WO2016173412A1 - 资源分配的方法、装置及系统 - Google Patents

资源分配的方法、装置及系统 Download PDF

Info

Publication number
WO2016173412A1
WO2016173412A1 PCT/CN2016/079417 CN2016079417W WO2016173412A1 WO 2016173412 A1 WO2016173412 A1 WO 2016173412A1 CN 2016079417 W CN2016079417 W CN 2016079417W WO 2016173412 A1 WO2016173412 A1 WO 2016173412A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
small
small station
gateway
stations
Prior art date
Application number
PCT/CN2016/079417
Other languages
English (en)
French (fr)
Inventor
张鸿涛
杨梓华
韩广林
熊新
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2016173412A1 publication Critical patent/WO2016173412A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to a method, an apparatus, and a system for resource allocation.
  • Hotspot coverage is the focus of Long Term Evolution (LTE). Since 90% of services occur indoors and in hotspots, small cells that address hotspot coverage and provide high-rate access are proposed.
  • LTE Long Term Evolution
  • the process of sending service data by a user equipment is: first, the UE sends a connection establishment request message to the small station, and after receiving the connection establishment acceptance message returned by the small station, determining and The station establishes a connection and transmits service data to the station via a wireless link with the station; secondly, the station passes a backhaul chain between the station and the station gateway The road forwards the service data to the small station gateway; after that, the small station gateway sends the service data to the core network, and the core network retransmits the service data sent by the UE.
  • UE User Equipment
  • the backhaul link between some small stations and the small station gateway is limited, and the backhaul link between another part of the small station and the small station gateway is obtained. Not fully utilized.
  • the embodiments of the present invention provide a method, a device, and a system for resource allocation, which are used to solve the problem that the backhaul link between a small station and a small station gateway is limited due to uneven distribution of UEs in the prior art.
  • the problem of the backhaul link between the other part of the station and the station gateway is not fully utilized.
  • an embodiment of the present invention provides a method for resource allocation, including:
  • the small station Receiving, by the small station, a first assistance station request message sent by the first station; wherein the first assistance station request message is used to indicate that the small station gateway determines to receive the first station Transmitting the first message to the small station of the small station gateway; the first message is a message sent by the first user equipment UE to the first small station;
  • the small station gateway sends a first assisted small station response message to the first small station, the first assisted small station response message includes an identifier of the second small station, and the identifier of the second small station is used for Instructing the first station to send the first message to the second station by inter-station communication.
  • the small station gateway determines, according to a remaining capacity of a link of another small station capable of performing inter-station communication with the first small station,
  • the small station that forwards the first message to the small station gateway is the second small station, including:
  • the small station gateway determines the small station with the largest remaining capacity of the link as the second small station according to the remaining link capacity of the other small stations capable of performing inter-station communication with the first small station.
  • the small station gateway receives the first assistance small station request message sent by the first small station, including:
  • the small station gateway receives the first assisted small station request message sent by a plurality of small stations, the plurality of small stations including the first small station, and the first assisted small station request message includes the first The identity of the UE;
  • the small station gateway determines that the small station that forwards the first message to the small station gateway is the second small according to the remaining link capacity of other small stations capable of performing inter-station communication with the small station. Station, including:
  • the small station gateway determines a small station corresponding to each small station according to a remaining link capacity of other small stations capable of performing inter-station communication with each small station;
  • the small station gateway Determining, by the small station gateway, the first small station corresponding to the third small station and the third small station according to the remaining link capacity of the small station corresponding to each small station, and using the third small station as The second station.
  • the small station gateway determines the third small station according to the remaining link capacity of the small station corresponding to each small station, including:
  • the small station gateway determines, according to the remaining link capacity of the small station corresponding to each small station, the third small station with the largest remaining capacity of the link in the small station corresponding to each small station.
  • the small station gateway receives the first assistance small station request message sent by multiple small stations, where The plurality of small stations includes the first small station, including:
  • the small station gateway receives a plurality of assisted small station request messages sent by the plurality of small stations, the assisted small station request message includes an identifier of the UE, and the multiple assisted small station request messages include the first assist small a station request message; the small station gateway receives a plurality of assistance small station request messages sent by the plurality of small stations, including: the small station gateway receiving the first assistance small station request message sent by the first small station;
  • the small station gateway determines each small station according to a link remaining capacity of other small stations capable of performing inter-station communication with each small station.
  • Corresponding small stations including:
  • the small station gateway determines, according to the identifier of the UE included in the assisting small station request message, a group of small stations corresponding to the identifiers of each UE; the group of small stations includes one or more small stations;
  • the small station gateway determines each small according to the remaining capacity of the link of other small stations capable of performing inter-station communication with each of the small stations. Station corresponding to the station;
  • the small station gateway determines the first small station corresponding to the third small station and the third small station according to the remaining link capacity of the small station corresponding to each small station, and the third station As a second station, the station includes:
  • the small station gateway adopts a bipartite graph matching algorithm, and each of the UEs and each of the plurality of small stations are respectively regarded as two sets of vertices, and each of the small groups corresponding to each UE is small. Determining the remaining capacity of the link corresponding to the station as the edge right between the two vertices, determining the first station corresponding to the third station and the third station, and the third station As the second station.
  • an embodiment of the present invention provides a method for resource allocation, including:
  • the first small station sends a first assisting small station request message to the small station gateway, where the first assisting small station request message is used to instruct the small station gateway to determine to forward the first message received by the first small station to a small station of the small station gateway; the first message is a message sent by the first user equipment UE to the first small station;
  • the first small station Receiving, by the first small station, the first message sent by the first UE, and sending the first message to the second small station according to the identifier of the second small station, so that the first station The second station forwards the first message to the small station gateway.
  • the first small station sends the first assistance small station request message to the small station gateway, including:
  • the first assisting small station request message is sent to the small station gateway.
  • the first small station sends the first assistance small station request message to the small station gateway, including:
  • the first small station receives the assistance request message sent by the first UE, and sends the first assistance small station request message to the small station gateway according to the assistance request message.
  • the first assistance small station request message includes the The identity of the first UE.
  • an embodiment of the present invention provides a method for resource allocation, including:
  • the first user equipment UE sends a connection establishment request message to at least one small station
  • an assistance request message is sent to the at least one small station.
  • the at least one small station is a small station that has a theoretical rate greater than a preset rate threshold with the first UE.
  • an embodiment of the present invention provides a device for resource allocation, where the device is a small station gateway, and the device includes:
  • a receiving module configured to receive a first assisting small station request message sent by the first small station, where the first assisting small station request message is used to indicate that the small station gateway determines to receive the first small station
  • the first message is forwarded to the small station of the small station gateway; the first message is a message sent by the first user equipment UE to the first small station;
  • a processing module configured to determine, according to a remaining link capacity of other small stations capable of performing inter-station communication with the first small station, a small station that forwards the first message to the small station gateway as a second station ;
  • a sending module configured to send a first assisted small station response message to the first small station, where the first assisted small station response message includes an identifier of the second small station, and the identifier of the second small station is used for Instructing the first station to send the first message to the second station by inter-station communication.
  • the processing module is specifically configured to:
  • the small station having the largest remaining capacity of the link is determined as the second small station according to the remaining link capacity of other small stations capable of performing inter-station communication with the first small station.
  • the receiving module is specifically configured to:
  • the first assistance small station request message receives, by the plurality of small stations, the first assistance small station request message, where the multiple small stations include the first small station, and the first assistance small station request message includes an identifier of the first UE;
  • processing module is specifically configured to:
  • the processing module is specifically configured to:
  • the receiving module is specifically configured to:
  • processing module is specifically configured to:
  • each UE and each of the plurality of small stations are respectively regarded as two sets of vertices, and each small station corresponding to each small station corresponding to each UE corresponds to a small station.
  • the remaining capacity of the link is used as the edge weight between the two vertices, the first small station corresponding to the third small station and the third small station is determined, and the third small station is used as the second Small station.
  • an embodiment of the present invention provides a device for resource allocation, where the device is a first small station, and the device includes:
  • a sending module configured to send a first assisting small station request message to the small station gateway, where the first assisting small station request message is used to instruct the small station gateway to determine to forward the first message received by the first small station a small station to the small station gateway; the first message is a message sent by the first user equipment UE to the first small station;
  • a receiving module configured to receive a first assisting small station response message sent by the small station gateway, where the first assisting small station response message includes an identifier of the second small station;
  • the receiving module is further configured to receive the first message sent by the first UE;
  • the sending module is further configured to send the first message to the second small station according to the identifier of the second small station, so that the second small station forwards the first message to the Small station gateway.
  • the receiving module is further configured to:
  • the sending module is configured to: when the remaining capacity of the first small station is less than or equal to a preset link remaining capacity threshold, send the first assisting station to the small station gateway. Request message.
  • the receiving module is further configured to: receive an assistance request message sent by the first UE;
  • the sending module is specifically configured to send the first assisting small station request message to the small station gateway according to the assistance request message.
  • the first assisting small station request message includes the The identity of the first UE.
  • the embodiment of the present invention provides a device for resource allocation, where the device is a first user equipment UE, and the device includes:
  • a sending module configured to send a connection establishment request message to the at least one small station
  • the sending module is further configured to send an assistance request message to the at least one small station after the processing module determines that the connection establishment accept message is not received.
  • the at least one small station is a small station that has a theoretical rate greater than a preset rate threshold with the first UE.
  • an embodiment of the present invention provides a system for resource allocation, including: the small station gateway, the fifth aspect, or the fifth aspect of any one of the first to fourth aspects of the fourth aspect or the fourth aspect The first station of any one of the first to third aspects, and the first UE of the first aspect or the first aspect of the sixth aspect.
  • the present invention provides a method, device, and system for resource allocation, by using a first small station to send a first assisted small station request message to a small station gateway; and the first small station receives a first assist small message sent by the small station gateway a station response message, the first assisted small station response message includes an identifier of the second small station; the first small station receives the first message sent by the first UE, and according to the second small station Identifying that the first message is sent to the second station, so that the second station forwards the first message to the small station gateway; enabling the first station to pass the second station with The backhaul link between the small station gateways sends the first message sent by the first UE to the small station gateway; thereby solving the prior art that some small stations are caused due to uneven distribution of the UE.
  • the backhaul link with the small station gateway is limited, and the backhaul link between the other small station and the small station gateway is not fully utilized.
  • FIG. 1 is a schematic diagram of an application scenario of a method for resource allocation according to the present invention
  • Embodiment 1 is a flowchart of Embodiment 1 of a method for resource allocation according to the present invention
  • Embodiment 3 is a flowchart of Embodiment 2 of a method for resource allocation according to the present invention.
  • Embodiment 4 is a flowchart of Embodiment 3 of a method for resource allocation according to the present invention.
  • FIG. 5 is a flowchart of Embodiment 4 of a method for resource allocation according to the present invention.
  • Embodiment 5 is a flowchart of Embodiment 5 of a method for resource allocation according to the present invention.
  • Embodiment 6 is a first schematic diagram of Embodiment 6 of a method for resource allocation according to the present invention.
  • FIG. 7B is a second schematic diagram of Embodiment 6 of a method for resource allocation according to the present invention.
  • FIG. 7C is a third schematic diagram of Embodiment 6 of a method for resource allocation according to the present invention.
  • FIG. 7D is a schematic diagram 4 of Embodiment 6 of a method for resource allocation according to the present invention.
  • FIG. 9 is a schematic structural diagram of Embodiment 1 of a device for resource allocation according to the present invention.
  • Embodiment 10 is a schematic structural diagram of Embodiment 2 of a device for resource allocation according to the present invention.
  • Embodiment 3 is a schematic structural diagram of Embodiment 3 of a device for resource allocation according to the present invention.
  • Embodiment 4 is a schematic structural diagram of Embodiment 4 of an apparatus for resource allocation according to the present invention.
  • Embodiment 13 is a schematic structural diagram of Embodiment 5 of an apparatus for resource allocation according to the present invention.
  • FIG. 14 is a schematic structural diagram of Embodiment 6 of a device for resource allocation according to the present invention.
  • FIG. 1 is a schematic diagram of an application scenario of a method for resource allocation according to the present invention
  • a backhaul link exists between a small station and a small station gateway.
  • the data of the UE sends the service data: first, the UE sends a connection establishment request message to the small station, and after receiving the connection establishment acceptance message returned by the small station, determines the wireless link between the small station and the small station after establishing the connection with the small station. Transmitting service data to the small station; the small station transmits service data to the small station gateway through its backhaul link with the small station gateway; after that, the small station gateway sends the service data to the core network, The core network forwards the service data sent by the UE.
  • the small station 1 to the small station gateway is limited, and the backhaul link between the small station 6 to the small station 8 and the small station gateway is not fully utilized.
  • the backhaul link limitation may be considered as the remaining capacity of the backhaul link being less than a preset threshold.
  • the limited backhaul link of the small station may result in the UE not being able to access the small station. For example, after receiving the connection establishment request message sent by the UE, the small station returns a connection establishment rejection message to the UE if it is determined that the remaining capacity of the backhaul link between the small station and the small station gateway is less than the preset threshold.
  • Embodiment 1 of a method for resource allocation according to the present invention. As shown in FIG. 2, the method in this embodiment may include:
  • Step 201 The first small station sends a first assisting small station request message to the small station gateway, where the first assisting small station request message is used to indicate that the small station gateway determines to receive the first small station.
  • the first message is forwarded to the small station of the small station gateway; the first message is a message sent by the first user equipment UE to the first small station;
  • Step 201 is performed; or the first small station may perform step 201 after receiving the assistance request message sent by the first UE.
  • Step 202 The first small station receives a first assisted small station response message sent by the small station gateway, where the first assisted small station response message includes an identifier of the second small station;
  • Step 203 The first small station receives the first message sent by the first UE, and sends the first message to the second small station according to the identifier of the second small station, so that The second station forwards the first message to the small station gateway.
  • the small station when receiving a message sent by the UE, the small station needs to send a message to the small station gateway through a backhaul link between the small station and the small station gateway.
  • the first small station sends a first assisting small station request message to the small station gateway; the first small station receives the first assisted small station response message sent by the small station gateway, the first assisting station
  • the response message includes an identifier of the second station; the first station receives the first message sent by the first UE, and sends the first message to the first message according to the identifier of the second station a second station to cause the second station to forward the first message to the small station gateway.
  • the small station when the small station receives the message sent by the UE, it needs to send the message to the small station gateway through the back link between the small station and the small station gateway, so when the UE is unevenly distributed, a part will appear.
  • the link between the small station and the small station gateway is limited, and the link between the other small station and the small station gateway is not fully utilized.
