WO2016143828A1 - タンパク質組成物の製造方法及びタンパク質組成物 - Google Patents

タンパク質組成物の製造方法及びタンパク質組成物 Download PDF

Info

Publication number
WO2016143828A1
WO2016143828A1 PCT/JP2016/057430 JP2016057430W WO2016143828A1 WO 2016143828 A1 WO2016143828 A1 WO 2016143828A1 JP 2016057430 W JP2016057430 W JP 2016057430W WO 2016143828 A1 WO2016143828 A1 WO 2016143828A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
sequence
protein composition
groups
compound
Prior art date
Application number
PCT/JP2016/057430
Other languages
English (en)
French (fr)
Inventor
聡 杣本
慎吾 川端
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to US15/556,765 priority Critical patent/US20180055958A1/en
Priority to EP16761795.0A priority patent/EP3269725A4/en
Priority to JP2017505382A priority patent/JP6951243B2/ja
Priority to CN201680015037.9A priority patent/CN108064229B/zh
Publication of WO2016143828A1 publication Critical patent/WO2016143828A1/ja
Priority to US17/336,672 priority patent/US11969512B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • A61L2/0029Radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/061General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/24Extraction; Separation; Purification by electrochemical means
    • C07K1/26Electrophoresis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/21Pharmaceuticals, e.g. medicaments, artificial body parts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]

