WO2016141878A1 - 隔振垫以及包括该隔振垫的压缩机系统 - Google Patents

隔振垫以及包括该隔振垫的压缩机系统 Download PDF

Info

Publication number
WO2016141878A1
WO2016141878A1 PCT/CN2016/075987 CN2016075987W WO2016141878A1 WO 2016141878 A1 WO2016141878 A1 WO 2016141878A1 CN 2016075987 W CN2016075987 W CN 2016075987W WO 2016141878 A1 WO2016141878 A1 WO 2016141878A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration isolating
isolating pad
air gap
pad
vibration
Prior art date
Application number
PCT/CN2016/075987
Other languages
English (en)
French (fr)
Inventor
马燕
金杭海
周光宇
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510104486.8A external-priority patent/CN106032829B/zh
Priority claimed from CN201520135415.XU external-priority patent/CN204512264U/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Publication of WO2016141878A1 publication Critical patent/WO2016141878A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/373Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape
    • F16F1/377Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape having holes or openings

Definitions

  • the present invention relates to a vibration isolating pad, and more particularly to a vibration isolating pad for mounting a compressor to a support structure to reduce vibration.
  • the invention also relates to a compressor system comprising the vibration isolation mat, in particular an air conditioning system for a train.
  • the compressor is typically mounted to the support structure by legs.
  • the compressor When the compressor is in normal operation (stable condition), the compressor itself generates vibration and thus transmits vibration to the support structure through the legs.
  • the legs of the compressor are mounted on the support structure via a vibration isolating pad.
  • the vibration isolation capability of the vibration isolating pad is mainly determined by its stiffness. In general, the smaller the stiffness of the vibration isolating pad, the more advantageously the vibration isolating pad can reduce the vibration transmitted by the compressor itself to the support structure.
  • the compressor is mounted on a moving vehicle (eg, a car, truck, train, etc.) and used in its air conditioning system.
  • a moving vehicle eg, a car, truck, train, etc.
  • the train ie, the support structure for mounting the compressor
  • the vibration isolating pad usually made of rubber is easily fatigue-damaged, that is, the service life is shortened.
  • the vibration isolating pad has a large rigidity.
  • the greater the stiffness of the vibration isolating pad the more advantageously the vibration isolating pad limits the displacement of the compressor.
  • the International Electrotechnical Commission has developed impact test standards for laboratory evaluation of products based on demanding application environments during the product design phase. In this way, it can be ensured that the vibration generated by the compressor during operation does not affect the performance of the vehicle (eg train), eg noise Performance of Sound, Vibration and Harmonic Roughness (NVH).
  • vehicle eg train
  • NVH Vibration and Harmonic Roughness
  • a conventional vibration isolating pad is generally cylindrical and made of a rubber material.
  • the manufacturer has a certain rigidity by selecting different rubber materials and/or designing the size of the vibration isolating pad.
  • the vibration isolating pad Once the vibration isolating pad is made, its stiffness does not substantially change during use, i.e., the vibration isolating pad has a substantially constant stiffness. Vibration isolation pads with constant stiffness often fail to meet the requirements of impact conditions when meeting the requirements of stable working conditions, or often meet the requirements of stable working conditions when meeting the requirements of impact conditions.
  • Another object of the present invention is to provide a vibration isolation pad that is less expensive.
  • an anti-vibration pad having a first surface and a second surface opposite the first surface in the axial direction.
  • the vibration isolation pad includes: a solid portion extending from the first surface to the second surface in the axial direction; and an air gap portion adjacent to the solid portion and extending from the first surface to the second surface in the axial direction, in the air gap portion At least one air gap is provided in the middle.
  • the at least one air gap is configured to be unclosed in the first operating condition such that the vibration isolating pad has a first stiffness and at least partially closed in the second operating condition such that the vibration isolating pad has a second stiffness that is greater than the first stiffness.
  • the vibration isolating pad according to the present invention is provided with an air gap and the air gap can be opened or closed under different working conditions, the effective load bearing cross-sectional area of the vibration isolating pad can be changed, thereby changing the rigidity of the vibration isolating pad.
  • the air gap of the vibration isolating pad is opened to have less stiffness to better absorb the vibration generated by the device itself (for example, the compressor); under the impact condition, the air gap of the vibration isolation pad is closed. It has an increased stiffness and thus an increased resistance to deformation.
  • the air gap of the vibration isolating pad according to the present invention can be opened and closed, thus the air gap
  • the suction (or respiration) action generated during opening and closing can change the damping of the vibration isolating pad to some extent, thereby further improving the vibration damping capacity of the vibration isolating pad.
  • the air gap portion is disposed outside the solid portion in the lateral direction perpendicular to the axial direction.
