WO2016145650A1 - Epoxy molding compound with high adhesion for nickel surface, method for preparing the same and uses thereof - Google Patents

Epoxy molding compound with high adhesion for nickel surface, method for preparing the same and uses thereof Download PDF

Info

Publication number
WO2016145650A1
WO2016145650A1 PCT/CN2015/074571 CN2015074571W WO2016145650A1 WO 2016145650 A1 WO2016145650 A1 WO 2016145650A1 CN 2015074571 W CN2015074571 W CN 2015074571W WO 2016145650 A1 WO2016145650 A1 WO 2016145650A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding compound
epoxy
group
compound according
epoxy molding
Prior art date
Application number
PCT/CN2015/074571
Other languages
French (fr)
Inventor
Quanqing DING
Hujie MEI
Yuting Wang
Bo Chen
Jiyan YAN
Lang FAN
Original Assignee
Ablestik (Shanghai) Ltd.
Henkel Huawei Electronics Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ablestik (Shanghai) Ltd., Henkel Huawei Electronics Co. Ltd. filed Critical Ablestik (Shanghai) Ltd.
Priority to PCT/CN2015/074571 priority Critical patent/WO2016145650A1/en
Priority to CN201580077913.6A priority patent/CN107636071B/en
Publication of WO2016145650A1 publication Critical patent/WO2016145650A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • This invention relates to an epoxy molding compound (EMC) ; in particularly, to an epoxy molding compound with high adhesion for Ni surface, a preparation and use thereof.
  • EMC epoxy molding compound
  • Molded epoxy resin products are widely used as component parts in electrical and electronic devices, such as transistors and integrated circuit boards, because epoxy resin has well balanced properties including molding property, electrical property, moisture resistance, heat resistance, mechanical property and adhesion to component inserted therein, etc.
  • Epoxy Molding Compound has the advantages of high reliability, low cost, simple production and etc., and it is widely used in the fields of semiconductor device, integrated circuit, automobile, consumer electronics, military, and a large number of other fields of package application; and occupies more than 95% market share of encapsulating materials.
  • IT information technology
  • High performance Epoxy Molding Compound used for semiconductor package requires high adhesion to various substrates.
  • metal materials used for electrical package are Cu and Ag-plated Cu, and so far conventional EMC would approximately meet their requirements.
  • Ni is usually plated on Cu leadframe to form a Ni surface. Because of their attractive appearance, low corrosivity, and resistance to particle release, Ni surface is widely used for high reliability requirement application.
  • traditional EMC barely has adhesion on Ni surface, and delamination between EMC and Ni metal will be usually incurred.
  • high temperature and high humidity conditions will speed up delamination phenomenon, and moisture will penetrate into the package material to corrode the semiconductor chip and thus deteriorate insulation property thereof, then the semiconductor package electrical performance will deteriorate as well.
  • US 5532024A provides a “method for improving the adhesion of polymeric adhesives to nickel surfaces” .
  • the method involve a pre-treatment of the Ni-surface with hydrogen peroxide solution having a temperature of at least about 40 °C for a time sufficient to form a wettable oxide surface having a water contact angle of less than about 10°, so that further adhesive adhesion can be enhanced.
  • hydrogen peroxide solution having a temperature of at least about 40 °C for a time sufficient to form a wettable oxide surface having a water contact angle of less than about 10°
  • the present inventors find that the combination use of specific types of adhesion promoters is an effective approach to increase the adhesion between EMC and Ni metal or surface.
  • the object of the present invention is to provide an epoxy molding compound, which has high adhesion on Ni surface after post mold cure (PMC) , and the adhesion strength value is more than 100N (10.2Kgf) .
  • PMC post mold cure
  • this invention is able to provide an EMC with high adhesion for various forms of packages, such as those packaging forms of TO220, TO3P, TO92, TO94, TO252, and so on, which are known in the art.
  • the present invention provides an epoxy molding compound, comprising:
  • adhesion promoter comprises silane and azole.
  • the present invention provides a method for manufacturing the epoxy molding compound of the present invention, comprising steps of:
  • the present invention provides the use of the epoxy molding compound according to the present invention in electrical encapsulating material, for example, as a reflector material in a LED device.
  • the present invention provides an epoxy molding compound, comprising: a) an epoxy resin; b) a novolac resin curing agent; c) a filler; d) a catalyst; e) an adhesion promoter, and optionally f) additives; wherein said adhesion promoter comprises silane and azole.
  • epoxy resin means a polymer containing generally two or more epoxide groups per molecule.
  • any epoxy resins commonly used are suitable.
  • bisphenol epoxy resins such as bisphenol A epoxy resins, bisphenol F epoxy resins, bisphenol S epoxy resins, and the like; biphenyl epoxy resins such as biphenyl epoxy reins, tetramethylbiphenyl epoxy resins, and the like; novolac epoxy resins such as phenol novolac epoxy resins, cresol novolac epoxy resins, bisphenol A novolac epoxy resins, epoxy compounds of condensates of phenols and phenolic hydroxyl group-containing aromatic aldehyde, biphenyl novolac epoxy resins, and the like; triphenylmethane epoxy resins; tetraphenylethane epoxy resins; dicyclopentadiene phenol addition reaction-type epoxy resins; phenolaralkyl epoxy resins; epoxy resins each having a naphthalene skeleton in