  • the first small station request message is sent to the small station gateway by the first small station; the first small station receives the first assist small station response message sent by the small station gateway, the first assist small
  • the station response message includes an identifier of the second station; the first station receives the first message sent by the first UE, and sends the first message to the location according to the identifier of the second station Determining a second station to cause the second station to forward the first message to the small station gateway; enabling the first station to pass a backhaul link between the second station and the station gateway Transmitting the first message sent by the first UE to the small station gateway; thereby solving the problem that the backhaul link between the small station and the small station gateway is limited due to uneven distribution of the UE existing in the prior art, and The backhaul link between some of the small stations and the small station gateway is not fully utilized.
  • FIG. 3 is a flowchart of Embodiment 2 of a method for resource allocation according to the present invention. As shown in FIG. 3, the method in this embodiment may include:
  • Step 301 The small station gateway receives the first assistance small station request message sent by the first small station, where the first assistance small station request message is used to indicate that the small station gateway determines to receive the first small station.
  • the first message is forwarded to the small station of the small station gateway; the first message is a message sent by the first UE to the first small station;
  • Step 302 The small station gateway is capable of performing inter-station communication with the first small station according to The remaining capacity of the link of the small station, determining that the small station that forwards the first message to the small station gateway is the second small station;
  • Step 303 The small station gateway sends a first assistance small station response message to the first small station, where the first assistance small station response message includes an identifier of the second small station, and the second small station The identifier is configured to instruct the first small station to send the first message to the second small station by inter-station communication.
  • the small station gateway requests the first small station according to the first small station, and selects the corresponding second small station for the first small station, so that the first small station can pass the inter-station communication. Transmitting, by the second small station, the first message to the second station, and forwarding, by the second station, the first message to the small station gateway; thereby solving the problem that the UE exists in the prior art
  • the unevenness causes the backhaul link between some small stations and the small station gateway to be limited, and the backhaul link between the other small station and the small station gateway is not fully utilized.
  • Embodiment 3 is a flowchart of Embodiment 3 of a method for resource allocation according to the present invention. As shown in FIG. 4, the method in this embodiment may include:
  • Step 401 The first UE sends a connection establishment request message to the first small station.
  • the first UE when the first UE is powered on, when the cell of the first small station is selected to be camped, the first UE may send a connection establishment request message to the first small station; or, when the first When the UE is in an idle state for cell reselection, and the cell of the first small station is selected to camp, the first UE may send a connection establishment request message to the first small station.
  • Step 402 The first small station determines whether the remaining link capacity of the first small station is less than or equal to a preset link remaining capacity threshold.
  • step 405 If yes, go to step 405; otherwise, go to step 403.
  • the remaining capacity of the link of the first small station may be the remaining capacity of the backhaul link between the first small station and the small station gateway; or the chain of the first small station
  • the remaining capacity of the path may be min (the remaining capacity of the backhaul link between the first small station and the small station gateway, the first UE estimated, the first UE and the first small The theoretical rate between stations).
  • the first UE estimates, the first When the theoretical rate between a UE and the first small station), the unit of the remaining capacity of the backhaul link should be reasonable
  • the rate unit is consistent, for example, it can be bit/s.
  • min is a small operation and min(a, b) is the smaller of a and b.
  • the first small station may determine, according to the subframe ratio, a capacity of the backhaul link between the first small station and the small station gateway, and pass the first small station and the small station.
  • the capacity of the backhaul link used between the gateways determines the remaining capacity of the backhaul link between the first station and the station gateway.
  • one radio frame is 10 ms, and one radio frame includes 10 subframes; suppose two subframes in one radio frame are allocated to the back between the first small station and the small station gateway.
  • the total number of resource blocks allocated to the backhaul link between the first small station and the small station gateway is 50*, and the system bandwidth is 10M (that is, including 50 resource blocks (RBs). Further, if the number of resource blocks currently used is 20*2, the remaining capacity of the backhaul link between the first small station and the small station gateway is 30*2 resource blocks.
  • the first UE may send the estimated theoretical rate between the first UE and the first small station to the first small station by using the connection establishment request message.
  • the UE may estimate a theoretical rate between the first UE and the jth station by using the following formula (1)
  • P j is the transmit power of the jth station
  • h j is the small-scale fading between the jth station and the first UE
  • ⁇ j is the path loss between the jth station and the first UE
  • M is The first UE can search for the number of small stations of the signal
  • h q is a small-scale fading between the q-th station and the first UE
  • N user is channel noise.
  • [zeta] j calculates the path loss between the j-th UE from the first station:
  • c is the speed of light
  • f c is the carrier frequency
  • d o is the environmental reference distance
  • r j is the distance between the jth station and the first UE.
  • the first station may be based on the remaining number of resource blocks RB between a first station and gateway station num, using the following formula (3) to determine the remaining rate C unused remaining number of resource blocks corresponding to:
  • C unused ((number of symbols per TTI - number of PDCCH symbols) ⁇ number of subcarriers per frequency band of the resource block - number of REs occupied by the RS signal) ⁇ RB num ⁇ number of bits per symbol ⁇ code rate / TTI duration
  • the unit of the remaining capacity of the link of the first small station and the unit of the remaining capacity threshold of the link should be consistent.
  • Step 403 The first small station returns a connection establishment accept message to the first UE.
  • the first small station determines that the remaining link capacity of the first small station is greater than the link remaining capacity threshold, it indicates that the backhaul link between the first small station and the small station gateway does not appear.
  • the link is limited, so the related message of the first UE can be continuously transmitted using the backhaul link between the first station and the small station gateway.
  • Step 404 The first small station receives the first message sent by the first UE, and sends the first message to the end message by using a backhaul link between the first small station and the small station gateway.
  • Small station gateway
  • step 404 ends after execution.
  • Step 405 The first small station sends a first assisting small station request message to the small station gateway, where the first assisting small station request message is used to indicate that the small station gateway determines that the first small station is to be
  • the first message received by the station is forwarded to the small station of the small station gateway; the first message is a message sent by the first UE to the first small station;
  • Step 406 The small station gateway determines, according to the remaining link capacity of other small stations that can perform inter-station communication with the first small station, that the small station that forwards the first message to the small station gateway is the second small station;
  • the remaining capacity of the link of the other small station may be the remaining capacity of the backhaul link between the other small station and the small station gateway; or the remaining capacity of the link of the other small station It may be min (the remaining capacity of the backhaul link between the other small station and the small station gateway, the remaining capacity of the inter-station link between the other small station and the first small station).
  • the identifier of the other small station capable of performing inter-station communication with the first small station may be sent by the first small station to the small station gateway, for example, may be adopted by the first small station
  • the first assisted station request message is sent to the small station gateway.
  • the remaining capacity of the inter-station link between the other small station capable of performing inter-station communication with the first small station and the first small station may also be sent by the first small station to
  • the small station gateway may be sent to the small station gateway by the first small station, for example, by the first small station; or the small station gateway may also send the message to the other small station.
  • the manner in which the message is queried obtains the remaining capacity of the inter-station link between the other small station and the first small station.
  • the small station gateway may obtain a remaining capacity of a backhaul link between the other small station and the small station gateway by sending a query message to the other small station, or the other
  • the remaining capacity of the backhaul link between the small station and the small station gateway can also be calculated by the small station gateway itself.
  • the step 406 may be specifically: the small station gateway determines, according to the remaining capacity of the link of other small stations that can perform inter-station communication with the first small station, the small station with the largest remaining capacity of the link as the Said the second station.
  • small stations capable of inter-station communication with the first small station include small station 1, small station 2, small station 3; wherein the remaining capacity of the small station 1 is 100 bit/s, the small station 2 The remaining capacity of the link is 20 bit/s, and the remaining capacity of the link of the small station 3 is 200 bit/s; then the small station 3 can be determined as the second small station.
  • Step 407 The small station gateway sends a first assistance small station response message to the first small station, where the first assistance small station response message includes an identifier of the second small station;
  • Step 408 The first small station sends a connection establishment accept message to the first UE.
  • Step 409 The first small station receives the first message sent by the first UE, and the first message is sent by an inter-station link between the first small station and the second small station. Sending a message to the second station to cause the second station to send the first message to the station via a backhaul link between the second station and the station gateway Gateway.
  • the first small station request message is sent to the small station gateway;
  • the small station gateway is the first small station and the first UE.
  • the first station will be the first UE Transmitting the first message to the second small station by inter-station communication, so that the second small station passes the inter-station link between the second small station and the small station gateway Transmitting a message to the small station gateway; enabling the first small station to send the first message sent by the first UE to the small station gateway through a backhaul link between the second small station and the small station gateway; thereby solving
  • the backhaul link between some small stations and the small station gateway is limited, and the back link between another small station and the small station gateway cannot be obtained. Make the most of the problem.
  • FIG. 5 is a flowchart of Embodiment 4 of a method for resource allocation according to the present invention. As shown in FIG. 5, the method in this embodiment may include:
  • Step 501 The first UE determines A small stations that can search for a signal, where the A small stations include a first small station;
  • A is a positive integer.
  • Step 502 For each of the A small stations, the first UE estimates a theoretical rate between the first UE and each small station.
  • the first UE estimates the theoretical rate between the first UE and each small station by using formula (1).
  • Step 503 The first UE determines that a theoretical rate between the first UE and B small stations in the A small stations is greater than a preset rate threshold, where the B small stations include the first small station;
  • B is a positive integer and B is less than or equal to A.
  • Step 504 The first UE sends a connection establishment request message to the B small stations respectively.
  • Step 505 The B small stations respectively determine whether the remaining capacity of the link is greater than a preset link remaining capacity threshold; and determine that the remaining link capacity of the link is greater than the preset link remaining capacity threshold.
  • the first UE sends a connection establishment accept message, and determines that the small station whose own link remaining capacity is less than or equal to the preset link remaining capacity threshold sends a connection establishment reject message to the first UE;
  • the remaining capacity of the link is similar to the remaining capacity of the link of the first station in step 402, and details are not described herein.
  • Step 506 The first UE determines whether at least one of the B small stations is received. The connection is sent to accept the message;
  • step 507 If yes, go to step 507; otherwise, go to step 509.
  • Step 507 The first UE determines to establish a connection with a small station with the largest theoretical rate corresponding to the at least one small station, and sends a first message to the small station with the largest theoretical rate;
  • Step 508 After receiving the first message, the small station with the highest theoretical rate forwards the first message to the small station gateway by using a backhaul link with the small station gateway.
  • step 508 ends after execution.
  • Step 509 The first UE sends an assistance request message to the B small stations respectively.
  • Step 510 After receiving the assistance request message, the B small stations respectively send a first assistance small station request message to the small station gateway according to the assistance request message, where the first assistance small station request message includes the The identity of a UE;
  • the B stations are the small station 1, the small station 2, and the small station 3, the small station 1, the small station 2, and the small station 3 respectively send the first assisted small station request message to the small station gateway.
  • Step 511 For each of the B small stations, the small station gateway determines, according to the remaining capacity of the links of other small stations that can perform inter-station communication with each small station, corresponding to each small station. a small station; wherein the small station corresponding to the first small station is a second small station;
  • the small station gateway maximizes the remaining capacity of the link according to the remaining link capacity of other small stations capable of performing inter-station communication with each small station.
  • the small station is determined to be a small station corresponding to each small station;
  • the small station gateway is based on other small stations capable of inter-station communication with the first small station.
  • the remaining capacity of the link, the small station that has the largest remaining capacity of the link is determined as the small station corresponding to the first small station; and for the small station 2, the small station gateway is capable of performing inter-station communication with the small station 2
  • the remaining capacity of the other small stations, the small station with the largest remaining capacity of the link is determined as the small station corresponding to the small station 2; for the small station 3, the small station gateway can perform the station with the small station 3
  • the remaining capacity of the other small stations of the communication, and the small station having the largest remaining capacity of the link are determined as the small stations corresponding to the small station 3.
  • the remaining capacity of the link of the other small station may be the remaining capacity of the backhaul link between the other small station and the small station gateway; or the remaining capacity of the link of the other small station Can be min (the remaining capacity of the backhaul link between the other small station and the small station gateway, The remaining capacity of the inter-station link between the other small stations and each of the small stations) or the remaining capacity of the other small stations may be min (the return chain between the other small stations and the small station gateway) Remaining capacity of the road, remaining capacity of the inter-station link between the other small stations and each of the small stations, the theoretical rate estimated by the first UE and the first UE and other small stations).
  • the remaining capacity of the small station 3 capable of inter-station communication with the small station 2 may be the remaining capacity of the backhaul link between the small station 3 and the small station gateway; or may be min (small station 3) The remaining capacity of the backhaul link with the small station gateway, the remaining capacity of the inter-station link between the small station 3 and the small station 2; or may be min (between the small station 3 and the small station gateway) The remaining capacity of the backhaul link, the remaining capacity of the inter-station link between the small station 3 and the small station 2, the theoretical rate between the first UE and the small station 3 estimated by the first UE).
  • Step 512 The small station gateway determines, according to the remaining link capacity of the small station corresponding to each small station, the third small station and the first small station corresponding to the third small station, and the third station a small station as the second station;
  • the small station gateway determines, according to the remaining link capacity of the small station corresponding to each small station, that the third small station may include:
  • the small station gateway determines, according to the remaining link capacity of the small station corresponding to each small station, the third small station with the largest remaining capacity of the link in the small station corresponding to each small station.
  • Step 513 The small station gateway sends a first assistance small station response message to the first small station, where the first assistance response message includes an identifier of the second small station;
  • the identifier of the second small station is used to instruct the first small station to send the first message to the second small station by using inter-station communication;
  • Step 514 The first small station sends a connection establishment accept message to the first UE.
  • Step 515 The first UE sends the first message to the first small station.
  • Step 516 The first small station sends the first message to the second small station by inter-station communication, so that the second small station passes the second small station and the small station gateway The backhaul link forwards the first message to the small station gateway.
  • the first UE sends a connection establishment request message to the B small stations; the B small stations respectively determine whether the remaining link capacity of the link is greater than a preset link remaining capacity threshold; and determine the link of the link.
  • the small station whose remaining capacity is greater than the preset link remaining capacity threshold sends a connection establishment accept message to the first UE, determining that the remaining link capacity of the link is less than or equal to
  • the small station that presets the link remaining capacity threshold sends a connection establishment reject message to the first UE; so that when the remaining capacity of the link of one or more of the B small stations is insufficient, the first UE may One of the remaining stations of the B stations transmits a first message; the certain station forwards the first message to the station gateway through a backhaul link with the station gateway; thereby solving the existing In the technology, due to the uneven distribution of UEs, the backhaul link between some small stations and the small station gateway is limited, and the backhaul link between the other small station and the small station gateway is not fully utilized.
