WO2016142566A1 - Sistema para la producción de hidrógeno a partir del agua marina - Google Patents

Sistema para la producción de hidrógeno a partir del agua marina Download PDF

Info

Publication number
WO2016142566A1
WO2016142566A1 PCT/ES2016/070150 ES2016070150W WO2016142566A1 WO 2016142566 A1 WO2016142566 A1 WO 2016142566A1 ES 2016070150 W ES2016070150 W ES 2016070150W WO 2016142566 A1 WO2016142566 A1 WO 2016142566A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
production
profile
sails
sail
Prior art date
Application number
PCT/ES2016/070150
Other languages
English (en)
French (fr)
Inventor
Jose Miguel Bermudez Miquel
Cristina ALEIXENDRI MUÑOZ
Ignacio Bermudez Sanchez
David FERRER DESCLAUX
Francisco Jose Saenz Saenz
Original Assignee
Bound4Blue, Sl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bound4Blue, Sl filed Critical Bound4Blue, Sl
Priority to US15/556,311 priority Critical patent/US20180148356A1/en
Publication of WO2016142566A1 publication Critical patent/WO2016142566A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/20Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H9/00Marine propulsion provided directly by wind power
    • B63H9/04Marine propulsion provided directly by wind power using sails or like wind-catching surfaces
    • B63H9/06Types of sail; Constructional features of sails; Arrangements thereof on vessels
    • B63H9/061Rigid sails; Aerofoil sails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H9/00Marine propulsion provided directly by wind power
    • B63H9/04Marine propulsion provided directly by wind power using sails or like wind-catching surfaces
    • B63H9/06Types of sail; Constructional features of sails; Arrangements thereof on vessels
    • B63H9/061Rigid sails; Aerofoil sails
    • B63H9/0615Inflatable aerofoil sails
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an energy conversion system, and more specifically to a system for converting force of the wind into seas and oceans into electrical energy and non-fossil fuel, thanks to electrolysis of seawater in H 2 and / or 0 2 .
  • the present invention refers to a system for the production of hydrogen, oxygen, methanol, ethanoi, ammonia and / or other species, from seawater, of the type of ios comprising at least one ship provided with sails for the capture of wind to move the ship; at least one turbine arranged under the vessel in order to be submerged in the water and rotated by the action of the water flowing through it when the vessel moves in relation to the water; a generator adapted to convert the rotation of the a minus one turbine into electricity; a system for the production of hydrogen, oxygen, methanol, ethanoi, ammonia and / or other species on board, from the electrical energy generated by the generator; and storage media of hydrogen, oxygen, methanol, ethanoi, ammonia and / or other species.
  • the object of the invention is a system for the production of hydrogen from seawater, of those of the type indicated at the beginning a rigid sail of the type mentioned at the beginning, of configurable profile, of novel concept and functional dad, which in its essence is characterized by the characterizing part of claim 1.
  • FIG. 1 is a perspective view of a ship constituting the system of the invention
  • Fig. 2 is a detail view according to II of Fig. 1, illustrating in particular the electric generator, the hydrogen / oxygen production system, and the hydrogen / oxygen storage means;
  • Fig. 3 is a plan view of a sail profile according to the invention, in its retracted position
  • Fig. 4 is an analogous view of Fig. 3, but with the sail profile in the unfolded position, with the inflabie bags inflated;
  • Fig. 5 is a perspective visa of the rigid sail of Fig. 4;
  • Fig. 6 is a plan view illustrating the inflation mode of an exemplary embodiment of the inflatable sail bag of the present invention.
  • Fig. 7 is a perspective view, corresponding to the plan view of Fig. 6; Y
  • Fig. 8 is a plan view and partially cropped of the ship of the
  • the invention is based on the combination of wind speed with high water density, which makes the performance much higher than that of any other wind-based system as a primary energy source.
  • the system for the production of hydrogen from seawater comprises: a vessel, designed for and in charge of supporting all the necessary structural loads and housing the storage system therein;
  • stiffening sails 2 responsible for propelling the vessel so that it acquires speed
  • an electric generator 4 adapted to convert turbines 3 into electricity rotation
  • the H 2 generation system including, and not limited to: by chemical electroactivation (ECAS) of seawater in ECAS 11 cartridges by means of the addition of an electrolyte .
  • ECAS chemical electroactivation
  • it can be fed with an additional electrolyte, or the salinity of seawater itself may suffice; and a system by electrolysis of water through membranes of filtration, microfiltration and / or ultrafiltration elements 10.
  • H 2 and 0 2 The process in which H 2 and 0 2 is generated and stored is as follows: ship 1 leaves the port with the use of an engine (not shown), either conventional or hydrogen fuel cell and goes to an area with high intensity winds.
  • the vessel 1 shuts down the engine and sails, using the rigid sails 2 in question, following the direction of maximum wind intensity only to acquire a high speed.
  • the ship acquires relative speed with the sea, which is used to generate mechanical energy thanks to submerged turbines 3.
  • ECA electrolysis or chemical electroactivation
