网设备相连接,以及所述数据传输方法包括:在接收到多个物联网设备发送的中继寻找信令时,根据所述终端的当前中继条件,判断是否响应所述多个物联网设备中的任一物联网设备发送的中继寻找信令;在判断结果为是时,向所述任一物联网设备发送中继寻找信令反馈,以使所述任一物联网设备确定是否将所述终端作为中继终端,并在确定将所述终端作为中继终端后,向所述终端发送所述中继申请信令;在接收到所述物联网中多个所述任一物联网设备发送的中继申请信令时,根据多个所述任一物联网设备中每个所述任一物联网设备的中继申请信令中的优先级信息确定多个所述任一物联网设备中每个所述任一物联网设备的反馈优先级,以使多个所述任一物联网设备中的每个所述任一物联网设备确定是否通过所述终端转发向所在当前小区中的具有基站功能的设备发送的上行数据,其中,所述中继申请信令反馈信息包括:所述任一物联网设备与所述终端通信时所使用的时频资源和/或加扰序列,且所述中继寻找信令反馈包括:所述物联网设备至所述任一终端的第一信道质量、所述任一终端至所述具有基站功能的设备的第二信道质量、所述物联网设备与所述任一终端通信时所使用的预设直连通信时频资源中的至少一项信息,且所述反馈优先级为向每个所述任一物联网设备发送中继申请信令反馈的优先级。
在该技术方案中,在接收到多个物联网设备发送的中继寻找信令时,可以根据自身的当前中继条件(如终端是否支持为物联网设备转发向所在当前小区中的具有基站功能的设备发送的上行数据、终端是否开启转发上行数据的服务、终端是否空闲、终端的当前时频资源是否高于转发上行数据所需的时频资源、终端支持的最大中继连接数目等)决定是否响应多个物联网设备的中继寻找信令,如果当前中继条件比较理想,则响应,并向任一物联网设备发送中继寻找信令反馈,以使物联网设备确定是否将该终端作为中继终端,如果该终端被物联网设备作为中继终端,就会接收到中 继申请信令,且如果中继申请信令为多个时,终端就会自动地根据多个任一物联网设备中每个所述任一物联网设备的中继申请信令中的优先级信息,确定每个任一物联网设备的反馈优先级,以使多个所述任一物联网设备中的每个所述任一物联网设备根据反馈优先级最终准确确定是否通过该终端转发上行数据,从而可以实现在选择中继终端时,能够综合物联网系统中的每个终端的信令处理能力和能耗情况、每个终端分别与物联网设备和基站的信道质量以及物联网设备的数据业务需求,为物联网设备选择最优中继终端,进而为物联网设备选择最优中继路径。
在上述技术方案中,优选地,所述优先级信息包括:所述终端在每个所述任一物联网设备的候选中继终端集中所处的候选优先级和/或每个所述任一物联网设备的业务优先级;以及所述根据多个所述任一物联网设备中每个所述任一物联网设备的中继申请信令中的优先级信息确定多个所述任一物联网设备中每个所述任一物联网设备的反馈优先级,具体包括:每个所述任一物联网设备的反馈优先级与每个所述任一物联网设备的候选优先级和/或业务优先级成正相关;且若所述终端在多个所述任一物联网设备中的第一物联网设备的目标中继终端集中所处的候选优先级,与所述终端在多个所述任一物联网设备中的第二物联网设备的目标中继终端集中所处的候选优先级相同,和/或所述第一物联网设备的业务优先级与所述第二物联网设备的业务优先级相同,则确定所述第一物联网设备与所述第二物联网设备的反馈优先级相同。
在该技术方案中,每个所述任一物联网设备的反馈优先级与每个所述任一物联网设备的候选优先级和/或业务优先级成正相关,也即每个所述任一物联网设备的候选优先级越高和/或业务优先级越高,每个所述任一物联网设备的反馈优先级也就越高,每个所述任一物联网设备就会越早收到终端发送的中继申请信令反馈,且该任一物联网设备的业务优先级可以基于其QoS(Quality of Service)需求映射到QCI(QoS Class Identifier)表格,其取值范围为1到9的整数。
在上述技术方案中,优选地,在确定向多个所述任一物联网设备发送所述中继申请信令反馈信息的反馈优先级之后,按照每个所述任一物联网 设备的所述反馈优先级由高到低的顺序,依次向每个所述任一物联网设备发送中继申请信令反馈信息。
在该技术方案中,在确定向多个所述任一物联网设备发送中继申请信令反馈信息的反馈优先级之后,可以按照反馈优先级由高到低的顺序,依次向每个所述任一物联网设备发送中继申请信令反馈信息,使得反馈优先级越高的任一物联网设备越早接收到终端发送的中继申请信令反馈。
在上述技术方案中,优选地,在依次向每个所述任一物联网设备发送中继申请信令反馈信息之前,还包括:按照所述反馈优先级由高到低的顺序,依次判断所述终端的当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源;若判断所述当前可用时频资源小于第一指定物联网设备的所需时频资源,则不向所述第一指定物联网设备发送所述中继申请信令反馈信息,并按照所述反馈优先级从高到低的顺序,依次判断所述当前可用时频资源是否大于或等于第二指定物联网设备的所需时频资源和/或所述终端当前已发送的所述中继申请信令反馈信息的总数目是否大于最大中继连接数目;在所述当前可用时频资源大于或等于所述第二指定物联网设备的所需时频资源和/或所述中继申请信令反馈信息的总数目小于所述最大中继连接数目时,向所述第二指定物联网设备发送所述中继申请信令反馈信息,否则,不向所述第二指定物联网设备发送所述中继申请信令反馈信息,其中,所述第二指定物联网设备的反馈优先级小于或等于所述第一物联网设备的反馈优先级,其中,所述第一指定物联网设备为多个所述任一物联网设备中的物联网设备。
在该技术方案中,在依次向每个所述任一物联网设备发送中继申请信令反馈信息之前,可以按照反馈优先级由高到低的顺序,依次判断终端的当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源,若当前可用时频资源小于第一指定物联网设备的所需时频资源,则说明该终端当前的可用时频资源不足以为该第一指定物联网设备提供中继服务,则可以进一步按照反馈优先级从高到低的顺序,依次判断当前可用时频资源是否大于或等于反馈优先级较低的第二指定物联网设备的所需时频资源和/或终端已发送的中继申请信令反馈信息的总 数目是否小于或等于最大中继连接数目,若当前可用时频资源大于或等于反馈优先级较低的第二指定物联网设备的所需时频资源和/或终端已发送的中继申请信令反馈信息的总数目小于或等于最大中继连接数目,则说明终端的当前中继条件良好,中继资源充足,中继能力还未达到上限,中继能力仍然有余,足以为反馈优先级较低的第二指定物联网设备提供中继服务,否则,则说明终端的当前中继条件比较差,中继能力不足以为反馈优先级较低的第二指定物联网设备提供中继服务,则不向第二指定物联网设备发送所述中继申请信令反馈信息。
在上述技术方案中,优选地,在依次判断所述终端的当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源之前,还包括:从所述具有基站功能的设备的广播信息中获取系统信息块,判断是否产生触发信号,若判断结果为是,触发所述终端开始依次判断所述终端的当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源,否则,不产生所述触发信号,其中,所述系统信息块包括:所述广播信息中与同步时钟相关的系统信息块和/或预定义的优先级处理系统信息块。
在该技术方案中,在获取到系统信息块后,判断是否存在同步时间消息,若存在,则产生触发信号,则在同一时间同步触发物联网中的每个终端同时判断当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源,且同步时间消息可以eNB广播中与同步时钟有关的SIB消息,例如:可以是用于控制UE处在上行时钟同步的timeAlignmentTimerCommon,也可以是专门预定义的新SIB消息类型中与同步时钟有关的SIB消息即优先级处理系统信息块。
在上述技术方案中,优选地,所述当前中继条件包括:所述终端是否支持为所述任一物联网设备转发向所在当前小区中的具有基站功能的设备发送的上行数据、所述终端是否开启转发所述上行数据的服务、所述终端是否空闲、所述终端的电量是否高于预设电量、所述终端的当前时频资源是否高于转发所述上行数据所需的时频资源、所述终端支持的最大中继连接数目、所述任一物联网设备至所述终端的第一信道质量、所述终端至所 述具有基站功能的设备的第二信道质量、所述终端的移动性中的至少一个条件。
在该技术方案中,通过上述当前中继条件,可以使终端准确判断是否响应物联网设备的中继寻找信令,进而为物联网设备综合终端的中继能力等当前中继条件筛选出中继条件和中继路径较好的终端作为中继终端提供了必要的前提条件。
在上述技术方案中,优选地,根据接收到的收发指令,通过所述物联网的物理层、无线资源控制协议层或非接入层发送或接收所述中继寻找信令、所述中继寻找信令反馈、所述中继申请信令或所述中继申请信令反馈信息。
在该技术方案中,中继寻找信令、中继寻找信令反馈、中继申请信令或中继申请信令反馈信息均可以通过物联网的物理层、无线资源控制协议(RRC,Radio Resource Control)层或非接入(NAS,non-access stratum)层进行收发。
在上述技术方案中,优选地,在接收到所述任一物联网设备发送的所述上行数据时,将所述上行数据的功率放大后发送至所述具有基站功能的设备;和/或根据所述终端至所述具有基站功能的设备的第二信道质量确定是否对所述上行数据进行再次调制,以将再次调制后的目标上行数据发送至所述具有基站功能的设备。
在该技术方案中,任一物联网设备将该终端作为最终的中继终端后,该终端转发任一物联网设备的上行数据的方式有多种,包括但不限于将上行数据的进行功率放大后发送至具有基站功能的设备和根据终端至具有基站功能的设备的第二信道质量确定是否对上行数据进行再次调制的发送方式,无论哪种发送方式,其目的均在于防止上行数据在发送过程中功率损耗过多,而使基站无法100%接收到该任一物联网设备发送的上行数据或无法确保接收到的上行数据不失真,从而确保接收到的上行数据为高保真的上行数据。
在上述技术方案中,优选地,在根据所述第二信道质量确定需对所述上行数据进行再次调制后,根据来自所述任一物联网设备的解调和调制信 息,对所述上行数据进行调制,并将调制后的所述目标上行数据发送至所述具有基站功能的设备。
在该技术方案中,若确定需要对上行数据进行再次接收,则需要根据任一物联网设备的解调和调制信息,才能完成对上行数据进行调制,从而确保具有基站功能的设备接收到的上行数据为高保真的上行数据。
本发明的再一方面提出了一种物联网中的数据传输系统,用于所述物联网中的终端,所述终端与上述技术方案中的物联网设备相连接,以及所述数据传输系统包括:判断单元,在接收到多个物联网设备发送的中继寻找信令时,根据所述终端的当前中继条件,判断是否响应所述多个物联网设备中的任一物联网设备发送的中继寻找信令;发送单元,在判断结果为是时,向所述任一物联网设备发送中继寻找信令反馈,以使所述任一物联网设备确定是否将所述终端作为中继终端,并在确定将所述终端作为中继终端后,向所述终端发送所述中继申请信令;确定单元,在接收到所述物联网中多个所述任一物联网设备发送的中继申请信令时,根据多个所述任一物联网设备中每个所述任一物联网设备的中继申请信令中的优先级信息确定多个所述任一物联网设备中每个所述任一物联网设备的反馈优先级,以使多个所述任一物联网设备中的每个所述任一物联网设备确定是否通过所述终端转发向所在当前小区中的具有基站功能的设备发送的上行数据,其中,所述中继申请信令反馈信息包括:所述任一物联网设备与所述终端通信时所使用的时频资源和/或加扰序列,且所述中继寻找信令反馈包括:所述物联网设备至所述任一终端的第一信道质量、所述任一终端至所述具有基站功能的设备的第二信道质量、所述物联网设备与所述任一终端通信时所使用的预设直连通信时频资源中的至少一项信息,且所述反馈优先级为向每个所述任一物联网设备发送中继申请信令反馈的优先级。
在该技术方案中,在接收到多个物联网设备发送的中继寻找信令时,可以根据自身的当前中继条件(如终端是否支持为物联网设备转发向所在当前小区中的具有基站功能的设备发送的上行数据、终端是否开启转发上行数据的服务、终端是否空闲、终端的当前时频资源是否高于转发上行数据所需的时频资源、终端支持的最大中继连接数目等)决定是否响应多个 物联网设备的中继寻找信令,如果当前中继条件比较理想,则响应,并向任一物联网设备发送中继寻找信令反馈,以使物联网设备确定是否将该终端作为中继终端,如果该终端被物联网设备作为中继终端,就会接收到中继申请信令,且如果中继申请信令为多个时,终端就会自动地根据多个任一物联网设备中每个所述任一物联网设备的中继申请信令中的优先级信息,确定每个任一物联网设备的反馈优先级,以使多个所述任一物联网设备中的每个所述任一物联网设备根据反馈优先级最终准确确定是否通过该终端转发上行数据,从而可以实现在选择中继终端时,能够综合物联网系统中的每个终端的信令处理能力和能耗情况、每个终端分别与物联网设备和基站的信道质量以及物联网设备的数据业务需求,为物联网设备选择最优中继终端,进而为物联网设备选择最优中继路径。