  • the first UE separately sends an assistance request message to the B small stations; the B small stations respectively send the first assistance small station request message to the small station gateway;
  • the gateway determines, in the B small stations, that the first small station receives the first message sent by the first UE, and the first small station forwards the first small station to the second small station by using the inter-station communication, so that the second small station The station forwards the first message to the small station gateway through a backhaul link with the small station gateway; so that when the remaining capacity of the links of the B stations is insufficient, the small station gateway can be small in B Determining, by the station, the first small station that receives the first message sent by the first UE, and forwarding the first message received by the first small station to the second station of the small station gateway; thereby solving the problem existing in the prior art Due to the uneven distribution of UEs, the backhaul link between some small stations and the small station gateway is limited, and the backhaul link between the
  • FIG. 6 is a flowchart of Embodiment 5 of a method for resource allocation according to the present invention. As shown in FIG. 6, the method in this embodiment may include:
  • Step 601 The first UE sends a first assistance request message to the first group of small stations, and the second UE sends a second assistance request message to the second group of small stations, where the first group of small stations includes the first small station.
  • the second group of stations includes a third station;
  • the timing at which the first UE sends the first assistance request message to the first group of small stations is similar to the timing of performing step 504, and is not described herein again; the first group of small stations may be, for example, step 504.
  • the timing of the second UE sending the second assistance request message to the second group of stations is similar to the timing when the first UE sends the first assistance request message to the first group of small stations, and details are not described herein again.
  • the first group of small stations includes at least one small station
  • the second group of small stations includes at least one small station; one small station may be included in the first group of small stations and the second group of small stations simultaneously.
  • the first UE sends an assistance request message to the small station 1
  • the second UE also goes to the small station 1
  • the assistance request message is sent, and the small station 1 is included in the first group of stations and the second group of stations.
  • Step 602 Each small station in the first group of small stations sends a first assisting small station request message to the small station gateway, where the first assisting small station request message includes an identifier of the first UE;
  • Each of the two sets of small stations respectively sends a second assisted small station request message to the small station gateway, where the second assisted small station request message includes an identifier of the second UE;
  • Step 603 For each of the first group of small stations, the small station gateway determines the first group of stations according to the remaining capacity of the link of other small stations that can perform inter-station communication with each of the small stations. a small station corresponding to each of the small stations; for each of the second group of small stations, the small station gateway has a link remaining according to other small stations capable of performing inter-station communication with each of the small stations Capacity, determining a small station corresponding to each of the second group of stations;
  • step 603 is similar to step 511, and details are not described herein again.
  • Step 604 The small station gateway uses a bipartite graph matching algorithm to determine that the first small station establishes a connection with the first UE, and the second small station sends the first UE received by the first small station. Transmitting the first message to the small station gateway; and determining that the third small station establishes a connection with the second UE, and the fourth small station sends the second UE received by the third small station The second message is forwarded to the small station gateway;
  • the small station gateway adopts a bipartite graph matching algorithm, and uses the first UE and the second UE as a set of vertices, and uses the small stations included in the first group of small stations and the second group of small stations as another set of vertices.
  • the remaining capacity of the small station corresponding to each small station in the first group of small stations is used as the edge right between the two vertices of the first UE and the corresponding small station, and each of the second group of small stations is small Determining the remaining capacity of the station corresponding to the station as the edge between the two UEs and the two vertices of the corresponding station, determining that the first station establishes a connection with the first UE, and the second station will And transmitting, by the first station, the first message sent by the first UE to the small station gateway; and determining that the third small station establishes a connection with the second UE, where the fourth small station The second message sent by the second UE received by the three small stations is forwarded to the small station gateway.
  • the vertices are in one-to-one correspondence with the small stations, that is, one vertex corresponds to one small station; for example, if The first group of small stations includes small station 1, small station 2, small station 3, the second group of small stations including small station 2, small station 3, small station 4, then the second group of vertices includes: small station 1, small station 2 , small station 3, small station 4.
  • Step 605 The small station gateway sends the first assistance small station response cancellation to the first small station.
  • the first assisted small station response message includes an identifier of the second small station;
  • the small station gateway sends a second assisted small station response message to the third small station, and the second assisted small station responds The message includes an identifier of the fourth station;
  • Step 606 The first small station sends a connection establishment accept message to the first UE, and the third small station sends a connection establishment accept message to the second UE.
  • Step 607 The first UE sends the first message to the first small station, and the second UE sends the second message to the third small station.
  • Step 608 The first station sends the first message to the second station by using an inter-station link between the first station and the second station, so that the first station The second station forwards the first message to the small station gateway; the third station passes the second message through an inter-station link between the third small station and the fourth small station Sending to the fourth station to cause the fourth station to forward the second message to the small station gateway.
  • the small station gateway after receiving the first assisted small station request message related to the first UE and the second assisted small station request message related to the second UE, the small station gateway simultaneously determines the first by using a bipartite graph matching algorithm.
  • the small station establishes a connection with the first UE, and the second small station forwards the first message sent by the first UE received by the first small station to the small station gateway; and determines the third small station and the second
  • the UE establishes a connection, and the fourth small station forwards the second message sent by the second UE received by the third small station to the small station gateway; thereby solving the problem that the prior art is distributed due to uneven distribution of the UE.
  • the backhaul link between some small stations and the small station gateway is limited, and the backhaul link between the other small station and the small station gateway is not fully utilized.
  • a small station that establishes a connection with the UE for two UEs (the first UE and the second UE) and a small station that forwards the message sent by the UE to the small station gateway are only examples.
  • the method of this embodiment can perform processing for any number of UEs simultaneously.
  • the following is an example of using a bipartite graph matching algorithm for multiple UEs, determining a small station that establishes a connection with each UE, and forwarding a message sent by each UE to a small station of the small station gateway.
  • Step 1 UE1 sends a first assistance request message to the first group of small stations, UE2 sends a second assistance request message to the second group of small stations, and UE3 sends a third assistance request message to the third group of small stations, and UE4 goes to the fourth group.
  • the small station sends a fourth sending assistance request message; the first group of small stations, the second group of small
  • the station, the third group of stations and the fourth group of stations all include f5, f6, f7 and f8.
  • Step 2 f5, f6, f7, and f8 all send a first assisting small station request message, a second assisting small station request message, a third assisting small station request message, and a fourth assisting small station request message to the small station gateway;
  • the first assisted small station request message includes the identifier of the UE1, the second assisted small station request message includes the identifier of the UE2, the third assisted small station request message includes the identifier of the UE3, and the fourth assisted small station request message includes the identifier of the UE4.
  • Step 3 The small station gateway determines a small station corresponding to each of the first group of small stations, the second group of small stations, the third group of small stations, and the fourth group of small stations;
  • Step 4 The small station gateway uses UE1, UE2, UE3, and UE4 as a set of vertices Yk (where k represents a different UE, k is equal to 1, 2, 3, 4), and f5, f6, f7, and f8 are used as another a set of vertices X i (where i represents a different small station, i is equal to f5, f6, f7, f8); the remaining link of the small station corresponding to each of the small stations corresponding to each UE
  • the capacity is expressed as: w[i,k]; w[i,k] is taken as the edge weight between the corresponding vertices of X i and Y k .
  • Step 5 By giving each vertex an identifier (top mark), the problem of finding the maximum weight matching is converted into a problem of finding a perfect match; setting the vertex of the vertex X i to A[i], and the top mark of the vertex Y k is B[k]. At any time during the execution of the algorithm, for any edge (i, k), A[i] + B[k] ⁇ w[i, k] is always true.
  • the edge weight between the two vertices of f5 and UE1 is 3, the edge weight between the two vertices of f5 and UE2 is 4, the edge weight between the two vertices of f5 and UE3 is 6, and the edge between the two vertices of f5 and UE4
  • the weight is 9; the edge weight between f6 and UE1 is 6; the edge weight between f6 and UE2 is 4, and the edge weight between f6 and UE3 is 5, between f6 and UE4
  • the edge weight is 8; the edge weight between the two vertices of f7 and UE1 is 7, the edge weight between the two vertices of f7 and UE2 is 5, the edge weight between the two vertices of f7 and UE3 is 3, and the two vertices of f7 and UE4
  • the edge weight between is 4; f8 and UE1
  • the edge weight between two vertices is 0, the edge weight between f8 and
  • the feasible top mark after initialization is as follows:
  • FIG. 7A is a schematic diagram 1 of Embodiment 6 of the method for resource allocation according to the present invention.
  • the adjusted feasible tops are as follows:
  • FIG. 7B is a schematic diagram 2 of the sixth embodiment of the method for resource allocation according to the present invention.
  • the adjusted feasible tops are as follows:
  • FIG. 7C is a schematic diagram 3 of the sixth embodiment of the method for resource allocation according to the present invention.
  • Step 15 All vertex matches are completed and ended.
  • FIG. 8 is a graph showing the relationship between the average access success rate of the user and the number of users according to the present invention.
  • the processing method of the technology is: after receiving the connection establishment request sent by the UE, the small station returns a connection establishment rejection message to the UE if it is determined that the remaining capacity of the backhaul link between the small station and the small station gateway is less than a preset threshold. (ie, the UE access fails).
  • the processing method of the present invention is: the technical solution corresponding to the sixth embodiment of the method for resource allocation. As shown in FIG. 8, compared with the prior art, the resource allocation method of the present invention improves the average access success rate of users when the number of users is the same.
  • the UE access failure to send the connection establishment request message to the small station may be caused.
  • the small station gateway may be The UE selects a suitable serving small station (that is, a small station that establishes an air interface link with the UE), so that the UE can successfully access.
  • FIG. 9 is a schematic structural diagram of Embodiment 1 of a device for resource allocation according to the present invention; the device is a small station gateway; as shown in FIG. 9, the device in this embodiment may include: a receiving module 901, a processing module 902, and a sending module 903.
  • the receiving module 901 is configured to receive a first assisting small station request message sent by the first small station, where the first assisting small station request message is used to instruct the small station gateway to determine that the first small station is to be Receiving, the first message is forwarded to the small station of the small station gateway; the first message is a message sent by the first user equipment UE to the first small station; and the processing module 902 is configured to The remaining capacity of the other small stations of the first station performing the inter-station communication, determining that the small station that forwards the first message to the small station gateway is the second small station; and the sending module 903 is configured to The first small station sends a first assistance station response message, the first assistance station response message includes an identifier of the second small station, and the identifier of the second small station is used to indicate that the first small station passes Inter-station communication sends the first message to the second station.
  • the processing module 902 is specifically configured to determine, according to a link remaining capacity of other small stations that can perform inter-station communication with the first small station, a small station that has the largest remaining capacity of the link as the The second station.
  • the receiving module 901 is specifically configured to: receive the first assisting small station request message sent by multiple small stations, where the multiple small stations include the first small station, and the first assistance The small station request message includes the identifier of the first UE; correspondingly, the processing module 902 is specifically configured to: for each of the plurality of small stations, the small station gateway is capable of performing with each small station according to The remaining capacity of the link of other small stations communicating between stations, to determine the correspondence of each small station a small station; determining, according to the remaining capacity of the link of the small station corresponding to each small station, the first small station corresponding to the third small station and the third small station, and using the third small station as a Said the second station.
  • the mode 21 is optional.
  • the processing module 902 is specifically configured to: determine, according to the remaining link capacity of the small station corresponding to each small station, the remaining link in the small station corresponding to each small station. The third station with the largest capacity.
  • the mode 22 is optional.
  • the receiving module 901 is specifically configured to:
  • processing module 902 is specifically configured to:
  • each UE and each of the plurality of small stations are respectively regarded as two sets of vertices, and each small station corresponding to each small station corresponding to each UE corresponds to a small station.
  • the remaining capacity of the link is used as the edge weight between the two vertices, the first small station corresponding to the third small station and the third small station is determined, and the third small station is used as the second Small station.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 3 and the small station gateway side of the method embodiment shown in FIG. 4 to FIG. 6.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 10 is a schematic structural diagram of Embodiment 2 of a device for resource allocation according to the present invention; the device is a first small station; as shown in FIG. 10, the device in this embodiment may include: a sending module 1001 and a receiving module 1002.
  • the sending module 1001 is configured to send a first assisting small station request message to the small station gateway, where the first assisting small station request message is used to indicate that the small station gateway determines to receive the first small station.
  • the first consumer The message is sent by the first user equipment UE to the first small station;
  • the receiving module 1002 is configured to receive a first assistance small station response message sent by the small station gateway, where the first assistance small station response message includes The identifier of the second station;
  • the receiving module 1002 is further configured to receive the first message sent by the first UE, and the sending module 1001 is further configured to: send the first message according to the identifier of the second station Sending to the second station to cause the second station to forward the first message to the small station gateway.
  • the receiving module 1002 is further configured to: receive a connection establishment request message sent by the first UE;
  • the sending module 1001 is specifically configured to: when the remaining link capacity of the first small station is less than or equal to a preset link remaining capacity threshold, send the first assisting station to the small station gateway. Request message.
  • the receiving module 1002 is further configured to: receive an assistance request message sent by the first UE;
  • the sending module 1001 is specifically configured to send the first assisting small station request message to the small station gateway according to the assistance request message.
  • the first assisting small station request message includes an identifier of the first UE.
  • the device of this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 2 and the first small station side of the method embodiment shown in FIG. 4 to FIG. 6.
  • the implementation principle and technical effects are similar, and details are not described herein. .
  • FIG. 11 is a schematic structural diagram of Embodiment 3 of a device for resource allocation according to the present invention; the device is a first user equipment UE; as shown in FIG. 11, the device in this embodiment may include: a sending module 1101 and a processing module 1102.
  • the sending module 1101 is configured to send a connection establishment request message to the at least one small station, and the processing module 1102 determines whether the connection establishment accept message is received.
  • the sending module 1101 is further configured to determine, in the processing module 1102, that the connection establishment acceptance is not received. After the message, an assistance request message is sent to the at least one small station.
  • the at least one small station is a small station with a theoretical rate between the first UE and a preset rate threshold.
  • the device in this embodiment may be used to implement the technical solution of the first UE side in the method embodiment shown in FIG. 6.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • the invention also provides a system for resource allocation, the system comprising: resource allocation The first UE described in Embodiment 3 of the apparatus for implementing the first station and the resource allocation apparatus according to the second embodiment of the apparatus for resource allocation according to the first embodiment.
  • the system of the present embodiment can be used to implement the technical solutions of the method embodiments shown in FIG. 4 to FIG. 6.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 12 is a schematic structural diagram of Embodiment 4 of a device for resource allocation according to the present invention; the device is a small station gateway; as shown in FIG. 12, the device in this embodiment may include: a receiver 1201, a processor 1202, and a transmitter 1203.
  • the receiver 1201 is configured to receive a first assisting small station request message sent by the first small station, where the first assisting small station request message is used to instruct the small station gateway to determine that the first small station is to be Receiving, the first message is forwarded to the small station of the small station gateway; the first message is a message sent by the first user equipment UE to the first small station; and the processor 1202 is configured to The first remaining station performs the link remaining capacity of the other small stations for inter-station communication, determines that the small station that forwards the first message to the small station gateway is the second small station; and the transmitter 1203 is configured to The first small station sends a first assistance station response message, the first assistance station response message includes an identifier of the second small station, and the identifier of the second small station is used to indicate that the first small station passes Inter-station communication sends the first message to the second station.