  • epoxy resins bisphenol A epoxy resins, bisphenol F epoxy resins, bisphenol S epoxy resins, biphenyl epoxy resins, tetramethylbiphenyl epoxy resins, phenol novolac epoxy resins, cresol novolac epoxy resins, naphthol novolac epoxy resins, naphtholaralkyl epoxy resins, brominated bisphenol epoxy resins, alicyclic epoxy resins, glycidyl ether epoxy resins are preferred.
  • Epoxy o-cresol novolac resin EOCN
  • DCPD dicyclopentadiene epoxy resin
  • MAR multi-aromatic epoxy resin
  • MN multi-functional epoxy resin
  • biphenyl epoxy resin EOCN
  • EOCN Epoxy o-cresol novolac resin
  • DCPD dicyclopentadiene epoxy resin
  • MAR multi-aromatic epoxy resin
  • MN multi-functional epoxy resin
  • biphenyl epoxy resin the structures thereof are shown as follows, respectively:
  • the amount of the epoxy resin a) in the epoxy molding compound is preferably 4-20 wt. %, more preferably 5-15 wt. % based on the total weight of the epoxy molding compound.
  • Novolac resin of the present invention is mainly used as a curing agent and has a linear chain structure, and said novolac resin curing agent contains two or more than two hydroxyl group per molecule.
  • the novolac resin b) used in the epoxy molding compound of the present invention any novolac resins commonly used in the art are suitable. There are no particular limitations thereon.
  • the novolac resin used in the present application can preferably be one or more selected from the group consisting of phenolic novolac resin (PN novolac) , cresol novolac resin, phenol aralkyl novolac resin (Xylok resin) , multi-aromatic novolac resin, and multi-functional novolac resin (MFN novolac) .
  • PN novolac phenolic novolac resin
  • cresol novolac resin cresol novolac resin
  • Xylok resin phenol aralkyl novolac resin
  • MFN novolac multi-aromatic novolac resin
  • the amount of the novolac resin b) in the epoxy molding compound is preferably 2-12 wt. %, more preferably 3.7-8 wt. % based on the total weight of the epoxy molding compound.
  • the ratio of the number of phenolic hydroxyls in said novolac resin to the number of the epoxy groups in the epoxy resin is preferably 0.5-1.4, more preferably 0.9-1.2.
  • a wide range of fillers may be used in the epoxy molding compound of the present invention to impart certain properties thereto, such as abrasion resistance, moisture resistance, thermal conductivity or electrical properties.
  • said filler can be one or more selected from the group consisting of crystalline silica, fused silica, spherical silica, titanium oxide, aluminium hydroxide, magnesium hydroxide, zirconium dioxide, calcium carbonate, calcium silicate, talc, clay, carbon fiber and glass fiber,
  • the amount of the filler c) in the epoxy molding compound is preferably 60-95 wt. %, more preferably 74-89.8 wt. % based on the total weight of the epoxy molding compound.
  • the epoxy molding compound further contains catalyst which is also referred to as curing accelerator, the catalyst may catalyze or accelerate the curing reaction between the epoxy resin and the curing agents.
  • catalyst which is also referred to as curing accelerator, the catalyst may catalyze or accelerate the curing reaction between the epoxy resin and the curing agents.
  • said catalyst can be one or more selected from the group consisting of amide compound, phosphine, tetraphenyl-phosphonium adduct and azole compound.
  • Said catalyst preferably is selected from triphenyl phosphine (TPP) , 1,8-dizzabicyclo (5, 4, 0) undecene-7 (DBU) , 2, 4-diamino-6 [2′-methylimidazolyl-(1′) ] ethyl-s-triazine and N, N-Dimethyl benzyl amine. Any of the above listed catalyst can be used alone or in a combination of two or more.
  • the amount of the catalyst d) in the epoxy molding compound is preferably 0.1-1 wt. %, more preferably 0.2-0.4 wt. % based on the total weight of the epoxy molding compound.
  • the epoxy molding compound further comprises adhesion promoter which is essential to the present application.
  • the adhesion promoter comprises silane and azole, wherein the silane can be one or more selected from the group consisting of epoxy-containing silane, vinyl-containing silane, methypropenyl-containing silane, amino-containing silane, and mercapto-containing silane.
  • the silanes can be selected from the group consisting of epoxy silane, vinyl silane, methypropenyl silane, amino silane, mercapto silane and mixtures thereof.
  • Most preferred silane adhesion promoter can be selected from the group consisting of 3- (glycidoxypropyl) trimethoxy silane, 2- (3, 4-epoxycyclohexyl) ethenyl-trimethoxy silane, 2-propenyl-trimethoxy silane, 2-propenyl-trimethoxy silane, 3-mercapto propyl trimethoxy silane, 3-amino propyl trimethoxy silane, and mixtures thereof.
  • the azole compound can preferably be a triazole compound represented by following formula I:
  • R 1 , R 2 , R 3 each independently denote a hydrogen, a methyl group, a carboxyl group, an amino group, a mercapto group, or an acyl group.
  • the triazole compound can be one or more selected from the group consisting of 3-mercapto-1, 2, 4-triazole, 1-amino-1, 3, 4-triazole and mixtures thereof.
  • the azole compound can also be an imidazole compound; and the imidazole compound can be one or more selected from the group consisting of 2-Methylimidazole, 4, 5-dicarboxyimidazole, 2-mecaptoimidazole and mixtures thereof.