在上述技术方案中,优选地,所述优先级信息包括:所述终端在每个所述任一物联网设备的候选中继终端集中所处的候选优先级和/或每个所述任一物联网设备的业务优先级;以及所述确定单元具体用于:每个所述任一物联网设备的反馈优先级与每个所述任一物联网设备的候选优先级和/或业务优先级成正相关;且若所述终端在多个所述任一物联网设备中的第一物联网设备的目标中继终端集中所处的候选优先级,与所述终端在多个所述任一物联网设备中的第二物联网设备的目标中继终端集中所处的候选优先级相同,和/或所述第一物联网设备的业务优先级与所述第二物联网设备的业务优先级相同,则确定所述第一物联网设备与所述第二物联网设备的反馈优先级相同。
在该技术方案中,每个所述任一物联网设备的反馈优先级与每个所述任一物联网设备的候选优先级和/或业务优先级成正相关,也即每个所述任一物联网设备的候选优先级越高和/或业务优先级越高,每个所述任一物联网设备的反馈优先级也就越高,每个所述任一物联网设备就会越早收到终端发送的中继申请信令反馈,且该任一物联网设备的业务优先级可以基于其QoS(Quality of Service)需求映射到QCI(QoS Class Identifier)表格,其取值范围为1到9的整数。
在上述技术方案中,优选地,所述发送单元还用于:在确定向多个所 述任一物联网设备发送所述中继申请信令反馈信息的反馈优先级之后,按照每个所述任一物联网设备的所述反馈优先级由高到低的顺序,依次向每个所述任一物联网设备发送中继申请信令反馈信息。
在该技术方案中,在确定向多个所述任一物联网设备发送中继申请信令反馈信息的反馈优先级之后,可以按照反馈优先级由高到低的顺序,依次向每个所述任一物联网设备发送中继申请信令反馈信息,使得反馈优先级越高的任一物联网设备越早接收到终端发送的中继申请信令反馈。
在上述技术方案中,优选地,所述判断单元还用于:在依次向每个所述任一物联网设备发送中继申请信令反馈信息之前,按照所述反馈优先级由高到低的顺序,依次判断所述终端的当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源;以及所述数据传输系统还包括:处理单元,若判断所述当前可用时频资源小于第一指定物联网设备的所需时频资源,则不向所述第一指定物联网设备发送所述中继申请信令反馈信息,并按照所述反馈优先级从高到低的顺序,依次判断所述当前可用时频资源是否大于或等于第二指定物联网设备的所需时频资源和/或所述终端当前已发送的所述中继申请信令反馈信息的总数目是否大于最大中继连接数目;所述发送单元还用于:在所述当前可用时频资源大于或等于所述第二指定物联网设备的所需时频资源和/或所述中继申请信令反馈信息的总数目小于所述最大中继连接数目时,向所述第二指定物联网设备发送所述中继申请信令反馈信息,否则,不向所述第二指定物联网设备发送所述中继申请信令反馈信息,其中,所述第二指定物联网设备的反馈优先级小于或等于所述第一物联网设备的反馈优先级,其中,所述第一指定物联网设备为多个所述任一物联网设备中的物联网设备。
在该技术方案中,在依次向每个所述任一物联网设备发送中继申请信令反馈信息之前,可以按照反馈优先级由高到低的顺序,依次判断终端的当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源,若当前可用时频资源小于第一指定物联网设备的所需时频资源,则说明该终端当前的可用时频资源不足以为该第一指定物联网设备提供中继服务,则可以进一步按照反馈优先级从高到低的顺序, 依次判断当前可用时频资源是否大于或等于反馈优先级较低的第二指定物联网设备的所需时频资源和/或终端已发送的中继申请信令反馈信息的总数目是否小于或等于最大中继连接数目,若当前可用时频资源大于或等于反馈优先级较低的第二指定物联网设备的所需时频资源和/或终端已发送的中继申请信令反馈信息的总数目小于或等于最大中继连接数目,则说明终端的当前中继条件良好,中继资源充足,中继能力还未达到上限,中继能力仍然有余,足以为反馈优先级较低的第二指定物联网设备提供中继服务,否则,则说明终端的当前中继条件比较差,中继能力不足以为反馈优先级较低的第二指定物联网设备提供中继服务,则不向第二指定物联网设备发送所述中继申请信令反馈信息。
在上述技术方案中,优选地,所述判断单元还用于:在依次判断所述终端的当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源之前,从所述具有基站功能的设备的广播信息中获取系统信息块,判断是否产生触发信号,若判断结果为是,则触发所述终端开始依次判断所述终端的当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源,否则,不产生所述触发信号,其中,所述系统信息块包括:所述广播信息中与同步时钟相关的系统信息块和/或预定义的优先级处理系统信息块。
在该技术方案中,在获取到系统信息块后,判断是否存在同步时间消息,若存在,则产生触发信号,则在同一时间同步触发物联网中的每个终端同时判断当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源,且同步时间消息可以eNB广播中与同步时钟有关的SIB消息,例如:可以是用于控制UE处在上行时钟同步的timeAlignmentTimerCommon,也可以是专门预定义的新SIB消息类型中与同步时钟有关的SIB消息即优先级处理系统信息块。
在上述技术方案中,优选地,所述当前中继条件包括:所述终端是否支持为所述任一物联网设备转发向所在当前小区中的具有基站功能的设备发送的上行数据、所述终端是否开启转发所述上行数据的服务、所述终端是否空闲、所述终端的电量是否高于预设电量、所述终端的当前时频资源 是否高于转发所述上行数据所需的时频资源、所述终端支持的最大中继连接数目、所述任一物联网设备至所述终端的第一信道质量、所述终端至所述具有基站功能的设备的第二信道质量、所述终端的移动性中的至少一个条件。
在该技术方案中,通过上述当前中继条件,可以使终端准确判断是否响应物联网设备的中继寻找信令,进而为物联网设备综合终端的中继能力等当前中继条件筛选出中继条件和中继路径较好的终端作为中继终端提供了必要的前提条件。
在上述技术方案中,优选地,还包括:收发单元,根据接收到的收发指令,通过所述物联网的物理层、无线资源控制协议层或非接入层发送或接收所述中继寻找信令、所述中继寻找信令反馈、所述中继申请信令或所述中继申请信令反馈信息。
在该技术方案中,中继寻找信令、中继寻找信令反馈、中继申请信令或中继申请信令反馈信息均可以通过物联网的物理层、无线资源控制协议(RRC,Radio Resource Control)层或非接入(NAS,non-access stratum)层进行收发。
在上述技术方案中,优选地,所述发送单元还用于:在接收到所述任一物联网设备发送的所述上行数据时,将所述上行数据的功率放大后发送至所述具有基站功能的设备;和/或根据所述终端至所述具有基站功能的设备的第二信道质量确定是否对所述上行数据进行再次调制,以将再次调制后的目标上行数据发送至所述具有基站功能的设备。
在该技术方案中,任一物联网设备将该终端作为最终的中继终端后,该终端转发任一物联网设备的上行数据的方式有多种,包括但不限于将上行数据的进行功率放大后发送至具有基站功能的设备和根据终端至具有基站功能的设备的第二信道质量确定是否对上行数据进行再次调制的发送方式,无论哪种发送方式,其目的均在于防止上行数据在发送过程中功率损耗过多,而使基站无法100%接收到该任一物联网设备发送的上行数据或无法确保接收到的上行数据不失真,从而确保接收到的上行数据为高保真的上行数据。
在上述技术方案中,优选地,调制单元,在根据所述第二信道质量确定需对所述上行数据进行再次调制后,根据来自所述任一物联网设备的解调和调制信息,对所述上行数据进行调制,并将调制后的所述目标上行数据发送至所述具有基站功能的设备。
在该技术方案中,若确定需要对上行数据进行再次接收,则需要根据任一物联网设备的解调和调制信息,才能完成对上行数据进行调制,从而确保具有基站功能的设备接收到的上行数据为高保真的上行数据。
本发明的再一方面提出了一种终端,包括:如上述技术方案中任一项所述的物联网中的数据传输系统。
在该技术方案中,通过在终端中设置物联网中的数据传输系统,可以实现在选择中继终端时,能够综合物联网系统中的每个终端的信令处理能力和能耗情况、每个终端分别与物联网设备和基站的信道质量以及物联网设备的数据业务需求,为物联网设备选择最优中继终端,进而为物联网设备选择最优中继路径。
本发明的再一方面提出了一种物联网系统,包括:具有基站功能的设备;如上述技术方案中的所述的物联网设备;和如上述技术方案中的所述的终端。
在该技术方案中,通过由具有基站功能的设备、物联网设备和终端组成的物联网系统,可以实现在选择中继终端时,能够综合物联网系统中的每个终端的信令处理能力和能耗情况、每个终端分别与物联网设备和基站的信道质量以及物联网设备的数据业务需求,为物联网设备选择最优中继终端,进而为物联网设备选择最优中继路径。
在上述技术方案中,优选地,所述物联网系统包括基于LTE网络的物联网系统。
在该技术方案中,物联网系统包括但不限于基于LTE网络的物联网系统,也可以是基于3G网络的物联网系统,或虽然技术的进步可以是基于5G等网络的物联网系统。
通过本发明的技术方案,可以实现在选择中继终端时,能够综合物联网系统中的每个终端的信令处理能力和能耗情况、每个终端分别与物联网设备 和基站的信道质量以及物联网设备的数据业务需求,为物联网设备选择最优中继终端,进而为物联网设备选择最优中继路径。
附图说明
图1示出了根据本发明的一个实施例的物联网中的数据传输方法的流程示意图;
图2示出了根据本发明的另一个实施例的物联网中的数据传输方法的流程示意图;
图3示出了根据本发明的又一个实施例的物联网中的数据传输方法的流程示意图;
图4示出了根据本发明的一个实施例的物联网中的数据传输系统的结构示意图;
图5示出了根据本发明的一个实施例的物联网设备的结构示意图;
图6示出了根据本发明的另一个实施例的物联网中的数据传输系统的结构示意图;
图7示出了根据本发明的一个实施例的终端的结构示意图;
图8示出了根据本发明的一个实施例的物联网系统的结构示意图;
图9示出了根据本发明的一个实施例的物联网中的数据传输系统的原理示意图。
具体实施方式
为了可以更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
图1示出了根据本发明的一个实施例的物联网中的数据传输方法的流程示意图。
如图1所示,根据本发明的一个实施例的物联网中的数据传输方法,包括:步骤102,判断是否需要发送上行数据和/或接收到当前小区中的具有基站功能的设备的参考信号接收功率是否小于或等于预设接收功率和/或信号强度是否小于或等于预设信号强度;步骤104,在判断结果为是时,向所述当前小区中的多个终端发送中继寻找信令;步骤106,接收来自至少一个终端发送的中继寻找信令反馈;步骤108,根据所述至少一个终端中的任一终端发送的所述中继寻找信令反馈,确定是否将所述任一终端作为中继终端;步骤110,在确定将所述任一终端作为中继终端后,向所述中继终端发送中继申请信令,以申请通过所述中继终端转发向所述具有基站功能的设备发送的上行数据,其中,所述多个终端包括所述至少一个终端。
在该技术方案中,当物联网设备需要发送上行数据和/或接收到当前小区中的具有基站功能的设备的参考信号接收功率小于或等于预设接收功率和/或信号强度小于或等于预设信号强度时,说明物联网设备需要申请中继服务,此时,可以向物联网设备所在的服务小区中的多个终端发送中继寻找信令,可以使多个终端根据自身的当前中继条件(如终端是否支持为物联网设备转发向所在当前小区中的具有基站功能的设备发送的上行数据、终端是否开启转发上行数据的服务、终端是否空闲、终端的当前时频资源是否高于转发上行数据所需的时频资源、终端支持的最大中继连接数目等)决定是否响应物联网设备的中继寻找信令,如果当前中继条件比较理想,则响应,并发送中继寻找信令反馈,以使物联网设备确定是否将发送中继寻找信令反馈的终端作为中继终端,若物联网设备将该终端作为中继终端,则会向该中继终端发送中继申请信令,以申请通过中继能力等中继条件较好的中继终端转发向服务小区中的具有基站功能的设备发送的上行数据,从而实现综合终端的信令处理能力和能耗情况,选择出较优的中继路径实现数据的转发。其中,具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