  • Method 1 ' optionally, the processor 1202 is specifically configured to: determine, according to the remaining capacity of the link of other small stations that can perform inter-station communication with the first small station, the small station with the largest remaining capacity of the link as the Said the second station.
  • the receiver 1201 is specifically configured to: receive the first assisted small station request message sent by multiple small stations, where the multiple small stations include the first small station, the first Assisting the small station request message includes the identifier of the first UE; correspondingly, the processor 1202 is specifically configured to: for each of the plurality of small stations, according to the inter-station communication with each small station Determining the remaining capacity of the other small stations, determining the small station corresponding to each small station; determining the corresponding corresponding to the third small station and the third small station according to the remaining link capacity of the small station corresponding to each small station The first station is the third station and the second station is the second station.
  • the processor 1202 is specifically configured to determine, according to the remaining capacity of the small station corresponding to each small station, the chain in the small station corresponding to each small station.
  • the third station having the largest remaining capacity of the road.
  • Mode 22' optionally, based on mode 2', receiver 1201 is specifically configured to:
  • processor 1202 is specifically configured to:
  • each UE and each of the plurality of small stations are respectively regarded as two sets of vertices, and each small station corresponding to each small station corresponding to each UE corresponds to a small station.
  • the remaining capacity of the link is used as the edge weight between the two vertices, the first small station corresponding to the third small station and the third small station is determined, and the third small station is used as the second Small station.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 3 and the small station gateway side of the method embodiment shown in FIG. 4 to FIG. 6.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 13 is a schematic structural diagram of Embodiment 5 of a device for resource allocation according to the present invention; the device is a first small station; as shown in FIG. 13, the device in this embodiment may include: a transmitter 1301 and a receiver 1302.
  • the transmitter 1301 is configured to send a first assisting small station request message to the small station gateway, where the first assisting small station request message is used to indicate that the small station gateway determines to receive the first small station.
  • a message is forwarded to the small station of the small station gateway;
  • the first message is a message sent by the first user equipment UE to the first small station;
  • the receiver 1302 is configured to receive the first Assisting the small station response message, the first assisting small station response message includes an identifier of the second small station;
  • the receiver 1302 is further configured to receive the first message sent by the first UE; the transmitter 1301, further And transmitting, by the identifier of the second small station, the first message to the second small station, so that the second small station forwards the first message to the small station gateway.
  • the apparatus of this embodiment may further include a processor 1303;
  • the receiver 1302 is further configured to: receive a connection establishment request message sent by the first UE; and correspondingly, the processor 1303 is configured to determine whether a remaining link capacity of the first small station is less than Or equal to the preset link remaining capacity threshold; the transmitter 1301 is specifically configured to: when the processor 1303 determines that the link remaining capacity of the first small station is less than or equal to a preset link remaining capacity threshold, The station gateway sends the first assisting station request message.
  • the receiver 1302 is further configured to: receive the assistance request message sent by the first UE; and correspondingly, the processor 1303 is configured to generate, according to the assistance request message, the first assistance station request Message.
  • the first assisting small station request message includes an identifier of the first UE.
  • the device of this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 2 and the first small station side of the method embodiment shown in FIG. 4 to FIG. 6.
  • the implementation principle and technical effects are similar, and details are not described herein. .
  • FIG. 14 is a schematic structural diagram of Embodiment 6 of a device for resource allocation according to the present invention; the device is a first user equipment UE; as shown in FIG. 14, the device in this embodiment may include: a transmitter 1401 and a processor 1402.
  • the transmitter 1401 is configured to send a connection establishment request message to the at least one small station, and the processor 1402 determines whether a connection establishment accept message is received.
  • the transmitter 1401 is further configured to determine, by the processor 1402, that the connection establishment acceptance is not received. After the message, an assistance request message is sent to the at least one small station.
  • the at least one small station is a small station with a theoretical rate between the first UE and a preset rate threshold.
  • the device in this embodiment may be used to implement the technical solution of the first UE side in the method embodiment shown in FIG. 6.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例提供一种资源分配的方法、装置及系统。通过第一小站向小站网关发送第一协助小站请求消息;所述第一小站接收所述小站网关发送的第一协助小站响应消息,所述第一协助小站响应消息包括第二小站的标识;所述第一小站接收所述第一UE发送的所述第一消息,并根据所述第二小站的标识将所述第一消息发送至所述第二小站,以使所述第二小站将所述第一消息转发至所述小站网关;使得第一小站能够通过第二小站与小站网关之间的回传链路将第一UE发送的第一消息发送至小站网关;从而解决了现有技术中存在的由于UE分布不均匀,而导致部分小站与小站网关之间的回传链路受限,另一部分小站与该小站网关之间的回传链路得不到充分利用的问题。

Description

资源分配的方法、装置及系统 技术领域
本发明实施例涉及通信技术,尤其涉及一种资源分配的方法、装置及系统。
背景技术
热点覆盖是长期演进(LTE,Long Term Evolution)考虑的重点,由于90%的业务发生在室内及热点地区,因此针对解决热点覆盖、提供高速率接入的小站(small cell)被提出。
现有技术中,用户设备(UE,User Equipment)发送业务数据的过程为:首先,该UE向小站发送连接建立请求消息,并在接收到该小站返回的连接建立接受消息后,确定与该小站建立连接,并通过与该小站之间的无线链路将业务数据发送至该小站;其次,该小站再通过该小站与小站网关之间的回传(backhaul)链路将业务数据转发至该小站网关;之后,该小站网关将业务数据发送至核心网,由核心网再对UE发送的业务数据进行转发。
但是,现有技术中,存在由于UE分布不均,而导致部分小站与小站网关之间的回传链路受限,另一部分小站与该小站网关之间的回传链路得不到充分利用的问题。
发明内容
本发明实施例提供一种资源分配的方法、装置及系统,用以解决现有技术中存在的由于UE分布不均,而导致部分小站与小站网关之间的回传链路受限,另一部分小站与该小站网关之间的回传链路得不到充分利用的问题。
第一方面,本发明实施例提供一种资源分配的方法,包括:
小站网关接收第一小站发送的第一协助小站请求消息;其中,所述第一协助小站请求消息用于指示所述小站网关确定将所述第一小站接收 到的第一消息转发至所述小站网关的小站;所述第一消息为第一用户设备UE发送至所述第一小站的消息;
所述小站网关根据能够与所述第一小站进行站间通信的其他小站的链路剩余容量,确定将所述第一消息转发至所述小站网关的小站为第二小站;
所述小站网关向所述第一小站发送第一协助小站响应消息,所述第一协助小站响应消息包括所述第二小站的标识,所述第二小站的标识用于指示所述第一小站通过站间通信将所述第一消息发送至所述第二小站。
结合第一方面,在第一方面的第一种可能实现的方式中,所述小站网关根据能够与所述第一小站进行站间通信的其他小站的链路剩余容量,确定将所述第一消息转发至所述小站网关的小站为第二小站,包括:
所述小站网关根据能够与所述第一小站进行站间通信的其他小站的链路剩余容量,将链路剩余容量最大的小站确定为所述第二小站。
结合第一方面,在第一方面的第二种可能实现的方式中,所述小站网关接收第一小站发送的第一协助小站请求消息,包括:
所述小站网关接收多个小站发送的所述第一协助小站请求消息,所述多个小站包括所述第一小站,所述第一协助小站请求消息包括所述第一UE的标识;
相应的,所述小站网关根据能够与所述小站进行站间通信的其他小站的链路剩余容量,确定将所述第一消息转发至所述小站网关的小站为第二小站,包括:
对于所述多个小站中的每一个小站,所述小站网关根据能够与每一个小站进行站间通信的其他小站的链路剩余容量,确定每一个小站对应的小站;
所述小站网关根据每一个小站对应的小站的链路剩余容量,确定第三小站及所述第三小站对应的所述第一小站,并将所述第三小站作为所述第二小站。
结合第一方面的第二种可能实现的方式,在第一方面的第三种可能 实现的方式中,所述小站网关根据每一个小站对应的小站的链路剩余容量,确定第三小站,包括:
所述小站网关根据每一个小站对应的小站的链路剩余容量,确定每一个小站对应的小站中的链路剩余容量最大的所述第三小站。
结合第一方面的第二种可能实现的方式,在第一方面的第四种可能实现的方式中,所述小站网关接收多个小站发送的所述第一协助小站请求消息,所述多个小站包括所述第一小站,包括:
所述小站网关接收所述多个小站发送的多个协助小站请求消息,所述协助小站请求消息包括UE的标识,所述多个协助小站请求消息包括所述第一协助小站请求消息;所述小站网关接收多个小站发送的多个协助小站请求消息,包括:所述小站网关接收所述第一小站发送的所述第一协助小站请求消息;
相应的,所述对于所述多个小站中的每一个小站,所述小站网关根据能够与每一个小站进行站间通信的其他小站的链路剩余容量,确定每一个小站对应的小站,包括:
所述小站网关根据所述协助小站请求消息中包括的UE的标识,确定每一个UE的标识分别对应的一组小站;所述一组小站包括一个或多个小站;
对于每一个UE所对应的一组小站中的每一个小站,所述小站网关根据能够与所述每一个小站进行站间通信的其他小站的链路剩余容量,确定每一个小站对应的小站;
相应的,所述小站网关根据每一个小站对应的小站的链路剩余容量,确定第三小站及所述第三小站对应的所述第一小站,并将所述第三小站作为所述第二小站,包括:
所述小站网关采用二分图匹配算法,将每一个UE及所述多个小站中的每一个小站分别作为两组顶点,将每一个UE所对应的一组小站中的每一个小站对应的小站的链路剩余容量作为对应两个顶点之间的边权,确定第三小站及所述第三小站对应的所述第一小站,并将所述第三小站作为所述第二小站。
第二方面,本发明实施例提供一种资源分配的方法,包括:
第一小站向小站网关发送第一协助小站请求消息,所述第一协助小站请求消息用于指示所述小站网关确定将所述第一小站接收到的第一消息转发至所述小站网关的小站;所述第一消息为第一用户设备UE发送至所述第一小站的消息;
所述第一小站接收所述小站网关发送的第一协助小站响应消息,所述第一协助小站响应消息包括第二小站的标识;
所述第一小站接收所述第一UE发送的所述第一消息,并根据所述第二小站的标识将所述第一消息发送至所述第二小站,以使所述第二小站将所述第一消息转发至所述小站网关。
结合第二方面,在第二方面的第一种可能实现的方式中,所述第一小站向小站网关发送第一协助小站请求消息,包括:
所述第一小站接收所述第一UE发送的连接建立请求消息;
所述第一小站确定所述第一小站的链路剩余容量小于或等于预设的链路剩余容量阈值时,则向所述小站网关发送所述第一协助小站请求消息。
结合第二方面,在第二方面的第二种可能实现的方式中,所述第一小站向小站网关发送第一协助小站请求消息,包括:
所述第一小站接收所述第一UE发送的协助请求消息,根据所述协助请求消息向所述小站网关发送所述第一协助小站请求消息。
结合第二方面或第二方面的第一种至第二种任一种可能实现的方式,在第二方面的第三种可能实现的方式中,所述第一协助小站请求消息包括所述第一UE的标识。
第三方面,本发明实施例提供一种资源分配的方法,包括:
第一用户设备UE向至少一个小站发送连接建立请求消息;
所述第一UE确定是否接收到连接建立接受消息;
若否,则向所述至少一个小站发送协助请求消息。
结合第三方面,在第三方面的第一种可能实现的方式中,所述至少一个小站为与所述第一UE之间的理论速率大于预设速率门限的小站。
第四方面,本发明实施例提供一种资源分配的装置,所述装置为小站网关,所述装置包括:
接收模块,用于接收第一小站发送的第一协助小站请求消息;其中,所述第一协助小站请求消息用于指示所述小站网关确定将所述第一小站接收到的第一消息转发至所述小站网关的小站;所述第一消息为第一用户设备UE发送至所述第一小站的消息;
处理模块,用于根据能够与所述第一小站进行站间通信的其他小站的链路剩余容量,确定将所述第一消息转发至所述小站网关的小站为第二小站;
发送模块,用于向所述第一小站发送第一协助小站响应消息,所述第一协助小站响应消息包括所述第二小站的标识,所述第二小站的标识用于指示所述第一小站通过站间通信将所述第一消息发送至所述第二小站。
结合第四方面,在第四方面的第一种可能实现的方式中,所述处理模块具体用于:
根据能够与所述第一小站进行站间通信的其他小站的链路剩余容量,将链路剩余容量最大的小站确定为所述第二小站。
结合第四方面,在第四方面的第二种可能实现的方式中,所述接收模块具体用于:
接收多个小站发送的所述第一协助小站请求消息,所述多个小站包括所述第一小站,所述第一协助小站请求消息包括所述第一UE的标识;
相应的,所述处理模块具体用于:
对于所述多个小站中的每一个小站,根据能够与每一个小站进行站间通信的其他小站的链路剩余容量,确定每一个小站对应的小站;根据每一个小站对应的小站的链路剩余容量,确定第三小站及所述第三小站对应的所述第一小站,并将所述第三小站作为所述第二小站。
结合第四方面的第二种可能实现的方式,在第四方面的第三种可能实现的方式中,所述处理模块具体用于:
根据每一个小站对应的小站的链路剩余容量,确定每一个小站对应的小站中的链路剩余容量最大的所述第三小站。
结合第四方面的第二种可能实现的方式,在第四方面的第四种可能实现的方式中,所述接收模块具体用于:
接收所述多个小站发送的多个协助小站请求消息,所述协助小站请求消息包括UE的标识,所述多个协助小站请求消息包括所述第一协助小站请求消息;其中,所述多个发送的多个协助小站请求消息,包括所述第一小站发送的所述第一协助小站请求消息;
相应的,所述处理模块具体用于:
根据所述协助小站请求消息中包括的UE的标识,确定每一个UE的标识分别对应的一组小站;所述一组小站包括一个或多个小站;
对于每一个UE所对应的一组小站中的每一个小站,根据能够与所述每一个小站进行站间通信的其他小站的链路剩余容量,确定每一个小站对应的小站;
采用二分图匹配算法,将每一个UE及所述多个小站中的每一个小站分别作为两组顶点,将每一个UE所对应的一组小站中的每一个小站对应的小站的链路剩余容量作为对应两个顶点之间的边权,确定第三小站及所述第三小站对应的所述第一小站,并将所述第三小站作为所述第二小站。
第五方面,本发明实施例提供一种资源分配的装置,所述装置为第一小站,所述装置包括:
发送模块,用于向小站网关发送第一协助小站请求消息,所述第一协助小站请求消息用于指示所述小站网关确定将所述第一小站接收到的第一消息转发至所述小站网关的小站;所述第一消息为第一用户设备UE发送至所述第一小站的消息;
接收模块,用于接收所述小站网关发送的第一协助小站响应消息,所述第一协助小站响应消息包括第二小站的标识;
所述接收模块,还用于接收所述第一UE发送的所述第一消息;
所述发送模块,还用于根据所述第二小站的标识将所述第一消息发送至所述第二小站,以使所述第二小站将所述第一消息转发至所述小站网关。
结合第五方面,在第五方面的第一种可能实现的方式中,所述接收模块还用于:
接收所述第一UE发送的连接建立请求消息;
相应的,所述发送模块,具体用于确定所述第一小站的链路剩余容量小于或等于预设的链路剩余容量阈值时,向所述小站网关发送所述第一协助小站请求消息。
结合第五方面,在第五方面的第二种可能实现的方式中,所述接收模块还用于:接收所述第一UE发送的协助请求消息;
相应的,所述发送模块,具体用于根据所述协助请求消息向所述小站网关发送所述第一协助小站请求消息。
结合第五方面或第五方面的第一种至第二种任一种可能实现的方式,在第五方面的第三种可能实现的方式中,所述第一协助小站请求消息包括所述第一UE的标识。
第六方面,本发明实施例提供一种资源分配的装置,所述装置为第一用户设备UE,所述装置包括:
发送模块,用于向至少一个小站发送连接建立请求消息;
处理模块,确定是否接收到连接建立接受消息;
所述发送模块,还用于在所述处理模块确定未接收到连接建立接受消息后,向所述至少一个小站发送协助请求消息。
结合第六方面,在第六方面的第一种可能实现的方式中,所述至少一个小站为与所述第一UE之间的理论速率大于预设速率门限的小站。
第七方面,本发明实施例提供一种资源分配的系统,包括:第四方面或第四方面的第一种至第四种任一种所述的小站网关、第五方面或第五方面的第一种至第三种任一种所述的第一小站及第六方面或第六方面的第一种所述的第一UE。
本发明提供一种资源分配的方法、装置及系统,通过第一小站向小站网关发送第一协助小站请求消息;所述第一小站接收所述小站网关发送的第一协助小站响应消息,所述第一协助小站响应消息包括第二小站的标识;所述第一小站接收所述第一UE发送的所述第一消息,并根据所述第二小站的标识将所述第一消息发送至所述第二小站,以使所述第二小站将所述第一消息转发至所述小站网关;使得第一小站能够通过第二小站与小站网关之间的回传链路将第一UE发送的第一消息发送至小站网关;从而解决了现有技术中存在的由于UE分布不均匀,而导致部分小站 与小站网关之间的回传链路受限,另一部分小站与该小站网关之间的回传链路得不到充分利用的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明资源分配的方法的应用场景示意图;
图2为本发明资源分配的方法实施例一的流程图;
图3为本发明资源分配的方法实施例二的流程图;
图4为本发明资源分配的方法实施例三的流程图;
图5为本发明资源分配的方法实施例四的流程图;
图6为本发明资源分配的方法实施例五的流程图;
图7A为本发明资源分配的方法实施例六的示意图一;
图7B为本发明资源分配的方法实施例六的示意图二;
图7C为本发明资源分配的方法实施例六的示意图三;
图7D为本发明资源分配的方法实施例六的示意图四;
图8为本发明用户平均接入成功率与用户数的关系曲线;
图9为本发明资源分配的装置实施例一的结构示意图;
图10为本发明资源分配的装置实施例二的结构示意图;
图11为本发明资源分配的装置实施例三的结构示意图;
图12为本发明资源分配的装置实施例四的结构示意图;
图13为本发明资源分配的装置实施例五的结构示意图;
图14为本发明资源分配的装置实施例六的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整 地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明资源分配的方法的应用场景示意图;如图1所示,小站与小站网关之间存在回传链路。UE的数据发送业务数据时:首先UE向小站发送连接建立请求消息,并在接收到小站返回的连接建立接受消息,确定与小站建立连接之后,通过与小站之间的无线链路将业务数据发送至该小站;该小站通过其与小站网关之间的回传链路将业务数据发送至该小站网关;之后,该小站网关将业务数据发送至核心网,由核心网再对UE发送的业务数据进行转发。
但是,当UE分布不均(例如如图1所示,小站1~小站5附近的UE较多,而小站6~小站8附近的UE较少)时,会出现小站1~小站5与小站网关之间的回传链路受限,小站6~小站8与小站网关之间的回传链路得不到充分利用的问题。
其中,回传链路受限可以被认为是回传链路的剩余容量小于预设阈值。小站的回传链路受限可能会导致UE不能接入该小站。例如小站接收到UE发送的连接建立请求消息后,若确定该小站与小站网关之间的回传链路剩余容量小于所述预设阈值,则向该UE返回连接建立拒绝消息。
图2为本发明资源分配的方法实施例一的流程图,如图2所示,本实施例的方法可以包括:
步骤201、第一小站向小站网关发送第一协助小站请求消息;其中,所述第一协助小站请求消息用于指示所述小站网关确定将所述第一小站接收到的第一消息转发至所述小站网关的小站;所述第一消息为第一用户设备UE发送至所述第一小站的消息;
可选的,所述第一小站可以在接收到第一UE发送的连接建立请求消息,且确定所述第一小站的链路剩余容量小于或等于预设的链路剩余容量阈值后,执行步骤201;或者,所述第一小站可以在接收到第一UE发送的协助请求消息后,执行步骤201。
步骤202、所述第一小站接收所述小站网关发送的第一协助小站响应消息,所述第一协助小站响应消息包括第二小站的标识;
步骤203、所述第一小站接收所述第一UE发送的所述第一消息,并根据所述第二小站的标识将所述第一消息发送至所述第二小站,以使所述第二小站将所述第一消息转发至所述小站网关。
现有技术中,小站接收到UE发送的消息时,需要通过该小站与小站网关之间的回传链路将消息发送至小站网关。本发明中,第一小站向小站网关发送第一协助小站请求消息;所述第一小站接收所述小站网关发送的第一协助小站响应消息,所述第一协助小站响应消息包括第二小站的标识;所述第一小站接收所述第一UE发送的所述第一消息,并根据所述第二小站的标识将所述第一消息发送至所述第二小站,以使所述第二小站将所述第一消息转发至所述小站网关。
现有技术中,由于小站接收到UE发送的消息时,需要通过该小站与小站网关之间的回传链路将消息发送至小站网关,因此当UE分布不均匀,会出现部分小站与小站网关之间链路受限,而另一部分小站与该小站网关之间回传链路并没有得到充分利用的问题。本发明中,通过第一小站向小站网关发送第一协助小站请求消息;所述第一小站接收所述小站网关发送的第一协助小站响应消息,所述第一协助小站响应消息包括第二小站的标识;所述第一小站接收所述第一UE发送的所述第一消息,并根据所述第二小站的标识将所述第一消息发送至所述第二小站,以使所述第二小站将所述第一消息转发至所述小站网关;使得第一小站能够通过第二小站与小站网关之间的回传链路将第一UE发送的第一消息发送至小站网关;从而解决了现有技术中存在的由于UE分布不均匀,而导致部分小站与小站网关之间的回传链路受限,另一部分小站与该小站网关之间的回传链路得不到充分利用的问题。
图3为本发明资源分配的方法实施例二的流程图,如图3所示,本实施例的方法可以包括:
步骤301、小站网关接收第一小站发送的第一协助小站请求消息;其中,所述第一协助小站请求消息用于指示所述小站网关确定将所述第一小站接收到的第一消息转发至所述小站网关的小站;所述第一消息为第一UE发送至所述第一小站的消息;
步骤302、所述小站网关根据能够与所述第一小站进行站间通信的其 他小站的链路剩余容量,确定将所述第一消息转发至所述小站网关的小站为第二小站;
步骤303、所述小站网关向所述第一小站发送第一协助小站响应消息,所述第一协助小站响应消息包括所述第二小站的标识,所述第二小站的标识用于指示所述第一小站通过站间通信将所述第一消息发送至所述第二小站。
本实施例中,通过小站网关根据第一小站的第一协助小站请求,并为所述第一小站选择对应的第二小站,使得第一小站能够通过站间通信将第一UE发送的第一消息转发至所述第二小站,并由所述第二小站将所述第一消息转发至所述小站网关;从而解决了现有技术中存在的由于UE分布不均匀,而导致部分小站与小站网关之间的回传链路受限,另一部分小站与该小站网关之间的回传链路得不到充分利用的问题。
图4为本发明资源分配的方法实施例三的流程图,如图4所示,本实施例的方法可以包括:
步骤401、第一UE向第一小站发送连接建立请求消息;
可选的,当所述第一UE开机后,选择第一小站的小区驻留时,所述第一UE可以向所述第一小站发送连接建立请求消息;或者,当所述第一UE处于空闲状态进行小区重选,且选择第一小站的小区进行驻留时,所述第一UE可以向所述第一小站发送连接建立请求消息。
步骤402、所述第一小站判断所述第一小站的链路剩余容量是否小于或等于预设的链路剩余容量阈值;
若是,则执行步骤405;否则,执行步骤403。
可选的,所述第一小站的链路剩余容量可以为所述第一小站与所述小站网关之间的回传链路的剩余容量;或者,所述第一小站的链路剩余容量可以为min(所述第一小站与所述小站网关之间的回传链路的剩余容量,所述第一UE所估计的、所述第一UE与所述第一小站间的理论速率)。
当所述第一小站的链路剩余容量为min(所述第一小站与所述小站网关之间的回传链路的剩余容量,所述第一UE所估计的、所述第一UE与所述第一小站间的理论速率)时,所述回传链路的剩余容量的单位应与理 论速率单位一致,例如可以为bit/s。
其中,min为取小运算,min(a,b)为a和b中的较小值。
可选的,第一小站可以根据子帧配比确定所述第一小站与所述小站网关之间的回传链路的容量,并通过所述第一小站与所述小站网关之间已使用的回传链路的容量,确定所述第一小站与所述小站网关之间的回传链路的剩余容量。
例如,在LTE的帧结构中,一个无线帧(Radio Frame)是10ms,一个无线帧包含10个子帧;假设一个无线帧中的2个子帧分配给第一小站与小站网关之间的回传链路,且系统带宽为10M(也即包括50个资源块(RB,Resource Block),则分配给第一小站与小站网关之间的回传链路的总资源块数为50*M个。进一步的,若当前已使用的资源块数为20*2个,则第一小站与小站网关之间的回传链路的剩余容量为30*2个资源块。
可选的,所述第一UE可以通过所述连接建立请求消息将所估计出的所述第一UE与所述第一小站之间的理论速率发送至所述第一小站。