Definitions

  • the present invention relates to a method for producing a protein composition and a protein composition.
  • Sterilization is performed by ethylene oxide gas sterilization, filtration sterilization, and radiation sterilization.
  • radiation sterilization is excellent from the viewpoint of no toxic residue (ethylene oxide gas) after sterilization, cost, and validation.
  • Proteins have the disadvantage of undergoing changes such as degradation and denaturation when sterilized by radiation. Protein changes are caused by the reaction of active radicals (hydroxy radicals, oxygen radicals) generated by radiation with proteins.
  • Patent Document 1 In order to suppress a change in protein due to active radicals, a method of performing radiation irradiation in a cooled state, a method of removing water from the radiation irradiation system, and a method of adding a radical scavenger for active radicals have been taken (Patent Document 1). 2).
  • the method of performing radiation irradiation in a cooled state is ineffective and the manufacturing cost for cooling is high. Further, when sterilizing a protein that is denatured by completely removing water or a highly hydrophilic protein, it is difficult to remove water from the radiation irradiation system. Furthermore, when a radical scavenger is used to prevent changes in protein due to active radicals, it is necessary to add a large amount of the radical scavenger, and there is a problem that the physiological and physicochemical functions of the protein are impaired.
  • the object of the present invention is to suppress changes such as protein degradation and denaturation that occur when radiation is applied to proteins that are denatured by completely removing water or highly hydrophilic proteins.
  • Another object of the present invention is to provide a method for producing a protein composition.
  • the present inventors have reached the present invention. That is, it contains protein (A), radical scavenger (RS), and compound (HC) capable of forming a hydrogen bond that is one or more selected from the group consisting of amino acids, peptides, and proteins other than protein (A).
  • a method for producing a protein composition comprising the step of sterilizing a protein composition before sterilization with radiation, wherein the protein composition before sterilization comprises the protein (A), The radical scavenger (RS) and the compound (HC) capable of forming a hydrogen bond are contained, and the protein (A) is selected from the group consisting of sulfide group, amide group, hydroxyl group, amino group and carboxyl group.
  • the compound (HC) having one or more selected functional groups and capable of forming a hydrogen bond is a sulfide group, an amide group, a hydroxyl group.
  • a functional group in the protein (A) having at least one functional group selected from the group consisting of a ruthenium group, an amino group and a carboxyl group, and a functional group of the compound (HC) capable of forming a hydrogen bond Can be bonded by hydrogen bonding, and the water content in the pre-sterilized protein composition is 0 to 30% by weight based on the weight of the pre-sterilized protein composition, and the pre-sterilized protein composition
  • the weight ratio [radical scavenger (RS) / protein (A)] of the radical scavenger (RS) to the protein (A) in the solution is 0.01 to 1, and
  • the protein (A) has one or more functional groups selected from the group consisting of sulfide groups, amide groups, hydroxyl groups, amino groups, and carboxyl groups, and can form the hydrogen bonds.
  • the compound (HC) has one or more functional groups selected from the group consisting of sulfide groups, amide groups, hydroxyl groups, amino groups, and carboxyl groups, and the protein
  • the functional group in the substance (A) and the functional group of the compound (HC) capable of forming a hydrogen bond can be bonded by a hydrogen bond, and the radical scavenger (RS) in the protein composition
  • Compound (HC) having a weight ratio with the protein (A) [radical scavenger (RS) / protein (A)] of 0.01 to 1.0 and capable of forming the hydrogen bond in the protein composition
  • the production method of the present invention is a radical scavenger (RS) by effectively capturing radicals generated when radiation is applied to a protein that is denatured by completely removing water or a highly hydrophilic protein.
  • RS radical scavenger
  • the pre-sterilized protein composition to be used is selected from the group consisting of protein (A), radical scavenger (RS), amino acid, peptide and protein other than protein (A) 1 And a compound (HC) capable of forming a hydrogen bond which is a species or more.
  • the “protein composition before sterilization” in the method for producing a protein composition of the present invention means the protein (A), radical scavenger (RS) and hydrogen bond before the sterilization step of the protein composition production method of the present invention.
  • the protein composition containing the compound (HC) which can form is meant.
  • Examples of the protein (A) include animal-derived proteins, plant-derived proteins, microorganism-derived proteins, recombinant proteins, and the like.
  • Examples of animal-derived proteins include protein preparations, enzymes, antibodies, coagulation factors, and extracellular matrix.
  • Examples of plant-derived proteins include enzymes and extracellular substrates.
  • Examples of microorganism-derived proteins include enzymes and extracellular substrates.
  • Examples of the recombinant protein include protein preparations and vaccines.
  • Protein preparations include interferon ⁇ , interferon 13, interleukin 1-12, growth hormone, erythropoietin, insulin, granular colony stimulating factor (G-CSF), tissue plasminogen activator ( ⁇ ), natriuretic peptide, Examples include blood coagulation factor VIII, somatomedin, glucagon, growth hormone releasing factor, serum albumin, calcitonin and the like.
  • the vaccine include hepatitis hepatitis vaccine, hepatitis B vaccine, and hepatitis C vaccine.
  • Examples of the enzyme include a hydrolase, an isomerase, an oxidoreductase, a transferase, a synthetic enzyme, and a desorbing enzyme.
  • hydrolases include proteases, serine proteases, amylases, lipases, cellulases, dalcoamylases and the like.
  • Examples of the isomerase include glucose isomerase.
  • Examples of the oxidoreductase include peroxidase.
  • Examples of the transferase include acyltransferase and sulfotransferase.
  • Examples of the synthase include fatty acid synthase, phosphate synthase, citrate synthase and the like.
  • Examples of the desorbing enzyme include pectin lyase.
  • antibodies examples include IgD, IgE, IgG, IgA, and IgM.
  • coagulation factor examples include fibrinogen, fibrin, prothrombin, thrombin, factor III, factor V, factor VII, factor VIII, factor IX, factor X, factor XII and factor XIII.
  • extracellular matrix examples include collagen, fibronectin, laminin, and elastin.
  • the protein (A) has one or more functional groups selected from the group consisting of sulfide groups, amide groups, hydroxyl groups, amino groups, and carboxyl groups. Among these, a hydroxyl group, an amide group, an amino group, and a carboxyl group are preferable from the viewpoint of the distance between hydrogen bonds with the compound (HC) capable of forming a hydrogen bond.
  • amino acids containing a sulfide group include methionine and cysteine.
  • the amide group include a peptide binding site between amino acids contained in a protein.
  • Examples of amino acids containing a hydroxyl group include serine, threonine, and tyrosine.
  • amino acids containing an amino group include arginine, asparagine, glutamine, histidine, lysine and tryptophan.
  • amino acids containing a carboxyl group include aspartic acid and glutamic acid.
  • a protein (A) containing methionine, cysteine, serine, threonine, tyrosine, arginine, asparagine, glutamine, histidine, lysine, tryptophan, aspartic acid, glutamic acid is more preferable.
  • the protein (A) preferably contains a repetitive sequence (X) from the viewpoint of protein stability.
  • the repetitive sequence (X) includes GAGAGS sequence (1), RGD sequence, YIGSR sequence (2), GVGVP sequence (3), PGVGV sequence (4), and VPGVG sequence (5).
  • GVPGV sequence (6), VGVPG sequence (7), GPP sequence, GAP sequence, GAHGPAGPK sequence (8), GAA sequence, VAAGY sequence (9), GAGAGAS sequence (10), LGPLGP sequence (11), GAHGGPGPK sequence (12) ), GAPGPAGPPSGSRDPGPP sequence (13), GAQGPAGPG sequence (14), GAPGAPGSQGAPGLQ sequence (15), GAPGTPGPQGLPGSP sequence (16), GAAVTGRGDSPASAAGY sequence (17) and GAAPGASIKVAVSAGPSAG Preferably includes any one of amino acid sequence (a1) of the sequence (18).
  • the repetitive sequence (X) may contain one type of amino acid sequence (a1), or may contain two or more types of amino acid sequences (a1).
  • GAGAGS sequence (1), GAA sequence, VAAGY sequence (9) and GAGAGAS sequence (10) are preferred from the viewpoint of protein stability.
  • the repeated sequence (X) preferably has 2 to 200 GAGAGS sequences (1), more preferably 15 to 150, from the viewpoint of protein stability. Particularly preferably, 30 to 120.
  • the repetitive sequence (X) includes GVGVP sequence (3), PGVGV sequence (4), VPGVG sequence (5), GVPPGV sequence (6), A sequence (Y) and / or a sequence (Y) in which 2 to 200 amino acid sequences (a2), which is any one of VGVPG sequence (7), GPP sequence, GAP sequence and GAHGGPGPK sequence (8), are repeated It is preferable to include the sequence (Y1) in which 1 to 100 amino acids are substituted with lysine (K) or arginine (R).
  • the sequence (Y) is a GVGVP sequence (3), a PGVGV sequence (4), a VPGVG sequence (5), a GVPPG sequence (6) and a VGVPG sequence (7).
  • a 200-repeat sequence is preferred.
  • the repetitive sequence (X) may contain one type of sequence (Y) or sequence (Y1), and may contain two or more types of sequences (Y) and / or sequences (Y1).
  • the ratio between the number of GAGAGS sequences (1) and the total number of amino acid sequences (a2) and the following amino acid sequences (a2 ′) in one molecule of protein (A) [ The number of GAGAGS sequences (1): total number of amino acid sequences (a2) and (a2 ′)] is preferably [1: 2] to [1:20] from the viewpoint of protein stability, [1:10] to [1: 5] are preferable.
  • Amino acid sequence (a2 ′) An amino acid sequence in which 1 to 5 amino acids of amino acid sequence (a2) are substituted with lysine (K) or arginine (R).
  • the repetitive sequence (X) is an amino acid sequence (a3) that is any one of the GAAVTGRGDSPASAAGY sequence (17) and the GAAPGASIKVAVSAGPSAGY sequence (18). Preferably includes a sequence (Y2) repeated 1 to 50 times.
  • the repetitive sequence (X) may include one type of sequence (Y2), or may include two or more types of sequences (Y2).
  • the protein (A) may have amino acids before and after the repeating sequence (X), and between the amino acids before and after the repeating sequence (X). From the viewpoint of solubility of protein (A) (particularly solubility in water) and gelation time, it is preferably 1 to 100, more preferably 5 to 40, and particularly preferably 10 to 35. It is.
  • Examples of amino acids before and after the repeat sequence (X) include ⁇ -galactosidase-derived sequences and purification tags (6 ⁇ His tag, V5 tag, Xpress tag, AU1 tag, T7 tag, VSV-G tag, DDDDK tag, S tag, CruzTag09 TM , CruzTag22 TM , CruzTag41 TM , Glu-Glu tag, Ha.11 tag, KT3 tag, maltose binding protein, HQ tag, Myc tag, HA tag and FLAG tag).
  • ⁇ -galactosidase-derived sequences and purification tags (6 ⁇ His tag, V5 tag, Xpress tag, AU1 tag, T7 tag, VSV-G tag, DDDDK tag, S tag, CruzTag09 TM , CruzTag22 TM , CruzTag41 TM , Glu-Glu tag, Ha.11 tag, KT3 tag, maltose binding protein, HQ tag, Myc tag, HA tag and FLAG tag).
  • the repetitive sequence (X) has 12 (GAGAGS) 4 sequences (19) of 4 protein GAGAGS sequences (1) consisting of GAGAGS sequence (1) and sequence (Y1), and a GVGVP sequence ( (GVGVP) 4 GKGVP (GVGVP) 3 sequence (20) (Y1-1), in which one of V (valine) in 8 consecutive repeats (Y-1) was replaced with K (lysine) ) And two consecutive GAGAGS sequences (1) (GAGAGS) 2 sequences (21), which are (GVGVP) 4 GKGVP (GVGVP) 3 [(GAGAGS) 4 (GVGVP) 4 GKGVP (GVGVP) 3] 12 (GAGAGS) protein 2 become so arranged molar mass of about 70kDa which is formed by chemical bonds (22) (SELP8K ; It has 17 (GVGVP) 4 GKGVP (GVGVP) 3 sequences (20) and (GAGAGS
  • GVGVP GKGVP
  • GGAGS GKGVP
  • the protein (A) is preferably SELP0K and SELP8K, and more preferably SELP8K.
  • the amino acid composition of the protein (A) is based on the total number of amino acid sequences of the protein (A), and the ratio of the number of proline (P) is 1 to 50%.
  • the ratio of the number of (S) is preferably 1 to 50%, and the ratio of the number of valine (V) is preferably 1 to 50%. More preferably, proline (P) is 1 to 20%, serine (S) is 1 to 20%, and valine (V) is 1 to 30%.
  • the content of the protein (A) in the protein composition is preferably 50% by weight or less, more preferably 10% by weight or less, based on the weight of the protein composition, from the viewpoint of solubility of the protein (A). It is.
  • the molecular mass of protein (A) by SDS polyacrylamide gel electrophoresis is preferably 15 to 200 kDa.
  • the molecular mass of protein (A) is calculated
  • the radical scavenger (RS) in the protein composition is selected from the group consisting of an oxygen-containing conjugated structure and a nitrogen-containing conjugated structure. It is preferable that it is 1 or more types.
  • the radical scavenging ability of a radical scavenger (RS) for diphenylpicrylhydrazyl radical (DPPH radical) is preferably 0.01 to 90 mg Trolox eq / mg.
  • the DPPH radical scavenging ability is described in ["Food Functionality Evaluation Manual Collection Vol.
  • the radical scavenging ability for peroxy radical, hydroxy radical, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical, oxygen radical, and alkyl radical is determined by superoxide dismutase method (SOD method).
  • SOD method superoxide dismutase method
  • the radical scavenging ability can be set to 0.01 mg Trolox eq / mg or more by measuring using an ABTS radical scavenging ability measuring method, Potential Anti Oxidant (PAO) antioxidant ability measuring method, EPR spin trap method or the like.
  • radical scavenger examples include organic acids (ascorbic acid, erythorbic acid, uric acid, gallic acid, glutathione, phenolic acid, ellagic acid, chlorogenic acid, etc.), glutathione, edaravone, polyphenols (flavonoids, phenolic acid, ellagic acid). Acid, lignan, curcumin, coumarin, etc.) and phenolic compounds (vanillin, pyrogallol, dibutylhydroxytoluene, butylhydroxyanisole, etc.).
  • radical scavenger (RS) from the viewpoints of compatibility between the protein (A) and the radical scavenger (RS), radical scavenging ability and safety, ascorbic acid, edaravone, vanillin, gallic acid, glutathione and Chlorogenic acid is preferred, and ascorbic acid and edaravone are more preferred.
  • the content of the radical scavenger (RS) in the protein composition before sterilization is preferably 40% by weight or less, more preferably 30% by weight, based on the weight of the protein composition before sterilization. It is as follows.
  • the compound (HC) capable of forming a hydrogen bond has at least one functional group selected from the group consisting of a sulfide group, an amide group, a hydroxyl group, an amino group, and a carboxyl group.
  • the compound (HC) capable of forming a hydrogen bond has one or more functional groups selected from the group consisting of a carboxyl group, a hydroxyl group and an amino group. It is preferable.
  • Examples of the compound (HC) capable of forming a hydrogen bond include amino acids (alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, Threonine, tryptophan, tyrosine and valine and derivatives thereof) and peptides (aspartame, vasopressin, glucagon, selectin, etc.).
  • amino acids alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, Threonine, tryptophan, tyrosine and valine and derivatives thereof
  • peptides aspartame
  • the compound (HC) capable of forming a hydrogen bond is tryptophan, tyrosine or histidine from the viewpoint of compatibility between the protein (A) and a compound (HC) capable of forming a hydrogen bond and a hydrogen bond distance. Is preferable, and tryptophan is more preferable.
  • the content of the compound (HC) capable of forming a hydrogen bond in the protein composition before sterilization is preferably 25% by weight or less, more preferably, based on the weight of the protein composition before sterilization. Is 10% by weight or less.
  • the water content in the protein composition before sterilization is 0 to 30% by weight based on the weight of the protein composition before sterilization, and from the viewpoint of protein stability, It preferably contains 0.01 to 30% by weight, more preferably 0.01 to 15% by weight of water.
  • the pre-sterilization protein composition may be dried before the sterilization step. Examples of the method for drying the pre-sterilized protein composition include freeze drying and heat drying.
  • the moisture in the protein composition before sterilization can be measured as follows. ⁇ Measurement method of moisture in protein composition before sterilization> Weigh out 50-100 mg of pre-sterilized protein composition into a glass vial. Record the weighed amount (Ws0) and the weight of the glass vial (Wb0). Set the dryer at 100 ° C., and when it reaches 100 ° C., place a glass vial containing the pre-sterilized protein composition. (Remove the lid from the glass vial.) After 2 hours, the glass vial containing the pre-sterilized protein composition is removed from the dryer and allowed to cool to room temperature in a desiccator. After standing to cool, cover the glass vial and measure the weight (W). And based on the following formula
  • equation (1), the water content in the protein composition before sterilization is calculated. (Ws0 + Wb0 ⁇ W) / Ws0 ⁇ 100 moisture content (% by weight) in the protein composition before sterilization (1)
  • the weight ratio [radical scavenger (RS) / protein (A)] of the radical scavenger (RS) and protein (A) in the pre-sterilized protein composition is 0. From the viewpoint of maintaining the physiological and physicochemical functions of protein (A), it is preferably 0.01 to 0.1, and more preferably 0.01 to 0.05. .
  • the total number of moles of functional groups of the compound (HC) capable of forming hydrogen bonds in the protein composition and the total number of moles of functional groups in the protein (A) is 0.01 to 0.50, From the viewpoint of performance protection, it is preferably 0.01 to 0.50, more preferably 0.01 to 0.10, and still more preferably 0.01 to 0.05.
  • the “functional group in protein (A)” used for the calculation of the molar ratio is a functional group in protein (A) that forms a hydrogen bond with a functional group of compound (HC) that can form a hydrogen bond. Means.
  • the “functional group of the compound (HC) capable of forming a hydrogen bond” used for the calculation of the molar ratio is a compound (HC) capable of forming a hydrogen bond that forms a hydrogen bond with a functional group in the protein (A).
  • the protein (A) has one or more functional groups selected from the group consisting of sulfide groups, amide groups, hydroxyl groups, amino groups, and carboxyl groups. Yes.
  • the functional group in the protein (A) and the functional group of the compound (HC) capable of forming a hydrogen bond can be bonded by hydrogen bonding.
  • the functional group of the compound (HC) capable of forming a hydrogen bond is preferably capable of hydrogen bonding with the functional group of the amino acid of the protein (A) that is easily denatured when the protein (A) is irradiated with radiation.
  • the protein composition before sterilization contains the compound (HC) capable of forming such a hydrogen bond, it becomes easy to prevent the protein (A) from being denatured in the sterilization step.
  • amino acids of the protein (A) that are easily denatured when irradiated with radiation include serine and aspartic acid.
  • the functional group in protein (A) may be located in the side chain of the amino acid of protein (A).
  • the functional group located in the side chain of the amino acid in the protein (A) and the functional group of the compound (HC) capable of forming a hydrogen bond are the first hydrogen.
  • the distance of the first hydrogen bond is preferably 1.3 to 1.9 mm, more preferably 1.7 to 1.8 mm, from the viewpoint of radical scavenging ability.
  • the amide group is also located in the peptide bond of protein (A).
  • the amide group in the peptide bond of protein (A) and the compound (HC) capable of forming a hydrogen bond can be bonded by a second hydrogen bond, and the distance of the second hydrogen bond is determined by radical scavenging. From the viewpoint of properties, it is preferably 1.3 to 1.9%, and more preferably 1.7 to 1.8%.
  • the hydrogen bond distance is calculated using simulation software (Gaussian: manufactured by Gaussian).
  • an amino acid having a predetermined functional group is selected as a model compound of a compound having a predetermined functional group contained in the protein (A). And it can obtain
  • the hydrogen bond distance between the functional group of the amino acid and the functional group of the compound capable of forming a hydrogen bond (HC) is optimized to minimize the hydrogen bond between them. It means distance.
  • the distance between the first hydrogen bonds is 1.3 to 1.9 mm and the distance between the second hydrogen bonds is 1.3 to 1.9 mm, These distances are shorter than the normal distance between hydrogen bonds (2.4 to 3.3 mm). Therefore, when the compound (HC) capable of forming a hydrogen bond is contained in the pre-sterilization protein composition, the protein (A) can be prevented from being denatured by radiation in the sterilization step. This is presumably because the compound (HC) capable of forming a hydrogen bond played a role of promoting the movement of radicals from the protein (A) to the radical scavenger (RS) via the hydrogen bond.
  • RS radical scavenger
  • the amount added (about 1/100) can be extremely suppressed as compared with the case where the modification is attempted only with the radical scavenger (RS). Therefore, the disadvantages caused by adding a large amount of radical scavenger (RS) to the protein composition before sterilization (caused by changes in physiological and physicochemical functions, changes in pH environment, increased costs, and proteins produced. Inflammation, carcinogenicity of the produced protein, etc.) are suppressed.
  • the compound (HC) capable of forming a hydrogen bond is preferably bonded to the protein (A) only by a hydrogen bond. Even if a compound that forms a covalent bond with the protein (A) is used instead of the compound that can form a hydrogen bond (HC), the function equivalent to that of the compound that can form a hydrogen bond (HC) (from the protein (A)) The role of promoting the movement of radicals to the radical scavenger (RS)) can be exhibited, but when a covalent bond is formed in this way, the physical function and physiological function of the protein (A) Will change. On the other hand, when the compound (HC) capable of forming a hydrogen bond does not covalently bond with the protein (A) but only by a hydrogen bond, the above disadvantages (change in physiological and physicochemical functions, No change in safety).
  • Hydrogen bond between one or more functional groups selected from the group consisting of sulfide group, amide group, hydroxyl group, amino group and carboxyl group in protein (A) and functional group of compound (HC) capable of forming hydrogen bond As a method for adjusting the distance, for example, a functional group of the compound (HC) capable of forming a hydrogen bond with one or more functional groups selected from the group consisting of a hydroxyl group, an amino group and a carboxyl group in the protein (A)
  • Various functional groups, proteins, and compounds capable of forming hydrogen bonds (HC) are selected so that the distance between hydrogen bonds is within the numerical range of 1.3 to 1.9 mm. That is, in the method for producing a protein composition of the present invention, the compound (HC) capable of forming a hydrogen bond is preferably selected according to the type of protein (A) and the like.