在上述技术方案中,优选地,所述中继寻找信令反馈包括:所述物联网设备至所述任一终端的第一信道质量、所述任一终端至所述具有基站功 能的设备的第二信道质量、所述物联网设备与所述任一终端通信时所使用的预设直连通信时频资源中的至少一项信息;以及所述根据所述至少一个终端中的任一终端发送的所述中继寻找信令反馈,确定是否将所述任一终端作为中继终端,具体包括:根据所述第一信道质量和/或所述第二信道质量计算出与所述任一终端相对应的所述物联网设备至所述具有基站功能的设备的等效信道质量,以根据所述等效信道质量,确定是否将所述任一终端作为所述中继终端。
在该技术方案中,通过该任一终端相对应的第一信道质量和/或第二信道质量可以准确地计算出与该任一终端相对应的物联网设备至具有基站功能的设备的等效信道质量,然后根据该等效信道质量准确确定该任一终端的信令处理能力和能耗情况和该与该任一终端相对应的物联网设备至基站的信道质量,从而进一步准确确定是否将该任一终端作为中继终端,避免误确定,当然,等效信道质量的算法有多种,可以是某些数学统计方法或者曲线拟合函数,也可以简化为取第一信道质量和第二信道质量的加权平均值。
在上述技术方案中,优选地,所述确定是否将所述任一终端作为所述中继终端,具体包括:根据所述等效信道质量确定所述任一终端在所述物联网设备的候选中继终端集中所处的候选优先级;判断所述任一终端的候选优先级是否高于预设候选优先级,在判断结果为是时,确定将所述任一终端作为所述中继终端并确定所述物联网设备的目标中继终端集;否则,确定所述任一终端不是所述中继终端,其中,所述目标中继终端集由所述中继终端组成,所述候选中继终端集由所述至少一个终端组成,且所述中继终端在所述目标中继终端集中所处的候选优先级与所述中继终端在所述候选中继终端集中所处的候选优先级相同。
在该技术方案中,通过根据等效信道质量可以准确确定该任一终端在物联网设备的候选中继终端集中所处的候选优先级,当然,等效信道质量越高,候选优先级也就越高,且若该任一终端的候选优先级高于预设候选优先级,则说明物联网设备至该任一终端和该任一终端至具有基站功能的设备的信道质量均较高,则可以将该任一终端进一步作为当前中继条件较 好的目标中继终端集中的中继终端,以实现综合物联网系统中的每个终端的信令处理能力和能耗情况、每个终端分别与物联网设备和基站的信道质量,为物联网设备选择较优的中继终端,进而为物联网设备选择较优的中继路径,并最终提高数据转发的速率和效率,提高整个物联网设备的系统数据处理速率。
在上述技术方案中,优选地,在向所述中继终端发送所述中继申请信令,若接收到所述中继终端发送的中继申请信令反馈信息,则判断所述中继申请信令反馈信息是否为接收到的至少一个中继申请信令反馈信息中最先接收的中继申请信令反馈信息,并在判断结果为是时,将所述中继终端作为最终的中继终端,以通过所述最终的中继终端转发向所述具有基站功能的设备发送的上行数据;以及在向所述目标中继终端集中的每个中继终端发送所述中继申请信令后,若在预定时间内未接收到所述目标中继终端集中的任一中继终端发送的中继申请信令反馈信息,则重新向所述多个终端发送中继寻找信令,其中,所述中继申请信令包括:所述中继终端的候选优先级和/或所述物联网设备的业务优先级。
在该技术方案中,在向中继终端发送中继申请信令后,若接收中继终端发送的中继申请信令反馈信息,则进一步判断该中继终端发送的中继申请信令反馈信息是否为接收到的至少一个中继申请信令反馈信息中最先接收的中继申请信令反馈信息,若是,则说明该中继终端是目标中继终端集中当前中继条件最优的中继终端,该中继终端对应的转发路径也是物联网设备进行数据转发的最优中继路径,对应的其数据转发的速率和效率也是最高的,因此,可以选择将该中继终端作为最终的中继终端,以实现综合物联网系统中的每个终端的信令处理能力和能耗情况、每个终端分别与物联网设备和基站的信道质量以及物联网设备的业务需求,为物联网设备选择最优的中继终端,进而为物联网设备选择最优的中继路径;反之,若在预定时间内未接收到目标中继终端集中的任一中继终端发送的中继申请信令反馈信息,则说明目标中继终端集的每个中继终端的当前中继条件都不足以为物联网设备提供中继服务,则需要重新向多个终端发送中继寻找信令,以重新申请当前中继条件较好的中继终端完成数据的转发。
在上述技术方案中,优选地,所述中继申请信令包括:发现参考信号、发现参考信号在所述中继寻找信令所占用的时频资源中的时频位置、对所述物联网设备与所述任一终端的通信信息加密时,所使用的加扰序列、所述物联网设备的特征信息中的至少一项信息;以及所述加扰序列包括:所述物联网设备的标识信息和/或所述中继终端的标识信息,所述物联网设备的特征信息包括:转发所述上行数据所需的数据带宽、业务类型、身份信息、地理位置中的至少一项信息。
在该技术方案中,通过上述中继申请信令,可以使物联网设备快速申请到最符合业务需求和中继条件最优的终端作为中继终端,以快速完成数据转发,其中,发现参考信号在所述中继寻找信令所占用的时频资源中的时频位置可以是预先定义的有限集合,从而使得不需要eNB的参与,且UE可以通过盲检测来接收对端物联网设备的发现参考信号,且物联网设备发送中继寻找信令所使用的频谱可以是预规划的某些频谱,例如,可以在系统预规划的D2D(Device to Device,终端直连通信)频谱上进行通信,在这种情况下,不需要eNB来进行频谱资源配置,物联网设备的标识信息可以为IPV6地址、C-RNTI等。
图2示出了根据本发明的另一个实施例的物联网中的数据传输方法的流程示意图。
如图2所示,根据本发明的另一个实施例的物联网中的数据传输方法,包括:步骤202,在接收到多个物联网设备发送的中继寻找信令时,根据所述终端的当前中继条件,判断是否响应所述多个物联网设备中的任一物联网设备发送的中继寻找信令;步骤204,在判断结果为是时,向所述任一物联网设备发送中继寻找信令反馈,以使所述任一物联网设备确定是否将所述终端作为中继终端,并在确定将所述终端作为中继终端后,向所述终端发送所述中继申请信令;步骤206,在接收到所述物联网中多个所述任一物联网设备发送的中继申请信令时,根据多个所述任一物联网设备中每个所述任一物联网设备的中继申请信令中的优先级信息确定多个所述任一物联网设备中每个所述任一物联网设备的反馈优先级,以使多个所述任一物联网设备中的每个所述任一物联网设备确定是否通过所述终端转发向 所在当前小区中的具有基站功能的设备发送的上行数据,其中,所述中继申请信令反馈信息包括:所述任一物联网设备与所述终端通信时所使用的时频资源和/或加扰序列,且所述中继寻找信令反馈包括:所述物联网设备至所述任一终端的第一信道质量、所述任一终端至所述具有基站功能的设备的第二信道质量、所述物联网设备与所述任一终端通信时所使用的预设直连通信时频资源中的至少一项信息,且所述反馈优先级为向每个所述任一物联网设备发送中继申请信令反馈的优先级。
在该技术方案中,在接收到多个物联网设备发送的中继寻找信令时,可以根据自身的当前中继条件(如终端是否支持为物联网设备转发向所在当前小区中的具有基站功能的设备发送的上行数据、终端是否开启转发上行数据的服务、终端是否空闲、终端的当前时频资源是否高于转发上行数据所需的时频资源、终端支持的最大中继连接数目等)决定是否响应多个物联网设备的中继寻找信令,如果当前中继条件比较理想,则响应,并向任一物联网设备发送中继寻找信令反馈,以使物联网设备确定是否将该终端作为中继终端,如果该终端被物联网设备作为中继终端,就会接收到中继申请信令,且如果中继申请信令为多个时,终端就会自动地根据多个任一物联网设备中每个所述任一物联网设备的中继申请信令中的优先级信息,确定每个任一物联网设备的反馈优先级,以使多个所述任一物联网设备中的每个所述任一物联网设备根据反馈优先级最终准确确定是否通过该终端转发上行数据,从而可以实现在选择中继终端时,能够综合物联网系统中的每个终端的信令处理能力和能耗情况、每个终端分别与物联网设备和基站的信道质量以及物联网设备的数据业务需求,为物联网设备选择最优中继终端,进而为物联网设备选择最优中继路径。
在上述技术方案中,优选地,所述优先级信息包括:所述终端在每个所述任一物联网设备的候选中继终端集中所处的候选优先级和/或每个所述任一物联网设备的业务优先级;以及所述根据多个所述任一物联网设备中每个所述任一物联网设备的中继申请信令中的优先级信息确定多个所述任一物联网设备中每个所述任一物联网设备的反馈优先级,具体包括:每个所述任一物联网设备的反馈优先级与每个所述任一物联网设备的候选优 先级和/或业务优先级成正相关;且若所述终端在多个所述任一物联网设备中的第一物联网设备的目标中继终端集中所处的候选优先级,与所述终端在多个所述任一物联网设备中的第二物联网设备的目标中继终端集中所处的候选优先级相同,和/或所述第一物联网设备的业务优先级与所述第二物联网设备的业务优先级相同,则确定所述第一物联网设备与所述第二物联网设备的反馈优先级相同。
在该技术方案中,每个所述任一物联网设备的反馈优先级与每个所述任一物联网设备的候选优先级和/或业务优先级成正相关,也即每个所述任一物联网设备的候选优先级越高和/或业务优先级越高,每个所述任一物联网设备的反馈优先级也就越高,每个所述任一物联网设备就会越早收到终端发送的中继申请信令反馈,且该任一物联网设备的业务优先级可以基于其QoS(Quality of Service)需求映射到QCI(QoS Class Identifier)表格,其取值范围为1到9的整数。
在上述技术方案中,优选地,在确定向多个所述任一物联网设备发送所述中继申请信令反馈信息的反馈优先级之后,按照每个所述任一物联网设备的所述反馈优先级由高到低的顺序,依次向每个所述任一物联网设备发送中继申请信令反馈信息。
在该技术方案中,在确定向多个所述任一物联网设备发送中继申请信令反馈信息的反馈优先级之后,可以按照反馈优先级由高到低的顺序,依次向每个所述任一物联网设备发送中继申请信令反馈信息,使得反馈优先级越高的任一物联网设备越早接收到终端发送的中继申请信令反馈。
在上述技术方案中,优选地,在依次向每个所述任一物联网设备发送中继申请信令反馈信息之前,还包括:按照所述反馈优先级由高到低的顺序,依次判断所述终端的当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源;若判断所述当前可用时频资源小于第一指定物联网设备的所需时频资源,则不向所述第一指定物联网设备发送所述中继申请信令反馈信息,并按照所述反馈优先级从高到低的顺序,依次判断所述当前可用时频资源是否大于或等于第二指定物联网设备的所需时频资源和/或所述终端当前已发送的所述中继申请信令 反馈信息的总数目是否大于最大中继连接数目;在所述当前可用时频资源大于或等于所述第二指定物联网设备的所需时频资源和/或所述中继申请信令反馈信息的总数目小于所述最大中继连接数目时,向所述第二指定物联网设备发送所述中继申请信令反馈信息,否则,不向所述第二指定物联网设备发送所述中继申请信令反馈信息,其中,所述第二指定物联网设备的反馈优先级小于或等于所述第一物联网设备的反馈优先级,其中,所述第一指定物联网设备为多个所述任一物联网设备中的物联网设备。
在该技术方案中,在依次向每个所述任一物联网设备发送中继申请信令反馈信息之前,可以按照反馈优先级由高到低的顺序,依次判断终端的当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源,若当前可用时频资源小于第一指定物联网设备的所需时频资源,则说明该终端当前的可用时频资源不足以为该第一指定物联网设备提供中继服务,则可以进一步按照反馈优先级从高到低的顺序,依次判断当前可用时频资源是否大于或等于反馈优先级较低的第二指定物联网设备的所需时频资源和/或终端已发送的中继申请信令反馈信息的总数目是否小于或等于最大中继连接数目,若当前可用时频资源大于或等于反馈优先级较低的第二指定物联网设备的所需时频资源和/或终端已发送的中继申请信令反馈信息的总数目小于或等于最大中继连接数目,则说明终端的当前中继条件良好,中继资源充足,中继能力还未达到上限,中继能力仍然有余,足以为反馈优先级较低的第二指定物联网设备提供中继服务,否则,则说明终端的当前中继条件比较差,中继能力不足以为反馈优先级较低的第二指定物联网设备提供中继服务,则不向第二指定物联网设备发送所述中继申请信令反馈信息。