  • the air gap extends from the outer side of the air gap portion toward the solid portion. In this way, the air gap can be in good communication with the surrounding atmosphere.
  • the air gap portion may be disposed inside the solid portion in a lateral direction perpendicular to the axial direction.
  • the vibration isolating pad may further include a second air gap portion disposed outside the solid portion in the lateral direction, and the second air gap portion includes at least one air gap. In this way, two air gap portions can be provided to obtain a better variable stiffness effect according to specific application requirements.
  • the vibration isolating pad may include a plurality of air gap portions and a plurality of solid portions.
  • a plurality of air gap portions and a plurality of solid portions are alternately arranged around a central axis of the vibration isolation pad.
  • the vibration isolating pad may further include a vent hole for communicating the air gap with the surrounding atmosphere.
  • the vibration isolating pad may further include a mounting hole provided at the center of the vibration isolating pad for passing through the fastener to mount the vibration isolating pad.
  • the air gap may extend continuously or intermittently in the circumferential direction, or continuously or intermittently in a spiral form in the axial direction, or in the form of a step in the circumferential direction.
  • the vibration isolating pad may include a plurality of air gaps, and the plurality of air gaps have the same size and configuration. In this way, the processing process can be simplified and the cost can be reduced.
  • the mold for manufacturing the vibration isolating pad may have a simplified structure.
  • the vibration isolating pad may have a symmetrical structure to, for example, improve the stress of the vibration isolating pad.
  • the vibration isolating pad may include a plurality of air gaps, and the plurality of air gaps are configured such that: a) at least two of the plurality of air gaps have different depths in a lateral direction perpendicular to the axial direction And/or b) at least two of the plurality of air gaps have different heights in the axial direction.
  • Such a structure allows the air gap to be closed or opened at the same time, so that a stepwise change in stiffness can be obtained.
  • the height of the air gap in the axial direction is in the range of 0.5 mm to 3 mm.
  • the vibration isolating pad may include a plurality of air gaps, and the plurality of air gaps are disposed in alignment, in parallel, or in parallel in at least one of an axial direction, a circumferential direction, and a lateral direction perpendicular to the axial direction or Interlaced settings.
  • the vibration isolating pad is cylindrical and/or the vibration isolating pad is made of a rubber material.
  • the vibration isolating pad may be integrally formed or may be formed by stacking sheets of different sizes.
  • the number of air gaps of the vibration isolating pad is small, it may be advantageous to form the vibration isolating pad by means of superimposing the sheet. In this way, manufacturing costs can be reduced.
  • a compressor system including the above-described vibration isolating pad.
  • the compressor system may include a compressor and the above-described vibration isolating pad, wherein the legs of the compressor are mounted on the support structure via the vibration isolating pad.
  • At least one vibration isolating pad may be provided on the upper side and the lower side of the leg, respectively.
  • the vibration isolating pads on the upper and lower sides of the legs can have different configurations and/or different sizes.
  • the legs are mounted to the support structure via fasteners and sleeves inserted into the mounting holes of the vibration isolating pad, wherein the sleeve is disposed between the fastener and the vibration isolating pad and is configured to mount the legs
  • the preload of the vibration isolating pad can be controlled to the support structure.
  • the compressor system described above may be an air conditioning system for a vehicle, and/or the compressor may be a horizontal compressor.
  • Figure 1A is a perspective view showing the assembly of a vibration isolating pad and a compressor according to the present invention
  • Figure 1B is a side elevational view of Figure 1A;
  • Figure 2A is an enlarged front elevational view of the vibration isolation pad and the compressor leg of Figure 1B;
  • FIG. 2B is a schematic cross-sectional view of the vibration isolation pad of FIG. 2A;
  • FIG. 3A is a perspective view of a vibration isolating pad according to a first embodiment of the present invention.
  • FIG. 3B is a schematic cross-sectional view of the vibration isolation pad of FIG. 3A;
  • FIG. 4A is a schematic perspective view of a vibration isolating pad when an air gap is closed according to an embodiment of the present invention
  • FIG. 4B is a schematic cross-sectional view of the vibration isolation pad of FIG. 4A;
  • Figure 5 is a cross-sectional view showing a vibration isolating pad according to a second embodiment of the present invention.
  • Figure 6 is a cross-sectional view showing a vibration isolating pad according to a third embodiment of the present invention.
  • FIG. 7A is a perspective view of a vibration isolating pad according to a fourth embodiment of the present invention.
  • Figure 7B is a schematic cross-sectional view of the vibration isolating pad of Figure 7A;
  • FIG. 8A is a perspective view of a vibration isolating pad according to a fifth embodiment of the present invention.
  • Figure 8B is a schematic cross-sectional view of the vibration isolating pad of Figure 8A;
  • FIG. 9A is a perspective view of a vibration isolating pad according to a sixth embodiment of the present invention.