  • the compound (HC) capable of forming a hydrogen bond may be screened by a method such as the following screening (1) or screening (2).
  • protein (A) is irradiated with radiation to sterilize protein (A). Thereafter, the amino acid ( ⁇ ) in which denaturation has occurred in the protein (A) after irradiation is identified. Then, as a model compound of the compound having a functional group located in the side chain of the amino acid in the protein (A), the amino acid ( ⁇ ) before denaturation is used, and hydrogen bonds are formed using the above simulation software or the like. Possible compounds (HC) may be screened. The analysis of the modified amino acid ( ⁇ ) can be specified by using LC-MSMS.
  • the conditions for analysis by LC-MSMS are preferably the same as the conditions for “measurement by LC-MSMS” when calculating the mutation rate of protein (A) using LC-MSMS described later.
  • a compound (HC) capable of forming a first hydrogen bond can be screened.
  • ⁇ Screening (2)> As a model compound of a compound having an amide group in the peptide bond of protein (A), alanylalanine may be used, and the compound (HC) capable of forming a hydrogen bond may be screened using the above simulation software or the like. By this method, a compound (HC) capable of forming a second hydrogen bond can be screened.
  • the protein composition before sterilization contains any additive other than the protein (A), the radical scavenger (RS) and the compound capable of forming a hydrogen bond (HC). You can leave.
  • Optional additives include antioxidants, preservatives, stabilizers, solubilizers, buffer components and the like.
  • the method for producing the protein composition of the present invention includes a sterilization step of sterilizing the pre-sterilized protein composition with radiation. Further, in the method for producing a protein composition of the present invention, before the sterilization step, the pre-sterilization protein composition preparation step for preparing the pre-sterilization protein composition or the pre-sterilization protein composition is freeze-dried as follows. A lyophilization step or a packing step of packing the pre-sterilized protein composition may be performed.
  • Examples of a method for producing a protein composition before sterilization include a method in which a compound (HC) capable of forming a hydrogen bond, a radical scavenger (RS), and a protein (A) are dissolved in water at room temperature.
  • the water is not particularly limited as long as it is sterilized, and water sterilization methods include water through a microfiltration membrane having a pore size of 0.2 ⁇ m or less, water through an ultrafiltration membrane, Examples thereof include water passed through a reverse osmosis membrane and ion-exchanged water heated at 121 ° C. for 20 minutes in an autoclave and sterilized by overheating.
  • the pre-sterilization protein composition may be packed before the sterilization step in order to block the pre-sterilization protein composition from the outside.
  • An example of the packing method is a vacuum packing method.
  • examples of the method for sterilizing the pre-sterilized protein composition with radiation include ⁇ -ray sterilization and electron beam sterilization under the following conditions.
  • Irradiation facility Nippon Electron Irradiation Service Co., Ltd.
  • Irradiation dose 25-27 kGy
  • Environmental temperature during irradiation -10 to 10 ° C
  • JIS T 0806-2 2010 or ISO11137-2: it is preferable to sterilize such 2006 according SAL10 -6 is achieved.
  • a sterilization process may be performed only once and may be performed in multiple times.
  • the denaturation rate of the produced protein composition in particular, “denaturation rate calculated by HPLC measurement” and “LC” measured by the following method -The "denaturation rate of protein composition calculated by MSMS measurement” can be lowered.
  • the denaturation rate calculated by HPLC measurement of the produced protein composition refers to the pre-sterilization protein composition and the produced protein composition under the following conditions, and the pre-sterilization protein composition.
  • the peak height of M M and the peak height of the produced protein composition is N, it means a numerical value calculated from the following equation (2).
  • Denaturation rate (%) [1 ⁇ (N / M)] ⁇ 100 (2)
  • the protein composition before sterilization or the produced protein composition is dissolved in 1 mL of pure water so that the protein (A) is 1 mg, and passed through a 0.45 ⁇ m filter to obtain a measurement sample.
  • the measurement sample is measured by HPLC (manufactured by Shimadzu Corporation) under the following conditions.
  • the protein contained in the protein composition becomes hydrophilic. Therefore, the peak of the HPLC analysis of the protein composition sterilized by radiation becomes broad and low. On the contrary, if the ratio of the protein in which the denaturation has occurred is small, the peak of the HPLC analysis becomes sharp and does not easily become low.
  • the method for producing a protein composition of the present invention is a method for producing a protein composition for use in medical applications or biochemical applications, and is used to prevent changes in protein degradation, denaturation, etc. due to radiation sterilization.
  • the protein composition produced by the method for producing a protein composition of the present invention is also the protein composition of the present invention. That is, the protein composition of the present invention is a protein composition containing a protein (A), and the protein composition further includes a radical scavenger (RS), an amino acid, a peptide, and a protein other than the protein (A).
  • RS radical scavenger
  • a compound (HC) capable of forming a hydrogen bond which is at least one selected from the group consisting of proteins, and the protein (A) consists of a sulfide group, an amide group, a hydroxyl group, an amino group, and a carboxyl group
  • the compound (HC) having one or more functional groups selected from the group and capable of forming a hydrogen bond is one or more selected from the group consisting of sulfide groups, amide groups, hydroxyl groups, amino groups, and carboxyl groups
  • the functional group in the protein (A) and the functional group of the compound (HC) capable of forming a hydrogen bond are hydrogen.
  • the weight ratio of the radical scavenger (RS) and the protein (A) in the protein composition [radical scavenger (RS) / protein (A)] is 0.01 to 1
  • the total number of moles of functional groups in the compound (HC) capable of forming a compound / the total number of moles of functional groups in the protein (A)] is 0.01 to 0.50, and is sterilized by radiation. It is characterized by.
  • the weight ratio [radical scavenger (RS) / protein (A)] of the radical scavenger (RS) and protein (A) in the protein composition is 0.01 to 1.0. Yes, 0.01 to 0.1 is preferable, and 0.01 to 0.05 is more preferable.
  • the protein composition of the present invention is produced after being sterilized by radiation.
  • the weight ratio [radical scavenger (RS) / protein (A)] of the radical scavenger (RS) and protein (A) in the protein composition is 0.01 to 1.0, sterilization by radiation causes It becomes difficult to produce a denatured form of the protein (A), and the physiological and physicochemical functions of the protein (A) are easily retained.
  • the total number of moles of functional groups in the compound (HC) that can form a bond / the total number of moles of functional groups in the protein (A)] is 0.01 to 0.50, and 0.01 to 0 10 is preferable, and 0.01 to 0.05 is more preferable.
  • the protein composition of the present invention is produced after being sterilized by radiation.
  • the total number of moles of functional groups in / the total number of moles of functional groups in protein (A)] is 0.01 to 0.50, the disadvantages of radical scavengers (RS) Such as changes in physicochemical functions, changes in pH environment, increased costs, inflammation, and carcinogenesis).
  • RS radical scavengers
  • the sterilization by radiation makes it difficult to produce a denatured form of the protein (A), and it is easy to maintain the physiological and physicochemical functions of the protein (A).
  • the protein composition of the present invention is radiation sterilized. Therefore, when the protein composition of the present invention is used for medical use or biochemical use, contamination can be suitably prevented.
  • the protein composition of the present invention is preferably radiation sterilized at 25 to 27 kGy.
  • the protein composition of the present invention JIS T 0806-2: 2010 or ISO11137-2: according 2006, and more preferably sterile so SAL10 -6 is achieved.
  • the protein composition of the present invention can also be used as a pharmaceutical product.
  • the water content in the protein composition is preferably 0 to 30% by weight, more preferably 0.01 to 30% by weight, based on the weight of the protein composition. Preferably, it is 0.01 to 15% by weight.
  • the stability of the protein (A) contained in the protein composition is improved.
  • the protein composition of the present invention is preferably packed and more preferably vacuum packed. When the protein composition is packed, it is blocked from the outside, so that contamination is less likely to occur.
  • the amino acid in protein (A) denatured by electron beam irradiation was serine.
  • a compound (HC) capable of forming a hydrogen bond with the hydroxyl group of the side chain of serine was screened using simulation software (Gaussian).
  • a compound (HC) capable of forming a hydrogen bond with an amide group in the peptide bond of alanylalanine was screened.
  • tryptophan, tyrosine and histidine could be screened as compounds (HC) capable of forming hydrogen bonds. It is considered that the hydroxyl group of the side chain of serine and the carboxyl group of the side chain of tryptophan, the hydroxyl group of the side chain of tyrosine, or the carboxyl group of the side chain of histidine form a hydrogen bond (first hydrogen bond).
  • Table 2 shows the distance ( ⁇ ) of the first hydrogen bond. It is thought that the amide group in the peptide bond of alanylalanine and the carboxyl group of the side chain of tryptophan, the hydroxyl group of the side chain of tyrosine, or the carboxyl group of the side chain of histidine form a hydrogen bond (second hydrogen bond). . Table 2 shows the distance ( ⁇ ) of the second hydrogen bond.
  • -SELP8K is used as a sterilized protein (A) by radiation of a protein composition containing SELP8K, and SELP8K, a compound capable of forming hydrogen bonds (HC), and a radical scavenger so as to have the weight ratio and molar ratio shown in Table 3 (RS) and water were mixed to prepare an aqueous solution of the protein composition before sterilization containing 2.4% by weight of SELP8K. Thereafter, the pre-sterilized protein composition was lyophilized and vacuum packed under a nitrogen atmosphere. The water content of the protein composition before sterilization was 8% by weight. The vacuum-packed product was irradiated with an electron beam under the conditions of ⁇ 20 ° C. and 25 kGy to produce protein compositions according to Examples 1 to 32.
  • A sterilized protein
  • Pronectin F is used as a sterilized protein (A) by radiation of a protein composition containing pronectin F, and pronectin F, a compound capable of forming hydrogen bonds (HC) so as to have the weight ratio and molar ratio shown in Table 4, A radical scavenger (RS) and water were mixed to prepare an aqueous solution of the protein composition before sterilization containing 2.4% by weight of pronectin F. Thereafter, the pre-sterilized protein composition was lyophilized and vacuum packed under a nitrogen atmosphere. The water content of the protein before sterilization was 5% by weight. The vacuum-packed product was irradiated with an electron beam under the conditions of ⁇ 20 ° C. and 25 kGy to produce protein compositions according to Examples 33 to 65.
  • a radical scavenger (RS) and water were mixed to prepare an aqueous solution of the protein composition before sterilization containing 2.4% by weight of pronectin F. Thereafter, the pre-sterilized protein composition was lyophilized and vacuum packed under a
  • Pronectin L is used as a sterilized protein (A) by radiation of a protein composition containing pronectin L, and pronectin L, a compound capable of forming hydrogen bonds (HC) so as to have the weight ratio and molar ratio shown in Table 5, A radical scavenger (RS) and water were mixed to prepare an aqueous solution of the protein composition before sterilization containing 2.4% by weight of pronectin L. Thereafter, the pre-sterilized protein composition was lyophilized and vacuum packed under a nitrogen atmosphere. The water content of the protein before sterilization was 4% by weight. The vacuum-packed product was irradiated with an electron beam under the conditions of ⁇ 20 ° C. and 25 kGy to produce protein compositions according to Examples 66 to 97.
  • a radical scavenger (RS) and water were mixed to prepare an aqueous solution of the protein composition before sterilization containing 2.4% by weight of pronectin L. Thereafter, the pre-sterilized protein composition was lyophilized and vacuum packed under
  • -HRP-conjugated rabbit antibody can be formed according to the weight ratio and molar ratio shown in Table 6, using HRP-conjugated rabbit antibody as a sterilized protein (A) by radiation of a protein composition containing HRP-conjugated rabbit antibody Compound (HC), radical scavenger (RS) and water were mixed to prepare an aqueous solution of the protein composition before sterilization containing 0.1 wt% of HRP-conjugated rabbit antibody. Thereafter, the pre-sterilized protein composition was lyophilized and vacuum packed under a nitrogen atmosphere. The water content of the protein composition before sterilization was 7% by weight. The vacuum-packed product was irradiated with an electron beam under the conditions of ⁇ 20 ° C. and 25 kGy to produce a protein composition according to Example 98.
  • HRP-conjugated rabbit antibody as a sterilized protein (A) by radiation of a protein composition containing HRP-conjugated rabbit antibody Compound (HC), radical scavenger (
  • -Glucose oxidase is used as a sterilized protein (A) by radiation of a protein composition containing glucose oxidase, and glucose oxidase, a compound capable of forming hydrogen bonds (HC) so as to have the weight ratio and molar ratio described in Table 6,
  • a radical scavenger (RS) and water were mixed to prepare an aqueous solution of the protein composition before sterilization containing 2.4% by weight of glucose oxidase.
  • the pre-sterilized protein composition was lyophilized and vacuum packed under a nitrogen atmosphere.
  • the water content of the protein composition before sterilization was 6% by weight.
  • the vacuum-packed product was irradiated with an electron beam under the conditions of ⁇ 20 ° C. and 25 kGy to produce a protein composition according to Example 99.
  • -Bovine serum albumin as a sterilized protein (A) by radiation of a protein composition containing bovine serum albumin (A), bovine serum albumin, a compound capable of forming hydrogen bonds so as to have the weight ratio and molar ratio shown in Table 6 ( HC), a radical scavenger (RS) and water were mixed to prepare an aqueous solution of the protein composition before sterilization containing 2.4% by weight of bovine serum albumin. Thereafter, the pre-sterilized protein composition was lyophilized and vacuum packed under a nitrogen atmosphere. The water content of the protein composition before sterilization was 5% by weight. The vacuum-packed product was irradiated with an electron beam under the conditions of ⁇ 20 ° C. and 25 kGy to produce a protein composition according to Example 100.
  • -SELP8K was used as a sterilized protein (A) by radiation of a protein composition containing SELP8K, and SELP8K and water were mixed to prepare an aqueous solution of the protein composition before sterilization containing 2.4% by weight of SELP8K. Thereafter, the pre-sterilized protein composition was lyophilized and vacuum packed under a nitrogen atmosphere. The water content of the protein composition before sterilization was 8% by weight. The vacuum-packed product was irradiated with an electron beam under the conditions of ⁇ 20 ° C. and 25 kGy to produce a protein composition according to Comparative Example 1.
  • Pronectin F was used as a sterilized protein (A) by radiation of a protein composition containing pronectin F, and pronectin F and water were mixed to prepare an aqueous solution of the protein composition before sterilization containing 2.4% by weight of pronectin F. . Thereafter, the pre-sterilized protein composition was lyophilized and vacuum packed under a nitrogen atmosphere. The water content of the protein before sterilization was 5% by weight. The vacuum-packed product was irradiated with an electron beam under the conditions of ⁇ 20 ° C. and 25 kGy to produce a protein composition according to Comparative Example 2.
  • Pronectin L was used as a sterilized protein (A) by radiation of a protein composition containing pronectin L, and pronectin L and water were mixed to prepare an aqueous solution of the protein composition before sterilization containing 2.4% by weight of pronectin L. . Thereafter, the pre-sterilized protein composition was lyophilized and vacuum packed under a nitrogen atmosphere. The water content of the protein before sterilization was 4% by weight. The vacuum-packed product was irradiated with an electron beam under the conditions of ⁇ 20 ° C. and 25 kGy to produce a protein composition according to Comparative Example 3.
  • -HRP-conjugated rabbit antibody is used as a sterilized protein (A) by radiation of a protein composition containing an HRP-conjugated rabbit antibody, mixed with HRP-conjugated rabbit antibody and water, and before sterilization containing 0.1% by weight of HRP-conjugated rabbit antibody An aqueous solution of the protein composition was prepared. Thereafter, the pre-sterilized protein composition was lyophilized and vacuum packed under a nitrogen atmosphere. The water content of the protein composition before sterilization was 7% by weight. The vacuum-packed product was irradiated with an electron beam under the conditions of ⁇ 20 ° C. and 25 kGy to produce a protein composition according to Comparative Example 4.
  • -Glucose oxidase was used as a sterilized protein (A) by radiation of a protein composition containing glucose oxidase, and glucose oxidase and water were mixed to prepare an aqueous solution of the protein composition before sterilization containing 2.4% by weight of glucose oxidase. . Thereafter, the pre-sterilized protein composition was lyophilized and vacuum packed under a nitrogen atmosphere. The water content of the protein composition before sterilization was 6% by weight. The vacuum-packed product was irradiated with an electron beam under the conditions of ⁇ 20 ° C. and 25 kGy to produce a protein composition according to Comparative Example 5.
  • a protein composition containing bovine serum albumin is prepared by using bovine serum albumin as a sterilized protein (A) by radiation, mixing bovine serum albumin and water, and pre-sterilizing the protein composition containing 2.4% by weight of bovine serum albumin.
  • An aqueous solution was prepared. Thereafter, the pre-sterilized protein composition was lyophilized and vacuum packed under a nitrogen atmosphere. The water content of the protein composition before sterilization was 5% by weight.
  • the vacuum-packed product was irradiated with an electron beam under the conditions of ⁇ 20 ° C. and 25 kGy to produce a protein composition according to Comparative Example 6.
  • Comparative Example 8 A protein composition according to Comparative Example 8 was produced in the same manner as in Comparative Example 2, except that ascorbic acid was added as a sterilizing radical scavenger by radiation of the protein composition containing pronectin F in the ratio shown in Table 7. .
  • Comparative Example 9 A protein composition according to Comparative Example 9 was produced in the same manner as Comparative Example 3 except that ascorbic acid was added as a sterilizing radical scavenger by radiation of the protein composition containing Pronectin L in the ratio shown in Table 7. .
  • Comparative Example 10 A protein composition according to Comparative Example 10 was prepared in the same manner as in Comparative Example 4 except that ascorbic acid was added as a sterilizing radical scavenger by radiation of a protein composition containing an HRP-conjugated rabbit antibody in the ratio shown in Table 7. Manufactured.
  • Comparative Example 11 A protein composition according to Comparative Example 11 was produced in the same manner as Comparative Example 5 except that ascorbic acid was added as a sterilizing radical scavenger by radiation of a protein composition containing glucose oxidase in the ratio shown in Table 7. .
  • Comparative Example 12 A protein composition according to Comparative Example 12 was produced in the same manner as Comparative Example 6 except that ascorbic acid was added as a sterilizing radical scavenger by radiation of a protein composition containing bovine serum albumin at the ratio shown in Table 7. did.
  • ⁇ Comparative Example 13> The protein composition which concerns on the comparative example 13 was manufactured like the comparative example 1 except having added ascorbic acid as a sterilization radical scavenger by the radiation of the protein composition containing SELP8K in the ratio shown in Table 7.
  • Comparative example 14 A protein composition according to Comparative Example 14 was produced in the same manner as in Comparative Example 2 except that ascorbic acid was added as a sterilizing radical scavenger by radiation of the protein composition containing pronectin F in the ratio shown in Table 7. .
  • Comparative Example 15 A protein composition according to Comparative Example 15 was produced in the same manner as Comparative Example 3 except that ascorbic acid was added as a sterilizing radical scavenger by radiation of the protein composition containing Pronectin L in the ratio shown in Table 7. .
  • Comparative Example 16 A protein according to Comparative Example 16 in the same manner as in Comparative Example 1 except that tryptophan was added as a compound (HC) capable of forming a sterile hydrogen bond by radiation of the protein composition containing SELP8K at a ratio shown in Table 7. A composition was prepared.
  • HC a compound capable of forming a sterile hydrogen bond by radiation of the protein composition containing SELP8K at a ratio shown in Table 7.
  • Comparative Example 17 According to Comparative Example 17, as in Comparative Example 2, except that tryptophan was added as a compound (HC) capable of forming a sterile hydrogen bond by radiation of a protein composition containing pronectin F in the ratio shown in Table 7. A protein composition was prepared.
  • Comparative Example 18 According to Comparative Example 18, as in Comparative Example 3, except that tryptophan was added as a compound (HC) capable of forming a sterile hydrogen bond by radiation of a protein composition containing Pronectin L at a ratio shown in Table 7. A protein composition was prepared.
  • the pre-sterilization protein composition produced when manufacturing the protein composition of each comparative example and the measurement sample of the protein composition according to each comparative example were produced.
  • the measurement sample was analyzed by LC-MSMS (manufactured by Shimadzu Corporation) under the following conditions.
  • B methanol
  • a / B 95/5 (V / V)
  • Measurement mode MRM (MSMS)
  • the amino acid composition was determined by the elution time and molecular weight obtained from the standard sample (amino acid mixed standard solution type H).
  • the protein composition obtained by the production method of the present invention has a lower denaturation rate of the protein (A) than the protein compositions according to Comparative Examples 1 to 18.
  • the method for producing a protein composition of the present invention is excellent in maintaining the physiological and physicochemical functions of a protein when the protein composition is sterilized by radiation. Therefore, it is effective as a method for producing a protein composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)