在上述技术方案中,优选地,在依次判断所述终端的当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源之前,还包括:从所述具有基站功能的设备的广播信息中获取系统信息块,判断是否产生触发信号,若判断结果为是,触发所述终端开始依次判断所述终端的当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源,否则,不产生所述触发信 号,其中,所述系统信息块包括:所述广播信息中与同步时钟相关的系统信息块和/或预定义的优先级处理系统信息块。
在该技术方案中,在获取到系统信息块后,判断是否存在同步时间消息,若存在,则产生触发信号,则在同一时间同步触发物联网中的每个终端同时判断当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源,且同步时间消息可以eNB广播中与同步时钟有关的SIB消息,例如:可以是用于控制UE处在上行时钟同步的timeAlignmentTimerCommon,也可以是专门预定义的新SIB消息类型中与同步时钟有关的SIB消息即优先级处理系统信息块。
在上述技术方案中,优选地,所述当前中继条件包括:所述终端是否支持为所述任一物联网设备转发向所在当前小区中的具有基站功能的设备发送的上行数据、所述终端是否开启转发所述上行数据的服务、所述终端是否空闲、所述终端的电量是否高于预设电量、所述终端的当前时频资源是否高于转发所述上行数据所需的时频资源、所述终端支持的最大中继连接数目、所述任一物联网设备至所述终端的第一信道质量、所述终端至所述具有基站功能的设备的第二信道质量、所述终端的移动性中的至少一个条件。
在该技术方案中,通过上述当前中继条件,可以使终端准确判断是否响应物联网设备的中继寻找信令,进而为物联网设备综合终端的中继能力等当前中继条件筛选出中继条件和中继路径较好的终端作为中继终端提供了必要的前提条件。
在上述技术方案中,优选地,根据接收到的收发指令,通过所述物联网的物理层、无线资源控制协议层或非接入层发送或接收所述中继寻找信令、所述中继寻找信令反馈、所述中继申请信令或所述中继申请信令反馈信息。
在该技术方案中,中继寻找信令、中继寻找信令反馈、中继申请信令或中继申请信令反馈信息均可以通过物联网的物理层、无线资源控制协议(RRC,Radio Resource Control)层或非接入(NAS,non-access stratum)层进行收发。
在上述技术方案中,优选地,在接收到所述任一物联网设备发送的所述上行数据时,将所述上行数据的功率放大后发送至所述具有基站功能的设备;和/或根据所述终端至所述具有基站功能的设备的第二信道质量确定是否对所述上行数据进行再次调制,以将再次调制后的目标上行数据发送至所述具有基站功能的设备。
在该技术方案中,任一物联网设备将该终端作为最终的中继终端后,该终端转发任一物联网设备的上行数据的方式有多种,包括但不限于将上行数据的进行功率放大后发送至具有基站功能的设备和根据终端至具有基站功能的设备的第二信道质量确定是否对上行数据进行再次调制的发送方式,无论哪种发送方式,其目的均在于防止上行数据在发送过程中功率损耗过多,而使基站无法100%接收到该任一物联网设备发送的上行数据或无法确保接收到的上行数据不失真,从而确保接收到的上行数据为高保真的上行数据。
在上述技术方案中,优选地,在根据所述第二信道质量确定需对所述上行数据进行再次调制后,根据来自所述任一物联网设备的解调和调制信息,对所述上行数据进行调制,并将调制后的所述目标上行数据发送至所述具有基站功能的设备。
在该技术方案中,若确定需要对上行数据进行再次接收,则需要根据任一物联网设备的解调和调制信息,才能完成对上行数据进行调制,从而确保具有基站功能的设备接收到的上行数据为高保真的上行数据。
图3示出了根据本发明的又一个实施例的物联网中的数据传输方法的流程示意图。
如图3所示,根据本发明的又一个实施例的物联网中的数据传输方法,包括:
步骤302,Device(物联网设备)发送中继寻找信令,寻找潜在UE Relay(中继终端)集合;
步骤304,潜在UE Relay发送中继寻找反馈信令:UE根据自身条件决策是否成为该Device的UE Relay并发送反馈;
步骤306,Device接收反馈,从潜在UE Relay集合进一步确定候选UE Relay集合(候选中继终端集),并根据每个候选中继终端返回的中继寻找信令反馈,确定目标中继终端集;
步骤308,Device向目标中继终端集中的每个目标中继终端发送中继申请信令:Device请求目标UE Relay辅助其转发数据;
步骤310,目标UE Relay发送中继申请反馈信令:目标UE Relay从基站广播的系统信息中读出时间同步信息,并在基站给定的时刻上同步触发所有Device的申请,并按照优先级顺序给出反馈;
步骤312,Device选择最先收到反馈对应的UE Relay作为其优化路径,将上行数据通过该UE Relay转发,否则T时段后重新发起寻找流程
图4示出了根据本发明的一个实施例的物联网中的数据传输系统的结构示意图。
如图4所示,根据本发明的一个实施例的物联网中的数据传输系统400,包括:判断单元402,判断是否需要发送上行数据和/或接收到当前小区中的具有基站功能的设备的参考信号接收功率是否小于或等于预设接收功率和/或信号强度是否小于或等于预设信号强度;第一发送单元404,在判断结果为是时,向所述当前小区中的多个终端发送中继寻找信令;接收单元406,接收来自至少一个终端发送的中继寻找信令反馈;确定单元408,根据所述至少一个终端中的任一终端发送的所述中继寻找信令反馈,确定是否将所述任一终端作为中继终端;第二发送单元410,在确定将所述任一终端作为中继终端后,向所述中继终端发送中继申请信令,以申请通过所述中继终端转发向所述具有基站功能的设备发送的上行数据,其中,所述多个终端包括所述至少一个终端。
在该技术方案中,当物联网设备需要发送上行数据和/或接收到当前小区中的具有基站功能的设备的参考信号接收功率小于或等于预设接收功率和/或信号强度小于或等于预设信号强度时,说明物联网设备需要申请中继服务,此时,可以向物联网设备所在的服务小区中的多个终端发送中继寻找信令,可以使多个终端根据自身的当前中继条件(如终端是否支持为物联网设备转发向所在当前小区中的具有基站功能的设备发送的上行数据、终端是否开启转发上行数据的服务、终端是否空闲、终端的当前时频资源 是否高于转发上行数据所需的时频资源、终端支持的最大中继连接数目等)决定是否响应物联网设备的中继寻找信令,如果当前中继条件比较理想,则响应,并发送中继寻找信令反馈,以使物联网设备确定是否将发送中继寻找信令反馈的终端作为中继终端,若物联网设备将该终端作为中继终端,则会向该中继终端发送中继申请信令,以申请通过中继能力等中继条件较好的中继终端转发向服务小区中的具有基站功能的设备发送的上行数据,从而实现综合终端的信令处理能力和能耗情况,选择出较优的中继路径实现数据的转发。其中,具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
在上述技术方案中,优选地,所述中继寻找信令反馈包括:所述物联网设备至所述任一终端的第一信道质量、所述任一终端至所述具有基站功能的设备的第二信道质量、所述物联网设备与所述任一终端通信时所使用的预设直连通信时频资源中的至少一项信息;以及所述确定单元408具体用于:根据所述第一信道质量和/或所述第二信道质量计算出与所述任一终端相对应的所述物联网设备至所述具有基站功能的设备的等效信道质量,以根据所述等效信道质量,确定是否将所述任一终端作为所述中继终端。
在该技术方案中,通过该任一终端相对应的第一信道质量和/或第二信道质量可以准确地计算出与该任一终端相对应的物联网设备至具有基站功能的设备的等效信道质量,然后根据该等效信道质量准确确定该任一终端的信令处理能力和能耗情况和该与该任一终端相对应的物联网设备至基站的信道质量,从而进一步准确确定是否将该任一终端作为中继终端,避免误确定,当然,等效信道质量的算法有多种,可以是某些数学统计方法或者曲线拟合函数,也可以简化为取第一信道质量和第二信道质量的加权平均值。
在上述技术方案中,优选地,所述确定单元408还具体用于:根据所述等效信道质量确定所述任一终端在所述物联网设备的候选中继终端集中所处的候选优先级;判断所述任一终端的候选优先级是否高于预设候选优先级,在判断结果为是时,确定将所述任一终端作为所述中继终端并确定所述物联网设备的目标中继终端集;否则,确定所述任一终端不是所述中 继终端,其中,所述目标中继终端集由所述中继终端组成,所述候选中继终端集由所述至少一个终端组成,且所述中继终端在所述目标中继终端集中所处的候选优先级与所述中继终端在所述候选中继终端集中所处的候选优先级相同。
在该技术方案中,通过根据等效信道质量可以准确确定该任一终端在物联网设备的候选中继终端集中所处的候选优先级,当然,等效信道质量越高,候选优先级也就越高,且若该任一终端的候选优先级高于预设候选优先级,则说明物联网设备至该任一终端和该任一终端至具有基站功能的设备的信道质量均较高,则可以将该任一终端进一步作为当前中继条件较好的目标中继终端集中的中继终端,以实现综合物联网系统中的每个终端的信令处理能力和能耗情况、每个终端分别与物联网设备和基站的信道质量,为物联网设备选择较优的中继终端,进而为物联网设备选择较优的中继路径,并最终提高数据转发的速率和效率,提高整个物联网设备的系统数据处理速率。
在上述技术方案中,优选地,所述判断单元402还用于:所述第二发送单元410在向所述中继终端发送所述中继申请信令,若接收到所述中继终端发送的中继申请信令反馈信息,则判断所述中继申请信令反馈信息是否为接收到的至少一个中继申请信令反馈信息中最先接收的中继申请信令反馈信息,并在判断结果为是时,将所述中继终端作为最终的中继终端,以通过所述最终的中继终端转发向所述具有基站功能的设备发送的上行数据;以及所述第一发送单元404还用于,在向所述目标中继终端集中的每个中继终端发送所述中继申请信令后,若在预定时间内未接收到所述目标中继终端集中的任一中继终端发送的中继申请信令反馈信息,则重新向所述多个终端发送中继寻找信令,其中,所述中继申请信令包括:所述中继终端的候选优先级和/或所述物联网设备的业务优先级。
在该技术方案中,在向中继终端发送中继申请信令后,若接收中继终端发送的中继申请信令反馈信息,则进一步判断该中继终端发送的中继申请信令反馈信息是否为接收到的至少一个中继申请信令反馈信息中最先接收的中继申请信令反馈信息,若是,则说明该中继终端是目标中继终端集 中当前中继条件最优的中继终端,该中继终端对应的转发路径也是物联网设备进行数据转发的最优中继路径,对应的其数据转发的速率和效率也是最高的,因此,可以选择将该中继终端作为最终的中继终端,以实现综合物联网系统中的每个终端的信令处理能力和能耗情况、每个终端分别与物联网设备和基站的信道质量以及物联网设备的业务需求,为物联网设备选择最优的中继终端,进而为物联网设备选择最优的中继路径;反之,若在预定时间内未接收到目标中继终端集中的任一中继终端发送的中继申请信令反馈信息,则说明目标中继终端集的每个中继终端的当前中继条件都不足以为物联网设备提供中继服务,则需要重新向多个终端发送中继寻找信令,以重新申请当前中继条件较好的中继终端完成数据的转发。
图5示出了根据本发明的一个实施例的物联网设备的结构示意图。
如图5所示,根据本发明的一个实施例的物联网设备500,包括:上述技术方案中的任一项物联网中的数据传输系统400。
在该技术方案中,通过在物联网设备500上设置物联网中的数据传输系统400,可以实现在选择中继终端时,能够综合物联网系统500中的每个终端的信令处理能力和能耗情况、每个终端分别与物联网设备和基站的信道质量以及物联网设备的数据业务需求,为物联网设备选择最优中继终端,进而为物联网设备选择最优中继路径。
图6示出了根据本发明的另一个实施例的物联网中的数据传输系统的结构示意图。