可选的,所述UE可以通过如下公式(1),估计所述第一UE与所述第j小站间的理论速率
Figure PCTCN2016079417-appb-000001
Figure PCTCN2016079417-appb-000002
其中,Pj为第j小站的发射功率,hj为第j小站与第一UE之间的小尺度衰落,ζj为第j小站与第一UE之间的路径损耗,M为第一UE能够搜索到信号的小站的个数,hq为第q小站与第一UE之间的小尺度衰落,Nuser为信道噪声。
需要说明的是,本实施例中|hj|为对hj取模。
其中,所述第一UE可以通过如下公式(2),计算第j小站与第一UE之间的路径损耗ζj
Figure PCTCN2016079417-appb-000003
其中,c为光速,fc为载波频率,do为环境参考距离,rj为第j小站与第一UE之间的距离。
可选的,所述第一小站可以根据第一小站与小站网关之间的剩余资源块数RBnum,采用如下公式(3),确定剩余资源块数对应的剩余速率Cunused
Cunused=((每TTI的符号数-PDCCH符号数)×每资源块频域子载波数-RS信号占用的RE数)×RBnum×每符号承载bit数×码率/TTI时长
需要说明的是,当第一小站的链路剩余容量的单位与所述链路剩余容量阈值的单位应该一致。
步骤403、所述第一小站向所述第一UE返回连接建立接受消息;
需要说明的是,当第一小站确定所述第一小站的链路剩余容量大于链路剩余容量阈值时,说明所述第一小站与小站网关之间的回传链路未出现链路受限的问题,因此可以继续使用第一小站与小站网关之间的回传链路传输所述第一UE的相关消息。
步骤404、所述第一小站接收所述第一UE发送的第一消息,并通过所述第一小站与小站网关之间的回传链路将所述第一消息发送至所述小站网关;
需要说明的是,步骤404执行完之后结束。
步骤405、所述第一小站向所述小站网关发送第一协助小站请求消息;其中,所述第一协助小站请求消息用于指示所述小站网关确定将所述第一小站接收到的第一消息转发至所述小站网关的小站;所述第一消息为第一UE发送至所述第一小站的消息;
步骤406、所述小站网关根据能够与所述第一小站进行站间通信的其他小站的链路剩余容量,确定将所述第一消息转发至小站网关的小站为第二小站;
可选的,所述其他小站的链路剩余容量可以为所述其他小站与所述小站网关之间的回传链路的剩余容量;或者,所述其他小站的链路剩余容量可以为min(其他小站与所述小站网关之间的回传链路的剩余容量,所述其他小站与所述第一小站之间的站间链路的剩余容量)。
需要说明的是,当其他小站与第一小站之间的站间链路的容量非常大(也即,不可能受限)时,可以不考虑其他小站与第一小站之间的站间链路,而仅考虑其他小站与小站网关之间的回传链路。
可选的,所述能够与所述第一小站进行站间通信的其他小站的标识可以由所述第一小站发送至所述小站网关,例如可以由所述第一小站通过所述第一协助小站请求消息发送至所述小站网关。
可选的,所述能够与所述第一小站进行站间通信的其他小站与所述第一小站之间的站间链路的剩余容量也可以由所述第一小站发送至所述小站网关,例如可以由所述第一小站通过所述第一协助小站请求消息发送至所述小站网关;或者,所述小站网关也可以通过向所述其他小站发送查询消息的方式获得所述其他小站与所述第一小站之间的站间链路的剩余容量。
可选的,所述小站网关可以通过向所述其他小站发送查询消息的方式获得所述其他小站与所述小站网关之间的回传链路的剩余容量,或者,所述其他小站与所述小站网关之间的回传链路的剩余容量也可以由所述小站网关自身计算获得。
可选的,步骤406具体可以为:所述小站网关根据能够与所述第一小站进行站间通信的其他小站的链路剩余容量,将链路剩余容量最大的小站确定为所述第二小站。
例如,若能够与所述第一小站进行站间通信的其他小站包括小站1、小站2、小站3;其中,小站1的链路剩余容量为100bit/s,小站2的链路剩余容量为20bit/s,小站3的链路剩余容量为200bit/s;则可以将小站3确定为所述第二小站。
步骤407、所述小站网关向所述第一小站发送第一协助小站响应消息,所述第一协助小站响应消息包括所述第二小站的标识;
步骤408、所述第一小站向所述第一UE发送连接建立接受消息;
步骤409、所述第一小站接收所述第一UE发送的所述第一消息,并通过所述第一小站与所述第二小站之间的站间链路将所述第一消息发送至所述第二小站,以使所述第二小站通过所述第二小站与所述小站网关之间的回传链路将所述第一消息发送至所述小站网关。
本实施例中,通过第一小站在确定自身的链路剩余容量不足时,向小站网关发送第一协助小站请求消息;所述小站网关为所述第一小站与第一UE建立连接时分配对应的第二小站;所述第一小站将所述第一UE 发送的第一消息通过站间通信发送至所述第二小站,以使所述第二小站通过所述第二小站与所述小站网关之间的站间链路将所述第一消息转发至所述小站网关;使得第一小站能够通过第二小站与小站网关之间的回传链路将第一UE发送的第一消息发送至小站网关;从而解决了现有技术中存在的由于UE分布不均匀,而导致部分小站与小站网关之间的回传链路受限,另一部分小站与该小站网关之间的回传链路得不到充分利用的问题。
图5为本发明资源分配的方法实施例四的流程图,如图5所示,本实施例的方法可以包括:
步骤501、第一UE确定能够搜索到信号的A个小站,所述A个小站包括第一小站;
其中,A为正整数。
步骤502、对于所述A个小站中的每一个小站,所述第一UE估计所述第一UE与每一个小站间的理论速率;
具体的,对于所述A个小站中的每一个小站,所述第一UE采用公式(1)估计所述第一UE与每一个小站间的理论速率。
步骤503、所述第一UE确定所述第一UE与所述A个小站中的B个小站之间的理论速率大于预设速率门限,所述B个小站包括所述第一小站;
其中,B为正整数且B小于等于A。
步骤504、所述第一UE分别向所述B个小站发送连接建立请求消息;
步骤505、所述B个小站分别确定自身的链路剩余容量是否大于预设的链路剩余容量阈值;确定自身的链路剩余容量大于预设的链路剩余容量阈值的小站向所述第一UE发送连接建立接受消息,确定自身的链路剩余容量小于或等于预设链路剩余容量阈值的小站向所述第一UE发送连接建立拒绝消息;
其中,所述自身的链路剩余容量与步骤402中第一小站的链路剩余容量类似,在此不再赘述。
步骤506、所述第一UE确定是否接收到B个小站中至少一个小站发 送的连接建立接受消息;
若是,则执行步骤507;否则执行步骤509。
步骤507、所述第一UE确定与所述至少一个小站中所对应的理论速率最大的小站建立连接,并向所述理论速率最大的小站发送第一消息;
步骤508、所述理论速率最大的小站接收到所述第一消息后,通过与小站网关之间的回传链路将所述第一消息转发至所述小站网关。
需要说明的是,步骤508执行完之后结束。
步骤509、所述第一UE向所述B个小站分别发送协助请求消息;
步骤510、所述B个小站接收到所述协助请求消息后分别根据所述协助请求消息向小站网关发送第一协助小站请求消息,所述第一协助小站请求消息包括所述第一UE的标识;
例如,若B个小站分别为小站1、小站2、小站3,则小站1、小站2、小站3分别向所述小站网关发送第一协助小站请求消息。
步骤511、对于所述B个小站中的每一个小站,所述小站网关根据能够与每一个小站进行站间通信的其他小站的链路剩余容量,确定每一个小站对应的小站;其中,所述第一小站对应的小站为第二小站;
具体的,对于所述B个小站中的每一个小站,所述小站网关根据能够与每一个小站进行站间通信的其他小站的链路剩余容量,将链路剩余容量最大的小站确定为每一个小站对应的小站;
例如,假设所述B个小站包括第一小站、小站2及小站3,则对于第一小站,所述小站网关根据能够与第一小站进行站间通信的其他小站的链路剩余容量,将链路剩余容量最大的小站,确定为所述第一小站对应的小站;对于小站2,所述小站网关根据能够与小站2进行站间通信的其他小站的链路剩余容量,将链路剩余容量最大的小站,确定为所述小站2对应的小站;对于小站3,所述小站网关根据能够与小站3进行站间通信的其他小站的链路剩余容量,将链路剩余容量最大的小站,确定为所述小站3对应的小站。
可选的,所述其他小站的链路剩余容量可以为所述其他小站与所述小站网关之间的回传链路的剩余容量;或者,所述其他小站的链路剩余容量可以为min(其他小站与所述小站网关之间的回传链路的剩余容量, 其他小站与每一个小站之间的站间链路的剩余容量)或者,所述其他小站的链路剩余容量可以为min(其他小站与所述小站网关之间的回传链路的剩余容量,其他小站与每一个小站之间的站间链路的剩余容量,所述第一UE所估计的、所述第一UE与其他小站间的理论速率)。
例如,对于能够与小站2进行站间通信的小站3的剩余容量可以为所述小站3与小站网关之间的回传链路的剩余容量;或者也可以为min(小站3与小站网关之间的回传链路的剩余容量,小站3与小站2之间的站间链路的剩余容量);或者也可以为min(小站3与小站网关之间的回传链路的剩余容量,小站3与小站2之间的站间链路的剩余容量,第一UE所估计的、所述第一UE与小站3间的理论速率)。
步骤512、所述小站网关根据每一个小站对应的小站的链路剩余容量,确定第三小站及所述第三小站对应的所述第一小站,并将所述第三小站作为所述第二小站;
可选的,所述小站网关根据每一个小站对应的小站的链路剩余容量,确定第三小站可以包括:
所述小站网关根据每一个小站对应的小站的链路剩余容量,确定每一个小站对应的小站中的链路剩余容量最大的所述第三小站。
步骤513、所述小站网关向所述第一小站发送第一协助小站响应消息,所述第一协助响应消息包括所述第二小站的标识;
其中,所述第二小站的标识用于指示所述第一小站通过站间通信将所述第一消息发送至所述第二小站;
步骤514、所述第一小站向所述第一UE发送连接建立接受消息;
步骤515、所述第一UE向所述第一小站发送所述第一消息;
步骤516、所述第一小站通过站间通信将所述第一消息发送至所述第二小站,以使所述第二小站通过所述第二小站与所述小站网关之间的回传链路将所述第一消息转发至所述小站网关。
本实施例中,通过第一UE向B个小站发送连接建立请求消息;所述B个小站分别确定自身的链路剩余容量是否大于预设的链路剩余容量阈值;确定自身的链路剩余容量大于预设的链路剩余容量阈值的小站向所述第一UE发送连接建立接受消息,确定自身的链路剩余容量小于或等于 预设链路剩余容量阈值的小站向所述第一UE发送连接建立拒绝消息;使得当B个小站中的某一个或多个小站的链路剩余容量不足时,第一UE可以向B个小站中剩余的某一小站发送第一消息;该某一小站将第一消息通过与小站网关之间的回传链路转发至所述小站网关;从而解决了现有技术中存在的由于UE分布不均匀,而导致部分小站与小站网关之间的回传链路受限,另一部分小站与该小站网关之间的回传链路得不到充分利用的问题。通过B个小站的链路剩余容量都不足时,第一UE向B个小站分别发送协助请求消息;所述B个小站分别向小站网关发送第一协助小站请求消息;小站网关在所述B个小站中确定第一小站接收第一UE发送的第一消息,且第一小站通过站间通信将第一小站转发至第二小站,以使第二小站通过与小站网关之间的回传链路将所述第一消息转发至所述小站网关;使得当B个小站的链路剩余容量都不足时,小站网关能够在B个小站中确定接收第一UE发送的第一消息的第一小站,及将第一小站接收到的第一消息转发至小站网关的第二小站;从而解决了现有技术中存在的由于UE分布不均匀,而导致部分小站与小站网关之间的回传链路受限,另一部分小站与该小站网关之间的回传链路得不到充分利用的问题。
图6为本发明资源分配的方法实施例五的流程图,如图6所示,本实施例的方法可以包括:
步骤601、第一UE向第一组小站发送第一协助请求消息,第二UE向第二组小站发送第二协助请求消息;其中,所述第一组小站中包括第一小站,所述第二组小站中包括第三小站;
需要说明的是,所述第一UE向第一组小站发送第一协助请求消息的时机与执行步骤504的时机类似,在此不再赘述;所述第一组小站例如可以为步骤504中的所述B个小站。所述第二UE向所述第二组小站发送第二协助请求消息的时机与所述第一UE向第一组小站发送第一协助请求消息的时机类似,在此不再赘述。
需要说明的是,所述第一组小站包括至少一个小站,所述第二组小站包括至少一个小站;一个小站可以同时包括在第一组小站及第二组小站中,例如若第一UE向小站1发送协助请求消息,第二UE也向小站1 发送协助请求消息,第一组小站及第二组小站中都包括小站1。
步骤602、所述第一组小站中的各小站分别向小站网关发送第一协助小站请求消息,所述第一协助小站请求消息包括所述第一UE的标识;所述第二组小站中的各小站分别向所述小站网关发送第二协助小站请求消息,所述第二协助小站请求消息包括所述第二UE的标识;
步骤603、对于第一组小站中的每一个小站,所述小站网关根据能够与所述每一个小站进行站间通信的其他小站的链路剩余容量,确定第一组小站中的每一个小站对应的小站;对于第二组小站中的每一个小站,所述小站网关根据能够与所述每一个小站进行站间通信的其他小站的链路剩余容量,确定第二组小站中的每一个小站对应的小站;
需要说明的是,步骤603与步骤511类似,在此不再赘述。
步骤604、所述小站网关采用二分图匹配算法,确定所述第一小站与所述第一UE建立连接,第二小站将所述第一小站接收到的所述第一UE发送的第一消息转发至所述小站网关;并确定所述第三小站与所述第二UE建立连接,第四小站将所述第三小站接收到的所述第二UE发送的第二消息转发至所述小站网关;
具体的,所述小站网关采用二分图匹配算法,将第一UE及第二UE作为一组顶点,将第一组小站及第二组小站中包括的小站作为另一组顶点,将第一组小站中的每一个小站对应的小站的链路剩余容量作为第一UE及所对应小站两个顶点之间的边权,将第二组小站中的每一个小站对应的小站的链路剩余容量作为第二UE及所对应小站两个顶点之间边权,确定所述第一小站与所述第一UE建立连接,第二小站将所述第一小站接收到的所述第一UE发送的第一消息转发至所述小站网关;并确定所述第三小站与所述第二UE建立连接,第四小站将所述第三小站接收到的所述第二UE发送的第二消息转发至所述小站网关。
需要说明的是,将第一组小站及第二组小站中包括的小站作为第二组顶点时,顶点与小站是一一对应的,即一个顶点对应一个小站;例如,若第一组小站包括小站1、小站2、小站3,第二组小站包括小站2、小站3、小站4,则第二组顶点包括:小站1、小站2、小站3、小站4。
步骤605、所述小站网关向所述第一小站发送第一协助小站响应消 息,所述第一协助小站响应消息包括所述第二小站的标识;所述小站网关向所述第三小站发送第二协助小站响应消息,所述第二协助小站响应消息包括所述第四小站的标识;
步骤606、所述第一小站向所述第一UE发送连接建立接受消息,所述第三小站向所述第二UE发送连接建立接受消息;
步骤607、所述第一UE向所述第一小站发送所述第一消息,所述第二UE向所述第三小站发送所述第二消息;
步骤608、所述第一小站将所述第一消息通过所述第一小站与所述第二小站之间的站间链路发送至所述第二小站,以使所述第二小站将所述第一消息转发至所述小站网关;所述第三小站将所述第二消息通过所述第三小站与所述第四小站之间的站间链路发送至所述第四小站,以使所述第四小站将所述第二消息转发至所述小站网关。
本实施例中,通过小站网关在接收到与第一UE相关的第一协助小站请求消息及与第二UE相关的第二协助小站请求消息之后,采用二分图匹配算法同时确定第一小站与所述第一UE建立连接,且第二小站将第一小站接收到的所述第一UE发送的第一消息转发至小站网关;确定第三小站与所述第二UE建立连接,且第四小站将第三小站接收到的所述第二UE发送的第二消息转发至小站网关;从而解决了现有技术中存在的由于UE分布不均匀,而导致部分小站与小站网关之间的回传链路受限,另一部分小站与该小站网关之间的回传链路得不到充分利用的问题。
需要说明的是,本实施例中同时针对两个UE(第一UE及第二UE)确定了与UE建立连接的小站及将UE发送的消息转发至小站网关的小站仅为举例,本实施例的方法可以同时针对任意多个UE进行处理。
本发明资源分配的方法实施例六
以下为对于多个UE,小站网关采用二分图匹配算法,同时确定与每一个UE建立连接的小站及将每一个UE发送的消息转发至小站网关的小站的举例说明:
步骤1:UE1向第一组小站发送第一协助请求消息,UE2向第二组小站发送第二协助请求消息,UE3向第三组小站发送第三协助请求消息,UE4向第四组小站发送第四发送协助请求消息;第一组小站、第二组小 站、第三组小站及第四组小站都包括f5、f6、f7及f8。
需要说明的是,本步骤与步骤601类似。
步骤2:f5、f6、f7及f8都向小站网关发送第一协助小站请求消息、第二协助小站请求消息、第三协助小站请求消息及第四协助小站请求消息;
其中,第一协助小站请求消息包括UE1的标识,第二协助小站请求消息包括UE2的标识,第三协助小站请求消息包括UE3的标识,第四协助小站请求消息包括UE4的标识。
需要说明的是,本步骤与步骤602类似。
步骤3:小站网关确定第一组小站、第二组小站、第三组小站及第四组小站中的每一个小站对应的小站;
步骤4:小站网关将UE1、UE2、UE3、UE4作为一组顶点Yk(其中,k表示不同的UE,k等于1、2、3、4),将f5、f6、f7及f8作为另一组顶点Xi(其中,i表示不同的小站,i等于f5、f6、f7、f8);将各UE所对应的一组小站中的每一个小站对应的小站的链路剩余容量表示为:w[i,k];将w[i,k]作为对应的Xi与Yk两顶点之间的边权。