Abstract

水を完全に除去することにより変性するタンパク質や親水性が高いタンパク質に対して、タンパク質の放射線照射を行った際に発生するタンパク質の分解・変性などの変化を抑制するタンパク質組成物の製造方法を提供することを目的とする。 本発明のタンパク質組成物の製造方法は、タンパク質(A)とラジカル捕捉剤(RS)とアミノ酸、ペプチド及び前記タンパク質(A)以外のタンパク質からなる群から選ばれる1種以上である水素結合を形成しうる化合物(HC)とを含有するタンパク質組成物の製造方法であって、前記タンパク質組成物の製造方法は、滅菌前タンパク質組成物を放射線により滅菌する滅菌工程を含み、前記滅菌前タンパク質組成物は、前記タンパク質(A)と、前記ラジカル捕捉剤(RS)と、前記水素結合を形成しうる化合物(HC)とを含有し、前記タンパク質(A)が、スルフィド基、アミド基、ヒドロキシル基、アミノ基及びカルボキシル基からなる群から選ばれる1種以上の官能基を有し、前記水素結合を形成しうる化合物(HC)が、スルフィド基、アミド基、ヒドロキシル基、アミノ基及びカルボキシル基からなる群から選ばれる1種以上の官能基を有し、前記タンパク質(A)中の官能基と、前記水素結合を形成しうる化合物(HC)の官能基とは、水素結合により結合することができ、前記滅菌前タンパク質組成物中の水分含有量が、前記滅菌前タンパク質組成物の重量に基づいて、0~30重量%であり、前記滅菌前タンパク質組成物中の前記ラジカル捕捉剤(RS)と前記タンパク質(A)との重量比[ラジカル捕捉剤(RS)/タンパク質(A)]が0.01~1.0であり、前記滅菌前タンパク質組成物中の前記水素結合を形成しうる化合物(HC)の官能基の合計モル数と、前記タンパク質(A)中の官能基の合計モル数とのモル比[水素結合を形成しうる化合物(HC)中の官能基の合計のモル数/タンパク質(A)中の官能基の合計のモル数]が、0.01~0.50であることを特徴とする。