  • the amount of adhesion promoter e) in the epoxy molding compound is preferably 0.1-2 wt. %, more preferably 0.2-1.0 wt. % based on the total weight of the epoxy molding compound.
  • additive means any compounding additives conventionally used in molding compound, especially epoxy molding compound.
  • the epoxy resin composition of the present invention may further comprise one or more additives selected from a mold releasing agent, a pigment, a mold stress modifier, and an ion trapping agent.
  • Said flame retardant preferably includes brominated epoxy resin, antimony trioxide, melamine cyanurate, aluminium hydroxide, magnesium hydroxide, zinc borate, titanium oxide and calcium silicate, one or more.
  • the amount of the flame retardant therein may be preferably 0-20 wt. %, more preferably 0-16.8 wt. % based on the total weight of the epoxy molding compound.
  • Said pigment can be, for example, carbon black.
  • the amount of the pigment in the compound may be preferably 0-3 wt. %, more preferably 0.2-0.3 wt. % based on the total weight of the epoxy molding compound.
  • Said stress modifier can be, for example, organic siloxane compound or silicon rubber, preferably, for example, epoxidized silicone glycidyl resin.
  • the amount of the stress modifier in the compound may be preferably 0-4 wt. %, more preferably 0-1.2 wt. % based on the total weight of the epoxy molding compound.
  • Said release agent can be nature wax or synthetic wax, preferably, for example, Carnauba Wax.
  • the amount of the release agent can be preferably 0.1-1.5 wt. %, more preferably 0.4-1.2 wt. % based on the total weight of the epoxy molding compound.
  • the flow property of the epoxy molding compound was determined by measuring the length and weight of the resin flowing along the path of a spiral cavity.
  • Sample for the spiral flow test was the powder sample of the epoxy molding compound. No additional preparation was required.
  • the spiral flow test was done according to the method EMI-1-66. Test conditions were set as follows: temperature 175 °C, pressure 70km/cm 2 and cure time 90s.
  • the gelation point of the epoxy molding compound was tested.
  • a hot plate was heated to the temperature of 175°C.
  • the powder sample of the epoxy molding compound was placed on the hot plate and let it stand as long as the sample was gelled, with stopwatch gelation time was measured (stopwatch was started immediately when the sample is placed on the hot plate and stopped when gelation was complete) .
  • Glass transition temperature of the epoxy molding compound can be determined by various method, such as Dynamic Mechanical Analyzer (DMA) , and Thermo-mechanical Analyzer (TMA) and so on.
  • DMA Dynamic Mechanical Analyzer
  • TMA Thermo-mechanical Analyzer
  • the sample from the extruder was made to be a sheet by a molding machine at a molding temperature of 180°C for 150s. After molding, put the sheet into an oven at a temperature of 180°C for 6 hours. The sheet size is 5cm*1cm*0.4cm.
  • Tg of the sheet was measured using DMA, where the sample was placed in the DMA machine, the heating rate was 3°C/min, the heating was carried out until 300°C, the frequency was 5Hz and the Tg was the peak of tan ⁇ figure.
  • the CTE1 and CTE2 values were determined using a thermomechanical analyzer (TMA) Q-400 from TA Instruments, and test conditions were as follows: heating the sample piece from room temperature to 280 °C at a rate of 10 °C/min, and the load being 0.1 N.
  • TMA thermomechanical analyzer
  • CTE1 represents the coefficient of thermal expansion below the temperature of Tg
  • CTE2 represents the coefficient of thermal expansion above the temperature of Tg
  • standard calculation temperatures range for CTE1 is from 80°C to 100°C
  • calculation temperatures range for CTE2 is from 220° -240°C.
  • the value of Tg can be calculated as well by determining the crossing point of the two figures.
  • Moisture absorption rate test method was carried out in accordance with the method of “PCT24 “; in which sample piece size was set as ⁇ 50*3mm; and test condition is 121°C/100RH%/2atm/24hrs; moisture absorption rate can be calculated as: Weight increment of sample piece after PCT24hrs /Weight of sample piece*100%.
  • Adhesion Strength test was carried out in accordance with SEMI test standard SEMI G69-0996, which is the measurement of adhesion strength between Ni-plated leadframes and epoxy molding compounds.
  • Sample Preparation Condition was set as follows: molding pressure was set as 6.8-7.8MPa (70-80 kgf/cm2) ; cure temperature was set as 170-180°C, cure time was set as 120 seconds, PMC temperature was set as 175 ⁇ 5 °C, and PMC time was set as 4-8 hours.
  • the test was carried out in a Tensile Tester, for example, an universal tensile machine, the measurement range was set as 980N max. (100kgf) ; the accuracy was set as ⁇ 1%, and the crosshead speed was set as 2-10mm/min at a constant speed.
  • examples 1 to 10 provided an epoxy molding compound having an adhesion strength by tab pull test of more than 100N, and examples 1 to 10 all use silane adhesion promotor and azole adhesion promotor together; whereas comparative examples 1-2 hardly provide adhesion on Ni plated surface, in which only one type of adhesion promotor was used therein.
  • the other performances in examples 1 to 10 remain the same lavel as those in comparative examples, or even better.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