  • Figure 9B is a schematic cross-sectional view of the vibration isolating pad of Figure 9A;
  • Figure 10 is a perspective view of a vibration isolating pad according to a seventh embodiment of the present invention.
  • 11A is a perspective view of a vibration isolating pad according to an eighth embodiment of the present invention.
  • Figure 11B is a schematic cross-sectional view of the vibration isolating pad of Figure 11A;
  • Figure 12 is a cross-sectional view showing a vibration isolating pad according to a ninth embodiment of the present invention.
  • Figure 13 is a schematic illustration of the axial displacement and stiffness of the vibration isolating pad as a function of operating conditions in accordance with the present invention.
  • the machine or equipment is mounted to a pedestal (also referred to as a "support structure") via a vibration isolation pad.
  • the vibration isolating pad can reduce the vibration generated by the machine or the device itself, thereby reducing the influence of the vibration of the machine or device on the support structure.
  • the vibration isolating pad can also reduce the impact on the machine or equipment caused by the impact from the support structure.
  • the vibration isolation effect (or damping effect) of the vibration isolation pad depends mainly on its stiffness and damping.
  • Stiffness refers to the ability of a material or structure to resist elastic deformation when stressed, and is related to area and length or height. That is, the larger the area, the greater the stiffness; and the larger the length or height, the smaller the stiffness.
  • the inventors have adapted the same vibration isolation pad to different operating conditions by varying the stiffness and/or damping of the vibration isolating pad based on this principle.
  • the vibration isolating pad is usually made of a rubber material.
  • the stiffness of the roughly cylindrical rubber vibration isolating pad is estimated as follows:
  • Kc is the compression stiffness
  • G is the elastic modulus (related to the material's own properties)
  • A is the area of the cylindrical section (effective load-bearing section, ie, the section of the vibration isolating pad perpendicular to the loading direction);
  • h is the rubber vibration isolation The height of the pad (i.e., the dimension measured along the axial direction of the vibration isolating pad);
  • S is the shape factor of the loading surface/unloading surface;
  • the height of the vibration isolating pad depends mainly on the application and installation space. Therefore, after the vibration isolating pad is made, the outer shape of the vibration isolating pad has been determined, and therefore, the height of the vibration isolating pad can be considered to be substantially constant.
  • the compression stiffness and shear stiffness of the rubber vibration isolating pad are proportional to the cylindrical cross-sectional area A, that is, the larger the cylindrical cross-sectional area A, the greater the stiffness of the rubber vibration isolating pad; The smaller A is, the smaller the rigidity of the rubber vibration isolating pad.
  • the inventors of the present application made a variable stiffness interval during use. Vibration pad.
  • the vibration isolating pad according to the present invention has a small rigidity, and can effectively reduce the small vibration generated by the compressor itself.
  • the effective sectional area of the vibration isolating pad according to the present invention can be increased, thereby increasing the rigidity, whereby the influence of the impact on the compressor can be effectively reduced.
  • the vibration isolating pad according to the present invention will be described in detail below by taking a compressor as an example with reference to the accompanying drawings. However, it will be understood by those skilled in the art that the vibration isolating pad according to the present invention can be applied to any equipment or machine that generates vibration, and is not limited to a compressor.
  • a system for installing a compressor is described herein by taking a train as an example.
  • the support structure described herein may be a train body or other structural members.
  • the compressor can be mounted to any other suitable system via the vibration isolation pad in accordance with the present invention.
  • FIG. 1A, 1B, 2A and 2B a compressor system mounted via a vibration isolating pad is illustrated.
  • the illustrated compressor system includes a compressor 20, a vibration isolating pad 10, and a support structure 50 for supporting the compressor (see Figures 2A and 2B).
  • the legs 22 of the compressor 20 are mounted to the support structure 50 via the vibration isolating pad 10.
  • the compressor 20 is generally cylindrical and is a horizontal compressor.
  • the compressor 20 is supported by two legs 22 and mounted to the support structure 50 via a vibration isolating pad 10.
  • a vibration isolating pad 10 may be provided on each of the upper and lower sides of the leg 22.
  • a through hole is provided at substantially the center of the vibration isolating pad 10, and the bolt 30 is inserted into the through hole and connected to the support structure 50, thereby connecting the compressor 20 to the support structure 50.
  • the vibration isolating pad 10 is disposed between the compressor 20 and the support structure 50, and the vibration transmitted from the compressor 20 to the support structure 50 can be reduced by the rigidity and damping of the vibration isolating pad 10, and can also be reduced.
  • An external load such as an impact transmitted from the support structure 50 to the compressor.
  • the vibration isolating pad In stable conditions, it is desirable that the vibration isolating pad has a small rigidity to effectively absorb the vibration generated by the compressor, and in the case of an impact condition, it is desirable that the vibration isolating pad has a large rigidity to effectively resist the impact load.
