WO2016143275A1 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
WO2016143275A1
WO2016143275A1 PCT/JP2016/000901 JP2016000901W WO2016143275A1 WO 2016143275 A1 WO2016143275 A1 WO 2016143275A1 JP 2016000901 W JP2016000901 W JP 2016000901W WO 2016143275 A1 WO2016143275 A1 WO 2016143275A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
light
sealing member
incident light
protective member
Prior art date
Application number
PCT/JP2016/000901
Other languages
English (en)
French (fr)
Inventor
崇志 岡田
幸弘 吉嶺
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017504598A priority Critical patent/JP6748877B2/ja
Publication of WO2016143275A1 publication Critical patent/WO2016143275A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell module, and more particularly to a solar cell module capable of receiving light on both sides.
  • a solar cell module is formed by sealing a plurality of solar cell elements with a filler mainly composed of a thermoplastic resin.
  • a filler mainly composed of a thermoplastic resin.
  • grid-like light reflective sheets are disposed on the back side of the plurality of solar cell elements (See, for example, Patent Document 1).
  • the lattice shape of the light reflective sheet is formed by punching out a portion where the solar cell element is disposed.
  • the alignment of the reflective sheet becomes important, and the solar cell Module manufacturing difficulty increases.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a technique for suppressing an increase in manufacturing difficulty while improving power generation efficiency.
  • the solar cell module concerning one mode of the present invention can enter light on both sides, and the solar cell by which an electrode was arranged on both sides, and one side of a solar cell.
  • the second sealing member includes a second sealing member disposed between the second protective member and the solar battery cell, the incident light scattering particles being dispersedly contained in the second sealing member, and the second sealing member is A portion of the incident light is transmitted while another portion of the incident light is scattered.
  • FIG. 1 is a perspective view showing a state in which the solar cell module according to Embodiment 1 is installed.
  • FIG. 2A is a cross-sectional view showing a configuration of a solar cell module of a comparative example.
  • FIG. 2B is a cross-sectional view showing the configuration of the solar cell module according to Embodiment 1.
  • FIG. 3 is a view showing the relationship between the particle number density and the solar cell light absorption rate in the solar cell module according to the first embodiment shown in FIG. 2B.
  • FIG. 4 is a view showing the relationship between the particle diameter of the silica particles and the number density of particles in the solar cell module according to the first embodiment shown in FIG. 2B.
  • FIG. 1 is a perspective view showing a state in which the solar cell module according to Embodiment 1 is installed.
  • FIG. 2A is a cross-sectional view showing a configuration of a solar cell module of a comparative example.
  • FIG. 2B is a cross-sectional view showing the configuration of
  • FIG. 5 is a view showing the relationship between the particle diameter of silica particles and the solar cell light absorptivity at the time of the optimum particle number density in the solar cell module according to the first embodiment shown in FIG. 2B.
  • FIG. 6A is a view showing light scattered in the second sealing member in the solar cell module according to Embodiment 1 shown in FIG. 2B.
  • 6B is a view showing a relationship between incident light and transmitted light in the second sealing member in the solar cell module according to Embodiment 1 shown in FIG. 2B.
  • 6C is a view showing the relationship between incident light and transmitted light in the second sealing member (when the silica particles are randomly arranged) in the solar cell module according to Embodiment 1 shown in FIG. 2B.
  • FIG. 6A is a view showing light scattered in the second sealing member in the solar cell module according to Embodiment 1 shown in FIG. 2B.
  • 6B is a view showing a relationship between incident light and transmitted light in the second sealing member in the solar cell module
  • FIG. 7A is a cross-sectional view showing an outline of the case where infrared light is incident on the solar cell module of the comparative example shown in FIG. 2A.
  • FIG. 7B is a cross-sectional view showing an outline when infrared light is incident on the solar cell module according to Embodiment 1 shown in FIG. 2B.
  • FIG. 8 is a diagram showing experimental results on the solar cell module according to the second embodiment.
  • Embodiment 1 relates to a solar cell module provided with a plurality of solar cells.
  • the solar battery module and the solar battery cell here are types that can receive light on both sides and generate electric power on both sides. Also, one side (hereinafter sometimes referred to as "front") of the solar cell module is directed in the south direction, and the other side (hereinafter sometimes referred to as "back") is directed in the north direction. , A solar cell module is installed. Therefore, the amount of power generation on the front surface side of the solar battery cell is larger than the amount of power generation on the back surface side of the solar battery cell.
  • An object of the present embodiment is to realize a configuration in which light incident between adjacent solar cells and light incident from the back side are taken into the solar cells and ease of manufacture is taken into consideration.
  • FIG. 1 is a perspective view showing a state in which the solar cell module 100 according to Embodiment 1 is installed.
  • the solar cell module 100 is supported by two legs 102 and installed.
  • the front surface of the solar cell module 100 faces in the south direction
  • the back surface of the solar cell module 100 faces in the north direction.
  • the direction in which the surface is directed is not limited to true south, but may include southeast and southwest
  • the direction in which the reverse surface is directed may not be limited to true north but may include northwest and northeast.
  • the front and back surfaces be directed to a direction in which the difference between the amounts of incident light under a situation where the change in the weather is small is large.
  • the solar cell module 100 is installed such that the amount of incident light on the front surface is 1.5 or more times the amount of incident light on the back surface. Therefore, the case where the front side faces the east direction and the back side faces the west direction is excluded.
  • FIG. 2A is a cross-sectional view showing a configuration of a solar cell module 200 of a comparative example to be compared with the solar cell module 100 according to the first embodiment.
  • FIG. 2B is a cross-sectional view showing the configuration of the solar cell module 100 according to Embodiment 1.
  • the solar cell module 200 of a comparative example is the 1st solar cell 210a collectively called the solar cell 210, the 2nd solar cell 210b, the 1st protection member 212, the 1st sealing member 214. , A second protection member 216, and a second sealing member 218.
  • the first protective member 212 side corresponds to the above-described front surface side
  • the second protective member 216 side corresponds to the above-described back surface side.
  • the first solar cell 210a includes a first front side electrode 240a and a first back side electrode 242a
  • the second solar cell 210b includes a second front side electrode 240b and a second back side electrode 242b.
  • first surface side electrode 240a and the second surface side electrode 240b are collectively referred to as a surface side electrode 240
  • first back side electrode 242a and the second back side electrode 242b are collectively referred to as a back side electrode 242.
  • the solar battery cell 210 absorbs incident light to generate photovoltaic power, and is formed of, for example, a semiconductor material such as crystalline silicon, gallium arsenide (GaAs) or indium phosphide (InP).
  • a semiconductor material such as crystalline silicon, gallium arsenide (GaAs) or indium phosphide (InP).
  • the structure of the solar battery cell 210 is not particularly limited, but here, as an example, it is assumed that crystalline silicon and amorphous silicon are stacked.
  • the solar battery cell 210 can inject light on both sides, and generates electric power on both sides. Therefore, the surface side electrode 240 is disposed on the surface side of the solar battery cell 210, and the back surface side electrode 242 is disposed on the back surface side of the solar battery cell 210.
  • the front side electrode 240 and the back side electrode 242 are, for example, finger electrodes.
  • the finger electrode is an electrode that collects power generated by light reception. Since the finger electrode is an electrode formed on the surface, the finger electrode is thinly formed so as not to block incident light. A plurality of finger electrodes are arranged at predetermined intervals on the surface so that the generated power can be efficiently collected.
  • bus bar electrodes (not shown) are also disposed on both sides of the solar battery cell 210.
  • the bus bar electrode is an electrode for connecting a plurality of finger electrodes to each other.
  • the bus bar electrodes are formed to be thin enough not to block incident light, and are formed to be thick to some extent so that the power collected from the plurality of finger electrodes can be efficiently flowed.
  • a plurality of bus bar electrodes are arranged on the surface so as to intersect with the plurality of finger electrodes. Furthermore, the bus bar electrodes provided in each of the adjacent solar cells 10 are connected by tab wires (not shown).
  • the first protective member 212 is disposed on one side of the solar battery cell 210. As described above, the side where the first protective member 212 is disposed is the front side, and is directed in the south direction. The first protective member 212 protects the solar battery cell 210 from the external environment and transmits light to be absorbed by the solar battery cell 210.
  • the solar battery cell 210 is, for example, a glass substrate. In addition to the glass substrate, the solar battery cell 210 may be polycarbonate, acryl, polyester, or fluorinated polyethylene.
  • the first sealing member 214 is disposed between the first protective member 212 and the solar battery cell 210.
  • the first sealing member 214 is a protective material that prevents the entry of moisture into the solar battery cell 210 and the like, and improves the strength of the entire solar battery module 200.
  • the first sealing member 214 is a transparent resin having transparency sufficient to transmit sunlight.
  • the first sealing member 214 is formed of, for example, a resin material such as ethylene vinyl acetate copolymer (EVA), polyvinyl butyral (PVB), polyimide, polyethylene, polypropylene, or polyethylene terephthalate (PET).
  • EVA ethylene vinyl acetate copolymer
  • PVB polyvinyl butyral
  • PET polyethylene terephthalate