Description

タンパク質組成物の製造方法及びタンパク質組成物
本発明は、タンパク質組成物の製造方法及びタンパク質組成物に関する。
医療用途や生化学用途で用いられるタンパク質は滅菌される必要がある。滅菌はエチレンオキシドガス滅菌、ろ過滅菌、放射線滅菌によって行われているが、滅菌後の毒性残留物(エチレンオキシドガス)がないことやコスト、バリデーションの観点から放射線滅菌が優れている。
タンパク質は放射線滅菌すると、分解、変性等の変化が生じるという欠点がある。タンパク質の変化は、放射線により発生する活性ラジカル(ヒドロキシラジカル、酸素ラジカル)がタンパク質と反応する事により引き起こされる。
従来、活性ラジカルによるタンパク質の変化を抑えるために、放射線照射を冷却状態で行う方法、放射線照射系から水を取り除く方法、活性ラジカルに対するラジカル捕捉剤を添加する方法が取られている(特許文献1、2)。
しかし、放射線照射を冷却状態で行う方法は効果が低く、冷却するための製造コストが高い。また、水を完全に除去することにより変性するタンパク質や親水性が高いタンパク質を滅菌する際には、放射線照射系から水を取り除くことが難しい。さらに、活性ラジカルによるタンパク質の変化を防ぐためにラジカル捕捉剤を用いる場合、ラジカル捕捉剤を多量に添加する必要があり、タンパク質が持つ生理学的、物理化学的機能を損なうという問題があった。
特表2003-527210号公報 特表2010-514747号公報
本発明の目的は、水を完全に除去することにより変性するタンパク質や親水性が高いタンパク質に対して、放射線照射を行った際に発生するタンパク質の分解・変性などの変化を抑えることを可能にするタンパク質組成物の製造方法を提供することにある。
本発明者らは、鋭意研究を重ねてきた結果、本発明に到達した。すなわち、タンパク質(A)とラジカル捕捉剤(RS)とアミノ酸、ペプチド及び前記タンパク質(A)以外のタンパク質からなる群から選ばれる1種以上である水素結合を形成しうる化合物(HC)とを含有するタンパク質組成物の製造方法であって、前記タンパク質組成物の製造方法は、滅菌前タンパク質組成物を放射線により滅菌する滅菌工程を含み、前記滅菌前タンパク質組成物は、前記タンパク質(A)と、前記ラジカル捕捉剤(RS)と、前記水素結合を形成しうる化合物(HC)とを含有し、前記タンパク質(A)が、スルフィド基、アミド基、ヒドロキシル基、アミノ基及びカルボキシル基からなる群から選ばれる1種以上の官能基を有し、前記水素結合を形成しうる化合物(HC)が、スルフィド基、アミド基、ヒドロキシル基、アミノ基及びカルボキシル基からなる群から選ばれる1種以上の官能基を有し、前記タンパク質(A)中の官能基と、前記水素結合を形成しうる化合物(HC)の官能基とは、水素結合により結合することができ、前記滅菌前タンパク質組成物中の水分含有量が、前記滅菌前タンパク質組成物の重量に基づいて、0~30重量%であり、前記滅菌前タンパク質組成物中の前記ラジカル捕捉剤(RS)と前記タンパク質(A)との重量比[ラジカル捕捉剤(RS)/タンパク質(A)]が0.01~1であり、前記滅菌前タンパク質組成物中の前記水素結合を形成しうる化合物(HC)中の官能基の合計モル数と、前記タンパク質(A)中の官能基の合計モル数とのモル比[水素結合を形成しうる化合物(HC)中の官能基の合計のモル数/タンパク質(A)中の官能基の合計のモル数]が、0.01~0.5であることを特徴とするタンパク質組成物の製造方法;タンパク質(A)を含有するタンパク質組成物であって、前記タンパク質組成物は、さらにラジカル捕捉剤(RS)と、アミノ酸、ペプチド及び前記タンパク質(A)以外のタンパク質からなる群から選ばれる1種以上である水素結合を形成しうる化合物(HC)とを含有し、前記タンパク質(A)が、スルフィド基、アミド基、ヒドロキシル基、アミノ基及びカルボキシル基からなる群から選ばれる1種以上の官能基を有し、前記水素結合を形成しうる化合物(HC)が、スルフィド基、アミド基、ヒドロキシル基、アミノ基及びカルボキシル基からなる群から選ばれる1種以上の官能基を有し、前記タンパク質(A)中の官能基と、前記水素結合を形成しうる化合物(HC)の官能基とは、水素結合により結合することができ、前記タンパク質組成物中の前記ラジカル捕捉剤(RS)と前記タンパク質(A)との重量比[ラジカル捕捉剤(RS)/タンパク質(A)]が0.01~1.0であり、前記タンパク質組成物中の前記水素結合を形成しうる化合物(HC)の官能基の合計モル数と、タンパク質(A)中の官能基の合計モル数とのモル比[水素結合を形成しうる化合物(HC)中の官能基の合計のモル数/タンパク質(A)中の官能基の合計のモル数]が、0.01~0.50であり、放射線滅菌されていることを特徴とするタンパク質組成物である。
本発明の製造方法は水を完全に除去することにより変性するタンパク質や親水性が高いタンパク質に対して、放射線照射を行った際に発生するラジカルを効果的に捕捉することによりラジカル捕捉剤(RS)の添加量を抑え、得られたタンパク質組成物は放射線照射前の生理学的、物理化学的機能を保持するという効果を奏する。
本発明のタンパク質組成物の製造方法において、使用する滅菌前タンパク質組成物は、タンパク質(A)とラジカル捕捉剤(RS)とアミノ酸、ペプチド及びタンパク質(A)以外のタンパク質からなる群から選ばれる1種以上である水素結合を形成しうる化合物(HC)とを含有する。
なお、本発明のタンパク質組成物の製造方法における「滅菌前タンパク質組成物」とは、本発明のタンパク質組成物の製造方法の滅菌工程前のタンパク質(A)、ラジカル捕捉剤(RS)及び水素結合を形成しうる化合物(HC)を含むタンパク質組成物を意味する。
タンパク質(A)としては、動物由来タンパク質、植物由来タンパク質、微生物由来タンパク質、組換えタンパク質等が挙げられる。
動物由来タンパク質としては、タンパク質製剤、酵素、抗体、凝固因子、細胞外基質等が挙げられる。
植物由来タンパク質としては、酵素、細胞外基質等が挙げられる。
微生物由来タンパク質としては、酵素、細胞外基質等が挙げられる。
組換えタンパク質としては、タンパク質製剤、ワクチン等が挙げられる。
タンパク質製剤としては、インターフェロンα、インターフェロン13、インターロイキン1~12、成長ホルモン、エリスロポエチン、インスリン、顆粒状コロニー刺激因子(G-CSF)、組織プラスミノーゲン活性化因子(ΤΡΑ)、ナトリウム利尿ペプチド、血液凝固第VIII因子、ソマトメジン、グルカゴン、成長ホルモン放出因子、血清アルブミン、カルシトニン等が挙げられる。
ワクチンとしては、Α型肝炎ワクチン、B型肝炎ワクチン、C型肝炎ワクチン等が挙げられる。
酵素としては、加水分解酵素、異性化酵素、酸化還元酵素、転移酵素、合成酵素及び脱離酵素等が挙げられる。
加水分解酵素としては、プロテアーゼ、セリンプロテアーゼ、アミラーゼ、リパーゼ、セルラーゼ、ダルコアミラーゼ等が挙げられる。
異性化酵素としては、グルコースイソメラーゼ等が挙げられる。
酸化還元酵素としては、ペルオキシダーゼ等が挙げられる。
転移酵素としては、アシルトランスフェラーゼ、スルホトランスフェラーゼ等が挙げられる。
合成酵素としては、脂肪酸シンターゼ、リン酸シンターゼ、クエン酸シンターゼ等が挙げられる。
脱離酵素としては、ペクチンリアーゼ等が挙げられる。
抗体としては、IgD、IgE、IgG、IgA及びIgM等が挙げられる。
凝固因子としては、フィブリノーゲン、フィブリン、プロトロンビン、トロンビン、第III因子、第V因子、第VII因子、第VIII因子、第IX因子、第X因子、第XII因子及び第XIII因子等が挙げられる。
細胞外基質としては、コラーゲン、フィブロネクチン、ラミニン、エラスチン等が挙げられる。
タンパク質(A)は、スルフィド基、アミド基、ヒドロキシル基、アミノ基及びカルボキシル基からなる群から選ばれる1種以上の官能基を有する。
このうち、水素結合を形成しうる化合物(HC)との水素結合間距離の観点から、ヒドロキシル基、アミド基及びアミノ基、カルボキシル基が好ましい。
スルフィド基、アミド基、ヒドロキシル基、アミノ基及びカルボキシル基からなる群から選ばれる1種以上の官能基を有するタンパク質(A)において、タンパク質(A)中に前記官能基を有するアミノ酸を含んでいることが好ましい。
スルフィド基を含むアミノ酸としては、メチオニン及びシステイン等が挙げられる。
アミド基としては、タンパク質に含まれるアミノ酸同士のペプチド結合部位等が挙げられる。
ヒドロキシル基を含むアミノ酸としては、セリン、トレオニン及びチロシン等が挙げられる。
アミノ基を含むアミノ酸としては、アルギニン、アスパラギン、グルタミン、ヒスチジン、リシン及びトリプトファン等が挙げられる。
カルボキシル基を含むアミノ酸としては、アスパラギン酸及びグルタミン酸等が挙げられる。
タンパク質(A)としては、タンパク質(A)の安定性の観点から、メチオニン、システイン、セリン、トレオニン、チロシン、アルギニン、アスパラギン、グルタミン、ヒスチジン、リシン、トリプトファン、アスパラギン酸、グルタミン酸を含むタンパク質(A)が好ましく、メチオニン、セリン、トレオニン、チロシン、アルギニン、アスパラギン、グルタミン、ヒスチジン、リシン、トリプトファン、アスパラギン酸、グルタミン酸を含むタンパク質(A)がさらに好ましい。
本発明のタンパク質組成物の製造方法において、タンパク質(A)は、タンパク質の安定性の観点から、繰り返し配列(X)を含むことが好ましい。
本発明のタンパク質組成物の製造方法において、繰り返し配列(X)は、GAGAGS配列(1)、RGD配列、YIGSR配列(2)、GVGVP配列(3)、PGVGV配列(4)、VPGVG配列(5)、GVPGV配列(6)、VGVPG配列(7)、GPP配列、GAP配列、GAHGPAGPK配列(8)、GAA配列、VAAGY配列(9)、GAGAGAS配列(10)、LGPLGP配列(11)、GAHGPAGPK配列(12)、GAPGPAGPPGSRGDPGPP配列(13)、GAQGPAGPG配列(14)、GAPGAPGSQGAPGLQ配列(15)、GAPGTPGPQGLPGSP配列(16)、GAAVTGRGDSPASAAGY配列(17)及びGAAPGASIKVAVSAGPSAGY配列(18)のうちいずれか1種のアミノ酸配列(a1)を含むことが好ましい。繰り返し配列(X)は、1種のアミノ酸配列(a1)を含んでいてもよく、2種類以上のアミノ酸配列(a1)を含んでいてもよい。
これらのうち、タンパク質の安定性の観点から、GAGAGS配列(1)、GAA配列、VAAGY配列(9)及びGAGAGAS配列(10)が好ましい。
本発明のタンパク質組成物の製造方法では、繰り返し配列(X)は、GAGAGS配列(1)をタンパク質の安定性の観点から、好ましくは2~200個有し、さらに好ましくは15~150個有し、特に好ましくは30~120個有する。
本発明のタンパク質組成物の製造方法において、タンパク質の安定性の観点から、繰り返し配列(X)は、GVGVP配列(3)、PGVGV配列(4)、VPGVG配列(5)、GVPGV配列(6)、VGVPG配列(7)、GPP配列、GAP配列及びGAHGPAGPK配列(8)のうちいずれか1種であるアミノ酸配列(a2)が2~200個繰り返された配列(Y)及び/又は配列(Y)中の1~100個のアミノ酸がリシン(K)又はアルギニン(R)で置換された配列(Y1)を含むことが好ましい。
これらのうち、配列(Y)は、タンパク質の安定性の観点から、GVGVP配列(3)、PGVGV配列(4)、VPGVG配列(5)、GVPGV配列(6)及びVGVPG配列(7)が2~200個繰り返された配列であることが好ましい。
また、繰り返し配列(X)は1種の配列(Y)又は配列(Y1)を含んでいてもよく、2種以上の配列(Y)及び/又は配列(Y1)を含んでいてもよい。
本発明のタンパク質組成物の製造方法において、タンパク質(A)の1分子中の、GAGAGS配列(1)の数とアミノ酸配列(a2)及び下記アミノ酸配列(a2’)の合計の数との比率[GAGAGS配列(1)の数:アミノ酸配列(a2)及び(a2’)の数の合計]は、タンパク質の安定性の観点から、好ましくは[1:2]~[1:20]であり、さらに好ましくは[1:10]~[1:5]である。
アミノ酸配列(a2’):アミノ酸配列(a2)の1~5個のアミノ酸がリシン(K)又はアルギニン(R)で置換されたアミノ酸配列。
本発明のタンパク質組成物の製造方法において、タンパク質の生理活性の観点から、繰り返し配列(X)は、GAAVTGRGDSPASAAGY配列(17)及びGAAPGASIKVAVSAGPSAGY配列(18)のうちいずれか1種であるアミノ酸配列(a3)が1~50個繰り返された配列(Y2)を含むことが好ましい。
また、繰り返し配列(X)は1種の配列(Y2)を含んでいてもよく、2種以上の配列(Y2)を含んでいてもよい。
本発明のタンパク質組成物の製造方法において、タンパク質(A)は、繰り返し配列(X)の前後、及び間にアミノ酸を有してもよく、繰り返し配列(X)の前後及び間のアミノ酸の数は、タンパク質(A)の溶解性(特に水への溶解性)及びゲル化時間の観点から、好ましくは1~100個であり、さらに好ましくは5~40個であり、特に好ましくは10~35個である。
繰り返し配列(X)の前後及び間のアミノ酸の例としては、βガラクトシダーゼ由来の配列や精製タグ(6×Hisタグ、V5タグ、Xpressタグ、AU1タグ、T7タグ、VSV-Gタグ、DDDDKタグ、Sタグ、CruzTag09TM、CruzTag22TM、CruzTag41TM、Glu-Gluタグ、Ha.11タグ、KT3タグ、マルトース結合タンパク質、HQタグ、Mycタグ、HAタグ及びFLAGタグ等)が挙げられる。
本発明のタンパク質組成物の製造方法において、好ましいタンパク質(A)の一部を以下に例示する。
(1)繰り返し配列(X)が、GAGAGS配列(1)と配列(Y1)からなるタンパク質
GAGAGS配列(1)が4個連続した(GAGAGS)配列(19)を12個有し、GVGVP配列(3)が8個連続した繰り返し配列(Y-1)中のV(バリン)のうち1個がK(リシン)に置換された(GVGVP)GKGVP(GVGVP)配列(20)(Y1-1)を13個有し、GAGAGS配列(1)が2個連続した(GAGAGS)配列(21)を1個有し、これらが(GVGVP)GKGVP(GVGVP)[(GAGAGS)(GVGVP)GKGVP(GVGVP)12(GAGAGS)となるように化学結合してなる分子質量が約70kDaの配列(22)のタンパク質(SELP8K);
(GVGVP)GKGVP(GVGVP)配列(20)及び(GAGAGS)配列(21)をそれぞれ17個有し、これらが[(GVGVP)GKGVP(GVGVP)(GAGAGS)17となるように化学結合してなる構造を有する分子質量が約77kDaの配列(23)のタンパク質(SELP0K);
(GAGAGS)配列(21)を16個有し、GVGVP配列(3)が16個連続した繰り返し配列(Y-2)中のV(バリン)のうち1個がK(リシン)に置換された(GVGVP)GKGVP(GVGVP)11配列(24)を8個有し、これらが[(GAGAGS)(GVGVP)GKGVP(GVGVP)11(GAGAGS)となるように化学結合してなる分子質量が約71kDaの配列(25)のタンパク質(SELP415K);
(GAGAGS)配列(21)を6個有し、(GVGVP)GKGVP(GVGVP)11配列(24)を6個有し、(GAGAGS)配列(19)を6個有し、これらが[(GAGAGS)(GVGVP)GKGVP(GVGVP)11(GAGAGS)となるように化学結合してなる分子質量が約65kDaの配列(26)のタンパク質(SELP815K)等である。
これらのうち、タンパク質の安定性の観点から、タンパク質(A)は、SELP0K及びSELP8Kが好ましく、更にSELP8Kが好ましい。
(2)繰り返し配列(X)がGAGAGS配列(1)と配列(Y2)とからなるタンパク質
GAGAGS配列(1)が6個連続した(GAGAGS)配列(27)を1個有し、GAAVTGRGDSPASAAGY配列(17)を1個有し、GAAVTGRGDSPASAAGY配列(17)1個とGAGAGS配列(1)が9個連続した(GAGAGS)配列(28)とが12個結合した配列[(GAGAGS)(GAAVTGRGDSPASAAGY)]12配列(29)を1個有し、(GAGAGS)配列(21)を1個有し、これらが(GAGAGS)(GAAVTGRGDSPASAAGY)[(GAGAGS)(GAAVTGRGDSPASAAGY)]12(GAGAGS)となるように化学結合してなる分子質量が約73kDaの配列(30)のタンパク質(プロネクチンF);
(GAGAGS)配列(27)を1個有し、GAAPGASIKVAVSAGPSAGY配列(18)を1個有し、(GAGAGS)配列(28)とGAAPGASIKVAVSAGPSAGY配列(18)が12個結合した配列[(GAGAGS)(GAAPGASIKVAVSAGPSAGY)]12配列(31)を1個有し、(GAGAGS)配列(21)を1個有し、これらが(GAGAGS)(GAAPGASIKVAVSAGPSAGY)[(GAGAGS)(GAAPGASIKVAVSAGPSAGY)]12(GAGAGS)となるように化学結合した構造を有する分子質量が約76kDaの配列(32)のタンパク質(プロネクチンL)等である。
タンパク質(A)のアミノ酸組成が、タンパク質(A)の安定性の観点から、タンパク質(A)のアミノ酸配列の総数に基づいて、プロリン(P)の個数の割合が1~50%であり、セリン(S)の個数の割合が1~50%であり、バリン(V)の個数の割合が1~50%であることが好ましい。さらに好ましくはプロリン(P)が1~20%であり、セリン(S)が1~20%であり、バリン(V)が1~30%である。
タンパク質組成物中のタンパク質(A)の含有率は、タンパク質(A)の溶解性の観点から、タンパク質組成物の重量に基づいて、好ましくは50重量%以下であり、さらに好ましくは10重量%以下である。
本発明のタンパク質組成物の製造方法において、タンパク質(A)のSDSポリアクリルアミドゲル電気泳動法による分子質量が好ましくは15~200kDaである。
なお、タンパク質(A)の分子質量は、SDSポリアクリルアミドゲル電気泳動法により、測定サンプルを分離し、泳動距離を標準物質と比較する方法によって求められる。
本発明のタンパク質組成物の製造方法において、タンパク質(A)の安定性の観点から、タンパク質組成物中のラジカル捕捉剤(RS)としては、酸素含有共役構造及び窒素含有共役構造からなる群から選ばれる1種以上であることが好ましい。
本発明のタンパク質組成物の製造方法において、ラジカル捕捉剤(RS)のジフェニルピクリルヒドラジルラジカル(DPPHラジカル)に対するラジカル捕捉能は、0.01~90mg Trolox eq/mgであることが好ましい。
なお、DPPHラジカル捕捉能は[「食品機能性評価マニュアル集第II集」DPPHラジカル消去活性評価法、沖智之、(2008)p.71-78]に記載の方法で行われ、Trolox相当値として評価できる。
また、ペルオキシラジカル、ヒドロキシラジカル、2,2’-アジノビス(3-エチルベンゾチアゾリン-6-スルホン酸)(ABTS)ラジカル、酸素ラジカル、アルキルラジカルに対するラジカル捕捉能を、スーパーオキシドジスムターゼ法(SOD法)、ABTSラジカル捕捉能測定法、Potential Anti Oxidant(PAO)抗酸化能測定法、EPRスピントラップ法等を用いて測定し、ラジカル捕捉能を0.01mg Trolox eq/mg以上に設定することができる。