  • the conventional vibration isolating pad has a substantially constant rigidity after being formed because its cross section and height are substantially determined, and it is difficult to meet the practical needs of both stable and impact conditions.
  • the present invention has been made based on this.
  • the vibration isolation pad according to the present invention includes a solid portion and an air gap portion having at least one air gap. Under stable conditions, the air gap of the air gap is not closed. At this time, the stiffness of the vibration isolating pad mainly depends on the cross-sectional area of the solid portion. Thus, the vibration isolation pad has a smaller The stiffness is capable of effectively absorbing the vibration generated by the compressor, thereby reducing the vibration transmitted to the train.
  • the air gap of the air gap portion is closed.
  • the rigidity of the vibration isolating pad mainly depends on the cross-sectional area of both the solid portion and the air gap portion, that is, the rigidity of the vibration isolating pad becomes large. Therefore, the air gap portion can withstand the impact load together with the solid portion, thereby effectively preventing a large displacement of the compressor.
  • the vibration isolator pad 10A according to the first embodiment of the present invention has a substantially cylindrical shape and has a top surface 12, a bottom surface 14, and a columnar outer side surface 16.
  • a mounting hole 13 through which the bolt 30 passes to mount the vibration isolating pad 10A to the support structure is provided in the axial direction.
  • the axial direction described herein coincides with the direction in which the load is transmitted between the compressor and the support structure.
  • the vibration isolating pad 10A includes a solid portion 110 radially outward of the mounting hole 13 and an air gap portion 150 located radially outward of the solid portion 110.
  • the interface between the solid portion 110 and the air gap portion 150 is schematically indicated by a broken line P.
  • the solid portion 110 and the air gap portion 150 may be integrally formed.
  • the solid portion described herein refers to a solid portion in the axial direction
  • the air gap portion refers to a portion in which an air gap is provided.
  • the air gap portion 150 of the vibration isolating pad includes three air gaps 15 extending from the outer side surface 16 toward the solid portion 110 and extending in the circumferential direction.
  • the air gap 15 does not extend through the entire vibration isolating pad 10A in the radial direction (or the lateral direction).
  • the air gap 15 has an annular upper surface 152, an annular lower surface 154, and an inner wall surface 156, wherein the inner wall surface 156 is radially away from the outer side surface 16 toward the solid portion 110.
  • the air gap 15 passes through the opening on the outer side 16 to the surrounding atmosphere, thereby facilitating the air gap 15 to quickly return to the open state after the impact load.
  • the air gaps 15 are equally spaced along the axial direction of the vibration isolating pad.
  • the air gap 15 has the same axial height (i.e., the height from the upper surface 152 to the lower surface 154 in the axial direction) and the same radial depth (i.e., radially from the outer side 16) To the depth of the inner wall surface 156).
  • the height in the axial direction of the air gap 15 may be in the range of 0.5 mm to 3 mm.
  • a certain preload preload
  • a sleeve 40 may be provided between the fastener such as the bolt 30 and the vibration isolating pad (see Fig. 2B).
  • the pre-stress applied by the fastener to the vibration isolating pad can be adjusted by setting the height of the sleeve 40.
  • the displacement of the compressor due to vibration is usually less than 0.1 mm. Therefore, under stable conditions, the air gap 15 is not closed. That is, the upper surface 152 and the lower surface 154 of the air gap 15 remain separated by a distance.
  • the rigidity of the vibration isolating pad mainly depends on the annular cross-sectional area A1 of the solid portion 110, so that the vibration isolating pad has a small rigidity and can effectively absorb the vibration generated by the compressor itself.
  • the inventors have also found that under impact conditions, the compressor may sometimes be displaced by a few millimeters in the axial direction.
  • the vibration isolating pad according to the invention is arranged such that the air gap is closed during an impact condition. That is, the upper surface 152 and the lower surface 154 of the air gap 15 may be at least partially superposed together. As shown in FIGS. 4A and 4B, the upper surface 152 and the lower surface 154 of the air gap 15 are almost completely overlapped.
  • the rigidity of the vibration isolating pad depends on both the annular cross-sectional area A1 of the solid portion 110 and the annular cross-sectional area A2 of the air gap portion 150, thereby increasing the rigidity of the vibration isolating pad. That is to say, both the solid portion 110 and the air gap portion 150 of the vibration isolating pad are effectively resistant to impact loads, preventing the compressor from being largely displaced after being subjected to an impact.
  • the effective cross-sectional area of the vibration isolating pad 10 according to the present invention can be changed, and the rigidity thereof can be changed accordingly, thereby making the vibration isolating pad 10 adaptable to both stable conditions and impact workers. condition.