  • the first sealing member 214 is assumed to be EVA.
  • the second protective member 216 is disposed on the other side of the solar battery cell 210. As described above, the second protective member 216 is disposed on the back side, and is directed in the north direction. The second protective member 216 is configured in the same manner as the first protective member 212. The second sealing member 218 is disposed between the second protection member 216 and the solar battery cell 210. The second sealing member 218 is configured the same as the first sealing member 214. As described above, in the solar battery cell 210, the first protective member 212, the first sealing member 214, the solar battery cell 210, the second sealing member 218, and the second protective member 216 are arranged in this order.
  • the first protective member side incident light 230 is light incident on the solar cell module 200 from the front surface side. A part of the first protective member side incident light 230 is taken into the solar battery cell 210. On the other hand, the first protective member side incident light 230 passing between the first solar battery cell 210a and the second solar battery cell 210b is emitted from the second protective member 216 to the outside and becomes transmitted light. On the other hand, the second protective member side incident light 232 is light incident on the solar cell module 200 from the back surface side. Therefore, the light amount of the second protective member side incident light 232 is smaller than the light amount of the first protective member side incident light 230.
  • first protective member side incident light 230 a part of the second protective member side incident light 232 is taken into the solar battery cell 210, and between the first solar battery cell 210a and the second solar battery cell 210b. The remainder of the passage goes out of the first protection member 212.
  • the solar battery cell 210 in order to enhance the power generation efficiency, it is necessary to reduce the amount of transmitted light. In order to reduce the amount of transmitted light, it is effective to reflect the incident light in the sealing member, and thereby, the first protective member side incident light 230 incident on the solar battery cell 210, the second protection It is necessary to suppress the reduction of the amount of member-side incident light 232.
  • the solar cell module 100 which concerns on this Embodiment is the 1st solar cell 10a collectively called the solar cell 10, the 2nd solar cell 10b, the 1st protection member 12, the 1st sealing.
  • the stop member 14, the second protection member 16, and the second sealing member 18 are included.
  • the second sealing member 18 also includes incident light scattering particles 20.
  • the first solar battery cell 10a includes a first surface side electrode 40a and a first back surface side electrode 42a
  • the second solar battery cell 10b includes a second surface side electrode 40b and a second back surface side electrode 42b.
  • the first surface side electrode 40a and the second surface side electrode 40b are collectively referred to as a surface side electrode 40
  • the first back side electrode 42a and the second back side electrode 42b are collectively referred to as a back side electrode 42.
  • the solar battery cell 10 corresponds to the solar battery cell 210
  • the first protection member 12 corresponds to the first protection member 212
  • the first sealing member 14 corresponds to the first sealing member 214
  • the second The protection member 16 corresponds to the second protection member 216
  • the second sealing member 18 corresponds to the second sealing member 218.
  • the front side electrode 40 corresponds to the front side electrode 240
  • the back side electrode 42 corresponds to the back side electrode 242. Below, it demonstrates centering on the difference with FIG. 2A.
  • the second sealing member 18 is configured in the same manner as the second sealing member 218, but the incident light scattering particles 20 are dispersed and included in the inside.
  • “dispersion” corresponds to being uniformly included in the entire second sealing member 18, and it can be said that it is randomly included.
  • the incident light scattering particles 20 are, for example, silica particles.
  • the second sealing member 18 transmits a part of the incident light and scatters another part of the incident light. For example, as shown in FIG.
  • a part of the first protective member side incident light 30 passes through the second sealing member 18 and exits from the second protective member 16 to become the transmitted light 34,
  • the other part of the first protective member side incident light 30 is scattered by the second sealing member 18 and becomes scattered light (reflected light) 36. That is, in the configuration of FIG. 2A, the light between the first solar battery cell 210a and the second solar battery cell 210b can not be used for power generation, whereas in the configuration of FIG. 2B, the first solar battery cell
  • the light between the cell 10a and the second photovoltaic cell 10b can be used for power generation.
  • the particle diameter and the particle number density of the silica particles suitable for the configuration of FIG. 2B are derived by simulation calculation.
  • FIG. 3 is a view showing the relationship between the particle number density and the solar cell light absorption rate in the solar cell module 100 according to the first embodiment shown in FIG. 2B.
  • the horizontal axis indicates particle number density N [pieces / mm 3 ], and the vertical axis indicates solar battery cell light absorptivity [%].
  • grain number density is the number of objects of the silica particle contained per cubic millimeter, and it can be said that it is a silica particle number density.
  • the thickness of the first protective member 12 is 3.2 mm
  • the thickness of the first sealing member 14 is 0.6 mm
  • the thickness of the solar battery cell 10 is 0.115 mm
  • the thickness of the second sealing member 18 The thickness is 0.6 mm
  • the thickness of the second protective member 16 is 3.2 mm.
  • the light scattering intensity distribution of the incident light scattering particles 20 contained in the second sealing member 18 is Mie scattering.
  • the surface side electrode 40 and the back surface side electrode 42 which were provided in the both surfaces of the photovoltaic cell 10 are formed by silver. Furthermore, it is assumed that the ratio of the light amounts of the first protective member side incident light 30 and the second protective member side incident light 32 is “1: 0.3”.
  • the particle number density when the solar cell light absorptivity reaches a peak is defined as the optimum particle number density Nopt, which is the point at which the amount of power generation is maximum.
  • Nopt the number density
  • the solar cell light absorptivity is the solar cell light. It is shown as the absorption rate threshold (dashed line 90).
  • the solar cell light absorptivity increases as the particle number density increases.
  • the particle number density is larger than the optimum particle number density N opt and the allowable particle number density N plus or less, the solar cell light absorptivity decreases, but compared to the case where silica particles are not mixed.
  • the solar cell light absorption rate is increasing.
  • the solar cell light absorptivity decreases as the particle number density increases. This corresponds to the deterioration of the power generation efficiency.
  • FIG. 4 is a view showing the relationship between the particle diameter of the silica particles and the particle number density in the solar cell module 100 according to the first embodiment shown in FIG. 2B.
  • the horizontal axis indicates the particle diameter d [ ⁇ m] of the silica particles
  • the vertical axis indicates the particle number density N [pieces / mm 3 ].
  • the optimum particle number density line 60 shows the change of the optimum particle number density Nopt calculated as shown in FIG. 3 with respect to the particle diameter of the silica particles. If the particle diameter and particle number density of the silica particles are determined to coincide with the optimum particle number density line 60, the power generation efficiency is maximized.
  • the allowable particle number density line 92 shows a change of the allowable particle number density Nplus calculated as shown in FIG. 3 with respect to the particle diameter of the silica particles. If the particle diameter and particle number density of the silica particles are determined based on the allowable particle number density line 92, the power generation efficiency is improved.
  • the descent region 66 is a region where the solar cell light absorptivity drops due to the increase of the second protective member side incident light 32 at the particle diameter d of the silica particles of 0.1 to 10 ⁇ m. This is because a large amount of silica particles is contained, and it is difficult for the second protective member side incident light 32 to reach the solar battery cell 10.
  • the rising region 64 is a region where the solar cell light absorptance rises regardless of the increase of the second protective member side incident light 32 at the particle diameter d of the silica particles of 0.1 to 10 ⁇ m. In the rising region 64, a relationship of log N ⁇ 2.2 ⁇ log d + 8.0 holds between the particle diameter d [ ⁇ m] of the silica particles and the particle number density N [number / mm 3].
  • the silica particles have a relationship of log N ⁇ ⁇ 2.2 ⁇ log d + 8.0 such that the particle diameter d [ ⁇ m] of the silica particles and the particle number density N [pieces / mm 3] have the relationship Particle size and particle number density should be determined.
  • the particle size d of the silica particle in that case is 0.1 [ ⁇ m] or more and 10 [ ⁇ m] or less.
  • FIG. 5 is a diagram showing the relationship between the particle diameter of silica particles and the solar cell light absorptivity at the time of the optimum particle number density in the solar cell module 100 according to Embodiment 1 shown in FIG. 2B.
  • the horizontal axis indicates the particle diameter d [ ⁇ m] of the silica particles
  • the vertical axis indicates the solar cell light absorptivity [%].
  • Three conditions are considered: a second condition indicated by a line 72 connecting the two, and a third condition indicated by a line 74 connecting a circle (o).
  • the ratio of the light quantity of the first protective member side incident light 30 to the light quantity of the second protective member side incident light 32 is 1: 0 in the first condition (line 70) and 1: in the second condition (line 72). 0.1, and 1: 0.3 for the third condition (line 74).
  • the solar cell light absorptivity is 79.9 to 80.4% unless silica particles are mixed into the second sealing member 18.
  • silica particles having a particle diameter d of 10 ⁇ m are mixed, the solar cell light absorption rate is 81.7 to 82.2%.
  • the inclusion of the silica particles improves the solar cell light absorptivity.
  • the particle size d of the silica particles is preferably larger.