如图6所示,根据本发明的另一个实施例的物联网中的数据传输系统600,包括:判断单元602,在接收到多个物联网设备发送的中继寻找信令时,根据所述终端的当前中继条件,判断是否响应所述多个物联网设备中的任一物联网设备发送的中继寻找信令;发送单元604,在判断结果为是时,向所述任一物联网设备发送中继寻找信令反馈,以使所述任一物联网设备确定是否将所述终端作为中继终端,并在确定将所述终端作为中继终端后,向所述终端发送所述中继申请信令;确定单元606,在接收到所述物联网中多个所述任一物联网设备发送的中继申请信令时,根据多个所述任一物联网设备中每个所述任一物联网设备的中继申请信令中的优先级信 息确定多个所述任一物联网设备中每个所述任一物联网设备的反馈优先级,以使多个所述任一物联网设备中的每个所述任一物联网设备确定是否通过所述终端转发向所在当前小区中的具有基站功能的设备发送的上行数据,其中,所述中继申请信令反馈信息包括:所述任一物联网设备与所述终端通信时所使用的时频资源和/或加扰序列,且所述中继寻找信令反馈包括:所述物联网设备至所述任一终端的第一信道质量、所述任一终端至所述具有基站功能的设备的第二信道质量、所述物联网设备与所述任一终端通信时所使用的预设直连通信时频资源中的至少一项信息,且所述反馈优先级为向每个所述任一物联网设备发送中继申请信令反馈的优先级。
在该技术方案中,在接收到多个物联网设备发送的中继寻找信令时,可以根据自身的当前中继条件(如终端是否支持为物联网设备转发向所在当前小区中的具有基站功能的设备发送的上行数据、终端是否开启转发上行数据的服务、终端是否空闲、终端的当前时频资源是否高于转发上行数据所需的时频资源、终端支持的最大中继连接数目等)决定是否响应多个物联网设备的中继寻找信令,如果当前中继条件比较理想,则响应,并向任一物联网设备发送中继寻找信令反馈,以使物联网设备确定是否将该终端作为中继终端,如果该终端被物联网设备作为中继终端,就会接收到中继申请信令,且如果中继申请信令为多个时,终端就会自动地根据多个任一物联网设备中每个所述任一物联网设备的中继申请信令中的优先级信息,确定每个任一物联网设备的反馈优先级,以使多个所述任一物联网设备中的每个所述任一物联网设备根据反馈优先级最终准确确定是否通过该终端转发上行数据,从而可以实现在选择中继终端时,能够综合物联网系统中的每个终端的信令处理能力和能耗情况、每个终端分别与物联网设备和基站的信道质量以及物联网设备的数据业务需求,为物联网设备选择最优中继终端,进而为物联网设备选择最优中继路径。
在上述技术方案中,优选地,所述优先级信息包括:所述终端在每个所述任一物联网设备的候选中继终端集中所处的候选优先级和/或每个所述任一物联网设备的业务优先级;以及所述确定单元606具体用于:每个所述任一物联网设备的反馈优先级与每个所述任一物联网设备的候选优先 级和/或业务优先级成正相关;且若所述终端在多个所述任一物联网设备中的第一物联网设备的目标中继终端集中所处的候选优先级,与所述终端在多个所述任一物联网设备中的第二物联网设备的目标中继终端集中所处的候选优先级相同,和/或所述第一物联网设备的业务优先级与所述第二物联网设备的业务优先级相同,则确定所述第一物联网设备与所述第二物联网设备的反馈优先级相同。
在该技术方案中,每个所述任一物联网设备的反馈优先级与每个所述任一物联网设备的候选优先级和/或业务优先级成正相关,也即每个所述任一物联网设备的候选优先级越高和/或业务优先级越高,每个所述任一物联网设备的反馈优先级也就越高,每个所述任一物联网设备就会越早收到终端发送的中继申请信令反馈,且该任一物联网设备的业务优先级可以基于其QoS(Quality of Service)需求映射到QCI(QoS Class Identifier)表格,其取值范围为1到9的整数。
在上述技术方案中,优选地,所述发送单元604还用于:在确定向多个所述任一物联网设备发送所述中继申请信令反馈信息的反馈优先级之后,按照每个所述任一物联网设备的所述反馈优先级由高到低的顺序,依次向每个所述任一物联网设备发送中继申请信令反馈信息。
在该技术方案中,在确定向多个所述任一物联网设备发送中继申请信令反馈信息的反馈优先级之后,可以按照反馈优先级由高到低的顺序,依次向每个所述任一物联网设备发送中继申请信令反馈信息,使得反馈优先级越高的任一物联网设备越早接收到终端发送的中继申请信令反馈。
在上述技术方案中,优选地,所述判断单元602还用于:在依次向每个所述任一物联网设备发送中继申请信令反馈信息之前,按照所述反馈优先级由高到低的顺序,依次判断所述终端的当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源;以及所述数据传输系统还包括:处理单元608,若判断所述当前可用时频资源小于第一指定物联网设备的所需时频资源,则不向所述第一指定物联网设备发送所述中继申请信令反馈信息,并按照所述反馈优先级从高到低的顺序,依次判断所述当前可用时频资源是否大于或等于第二指定物联网设 备的所需时频资源和/或所述终端当前已发送的所述中继申请信令反馈信息的总数目是否大于最大中继连接数目;所述发送单元604还用于:在所述当前可用时频资源大于或等于所述第二指定物联网设备的所需时频资源和/或所述中继申请信令反馈信息的总数目小于所述最大中继连接数目时,向所述第二指定物联网设备发送所述中继申请信令反馈信息,否则,不向所述第二指定物联网设备发送所述中继申请信令反馈信息,其中,所述第二指定物联网设备的反馈优先级小于或等于所述第一物联网设备的反馈优先级,其中,所述第一指定物联网设备为多个所述任一物联网设备中的物联网设备。
在该技术方案中,在依次向每个所述任一物联网设备发送中继申请信令反馈信息之前,可以按照反馈优先级由高到低的顺序,依次判断终端的当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源,若当前可用时频资源小于第一指定物联网设备的所需时频资源,则说明该终端当前的可用时频资源不足以为该第一指定物联网设备提供中继服务,则可以进一步按照反馈优先级从高到低的顺序,依次判断当前可用时频资源是否大于或等于反馈优先级较低的第二指定物联网设备的所需时频资源和/或终端已发送的中继申请信令反馈信息的总数目是否小于或等于最大中继连接数目,若当前可用时频资源大于或等于反馈优先级较低的第二指定物联网设备的所需时频资源和/或终端已发送的中继申请信令反馈信息的总数目小于或等于最大中继连接数目,则说明终端的当前中继条件良好,中继资源充足,中继能力还未达到上限,中继能力仍然有余,足以为反馈优先级较低的第二指定物联网设备提供中继服务,否则,则说明终端的当前中继条件比较差,中继能力不足以为反馈优先级较低的第二指定物联网设备提供中继服务,则不向第二指定物联网设备发送所述中继申请信令反馈信息。
在上述技术方案中,优选地,所述判断单元602还用于:在依次判断所述终端的当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源之前,从所述具有基站功能的设备的广播信息中获取系统信息块,判断是否产生触发信号,若判断结果为是, 则触发所述终端开始依次判断所述终端的当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源,否则,不产生所述触发信号,其中,所述系统信息块包括:所述广播信息中与同步时钟相关的系统信息块和/或预定义的优先级处理系统信息块。
在该技术方案中,在获取到系统信息块后,判断是否存在同步时间消息,若存在,则产生触发信号,则在同一时间同步触发物联网中的每个终端同时判断当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源,且同步时间消息可以eNB广播中与同步时钟有关的SIB消息,例如:可以是用于控制UE处在上行时钟同步的timeAlignmentTimerCommon,也可以是专门预定义的新SIB消息类型中与同步时钟有关的SIB消息即优先级处理系统信息块。
在上述技术方案中,优选地,所述当前中继条件包括:所述终端是否支持为所述任一物联网设备转发向所在当前小区中的具有基站功能的设备发送的上行数据、所述终端是否开启转发所述上行数据的服务、所述终端是否空闲、所述终端的电量是否高于预设电量、所述终端的当前时频资源是否高于转发所述上行数据所需的时频资源、所述终端支持的最大中继连接数目、所述任一物联网设备至所述终端的第一信道质量、所述终端至所述具有基站功能的设备的第二信道质量、所述终端的移动性中的至少一个条件。
在该技术方案中,通过上述当前中继条件,可以使终端准确判断是否响应物联网设备的中继寻找信令,进而为物联网设备综合终端的中继能力等当前中继条件筛选出中继条件和中继路径较好的终端作为中继终端提供了必要的前提条件。
在上述技术方案中,优选地,还包括:收发单元610,根据接收到的收发指令,通过所述物联网的物理层、无线资源控制协议层或非接入层发送或接收所述中继寻找信令、所述中继寻找信令反馈、所述中继申请信令或所述中继申请信令反馈信息。
在该技术方案中,中继寻找信令、中继寻找信令反馈、中继申请信令或中继申请信令反馈信息均可以通过物联网的物理层、无线资源控制协议 (RRC,Radio Resource Control)层或非接入(NAS,non-access stratum)层进行收发。
在上述技术方案中,优选地,所述发送单元604还用于:在接收到所述任一物联网设备发送的所述上行数据时,将所述上行数据的功率放大后发送至所述具有基站功能的设备;和/或根据所述终端至所述具有基站功能的设备的第二信道质量确定是否对所述上行数据进行再次调制,以将再次调制后的目标上行数据发送至所述具有基站功能的设备。
在该技术方案中,任一物联网设备将该终端作为最终的中继终端后,该终端转发任一物联网设备的上行数据的方式有多种,包括但不限于将上行数据的进行功率放大后发送至具有基站功能的设备和根据终端至具有基站功能的设备的第二信道质量确定是否对上行数据进行再次调制的发送方式,无论哪种发送方式,其目的均在于防止上行数据在发送过程中功率损耗过多,而使基站无法100%接收到该任一物联网设备发送的上行数据或无法确保接收到的上行数据不失真,从而确保接收到的上行数据为高保真的上行数据。
在上述技术方案中,优选地,调制单元612,在根据所述第二信道质量确定需对所述上行数据进行再次调制后,根据来自所述任一物联网设备的解调和调制信息,对所述上行数据进行调制,并将调制后的所述目标上行数据发送至所述具有基站功能的设备。
在该技术方案中,若确定需要对上行数据进行再次接收,则需要根据任一物联网设备的解调和调制信息,才能完成对上行数据进行调制,从而确保具有基站功能的设备接收到的上行数据为高保真的上行数据。
图7示出了根据本发明的一个实施例的终端的结构示意图。
如图7所示,根据本发明的一个实施例的终端700,包括:如上述技术方案中任一项所述的物联网中的数据传输系统600。
在该技术方案中,通过在终端700中设置物联网中的数据传输系统600,可以实现在选择中继终端时,能够综合物联网系统中的每个终端的信令处理能力和能耗情况、每个终端分别与物联网设备和基站的信道质量以及物联网设备的数据业务需求,为物联网设备选择最优中继终端,进而为 物联网设备选择最优中继路径。
图8示出了根据本发明的一个实施例的物联网系统的结构示意图。
如图8所示,根据本发明的一个实施例的物联网系统800,包括:具有基站功能的设备802;如上述技术方案中的所述的物联网设备500;和如上述技术方案中的所述的终端700。
在该技术方案中,通过由具有基站功能的设备802、物联网设备500和终端700组成的物联网系统800,可以实现在选择中继终端时,能够综合物联网系统中的每个终端的信令处理能力和能耗情况、每个终端分别与物联网设备和基站的信道质量以及物联网设备的数据业务需求,为物联网设备选择最优中继终端,进而为物联网设备选择最优中继路径。
在上述技术方案中,优选地,所述物联网系统包括基于LTE网络的物联网系统。
在该技术方案中,物联网系统包括但不限于基于LTE网络的物联网系统,也可以是基于3G网络的物联网系统,或虽然技术的进步可以是基于5G等网络的物联网系统。
图9示出了根据本发明的一个实施例的物联网中的数据传输系统的原理示意图。
如图9所示,物联网设备Device 1、Device 2的候选中继集合均为{UERelay 1,UE Relay 2,UE Relay 3},然后,综合物联网设备中的每个候选中继终端的信令处理能力和能耗情况、每个候选中继终端分别与物联网设备Device 1、Device 2的第一信道质量和与基站的第二信道质量以及物联网设备Device 1、Device 2的数据业务需求,可以为物联网设备Device 1、Device 2选择最优中继终端,进而为物联网设备Device 1、Device 2选择最优中继路径,即物联网设备Device 1应该选择UE Relay 1作为最终的中继终端以与基站通信,物联网设备Device 2应该选择UE Relay 2作为最终的中继终端以与基站通信。