An epoxy molding compound (EMC) with high adhesion on Ni material or surface for semiconductor encapsulation is provided. The EMC contains epoxy resin, novolac resin, filler, catalyst, adhesion promoter, and optional additives, such as flame retardant, pigment, stress modifier and release agent. By adding adhesion promoter, the cured EMC adhesion on Ni is at least 100N (10.2Kgf), and it is suitable for high delamination and high electrical requirement package application.

Description

Epoxy molding compound with high adhesion for nickel surface, method for preparing the same and uses thereof Technical field
This invention relates to an epoxy molding compound (EMC) ; in particularly, to an epoxy molding compound with high adhesion for Ni surface, a preparation and use thereof.
Background Art
Molded epoxy resin products are widely used as component parts in electrical and electronic devices, such as transistors and integrated circuit boards, because epoxy resin has well balanced properties including molding property, electrical property, moisture resistance, heat resistance, mechanical property and adhesion to component inserted therein, etc.
Epoxy Molding Compound (EMC) has the advantages of high reliability, low cost, simple production and etc., and it is widely used in the fields of semiconductor device, integrated circuit, automobile, consumer electronics, military, and a large number of other fields of package application; and occupies more than 95% market share of encapsulating materials. Nowadays, rapid development of information technology (IT) industry requires, for example, the semiconductor device to be more and more the reliable, so than high performance packaging materials are much desired all around the world.
High performance Epoxy Molding Compound used for semiconductor package requires high adhesion to various substrates. Usually, metal materials used for electrical package are Cu and Ag-plated Cu, and so far conventional EMC would approximately meet their requirements. However, in order to further improve the performances of electrical package materials, Ni is usually plated on Cu leadframe to form a Ni surface. Because of their attractive appearance, low corrosivity, and resistance to particle release, Ni surface is widely used for high reliability requirement application. However, traditional EMC barely has adhesion on Ni surface, and delamination between EMC and Ni metal will be usually incurred. Furthermore, high temperature and high humidity conditions will speed up delamination phenomenon, and moisture will penetrate into the package material to corrode the semiconductor chip and thus deteriorate insulation property thereof, then the semiconductor package electrical performance will deteriorate as well.
In order to improve the adhesion to Ni material or surface, for example, US 5532024A provides a “method for improving the adhesion of polymeric adhesives to nickel surfaces” . The method involve a pre-treatment of the  Ni-surface with hydrogen peroxide solution having a temperature of at least about 40 ℃ for a time sufficient to form a wettable oxide surface having a water contact angle of less than about 10°, so that further adhesive adhesion can be enhanced. However, such a method is relatively complicated and costly and environmental unfriendly.
So far, it is desired to have an adhesive or epoxy molding compound having high adhesion for Ni surface, which can be applied to Ni-surface directly, so that the semiconductor electrical performance can be enhanced accordingly.
Particularly, it is much desired to have a high Ni adhesion EMC to improve semiconductor electrical performance.
Surprisingly, the present inventors find that the combination use of specific types of adhesion promoters is an effective approach to increase the adhesion between EMC and Ni metal or surface.
Summary of the Invention
Accordingly, the object of the present invention is to provide an epoxy molding compound, which has high adhesion on Ni surface after post mold cure (PMC) , and the adhesion strength value is more than 100N (10.2Kgf) . By way of this epoxy molding compound, this invention is able to provide an EMC with high adhesion for various forms of packages, such as those packaging forms of TO220, TO3P, TO92, TO94, TO252, and so on, which are known in the art.
In one aspect, the present invention provides an epoxy molding compound, comprising:
a)             an epoxy resin;
b)             a novolac resin curing agent;
c)             a filler;
d)             a catalyst;
e)             an adhesion promoter; and optionally
f)             additives;
wherein said adhesion promoter comprises silane and azole.
In another aspect, the present invention provides a method for manufacturing the epoxy molding compound of the present invention, comprising steps of:
(1) grinding all components of an EMC to small size, preferably in a ball mill, and then mixing the small sized components homogeneously, preferably in a high speed mixer, to obtain a pre-mixed resultant;
(2) feeding the premixed resultant into an extruder to further mix the pre-mixed resultant, and then crushing or pulverize the extrudate into powder form; and optionally
(3) storing the powder form extrudate in a cooling place, preferably below the temperature of 5 ℃.
Yet in another aspect, the present invention provides the use of the epoxy molding compound according to the present invention in electrical encapsulating material, for example, as a reflector material in a LED device.
Detailed description
In the following passages the present invention is described in more detail. Each aspect so described may be combined with any other aspect or aspects unless clearly indicated to the contrary. In particular, any feature indicated as being preferred or advantageous may be combined with any other feature or features indicated as being preferred or advantageous.
In the context of the present invention, the terms used are to be construed in accordance with the following definitions, unless a context dictates otherwise. As used herein, the singular forms “a” , “an” and “the” include both singular and plural referents unless the context clearly dictates otherwise.
The terms “comprising” , “comprises” and “comprised of” as used herein are synonymous with “including” , “includes” or “containing” , “contains” , and are inclusive or open-ended and do not exclude additional, non-recited members, elements or method steps. Whereas the term “consisting of “should be interpreted as exclusive or close-ended.
The recitation of numerical end points includes all numbers and fractions subsumed within the respective ranges, as well as the recited end points. When an amount, a concentration or other values or parameters is/are expressed in form of a range, a preferable range, or a preferable upper limit value and a preferable lower limit value, it should be understood as that any ranges obtained by combining any upper limit or preferable value with any lower limit or preferable value are specifically disclosed, without considering whether the obtained ranges are clearly mentioned in the context.
All references cited in the present specification are hereby incorporated by reference in their entirety.