  • FIG. 6A is a view showing light scattered in the second sealing member 18 in the solar cell module 100 according to the first embodiment shown in FIG. 2B, in the second sealing member 18 used in the simulation calculation.
  • the structure of the incident light scattering particle 20 contained is shown. So far, it is assumed that the silica particles which are the incident light scattering particles 20 are spherical. On the other hand, the actual silica particles may have a spherical to distorted shape. Here, we will examine such differences in shape.
  • FIG. 6A is a diagram showing the relationship between the light beam incident on the second sealing member 18 and the light beam emitted from the second sealing member 18.
  • FIG. 6B is a diagram showing the relationship between incident light and transmitted light at the second sealing member 18 in the solar cell module 100 according to Embodiment 1 shown in FIG. 2B.
  • the arrow directed to the second sealing member 18 indicates a light beam incident on the second sealing member 18, and the arrow coming out of the second sealing member 18 indicates radiation from the second sealing member 18. Show the rays of light
  • FIG. 6C is a view showing the relationship between incident light and transmitted light in the second sealing member 18 (when the silica particles are randomly arranged) in the solar cell module 100 according to Embodiment 1 shown in FIG. 2B. As shown, the relationship in FIG. 6C is similar to that in FIG. 6B.
  • the silica particles are arranged irregularly, even if the shape of the silica particles is not spherical, scattering behavior of light equivalent to that in which the spheres are arranged is shown.
  • the incident light scattering particles 20 it is generally difficult to provide regularity in the arrangement of the silica particles.
  • FIG. 7A is a cross-sectional view showing an outline of the case where incident infrared light 280 is incident on the solar cell module 200 of the comparative example shown in FIG. 2A.
  • incident infrared light 280 is incident from the side of the first protective member 212, that is, from the surface side. At least a portion of the incident infrared light 280 passes through the solar battery cell 210 and is emitted as the transmitted infrared light 282 toward the second protective member 216, that is, to the back side.
  • FIG. 7B is a cross-sectional view showing an outline of the case where infrared light is incident on the solar cell module 100 of the first embodiment shown in FIG. 2B.
  • incident infrared light 80 is incident on the solar cell module 100.
  • incident infrared light 80 is incident from the side of the first protective member 12, that is, from the surface side. At least a portion of the incident infrared light 80 passes through the solar battery cell 10 and is emitted as the transmitted infrared light 82 toward the second protective member 16 side, that is, to the back side.
  • the reflected infrared light 84 which is a part of the infrared light transmitted through the solar battery cell 10 is scattered by the incident light scattering particles 20 in the second sealing member 18 and is guided to the solar battery cell 10 Be done.
  • the silica particles are dispersed in the second sealing member 18 disposed on the back side of the solar cell that can receive light on both sides. Since it is included, the light scattering phenomenon of silica particles can be developed. Further, since the light scattering phenomenon of the silica particles is developed, the first protective member side incident light 30 incident between the adjacent solar battery cells 10 is subjected to the solar cell while suppressing the attenuation of the second protective member side incident light 32. The light can be guided to the cell 10. In addition, since the attenuation of the second protective member side incident light 32 is suppressed and the first protective member side incident light 30 incident between the adjacent solar cells 10 is guided to the solar cell 10, the power generation efficiency is improved. It can improve.
  • the second sealing member 18 contains the silica particles in a dispersed manner, the procedure of locally collecting the silica particles can be eliminated. Moreover, since the silica scattering particles are dispersed and contained in the second sealing member 18, the sheet of the second sealing member 18 containing the silica particles can be used for manufacturing. Thereby, the manufacturing process can be simplified. In addition, since the manufacturing process is simplified, it is possible to suppress an increase in manufacturing difficulty while improving the power generation efficiency.
  • the silica particles are mixed such that the particle diameter d [ ⁇ m] of the silica particles and the particle number density N [pieces / mm 3 ] have a relationship of log N ⁇ ⁇ 2.2 ⁇ log d + 8.0, the power generation Efficiency can be improved. Further, since the particle diameter d of the silica particles is 0.1 ⁇ m or more and 10 ⁇ m or less, the power generation efficiency can be improved. Moreover, the infrared light which permeate
  • the outline of the present embodiment is as follows.
  • light can be incident on both sides, and solar cell 10 in which front side electrode 40 and back side electrode 42 are disposed on both sides, and one of solar cell modules 100.
  • the first sealing member 14 disposed on the surface side, the first sealing member 14 disposed between the first protection member 12 and the solar battery cell 10, and the other surface of the solar battery cell 10
  • the second protection member 16 and the second sealing member 18 disposed between the second protection member 16 and the solar battery cell 10 are provided.
  • the incident light scattering particles 20 are dispersedly contained in the second sealing member 18, and the second sealing member 18 transmits a part of the incident light and scatters another part of the incident light.
  • the incident light scattering particle 20 is a silica particle, and the particle diameter d [ ⁇ m] of the silica particle and the silica particle number density N [pieces / mm 3 ] have a relationship of log N ⁇ ⁇ 2.2 ⁇ log d + 8.0. You may
  • the particle diameter d of the silica particles may be 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the second embodiment also relates to a solar cell module in which the incident light scattering particles are mixed in the second sealing member 18 while being provided with the plurality of solar cells 10 as in the first embodiment.
  • the relationship between the particle size and the particle number density of silica particles, which are incident light scattering particles to be mixed in the second sealing member 18, is derived by simulation calculation.
  • the range of transmittance and reflectance to be set is derived by experiment.
  • the configuration of the solar cell module 100 according to the second embodiment is the same as that of the first embodiment, and thus the description thereof is omitted here.
  • first solar cell module to be compared a 3.2 mm glass substrate is used for the first protective member 212, and the first sealing member 214 and the first sealing member 214
  • second sealing member 218 0.6 mm of transparent EVA is used, and for the second protective member 216, 0.11 mm of transparent PET film is used.
  • the first protective member 212, the first sealing member 214, and the second protective member 216 are the first comparison It is the same as the example. Also, for the second sealing member 218, 0.6 mm white EVA is used.
  • the first protective member 12, the first sealing member 14, and the second protective member 16 in the solar cell module 100 are the first protective member 212 in the first comparative example, and the first sealing. It is the same as the member 214 and the second protection member 216.
  • a white EVA of 0.6 mm is used as the second sealing member 18.
  • the measurement is performed by irradiating solar simulator light to each of the front surface side and the back surface side for the first comparative example, the second comparative example, and the example.
  • the ratio of the light amount of light incident from the front side to the light amount of light incident from the back side is 1: 0.1.
  • the final output is derived by adding the output when light is incident from the front side and the output when light is incident from the back side. As a result, the output of the embodiment increases by 1.4% with respect to the output of the first comparative example and by 5.3% with respect to the output of the second comparative example.
  • the transmittance T and the reflectance R are also measured. Furthermore, T / (1-R) is calculated based on these. T / (1-R) is a value from the first protective member 12 to the second protective member 16 in the embodiment.
  • FIG. 8 shows experimental results for the solar cell module 100 according to the second embodiment.
  • the transmittance T is 80%, the reflectance R is 10.8%, and T / (1-R) is 89.7%.
  • the transmittance T is 0%, the reflectance R is 80%, and T / (1-R) is 0%.
  • the transmittance T is 68%, the reflectance R is 13.6%, and T / (1-R) is 78.7%. Therefore, in the example, T / (1-R) should be 5% or more and 85% or less.
  • the 1st protection member 12 and the 1st sealing member 14 in an example are common composition with the 1st comparative example, and it can be said that it is a part of 1st comparative example.
  • T / (1-R) in such a part should be higher than T / (1-R) in the first comparative example. Therefore, at least one T / (1-R) of the first protective member 12 and the first sealing member 14 is 85% or more.
  • the incident light is such that T / (1-R) from the first protective member to the second protective member 16 is 5% or more and 85% or less Since the light scattering particles are mixed in the second sealing member 18, the power generation efficiency can be improved.
  • T / (1-R) of at least one of the first protective member 12 and the first sealing member 14 is 85% or more, T from the first protective member 12 to the second protective member 16 is / (1-R) can realize 5% or more and 85% or less.
  • T / (1-R) from the first protective member 12 to the second protective member 16 may be 5% or more and 85% or less .
  • the T / (1-R) of at least one of the first protective member 12 and the first sealing member 14 may be 85% or more.
  • silica particles are used as the incident light scattering particles 20.
  • the present invention is not limited thereto.
  • particles other than silica particles may be used. According to this modification, the degree of freedom of the configuration can be improved.
  • the embodiment can be realized by arbitrarily combining the components and functions in the embodiment within the scope obtained by applying various modifications that those skilled in the art would think on the embodiment, and the scope of the present invention.
  • the form is also included in the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 太陽電池モジュール(100)は、両面で光を入射可能であり、かつ両面に電極が配置された太陽電池セル(10)と、太陽電池セル(10)の一方の面側に配置された第1保護部材(12)と、第1保護部材(12)と太陽電池セル(10)との間に配置された第1封止部材(14)と、太陽電池セル(10)の他方の面側に配置された第2保護部材(16)と、第2保護部材(16)と太陽電池セル(10)との間に配置された第2封止部材(18)とを備え、第2封止部材(18)には、入射光散乱粒子が分散して含まれ、第2封止部材(18)は、入射光の一部を透過させるとともに、入射光の他の一部を散乱させる。