步骤5:通过给每一个顶点一个标识(顶标),把求最大权匹配的问题转换为求完备匹配的问题;设顶点Xi的顶标为A[i],顶点Yk的顶标为B[k]。在算法执行过程中的任一时刻,对于任一条边(i,k),A[i]+B[k]≥w[i,k]始终成立。
其中,假设获得的权重矩阵w为:
Figure PCTCN2016079417-appb-000004
表示:f5与UE1两顶点之间的边权为3,f5与UE2两顶点之间的边权为4,f5与UE3两顶点之间的边权为6,f5与UE4两顶点之间的边权为9;f6与UE1两顶点之间的边权为6,f6与UE2两顶点之间的边权为4,f6与UE3两顶点之间的边权为5,f6与UE4两顶点之间的边权为8;f7与UE1两顶点之间的边权为7,f7与UE2两顶点之间的边权为5,f7与UE3两顶点之间的边权为3,f7与UE4两顶点之间的边权为4;f8与UE1 两顶点之间的边权为0,f8与UE2两顶点之间的边权为0,f8与UE3两顶点之间的边权为0,f8与UE4两顶点之间的边权为0。
步骤6:初始化可行顶标A[i],B[k];令A[i]=max{w[i,k]},B[k]=0得到A[1]等于9,A[2]等于8,A[3]等于7,A[4]等于0。初始化后的可行顶标具体如下:
Figure PCTCN2016079417-appb-000005
需要说明的是,将二分图中所有满足A[i]+B[k]=w[i,k]的边(i,k)构成的子图,称作相等子图。由此,可以得到相等子图G(如图7A所示,图7A为本发明资源分配的方法实施例六的示意图一)。
步骤7:选取i=f5的点进行匹配;令S={f5},
Figure PCTCN2016079417-appb-000006
N(S)={4};其中,S记录相关的顶点,N(S)为与S中的顶点相连的顶点;根据k∈N(S)\T确定k=4;由于当前k=4的顶点未匹配,因此i=f5与k=4匹配(如图7A所示)。
步骤8:在图G中选取未匹配的顶点i=f6,则S={f6},
Figure PCTCN2016079417-appb-000007
N(S)={4};由于k=4的顶点已匹配i=f5的点,因此更新S={f5,f6},T={4},N(S)={4}。由于N(S)=T,此时需要修改相等子图G。
步骤9:根据
Figure PCTCN2016079417-appb-000008
确定d=2;根据d值,调整可行顶标A[i],B[k];其中,A[i]=A[i]-d(i∈S),B[k]=B[k]-d(k∈T)。调整后的可行顶标具体如下:
Figure PCTCN2016079417-appb-000009
根据A[i]+B[k]=w[i,k],得到新的相等子图G1(如图7B所示,图7B为本发明资源分配的方法实施例六的示意图二)。
步骤10:在新的相等子图G1中,N(S)={1,4},选取k∈N(S)\T,则k=1;由于当前k=1的顶点未匹配,因此i=f6与k=2匹配(如图7B所示)。
步骤11:在图G1中选取未匹配的点i=f7,则S={f7},
Figure PCTCN2016079417-appb-000010
N(S)={1};由于k=1的顶点已匹配i=f6的点,因此更新S={f6,f7},T={1},N(S)={1,4};选取k∈N(S)\T,则k=4;由于k=4的顶点已匹配i=f5的点,因此更新S={f5,f6,f7},T={1,4},N(S)={1,4};由于N(S)=T,此时需要修改相等子图G1。
步骤12:根据
Figure PCTCN2016079417-appb-000011
确定d;根据d值,调整可行顶点标号A[i],B[k];其中,A[i]=A[i]-d(i∈S),B[k]=B[k]-d(k∈T)。调整后的可行顶标具体如下:
Figure PCTCN2016079417-appb-000012
根据A[i]+B[k]=w[i,k],得到新的相等子图G2(如图7C所示,图7C为本发明资源分配的方法实施例六的示意图三)。
步骤13:在新的相等子图G2中,N(S)={1,3,4},选取k∈N(S)\T,则k=3;当前k=3的顶点未匹配,找到可扩路(f7-1-f6-4-f5-3),因此与原匹配做对称差,得到i=f5与k=3匹配,i=f6与k=4匹配,i=f7与k=1匹配,(如图7C所示)。
步骤14:在G2中选取未匹配的点i=f8,则S={f8},
Figure PCTCN2016079417-appb-000013
N(S)={2,3};选取k=2,当前k=2的顶点未匹配;因此i=f8与k=2匹配(如图7D所示,图7D为本发明资源分配的方法实施例六的示意图四)。
步骤15:所有顶点匹配完成,结束。
图8为本发明用户平均接入成功率与用户数的关系曲线;图8中,现有 技术的处理方法为:小站接收到UE发送的连接建立请求后,若确定该小站与小站网关之间的回传链路剩余容量小于预设阈值,则向该UE返回连接建立拒绝消息(也即,所述UE接入失败)。本发明的处理方法为:资源分配的方法实施例六对应的技术方案。如图8所示,本发明的资源分配方法与现有技术相比,在用户数相同的情况下,提高了用户平均接入成功率。现有技术中,当部分小站与小站网关之间的回传链路受限时,会导致向该部分小站发送连接建立请求消息的UE接入失败。而本发明中当部分小站与小站网管之间的回传链路受限,而另一部分小站与小站网关之间的回传链路得不到充分利用时,小站网关可以为UE选择合适的服务小站(也即与UE建立空口链路的小站),使得UE能够成功接入。
图9为本发明资源分配的装置实施例一的结构示意图;所述装置为小站网关;如图9所示,本实施例的装置可以包括:接收模块901、处理模块902及发送模块903。其中,接收模块901,用于接收第一小站发送的第一协助小站请求消息;其中,所述第一协助小站请求消息用于指示所述小站网关确定将所述第一小站接收到的第一消息转发至所述小站网关的小站;所述第一消息为第一用户设备UE发送至所述第一小站的消息;处理模块902,用于根据能够与所述第一小站进行站间通信的其他小站的链路剩余容量,确定将所述第一消息转发至所述小站网关的小站为第二小站;发送模块903,用于向所述第一小站发送第一协助小站响应消息,所述第一协助小站响应消息包括所述第二小站的标识,所述第二小站的标识用于指示所述第一小站通过站间通信将所述第一消息发送至所述第二小站。
方式1,可选的,处理模块902具体用于:根据能够与所述第一小站进行站间通信的其他小站的链路剩余容量,将链路剩余容量最大的小站确定为所述第二小站。
方式2,可选的,接收模块901具体用于:接收多个小站发送的所述第一协助小站请求消息,所述多个小站包括所述第一小站,所述第一协助小站请求消息包括所述第一UE的标识;相应的,处理模块902具体用于:对于所述多个小站中的每一个小站,所述小站网关根据能够与每一个小站进行站间通信的其他小站的链路剩余容量,确定每一个小站对应 的小站;根据每一个小站对应的小站的链路剩余容量,确定第三小站及所述第三小站对应的所述第一小站,并将所述第三小站作为所述第二小站。
方式21,可选的,在方式2的基础上,处理模块902具体用于:根据每一个小站对应的小站的链路剩余容量,确定每一个小站对应的小站中的链路剩余容量最大的所述第三小站。
方式22,可选的,在方式2的基础上,接收模块901具体用于:
接收所述多个小站发送的多个协助小站请求消息,所述协助小站请求消息包括UE的标识,所述多个协助小站请求消息包括所述第一协助小站请求消息;其中,所述多个发送的多个协助小站请求消息,包括所述第一小站发送的所述第一协助小站请求消息;
相应的,处理模块902具体用于:
根据所述协助小站请求消息中包括的UE的标识,确定每一个UE的标识分别对应的一组小站;所述一组小站包括一个或多个小站;
对于每一个UE所对应的一组小站中的每一个小站,根据能够与所述每一个小站进行站间通信的其他小站的链路剩余容量,确定每一个小站对应的小站;
采用二分图匹配算法,将每一个UE及所述多个小站中的每一个小站分别作为两组顶点,将每一个UE所对应的一组小站中的每一个小站对应的小站的链路剩余容量作为对应两个顶点之间的边权,确定第三小站及所述第三小站对应的所述第一小站,并将所述第三小站作为所述第二小站。
本实施例的装置,可以用于执行图3所示方法实施例、图4~图6所示方法实施例小站网关侧的技术方案,其实现原理和技术效果类似,此处不再赘述。
图10为本发明资源分配的装置实施例二的结构示意图;所述装置为第一小站;如图10所示,本实施例的装置可以包括:发送模块1001和接收模块1002。其中,发送模块1001,用于向小站网关发送第一协助小站请求消息,所述第一协助小站请求消息用于指示所述小站网关确定将所述第一小站接收到的第一消息转发至所述小站网关的小站;所述第一消 息为第一用户设备UE发送至所述第一小站的消息;接收模块1002,用于接收所述小站网关发送的第一协助小站响应消息,所述第一协助小站响应消息包括第二小站的标识;接收模块1002,还用于接收所述第一UE发送的所述第一消息;发送模块1001,还用于根据所述第二小站的标识将所述第一消息发送至所述第二小站,以使所述第二小站将所述第一消息转发至所述小站网关。
方式A,可选的,接收模块1002还用于:接收所述第一UE发送的连接建立请求消息;
相应的,发送模块1001,具体用于确定所述第一小站的链路剩余容量小于或等于预设的链路剩余容量阈值时,则向所述小站网关发送所述第一协助小站请求消息。
方式B,可选的,接收模块1002还用于:接收所述第一UE发送的协助请求消息;
相应的,发送模块1001,具体用于根据所述协助请求消息向所述小站网关发送所述第一协助小站请求消息。
可选的,所述第一协助小站请求消息包括所述第一UE的标识。
本实施例的装置,可以用于执行图2所示方法实施例、图4~图6所示方法实施例第一小站侧的技术方案,其实现原理和技术效果类似,此处不再赘述。
图11为本发明资源分配的装置实施例三的结构示意图;所述装置为第一用户设备UE;如图11所示,本实施例的装置可以包括:发送模块1101、处理模块1102。其中,发送模块1101,用于向至少一个小站发送连接建立请求消息;处理模块1102,确定是否接收到连接建立接受消息;发送模块1101,还用于在处理模块1102确定未接收到连接建立接受消息后,向所述至少一个小站发送协助请求消息。
可选的,所述至少一个小站为与所述第一UE之间的理论速率大于预设速率门限的小站。
本实施例的装置,可以用于执行图6所示方法实施例第一UE侧的技术方案,其实现原理和技术效果类似,此处不再赘述。
本发明还提供一种资源分配的系统,所述系统包括:资源分配的装 置实施例一所述的小站网关、资源分配的装置实施例二所述的第一小站、资源分配的装置实施例三所述的第一UE。
本实施例的系统,可以用于执行图4~图6所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图12为本发明资源分配的装置实施例四的结构示意图;所述装置为小站网关;如图12所示,本实施例的装置可以包括:接收器1201、处理器1202及发送器1203。其中,接收器1201,用于接收第一小站发送的第一协助小站请求消息;其中,所述第一协助小站请求消息用于指示所述小站网关确定将所述第一小站接收到的第一消息转发至所述小站网关的小站;所述第一消息为第一用户设备UE发送至所述第一小站的消息;处理器1202,用于根据能够与所述第一小站进行站间通信的其他小站的链路剩余容量,确定将所述第一消息转发至所述小站网关的小站为第二小站;发送器1203,用于向所述第一小站发送第一协助小站响应消息,所述第一协助小站响应消息包括所述第二小站的标识,所述第二小站的标识用于指示所述第一小站通过站间通信将所述第一消息发送至所述第二小站。
方式1’,可选的,处理器1202具体用于:根据能够与所述第一小站进行站间通信的其他小站的链路剩余容量,将链路剩余容量最大的小站确定为所述第二小站。
方式2’,可选的,接收器1201具体用于:接收多个小站发送的所述第一协助小站请求消息,所述多个小站包括所述第一小站,所述第一协助小站请求消息包括所述第一UE的标识;相应的,处理器1202具体用于:对于所述多个小站中的每一个小站,根据能够与每一个小站进行站间通信的其他小站的链路剩余容量,确定每一个小站对应的小站;根据每一个小站对应的小站的链路剩余容量,确定第三小站及所述第三小站对应的所述第一小站,并将所述第三小站作为所述第二小站。
方式21’,可选的,在方式2’的基础上,处理器1202具体用于:根据每一个小站对应的小站的链路剩余容量,确定每一个小站对应的小站中的链路剩余容量最大的所述第三小站。
方式22’,可选的,在方式2’的基础上,接收器1201具体用于:
接收所述多个小站发送的多个协助小站请求消息,所述协助小站请求消息包括UE的标识,所述多个协助小站请求消息包括所述第一协助小站请求消息;其中,所述多个发送的多个协助小站请求消息,包括所述第一小站发送的所述第一协助小站请求消息;
相应的,处理器1202具体用于:
根据所述协助小站请求消息中包括的UE的标识,确定每一个UE的标识分别对应的一组小站;所述一组小站包括一个或多个小站;
对于每一个UE所对应的一组小站中的每一个小站,根据能够与所述每一个小站进行站间通信的其他小站的链路剩余容量,确定每一个小站对应的小站;
采用二分图匹配算法,将每一个UE及所述多个小站中的每一个小站分别作为两组顶点,将每一个UE所对应的一组小站中的每一个小站对应的小站的链路剩余容量作为对应两个顶点之间的边权,确定第三小站及所述第三小站对应的所述第一小站,并将所述第三小站作为所述第二小站。
本实施例的装置,可以用于执行图3所示方法实施例、图4~图6所示方法实施例小站网关侧的技术方案,其实现原理和技术效果类似,此处不再赘述。
图13为本发明资源分配的装置实施例五的结构示意图;所述装置为第一小站;如图13所示,本实施例的装置可以包括:发送器1301和接收器1302。其中,发送器1301,用于向小站网关发送第一协助小站请求消息,所述第一协助小站请求消息用于指示所述小站网关确定将所述第一小站接收到的第一消息转发至所述小站网关的小站;所述第一消息为第一用户设备UE发送至所述第一小站的消息;接收器1302,用于接收所述小站网关发送的第一协助小站响应消息,所述第一协助小站响应消息包括第二小站的标识;接收器1302,还用于接收所述第一UE发送的所述第一消息;发送器1301,还用于根据所述第二小站的标识将所述第一消息发送至所述第二小站,以使所述第二小站将所述第一消息转发至所述小站网关。
可选的,本实施例的装置还可以包括处理器1303;
方式A,可选的,接收器1302还用于:接收所述第一UE发送的连接建立请求消息;相应的,处理器1303,用于确定所述第一小站的链路剩余容量是否小于或等于预设的链路剩余容量阈值;发送器1301具体用于当处理器1303确定所述第一小站的链路剩余容量小于或等于预设的链路剩余容量阈值时,向所述小站网关发送所述第一协助小站请求消息。
方式B,可选的,接收器1302还用于:接收所述第一UE发送的协助请求消息;相应的,处理器1303,用于根据所述协助请求消息生成所述第一协助小站请求消息。
可选的,所述第一协助小站请求消息包括所述第一UE的标识。
本实施例的装置,可以用于执行图2所示方法实施例、图4~图6所示方法实施例第一小站侧的技术方案,其实现原理和技术效果类似,此处不再赘述。
图14为本发明资源分配的装置实施例六的结构示意图;所述装置为第一用户设备UE;如图14所示,本实施例的装置可以包括:发送器1401、处理器1402。其中,发送器1401,用于向至少一个小站发送连接建立请求消息;处理器1402,确定是否接收到连接建立接受消息;发送器1401,还用于在处理器1402确定未接收到连接建立接受消息后,向所述至少一个小站发送协助请求消息。
可选的,所述至少一个小站为与所述第一UE之间的理论速率大于预设速率门限的小站。
本实施例的装置,可以用于执行图6所示方法实施例第一UE侧的技术方案,其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术 方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (23)

  1. 一种资源分配的方法,其特征在于,包括:
    小站网关接收第一小站发送的第一协助小站请求消息;其中,所述第一协助小站请求消息用于指示所述小站网关确定将所述第一小站接收到的第一消息转发至所述小站网关的小站;所述第一消息为第一用户设备UE发送至所述第一小站的消息;
    所述小站网关根据能够与所述第一小站进行站间通信的其他小站的链路剩余容量,确定将所述第一消息转发至所述小站网关的小站为第二小站;
    所述小站网关向所述第一小站发送第一协助小站响应消息,所述第一协助小站响应消息包括所述第二小站的标识,所述第二小站的标识用于指示所述第一小站通过站间通信将所述第一消息发送至所述第二小站。
  2. 根据权利要求1所述的方法,其特征在于,所述小站网关根据能够与所述第一小站进行站间通信的其他小站的链路剩余容量,确定将所述第一消息转发至所述小站网关的小站为第二小站,包括:
    所述小站网关根据能够与所述第一小站进行站间通信的其他小站的链路剩余容量,将链路剩余容量最大的小站确定为所述第二小站。