  • the gases would be stored on board under pressure, in a gaseous state at first or by chemical or cryogenic storage, in media 6 gas storage, provided in e! Illustrated example (Figs 1 and 2), of tanks 7 of hydrogen, oxygen, etc.
  • the vessel 1 When the tanks 7 or chemical storage components (cells) are full, the vessel 1 returns to the port to unload and restart the process. Ideally, it is expected to work with standard pressure storage in ISO containers, which can then be unloaded at any port without the need for special infrastructure, although it is expected that other methods of storage can be used, such as large spherical tanks or chemical storage elements (cells ).
  • the sails 2 are stiffening and configurable profile sails between a folded non-operative position (Fig. 3), and an unfolded operative position (Figs. 1, 4 and 5), in which they determine the profile of the sail 2 and therefore the aerodynamic surface of contact with the wind.
  • the sails (2) in their inflated and stiffened form acquire an airplane wing profile, which can be symmetrical or asymmetric (which is the example shown in the drawings).
  • Each sail 2 is formed by profile elements 00 (Figs. 3, 4 and 5), divided into equal, pivoting sections 21, 22, on a tubular joint 26, arranged on both sides of an axis 20, and they comprise a support structure 23, by way of latticework, on which are arranged sail elements 24, constituted by inflatable bags 24, individually or collectively operable, by inflation means 30, between a deflated position, corresponding to the po - folded position, and an inflated and rigid position, corresponding to the unfolded position, in which they determine the profile of the sail 2 and therefore the aerodynamic surface of contact with the wind.
  • the sails 2 can rotate around the axis 20 guided in their lower part on a carriage 9 of bearings around circular guides 12 of the deck 13 of the vessel 1.
  • the central axis 20 transmits the efforts to the whole ship and receives the mounting of the support structure 23 in lattice. All profile elements 100 are attached to said central axis 20.
  • FIG. 1 shows candles 2 without outer lining 28.
  • the axis 20 of the embodiment illustrated comprises a triangular reinforcing column 32, to provide more support to the support structure 23.
  • the assembly has a series of inflatable sail elements 24 that can be swollen at will by means of inflation 30, by means of pressurized air through pipes and systems of common pressure distributed throughout the support structure 23 of the view 2, being able to adopt with this system the candle 2 different shapes and configurations at each moment.
  • a non-limiting example of the operation of the inflatable sail elements 24 is described below, with particular reference to Figs. 8 and 7:
  • the inflation system 30 for configuring adaptable profiles consists of bags inf! ab! is 24, preferably of plastic material (for example PVC), provided with an inner lining 25.
  • Said inflatable bag 24 is tensioned through motorized rollers 31 that collect or release the inflatable bag 24, while the inner lining 25, which is attached to the inflatable bag 24 by means of a thermosoidated or similar joint, has an injection tube 32 of pressurized air, said tube will be fixed to a frame of the support structure 23, which will keep it fixed in a position and also acts as a support for holding an inner frame 33.
  • This inner frame 33 is arranged inside the inflatable bag 24 but outside the liner 25 and has its analogue in an outer frame 34, which exert a guiding function, being able to tension and release "fabric" from the inflatable bag 24.
  • the outer frame 34 will be fixed to the general structure as well as the inner frame 33. Said frame gives stability, positioning, and rigidity to the tangential stresses that can be generated by the wind.
  • the candle 2 formed from the inflabies bags 24 is also stiffened. Stop this purpose, the inflatable bag 24 has stiffening means some forms of inflation with preformed seams 29 (Fig. 7), so that the inflatable bag 24 grows or decreases in volume, but with a rigid and designed shape of beforehand, in the same way as the known "airbac / 'devices of automobiles.
  • Figs. 4 and 5 it can be clearly seen how the inflabie bags 24 are of each other in different shapes and maximum volumes, once the operational position deployed is acquired Inflated and rigid.
  • the angle ( ⁇ ) of apparent wind is between 30 ° and 75 °.
  • the apparent wind, or apparent wind speed (Va) is defined as the vector sum of the real wind speed (Vr) plus ship speed (Vb).
  • the angle ( ⁇ ) of apparent wind is the angle formed by the apparent speed (Va) and the speed of the vessel (Vb). This as shown in Fig. 8.
  • the sails 2 of the system of the invention have a complete symmetric duality, the sails 2 can already be set to one side or the other, and according to variable volumes, making it unnecessary to rotate 180 ° in case the wind comes on the opposite side Likewise, for certain variations in wind direction or speed, the vessel of the system of the present invention does not require to vary its direction.
  • the stiffening and configurable profile sails 2 of the hydrogen production system of the present invention can adopt other embodiments, different from the one explained in relation to the preferred embodiment based on inflatable elements or bags 24.
  • the candle disclosed in US8601966B2 in which the candle is configured from stackable and extensible candle elements by way of bellows; Y
  • the number of profile elements 100, as well as that of sail elements (or inflatable bags) 24, can be any, including the unit, leaving it within! scope of protection of the claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Wind Motors (AREA)