以上结合附图详细说明了本发明的技术方案,可以实现在选择中继终端时,能够综合物联网系统中的每个终端的信令处理能力和能耗情况、每个终端分别与物联网设备和基站的信道质量以及物联网设备的数据业务需 求,为物联网设备选择最优中继终端,进而为物联网设备选择最优中继路径。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (30)

  1. 一种物联网中的数据传输方法,用于所述物联网中的物联网设备,其特征在于,包括:
    判断是否需要发送上行数据和/或接收到当前小区中的具有基站功能的设备的参考信号接收功率是否小于或等于预设接收功率和/或信号强度是否小于或等于预设信号强度;
    在判断结果为是时,向所述当前小区中的多个终端发送中继寻找信令;
    接收来自至少一个终端发送的中继寻找信令反馈;
    根据所述至少一个终端中的任一终端发送的所述中继寻找信令反馈,确定是否将所述任一终端作为中继终端;
    在确定将所述任一终端作为中继终端后,向所述中继终端发送中继申请信令,以申请通过所述中继终端转发向所述具有基站功能的设备发送的上行数据,其中,所述多个终端包括所述至少一个终端。
  2. 根据权利要求1所述的物联网中的数据传输方法,其特征在于,
    所述中继寻找信令反馈包括:所述物联网设备至所述任一终端的第一信道质量、所述任一终端至所述具有基站功能的设备的第二信道质量、所述物联网设备与所述任一终端通信时所使用的预设直连通信时频资源中的至少一项信息;以及
    所述根据所述至少一个终端中的任一终端发送的所述中继寻找信令反馈,确定是否将所述任一终端作为中继终端,具体包括:
    根据所述第一信道质量和/或所述第二信道质量计算出与所述任一终端相对应的所述物联网设备至所述具有基站功能的设备的等效信道质量,以根据所述等效信道质量,确定是否将所述任一终端作为所述中继终端。
  3. 根据权利要求2所述的物联网中的数据传输方法,其特征在于,
    所述确定是否将所述任一终端作为所述中继终端,具体包括:
    根据所述等效信道质量确定所述任一终端在所述物联网设备的候选中继终端集中所处的候选优先级;
    判断所述任一终端的候选优先级是否高于预设候选优先级,在判断结 果为是时,确定将所述任一终端作为所述中继终端并确定所述物联网设备的目标中继终端集;否则,确定所述任一终端不是所述中继终端,其中,所述目标中继终端集由所述中继终端组成,所述候选中继终端集由所述至少一个终端组成,且所述中继终端在所述目标中继终端集中所处的候选优先级与所述中继终端在所述候选中继终端集中所处的候选优先级相同。
  4. 根据权利要求3所述的物联网中的数据传输方法,其特征在于,
    在向所述中继终端发送所述中继申请信令,若接收到所述中继终端发送的中继申请信令反馈信息,则判断所述中继申请信令反馈信息是否为接收到的至少一个中继申请信令反馈信息中最先接收的中继申请信令反馈信息,并在判断结果为是时,将所述中继终端作为最终的中继终端,以通过所述最终的中继终端转发向所述具有基站功能的设备发送的上行数据;以及
    在向所述目标中继终端集中的每个中继终端发送所述中继申请信令后,若在预定时间内未接收到所述目标中继终端集中的任一中继终端发送的中继申请信令反馈信息,则重新向所述多个终端发送中继寻找信令,其中,所述中继申请信令包括:所述中继终端的候选优先级和/或所述物联网设备的业务优先级。
  5. 根据权利要求1至4中任一项所述的物联网中的数据传输方法,其特征在于,
    所述中继申请信令包括:发现参考信号、发现参考信号在所述中继寻找信令所占用的时频资源中的时频位置、对所述物联网设备与所述任一终端的通信信息加密时,所使用的加扰序列、所述物联网设备的特征信息中的至少一项信息;以及所述加扰序列包括:所述物联网设备的标识信息和/或所述中继终端的标识信息,所述物联网设备的特征信息包括:转发所述上行数据所需的数据带宽、业务类型、身份信息、地理位置中的至少一项信息。
  6. 一种物联网中的数据传输系统,用于所述物联网中的物联网设备,其特征在于,包括:
    判断单元,判断是否需要发送上行数据和/或接收到当前小区中的具有 基站功能的设备的参考信号接收功率是否小于或等于预设接收功率和/或信号强度是否小于或等于预设信号强度;
    第一发送单元,在判断结果为是时,向所述当前小区中的多个终端发送中继寻找信令;
    接收单元,接收来自至少一个终端发送的中继寻找信令反馈;
    确定单元,根据所述至少一个终端中的任一终端发送的所述中继寻找信令反馈,确定是否将所述任一终端作为中继终端;
    第二发送单元,在确定将所述任一终端作为中继终端后,向所述中继终端发送中继申请信令,以申请通过所述中继终端转发向所述具有基站功能的设备发送的上行数据,其中,所述多个终端包括所述至少一个终端。
  7. 根据权利要求6所述的物联网中的数据传输系统,其特征在于,
    所述中继寻找信令反馈包括:所述物联网设备至所述任一终端的第一信道质量、所述任一终端至所述具有基站功能的设备的第二信道质量、所述物联网设备与所述任一终端通信时所使用的预设直连通信时频资源中的至少一项信息;以及
    所述确定单元具体用于:
    根据所述第一信道质量和/或所述第二信道质量计算出与所述任一终端相对应的所述物联网设备至所述具有基站功能的设备的等效信道质量,以根据所述等效信道质量,确定是否将所述任一终端作为所述中继终端。
  8. 根据权利要求7所述的物联网中的数据传输系统,其特征在于,
    所述确定单元还具体用于:
    根据所述等效信道质量确定所述任一终端在所述物联网设备的候选中继终端集中所处的候选优先级;
    判断所述任一终端的候选优先级是否高于预设候选优先级,在判断结果为是时,确定将所述任一终端作为所述中继终端并确定所述物联网设备的目标中继终端集;否则,确定所述任一终端不是所述中继终端,其中,所述目标中继终端集由所述中继终端组成,所述候选中继终端集由所述至少一个终端组成,且所述中继终端在所述目标中继终端集中所处的候选优先级与所述中继终端在所述候选中继终端集中所处的候选优先级相同。
  9. 根据权利要求8所述的物联网中的数据传输系统,其特征在于,所述判断单元还用于:
    所述第二发送单元在向所述中继终端发送所述中继申请信令,若接收到所述中继终端发送的中继申请信令反馈信息,则判断所述中继申请信令反馈信息是否为接收到的至少一个中继申请信令反馈信息中最先接收的中继申请信令反馈信息,并在判断结果为是时,将所述中继终端作为最终的中继终端,以通过所述最终的中继终端转发向所述具有基站功能的设备发送的上行数据;以及
    所述第一发送单元还用于,在向所述目标中继终端集中的每个中继终端发送所述中继申请信令后,若在预定时间内未接收到所述目标中继终端集中的任一中继终端发送的中继申请信令反馈信息,则重新向所述多个终端发送中继寻找信令,其中,所述中继申请信令包括:所述中继终端的候选优先级和/或所述物联网设备的业务优先级。
  10. 一种物联网设备,其特征在于,包括:如权利要求6至9中任一项所述的物联网中的数据传输系统。
  11. 一种物联网中的数据传输方法,用于所述物联网中的终端,其特征在于,包括:
    在接收到多个物联网设备发送的中继寻找信令时,根据所述终端的当前中继条件,判断是否响应所述多个物联网设备中的任一物联网设备发送的中继寻找信令;
    在判断结果为是时,向所述任一物联网设备发送中继寻找信令反馈,以使所述任一物联网设备确定是否将所述终端作为中继终端,并在确定将所述终端作为中继终端后,向所述终端发送所述中继申请信令;
    在接收到所述物联网中多个所述任一物联网设备发送的中继申请信令时,根据多个所述任一物联网设备中每个所述任一物联网设备的中继申请信令中的优先级信息确定多个所述任一物联网设备中每个所述任一物联网设备的反馈优先级,以使多个所述任一物联网设备中的每个所述任一物联网设备确定是否通过所述终端转发向所在当前小区中的具有基站功能的设备发送的上行数据,其中,所述中继申请信令反馈信息包括:所述任一物 联网设备与所述终端通信时所使用的时频资源和/或加扰序列,且所述中继寻找信令反馈包括:所述物联网设备至所述任一终端的第一信道质量、所述任一终端至所述具有基站功能的设备的第二信道质量、所述物联网设备与所述任一终端通信时所使用的预设直连通信时频资源中的至少一项信息,且所述反馈优先级为向每个所述任一物联网设备发送中继申请信令反馈的优先级。
  12. 根据权利要求11所述的物联网中的数据传输方法,其特征在于,
    所述优先级信息包括:所述终端在每个所述任一物联网设备的候选中继终端集中所处的候选优先级和/或每个所述任一物联网设备的业务优先级;以及
    所述根据多个所述任一物联网设备中每个所述任一物联网设备的中继申请信令中的优先级信息确定多个所述任一物联网设备中每个所述任一物联网设备的反馈优先级,具体包括:
    每个所述任一物联网设备的反馈优先级与每个所述任一物联网设备的候选优先级和/或业务优先级成正相关;且
    若所述终端在多个所述任一物联网设备中的第一物联网设备的目标中继终端集中所处的候选优先级,与所述终端在多个所述任一物联网设备中的第二物联网设备的目标中继终端集中所处的候选优先级相同,和/或所述第一物联网设备的业务优先级与所述第二物联网设备的业务优先级相同,则确定所述第一物联网设备与所述第二物联网设备的反馈优先级相同。
  13. 根据权利要求11所述的物联网中的数据传输方法,其特征在于,
    在确定向多个所述任一物联网设备发送所述中继申请信令反馈信息的反馈优先级之后,按照每个所述任一物联网设备的所述反馈优先级由高到低的顺序,依次向每个所述任一物联网设备发送中继申请信令反馈信息。
  14. 根据权利要求13所述的物联网中的数据传输方法,其特征在于,
    在依次向每个所述任一物联网设备发送中继申请信令反馈信息之前,还包括:
    按照所述反馈优先级由高到低的顺序,依次判断所述终端的当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备 的所需时频资源;
    若判断所述当前可用时频资源小于第一指定物联网设备的所需时频资源,则不向所述第一指定物联网设备发送所述中继申请信令反馈信息,并按照所述反馈优先级从高到低的顺序,依次判断所述当前可用时频资源是否大于或等于第二指定物联网设备的所需时频资源和/或所述终端当前已发送的所述中继申请信令反馈信息的总数目是否大于最大中继连接数目;
    在所述当前可用时频资源大于或等于所述第二指定物联网设备的所需时频资源和/或所述中继申请信令反馈信息的总数目小于所述最大中继连接数目时,向所述第二指定物联网设备发送所述中继申请信令反馈信息,否则,不向所述第二指定物联网设备发送所述中继申请信令反馈信息,其中,所述第二指定物联网设备的反馈优先级小于或等于所述第一物联网设备的反馈优先级,其中,所述第一指定物联网设备为多个所述任一物联网设备中的物联网设备。
  15. 根据权利要求14所述的物联网中的数据传输方法,其特征在于,
    在依次判断所述终端的当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源之前,还包括:
    从所述具有基站功能的设备的广播信息中获取系统信息块,判断是否产生触发信号,若判断结果为是,触发所述终端开始依次判断所述终端的当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源,否则,不产生所述触发信号,其中,所述系统信息块包括:所述广播信息中与同步时钟相关的系统信息块和/或预定义的优先级处理系统信息块。
  16. 根据权利要求11至15中任一项所述的物联网中的数据传输方法,其特征在于,
    所述当前中继条件包括:所述终端是否支持为所述任一物联网设备转发向所在当前小区中的具有基站功能的设备发送的上行数据、所述终端是否开启转发所述上行数据的服务、所述终端是否空闲、所述终端的电量是否高于预设电量、所述终端的当前时频资源是否高于转发所述上行数据所需的时频资源、所述终端支持的最大中继连接数目、所述任一物联网设备 至所述终端的第一信道质量、所述终端至所述具有基站功能的设备的第二信道质量、所述终端的移动性中的至少一个条件。
  17. 根据权利要求11至15中任一项所述的物联网中的数据传输方法,其特征在于,