  3. 根据权利要求1所述的方法,其特征在于,所述小站网关接收第一小站发送的第一协助小站请求消息,包括:
    所述小站网关接收多个小站发送的所述第一协助小站请求消息,所述多个小站包括所述第一小站,所述第一协助小站请求消息包括所述第一UE的标识;
    相应的,所述小站网关根据能够与所述小站进行站间通信的其他小站的链路剩余容量,确定将所述第一消息转发至所述小站网关的小站为第二小站,包括:
    对于所述多个小站中的每一个小站,所述小站网关根据能够与每一个小站进行站间通信的其他小站的链路剩余容量,确定每一个小站对应的小站;
    所述小站网关根据每一个小站对应的小站的链路剩余容量,确定第 三小站及所述第三小站对应的所述第一小站,并将所述第三小站作为所述第二小站。
  4. 根据权利要求3所述的方法,其特征在于,所述小站网关根据每一个小站对应的小站的链路剩余容量,确定第三小站,包括:
    所述小站网关根据每一个小站对应的小站的链路剩余容量,确定每一个小站对应的小站中的链路剩余容量最大的所述第三小站。
  5. 根据权利要求3所述的方法,其特征在于,所述小站网关接收多个小站发送的所述第一协助小站请求消息,所述多个小站包括所述第一小站,包括:
    所述小站网关接收所述多个小站发送的多个协助小站请求消息,所述协助小站请求消息包括UE的标识,所述多个协助小站请求消息包括所述第一协助小站请求消息;所述小站网关接收多个小站发送的多个协助小站请求消息,包括:所述小站网关接收所述第一小站发送的所述第一协助小站请求消息;
    相应的,所述对于所述多个小站中的每一个小站,所述小站网关根据能够与每一个小站进行站间通信的其他小站的链路剩余容量,确定每一个小站对应的小站,包括:
    所述小站网关根据所述协助小站请求消息中包括的UE的标识,确定每一个UE的标识分别对应的一组小站;所述一组小站包括一个或多个小站;
    对于每一个UE所对应的一组小站中的每一个小站,所述小站网关根据能够与所述每一个小站进行站间通信的其他小站的链路剩余容量,确定每一个小站对应的小站;
    相应的,所述小站网关根据每一个小站对应的小站的链路剩余容量,确定第三小站及所述第三小站对应的所述第一小站,并将所述第三小站作为所述第二小站,包括:
    所述小站网关采用二分图匹配算法,将每一个UE及所述多个小站中的每一个小站分别作为两组顶点,将每一个UE所对应的一组小站中的每一个小站对应的小站的链路剩余容量作为对应两个顶点之间的边权,确定第三小站及所述第三小站对应的所述第一小站,并将所述第三小站作 为所述第二小站。
  6. 一种资源分配的方法,其特征在于,包括:
    第一小站向小站网关发送第一协助小站请求消息,所述第一协助小站请求消息用于指示所述小站网关确定将所述第一小站接收到的第一消息转发至所述小站网关的小站;所述第一消息为第一用户设备UE发送至所述第一小站的消息;
    所述第一小站接收所述小站网关发送的第一协助小站响应消息,所述第一协助小站响应消息包括第二小站的标识;
    所述第一小站接收所述第一UE发送的所述第一消息,并根据所述第二小站的标识将所述第一消息发送至所述第二小站,以使所述第二小站将所述第一消息转发至所述小站网关。
  7. 根据权利要求6所述的方法,其特征在于,所述第一小站向小站网关发送第一协助小站请求消息,包括:
    所述第一小站接收所述第一UE发送的连接建立请求消息;
    所述第一小站确定所述第一小站的链路剩余容量小于或等于预设的链路剩余容量阈值时,向所述小站网关发送所述第一协助小站请求消息。
  8. 根据权利要求6所述的方法,其特征在于,所述第一小站向小站网关发送第一协助小站请求消息,包括:
    所述第一小站接收所述第一UE发送的协助请求消息,根据所述协助请求消息向所述小站网关发送所述第一协助小站请求消息。
  9. 根据权利要求6~8任一项所述的方法,其特征在于,所述第一协助小站请求消息包括所述第一UE的标识。
  10. 一种资源分配的方法,其特征在于,包括:
    第一用户设备UE向至少一个小站发送连接建立请求消息;
    所述第一UE确定是否接收到连接建立接受消息;
    若否,则向所述至少一个小站发送协助请求消息。
  11. 根据权利要求10所述的方法,其特征在于,所述至少一个小站为与所述第一UE之间的理论速率大于预设速率门限的小站。
  12. 一种资源分配的装置,所述装置为小站网关,其特征在于,所 述装置包括:
    接收模块,用于接收第一小站发送的第一协助小站请求消息;其中,所述第一协助小站请求消息用于指示所述小站网关确定将所述第一小站接收到的第一消息转发至所述小站网关的小站;所述第一消息为第一用户设备UE发送至所述第一小站的消息;
    处理模块,用于根据能够与所述第一小站进行站间通信的其他小站的链路剩余容量,确定将所述第一消息转发至所述小站网关的小站为第二小站;
    发送模块,用于向所述第一小站发送第一协助小站响应消息,所述第一协助小站响应消息包括所述第二小站的标识,所述第二小站的标识用于指示所述第一小站通过站间通信将所述第一消息发送至所述第二小站。
  13. 根据权利要求12所述的装置,其特征在于,所述处理模块具体用于:
    根据能够与所述第一小站进行站间通信的其他小站的链路剩余容量,将链路剩余容量最大的小站确定为所述第二小站。
  14. 根据权利要求12所述的装置,其特征在于,所述接收模块具体用于:
    接收多个小站发送的所述第一协助小站请求消息,所述多个小站包括所述第一小站,所述第一协助小站请求消息包括所述第一UE的标识;
    相应的,所述处理模块具体用于:
    对于所述多个小站中的每一个小站,根据能够与每一个小站进行站间通信的其他小站的链路剩余容量,确定每一个小站对应的小站;根据每一个小站对应的小站的链路剩余容量,确定第三小站及所述第三小站对应的所述第一小站,并将所述第三小站作为所述第二小站。
  15. 根据权利要求14所述的装置,其特征在于,所述处理模块具体用于:
    根据每一个小站对应的小站的链路剩余容量,确定每一个小站对应的小站中的链路剩余容量最大的所述第三小站。
  16. 根据权利要求14所述的装置,其特征在于,所述接收模块具体 用于:
    接收所述多个小站发送的多个协助小站请求消息,所述协助小站请求消息包括UE的标识,所述多个协助小站请求消息包括所述第一协助小站请求消息;其中,所述多个发送的多个协助小站请求消息,包括所述第一小站发送的所述第一协助小站请求消息;
    相应的,所述处理模块具体用于:
    根据所述协助小站请求消息中包括的UE的标识,确定每一个UE的标识分别对应的一组小站;所述一组小站包括一个或多个小站;
    对于每一个UE所对应的一组小站中的每一个小站,根据能够与所述每一个小站进行站间通信的其他小站的链路剩余容量,确定每一个小站对应的小站;
    采用二分图匹配算法,将每一个UE及所述多个小站中的每一个小站分别作为两组顶点,将每一个UE所对应的一组小站中的每一个小站对应的小站的链路剩余容量作为对应两个顶点之间的边权,确定第三小站及所述第三小站对应的所述第一小站,并将所述第三小站作为所述第二小站。
  17. 一种资源分配的装置,所述装置为第一小站,其特征在于,所述装置包括:
    发送模块,用于向小站网关发送第一协助小站请求消息,所述第一协助小站请求消息用于指示所述小站网关确定将所述第一小站接收到的第一消息转发至所述小站网关的小站;所述第一消息为第一用户设备UE发送至所述第一小站的消息;
    接收模块,用于接收所述小站网关发送的第一协助小站响应消息,所述第一协助小站响应消息包括第二小站的标识;
    所述接收模块,还用于接收所述第一UE发送的所述第一消息;
    所述发送模块,还用于根据所述第二小站的标识将所述第一消息发送至所述第二小站,以使所述第二小站将所述第一消息转发至所述小站网关。
  18. 根据权利要求17所述的装置,其特征在于,所述接收模块还用于:
    接收所述第一UE发送的连接建立请求消息;
    相应的,所述发送模块,具体用于确定所述第一小站的链路剩余容量小于或等于预设的链路剩余容量阈值时,向所述小站网关发送所述第一协助小站请求消息。
  19. 根据权利要求17所述的装置,其特征在于,所述接收模块还用于:接收所述第一UE发送的协助请求消息;
    相应的,所述发送模块,具体用于根据所述协助请求消息向所述小站网关发送所述第一协助小站请求消息。
  20. 根据权利要求17~19任一项所述的装置,其特征在于,所述第一协助小站请求消息包括所述第一UE的标识。
  21. 一种资源分配的装置,所述装置为第一用户设备UE,其特征在于,所述装置包括:
    发送模块,用于向至少一个小站发送连接建立请求消息;
    处理模块,确定是否接收到连接建立接受消息;
    所述发送模块,还用于在所述处理模块确定未接收到连接建立接受消息后,向所述至少一个小站发送协助请求消息。
  22. 根据权利要求21所述的装置,其特征在于,所述至少一个小站为与所述第一UE之间的理论速率大于预设速率门限的小站。
  23. 一种资源分配的系统,其特征在于,包括权利要求12~16任一项所述的小站网关,权利要求17~20任一项所述的第一小站,权利要求21或22所述的第一用户设备UE。
PCT/CN2016/079417 2015-04-30 2016-04-15 资源分配的方法、装置及系统 WO2016173412A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510218674.3 2015-04-30
CN201510218674.3A CN106211330B (zh) 2015-04-30 2015-04-30 资源分配的方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2016173412A1 true WO2016173412A1 (zh) 2016-11-03

Family

ID=57198971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079417 WO2016173412A1 (zh) 2015-04-30 2016-04-15 资源分配的方法、装置及系统

Country Status (2)

Country Link
CN (1) CN106211330B (zh)
WO (1) WO2016173412A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10178042B2 (en) 2015-09-09 2019-01-08 Alibaba Group Holding Limited System, method, and apparatus for computer system resource allocation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101835181A (zh) * 2010-05-05 2010-09-15 京信通信系统(中国)有限公司 一种微蜂窝系统的负载均衡方法及一种微蜂窝系统
CN103782633A (zh) * 2011-09-09 2014-05-07 高通股份有限公司 基于回程测量的接入点选择
CN104469852A (zh) * 2013-09-13 2015-03-25 北京三星通信技术研究有限公司 建立本地分流承载的方法和设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101507144B (zh) * 2006-08-18 2014-01-29 富士通株式会社 节点之间的无线数据帧结构
CN101179321B (zh) * 2007-12-13 2011-08-17 北京卫星信息工程研究所 一种卫星通信系统实现无线资源管理的方法
US8185060B2 (en) * 2008-04-22 2012-05-22 Qualcomm Incorporated Serving base station selection using backhaul quality information
CN103002501A (zh) * 2011-09-19 2013-03-27 北京三星通信技术研究有限公司 一种移动中继的实现方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101835181A (zh) * 2010-05-05 2010-09-15 京信通信系统(中国)有限公司 一种微蜂窝系统的负载均衡方法及一种微蜂窝系统
CN103782633A (zh) * 2011-09-09 2014-05-07 高通股份有限公司 基于回程测量的接入点选择
CN104469852A (zh) * 2013-09-13 2015-03-25 北京三星通信技术研究有限公司 建立本地分流承载的方法和设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10178042B2 (en) 2015-09-09 2019-01-08 Alibaba Group Holding Limited System, method, and apparatus for computer system resource allocation

Also Published As

Publication number Publication date
CN106211330B (zh) 2019-09-13
CN106211330A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
US11418926B2 (en) Method of multicast data delivery in 5G supporting cloud architecture
US11291059B2 (en) Methods, user equipment and base station for sidelink identification
CN103907391B (zh) 用于快速初始网络链路设立的系统和方法
CN109257781B (zh) 换手方法与装置
WO2016145677A1 (zh) 物联网中的数据传输方法、系统、物联网设备、终端
CN104509180B (zh) 功率控制方法、用户设备和基站
WO2016184273A1 (zh) 中继选择及发现的方法、装置及系统
WO2016145751A1 (zh) 物联网中的数据传输方法、系统、物联网设备、终端
CN105432108A (zh) 用于在无线通信系统中选择邻近服务群组的方法和装置
US9232361B2 (en) System and method for direct multi-user transmission
CN105307220A (zh) D2d业务的切换实现方法及装置
CN103918310A (zh) 用于快速初始网络链路设立的系统和方法
US20130064213A1 (en) Apparatus and method for performing or supporting cooperative communication between terminals in a wireless communication system
US20220353948A1 (en) Method and device for sidelink communication
CN103907378A (zh) 用于快速初始网络链路设立的系统和方法
WO2021109346A1 (en) Method and device for allocating resources for sidelink transmission
JP7386252B2 (ja) コンポーネントキャリア上の制御チャネルを取り扱うための技術
WO2014206201A1 (zh) 一种集中式组网的方法及终端设备
WO2021056564A1 (zh) 直连通信操作处理方法、装置及存储介质
JP6697095B2 (ja) 通信方法と通信装置
CN110392994B (zh) Harq反馈方法、装置及可读存储介质
WO2015109543A1 (zh) 一种资源指示方法、装置和系统
WO2021003626A1 (zh) 直连通信的发送功率控制方法、装置、设备及存储介质
US20140162631A1 (en) Load sharing method, base station, user equipment, load sharing node, and system
WO2022030520A1 (ja) 通信システムおよび通信端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16785843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16785843

Country of ref document: EP

Kind code of ref document: A1