Abstract

Sistema para la producción de hidrógeno a partir del agua marina. Comprende un buque (1) provisto de velas (2) para la captura de viento para mover el buque; al menos una turbina (3) dispuesta debajo del buque a fin de quedar sumergida en el agua y que es hecha girar por acción el agua que fluye a través de la misma cuando el buque (1) se mueve en relación con el agua; un generador eléctrico (4) adaptado para convertir en energía eléctrica la rotación de las turbinas (3); un sistema de generación de hidrógeno H2 (5) a partir de la energía eléctrica generada; y medios almacenamiento (6) de hidrógeno. Las velas (2) son de perfil configurable entre una posición no operativa replegada, y una posición operativa desplegada, en la que determinan el perfil de la vela y por tanto la superficie aerodinámica de contacto con el viento.

Description

D E S C R I P C I O N
"Sistema para \a producción de hidrógeno a partir del agua marina" Sector técnico de la invención
La presente invención se refiere a un sistema de conversión de energía, y más en concreto a un sistema para convertir ¡a fuerza del viento en mares y océanos en energía eléctrica y en combustible no fósil, gracias a ¡a electrólisis del agua de mar en H2 y/o 02.
En concreto, ¡a presente invención se refiere a un sistema para la producción de hidrógeno, oxígeno, metanol, etanoi, amoniaco y/o otras especies, a partir del agua marina, del tipo de ios que comprenden al menos un buque provisto de velas para la captura de viento para mover el buque; al menos una turbina dispuesta debajo del buque a fin de ser sumergido en el agua y girar por acción del agua que fluye a través del mismo cuando el buque se mueve en relación con el agua; un generador adaptado para convertir la rotación de la ai menos una turbina en electricidad; un sistema de producción de hidrógeno, oxígeno, metanol, etanoi, amoniaco y/o otras especies a bordo, a partir de la energía eléctrica generada por el generador; y medios almacenamiento de hidrógeno, oxígeno, metanol, etanoi, amoniaco y/o otras especies.
Antecedentes de la invención
Son conocidos diferentes sistemas para la obtención de hidrógeno mediante ¡a utilización de diferentes tipos de energía. No obstante, hasta el momento, la obtención del mismo resultaba poco competitiva para su uso de forma generalizada.
La generación de energía eléctrica a bordo en buques a vela mediante el uso de hélices acopiados a pequeños generadores se conoce desde hace tiempo, por ejemplo por los documentos US3619632; US3895236; US4102291 y US4335093. Tales dispositivos se utilizan normalmente para cargar la batería y crean normalmente un efecto draga significativo en el buque. La generación de energía a mayor escala por medio de propulsión a vela ha requerido la generación
i de ¡a máxima potencia a través del uso de una cantidad máxima de vela.
Haciendo uso de este requisito y posibilidad, existen en la actualidad un buen número de sistemas de producción de hidrógeno por electrólisis utilizando la electricidad generada por el sistema generador basado en turbina a bordo de un velero con gran superficie vélica. Por ejemplo, son de citar las patentes AT507229; ES2326710; DE102007057267; US5027735; US7146918; US8601980, entre otras. En estos veleros, la fuerza del viento impulsa el velero provocando el movimiento del mismo. Dicho movimiento genera un paso de corriente de agua a través de las turbinas, imprimiéndoles un movimiento giratorio, obteniendo la correspondiente energía mecánica. Esta es transferida al generador, convirtiéndola en energía eléctrica. Posteriormente, la electricidad se utiliza en la estación de producción de hidrógeno (H2) para la obtención de dicho elemento. El hidrógeno obtenido se puede presurizar y ser almacenado en la unidad de almacenamiento.
No obstante esta profusión de intentos, de ios cuales se ha enumerado únicamente unos ejemplos ilustrativos, no se ha conseguido hasta la fecha un dispositivo versátil, económico y de fácil operación. En especial como estado del arte más cercano, que intenta dar una solución a la anterior demanda, cabe citar la patente US7146918, en la que se describe un sistema de generación de energía eléctrica e hidrógeno (H2), a partir del agua de mar y de la energía eólica, en buques a vela, de acuerdo con el preámbulo de ¡a reivindicación 1.
El problema que presenta el sistema de generación de la US7148918, es que las velas son de difícil operación, control y regulación, y con ello la producción de energía y H2 pierde rendimiento y predictibiiidad. Por ejemplo, un problema importante es que si el viento vira 180° entonces se hace necesaria una operación de giro de las velas, que puede ser dificultosa y peligrosa. Una de las finalidades de la presente invención es solucionar este problema y que ¡a operabilidad, eficacia y predictibiiidad del sistema aumente. Explicación de la invención