Unless otherwise defined, all terms used in the disclosure of the invention,  including technical and scientific terms, have the meaning as commonly understood by one of the ordinary skill in the art to which this invention belongs to. By means of further guidance, term definitions are included to better appreciate the teaching of the present invention.
The present invention provides an epoxy molding compound, comprising: a) an epoxy resin; b) a novolac resin curing agent; c) a filler; d) a catalyst; e) an adhesion promoter, and optionally f) additives; wherein said adhesion promoter comprises silane and azole.
a) Epoxy resin
As used herein, the term “epoxy resin” means a polymer containing generally two or more epoxide groups per molecule.
As to the epoxy resin (a) used in the epoxy molding compound of the present invention, any epoxy resins commonly used are suitable. There are no particular limitations. Examples thereof Include but not limited to bisphenol epoxy resins such as bisphenol A epoxy resins, bisphenol F epoxy resins, bisphenol S epoxy resins, and the like; biphenyl epoxy resins such as biphenyl epoxy reins, tetramethylbiphenyl epoxy resins, and the like; novolac epoxy resins such as phenol novolac epoxy resins, cresol novolac epoxy resins, bisphenol A novolac epoxy resins, epoxy compounds of condensates of phenols and phenolic hydroxyl group-containing aromatic aldehyde, biphenyl novolac epoxy resins, and the like; triphenylmethane epoxy resins; tetraphenylethane epoxy resins; dicyclopentadiene phenol addition reaction-type epoxy resins; phenolaralkyl epoxy resins; epoxy resins each having a naphthalene skeleton in its molecular structure, such as naphthol novolac epoxy resins, naphtholaralkyl epoxy resins, and the like; brominated bisphenol epoxy resins, alicyclic epoxy resins, and glycidyl ether epoxy resins. These epoxy resins may be used alone or as a mixture of two or more.
Among the above-described epoxy resins, bisphenol A epoxy resins, bisphenol F epoxy resins, bisphenol S epoxy resins, biphenyl epoxy resins, tetramethylbiphenyl epoxy resins, phenol novolac epoxy resins, cresol novolac epoxy resins, naphthol novolac epoxy resins, naphtholaralkyl epoxy resins, brominated bisphenol epoxy resins, alicyclic epoxy resins, glycidyl ether epoxy resins are preferred.
Particularly preferred is Epoxy o-cresol novolac resin (EOCN) ,  dicyclopentadiene epoxy resin (DCPD) , multi-aromatic epoxy resin (MAR) , multi-functional epoxy resin (MFN) and biphenyl epoxy resin; the structures thereof are shown as follows, respectively:
Figure PCTCN2015074571-appb-000001
The amount of the epoxy resin a) in the epoxy molding compound is preferably 4-20 wt. %, more preferably 5-15 wt. % based on the total weight of the epoxy molding compound.
b) Novolac resin curing agent
Novolac resin of the present invention is mainly used as a curing agent and has a linear chain structure, and said novolac resin curing agent contains two or more than two hydroxyl group per molecule.
As to the novolac resin b) used in the epoxy molding compound of the present invention, any novolac resins commonly used in the art are suitable. There are no particular limitations thereon. Among these, the novolac resin used in the present application can preferably be one or more selected from the group consisting of phenolic novolac resin (PN novolac) , cresol novolac resin, phenol aralkyl novolac resin (Xylok resin) , multi-aromatic novolac resin, and multi-functional novolac resin (MFN novolac) . The structures thereof are shown as follows, respectively:
Figure PCTCN2015074571-appb-000002
The amount of the novolac resin b) in the epoxy molding compound is preferably 2-12 wt. %, more preferably 3.7-8 wt. % based on the total weight of the epoxy molding compound.
In another aspect of the present invention, as to above components a) and b) , the ratio of the number of phenolic hydroxyls in said novolac resin to the number of the epoxy groups in the epoxy resin is preferably 0.5-1.4, more preferably 0.9-1.2.
c) Filler
A wide range of fillers may be used in the epoxy molding compound of the present invention to impart certain properties thereto, such as abrasion resistance, moisture resistance, thermal conductivity or electrical properties.
Preferably, said filler can be one or more selected from the group consisting of crystalline silica, fused silica, spherical silica, titanium oxide, aluminium hydroxide, magnesium hydroxide, zirconium dioxide, calcium carbonate, calcium silicate, talc, clay, carbon fiber and glass fiber,
The amount of the filler c) in the epoxy molding compound is preferably 60-95 wt. %, more preferably 74-89.8 wt. % based on the total weight of the epoxy molding compound.
d) Catalyst
The epoxy molding compound further contains catalyst which is also referred to as curing accelerator, the catalyst may catalyze or accelerate the curing reaction between the epoxy resin and the curing agents.
As the catalyst d) used in the epoxy molding compound of the present invention, various compounds commonly used in the art can be used, for example, said catalyst can be one or more selected from the group consisting of amide compound, phosphine, tetraphenyl-phosphonium adduct and azole compound. Said catalyst preferably is selected from triphenyl phosphine (TPP) , 1,8-dizzabicyclo (5, 4, 0) undecene-7 (DBU) , 2, 4-diamino-6 [2′-methylimidazolyl-(1′) ] ethyl-s-triazine and N, N-Dimethyl benzyl amine. Any of the above listed catalyst can be used alone or in a combination of two or more.
The amount of the catalyst d) in the epoxy molding compound is preferably 0.1-1 wt. %, more preferably 0.2-0.4 wt. % based on the total weight of the epoxy molding compound.
e) Adhesion Promoter
The epoxy molding compound further comprises adhesion promoter which is essential to the present application.
The adhesion promoter comprises silane and azole, wherein the silane can be one or more selected from the group consisting of epoxy-containing silane, vinyl-containing silane, methypropenyl-containing silane, amino-containing silane, and mercapto-containing silane. Preferred examples of the silanes can be selected from the group consisting of epoxy silane, vinyl silane, methypropenyl silane, amino silane, mercapto silane and mixtures thereof.
Most preferred silane adhesion promoter can be selected from the group consisting of 3- (glycidoxypropyl) trimethoxy silane, 2- (3, 4-epoxycyclohexyl) ethenyl-trimethoxy silane, 2-propenyl-trimethoxy silane, 2-propenyl-trimethoxy silane, 3-mercapto propyl trimethoxy silane, 3-amino propyl trimethoxy silane, and mixtures thereof.
The azole compound can preferably be a triazole compound represented by following formula I:
Figure PCTCN2015074571-appb-000003
wherein R1, R2, R3 each independently denote a hydrogen, a methyl group, a carboxyl group, an amino group, a mercapto group, or an acyl group.
More preferably, the triazole compound can be one or more selected from the group consisting of 3-mercapto-1, 2, 4-triazole, 1-amino-1, 3, 4-triazole and mixtures thereof.
The azole compound can also be an imidazole compound; and the imidazole compound can be one or more selected from the group consisting of 2-Methylimidazole, 4, 5-dicarboxyimidazole, 2-mecaptoimidazole and mixtures thereof.
The amount of adhesion promoter e) in the epoxy molding compound is preferably 0.1-2 wt. %, more preferably 0.2-1.0 wt. % based on the total weight of the epoxy molding compound.
f) Additives