  • the rigidity of the vibration isolation pad 10A is increased due to the closing of the air gap 15 and the displacement of the compressor 20 is limited, and the compressor 20 and its connecting pipeline are protected to some extent, and Extend the service life of the vibration isolation pad 15.
  • the air gap 15 has an air suction (or breathing) action during the opening and closing process, so that the damping of the vibration isolating pad 10 can also be improved to some extent, which further facilitates damping of the compressor 20.
  • a rounded portion 18 may be provided between the top surface 12 and the outer side surface 16 to facilitate installation and positioning of the vibration isolation pad 10A. Those skilled in the art will appreciate that it may also be between the outer side 16 and the bottom surface 14 depending on the particular application. A fillet portion 18 is provided.
  • the outer shape of the vibration isolating pad can be changed according to the structure of the structural member that is fitted to the vibration isolating pad.
  • the air gap portion includes three air gaps 15A, 15B, and 15C extending from the outer side surface 16 toward the solid portion and extending in the circumferential direction.
  • the air gaps 15A, 15B and 15C are sequentially arranged along the axial direction of the vibration isolating pad and have radial depths d1, d2 and d3, respectively, wherein the radial depths d1, d2 and d3 are sequentially shortened.
  • the radial depth d1 of the air gap 15A is the longest, that is, the inner wall surface 156A of the air gap 15A is closest to the mounting hole 13 and the solid portion.
  • the radial depth d3 of the air gap 15C is the shortest, that is, the inner wall surface 156C of the air gap 15C is farthest from the mounting hole 13 and the solid portion.
  • the radial depth d2 of the air gap 15B is in the range between d1 and d3, that is, the inner wall surface 156B of the air gap 15B is located between the inner wall faces 156A and 156C in the radial direction.
  • the air gaps 15A, 15B, and 15C may not be closed at the same time.
  • the air gaps 15A, 15B, and 15C may be sequentially closed in accordance with an increase in impact load.
  • the respective radial depths of the air gaps 15A, 15B, and 15C may be set according to the distribution of the load on the vibration isolating pad.
  • the second embodiment of the vibration isolating pad is not described in detail in the same portions as the first embodiment.
  • the air gap portion includes three air gaps 15A', 15B', and 15C' extending from the outer side surface 16 toward the solid portion and extending in the circumferential direction.
  • the air gaps 15A', 15B' and 15C' are sequentially arranged in the axial direction of the vibration isolating pad and have axial heights h1, h2 and h3, respectively, wherein the axial heights h1, h2 and h3 are sequentially increased.
  • the axial height h1 of the air gap 15A' is the smallest.
  • the axial height h3 of the air gap 15C' is the largest.
  • the axial height h2 of the air gap 15B' is in the range between h1 and h3.
  • the air gaps 15A', 15B', and 15C' may not be closed at the same time.
  • the air gaps 15A', 15B', and 15C' may be based on impact loads The load increases in turn and closes.
  • the respective axial heights of the air gaps 15A, 15B, and 15C may be set according to the distribution of the load on the vibration isolating pad.
  • the third embodiment of the vibration isolating pad is not described in detail in the same portions as the first embodiment.
  • a vibration isolating pad 10D according to a fourth embodiment of the present invention is illustrated.
  • the vibration isolation pad 10D of the fourth embodiment is different from the vibration isolation pad 10A of the first embodiment in that the solid portion 110 is radially outward of the air gap portion 150 and the air gap portion 150 includes four air gaps 15.
  • the vibration isolating pad 10D according to the fourth embodiment is provided with a solid portion 110, an air gap portion 150, and a mounting hole 13 in this order in the radial direction.
  • the air gap 15 of the air gap portion 150 communicates with the mounting hole 13, and therefore, the air gap 15 can pass through the mounting hole 13 to the surrounding atmosphere.
  • air gaps 15 may vary depending on the particular application and is not limited to the specific examples described herein.
  • the fourth embodiment of the vibration isolating pad is not described in detail in the same portions as the first embodiment.
  • a vibration isolating pad 10E according to a fifth embodiment of the present invention is illustrated.
  • the vibration isolation pad 10E of the fifth embodiment is different from the vibration isolation pad 10A of the first embodiment in that each air gap 15 is intermittently provided in the circumferential direction.
  • a spacer portion 112 is provided between the two air gaps 15 adjacent in the circumferential direction.
  • three air gaps 15 are provided in parallel between the adjacent two spaced portions 112 in the axial direction.
  • four air gaps 15 which are spaced apart by the four partition portions 112 are provided. It should be understood that the number of spacers 112 and the number of air gaps 15 may vary depending on the particular application.
  • the solid portion 110 (ie, the shaded portion in FIG. 8B) includes an annular solid portion adjacent the mounting hole 13 and a spacer portion 112.
  • the air gap portion 150 is a portion of the vibration damping pad where the air gap 15 is provided.