A íal finalidad, el objeto de la invención es un sistema para ¡a producción de hidrógeno a partir del agua marina, de los del tipo indicado al inicio una vela rígida del tipo citado al inicio, de perfil configurable, de novedoso concepto y funcionali- dad, que en su esencia se caracteriza por la parte caracterizante de la reivindicación 1.
En las reivindicaciones 2 y sucesivas se dan a conocer formas de realización preferentes del sistema de la presente invención.
Breve descripción de ios dibujos
En ios dibujos adjuntos se ilustra, a titulo de ejemplo no limitativo, una forma de realización del sistema para la producción de hidrógeno a partir del agua marina objeto de la invención. En dichos dibujos: la Fig. 1 , es una vista en perspectiva de un buque constitutivo del sistema de la invención;
la Fig. 2 es una vista de detalle según II de la Fig. 1 , que ilustra en especial el generador eléctrico, el sistema de producción de hidrógeno/oxígeno, y ios medios de almacenamiento de hidrógeno/oxígeno;
la Fig. 3 es una vista en planta de un perfil de vela según la invención, en su posición replegada;
la Fig. 4 es una vista análoga de la Fig. 3, pero con el perfil de vela en posición desplegada, con las bolsa inflabies infladas;
la Fig. 5 es una visa en perspectiva de la vela rígida de la Fig. 4;
la Fig. 6 es una vista en planta que ilustra el modo de inflado de un ejemplo de realización de la bolsa inflable de la vela de la presente invención;
la Fig. 7 es una vista en perspectiva, correspondiente a la vista en planta de la Fig. 6; y
La Fig. 8 es una vista en planta y parcialmente recortada del buque de la
Fig. 1 , y en las que se muestran las velocidades del buque (Vb), real del viento (Vr) y aparente del viento (Va). Descripción detallada de los dibujos
En dichos dibujos puede apreciarse la constitución y el modo operativo de una forma de realización del sistema para la producción de hidrógeno a partir del agua marina de la invención. En este caso el sistema viene montado sobre un buque 1 que incorpora, en este ejemplo de realización, cinco velas según la invención. Evidentemente, el concepto es extensible a todo buque a vela con un número diferente de velas 1.
La invención se basa en la combinación de la velocidad del viento con la alta densidad del agua, que hace que el rendimiento sea mucho mayor que el de cualquier otro sistema basado en el viento como fuente de energía primaria.
Se trata principalmente de un buque 1 especialmente diseñado para la producción de hidrógeno (y/u de oxígeno), obtenidos a partir de la electrólisis del agua del mar o lacustre.
En los dibujos puede verse que el sistema para la producción de hidrógeno a partir del agua marina, según la presente invención, comprende: un buque , diseñado para y encargado de soportar todas las cargas estructurales necesarias y albergar el sistema de almacenamiento en su interior;
provisto de velas rigidizabies 2, encargadas de propulsar la embarcación para que ésta adquiera velocidad;
turbinas 3 sumergidas, que giran a causa de la velocidad relativa entre la embarcación y el agua y generan energía mecánica, alimentando a su vez a ios equipos de electrólisis y los equipos auxiliares. Las turbinas 3 giran a causa de la velocidad relativa entre el buque 1 y el agua y generan energía mecánica, alimentando a su vez a equipos de generación de H2 5 y los equipos auxiliares del buque 1 ;
un generador eléctrico 4 adaptado para convertir en electricidad la rotación las turbinas 3;
un sistema de generación de hidrógeno 5 a bordo para producir H2 y 02 a partir de la energía eléctrica generada por el generador 4; medios de almacenamiento 8, por ejemplo basados en contenedores ISO de H2 y C½ de alta presión (30 bar, 300 bares o superior).
Según la presente invención, son posibles diferentes variantes para eí sistema de generación de H2, entre ellas, y de modo no limitativo: por electroactivación química (ECAS) del agua de mar en cartuchos de ECAS 11 por medio de la adición de un electrolito. En este caso se puede alimentar con un electrolito adicional, o puede bastar la propia salinidad del agua marina; y un sistema por electrólisis del agua a través de membranas de elementos 10 de filtración, microfiltración y/o ultrafiltración.
El proceso en que se genera y almacena H2 y 02 es el siguiente: el buque 1 abandona el puerto con el uso de un motor (no mostrado), ya sea convencional o de pila de combustible de hidrógeno y se dirige a un área con vientos de intensidad alta.