The term “additive” as used herein means any compounding additives conventionally used in molding compound, especially epoxy molding compound.
According to the actual requirments, the epoxy resin composition of the present invention may further comprise one or more additives selected from a mold releasing agent, a pigment, a mold stress modifier, and an ion trapping agent.
Said flame retardant preferably includes brominated epoxy resin, antimony trioxide, melamine cyanurate, aluminium hydroxide, magnesium hydroxide, zinc borate, titanium oxide and calcium silicate, one or more. When used in the compound, the amount of the flame retardant therein may be preferably 0-20 wt. %, more preferably 0-16.8 wt. % based on the total weight of the epoxy molding compound.
Said pigment can be, for example, carbon black. The amount of the pigment in the compound may be preferably 0-3 wt. %, more preferably 0.2-0.3 wt. % based on the total weight of the epoxy molding compound.
Said stress modifier can be, for example, organic siloxane compound or silicon rubber, preferably, for example, epoxidized silicone glycidyl resin. The amount of the stress modifier in the compound may be preferably 0-4 wt. %, more preferably 0-1.2 wt. % based on the total weight of the epoxy molding compound.
Said release agent can be nature wax or synthetic wax, preferably, for example, Carnauba Wax. The amount of the release agent can be preferably 0.1-1.5 wt. %, more preferably 0.4-1.2 wt. % based on the total weight of the  epoxy molding compound.
Examples
The present invention will be illustrated in details by means of examples below. However, It is to be understood by one of ordinary skill in the art that this part is a description of exemplary embodiments only, and is not intended to limit the scope of the present invention.
Raw materials
All the raw materials listed in the present description could be any commercially available industrial products.
Test methods
SPIRAL FLOW
In the spiral flow test the flow property of the epoxy molding compound was determined by measuring the length and weight of the resin flowing along the path of a spiral cavity. Sample for the spiral flow test was the powder sample of the epoxy molding compound. No additional preparation was required. The spiral flow test was done according to the method EMI-1-66. Test conditions were set as follows: temperature 175 ℃, pressure 70km/cm2 and cure time 90s.
GELATION TIME
In the GELATION TIME test the gelation point of the epoxy molding compound was tested. In the test, a hot plate was heated to the temperature of 175℃. The powder sample of the epoxy molding compound was placed on the hot plate and let it stand as long as the sample was gelled, with stopwatch gelation time was measured (stopwatch was started immediately when the sample is placed on the hot plate and stopped when gelation was complete) .
GLASS TRANSITION TEMPERATURE Tg
Glass transition temperature of the epoxy molding compound can be determined by various method, such as Dynamic Mechanical Analyzer (DMA) , and Thermo-mechanical Analyzer (TMA) and so on. Specifically, in the present application, the sample from the extruder was made to be a sheet by a molding machine at a molding temperature of 180℃ for 150s. After molding, put the sheet into an oven at a temperature of 180℃ for 6 hours. The sheet size is 5cm*1cm*0.4cm. Tg of the sheet was measured using DMA, where the sample was placed in the DMA machine, the heating rate was 3℃/min, the heating  was carried out until 300℃, the frequency was 5Hz and the Tg was the peak of tan δ figure.
Coefficient of Thermal Expansion (CTE)
The CTE1 and CTE2 values were determined using a thermomechanical analyzer (TMA) Q-400 from TA Instruments, and test conditions were as follows: heating the sample piece from room temperature to 280 ℃ at a rate of 10 ℃/min, and the load being 0.1 N. To be specific, CTE1 represents the coefficient of thermal expansion below the temperature of Tg, and CTE2 represents the coefficient of thermal expansion above the temperature of Tg, and standard calculation temperatures range for CTE1 is from 80℃ to 100℃, and calculation temperatures range for CTE2 is from 220° -240℃.
From the testing figures determing the CTE1 and CTE2 value, the value of Tg can be calculated as well by determining the crossing point of the two figures.
Moisture Absorption
Moisture absorption rate test method was carried out in accordance with the method of “PCT24 “; in which sample piece size was set asφ50*3mm; and test condition is 121℃/100RH%/2atm/24hrs; moisture absorption rate can be calculated as: Weight increment of sample piece after PCT24hrs /Weight of sample piece*100%.
Adhesion Strength
Adhesion Strength test was carried out in accordance with SEMI test standard SEMI G69-0996, which is the measurement of adhesion strength between Ni-plated leadframes and epoxy molding compounds.
Sample Preparation Condition was set as follows: molding pressure was set as 6.8-7.8MPa (70-80 kgf/cm2) ; cure temperature was set as 170-180℃, cure time was set as 120 seconds, PMC temperature was set as 175±5 ℃, and PMC time was set as 4-8 hours.
The test was carried out in a Tensile Tester, for example, an universal tensile machine, the measurement range was set as 980N max. (100kgf) ; the accuracy was set as ±1%, and the crosshead speed was set as 2-10mm/min at a constant speed.
Examples 1-10 and Comparative Examples 1-2
Preparation of Epoxy Molding Compounds
The raw materials used for the epoxy molding compounds of Examples 1-10 (inventive) and Comparative Examples 1-2 (not inventive) were weighed out  as shown in Table 1. All the raw material components were ground into small size by a ball mill and then fed into a high speed mixer, and therein they were mixed for 15 minutes at 300r/min under room temperature to obtain a premixed powder. The premixed powder was then fed into a twin-screw extruder, and therein was extruded at a temperature of about 100-110℃ with the rotation speed of the screw being about 120rpm. The extrudate thus obtained was crushed into powder thereafter.
Table 1:
Figure PCTCN2015074571-appb-000004
Figure PCTCN2015074571-appb-000005
Figure PCTCN2015074571-appb-000006
Figure PCTCN2015074571-appb-000007
Figure PCTCN2015074571-appb-000008
Figure PCTCN2015074571-appb-000009
Figure PCTCN2015074571-appb-000010
Figure PCTCN2015074571-appb-000011
Figure PCTCN2015074571-appb-000012
Figure PCTCN2015074571-appb-000013
Figure PCTCN2015074571-appb-000014
Figure PCTCN2015074571-appb-000015
Figure PCTCN2015074571-appb-000016
Figure PCTCN2015074571-appb-000017
Tests as described above were conducted to the thus obtained epoxy molding compounds from examples 1 to 10 and comparative examples 1-2, and testing results were shown in the following table 2:
Table 2:
Figure PCTCN2015074571-appb-000018
As can be seen from the results in above table 2, examples 1 to 10 provided an epoxy molding compound having an adhesion strength by tab pull test of more than 100N, and examples 1 to 10 all use silane adhesion promotor and azole adhesion promotor together; whereas comparative examples 1-2 hardly provide adhesion on Ni plated surface, in which only one type of adhesion promotor was used therein. In the meantime, the other performances in examples 1 to 10 remain the same lavel as those in comparative examples, or even better.