Description

太陽電池モジュール
 本発明は、太陽電池モジュールに関し、特に両面で光を入射可能な太陽電池モジュールに関する。
 太陽電池素子1枚では発生する電気出力が小さいので、熱可塑性樹脂を主成分とする充填材にて複数の太陽電池素子を封入することによって、太陽電池モジュールが形成される。隣接した太陽電池素子の隙間を透過する光と、裏面側から入射する光を発電に寄与させるために、これまでは、複数の太陽電池素子の裏面側に、格子状の光反射性シートが配置されている(例えば、特許文献1参照)。
特開2006-73707号公報
 光反射性シートの格子状は、太陽電池素子が配置される部分を打ち抜きで取り去ることによって形成される。光反射性シートによって、隣接した太陽電池素子の隙間を透過する光を反射し、裏面側から入射する光を遮らないようにするためには、反射性シートの位置合わせが重要になり、太陽電池モジュールの製造難度が増加する。
 本発明はこうした状況に鑑みてなされたものであり、その目的は、発電効率を向上させながら、製造難度の増加を抑制する技術を提供することにある。
 上記課題を解決するために、本発明の一態様に係る太陽電池モジュールは、両面で光を入射可能であり、かつ両面に電極が配置された太陽電池セルと、太陽電池セルの一方の面側に配置された第1保護部材と、第1保護部材と太陽電池セルとの間に配置された第1封止部材と、太陽電池セルの他方の面側に配置された第2保護部材と、第2保護部材と太陽電池セルとの間に配置された第2封止部材とを備え、第2封止部材には、入射光散乱粒子が分散して含まれ、第2封止部材は、入射光の一部を透過させるとともに、入射光の他の一部を散乱させる。
 本発明によれば、発電効率を向上させながら、製造難度の増加を抑制できる。
図1は、実施の形態1に係る太陽電池モジュールを設置している状態を示す斜視図である。 図2Aは、比較例の太陽電池モジュールの構成を示す断面図である。 図2Bは、実施の形態1に係る太陽電池モジュールの構成を示す断面図である。 図3は、図2Bに示す実施の形態1に係る太陽電池モジュールにおける粒子個数密度と太陽電池セル光吸収率との関係を示す図である。 図4は、図2Bに示す実施の形態1に係る太陽電池モジュールにおけるシリカ粒子の粒径と粒子個数密度との関係を示す図である。 図5は、図2Bに示す実施の形態1に係る太陽電池モジュールにおける最適粒子個数密度時でのシリカ粒子の粒径と太陽電池セル光吸収率との関係を示す図である。 図6Aは、図2Bに示す実施の形態1に係る太陽電池モジュールにおける第2封止部材中で散乱される光を示す図である。 図6Bは、図2Bに示す実施の形態1に係る太陽電池モジュールにおける第2封止部材での入射光と透過光との関係を示す図である。 図6Cは、図2Bに示す実施の形態1に係る太陽電池モジュールにおける第2封止部材(シリカ粒子がランダム配置の場合)での入射光と透過光との関係を示す図である。 図7Aは、図2Aに示す比較例の太陽電池モジュールに赤外線光が入射された場合の概要を示す断面図である。 図7Bは、図2Bに示す実施の形態1の太陽電池モジュールに赤外線光が入射された場合の概要を示す断面図である。 図8は、実施の形態2に係る太陽電池モジュールに対する実験結果を示す図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態等は、一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
 (実施の形態1)
 まず、実施の形態1を具体的に説明する前に、基礎となった知見を説明する。実施の形態1は、複数の太陽電池セルを備えた太陽電池モジュールに関する。ここでの太陽電池モジュールおよび太陽電池セルは、両面で光を入射可能であり、両面で発電するタイプである。また、太陽電池モジュールの一方の面(以下、「表面」ということもある)側が南の方角に向けられ、他方の面(以下、「裏面」ということもある)側が北の方角に向けられるように、太陽電池モジュールが設置される。そのため、太陽電池セルの表面側における発電量が、太陽電池セルの裏面側における発電量よりも多くなっている。
 このような状況下においても、発電効率を向上させるためには、隣接した太陽電池セル間に入射した光を透過させずに、太陽電池セルに取り込ませることが必要になる。また、裏面側から入射した光も太陽電池セルに取り込ませることが必要になる。さらに、太陽電池モジュールの製造しやすさを考慮した構成であることが望まれる。本実施例では、隣接した太陽電池セル間に入射した光、裏面側から入射した光を太陽電池セルに取り込み、かつ製造しやすさを考慮した構成を実現することを目的とする。
 図1は、実施の形態1に係る太陽電池モジュール100を設置している状態を示す斜視図である。図示のごとく、太陽電池モジュール100は、2つの脚部102に支持されて設置される。前述のごとく、太陽電池モジュール100の表面は南の方角を向き、太陽電池モジュール100の裏面は北の方角を向く。なお、表面が向けられる方角は真南に限定されずに、南東、南西を含んでもよく、裏面が向けられる方角は真北に限定されずに、北西、北東を含んでもよい。つまり、日の出から日の入りまでの太陽光が入射可能な期間における入射光量であって、かつ天候の変化が小さい状況下での入射光量の差が大きくなる方角に、表面と裏面とが向けられればよい。例えば、表面での入射光量が、裏面での入射光量の1.5倍以上になるように、太陽電池モジュール100は設置される。そのため、表面が東の方角を向き、裏面が西の方角を向くような場合は、除外される。
 図2Aは、実施の形態1に係る太陽電池モジュール100の比較対象となる比較例の太陽電池モジュール200の構成を示す断面図である。図2Bは、実施の形態1に係る太陽電池モジュール100の構成を示す断面図である。
 図2Aに示すように、比較例の太陽電池モジュール200は、太陽電池セル210と総称される第1太陽電池セル210a、第2太陽電池セル210b、第1保護部材212、第1封止部材214、第2保護部材216、および、第2封止部材218を含む。ここで、第1保護部材212側が前述の表面側に相当し、第2保護部材216側が前述の裏面側に相当する。また、第1太陽電池セル210aは、第1表面側電極240aおよび第1裏面側電極242aを含み、第2太陽電池セル210bは、第2表面側電極240bおよび第2裏面側電極242bを含む。ここで、第1表面側電極240aおよび第2表面側電極240bは、表面側電極240と総称され、第1裏面側電極242aおよび第2裏面側電極242bは、裏面側電極242と総称される。
 太陽電池セル210は、入射する光を吸収して光起電力を発生し、例えば、結晶系シリコン、ガリウム砒素(GaAs)またはインジウム燐(InP)等の半導体材料によって形成される。太陽電池セル210の構造は、特に限定されないが、ここでは、一例として、結晶シリコンとアモルファスシリコンとが積層されているとする。特に、太陽電池セル210は、両面で光を入射可能であり、両面で発電する。そのため、太陽電池セル210の表面側には、表面側電極240が配置され、太陽電池セル210の裏面側には、裏面側電極242が配置される。
 表面側電極240および裏面側電極242は、例えば、フィンガー電極である。フィンガー電極は、受光により発電された電力を収集する電極である。フィンガー電極は、面上に形成される電極であるので、入射される光を遮らないように細く形成される。フィンガー電極は、発電した電力を効率的に集電できるように、面上に所定の間隔で複数配置される。また、太陽電池セル210の両面には、フィンガー電極に加えて、図示しないバスバー電極も配置される。バスバー電極は、複数のフィンガー電極を互いに接続するための電極である。バスバー電極は、入射する光を遮らない程度に細く形成するとともに、複数のフィンガー電極から集電した電力を効率的に流せるよう、ある程度太く形成される。バスバー電極は、複数のフィンガー電極に交差するように面上に複数配置される。さらに、隣接した太陽電池セル10のそれぞれに設けられたバスバー電極は、タブ線(図示せず)によって接続される。