Una vez allí, el buque 1 apaga el motor y navega a vela, utilizando las velas rígidas 2 en cuestión, siguiendo la dirección de máxima intensidad del viento tan sólo para adquirir una velocidad alta. A mayor velocidad del buque 1 , mayor es la producción de hidrógeno y de oxígeno. En este proceso, el buque adquiere velocidad relativa con el mar, que se aprovecha para generar energía mecánica gracias a las turbinas 3 sumergidas.
Con esta energía mecánica, transformada en eléctrica, se alimentarían los sistemas de generación de hidrógeno 5 y los equipos auxiliares para realizar la electrólisis o electroactivación química (ECA) del agua previamente acondicionada, separándola en hidrógeno y oxígeno u otras especies químicas en eí caso de la ECA (por ejemplo Cí y sus compuestos).
Los gases se almacenarían a bordo a presión, en estado gaseoso en un principio o mediante almacenamiento químico o criogénico, en medios de almacenamiento 6 de gases, provistos en e! ejemplo ilustrado (Figs 1 y 2), de tanques 7 de hidrógeno, oxígeno, etc.
Cuando los tanques 7 o componentes químicos de almacenaje (células) están llenos, el buque 1 regresa ai puerto para descargar y volver a ini- ciar el proceso. idealmente se espera trabajar con almacenamiento a presión estándar en contenedores ISO, que posteriormente podrán ser descargados en cualquier puerto sin necesidad de infraestructuras especiales, aunque se prevé que se pueda utilizar otros métodos para almacenar, como grandes tanques esféricos o elementos quimicos de almacenamiento (células).
De acuerdo con la invención, las velas 2 son velas rigidizabies y de perfil configurabie entre una posición no operativa replegada (Fig. 3), y una posición operativa desplegada (Figs. 1 , 4 y 5), en la que determinan el perfil de la vela 2 y por tanto la superficie aerodinámica de contacto con el viento. Preferiblemente, las velas (2) en su forma inflada y rigidizada adquieren un perfil de ala de avión, que puede ser simétrico o asimétrico (que es el ejemplo que se muestra en los dibujos).
Cada vela 2 está formada por elementos de perfil 00 (Figs. 3, 4 y 5), dividi- dos en secciones 21 , 22, iguales y pivotantes sobre una articulación 26 de tipo tubular, dispuestas a ambos lados de un eje 20, y comprenden una estructura de soporte 23, a modo de celosía, sobre la cual están dispuestos unos elementos de vela 24, constituidos por bolsas inflables 24, accionables individual o colectivamente, por unos medios de inflado 30, entre una posición desinflada, correspondiente a la po- sición replegada, y una posición inflada y rígida, correspondiente a la posición desplegada, en la que determinan el perfil de la vela 2 y por tanto la superficie aerodinámica de contacto con el viento.
La estructura 23 en celosía, que tiene la forma del borde de salida del perfil aerodinámico, para cuando se tengan que armar los hinchables no haga falta trabajar con los de una mitad del perfil y puedan quedar completamente sin inflar.
Una vez fijadas y ancladas mutuamente ambas secciones 21 y 22 de los elementos de perfil 100, y fijados entre sí los elementos de perfil 100, las velas 2 pueden girar alrededor del eje 20 guiadas en su parte inferior sobre un carro 9 de rodamientos alrededor de unas guías circulares 12 de la cubierta 13 del buque 1. El eje 20 central transmite los esfuerzos al conjunto del buque y recibe el montaje de la estructura de soporte 23 en celosía. Todos ios elementos de perfil 100 se andan a dicho eje 20 central.
Existen unos elementos verticales 27 en ios dos bordes de la estructura de soporte que hacen de guía para un forro exterior 28, que pueden plegarse o bien debajo de la estructura, en cubierta, o bien en la parte superior. Este forro exterior 28 puede ser un tejido técnico que se adapta a la forma del perfil de la vela 2 en cada momento, y que encierra el conjunto de las bolsas inflables 24. Para una mayor claridad, en las Fígs. 1 y 5 se muestran las velas 2 desprovistas el forro exterior 28.
El eje 20 del modo de realización que se ilustra, comprende una columna triangular de refuerzo 32, para dotar de más inercia a la estructura de soporte 23. Figs. 2 a 5.
Como punto adicional, todo el conjunto de las veías 2 puede estar unido por una pasarela superior 8 (Fig. 1 ), que dote ai conjunto de mayor inercia.
Como se ha dicho, para conformar la forma de perfil aerodinámica, el con- junto cuenta con una serie de elementos de vela inflables 24 que pueden hincharse a voluntad por unos medios de inflado 30, mediante aire a presión a través de tuberías y sistemas de presión comunes distribuidos por toda la estructura de soporte 23 de la veía 2, pudiendo adoptar con este sistema la vela 2 distintas formas y configuraciones en cada momento. Un ejemplo no limitativo del funcionamiento de ios elementos de vela inflables 24 está descrito seguidamente, con particular referencia a las Figs. 8 y 7:
El sistema de inflado 30 para configurar perfiles adaptables consta de bolsas inf!ab!es 24, preferentemente de material plástico (por ejemplo PVC), dotadas de un forro interior 25.
Dicha bolsa inflable 24 es tensada a través de unos rodillos 31 motorizados que recogen o liberan la bolsa inflable 24, mientras el forro interior 25, el cual está unido a la bolsa inflable 24 mediante una unión termosoidada o similar, dispone de un tubo de inyección 32 de aire a presión, dicho tubo estará fijado a un armazón de la estructura de soporte 23, que lo mantendrá fijo en una posición y que además hace de soporte para sujetar un marco interior 33.
Este marco interior 33 está dispuesto dentro de la bolsa inflable 24 pero por fuera del forro 25 y tiene su análogo en un marco exterior 34, los cuales ejercen una función de guiado, pudiendo tensar y soltar "tela" de la bolsa inflable 24. El marco exterior 34 estará fijado a la estructura general al igual que el marco interior 33. Dicho marco, le otorga una estabilidad, posicionamiento, y rigidez a ios esfuerzos tangenciales, que puede generar el viento.
La vela 2 formada a partir de las bolsas inflabies 24 es también rigidizable. Pare este fin, la bolsa inflable 24 dispone de unos medios de rigidización unas formas de hinchado con costuras de preformado 29 (Fig. 7), de manera que la bolsa inflable 24 crece o disminuye en volumen, pero con una forma rígida y diseñada de antemano, del mismo modo que los conocidos dispositivos "airbac/' de los automóviles. En las Figs. 4 y 5 se aprecia con claridad como las bolsas inflabies 24 son entre sí de diferentes formas y volúmenes máximos, una vez adquirida la posición operativa desplegada inflada y rígida.
Con la invención se resuelve la creación de volúmenes configurabies y adaptables, para cualquier sistema que necesite de esta posibilidad, como pueden ser velas de perfil configurabie, o palas para aerogeneradores.
Por último indicar que según la invención, el ángulo (β) de viento aparente está comprendido entre 30° y 75°. En náutica se define el viento aparente, o velocidad del viento aparente (Va) como la suma vectorial de la velocidad del viento real (Vr) más la velocidad del buque (Vb). Entonces, el ángulo (β) de viento aparente es el ángulo que forman la velocidad aparente (Va) y la velocidad del buque (Vb). Ello según se muestra en la Fig. 8.
Expertos en la técnica apreciarán que las velas 2 del sistema de la invención tienen una dualidad simétrica completa, ya se puede configurar las velas 2 hacia un lado u otro, y según volúmenes variables, haciendo innecesario que rote 180° caso de que el viento venga del lado contrario. Igualmente, para ciertas variaciones de la dirección o velocidad del viento, el buque del sistema de la presente invención no requiere variar su dirección.
Descrita suficientemente la naturaleza de la presente invención, así como la manera de ponerla en práctica, se hace constar que todo cuanto no altere, cambie o modifique su principio fundamental, queda sujeto a variaciones de detalle.
En este sentido, las velas rigidizabies y de perfil configurabie 2 del sistema de producción de hidrógeno de la presente invención pueden adoptar otras formas de realización, diferentes de la explicada en relación con la realización preferida basada en elementos inflables o bolsas 24. Por ejemplo, se han considerado como adecuadas para ser empleadas en el sistema de la presente invención, por lo menos las dos siguientes variantes: la vela dada a conocer en la patente US8601966B2, en la que la vela se configura a partir de elementos de vela apilables y extensibles a modo de fuelle; y
la vela dada a conocer en la solicitud de patente EP2202144A1 , en donde las velas son determinadas por elementos elásticos laterales extensibles y repiegabies.
Semejantemente, el número de elementos de perfil 100, ai igual que el de elementos de vela (o bolsas inflables) 24, puede ser cualquiera, incluido la unidad, quedando ello dentro de! alcance de protección de las reivindicaciones. Por último, es de hacer notar que si bien la presente invención ha sido explicada en relación con la producción de hidrógeno, ios principios de la invención pueden ser aplicados a la producción de otras especies químicas adecuadas para el almacenamiento de energía, tales como por ejemplo, no ¡imitativo, oxígeno, etano!, metano!, amoniaco, etc.