  • the air gaps 15 located on both sides of the partition portion 112 in the circumferential direction may be arranged in alignment or may be alternately arranged. It will be appreciated that the number of air gaps 15 between adjacent two spaced portions 112 may vary.
  • the fifth embodiment of the vibration isolating pad is not described in detail in the same portions as the first embodiment.
  • a vibration isolating pad 10F according to a sixth embodiment of the present invention is illustrated.
  • the vibration isolation pad 10F of the sixth embodiment is different from the vibration isolation pad 10E of the fifth embodiment in that the air gap 15 extends from the outer side surface 16 of the vibration isolation pad 10F to the inner wall 132 of the attachment hole 13.
  • the solid portion 110 is composed of the partition portion 112.
  • the spacers 112 and the air gap 15 are alternately arranged in the circumferential direction.
  • the solid portion 110 may be alternately disposed in the circumferential direction with the air gap portion 150.
  • a vibration isolating pad 10G in accordance with a seventh embodiment of the present invention is illustrated.
  • the vibration isolation pad 10G of the seventh embodiment is different from the vibration isolation pad 10A of the first embodiment in that the air gap 15 is in the form of a step, and two air gaps 15 extending in the circumferential direction are provided in parallel in the axial direction. .
  • each air gap 15 it extends a certain distance in the circumferential direction and then extends a certain distance in the axial direction, thereby forming a form of a step.
  • the number of steps formed by each air gap 15 over the entire circumference may vary depending on the particular application.
  • a vibration isolating pad 10H according to an eighth embodiment of the present invention is illustrated.
  • the vibration isolation pad 10H of the eighth embodiment is different from the vibration isolation pad 10D of the fourth embodiment in that a second air gap portion 160 is further provided on the outer side in the radial direction of the solid portion 110.
  • the air gap portion 150 is defined as the first air gap portion 150.
  • the solid portion 110 is located between the first air gap portion 150 and the second air gap portion 160.
  • the interface between the first air gap portion 150 and the solid portion 110 is schematically indicated by a broken line P1
  • the interface between the solid portion 110 and the second air gap portion 160 is schematically indicated by a broken line P2.
  • the first air gap portion 150 is at substantially the center of the vibration isolating pad 10H
  • the air gap 15 of the first air gap portion 150 is open to the surrounding atmosphere through the mounting hole 13.
  • the second air gap portion 160 is radially outward of the vibration isolation pad 10H
  • the air gap 15 of the second air gap portion 160 is from the vibration isolation pad 10H.
  • the outer side 16 extends toward the solid portion 110, i.e., the opening of the air gap 15 is disposed on the outer side 16 such that the air gap 15 is open to the surrounding atmosphere.
  • the air gap 15 of the first air gap portion 150 and the air gap 15 of the second air gap portion 160 may be aligned in the radial direction or may be staggered. It will be appreciated that the air gap 15 of the first air gap portion 150 and the air gap 15 of the second air gap portion 160 may differ in number, size and/or configuration.
  • a vibration isolating pad 10I in accordance with a ninth embodiment of the present invention is illustrated.
  • the vibration isolation pad 10I of the ninth embodiment is different from the vibration isolation pad 10D of the fourth embodiment in that the vibration isolation pad 10I is not provided with a mounting hole 13 for the bolt to pass through at substantially the center, but is connected to the other by other means. supporting structure.
  • a vent hole 19 is provided to allow the air gap 15 to communicate with the surrounding atmosphere.
  • the vent hole 19 is provided at substantially the center of the vibration isolator pad 10I and extends from the air gap 15 through the vibration isolator pad 10I in the axial direction.
  • the structure of the vent hole 19 is not limited to the illustrated example, but may be in any configuration as long as the air gap 15 can be made to communicate with the surrounding atmosphere.
  • the vibration isolation pad 10I can be connected to the support structure by fixedly connecting the bottom surface of the vibration isolation pad 10I to the support structure, or can be used to fix the outer surface of the vibration isolation pad 10I.
  • the components are used to connect the vibration isolation pad 10I to the support structure. That is, the vibration isolating pad can be connected to the support structure by other means than the mounting hole 13 and the bolt 30.
  • the air gap 15 may extend in the form of a spiral in the axial direction.
  • the vibration isolation pad 10 illustrated and described herein is generally cylindrical, it should be understood that the vibration isolation pad 10 can take any other suitable shape depending on the particular application.
  • the vibration isolating pads 10 can be formed in any other suitable manner.
  • the vibration isolator pad 10 may be formed by laminating sheets having different diameters or sheets having different cross-sectional dimensions in a direction perpendicular to the direction of the force application.
  • a sheet having a smaller cross-sectional dimension may be sandwiched between two adjacent sheets having a larger cross-sectional dimension, whereby an air gap 15 may be formed.