    根据接收到的收发指令,通过所述物联网的物理层、无线资源控制协议层或非接入层发送或接收所述中继寻找信令、所述中继寻找信令反馈、所述中继申请信令或所述中继申请信令反馈信息。
  18. 根据权利要求11至15中任一项所述的物联网中的数据传输方法,其特征在于,
    在接收到所述任一物联网设备发送的所述上行数据时,将所述上行数据的功率放大后发送至所述具有基站功能的设备;和/或根据所述终端至所述具有基站功能的设备的第二信道质量确定是否对所述上行数据进行再次调制,以将再次调制后的目标上行数据发送至所述具有基站功能的设备。
  19. 根据权利要求18所述的物联网中的数据传输方法,其特征在于,
    在根据所述第二信道质量确定需对所述上行数据进行再次调制后,根据来自所述任一物联网设备的解调和调制信息,对所述上行数据进行调制,并将调制后的所述目标上行数据发送至所述具有基站功能的设备。
  20. 一种物联网中的数据传输系统,用于所述物联网中的终端,其特征在于,包括:
    判断单元,在接收到多个物联网设备发送的中继寻找信令时,根据所述终端的当前中继条件,判断是否响应所述多个物联网设备中的任一物联网设备发送的中继寻找信令;
    发送单元,在判断结果为是时,向所述任一物联网设备发送中继寻找信令反馈,以使所述任一物联网设备确定是否将所述终端作为中继终端,并在确定将所述终端作为中继终端后,向所述终端发送所述中继申请信令;
    确定单元,在接收到所述物联网中多个所述任一物联网设备发送的中继申请信令时,根据多个所述任一物联网设备中每个所述任一物联网设备的中继申请信令中的优先级信息确定多个所述任一物联网设备中每个所述任一物联网设备的反馈优先级,以使多个所述任一物联网设备中的每个所 述任一物联网设备确定是否通过所述终端转发向所在当前小区中的具有基站功能的设备发送的上行数据,其中,所述中继申请信令反馈信息包括:所述任一物联网设备与所述终端通信时所使用的时频资源和/或加扰序列,且所述中继寻找信令反馈包括:所述物联网设备至所述任一终端的第一信道质量、所述任一终端至所述具有基站功能的设备的第二信道质量、所述物联网设备与所述任一终端通信时所使用的预设直连通信时频资源中的至少一项信息,且所述反馈优先级为向每个所述任一物联网设备发送中继申请信令反馈的优先级。
  21. 根据权利要求20所述的物联网中的数据传输系统,其特征在于,
    所述优先级信息包括:所述终端在每个所述任一物联网设备的候选中继终端集中所处的候选优先级和/或每个所述任一物联网设备的业务优先级;以及
    所述确定单元具体用于:
    每个所述任一物联网设备的反馈优先级与每个所述任一物联网设备的候选优先级和/或业务优先级成正相关;且
    若所述终端在多个所述任一物联网设备中的第一物联网设备的目标中继终端集中所处的候选优先级,与所述终端在多个所述任一物联网设备中的第二物联网设备的目标中继终端集中所处的候选优先级相同,和/或所述第一物联网设备的业务优先级与所述第二物联网设备的业务优先级相同,则确定所述第一物联网设备与所述第二物联网设备的反馈优先级相同。
  22. 根据权利要求20所述的物联网中的数据传输系统,其特征在于,
    所述发送单元还用于:
    在确定向多个所述任一物联网设备发送所述中继申请信令反馈信息的反馈优先级之后,按照每个所述任一物联网设备的所述反馈优先级由高到低的顺序,依次向每个所述任一物联网设备发送中继申请信令反馈信息。
  23. 根据权利要求22所述的物联网中的数据传输系统,其特征在于,
    所述判断单元还用于:在依次向每个所述任一物联网设备发送中继申请信令反馈信息之前,按照所述反馈优先级由高到低的顺序,依次判断所述终端的当前可用时频资源是否小于多个所述任一物联网设备中的每个所 述任一物联网设备的所需时频资源;以及
    所述数据传输系统还包括:
    处理单元,若判断所述当前可用时频资源小于第一指定物联网设备的所需时频资源,则不向所述第一指定物联网设备发送所述中继申请信令反馈信息,并按照所述反馈优先级从高到低的顺序,依次判断所述当前可用时频资源是否大于或等于第二指定物联网设备的所需时频资源和/或所述终端当前已发送的所述中继申请信令反馈信息的总数目是否大于最大中继连接数目;
    所述发送单元还用于:在所述当前可用时频资源大于或等于所述第二指定物联网设备的所需时频资源和/或所述中继申请信令反馈信息的总数目小于所述最大中继连接数目时,向所述第二指定物联网设备发送所述中继申请信令反馈信息,否则,不向所述第二指定物联网设备发送所述中继申请信令反馈信息,其中,所述第二指定物联网设备的反馈优先级小于或等于所述第一物联网设备的反馈优先级,其中,所述第一指定物联网设备为多个所述任一物联网设备中的物联网设备。
  24. 根据权利要求23所述的物联网中的数据传输系统,其特征在于,
    所述判断单元还用于:在依次判断所述终端的当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源之前,从所述具有基站功能的设备的广播信息中获取系统信息块,判断是否产生触发信号,若判断结果为是,则触发所述终端开始依次判断所述终端的当前可用时频资源是否小于多个所述任一物联网设备中的每个所述任一物联网设备的所需时频资源,否则,不产生所述触发信号,其中,所述系统信息块包括:所述广播信息中与同步时钟相关的系统信息块和/或预定义的优先级处理系统信息块。
  25. 根据权利要求20至24中任一项所述的物联网中的数据传输系统,其特征在于,
    所述当前中继条件包括:所述终端是否支持为所述任一物联网设备转发向所在当前小区中的具有基站功能的设备发送的上行数据、所述终端是否开启转发所述上行数据的服务、所述终端是否空闲、所述终端的电量是 否高于预设电量、所述终端的当前时频资源是否高于转发所述上行数据所需的时频资源、所述终端支持的最大中继连接数目、所述任一物联网设备至所述终端的第一信道质量、所述终端至所述具有基站功能的设备的第二信道质量、所述终端的移动性中的至少一个条件。
  26. 根据权利要求20至24中任一项所述的物联网中的数据传输系统,其特征在于,还包括:
    收发单元,根据接收到的收发指令,通过所述物联网的物理层、无线资源控制协议层或非接入层发送或接收所述中继寻找信令、所述中继寻找信令反馈、所述中继申请信令或所述中继申请信令反馈信息。
  27. 根据权利要求20至24中任一项所述的物联网中的数据传输系统,其特征在于,
    所述发送单元还用于:
    在接收到所述任一物联网设备发送的所述上行数据时,将所述上行数据的功率放大后发送至所述具有基站功能的设备;和/或根据所述终端至所述具有基站功能的设备的第二信道质量确定是否对所述上行数据进行再次调制,以将再次调制后的目标上行数据发送至所述具有基站功能的设备。
  28. 根据权利要求27所述的物联网中的数据传输系统,其特征在于,还包括:
    调制单元,在根据所述第二信道质量确定需对所述上行数据进行再次调制后,根据来自所述任一物联网设备的解调和调制信息,对所述上行数据进行调制,并将调制后的所述目标上行数据发送至所述具有基站功能的设备。
  29. 一种终端,其特征在于,包括:如权利要求20至28中任一项所述的物联网中的数据传输系统。
  30. 一种物联网系统,其特征在于,包括:
    具有基站功能的设备;
    如权利要求10所述的物联网设备;和
    如权利要求29所述的终端。
PCT/CN2015/075539 2015-03-13 2015-03-31 物联网中的数据传输方法、系统、物联网设备、终端 WO2016145677A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510112651.4 2015-03-13
CN201510112651.4A CN104684042B (zh) 2015-03-13 2015-03-13 物联网中的数据传输方法、系统、物联网设备、终端

Publications (1)

Publication Number Publication Date
WO2016145677A1 true WO2016145677A1 (zh) 2016-09-22

Family

ID=53318478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075539 WO2016145677A1 (zh) 2015-03-13 2015-03-31 物联网中的数据传输方法、系统、物联网设备、终端

Country Status (2)

Country Link
CN (1) CN104684042B (zh)
WO (1) WO2016145677A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107659975A (zh) * 2017-09-08 2018-02-02 深圳市盛路物联通讯技术有限公司 中转节点的设备挂载控制方法及存储介质
WO2019075653A1 (en) * 2017-10-18 2019-04-25 Lenovo (Beijing) Limited DETERMINATION OF A DISCOVERY ANNOUNCEMENT GROUP
CN112953826A (zh) * 2020-11-22 2021-06-11 广州技象科技有限公司 一种物联网终端的数据跳传选择方法及装置
CN114142960A (zh) * 2021-12-21 2022-03-04 青岛鼎信通讯股份有限公司 一种利用移动5g基站对低压台区采集终端校时的方法
CN114826365A (zh) * 2022-04-29 2022-07-29 中国信息通信研究院 一种开关信令指示方法和设备

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104768201B (zh) * 2015-03-13 2018-07-27 深圳酷派技术有限公司 物联网中的数据传输方法、系统、物联网设备、终端
CN106304258A (zh) * 2015-05-15 2017-01-04 中兴通讯股份有限公司 中继选择及发现的方法、装置及系统
CN106304212A (zh) * 2015-06-12 2017-01-04 联想(北京)有限公司 信息处理方法及电子设备
CN105050204B (zh) * 2015-08-14 2019-06-11 宇龙计算机通信科技(深圳)有限公司 一种通信的方法、终端及基站
CN105208621A (zh) * 2015-08-14 2015-12-30 宇龙计算机通信科技(深圳)有限公司 一种通信的方法、终端及基站
CN105228082A (zh) * 2015-08-21 2016-01-06 北京邮电大学 基于d2d通信的中继设备确定方法
CN105188099B (zh) * 2015-08-21 2019-01-11 北京邮电大学 基于d2d通信的中继设备重选方法
WO2017049648A1 (zh) * 2015-09-25 2017-03-30 华为技术有限公司 一种通信处理方法、节点及终端
CN106612527B (zh) * 2015-10-21 2020-09-29 南京中兴软件有限责任公司 一种延长传输距离的方法及装置
CN105553537B (zh) * 2015-12-08 2018-09-07 深圳大学 基于累加正反馈变步长的最佳中继位置搜寻方法与系统
CN105636146A (zh) * 2015-12-30 2016-06-01 宇龙计算机通信科技(深圳)有限公司 基于物联网的终端联网方法及装置和终端
CN106936873B (zh) * 2015-12-30 2020-07-03 展讯通信(上海)有限公司 物联网设备及其通信方法
CN107529193A (zh) * 2016-06-21 2017-12-29 索尼公司 电子设备、用于电子设备的方法和信息处理设备
CN109076451B (zh) * 2016-06-30 2021-01-01 华为技术有限公司 一种站点中继方法、装置及系统
CN105959158A (zh) * 2016-06-30 2016-09-21 联想(北京)有限公司 切换方法、切换装置、第一终端设备以及服务器