 第1保護部材212は、太陽電池セル210の一方の面側に配置される。前述のごとく、第1保護部材212が配置されている方が表面側であり、南の方角に向けられる。第1保護部材212は、太陽電池セル210を外部環境から保護するとともに、太陽電池セル210に吸収させるべき光を透過する。太陽電池セル210は、例えば、ガラス基板である。なお、太陽電池セル210は、ガラス基板の他に、ポリカーボネート、アクリル、ポリエステル、または、フッ化ポリエチレンであってもよい。
 第1封止部材214は、第1保護部材212と太陽電池セル210との間に配置される。第1封止部材214は、太陽電池セル210への水分の浸入等を防ぐとともに、太陽電池モジュール200全体の強度を向上させる保護材である。第1封止部材214は、太陽光を十分に透過可能な透明性を有する透明樹脂である。第1封止部材214は、例えば、エチレン酢酸ビニル共重合体(EVA)、ポリビニルブチラール(PVB)、ポリイミド、ポリエチレン、ポリプロピレン、または、ポリエチレンテレフタレート(PET)等の樹脂材料によって形成される。ここでは、第1封止部材214は、EVAであるとする。
 第2保護部材216は、太陽電池セル210の他方の面側に配置される。前述のごとく、第2保護部材216が配置されている方が裏面側であり、北の方角に向けられる。第2保護部材216は、第1保護部材212と同様に構成される。第2封止部材218は、第2保護部材216と太陽電池セル210との間に配置される。第2封止部材218は、第1封止部材214と同様に構成される。このように、太陽電池セル210では、第1保護部材212、第1封止部材214、太陽電池セル210、第2封止部材218、第2保護部材216の順に配置される。
 第1保護部材側入射光230は、表面側から太陽電池モジュール200に入射される光である。第1保護部材側入射光230の一部は、太陽電池セル210に取り込まれる。一方、第1太陽電池セル210aと第2太陽電池セル210bとの間を通過する第1保護部材側入射光230は、第2保護部材216から外部に出て行ってしまい、透過光となる。一方、第2保護部材側入射光232は、裏面側から太陽電池モジュール200に入射される光である。そのため、第2保護部材側入射光232の光量は、第1保護部材側入射光230の光量よりも少ない。第2保護部材側入射光232についても第1保護部材側入射光230と同様に、一部が太陽電池セル210に取り込まれ、第1太陽電池セル210aと第2太陽電池セル210bとの間を通過する残りは、第1保護部材212から外部に出て行く。
 このような構成の太陽電池セル210において、発電効率を高めるためには、透過光の量を低減する必要がある。透過光の量を低減するためには、封止部材において入射光を反射させることが有効であるが、これにより、太陽電池セル210に入射される第1保護部材側入射光230、第2保護部材側入射光232の量の低減を抑制する必要がある。
 図2Bに示すように、本実施の形態に係る太陽電池モジュール100は、太陽電池セル10と総称される第1太陽電池セル10a、第2太陽電池セル10b、第1保護部材12、第1封止部材14、第2保護部材16、および、第2封止部材18を含む。また、第2封止部材18は、入射光散乱粒子20を含む。さらに、第1太陽電池セル10aは、第1表面側電極40aおよび第1裏面側電極42aを含み、第2太陽電池セル10bは、第2表面側電極40bおよび第2裏面側電極42bを含む。第1表面側電極40aおよび第2表面側電極40bは、表面側電極40と総称され、第1裏面側電極42aおよび第2裏面側電極42bは、裏面側電極42と総称される。
 ここで、太陽電池セル10は太陽電池セル210に対応し、第1保護部材12は第1保護部材212に対応し、第1封止部材14は第1封止部材214に対応し、第2保護部材16は第2保護部材216に対応し、第2封止部材18は第2封止部材218に対応する。また、表面側電極40は表面側電極240に対応し、裏面側電極42は裏面側電極242に対応する。以下では、図2Aとの差異を中心に説明する。
 第2封止部材18は、第2封止部材218と同様に構成されるが、内部に入射光散乱粒子20が分散して含まれる。ここで、分散とは、第2封止部材18の全体に一様に含まれていることに相当し、それはランダムに含まれているともいえる。また、入射光散乱粒子20は、例えば、シリカ粒子である。このように、入射光散乱粒子20が含まれることによって、第2封止部材18は、入射光の一部を透過させるとともに、入射光の他の一部を散乱させる。例えば、図2Bに示すように、第1保護部材側入射光30の一部は、第2封止部材18を透過して第2保護部材16から外部に出て行って透過光34となり、第1保護部材側入射光30の他の一部は、第2封止部材18で散乱して散乱光(反射光)36となる。つまり、図2Aの構成では、第1太陽電池セル210aと第2太陽電池セル210bとの間の光を発電に利用不可能であったのに対して、図2Bの構成では、第1太陽電池セル10aと第2太陽電池セル10bとの間の光を発電に利用可能である。以下では、図2Bの構成に適したシリカ粒子の粒径と粒子個数密度とをシミュレーション計算により導出する。
 図3は、図2Bに示す実施の形態1に係る太陽電池モジュール100における粒子個数密度と太陽電池セル光吸収率との関係を示す図である。図3において、横軸は、粒子個数密度N[個/mm]を示し、縦軸は、太陽電池セル光吸収率[%]を示す。なお、粒子個数密度は、1立方ミリメートルあたりに含まれるシリカ粒子の個数であり、シリカ粒子個数密度ともいえる。また、シリカ粒子の大きさであるシリカ粒子の粒径dは、パラメータとしてd=0.1μmから10μmの間で変化させている。
 ここでは、ミー散乱と光線追跡法とを合わせたシミュレーション計算を実行する。シミュレーション計算において、第1保護部材12の厚さは3.2mm、第1封止部材14の厚さは0.6mm、太陽電池セル10の厚さは0.115mm、第2封止部材18の厚さは0.6mm、第2保護部材16の厚さは3.2mmであるとする。第2封止部材18に含まれた入射光散乱粒子20の光散乱強度分布はミー散乱である。また、太陽電池セル10の両面に設けられた表面側電極40、裏面側電極42は銀で形成されている。さらに、第1保護部材側入射光30と第2保護部材側入射光32との光量の比は、「1:0.3」であるとする。
 図3において、丸印(○)で示された線50(d=10μm)は、シリカ粒子の粒径が10μmである場合に、粒子個数密度を変化させたときの太陽電池セル光吸収率を計算した結果である。太陽電池セル光吸収率がピークとなるときの粒子個数密度が、最適粒子個数密度Noptとして規定されており、これは、発電量が最大となる点である。また、図3には、シリカ粒子の個数が「0」である場合、つまり第2封止部材18に入射光散乱粒子20が含まれない場合の太陽電池セル光吸収率が、太陽電池セル光吸収率しきい値(破線90)として示される。線50(d=10μm)が、シリカ粒子の個数「0」以外において、太陽電池セル光吸収率しきい値(破線90)と交差する場合の粒子個数密度は、許容粒子個数密度Nplusとして規定される。これは、シリカ粒子混入によって太陽電池セル光吸収率が増加する粒子個数密度の最大値である。