ラジカル捕捉剤(RS)としては、例えば、有機酸(アスコルビン酸、エリソルビン酸、尿酸、没食子酸、グルタチオン、フェノール酸、エラグ酸、クロロゲン酸等)、グルタチオン、エダラボン、ポリフェノール(フラボノイド、フェノール酸、エラグ酸、リグナン、クルクミン、クマリン等)及び、フェノール系化合物(バニリン、ピロガロール、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソール等)が挙げられる。
このうち、ラジカル捕捉剤(RS)としては、タンパク質(A)とラジカル捕捉剤(RS)との相溶性、ラジカル捕捉能及び安全性の観点から、アスコルビン酸、エダラボン、バニリン、没食子酸、グルタチオン及びクロロゲン酸が好ましく、アスコルビン酸及びエダラボンがさらに好ましい。
滅菌前タンパク質組成物中のラジカル捕捉剤(RS)の含有率は、溶解性の観点から、滅菌前タンパク質組成物の重量に基づいて、好ましくは40重量%以下であり、さらに好ましくは30重量%以下である。
本発明のタンパク質組成物の製造方法において、水素結合を形成しうる化合物(HC)は、スルフィド基、アミド基、ヒドロキシル基、アミノ基及びカルボキシル基からなる群から選ばれる1種以上の官能基を有する。
このうち、タンパク質(A)との水素結合距離の観点から、水素結合を形成しうる化合物(HC)は、カルボキシル基、ヒドロキシル基及びアミノ基からなる群から選ばれる1種以上の官能基を有することが好ましい。
水素結合を形成しうる化合物(HC)としては、例えば、アミノ酸(アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、リシン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン及びバリンとその誘導体)、ペプチド(アスパルテーム、バソプレシン、グルカゴン及びセレクチン等)が挙げられる。
このうち、タンパク質(A)と水素結合を形成しうる化合物(HC)との相溶性および水素結合距離の観点から、水素結合を形成しうる化合物(HC)は、トリプトファン、チロシン又はヒスチジンであることが好ましく、トリプトファンであることがさらに好ましい。
滅菌前タンパク質組成物中の水素結合を形成しうる化合物(HC)の含有率は、溶解性の観点から、滅菌前タンパク質組成物の重量に基づいて、好ましくは25重量%以下であり、さらに好ましくは10重量%以下である。
本発明のタンパク質組成物の製造方法において、滅菌前タンパク質組成物中の水分含有量が、滅菌前タンパク質組成物の重量に基づいて、0~30重量%であり、タンパク質の安定性の観点から、好ましくは0.01~30重量%、より好ましくは0.01~15重量%の水分を含む。
なお、本発明のタンパク質組成物の製造方法において、滅菌前タンパク質組成物は、滅菌工程前に乾燥してもよい。
滅菌前タンパク質組成物の乾燥方法としては、凍結乾燥、加熱乾燥等が挙げられる。
滅菌前タンパク質組成物中の水分は下記により測定することができる。
<滅菌前タンパク質組成物中の水分の測定方法>
滅菌前タンパク質組成物をガラスバイアルに、50~100mg計り取る。秤量した量(Ws0)、ガラスバイアルの重さ(Wb0)を記録する。乾燥機を100℃にセットし、100℃になったら滅菌前タンパク質組成物の入ったガラスバイアルをいれる。(ガラスバイアルはふたを外しておく。)2時間後、滅菌前タンパク質組成物の入ったガラスバイアルを乾燥機から取り出し、デシケーター内で室温まで放冷させる。放冷後、ガラスバイアルのふたをし、重量(W)を測定する。そして、以下の式(1)に基づいて、滅菌前タンパク質組成物中の水分含量を算出する。
(Ws0+Wb0-W)/Ws0×100=滅菌前タンパク質組成物中の水分含量(重量%)・・・(1)
本発明のタンパク質組成物の製造方法において、滅菌前タンパク質組成物中のラジカル捕捉剤(RS)と、タンパク質(A)との重量比[ラジカル捕捉剤(RS)/タンパク質(A)]は0.01~1.0であり、タンパク質(A)の生理学的、物理化学的機能を保持する観点から、好ましくは0.01~0.1であり、さらに好ましくは0.01~0.05である。
本発明のタンパク質組成物の製造方法において、タンパク質組成物中の水素結合を形成しうる化合物(HC)の官能基の合計のモル数と、タンパク質(A)中の官能基の合計モル数とのモル比[水素結合を形成しうる化合物(HC)の官能基の合計のモル数/タンパク質(A)中の官能基の合計のモル数]が、0.01~0.50であり、タンパク質の性能保護の観点から、好ましくは0.01~0.50であり、より好ましくは0.01~0.10であり、さらに好ましくは0.01~0.05である。
このモル比が、1.0を超える場合、ラジカル捕捉剤(RS)によるデメリット(生理学的・物理化学的機能の変化、pH環境の変化、コスト増大、炎症及び発ガン等)が大きくなる。
このモル比が、0.01未満の場合タンパク質(A)の変性が大きくなる。
なお、上記モル比の計算に用いられる「タンパク質(A)中の官能基」とは、水素結合を形成しうる化合物(HC)の官能基と水素結合するタンパク質(A)中の官能基のことを意味する。また、上記モル比の計算に用いられる「水素結合を形成しうる化合物(HC)の官能基」とは、タンパク質(A)中の官能基と水素結合する水素結合を形成しうる化合物(HC)の官能基のことを意味する。
本発明のタンパク質組成物の製造方法では、上記の通り、タンパク質(A)はスルフィド基、アミド基、ヒドロキシル基、アミノ基及びカルボキシル基からなる群から選ばれる1種以上の官能基を有している。
また、本発明のタンパク質組成物の製造方法では、タンパク質(A)中の官能基と、水素結合を形成しうる化合物(HC)の官能基とは、水素結合により結合することができる。
特に、水素結合を形成しうる化合物(HC)の官能基は、タンパク質(A)が放射線照射された際に、変性しやすいタンパク質(A)のアミノ酸の官能基と水素結合できることが好ましい。滅菌前タンパク質組成物が、このような水素結合を形成しうる化合物(HC)を含むと、滅菌工程において、タンパク質(A)が変性することを防ぎやすくなる。
放射線照射された際に変性しやすいタンパク質(A)のアミノ酸としては、例えば、セリンやアスパラギン酸が挙げられる。
タンパク質(A)中の官能基は、タンパク質(A)のアミノ酸の側鎖に位置していてもよい。
これらの官能基がアミノ酸の側鎖に位置する場合、タンパク質(A)中のアミノ酸の側鎖に位置する官能基と、水素結合を形成しうる化合物(HC)の官能基とは第1の水素結合により結合することができ、第1の水素結合の距離は、ラジカル捕捉性の観点から、好ましくは1.3~1.9Åであり、さらに好ましくは1.7~1.8Åである。
また、タンパク質(A)中の官能基のうちアミド基は、タンパク質(A)のペプチド結合中にも位置する。
タンパク質(A)のペプチド結合中のアミド基と、前記水素結合を形成しうる化合物(HC)とは、第2の水素結合により結合することができ、第2の水素結合の距離は、ラジカル捕捉性の観点から、好ましくは1.3~1.9Åであり、さらに好ましくは1.7~1.8Åである。
なお、水素結合の距離はシミュレーションソフト(Gaussian:Gaussian社製)を用いて算出される。
シミュレーションソフト(Gaussian)により、水素結合間距離を算出する際には、タンパク質(A)に含まれる所定の官能基を有する化合物のモデル化合物として、所定の官能基を有するアミノ酸を選択する。そして、当該アミノ酸の官能基と、水素結合を形成しうる化合物(HC)の官能基との水素結合の距離を算出することにより求めることができる。
なお、当該アミノ酸の官能基と、水素結合を形成しうる化合物(HC)の官能基との水素結合の距離とは、これらの間でエネルギー的に最小になるよう最適化された、水素結合の距離のことをいう。
本発明のタンパク質組成物の製造方法において、第1の水素結合の距離が、1.3~1.9Åであり、第2の水素結合の距離が、1.3~1.9Åである場合、これらの距離は、通常の水素結合間距離(2.4~3.3Å)より短いことになる。
そのため、水素結合を形成しうる化合物(HC)が滅菌前タンパク質組成物に含まれると、滅菌工程において、タンパク質(A)が放射線により変性することを抑制することができる。これは、水素結合を形成しうる化合物(HC)が水素結合を介して、タンパク質(A)からラジカル捕捉剤(RS)へのラジカルの移動を促進する役割を果たしたためと考えられる。この相乗効果により、ラジカル捕捉剤(RS)のみで変性を抑えようとした場合に比べて、極端に添加量(100分の1程度)を抑えることができる。そのため、ラジカル捕捉剤(RS)を大量に滅菌前タンパク質組成物に加えることにより発生するデメリット(生理学的・物理化学的機能の変化、pH環境の変化、コスト増大、製造されるタンパク質が原因となる炎症、製造されるタンパク質の発ガン性等)が抑えられる。
また、本発明のタンパク質組成物の製造方法では、水素結合を形成しうる化合物(HC)は、タンパク質(A)と水素結合のみで結合することが好ましい。
水素結合を形成しうる化合物(HC)の代わりに、タンパク質(A)と共有結合を形成する化合物を用いても、水素結合を形成しうる化合物(HC)と同等の機能(タンパク質(A)からラジカル捕捉剤(RS)へのラジカルの移動を促進する役割)を発揮することが可能であるが、このように共有結合が形成されると、タンパク質(A)の物理学的機能、生理学的機能が変化してしまう。これに対して、水素結合を形成しうる化合物(HC)がタンパク質(A)と共有結合をせず、水素結合のみで結合すると、上記のようなデメリット(生理学的・物理化学的機能の変化、安全性の変化等)が発生することがない。
タンパク質(A)中のスルフィド基、アミド基、ヒドロキシル基、アミノ基及びカルボキシル基からなる群から選ばれる1種以上の官能基と水素結合を形成しうる化合物(HC)の官能基との水素結合間距離の調整方法として、例えば、タンパク質(A)中のヒドロキシル基、アミノ基及びカルボキシル基からなる群から選ばれる1種以上の官能基と水素結合を形成しうる化合物(HC)の官能基との水素結合間距離が、1.3~1.9Åの数値範囲に含まれるように、官能基、タンパク質及び水素結合を形成しうる化合物(HC)を種々選択する。
すなわち、本発明のタンパク質組成物の製造方法では、水素結合を形成しうる化合物(HC)は、タンパク質(A)の種類等に応じて選択することが好ましい。
また、水素結合を形成しうる化合物(HC)は、例えば、以下のスクリーニング(1)やスクリーニング(2)等の方法でスクリーニングしてもよい。
<スクリーニング(1)>
まず、タンパク質(A)に放射線照射し、タンパク質(A)を滅菌する。その後、放射線照射後のタンパク質(A)において変性が発生したアミノ酸(α)を特定する。そして、タンパク質(A)中のアミノ酸の側鎖に位置する官能基を有する化合物のモデル化合物として、変性が生じる前のアミノ酸(α)を用い、上記シミュレーションソフト等を用いて、水素結合を形成しうる化合物(HC)をスクリーニングしてもよい。
なお、変性したアミノ酸(α)の分析は、LC-MSMSを用いることにより特定することができる。LC-MSMSによる分析の条件は、後述するLC-MSMSを用いてタンパク質(A)の変異率を算出する際の「LC-MSMSによる測定」の条件と同じ条件であることが好ましい。
本方法により、第1の水素結合を形成しうる化合物(HC)をスクリーニングすることができる。
<スクリーニング(2)>
タンパク質(A)のペプチド結合中のアミド基を有する化合物のモデル化合物として、アラニルアラニンを用い、上記シミュレーションソフト等を用いて、水素結合を形成しうる化合物(HC)をスクリーニングしてもよい。
本方法により、第2の水素結合を形成しうる化合物(HC)をスクリーニングすることができる。
本発明のタンパク質組成物の製造方法において、滅菌前タンパク質組成物中には、タンパク質(A)、ラジカル捕捉剤(RS)及び水素結合を形成しうる化合物(HC)以外の任意の添加剤を含んでいても良い。
任意の添加物としては、抗酸化剤、防腐剤、安定化剤、可溶化剤、緩衝液成分等が挙げられる。
本発明のタンパク質組成物の製造方法は、滅菌前タンパク質組成物を放射線により滅菌する滅菌工程を含む。
また、本発明のタンパク質組成物の製造方法では、滅菌工程の前に、以下のように、滅菌前タンパク質組成物を準備する滅菌前タンパク質組成物準備工程や、滅菌前タンパク質組成物を凍結乾燥する凍結乾燥工程や、滅菌前タンパク質組成物をパッキングするパッキング工程を行ってもよい。
(滅菌前タンパク質組成物準備工程)
滅菌前タンパク質組成物の作製方法として、例えば、水素結合を形成しうる化合物(HC)とラジカル捕捉剤(RS)とタンパク質(A)を室温で水に溶解させる方法が挙げられる。水としては、滅菌されたものであれば特に限定するものではなく、水の滅菌方法としては、0.2μm以下の孔径を持つ精密ろ過膜を通した水、限外ろ過膜を通した水、逆浸透膜を通した水及びオートクレーブで121℃、20分加熱して過熱滅菌したイオン交換水等が挙げられる。
(凍結乾燥工程)
滅菌前タンパク質組成物を凍結乾燥させる方法として-30~-35℃程度まで温度を下げて、凍結した後に、減圧し、真空状態とし、温度を-10~-20℃程度(平衡水蒸気圧が設定真空度以上となる温度)まで上げ、水を昇華させる方法等が挙げられる。
一例として、設備条件を以下に挙げる。
設備:凍結乾燥機FD-10BM(日本テクノサービス株式会社製)
凍結条件:-30℃(15h)
一次乾燥条件:-10℃(72h)
二次乾燥条件:10℃(72h)
真空度:1Pa~10Pa
(パッキング工程)
本発明のタンパク質組成物の製造方法では、滅菌工程前に、滅菌前タンパク質組成物を外部と遮断するために、滅菌前タンパク質組成物のパッキングをしてもよい。
パッキングの方法としては、真空パック法が挙げられる。
(滅菌工程)
本発明のタンパク質組成物の製造方法の滅菌工程において、滅菌前タンパク質組成物を放射線により滅菌する方法として、以下の条件でγ線滅菌、電子線滅菌等する方法が挙げられる。
照射施設:日本電子照射サービス株式会社
照射線量:25~27kGy
照射時環境温度:-10~10℃
また、本発明のタンパク質組成物の製造方法の滅菌工程では、JIS T 0806-2:2010又はISO11137-2:2006に従いSAL10-6が達成されるように滅菌することが好ましい。
また、本発明のタンパク質組成物の製造方法において、滅菌工程は1回だけ行ってもよく、複数回行ってもよい。
本発明のタンパク質組成物の製造方法によりタンパク質組成物を製造することにより、製造されたタンパク質組成物の変性率、特に、下記方法で測定される「HPLC測定により算出される変性率」及び「LC-MSMS測定により算出されるタンパク質組成物の変性率」を低くすることができる。
本明細書において、製造されたタンパク質組成物のHPLC測定により算出された変性率とは、滅菌前タンパク質組成物及び製造されたタンパク質組成物を以下の条件でHPLC測定を行い、滅菌前タンパク質組成物のピーク高さをMとし、製造されたタンパク質組成物のピーク高さをNとした際に、以下の式(2)から算出される数値を意味する。
変性率(%)=[1-(N/M)]×100・・・(2)
(HPLCによる測定)
タンパク質(A)が1mgとなるように滅菌前タンパク質組成物又は製造されたタンパク質組成物中を純水1mLに溶解し、0.45μmフィルターを通し測定用試料とする。
当該測定用試料をHPLC(島津社製)で以下の条件により測定する。
カラム:Jupiter C4
移動層:
 A:99.85重量%水+0.15重量%トリクロロ酢酸
 B:34重量%アセトニトリル+65.85重量%水+0.15重量%トリクロロ酢酸
 C:80重量%アセトニトリル+19.85重量%水+0.15重量%トリクロロ酢酸
流速:1mL/min
モード:曲線グラジエントモード(A/B=86/14 to A/B=20/80 to C=100)
測定波長:214nm
通常、タンパク質組成物が放射線により滅菌されると、タンパク質組成物に含まれるタンパク質は親水化する。そのため、放射線により滅菌されたタンパク質組成物のHPLC分析のピークは、ブロードになり、低くなる。逆に、変性が生じたタンパク質の割合が少なければ、HPLC分析のピークは、シャープになり、低くなりにくい。
本明細書において、製造されたタンパク質組成物のLC-MSMS測定により算出された変性率とは、滅菌前タンパク質組成物及び製造されたタンパク質組成物を以下の条件でLC-MSMS測定を行い、滅菌前タンパク質組成物の各アミノ酸濃度をOとし、製造されたタンパク質組成物の各アミノ酸濃度をPとし、測定したアミノ酸の種類の数をQとした際に、以下の式(3)から算出される数値を意味する。
変性率(%)=1/Q×Σ[1-(P/O)]×100・・・(3)
(LC-MSMSによる測定)
タンパク質(A)が1mgとなるように滅菌前タンパク質組成物又は製造されたタンパク質組成物中を6N 塩酸200μLに加え脱気する。泡が発生しなくなるまで脱気した溶液を減圧密封下で110℃、22時間の加水分解を行う。加水分解後、800μLになるように純水で希釈する。希釈した溶液を、0.45μmのフィルターを通し測定用試料とする。
当該測定用試料をLC-MSMS(島津社製)で以下の条件により測定する。
カラム:InertSustain C18(ジーエルサイエンス製)
移動相:
 A:0.05Mトリフルオロ酢酸水溶液
 B:メタノール
 A/B=95/5(V/V)
流速:0.2mL/min
イオン源:ESI(+)
測定モード:MRM(MSMS)
標準試料(アミノ酸混合標準液 H型)から得られる溶出時間と分子量により、アミノ酸組成を決定する。
本発明のタンパク質組成物の製造方法は、医療用途や生化学用途で用いられるタンパク質組成物を製造する方法であって、放射線滅菌による、タンパク質の分解、変性等の変化を防止するために使用される。
本発明のタンパク質組成物の製造方法により製造されたタンパク質組成物は、本発明のタンパク質組成物でもある。
すなわち、本発明のタンパク質組成物は、タンパク質(A)を含有するタンパク質組成物であって、前記タンパク質組成物は、さらにラジカル捕捉剤(RS)と、アミノ酸、ペプチド及び前記タンパク質(A)以外のタンパク質からなる群から選ばれる1種以上である水素結合を形成しうる化合物(HC)とを含有し、前記タンパク質(A)が、スルフィド基、アミド基、ヒドロキシル基、アミノ基及びカルボキシル基からなる群から選ばれる1種以上の官能基を有し、前記水素結合を形成しうる化合物(HC)が、スルフィド基、アミド基、ヒドロキシル基、アミノ基及びカルボキシル基からなる群から選ばれる1種以上の官能基を有し、前記タンパク質(A)中の官能基と、前記水素結合を形成しうる化合物(HC)の官能基とは、水素結合により結合することができ、前記タンパク質組成物中の前記ラジカル捕捉剤(RS)と前記タンパク質(A)との重量比[ラジカル捕捉剤(RS)/タンパク質(A)]が0.01~1.0であり、前記タンパク質組成物中の前記水素結合を形成しうる化合物(HC)の官能基の合計モル数と、タンパク質(A)中の官能基の合計モル数とのモル比[水素結合を形成しうる化合物(HC)中の官能基の合計のモル数/タンパク質(A)中の官能基の合計のモル数]が、0.01~0.50であり、放射線滅菌されていることを特徴とする。
本発明のタンパク質組成物では、タンパク質組成物中のラジカル捕捉剤(RS)とタンパク質(A)との重量比[ラジカル捕捉剤(RS)/タンパク質(A)]が0.01~1.0であり、0.01~0.1であることが好ましく、0.01~0.05であることがより好ましい。