CN109219067A (zh) * 2017-07-03 2019-01-15 中兴通讯股份有限公司 信号增强方法、装置及移动终端和计算机可读存储介质
CN107613541B (zh) * 2017-09-08 2021-06-22 深圳市盛路物联通讯技术有限公司 中转节点的设备挂载控制系统及中转节点
CN110611940A (zh) * 2018-06-15 2019-12-24 海信集团有限公司 一种选择Relay UE的方法和设备
CN110611943A (zh) * 2018-06-15 2019-12-24 海信集团有限公司 一种重选Relay UE的方法和设备
CN109314912B (zh) * 2018-09-29 2021-08-31 北京小米移动软件有限公司 网络接入方法、装置及存储介质
CN109348424B (zh) * 2018-11-05 2020-12-08 Oppo广东移动通信有限公司 信息传输方法、装置以及电子装置
CN109525957A (zh) * 2019-01-02 2019-03-26 成都华日通讯技术有限公司 一种可实现远距离数据无线传输的中继推举方法
CN109996305B (zh) * 2019-02-22 2021-09-24 维沃移动通信有限公司 一种通信方法、移动终端及基站
CN112311644B (zh) * 2019-07-31 2022-04-12 浙江宇视科技有限公司 桥接建立方法、装置、网络视频录像机及可读存储介质
CN111225335B (zh) * 2020-01-16 2021-01-08 重庆医药高等专科学校 一种基于物联网的实时传输儿童定位数据的方法及系统
CN112543451B (zh) * 2020-11-23 2023-06-27 广州技象科技有限公司 基于信号测试的数据跳传链路管理方法及装置
CN112543452B (zh) * 2020-11-23 2023-06-27 广州技象科技有限公司 基于信号传输安全管理的数据跳传选择方法及装置
CN112601261B (zh) * 2020-12-05 2022-04-12 广州技象科技有限公司 一种物联网信号传输模式选择方法及装置、设备、存储介质
CN113225713B (zh) * 2021-05-07 2021-10-22 北京湜沅科技有限公司 一种保障数据安全的物联网设备数据传输协议选择方法及系统
CN115733703A (zh) * 2021-08-27 2023-03-03 华为技术有限公司 一种多设备同步播放方法及装置
CN114286416A (zh) * 2021-12-23 2022-04-05 中国电信股份有限公司 通信控制方法及装置、电子设备、存储介质
CN114500356B (zh) * 2022-04-06 2022-07-05 广东省通信产业服务有限公司 数据交叉传输方法、装置及系统
CN115331380B (zh) * 2022-08-09 2024-04-16 蚌埠依爱消防电子有限责任公司 一种信道自适应的多模调制无线火灾报警系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101039526A (zh) * 2007-04-25 2007-09-19 北京邮电大学 集中控制式无线中继网络的用户驻留和中继节点选择方法
WO2011008072A1 (en) * 2009-07-13 2011-01-20 Mimos Berhad System and method for embedded mesh path management
CN102238685A (zh) * 2010-05-06 2011-11-09 华为技术有限公司 无线中继网络的中继节点选择与功率分配的方法和设备
WO2013017014A1 (zh) * 2011-08-01 2013-02-07 电信科学技术研究院 判断无线通信用户设备是否配对和进行配对的方法及设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101785353B (zh) * 2007-08-31 2013-04-24 上海贝尔股份有限公司 无线中继网络中的资源分配控制方法及装置
CN101483911B (zh) * 2009-01-22 2011-04-27 清华大学 功率分配、信道分配与中继节点选择的联合优化方法
ES2686281T3 (es) * 2009-07-17 2018-10-17 Orange Selección de repetidores dinámicos para comunicaciones cooperativas en una red móvil
CN102036345B (zh) * 2009-09-24 2015-03-25 北京邮电大学 一种移动多跳中继网络中分布式最优中继选择方法
CN102083168B (zh) * 2009-12-01 2013-10-02 华为技术有限公司 一种中继节点选择方法、设备及系统
CN101860873A (zh) * 2010-05-21 2010-10-13 南京邮电大学 一种基于跨层信息交互的分布式中继选择方法
US9445352B2 (en) * 2013-07-30 2016-09-13 Qualcomm Incorporated Power efficient discovery of LTE-direct relay for out-of-coverage devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101039526A (zh) * 2007-04-25 2007-09-19 北京邮电大学 集中控制式无线中继网络的用户驻留和中继节点选择方法
WO2011008072A1 (en) * 2009-07-13 2011-01-20 Mimos Berhad System and method for embedded mesh path management
CN102238685A (zh) * 2010-05-06 2011-11-09 华为技术有限公司 无线中继网络的中继节点选择与功率分配的方法和设备
WO2013017014A1 (zh) * 2011-08-01 2013-02-07 电信科学技术研究院 判断无线通信用户设备是否配对和进行配对的方法及设备

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107659975A (zh) * 2017-09-08 2018-02-02 深圳市盛路物联通讯技术有限公司 中转节点的设备挂载控制方法及存储介质
CN107659975B (zh) * 2017-09-08 2021-05-28 深圳市盛路物联通讯技术有限公司 中转节点的设备挂载控制方法及存储介质
WO2019075653A1 (en) * 2017-10-18 2019-04-25 Lenovo (Beijing) Limited DETERMINATION OF A DISCOVERY ANNOUNCEMENT GROUP
US11265806B2 (en) 2017-10-18 2022-03-01 Lenovo (Beijing) Limited Determining discovery announcement pool
CN112953826A (zh) * 2020-11-22 2021-06-11 广州技象科技有限公司 一种物联网终端的数据跳传选择方法及装置
CN114142960A (zh) * 2021-12-21 2022-03-04 青岛鼎信通讯股份有限公司 一种利用移动5g基站对低压台区采集终端校时的方法
CN114826365A (zh) * 2022-04-29 2022-07-29 中国信息通信研究院 一种开关信令指示方法和设备

Also Published As

Publication number Publication date
CN104684042A (zh) 2015-06-03
CN104684042B (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
WO2016145677A1 (zh) 物联网中的数据传输方法、系统、物联网设备、终端
JP6846435B2 (ja) ウェアラブルデバイスをlteマスターueと共にグループ化する手順
WO2016161867A1 (zh) 终端直通中继节点的确定、使用方法及装置
CN105453608B (zh) 在无线通信系统中重定位邻近服务群组的群组拥有者的方法和装置
US10264520B2 (en) Method of supporting mobility of UE supporting/using D2D communication in wireless mobile communication system
US20230017686A1 (en) Method and apparatus for providing information for vehicle communication services
US9345055B2 (en) Method and apparatus for establishing device-to-device connection in wireless communication system
WO2016184273A1 (zh) 中继选择及发现的方法、装置及系统
US9510372B2 (en) Method and apparatus for establishing device-to-device connection in wireless communication system
CN105432137B (zh) 在无线通信系统中执行设备对设备发现的方法和设备
US9655155B2 (en) Method and apparatus for establishing device-to-device connection in wireless communication system
CN105075386A (zh) 使用d2d能力信息的网络辅助的d2d通信
WO2016145735A1 (zh) 基于终端直连通信的数据共享方法、装置和终端
WO2013075635A1 (zh) 连接建立方法和用户设备
WO2016145751A1 (zh) 物联网中的数据传输方法、系统、物联网设备、终端
EP2946631A2 (en) Network-assisted ue detection in direct mode ue-to-ue communication
US20130064213A1 (en) Apparatus and method for performing or supporting cooperative communication between terminals in a wireless communication system
US10672033B2 (en) Method and appartus for advertising on basis of area using device-to-device discovery
WO2020191586A1 (zh) 随机接入方法、装置及存储介质
CN115280897A (zh) 用于移动通信系统中mbs配置和接收的方法和装置
JP2023542294A (ja) パス切り替えのための方法および装置
CN110839228B (zh) 基于信令监听的NB-IoT的D2D通信方法、终端及系统
WO2014026390A1 (zh) 一种无线承载建立方法、装置及系统
US20230403626A1 (en) Method and apparatus for relay communication
WO2016173412A1 (zh) 资源分配的方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/02/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15885060

Country of ref document: EP

Kind code of ref document: A1