 最適粒子個数密度Noptより小さい範囲では、粒子個数密度を大きくするほど、太陽電池セル光吸収率が増加する。一方、最適粒子個数密度Nopt以上であり、かつ許容粒子個数密度Nplus以下の範囲では、粒子個数密度を大きくするほど、太陽電池セル光吸収率が減少するが、シリカ粒子を混入しない場合と比較して太陽電池セル光吸収率は増加している。さらに、許容粒子個数密度Nplus以下の範囲では、粒子個数密度を大きくするほど、太陽電池セル光吸収率が減少する。これは発電効率が悪化することに相当する。このような傾向は、三角印(△)で示される線52(d=3μm)、四角印(□)で示される線54(d=1μm)、バツ印(×)で示される線56(d=0.3μm)、ダイアモンド印(◇)で示される線58(d=0.1μm)においても同様であるが、シリカ粒子の粒径に応じて、最適粒子個数密度Nopt、許容粒子個数密度Nplusは異なる。
 図4は、図2Bに示す実施の形態1に係る太陽電池モジュール100におけるシリカ粒子の粒径と粒子個数密度との関係を示す図である。図4において、横軸は、シリカ粒子の粒径d[μm]を示し、縦軸は、粒子個数密度N[個/mm]を示す。最適粒子個数密度線60は、図3のように計算した最適粒子個数密度Noptのシリカ粒子の粒径に対する変化を示す。最適粒子個数密度線60に一致するように、シリカ粒子の粒径と粒子個数密度とを決定すると、発電効率が最大になる。最適粒子個数密度線60において、シリカ粒子の粒径d[μm]と粒子個数密度N[個/mm]とには、logN=-2.4×logd+7.6の関係が成立する。一方、許容粒子個数密度線92は、図3のように計算した許容粒子個数密度Nplusのシリカ粒子の粒径に対する変化を示す。許容粒子個数密度線92をもとに、シリカ粒子の粒径と粒子個数密度とを決定すると、発電効率が向上する。許容粒子個数密度線92において、シリカ粒子の粒径d[μm]と粒子個数密度N[個/mm]とには、logN=-2.2×logd+8.0の関係が成立する。さらに、粒子体積占有率100%線62は、シリカ粒子を100%混入させた場合を示しており、シリカ粒子を混入できる最大値であるといえる。
 下降領域66は、シリカ粒子の粒径d=0.1~10μmにおいて、太陽電池セル光吸収率が、第2保護部材側入射光32の増加によって下降する領域である。これは、シリカ粒子が多く含まれすぎており、第2保護部材側入射光32が太陽電池セル10に到達しにくくなっているためである。一方、上昇領域64は、シリカ粒子の粒径d=0.1~10μmにおいて、太陽電池セル光吸収率が、第2保護部材側入射光32の増加に関係なく上昇する領域である。上昇領域64において、シリカ粒子の粒径d[μm]と粒子個数密度N[個/mm3]とには、logN<-2.2×logd+8.0の関係が成立する。
 これまでの計算結果をまとめると、シリカ粒子の粒径d[μm]と粒子個数密度N[個/mm3]とが、logN≦-2.2×logd+8.0の関係を有するように、シリカ粒子の粒径と粒子個数密度とが決定されるべきである。また、その際のシリカ粒子の粒径dは、0.1[μm]以上、10[μm]以下である。
 図5は、図2Bに示す実施の形態1に係る太陽電池モジュール100における最適粒子個数密度時でのシリカ粒子の粒径と太陽電池セル光吸収率の関係を示す図である。図5において、横軸は、シリカ粒子の粒径d[μm]を示し、縦軸は、太陽電池セル光吸収率[%]を示す。ここでは、第1保護部材側入射光30の光量と第2保護部材側入射光32の光量との関係として、三角印(▲)を結ぶ線70で示される第1条件、四角印(■)を結ぶ線72で示される第2条件、丸印(○)を結ぶ線74で示される第3条件という3つの条件を検討する。第1保護部材側入射光30の光量と第2保護部材側入射光32の光量との比が、第1条件(線70)では1:0であり、第2条件(線72)では1:0.1であり、第3条件(線74)では1:0.3である。これらの条件は、第1保護部材側入射光30が南の方角から入射される光であり、第2保護部材側入射光32が北の方角から入射される光である場合に想定される範囲である。
 すべての条件を考慮すると、シリカ粒子を第2封止部材18に混入しなければ、太陽電池セル光吸収率は、79.9~80.4%である。一方、粒径d=10μmのシリカ粒子を混入すると、太陽電池セル光吸収率は、81.7~82.2%になる。このように、シリカ粒子の混入によって、太陽電池セル光吸収率が改善する。また、シリカ粒子の粒径dは、0.1[μm]以上、10[μm]以下の範囲において、混入されるシリカ粒子の粒径は大きい方が好ましい。
 ここで、図6A、図6Bおよび図6Cを用いて、図2Bに示す実施の形態1に係る太陽電池モジュール100における第2封止部材18での入射光と透過光との関係について説明する。図6Aは、図2Bに示す実施の形態1に係る太陽電池モジュール100における第2封止部材18中で散乱される光を示す図であり、シミュレーション計算において使用された第2封止部材18に含まれる入射光散乱粒子20の構成を示している。これまでは、入射光散乱粒子20であるシリカ粒子は、球形であると想定している。一方、実際のシリカ粒子は、球形から歪んだ形状になっている場合がある。ここでは、このような形状の違いを検討する。前述のごとく、シミュレーション計算では、シリカ粒子においてミー散乱がなされていることを利用していたので、第2封止部材18中のシリカ粒子において散乱される光は、図6Aの矢印のように示される。このような散乱によれば、第2封止部材18に入射される光線と、第2封止部材18から放射される光線の関係は、図6Bのように示される。図6Bは、図2Bに示す実施の形態1に係る太陽電池モジュール100における第2封止部材18での入射光と透過光との関係を示す図である。図6Bにおいて、第2封止部材18に向かう矢印が、第2封止部材18に入射される光線を示し、第2封止部材18から出て行く矢印が、第2封止部材18から放射される光線を示す。
 一方、シリカ粒子の形状として立方体を想定し、かつシリカ粒子が第2封止部材18にランダムに配置されている場合の第2封止部材18に入射される光線と、第2封止部材18から放射される光線の関係は、図6Cのように示される。図6Cは、図2Bに示す実施の形態1に係る太陽電池モジュール100における第2封止部材18(シリカ粒子がランダム配置の場合)での入射光と透過光との関係を示す図である。図示のごとく、図6Cにおける関係は、図6Bにおける関係と同様である。つまり、シリカ粒子が規則性なく配置されていれば、シリカ粒子の形状が球形でなくても、球形が配置されているものと同等の光の散乱挙動が示される。なお、入射光散乱粒子20を混入させる第2封止部材18の製造プロセスにおいて、シリカ粒子の配置に規則性を設けることは、一般的に困難である。
 次に、図7Aおよび図7Bを用いて、太陽電池モジュールに赤外線光が入射された場合の概要について説明する。図7Aは、図2Aに示す比較例の太陽電池モジュール200に入射赤外線光280が入射された場合の概要を示す断面図である。図7Aに示すように、第1保護部材212側から、つまり表面側から入射赤外線光280が入射される。入射赤外線光280の少なくとも一部は、太陽電池セル210を透過し、透過赤外線光282として、第2保護部材216側へつまり裏面側へ放射される。
 図7Bは、図2Bに示す実施の形態1の太陽電池モジュール100に赤外線光が入射された場合の概要を示す断面図である。図7Bに示すように、太陽電池モジュール100に入射赤外線光80が入射されている。具体的には、第1保護部材12側から、つまり表面側から入射赤外線光80が入射される。入射赤外線光80の少なくとも一部は、太陽電池セル10を透過し、透過赤外線光82として、第2保護部材16側へつまり裏面側へ放射される。一方、第2封止部材18中の入射光散乱粒子20にて、太陽電池セル10を透過した赤外光の一部である反射赤外線光84が、散乱されて、太陽電池セル10に導光される。