Claims (20)

  1. An epoxy molding compound comprising
    a) an epoxy resin;
    b) a novolac resin curing agent;
    c) a filler;
    d) a catalyst; and
    e) an adhesion promoter; and optionally
    f) an additive;
    wherein said adhesion promoter comprises silane and azole.
  2. The epoxy molding compound according to claim 1, wherein the epoxy resin constitutes 4-20%by weight of the total weight of the molding compound, preferably 5-15%; the novolac resin curing agent constitutes 2-12%by weight of the total weight of the molding compound, preferably 3.7-8%; the filler constitutes 60-95%by weight of the total weight of the molding compound, preferably 74-89.8%; the catalyst constitutes 0.1-1%by weight of the total weight of the molding compound, preferably 0.2-0.4%; and the adhesion promoter constitutes 0.1-2%by weight of the total weight of the molding compound, preferably 0.2-1.0%.
  3. The epoxy molding compound according to claim 1 or 2, wherein said silane adhesion promoter is selected from the group consisting of epoxy silane, vinyl silane, methypropenyl silane, amino silane, mercapto silane and mixtures thereof.
  4. The epoxy molding compound according to claim 1 or 2, wherein said silane adhesion promoter is selected from the group consisting of 3-(glycidoxypropyl) trimethoxy silane, 2- (3, 4-epoxycyclohexyl) ethenyl-trimethoxy silane, 2-propenyl-trimethoxy silane, 2-propenyl-trimethoxy silane, 3-mercapto propyl trimethoxy silane, 3-amino propyl trimethoxy silane, and mixtures thereof.
  5. The epoxy molding compound according to any of claims 1 to 4, wherein said azole adhesion promoter is a triazole represented by the following formula I:
    Figure PCTCN2015074571-appb-100001
    wherein R1, R2, R3 each independently denotes a hydrogen, a methyl group,  a carboxyl group, an amino group, a mercapto group, or an acyl group.
  6. The epoxy molding compound according to claim 5, wherein said azole adhesion promoter is one or more selected from the group consisting of 3-mercapto-1, 2, 4-triazole, 1-amino-1, 3, 4-triazole and mixtures thereof.
  7. The epoxy molding compound according to any of claims 1 to 4, wherein said azole is an imidazole compound.
  8. The epoxy molding compound according claim 7, wherein said imidazole compound is one or more selected from the group consisting of 2-methylimidazole, 4, 5-dicarboxyimidazole, 2-mecaptoimidazole and mixtures thereof.
  9. The epoxy molding compound according to any of claims 1 to 7, wherein said epoxy resin contains at least two epoxy groups.
  10. The epoxy molding compound according to claim 9, wherein said epoxy resin is selected from the group consisting of epoxy o-cresol novolac resin, dicyclopentadiene epoxy resin, multi-aromatic epoxy resin, multi-functional epoxy resin, biphenyl epoxy resin and mixtures thereof.
  11. The epoxy molding compound according to any of claims 1 to 10, wherein said epoxy resin contains hydroxyl group, and the molar ratio of epoxy group and hydroxyl group is 0.5-1.4, preferably 0.9-1.2.
  12. The epoxy molding compound according to any of claims 1 to 11, wherein said novolac resin curing agent contains at least two hydroxyl groups.
  13. The epoxy molding compound according to any of claims 1 to 12, wherein said novolac resin curing agent is selected from the group consisting of phenolic novolac resin, cresol novolac resin, phenol aralkyl novolac resin, multi-aromatic novolac resin, and multi-functional novolac resin and mixtures thereof.
  14. The epoxy molding compound according to any of claims 1 to 13, wherein said filler is selected from the group consisting of crystalline silica, fused silica, spherical silica, titanium oxide, aluminium hydroxide, magnesium hydroxide, zirconium dioxide, calcium carbonate, calcium silicate, talc, clay, carbon fiber, glass fiber and mixtures thereof.
  15. The epoxy molding compound according to any of claims 1 to 14, wherein said catalyst is selected from the group consisting of amide compound, phosphine compound, tetraphenylphosphonium adduct, azole compound  and mixtures thereof.
  16. The epoxy molding compound according to claim 15, wherein said catalyst is selected from the group consisting of triphenyl phosphine, 1,8-dizzabicyclo (5, 4, 0) undecene-7, 2, 4-diamino-6 [ 2'-methylimidazolyl- (1') ] -ethyl-s-triazine, N, N-dimethyl benzyl amine and mixtures thereof.
  17. The epoxy molding compound according to any of claims 1 to 16, wherein said additive is selected from the group consisting of flame retardant, pigment, stress modifier, ion capturer and release agent.
  18. Method for preparing the epoxy molding compound according to any of claims 1 to 17, comprising the steps of:
    (1) grinding all components of the EMC to small size and then mixing all components of the EMC homogeneously, to obtain a pre-mixed resultant;
    (2) feeding the pre-mixed resultant into an extruder to further mix the pre-mixed resultant, and then crushing or pulverize the extrudate into a powder form; and
    optionally
    (3) storing the powder form extrudate in a cooling place, preferably below a temperature of 5 ℃.
  19. Use of an epoxy molding compound according to any of the preceding claims 1-16 in electrical encapsulating materials.
  20. Use of an epoxy molding compound according to any of the preceding claims 1-16 as a reflector material in a LED device.
PCT/CN2015/074571 2015-03-19 2015-03-19 Epoxy molding compound with high adhesion for nickel surface, method for preparing the same and uses thereof WO2016145650A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/074571 WO2016145650A1 (en) 2015-03-19 2015-03-19 Epoxy molding compound with high adhesion for nickel surface, method for preparing the same and uses thereof
CN201580077913.6A CN107636071B (en) 2015-03-19 2015-03-19 Epoxy molding compounds having high adhesion to nickel surfaces, method for the production thereof and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/074571 WO2016145650A1 (en) 2015-03-19 2015-03-19 Epoxy molding compound with high adhesion for nickel surface, method for preparing the same and uses thereof

Publications (1)

Publication Number Publication Date
WO2016145650A1 true WO2016145650A1 (en) 2016-09-22

Family

ID=56920383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074571 WO2016145650A1 (en) 2015-03-19 2015-03-19 Epoxy molding compound with high adhesion for nickel surface, method for preparing the same and uses thereof