  • vibration isolating pad according to the present invention is applicable to various types of compressors or other vibration generating devices; the number, size, structure, and the like of the vibration isolating pads may vary depending on the specific application; and the compressor may pass The structure other than the legs is directly or indirectly connected to the vibration isolating pad.
  • Figure 13 is a schematic illustration of axial displacement and stiffness of a vibration isolating pad as a function of operating conditions in accordance with the present invention.
  • the axial displacement of the vibration isolating pad 10 is small, and the air gap 15 is When it is not closed, at this time, the effective sectional area A of the vibration isolating pad 10 is small, and therefore the rigidity of the vibration isolating pad 10 is small, and the vibration generated by the compressor 20 itself can be effectively reduced.
  • the axial displacement of the vibration isolation pad 10 is large, so that the air gap 15 is closed, and at this time, the effective sectional area A' of the vibration isolation pad 10 is larger than the aforementioned effective cross section. Since the area A is large, the rigidity of the vibration isolating pad 10 becomes large, and the displacement of the compressor 20 can be effectively restricted.

Abstract

一种隔振垫(10)沿轴向方向具有第一表面(14)和与第一表面(14)相对的第二表面(12)。该隔振垫(10)包括:沿轴向方向从第一表面(14)延伸至第二表面(12)的实体部(110);以及邻近实体部(110)并且沿轴向方向从第一表面(14)延伸至第二表面(12)的气隙部(150),在气隙部(150)中设置有至少一个气隙(15)。至少一个气隙(15)构造成:在第一工况下不闭合使得隔振垫(10)具有第一刚度,以及在第二工况下至少部分地闭合使得隔振垫(10)具有比第一刚度大的第二刚度。以及一种包括该隔振垫(10)的压缩机系统。

Description

隔振垫以及包括该隔振垫的压缩机系统
本申请要求于2015年3月10日提交中国专利局、申请号分别为201510104486.8和201520135415.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种隔振垫,特别是一种用于将压缩机安装至支撑结构以减小振动的隔振垫。本发明还涉及一种包括该隔振垫的压缩机系统,特别地,用于列车的空调系统。
背景技术
本部分的内容仅提供了与本公开相关的背景信息,其可能并不构成现有技术。
压缩机通常通过支脚安装在支撑结构上。在压缩机正常运行(稳定工况)时,压缩机自身会产生振动,并且因而通过支脚将振动传递至支撑结构。为了减振,将压缩机的支脚经由隔振垫安装在支撑结构上。隔振垫的隔振能力主要取决于其刚度。一般而言,隔振垫的刚度越小,隔振垫越能有利地降低压缩机自身产生的传递至支撑结构的振动。
然而,在某些情况下,压缩机安装在运动的交通工具(例如,汽车、卡车、列车等)上并应用于其空调系统中。例如,在列车启停、加速、减速或遭受其他冲击(冲击工况)时,该冲击会经由隔振垫从列车(即,用于安装压缩机的支撑结构)传递至压缩机的支脚并因此传递至压缩机。这种情况下,压缩机趋于产生较大位移,反过来对列车产生较大振动。因此,通常由橡胶制成的隔振垫容易疲劳损坏,即,使用寿命缩短。在冲击的情况下,期望的是:隔振垫具有较大刚度。这样,隔振垫的刚度越大,隔振垫越能有利地限制压缩机的位移。