 このように、本実施の形態に係る太陽電池モジュール100によれば、両面で光を入射可能である太陽電池セルの裏面側に配置された第2封止部材18に、シリカ粒子を分散して含めるので、シリカ粒子の光散乱現象を発現させることができる。また、シリカ粒子の光散乱現象が発現するので、第2保護部材側入射光32の減衰を抑制しながら、隣接した太陽電池セル10の間に入射した第1保護部材側入射光30を太陽電池セル10へ導光できる。また、第2保護部材側入射光32の減衰が抑制され、隣接した太陽電池セル10の間に入射した第1保護部材側入射光30が太陽電池セル10へ導光されるので、発電効率を向上できる。
 また、第2封止部材18には、シリカ粒子が分散して含まれるので、シリカ粒子を局所的に集めるといった手順を不要にできる。また、第2封止部材18には、シリカ散乱粒子が分散して含まれるので、シリカ粒子が含まれた第2封止部材18のシートを製造に使用できる。これにより、製造工程を簡易にできる。また、製造工程が簡易になるので、発電効率を向上させながら、製造難度の増加を抑制できる。
 また、シリカ粒子の粒径d[μm]と粒子個数密度N[個/mm]とが、logN≦-2.2×logd+8.0の関係を有するようにシリカ粒子を混入されるので、発電効率を向上できる。また、シリカ粒子の粒径dは、0.1[μm]以上、10[μm]以下であるので、発電効率を向上できる。また、シリカ粒子の混入によって、太陽電池セル10を透過した赤外光も太陽電池セル10側へ導光できる。また、赤外光も太陽電池セル10側へ導光するので、発電効率を向上できる。
 本実施の形態の概要は、次の通りである。本実施の形態に係る太陽電池モジュール100は、両面で光を入射可能であり、かつ両面に表面側電極40、裏面側電極42が配置された太陽電池セル10と、太陽電池モジュール100の一方の面側に配置された第1保護部材12と、第1保護部材12と太陽電池セル10との間に配置された第1封止部材14と、太陽電池セル10の他方の面側に配置された第2保護部材16と、第2保護部材16と太陽電池セル10との間に配置された第2封止部材18とを備える。そして、第2封止部材18には、入射光散乱粒子20が分散して含まれ、第2封止部材18は、入射光の一部を透過させるとともに、入射光の他の一部を散乱させる。
 入射光散乱粒子20は、シリカ粒子であり、シリカ粒子の粒径d[μm]とシリカ粒子個数密度N[個/mm]とが、logN≦-2.2×logd+8.0の関係を有してもよい。
 シリカ粒子の粒径dは、0.1[μm]以上、10[μm]以下であってもよい。
 (実施の形態2)
 次に、実施の形態2について説明する。実施の形態2も、実施の形態1と同様に、複数の太陽電池セル10を備えるとともに、第2封止部材18に入射光散乱粒子を混入させた太陽電池モジュールに関する。実施の形態1では、第2封止部材18に混入すべき入射光散乱粒子であるシリカ粒子の粒径および粒子個数密度の関係をシミュレーション計算によって導出している。一方、実施の形態2では、設定すべき透過率および反射率の範囲を実験により導出する。実施の形態2に係る太陽電池モジュール100の構成は、実施の形態1と同様であるので、ここでは説明を省略する。
 本実験では、本実施の形態に係る太陽電池モジュール100の他に、比較対象となる2種類の太陽電池モジュールを使用する。比較対象となる2種類の太陽電池モジュールの構成は、図2Aと同様であるが、使用している材料が異なる。まず、これらの構成を説明する。1つ目の比較対象となる太陽電池モジュール(以下、「第1比較例」ともいう)では、第1保護部材212には3.2mmのガラス基板が使用され、第1封止部材214および第2封止部材218には0.6mmの透明EVAが使用され、第2保護部材216には、0.11mmの透明PETフィルムが使用される。一方、2つ目の比較対象となる太陽電池モジュール(以下、「第2比較例」ともいう)において、第1保護部材212、第1封止部材214、第2保護部材216は、第1比較例と同様である。また、第2封止部材218には、0.6mmの白色EVAが使用される。
 太陽電池モジュール100(以下、「実施例」ともいう)における第1保護部材12、第1封止部材14、第2保護部材16は、第1比較例における第1保護部材212、第1封止部材214、第2保護部材216と同様である。また、第2封止部材18には、0.6mmの白濁EVAが使用される。ここで、白濁EVAでは、EVAに、粒径d=1μmのシリカ粒子が1Vol%混入されている。なお、1Vol%の粒子体積占有率は、0.95×107の粒子個数密度に相当し、これは、粒径d=1μmの場合の最適粒子個数密度Noptに近い値である。
 測定は、第1比較例、第2比較例および実施例について、表面側および裏面側のそれぞれに対して、ソーラシミュレータ光を照射することによって行われる。なお、表面側から入射される光の光量と、裏面側から入射される光の光量との比率は、1:0.1である。さらに、表面側から光を入射した場合の出力と裏側面から光を入射した場合の出力とを加算することによって、最終的な出力が導出される。その結果、実施例の出力は、第1比較例の出力に対して1.4%増加し、第2比較例の出力に対して5.3%増加する。
 また、出力の測定に加えて、透過率T、反射率Rも測定される。さらに、これらをもとに、T/(1-R)が計算される。T/(1-R)は、実施例において、第1保護部材12から第2保護部材16への値である。図8は、実施の形態2に係る太陽電池モジュール100に対する実験結果を示す。第1比較例において、透過率Tは80%、反射率Rは10.8%、T/(1-R)は89.7%である。また、第2比較例において、透過率Tは0%、反射率Rは80%、T/(1-R)は0%である。さらに、実施例において、透過率Tは68%、反射率Rは13.6%、T/(1-R)は78.7%である。そのため、実施例において、T/(1-R)が、5%以上85%以下とされるべきである。
 さらに、実施例における第1保護部材12および第1封止部材14は、第1比較例と共通の構成であり、それは、第1比較例の一部であるともいえる。そのような一部におけるT/(1-R)は、第1比較例全体のT/(1-R)よりも高い値になるべきである。そのため、第1保護部材12および第1封止部材14のうちの少なくとも1つのT/(1-R)は、85%以上にされる。
 本実施の形態における太陽電池モジュール100(実施例)によれば、第1保護部材から第2保護部材16へのT/(1-R)が、5%以上85%以下であるように、入射光散乱粒子が第2封止部材18に混入されるので、発電効率を向上できる。また、第1保護部材12および第1封止部材14のうちの少なくとも1つのT/(1-R)が85%以上にされるので、第1保護部材12から第2保護部材16へのT/(1-R)が、5%以上85%以下を実現できる。
 本実施の形態の概要は、次の通りである。透過率をTと示し、反射率をRと示した場合に、第1保護部材12から第2保護部材16へのT/(1-R)が、5%以上85%以下であってもよい。
 第1保護部材12および第1封止部材14のうちの少なくとも1つのT/(1-R)が85%以上であってもよい。
 (変形例)
 以上、本発明に係る太陽電池モジュールについて、実施の形態に基づいて説明したが、本発明は、上記実施の形態に限定されるものではない。
 例えば、実施の形態1、2において、入射光散乱粒子20として、シリカ粒子が使用されたが、これに限らず、例えばシリカ粒子以外の粒子が使用されてもよい。この変形例によれば、構成の自由度を向上できる。
 その他、上記実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で上記実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 10 太陽電池セル
 12 第1保護部材
 14 第1封止部材
 16 第2保護部材
 18 第2封止部材
 20 入射光散乱粒子
 30 第1保護部材側入射光
 32 第2保護部材側入射光
 34 透過光
 36 散乱光
 40 表面側電極(電極)
 42 裏面側電極(電極)
 100 太陽電池モジュール