上記の通り、本発明のタンパク質組成物は、放射線による滅菌をされて製造される。タンパク質組成物中のラジカル捕捉剤(RS)とタンパク質(A)との重量比[ラジカル捕捉剤(RS)/タンパク質(A)]が0.01~1.0であると、放射線による滅菌により、タンパク質(A)の変性体が生じにくくなり、タンパク質(A)の生理学的、物理化学的機能を保持しやすくなる。
本発明のタンパク質組成物では、タンパク質組成物中の水素結合を形成しうる化合物(HC)の官能基の合計モル数と、タンパク質(A)中の官能基の合計モル数とのモル比[水素結合を形成しうる化合物(HC)中の官能基の合計のモル数/タンパク質(A)中の官能基の合計のモル数]が、0.01~0.50であり、0.01~0.10であることが好ましく、0.01~0.05であることがより好ましい。
上記の通り、本発明のタンパク質組成物は、放射線による滅菌をされて製造される。
タンパク質組成物中の水素結合を形成しうる化合物(HC)の官能基の合計モル数と、タンパク質(A)中の官能基の合計モル数とのモル比[水素結合を形成しうる化合物(HC)中の官能基の合計のモル数/タンパク質(A)中の官能基の合計のモル数]が、0.01~0.50であると、ラジカル捕捉剤(RS)によるデメリット(生理学的・物理化学的機能の変化、pH環境の変化、コスト増大、炎症及び発ガン等)が小さくなる。また、放射線による滅菌により、タンパク質(A)の変性体が生じにくくなり、タンパク質(A)の生理学的、物理化学的機能を保持しやすくなる。
本発明のタンパク質組成物は、放射線滅菌されている。
従って、本発明のタンパク質組成物を医療用途や生化学的用途に用いた場合、コンタミネーションを好適に防ぐことができる。
また、本発明のタンパク質組成物は、25~27kGyで放射線滅菌されていることが好ましい。
なお、本発明のタンパク質組成物は、JIS T 0806-2:2010又はISO11137-2:2006に従い、SAL10-6が達成されるように滅菌されていることがより好ましい。このように滅菌されている場合、本発明のタンパク質組成物は医薬品としても使用することができる。
本発明のタンパク質組成物では、タンパク質組成物中の水分含有量が、タンパク質組成物の重量に基づいて、0~30重量%であることが好ましく、0.01~30重量%であることがより好ましく、0.01~15重量%であることがさらに好ましい。
タンパク質組成物中の水分含有量が、タンパク質組成物の重量に基づいて、0~30重量%であると、タンパク質組成物に含まれるタンパク質(A)の安定性が向上する。
本発明のタンパク質組成物は、パッキングされていることが好ましく、真空パックされていることがより好ましい。
タンパク質組成物がパッキングされていると、外部と遮断されるため、コンタミネーションが生じにくくなる。
以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。
(ラジカル捕捉剤(RS)の準備)
表1に示す各種ラジカル捕捉剤(RS)を準備した。各ラジカル捕捉剤のラジカル捕捉能及びラジカル捕捉剤の構造を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(水素結合を形成しうる化合物(HC)のスクリーニング)
まず、タンパク質(A)として、SELP8K(配列(22))、プロネクチンF(配列(30))、プロネクチンL(配列(32))、HRP結合ラビット抗体(配列(33))、グルコースオキシダーゼ(配列(34))及びウシ血清アルブミン(配列(35))の各水溶液を凍結乾燥し、乾燥後、窒素雰囲気下で真空パックした。真空パックしたものを、-20℃、25kGyの条件で、電子線を照射した。
その後、電子線照射前のタンパク質(A)及び電子線照射後のタンパク質(A)のアミノ酸組成を以下の方法で測定し、電子線照射により変性したアミノ酸を特定した。
<評価:アミノ酸分析>
タンパク質1mgを6N 塩酸200μLに加え脱気した。泡が発生しなくなるまで脱気した溶液を減圧密封下で110℃、22時間の加水分解を行った。加水分解後、800μLになるように純水で希釈した。希釈した溶液を、0.45μmのフィルターを通し測定用試料とし、結果を表3に示した。
LC-MSMS(島津社製)で以下の条件により分析した。
カラム:InertSustain C18(ジーエルサイエンス製)
移動相:
 A:0.05Mトリフルオロ酢酸水溶液
 B:メタノール
 A/B=95/5(V/V)
流速:0.2mL/min
イオン源:ESI(+)
測定モード:MRM(MSMS)
標準試料(アミノ酸混合標準液 H型)から得られる溶出時間と分子量により、アミノ酸組成を決定した。
電子線照射によって変性したタンパク質(A)中のアミノ酸は、セリンであった。
次に、シミュレーションソフト(Gaussian)を用いて、セリンの側鎖のヒドロキシル基と水素結合を形成しうる化合物(HC)をスクリーニングした。
また、アラニルアラニンのペプチド結合中のアミド基と水素結合を形成しうる化合物(HC)をスクリーニングした。
その結果、水素結合を形成しうる化合物(HC)として、トリプトファン、チロシン及びヒスチジンをスクリーニングすることができた。
セリンの側鎖のヒドロキシル基と、トリプトファンの側鎖のカルボキシル基、チロシンの側鎖のヒドロキシル基又はヒスチジンの側鎖のカルボキシル基とは水素結合(第1の水素結合)をすると考えられる。第1の水素結合の距離(Å)を表2に示す。
アラニルアラニンのペプチド結合中のアミド基と、トリプトファンの側鎖のカルボキシル基、チロシンの側鎖のヒドロキシル基又はヒスチジンの側鎖のカルボキシル基とは水素結合(第2の水素結合)をすると考えられる。第2の水素結合の距離(Å)を表2に示す。
Figure JPOXMLDOC01-appb-T000002
<実施例1~32>
・SELP8Kを含むタンパク質組成物の放射線による滅菌
タンパク質(A)としてSELP8Kを用い、表3に記載した重量比及びモル比となるようにSELP8K、水素結合を形成しうる化合物(HC)、ラジカル捕捉剤(RS)及び水を混合し、SELP8Kが2.4重量%含まれる滅菌前タンパク質組成物の水溶液を作製した。
その後、滅菌前タンパク質組成物を凍結乾燥し、窒素雰囲気下で真空パックした。滅菌前タンパク質組成物の水分含有量は8重量%であった。真空パックしたものを、-20℃、25kGyの条件で、電子線を照射し、実施例1~32に係るタンパク質組成物を製造した。
<実施例33~65>
・プロネクチンFを含むタンパク質組成物の放射線による滅菌
タンパク質(A)としてプロネクチンFを用い、表4に記載した重量比及びモル比となるようにプロネクチンF、水素結合を形成しうる化合物(HC)、ラジカル捕捉剤(RS)及び水を混合し、プロネクチンFが2.4重量%含まれる滅菌前タンパク質組成物の水溶液を作製した。
その後、滅菌前タンパク質組成物を凍結乾燥し、窒素雰囲気下で真空パックした。滅菌前タンパク質の水分含有量は5重量%であった。真空パックしたものを、-20℃、25kGyの条件で、電子線を照射し、実施例33~65に係るタンパク質組成物を製造した。
<実施例66~97>
・プロネクチンLを含むタンパク質組成物の放射線による滅菌
タンパク質(A)としてプロネクチンLを用い、表5に記載した重量比及びモル比となるようにプロネクチンL、水素結合を形成しうる化合物(HC)、ラジカル捕捉剤(RS)及び水を混合し、プロネクチンLが2.4重量%含まれる滅菌前タンパク質組成物の水溶液を作製した。
その後、滅菌前タンパク質組成物を凍結乾燥し、窒素雰囲気下で真空パックした。滅菌前のタンパク質の水分含有量は4重量%であった。真空パックしたものを、-20℃、25kGyの条件で、電子線を照射し、実施例66~97に係るタンパク質組成物を製造した。
<実施例98>
・HRP結合ラビット抗体を含むタンパク質組成物の放射線による滅菌
タンパク質(A)として、HRP結合ラビット抗体を用い、表6に記載の重量比及びモル比に従って、HRP結合ラビット抗体、水素結合を形成しうる化合物(HC)、ラジカル捕捉剤(RS)及び水混合し、HRP結合ラビット抗体が0.1重量%含まれる滅菌前タンパク質組成物の水溶液を作製した。
その後、滅菌前タンパク質組成物を凍結乾燥し、窒素雰囲気下で真空パックした。滅菌前のタンパク質組成物の水分含有量は7重量%であった。真空パックしたものを、-20℃、25kGyの条件で、電子線を照射し実施例98に係るタンパク質組成物を製造した。
<実施例99>
・グルコースオキシダーゼを含むタンパク質組成物の放射線による滅菌
タンパク質(A)としてグルコースオキシダーゼを用い、表6に記載した重量比及びモル比となるようにグルコースオキシダーゼ、水素結合を形成しうる化合物(HC)、ラジカル捕捉剤(RS)及び水を混合し、グルコースオキシダーゼが2.4重量%含まれる滅菌前タンパク質組成物の水溶液を作製した。
その後、滅菌前タンパク質組成物を凍結乾燥し、窒素雰囲気下で真空パックした。滅菌前タンパク質組成物の水分含有量は6重量%であった。真空パックしたものを、-20℃、25kGyの条件で、電子線を照射し、実施例99に係るタンパク質組成物を製造した。
<実施例100>
・ウシ血清アルブミンを含むタンパク質組成物の放射線による滅菌
タンパク質(A)としてウシ血清アルブミンを用い、表6に記載した重量比及びモル比となるようにウシ血清アルブミン、水素結合を形成しうる化合物(HC)、ラジカル捕捉剤(RS)及び水を混合し、ウシ血清アルブミンが2.4重量%含まれる滅菌前タンパク質組成物の水溶液を作製した。
その後、滅菌前タンパク質組成物を凍結乾燥し、窒素雰囲気下で真空パックした。滅菌前タンパク質組成物の水分含有量は5重量%であった。真空パックしたものを、-20℃、25kGyの条件で、電子線を照射し、実施例100に係るタンパク質組成物を製造した。
<比較例1>
・SELP8Kを含むタンパク質組成物の放射線による滅菌
タンパク質(A)としてSELP8Kを用い、SELP8K及び水を混合し、SELP8Kが2.4重量%含まれる滅菌前タンパク質組成物の水溶液を作製した。
その後、滅菌前タンパク質組成物を凍結乾燥し、窒素雰囲気下で真空パックした。滅菌前タンパク質組成物の水分含有量は8重量%であった。真空パックしたものを、-20℃、25kGyの条件で、電子線を照射し、比較例1に係るタンパク質組成物を製造した。
<比較例2>
・プロネクチンFを含むタンパク質組成物の放射線による滅菌
タンパク質(A)としてプロネクチンFを用い、プロネクチンF及び水を混合し、プロネクチンFが2.4重量%含まれる滅菌前タンパク質組成物の水溶液を作製した。
その後、滅菌前タンパク質組成物を凍結乾燥し、窒素雰囲気下で真空パックした。滅菌前タンパク質の水分含有量は5重量%であった。真空パックしたものを、-20℃、25kGyの条件で、電子線を照射し、比較例2に係るタンパク質組成物を製造した。
<比較例3>
・プロネクチンLを含むタンパク質組成物の放射線による滅菌
タンパク質(A)としてプロネクチンLを用い、プロネクチンL及び水を混合し、プロネクチンLが2.4重量%含まれる滅菌前タンパク質組成物の水溶液を作製した。
その後、滅菌前タンパク質組成物を凍結乾燥し、窒素雰囲気下で真空パックした。滅菌前のタンパク質の水分含有量は4重量%であった。真空パックしたものを、-20℃、25kGyの条件で、電子線を照射し、比較例3に係るタンパク質組成物を製造した。
<比較例4>
・HRP結合ラビット抗体を含むタンパク質組成物の放射線による滅菌
タンパク質(A)として、HRP結合ラビット抗体を用い、HRP結合ラビット抗体及び水混合し、HRP結合ラビット抗体が0.1重量%含まれる滅菌前タンパク質組成物の水溶液を作製した。
その後、滅菌前タンパク質組成物を凍結乾燥し、窒素雰囲気下で真空パックした。滅菌前のタンパク質組成物の水分含有量は7重量%であった。真空パックしたものを、-20℃、25kGyの条件で、電子線を照射し、比較例4に係るタンパク質組成物を製造した。
<比較例5>
・グルコースオキシダーゼを含むタンパク質組成物の放射線による滅菌
タンパク質(A)としてグルコースオキシダーゼを用い、グルコースオキシダーゼ及び水を混合し、グルコースオキシダーゼが2.4重量%含まれる滅菌前タンパク質組成物の水溶液を作製した。
その後、滅菌前タンパク質組成物を凍結乾燥し、窒素雰囲気下で真空パックした。滅菌前タンパク質組成物の水分含有量は6重量%であった。真空パックしたものを、-20℃、25kGyの条件で、電子線を照射し、比較例5に係るタンパク質組成物を製造した。
<比較例6>
・ウシ血清アルブミンを含むタンパク質組成物の放射線による滅菌
タンパク質(A)としてウシ血清アルブミンを用い、ウシ血清アルブミン及び水を混合し、ウシ血清アルブミンが2.4重量%含まれる滅菌前タンパク質組成物の水溶液を作製した。
その後、滅菌前タンパク質組成物を凍結乾燥し、窒素雰囲気下で真空パックした。滅菌前タンパク質組成物の水分含有量は5重量%であった。真空パックしたものを、-20℃、25kGyの条件で、電子線を照射し、比較例6に係るタンパク質組成物を製造した。
<比較例7>
・SELP8Kを含むタンパク質組成物の放射線による滅菌
ラジカル捕捉剤としてアスコルビン酸を表7に示す割合で加えたこと以外は、比較例1と同様にして、比較例7に係るタンパク質組成物を製造した。
<比較例8>
・プロネクチンFを含むタンパク質組成物の放射線による滅菌
ラジカル捕捉剤としてアスコルビン酸を表7に示す割合で加えたこと以外は、比較例2と同様にして、比較例8に係るタンパク質組成物を製造した。
<比較例9>
・プロネクチンLを含むタンパク質組成物の放射線による滅菌
ラジカル捕捉剤としてアスコルビン酸を表7に示す割合で加えたこと以外は、比較例3と同様にして、比較例9に係るタンパク質組成物を製造した。
<比較例10>
・HRP結合ラビット抗体を含むタンパク質組成物の放射線による滅菌
ラジカル捕捉剤としてアスコルビン酸を表7に示す割合で加えたこと以外は、比較例4と同様にして、比較例10に係るタンパク質組成物を製造した。
<比較例11>
・グルコースオキシダーゼを含むタンパク質組成物の放射線による滅菌
ラジカル捕捉剤としてアスコルビン酸を表7に示す割合で加えたこと以外は、比較例5と同様にして、比較例11に係るタンパク質組成物を製造した。
<比較例12>
・ウシ血清アルブミンを含むタンパク質組成物の放射線による滅菌
ラジカル捕捉剤としてアスコルビン酸を表7に示す割合で加えたこと以外は、比較例6と同様にして、比較例12に係るタンパク質組成物を製造した。
<比較例13>
・SELP8Kを含むタンパク質組成物の放射線による滅菌
ラジカル捕捉剤としてアスコルビン酸を表7に示す割合で加えたこと以外は、比較例1と同様にして、比較例13に係るタンパク質組成物を製造した。
<比較例14>
・プロネクチンFを含むタンパク質組成物の放射線による滅菌
ラジカル捕捉剤としてアスコルビン酸を表7に示す割合で加えたこと以外は、比較例2と同様にして、比較例14に係るタンパク質組成物を製造した。
<比較例15>
・プロネクチンLを含むタンパク質組成物の放射線による滅菌
ラジカル捕捉剤としてアスコルビン酸を表7に示す割合で加えたこと以外は、比較例3と同様にして、比較例15に係るタンパク質組成物を製造した。
<比較例16>
・SELP8Kを含むタンパク質組成物の放射線による滅菌
水素結合を形成しうる化合物(HC)としてトリプトファンを表7に示す割合で加えたこと以外は、比較例1と同様にして、比較例16に係るタンパク質組成物を製造した。
<比較例17>
・プロネクチンFを含むタンパク質組成物の放射線による滅菌
水素結合を形成しうる化合物(HC)としてトリプトファンを表7に示す割合で加えたこと以外は、比較例2と同様にして、比較例17に係るタンパク質組成物を製造した。
<比較例18>
・プロネクチンLを含むタンパク質組成物の放射線による滅菌
水素結合を形成しうる化合物(HC)としてトリプトファンを表7に示す割合で加えたこと以外は、比較例3と同様にして、比較例18に係るタンパク質組成物を製造した。
<HPLC測定により算出された変性率の評価>
(HPLCによる測定)
タンパク質(A)が1mgとなるように、各実施例のタンパク質組成物を製造する際に作製した滅菌前タンパク質組成物、及び、各実施例に係るタンパク質組成物を純水1mLに溶解し、0.45μmフィルターを通し測定用試料とした。同様に、各比較例のタンパク質組成物を製造する際に作製した滅菌前タンパク質組成物、及び、各比較例に係るタンパク質組成物の測定用試料を作製した。
当該測定用試料につきHPLC(島津社製)で以下の条件により測定した。
カラム:Jupiter C4
移動層:
 A:99.85重量%水+0.15重量%トリクロロ酢酸
 B:34重量%アセトニトリル+65.85重量%水+0.15重量%トリクロロ酢酸
 C:80重量%アセトニトリル+19.85重量%水+0.15重量%トリクロロ酢酸
流速:1mL/min
モード:曲線グラジエントモード(A/B=86/14 to A/B=20/80 to C=100)
測定波長:214nm
(HPLC測定により算出された変性率の算出)
上記条件により測定された、滅菌前タンパク質組成物のピーク高さをMとし、製造されたタンパク質組成物のピーク高さをNとし、以下の式(1)からHPLC測定により算出された変性率を得た。結果を表3~7に示す。
変性率(%)={1-(N/M)}×100・・・(1)
<LC-MSMS測定により算出された変性率の評価>
(LC-MSMSによる測定)
タンパク質(A)が1mgとなるように、各実施例のタンパク質組成物を製造する際に作製した滅菌前タンパク質組成物、及び、各実施例に係るタンパク質組成物を6N 塩酸200μLに加え脱気した。泡が発生しなくなるまで脱気した溶液を減圧密封下で110℃、22時間の加水分解を行った。加水分解後、800μLになるように純水で希釈した。希釈した溶液を、0.45μmのフィルターを通し測定用試料とした。同様に、各比較例のタンパク質組成物を製造する際に作製した滅菌前タンパク質組成物、及び、各比較例に係るタンパク質組成物の測定用試料を作製した。
当該測定用試料をLC-MSMS(島津社製)で以下の条件により分析した。
カラム:InertSustain C18(ジーエルサイエンス製)
移動相:
 A:0.05Mトリフルオロ酢酸水溶液
 B:メタノール
 A/B=95/5(V/V)
流速:0.2mL/min
イオン源:ESI(+)
測定モード:MRM(MSMS)
標準試料(アミノ酸混合標準液 H型)から得られる溶出時間と分子量により、アミノ酸組成を決定した。
(LC-MSMS測定により算出された変性率の算出)
上記条件により測定された、滅菌前タンパク質組成物の各アミノ酸濃度をOとし、製造されたタンパク質組成物の各アミノ酸濃度をPとし、測定したアミノ酸の種類の数をQとし、以下の式(2)からLC-MSMS測定により算出された変性率を得た。結果を表3~7に示す。
変性率(%)=1/Q×Σ[1-(P/O)]×100・・・(2)
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
表3~7の結果から、本発明の製造方法により得られたタンパク質組成物は、比較例1~18に係るタンパク質組成物と比較して、タンパク質(A)の変性率が低いことが分かる。
本発明のタンパク質組成物の製造方法は、タンパク質組成物を放射線滅菌する場合に、タンパク質の生理学的及び物理化学的機能の保持に優れている。したがって、タンパク質組成物の製造方法として有効である。