Claims

RE1Y1.N..P.I.C.A.C.1.Q..N..E..S
1.- Sistema para la producción de hidrógeno a partir del agua marina, del tipo de los que comprenden un buque (1) provisto de velas (2) para la captura de viento para mover el buque; al menos una turbina (3) dispuesta debajo del buque a fin de quedar sumergida en el agua y que es hecha girar por acción el agua que fluye a través de la misma cuando el buque (1) se mueve en relación con el agua; un generador eléctrico (4) adaptado para convertir en energía eléctrica la rotación de las turbinas (3); un sistema de generación de hidrógeno H2 (5) a partir de la energía eléctrica generada; y medios almacenamiento (6) de hidrógeno, caracterizado porque las velas (2) son de perfil configurable entre una posición no operativa replegada, y una posición operativa desplegada, en la que determinan el perfil de la vela y por tanto la superficie aerodinámica de contacto con el viento. 2.~ Sistema para la producción de hidrógeno, según la reivindicación 1 , caracterizado porque las velas (2) son velas (2) rigidizabies, por unos medios de rigi- dizacíón (29).
3. - Sistema para la producción de hidrógeno, según la reivindicación 1 ó 2, caracterizado porque las velas (2) comprenden al menos un elemento de vela infla- ble (24) y rígidízable, accionable por unos medios de inflado (30) y de rigidización (29), entre una posición replegada, correspondiente dicha posición no operativa replegada, y dicha posición operativa desplegada, en la que la vela (2) de perfil configurable (2) está inflada y rígida.
4. - Sistema para la producción de hidrógeno, según la reivindicación 1 ó 2, caracterizado porque el perfil de las velas (2) es un perfil de ala de avión.
5. - Sistema para la producción de hidrógeno, según la reivindicación 4, ca- racterízado porque dicho perfil en ala de avión es seleccionado entre un perfil en ala de avión simétrico y un perfil en ala de avión asimétrico.
8.- Sistema para la producción de hidrógeno, según una cualquiera de las
11
HOJA DE REEMPLAZO (REGLA 26) reivindicaciones anteriores, caracterizado porque el perfil de cada vela (2) está dividido en secciones (21 , 22} a ambos lados de un eje (20), y comprende una estructura de soporte (23), sobre la cual están dispuestos dichos elementos de vela infla- bles (24), los cuales están constituidos por bolsas inflables (24), accionables por dichos medios de de inflado (30) y de rigidización (29).
7. ~ Sistema para ¡a producción de hidrógeno, según la reivindicación 6, caracterizado porque las velas (2) pueden girar alrededor del eje (20) guiadas en su parte inferior sobre un carro (9) alrededor de unas guías circulares (12) de la cubier- ta (13) del buque (1).
8. - Sistema para la producción de hidrógeno, según la reivindicación 6, caracterizado porque el eje (20) comprende una columna triangular de refuerzo (32), para dotar de más inercia a la estructura de soporte (23).
9. - Sistema para la producción de hidrógeno, según la reivindicación 1 a 8, caracterizado porque las velas (2) están recubiertas exteriormente de un tejido técnico que se adapta a la forma del perfil de la vela en cada momento, y que encierra el conjunto de las bolsas inflables (24) .
10. - Sistema para la producción de hidrógeno, según la reivindicación 1 , caracterizado porque el sistema de generación de H2 (4) es un sistema por electrólisis del agua. 11.- Sistema para la producción de hidrógeno, según la reivindicación 1 , caracterizado porque el sistema de generación de H2 es por electroactivación química del agua de mar en cartuchos de ECAS (1 1) por medio de la adición de un electrolito.
12.- Sistema para la producción de hidrógeno, según una cualquiera de las reivindicaciones anteriores, caracterizado porque el ángulo de viento aparente (j3) está comprendido entre 30° y 75°.
13.- Sistema para ¡a producción de hidrógeno, según la reivindicación 1 , caracterizado porque el buque (1) tiene al menos sistema de generación de H2 es por electroactivacion química del agua de mar en cartuchos de ECAS (11) por medio de la adición de un electrolito.
PCT/ES2016/070150 2015-03-10 2016-03-09 Sistema para la producción de hidrógeno a partir del agua marina WO2016142566A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/556,311 US20180148356A1 (en) 2015-03-10 2016-03-09 System for the production of hydrogen from sea water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201530306A ES2586104B1 (es) 2015-03-10 2015-03-10 Sistema para la producción de hidrógeno a partir del agua marina
ESP201530306 2015-03-10

Publications (1)

Publication Number Publication Date
WO2016142566A1 true WO2016142566A1 (es) 2016-09-15

Family

ID=56878980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070150 WO2016142566A1 (es) 2015-03-10 2016-03-09 Sistema para la producción de hidrógeno a partir del agua marina

Country Status (3)

Country Link
US (1) US20180148356A1 (es)
ES (1) ES2586104B1 (es)
WO (1) WO2016142566A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110884359A (zh) * 2019-12-18 2020-03-17 广西大学 一种自弃式自适应变面积多风帆驱动极地科考车
WO2021111147A1 (en) * 2019-12-04 2021-06-10 BA Technologies Limited Propulsion device
EP4299897A1 (en) 2022-06-29 2024-01-03 Relidal, SL System and method for producing electricity from a fluid stream in a body of water

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2877599T3 (es) * 2017-01-24 2021-11-17 Avantherm Ab Aceite aislante biogénico de baja viscosidad
JP7378027B2 (ja) * 2019-11-15 2023-11-13 一般社団法人赤道で水素を作る会 赤道反流を利用した水素生成プラント
US11965481B2 (en) * 2019-11-26 2024-04-23 Cafe24 Corp. Wind power system
GB2599118B (en) * 2020-09-24 2023-02-01 Ba Tech Limited Propulsion device
WO2022220557A1 (ko) * 2021-04-12 2022-10-20 한국조선해양 주식회사 풍력 추진 시스템 및 이를 포함하는 선박