Claims (5)

  1.  両面で光を入射可能であり、かつ前記両面に電極が配置された太陽電池セルと、
     前記太陽電池セルの一方の面側に配置された第1保護部材と、
     前記第1保護部材と前記太陽電池セルとの間に配置された第1封止部材と、
     前記太陽電池セルの他方の面側に配置された第2保護部材と、
     前記第2保護部材と前記太陽電池セルとの間に配置された第2封止部材とを備え、
     前記第2封止部材には、入射光散乱粒子が分散して含まれ、
     前記第2封止部材は、入射光の一部を透過させるとともに、入射光の他の一部を散乱させる
     太陽電池モジュール。
  2.  前記入射光散乱粒子は、シリカ粒子であり、
     前記シリカ粒子の粒径d[μm]とシリカ粒子個数密度N[個/mm]とが、
     logN≦-2.2×logd+8.0
     の関係を有する
     請求項1に記載の太陽電池モジュール。
  3.  前記シリカ粒子の粒径dは、0.1[μm]以上、10[μm]以下である
     請求項2に記載の太陽電池モジュール。
  4.  透過率をTと示し、反射率をRと示した場合に、前記第1保護部材から前記第2保護部材へのT/(1-R)が、5%以上85%以下である
     請求項1に記載の太陽電池モジュール。
  5.  前記第1保護部材および前記第1封止部材のうちの少なくとも1つのT/(1-R)が85%以上である
     請求項4に記載の太陽電池モジュール。
PCT/JP2016/000901 2015-03-11 2016-02-19 太陽電池モジュール WO2016143275A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017504598A JP6748877B2 (ja) 2015-03-11 2016-02-19 太陽電池モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015048270 2015-03-11
JP2015-048270 2015-03-11

Publications (1)

Publication Number Publication Date
WO2016143275A1 true WO2016143275A1 (ja) 2016-09-15

Family

ID=56880300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000901 WO2016143275A1 (ja) 2015-03-11 2016-02-19 太陽電池モジュール

Country Status (2)

Country Link
JP (1) JP6748877B2 (ja)
WO (1) WO2016143275A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018057209A (ja) * 2016-09-30 2018-04-05 Kddi株式会社 発電量予測装置、及び発電量予測方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270882A (ja) * 2001-03-13 2002-09-20 Sanyo Electric Co Ltd 太陽電池モジュール
JP2010074057A (ja) * 2008-09-22 2010-04-02 Toppan Printing Co Ltd 太陽電池裏面シートおよびそれを用いた太陽電池モジュール
JP2011077089A (ja) * 2009-09-29 2011-04-14 Toppan Printing Co Ltd 太陽電池用裏面側封止材及び太陽電池モジュール
WO2012033205A1 (ja) * 2010-09-10 2012-03-15 三菱電機株式会社 太陽電池および太陽電池モジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270882A (ja) * 2001-03-13 2002-09-20 Sanyo Electric Co Ltd 太陽電池モジュール
JP2010074057A (ja) * 2008-09-22 2010-04-02 Toppan Printing Co Ltd 太陽電池裏面シートおよびそれを用いた太陽電池モジュール
JP2011077089A (ja) * 2009-09-29 2011-04-14 Toppan Printing Co Ltd 太陽電池用裏面側封止材及び太陽電池モジュール
WO2012033205A1 (ja) * 2010-09-10 2012-03-15 三菱電機株式会社 太陽電池および太陽電池モジュール

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018057209A (ja) * 2016-09-30 2018-04-05 Kddi株式会社 発電量予測装置、及び発電量予測方法

Also Published As

Publication number Publication date
JPWO2016143275A1 (ja) 2017-12-28
JP6748877B2 (ja) 2020-09-02

Similar Documents

Publication Publication Date Title
CN100539208C (zh) 一种太阳能能量转化系统
US20170148942A1 (en) Solar panel and method of manufacturing such a solar panel
JP2006313810A (ja) 集光型太陽光発電装置
KR102043919B1 (ko) 건물 일체형 태양전지 모듈
JP3218202U (ja) 太陽光発電モジュール
US20170365727A1 (en) Solar cell module
WO2016143275A1 (ja) 太陽電池モジュール
JP5929578B2 (ja) 太陽電池モジュール及び太陽電池モジュール集合体
WO2016143277A1 (ja) 太陽電池モジュール
JP6010758B2 (ja) 太陽電池モジュール
JP2017069501A (ja) 太陽電池モジュール
JP2014036044A (ja) 太陽電池モジュール
JP6471501B2 (ja) 太陽電池モジュール用裏面保護シート及びこれを用いた太陽電池モジュール
WO2016035311A1 (ja) 波長変換フィルタおよびそれを利用した太陽電池モジュール
JP6722910B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
TWI520359B (zh) 太陽能電池模組
JP2016162837A (ja) 太陽電池モジュール
JP6089214B2 (ja) 太陽電池モジュール
WO2016111257A1 (ja) 太陽電池モジュール及びそれに用いられる太陽電池の封止樹脂
JP6653477B2 (ja) 太陽電池モジュール
CN215680706U (zh) 一种光重定向膜以及一种光伏模块
KR102407525B1 (ko) 다중 솔라셀 유닛을 이용한 태양광 발전량 증강 방법 및 장치
KR20140121915A (ko) 양면 수광형 태양전지 모듈
CN211208460U (zh) 一种增效太阳能光伏组件
US20230407173A1 (en) Phosphor and solar cell module using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761254

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017504598

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761254

Country of ref document: EP

Kind code of ref document: A1