Claims (14)

  1. タンパク質(A)とラジカル捕捉剤(RS)とアミノ酸、ペプチド及び前記タンパク質(A)以外のタンパク質からなる群から選ばれる1種以上である水素結合を形成しうる化合物(HC)とを含有するタンパク質組成物の製造方法であって、
    前記タンパク質組成物の製造方法は、滅菌前タンパク質組成物を放射線により滅菌する滅菌工程を含み、
    前記滅菌前タンパク質組成物は、前記タンパク質(A)と、前記ラジカル捕捉剤(RS)と、前記水素結合を形成しうる化合物(HC)とを含有し、
    前記タンパク質(A)が、スルフィド基、アミド基、ヒドロキシル基、アミノ基及びカルボキシル基からなる群から選ばれる1種以上の官能基を有し、
    前記水素結合を形成しうる化合物(HC)が、スルフィド基、アミド基、ヒドロキシル基、アミノ基及びカルボキシル基からなる群から選ばれる1種以上の官能基を有し、
    前記タンパク質(A)中の官能基と、前記水素結合を形成しうる化合物(HC)の官能基とは、水素結合により結合することができ、
    前記滅菌前タンパク質組成物中の水分含有量が、前記滅菌前タンパク質組成物の重量に基づいて、0~30重量%であり、
    前記滅菌前タンパク質組成物中の前記ラジカル捕捉剤(RS)と前記タンパク質(A)との重量比[ラジカル捕捉剤(RS)/タンパク質(A)]が0.01~1.0であり、
    前記滅菌前タンパク質組成物中の前記水素結合を形成しうる化合物(HC)の官能基の合計モル数と、前記タンパク質(A)中の官能基の合計モル数とのモル比[水素結合を形成しうる化合物(HC)中の官能基の合計のモル数/タンパク質(A)中の官能基の合計のモル数]が、0.01~0.50であることを特徴とするタンパク質組成物の製造方法。
  2. 滅菌前タンパク質組成物中において、前記タンパク質(A)中の官能基は、アミノ酸の側鎖に位置し、
    前記タンパク質(A)中のアミノ酸の側鎖に位置する官能基と、前記水素結合を形成しうる化合物(HC)の官能基とは第1の水素結合により結合することができ、
    前記第1の水素結合の距離が、1.3~1.9Åである請求項1に記載のタンパク質組成物の製造方法。
  3. 滅菌前タンパク質組成物中において、前記タンパク質(A)中の官能基は、前記タンパク質(A)のペプチド結合中のアミド基であり、
    前記タンパク質(A)のペプチド結合中のアミド基と、前記水素結合を形成しうる化合物(HC)とは、第2の水素結合により結合されており、
    前記第2の水素結合の距離が、1.3~1.9Åである請求項1又は2に記載のタンパク質組成物の製造方法。
  4. 前記タンパク質(A)のアミノ酸組成が、前記タンパク質(A)の総アミノ酸数に基づいて、プロリン(P)の個数の割合が1~50%であり、セリン(S)の個数の割合が1~50%であり、バリン(V)の個数の割合が1~50%である請求項1~3のいずれかに記載のタンパク質組成物の製造方法。
  5. 前記タンパク質(A)が繰り返し配列(X)を含む請求項1~4のいずれかに記載のタンパク質組成物の製造方法。
  6. 前記繰り返し配列(X)が、GAGAGS配列(1)、RGD配列、YIGSR配列(2)、GVGVP配列(3)、PGVGV配列(4)、VPGVG配列(5)、GVPGV配列(6)、VGVPG配列(7)、GPP配列、GAP配列、GAHGPAGPK配列(8)、GAA配列、VAAGY配列(9)、GAGAGAS配列(10)、LGPLGP配列(11)、GAHGPAGPK配列(12)、GAPGPAGPPGSRGDPGPP配列(13)、GAQGPAGPG配列(14)、GAPGAPGSQGAPGLQ配列(15)、GAPGTPGPQGLPGSP配列(16)、GAAVTGRGDSPASAAGY配列(17)及びGAAPGASIKVAVSAGPSAGY配列(18)のうちいずれか1種のアミノ酸配列(a1)を含む請求項5に記載のタンパク質組成物の製造方法。
  7. 前記繰り返し配列(X)が、前記GAGAGS配列(1)を2~200個繰り返されたアミノ酸配列を含む請求項5又は6に記載のタンパク質組成物の製造方法。
  8. 前記繰り返し配列(X)が、GVGVP配列(3)、PGVGV配列(4)、VPGVG配列(5)、GVPGV配列(6)、VGVPG配列(7)、GPP配列、GAP配列及びGAHGPAGPK配列(8)のうちいずれか1種であるアミノ酸配列(a2)が2~200個繰り返された配列(Y)及び/又は前記配列(Y)中の1~100個のアミノ酸がリシン(K)又はアルギニン(R)で置換された配列(Y1)を含む請求項5~7のいずれかに記載のタンパク質組成物の製造方法。
  9. 前記タンパク質(A)の1分子中の、GAGAGS配列(1)の数と前記アミノ酸配列(a2)及び下記アミノ酸配列(a2’)の合計の数との比率[GAGAGS配列(1)の数:アミノ酸配列(a2)及び(a2’)の数の合計]が、[1:2]~[1:20]である請求項8に記載のタンパク質組成物の製造方法。
    アミノ酸配列(a2’):アミノ酸配列(a2)の1~5個のアミノ酸がリシン(K)又はアルギニン(R)で置換されたアミノ酸配列。
  10. 前記繰り返し配列(X)が、GAAVTGRGDSPASAAGY配列(17)及びGAAPGASIKVAVSAGPSAGY配列(18)のうちいずれか1種であるアミノ酸配列(a3)が1~50繰り返された配列(Y2)を含む請求項5~9のいずれかに記載のタンパク質組成物の製造方法。
  11. 前記タンパク質(A)のSDSポリアクリルアミドゲル電気泳動法による分子質量が15~200kDaである請求項1~10のいずれかに記載のタンパク質組成物の製造方法。
  12. 前記ラジカル捕捉剤(RS)の構造が酸素含有共役構造及び窒素含有共役構造からなる群から選ばれる1種以上である請求項1~11のいずれかに記載のタンパク質組成物の製造方法。
  13. 前記ラジカル捕捉剤(RS)のジフェニルピクリルヒドラジルラジカルに対するラジカル捕捉能が、0.01~90mg Trolox eq/mgである請求項1~12のいずれかに記載のタンパク質組成物の製造方法。
  14. タンパク質(A)を含有するタンパク質組成物であって、
    前記タンパク質組成物は、さらにラジカル捕捉剤(RS)と、アミノ酸、ペプチド及び前記タンパク質(A)以外のタンパク質からなる群から選ばれる1種以上である水素結合を形成しうる化合物(HC)とを含有し、
    前記タンパク質(A)が、スルフィド基、アミド基、ヒドロキシル基、アミノ基及びカルボキシル基からなる群から選ばれる1種以上の官能基を有し、
    前記水素結合を形成しうる化合物(HC)が、スルフィド基、アミド基、ヒドロキシル基、アミノ基及びカルボキシル基からなる群から選ばれる1種以上の官能基を有し、
    前記タンパク質(A)中の官能基と、前記水素結合を形成しうる化合物(HC)の官能基とは、水素結合により結合することができ、
    前記タンパク質組成物中の前記ラジカル捕捉剤(RS)と前記タンパク質(A)との重量比[ラジカル捕捉剤(RS)/タンパク質(A)]が0.01~1.0であり、
    前記タンパク質組成物中の前記水素結合を形成しうる化合物(HC)の官能基の合計モル数と、タンパク質(A)中の官能基の合計モル数とのモル比[水素結合を形成しうる化合物(HC)中の官能基の合計のモル数/タンパク質(A)中の官能基の合計のモル数]が、0.01~0.50であり、
    放射線滅菌されていることを特徴とするタンパク質組成物。
PCT/JP2016/057430 2015-03-12 2016-03-09 タンパク質組成物の製造方法及びタンパク質組成物 WO2016143828A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/556,765 US20180055958A1 (en) 2015-03-12 2016-03-09 Method for producing protein composition, and protein composition
EP16761795.0A EP3269725A4 (en) 2015-03-12 2016-03-09 Method for producing protein composition, and protein composition
JP2017505382A JP6951243B2 (ja) 2015-03-12 2016-03-09 タンパク質組成物の製造方法及びタンパク質組成物
CN201680015037.9A CN108064229B (zh) 2015-03-12 2016-03-09 蛋白质组合物的制造方法和蛋白质组合物
US17/336,672 US11969512B2 (en) 2015-03-12 2021-06-02 Method for producing protein composition, and protein composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015049302 2015-03-12
JP2015-049302 2015-03-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/556,765 A-371-Of-International US20180055958A1 (en) 2015-03-12 2016-03-09 Method for producing protein composition, and protein composition
US17/336,672 Division US11969512B2 (en) 2015-03-12 2021-06-02 Method for producing protein composition, and protein composition

Publications (1)

Publication Number Publication Date
WO2016143828A1 true WO2016143828A1 (ja) 2016-09-15

Family

ID=56880203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057430 WO2016143828A1 (ja) 2015-03-12 2016-03-09 タンパク質組成物の製造方法及びタンパク質組成物

Country Status (5)

Country Link
US (2) US20180055958A1 (ja)
EP (1) EP3269725A4 (ja)
JP (1) JP6951243B2 (ja)
CN (1) CN108064229B (ja)
WO (1) WO2016143828A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021524362A (ja) * 2018-05-18 2021-09-13 キアゲン サイエンシーズ リミテッド ライアビリティ カンパニー 放射線滅菌中の生物学的活性分子の防護
JP2021172684A (ja) * 2020-04-20 2021-11-01 三洋化成工業株式会社 ポリエーテル組成物の製造方法及びポリエーテル組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022538903A (ja) * 2019-07-02 2022-09-06 トラスティーズ オブ タフツ カレッジ 細胞および組織への薬剤の送達のための新規ペプチド、組成物および方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514778A (ja) * 1995-11-09 2000-11-07 ブリストル−マイヤーズ スクイブ カンパニー 安定なビオチン化生体分子の組成物及び方法
JP2010514747A (ja) * 2006-12-29 2010-05-06 アレコー・リミテッド 放射線および安定化組成物の添加によるタンパク質の滅菌
JP2012521776A (ja) * 2009-03-31 2012-09-20 ロイコケア・アクチェンゲゼルシャフト 生物機能性組成物の滅菌の手段および方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5606019A (en) * 1987-10-29 1997-02-25 Protien Polymer Technologies, Inc. Synthetic protein as implantables
EP1299131A4 (en) 2000-03-23 2003-06-18 Clearant Inc METHOD FOR STERILIZING BIOLOGICAL MATERIALS
US6696060B2 (en) * 2001-06-14 2004-02-24 Clearant, Inc. Methods for sterilizing preparations of monoclonal immunoglobulins
US20030064000A1 (en) * 2001-09-24 2003-04-03 Wilson Burgess Methods of sterilizing biological mixtures using stabilizer mixtures
US20030059338A1 (en) * 2001-09-24 2003-03-27 Mann David M. Methods for sterilizing biological materials using flavonoid/flavonol stabilizers
US20140194370A1 (en) * 2013-01-08 2014-07-10 University Of Utah Research Foundation Silk-elastin like protein polymers for embolization and chemoembolization to treat cancer
US20160354500A1 (en) 2015-06-02 2016-12-08 Medtronic Minimed, Inc. Protective agents against e-beam irradiation for proteins in optical sensing chemistry

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514778A (ja) * 1995-11-09 2000-11-07 ブリストル−マイヤーズ スクイブ カンパニー 安定なビオチン化生体分子の組成物及び方法
JP2010514747A (ja) * 2006-12-29 2010-05-06 アレコー・リミテッド 放射線および安定化組成物の添加によるタンパク質の滅菌
JP2012521776A (ja) * 2009-03-31 2012-09-20 ロイコケア・アクチェンゲゼルシャフト 生物機能性組成物の滅菌の手段および方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3269725A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021524362A (ja) * 2018-05-18 2021-09-13 キアゲン サイエンシーズ リミテッド ライアビリティ カンパニー 放射線滅菌中の生物学的活性分子の防護
JP7487184B2 (ja) 2018-05-18 2024-05-20 キアゲン サイエンシーズ リミテッド ライアビリティ カンパニー 放射線滅菌中の生物学的活性分子の防護
JP2021172684A (ja) * 2020-04-20 2021-11-01 三洋化成工業株式会社 ポリエーテル組成物の製造方法及びポリエーテル組成物
JP7419149B2 (ja) 2020-04-20 2024-01-22 三洋化成工業株式会社 ポリエーテル組成物の製造方法及びポリエーテル組成物

Also Published As

Publication number Publication date
US20210290790A1 (en) 2021-09-23
EP3269725A1 (en) 2018-01-17
US20180055958A1 (en) 2018-03-01
CN108064229B (zh) 2021-12-28
EP3269725A4 (en) 2018-11-07
US11969512B2 (en) 2024-04-30
CN108064229A (zh) 2018-05-22
JP6951243B2 (ja) 2021-10-20
JPWO2016143828A1 (ja) 2017-12-21

Similar Documents

Publication Publication Date Title
US11969512B2 (en) Method for producing protein composition, and protein composition
JP7003183B2 (ja) 凍結乾燥した組換え型vwf製剤
ES2845143T3 (es) Composición de trombina estable
US10588957B2 (en) Method for the production of stabile vaccines
JP6683601B2 (ja) 抗菌性ペプチド
KR20090115852A (ko) 안정성 및 전달 효율을 증가시키기 위한 펩타이드 조성물의 변형
JP2014522827A (ja) (ポリ)ペプチドのアンフォールディングを防止し、および/または(ポリ)ペプチドの(リ)フォールディングを誘導するための方法
AR114138A1 (es) Composiciones de vacuna estables que comprenden inter alia un flavivirus recombinante atenuado vivo y proceso para la preparación de las mismas
EP3737407A1 (en) Peptides having protease activity for use in the treatment or prevention of coronavirus infection
ES2420535T3 (es) Nuevo proceso para la purificación altamente selectiva de dos proteínas plasmáticas: factor de von willebrand (vwf) y fibronectina (fn).
WO2005011740A1 (en) Use of recombinant or synthetic gelatin-like proteins as stabiliser in lyophilized pharmaceutical compositions
RU2006107533A (ru) Способ получения раствора альфа-1-антитрипсина
JP2014034575A (ja) カプリレートによるウイルスの失活
RU2629819C1 (ru) Антибактериальная композиция на основе хитозана и лизостафина
US6338849B1 (en) Process of preparing immunoglobulin for intravenous injection by viruses double-sterilized without adding any protectant
JP2008094722A (ja) 免疫グロブリン製剤の製造方法
JPS62289523A (ja) 静脈投与用免疫グロブリンの加熱処理方法
WO2019038350A1 (en) PROCESS FOR VIRAL FILTERING OF VON WILLEBRAND FACTOR
KR20240078665A (ko) 락토페린 조성물 및 사용 방법
TWI712612B (zh) 製備免疫球蛋白溶液的方法
Girdhar et al. Antimicrobial peptide-based strategies to overcome antimicrobial resistance
Gupta et al. Antimicrobials in Pharmaceutical and Medicinal Research
RU2397988C1 (ru) Способ терминальной стерилизации высокополимерной дрожжевой рнк
JP2013224282A (ja) 細胞膜透過性を有する製剤、細胞膜透過性組成物及び薬物輸送方法
JP2010131537A (ja) 蛋白質担持フィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761795

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505382

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15556765

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016761795

Country of ref document: EP