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2432431A1 (fr) * 1978-08-02 1980-02-29 Soulie Wanceslas Systeme de voilure gonflable pour la propulsion par la force du vent
GB2151199A (en) * 1983-12-12 1985-07-17 Zodiac Inflatable sail or sail portion
JPH05236698A (ja) * 1991-02-15 1993-09-10 Hitomi Shimada 水面航行発電装置
US20020100406A1 (en) * 2000-12-12 2002-08-01 Costa Ronald D. Chambered structure for wing sail
DE20114841U1 (de) * 2001-09-08 2003-01-16 Stempfle Josef Segelmast
ES2311399A1 (es) * 2007-04-27 2009-02-01 Ignacio Bermudez Sanchez Vela rigida de perfil configurable.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7146918B2 (en) * 2004-05-17 2006-12-12 Moshe Meller Wind-powered linear motion hydrogen production systems
ES2372831B1 (es) * 2009-03-16 2013-02-15 José Miguel Bermúdez Miquel Conjunto de velas rigidas abatibles, emparejadas y opuestas.
ITTO20120131A1 (it) * 2012-02-15 2013-08-16 Optimad Sailing Gmbh Vela a profilo alare per imbarcazioni e tavole a vela

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2432431A1 (fr) * 1978-08-02 1980-02-29 Soulie Wanceslas Systeme de voilure gonflable pour la propulsion par la force du vent
GB2151199A (en) * 1983-12-12 1985-07-17 Zodiac Inflatable sail or sail portion
JPH05236698A (ja) * 1991-02-15 1993-09-10 Hitomi Shimada 水面航行発電装置
US20020100406A1 (en) * 2000-12-12 2002-08-01 Costa Ronald D. Chambered structure for wing sail
DE20114841U1 (de) * 2001-09-08 2003-01-16 Stempfle Josef Segelmast
ES2311399A1 (es) * 2007-04-27 2009-02-01 Ignacio Bermudez Sanchez Vela rigida de perfil configurable.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111147A1 (en) * 2019-12-04 2021-06-10 BA Technologies Limited Propulsion device
CN115243971A (zh) * 2019-12-04 2022-10-25 Ba技术有限公司 推进器
CN110884359A (zh) * 2019-12-18 2020-03-17 广西大学 一种自弃式自适应变面积多风帆驱动极地科考车
EP4299897A1 (en) 2022-06-29 2024-01-03 Relidal, SL System and method for producing electricity from a fluid stream in a body of water
WO2024003273A1 (en) 2022-06-29 2024-01-04 Relidal, Sl System and method for producing electricity from a fluid stream in a body of water

Also Published As

Publication number Publication date
ES2586104B1 (es) 2017-07-25
ES2586104A1 (es) 2016-10-11
US20180148356A1 (en) 2018-05-31

Similar Documents

Publication Publication Date Title
ES2586104B1 (es) Sistema para la producción de hidrógeno a partir del agua marina
US4708592A (en) Helicoidal structures, useful as wind turbines
US8487471B2 (en) Floating wind turbine with turbine anchor
US8258394B2 (en) Retractable solar panel system
US20140035509A1 (en) System for storing electrical power
US8102070B2 (en) Float-type energy-generating system
ES2372831A1 (es) Conjunto de velas rígidas, emparejadas y opuestas.
ES2586128B1 (es) Vela de perfil variable
KR20120101664A (ko) 조정 가능한 발전기를 구비한 풍력 터빈
ES2225078T3 (es) Turbina accionada por un medio fluido.
JP2014525368A (ja) 浮力体からなる発電装置と船舶推進装置及びこれに備えられてなることができるの網型構造を備えている翼部
WO2008132262A1 (es) Vela rígida de perfil configurable
WO2021094987A1 (en) Kite driven watercraft power generating system
US20170369139A1 (en) Deployable Shell Reversible Camber Sail System
ES2732185T3 (es) Vehículo de superficie no tripulado
KR20100088642A (ko) 자연력변환시스템
JP2019108046A (ja) 空中翼を有する船舶
ES2939308T3 (es) Sistema fotovoltaico integrado instalable en embarcaciones de recreo
KR101281937B1 (ko) 망(網)형 구조를 구비하는 날개부 및 이를 구비한 발전장치와 선박추진장치
KR101840705B1 (ko) 다중 수직축 조류발전장치 및 이를 이용한 복합발전시스템
ES2644362B1 (es) Vela de perfil aerodinámico con el borde de ataque y el borde de fuga permutables
UA123016C2 (uk) Тримаран з вітроенергетичною установкою
CN117377617A (zh) 风帆推进装置、风帆推进的交通工具
PL193956B1 (pl) Wirnik wiatrowy, szczególnie do napędu niewielkich łodzi rekreacyjno-sportowych
PL225325B1 (pl) Ekologiczny napęd żaglowo-słoneczny o sztywnych żaglopłatach, wspomagany agregatem prądotwórczym

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016761135

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15556311

Country of ref document: US