Country Status (2)

Country Link
CN (1) CN107636071B (en)
WO (1) WO2016145650A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027219A1 (en) 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
DE102019101631A1 (en) * 2019-01-23 2020-07-23 Infineon Technologies Ag Corrosion-protected molding compound

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110128781A (en) * 2018-02-09 2019-08-16 衡所华威电子有限公司 Epoxy molding plastic, preparation method and use
CN112980137B (en) * 2019-12-17 2024-02-02 衡所华威电子有限公司 Epoxy molding compound and preparation method and application thereof
CN113278249A (en) * 2020-02-19 2021-08-20 衡所华威电子有限公司 Epoxy resin composition and preparation method thereof
CN114644810B (en) * 2020-12-18 2024-03-01 衡所华威电子有限公司 High-temperature fast-curing low-stress epoxy resin composition and preparation method thereof
CN114672134B (en) * 2020-12-24 2024-02-02 衡所华威电子有限公司 Low-friction epoxy resin composition and preparation method thereof
CN113201204B (en) * 2021-04-23 2023-06-02 衡所华威电子有限公司 High Tg and low warp MUF epoxy resin composition and preparation method thereof
CN114369338B (en) * 2021-12-31 2024-03-15 江苏中科科化新材料股份有限公司 Epoxy resin composition and application thereof, epoxy resin and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176555A (en) * 2004-12-21 2006-07-06 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
CN1871276A (en) * 2003-10-20 2006-11-29 住友电木株式会社 Epoxy resin composition and semiconductor device
JP2007161833A (en) * 2005-12-13 2007-06-28 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device
CN101039984A (en) * 2004-11-02 2007-09-19 住友电木株式会社 Epoxy resin composition and semiconductor device
CN101511900A (en) * 2006-09-14 2009-08-19 松下电工株式会社 Epoxy resin composition for printed circuit board, resin composition Chinese varnish, preforming material, metal-coating lamination body, printed circuit board and multi-layer printed circuit board
KR20120074120A (en) * 2010-12-27 2012-07-05 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device, and semiconductor apparatus using the same
JP2012188629A (en) * 2011-03-14 2012-10-04 Nippon Shokubai Co Ltd Curable resin composition and semiconductor device using the same
KR20130074664A (en) * 2011-12-26 2013-07-04 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device, and semiconductor apparatus using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104277417A (en) * 2013-07-01 2015-01-14 北京首科化微电子有限公司 Epoxy resin composition containing composite flame retardant

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1871276A (en) * 2003-10-20 2006-11-29 住友电木株式会社 Epoxy resin composition and semiconductor device
CN101039984A (en) * 2004-11-02 2007-09-19 住友电木株式会社 Epoxy resin composition and semiconductor device
JP2006176555A (en) * 2004-12-21 2006-07-06 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2007161833A (en) * 2005-12-13 2007-06-28 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device
CN101511900A (en) * 2006-09-14 2009-08-19 松下电工株式会社 Epoxy resin composition for printed circuit board, resin composition Chinese varnish, preforming material, metal-coating lamination body, printed circuit board and multi-layer printed circuit board
KR20120074120A (en) * 2010-12-27 2012-07-05 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device, and semiconductor apparatus using the same
JP2012188629A (en) * 2011-03-14 2012-10-04 Nippon Shokubai Co Ltd Curable resin composition and semiconductor device using the same
KR20130074664A (en) * 2011-12-26 2013-07-04 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device, and semiconductor apparatus using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027219A1 (en) 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
DE102019101631A1 (en) * 2019-01-23 2020-07-23 Infineon Technologies Ag Corrosion-protected molding compound
DE102019101631B4 (en) 2019-01-23 2024-05-23 Infineon Technologies Ag Corrosion-protected molding compound, process for its preparation and its use

Also Published As

Publication number Publication date
CN107636071A (en) 2018-01-26
CN107636071B (en) 2020-08-18

Similar Documents

Publication Publication Date Title
WO2016145650A1 (en) Epoxy molding compound with high adhesion for nickel surface, method for preparing the same and uses thereof
TWI804615B (en) Thermosetting maleimide resin composition for semiconductor sealing and semiconductor device
EP3127933B1 (en) Heat-curable epoxy resin composition
CN107429039A (en) Epoxy molding compounds, preparation method and use
CN108140620B (en) Epoxy molding compounds for high power SOIC semiconductor packaging applications
CN114644810A (en) High-temperature fast-curing low-stress epoxy resin composition and preparation method thereof
WO2016145661A1 (en) Epoxy molding compound, its manufacturing process and use, and transistor outline package product containing molded product thereof
JP2017206631A (en) Sealing resin composition, cured product thereof, and semiconductor device
US11046848B2 (en) Heat-curable resin composition for semiconductor encapsulation and semiconductor device
CN108699423A (en) Composition epoxy resin for encapsulated semiconductor device and the semiconductor devices using its sealing
JP2012241178A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP4772305B2 (en) Sheet-shaped resin composition for compression molding, resin-encapsulated semiconductor device, and method for manufacturing the same
JP2012251048A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device
KR101266542B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device package using the same
JP2003327666A (en) Epoxy resin composition and semiconductor sealed device
CN114685935B (en) Low dielectric constant resin composition and preparation method and application thereof
JP7501116B2 (en) Flame-retardant resin composition and structure
JPH08134329A (en) Production of epoxy resin composition
KR20100072720A (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device using the same
JPH0931160A (en) Epoxy resin composition and resin-sealed semiconductor device
JPH10182947A (en) Epoxy resin composition for sealing and semiconductor device using the same
WO2016145647A1 (en) Epoxy molding compound using anhydride hardener, manufacturing process and use thereof
JP2004256729A (en) Epoxy resin composition and sealed semiconductor device
KR20160056500A (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same
JPH09176286A (en) Epoxy resin composition and resin-sealed semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885033

Country of ref document: EP

Kind code of ref document: A1