为此,国际电工委员会(International Electro Technical Commission,简称为IEC)制定了冲击试验标准,以便在产品设计阶段基于苛刻的应用环境对产品进行实验室评估。以此方式,可以确保压缩机在运行时产生的振动不会影响车辆(例如,列车)的性能,例如,噪 声、振动和声振粗糙度(Noise,Vibration and harshness,简称为NVH)的性能。
常规的隔振垫大体呈圆柱状,并且由橡胶材料制成。为了满足上述规定,制造商通过选择不同的橡胶材料和/或设计隔振垫的尺寸,使隔振垫具有一定的刚度。一旦隔振垫制成,其刚度在使用期间基本不再发生变化,即,隔振垫具有基本恒定的刚度。具有恒定刚度的隔振垫在满足稳定工况的要求时往往不能满足冲击工况的要求,或者在满足冲击工况的要求时往往不能满足稳定工况的要求。
因此,需要一种能够同时满足稳定工况和冲击工况的要求的隔振垫。
发明内容
本发明的一个目的是提供一种能够同时满足稳定工况和冲击工况的要求的隔振垫。
本发明的另一个目的是提供一种成本较低的隔振垫。
本发明的又一个目的是提供一种简化加工工艺的隔振垫。
本发明的再一个目的是提供一种包括该隔振垫的压缩机系统。
上述目的中的一个或多个可以通过下述方案实现:一种隔振垫,该隔振垫沿轴向方向具有第一表面和与第一表面相对的第二表面。该隔振垫包括:沿轴向方向从第一表面延伸至第二表面的实体部;以及邻近实体部并且沿轴向方向从第一表面延伸至第二表面的气隙部,在气隙部中设置有至少一个气隙。至少一个气隙构造成:在第一工况下不闭合使得隔振垫具有第一刚度,以及在第二工况下至少部分地闭合使得隔振垫具有比第一刚度大的第二刚度。
根据本发明的隔振垫由于设置有气隙,而且气隙在不同工况下可以打开或闭合,因此可以改变隔振垫的有效承载横截面面积,从而改变隔振垫的刚度。例如,在稳定工况下,隔振垫的气隙打开而具有较小刚度以更好地吸收设备(例如,压缩机)自身产生的振动;在冲击工况下,隔振垫的气隙闭合而具有增加的刚度从而提高了抵抗变形的能力。
另一方面,根据本发明的隔振垫的气隙能够打开和闭合,因此气隙 在打开和闭合时产生的抽吸(或呼吸)作用可以在一定程度上改变隔振垫的阻尼,由此可以进一步改善隔振垫的减振能力。
可选地,在根据本发明的隔振垫中,气隙部沿垂直于轴向方向的横向方向设置在实体部的外侧。气隙从气隙部的外侧面朝向实体部延伸。这样,气隙可以与周围大气良好地连通。
可选地,在根据本发明的隔振垫中,气隙部也可以沿垂直于轴向方向的横向方向设置在实体部的内侧。另外,隔振垫还可以包括沿横向方向设置在实体部外侧的第二气隙部,第二气隙部包括至少一个气隙。这样,可以根据具体应用需求,设置两个气隙部以获得更好的变刚度效果。
可选地,隔振垫可以包括多个气隙部和多个实体部。多个气隙部和多个实体部围绕隔振垫的中心轴线交替地布置。
可选地,在隔振垫的内部设置有气隙的情况下,隔振垫还可以包括用于连通气隙与周围大气的通气孔。
为了便于安装隔振垫,隔振垫还可以包括设置在隔振垫的中央处的用于穿过紧固件以安装隔振垫的安装孔。
进一步地,气隙可以沿周向方向连续地或间断地延伸,或者在轴向方向上以螺旋形式连续地或间断地延伸,或者在周向方向上以台阶的形式延伸。
可选地,隔振垫可以包括多个气隙,并且多个气隙具有相同的尺寸和结构。这样,可以简化加工工艺,降低成本。例如,用于制造隔振垫的模具可以具有简单化的结构。或者,隔振垫可以具有对称结构,以便例如改善隔振垫的受力情况。
可选地,隔振垫可以包括多个气隙,并且多个气隙构造成使得:a)多个气隙中的至少两个气隙在垂直于轴向方向的横向方向上具有不同的深度;和/或b)多个气隙中的至少两个气隙在轴向方向上具有不同的高度。这样的结构,可以使得气隙不同时闭合或打开,因此可以获得阶梯式的刚度变化。
优选地,气隙的轴向方向上的高度在0.5mm至3mm的范围内。
可选地,隔振垫可以包括多个气隙,并且多个气隙在轴向方向、周向方向和垂直于轴向方向的横向方向中的至少一个方向上对齐地设置、平行地设置或者交错地设置。
优选地,隔振垫呈圆柱状,以及/或者隔振垫由橡胶材料制成。
可选地,隔振垫可以一体地形成,或者可以通过叠加不同尺寸的薄片而形成。在隔振垫的气隙数量较少的情况下,利用叠加薄片的方式来形成隔振垫可以是有利的。这样,可以减小制造成本。
根据本发明的另一个方面,涉及一种包括上述隔振垫的压缩机系统。具体地,该压缩机系统可以包括压缩机和上述隔振垫,其中,压缩机的支腿经由隔振垫而被安装在支撑结构上。
可选地,可以在支腿的上侧和下侧分别设置至少一个隔振垫。位于支腿的上侧和下侧的隔振垫可以具有不同构造和/或不同尺寸。
优选地,经由插入隔振垫的安装孔中的紧固件和套筒将支腿安装至支撑结构,其中,套筒设置在紧固件与隔振垫之间并且构造成在将支腿安装至支撑结构时能够控制隔振垫的预加载荷。
上述压缩机系统可以为用于交通工具的空调系统,并且/或者压缩机可以为卧式压缩机。
由以下结合附图、以示例方式说明本发明的原理的描述,本发明的其他方面和优点将变得明显。
附图说明
通过以下参照附图的描述,本发明的一个或几个实施方式的特征和优点将变得更加容易理解,其中:
图1A是根据本发明的隔振垫与压缩机的组装的立体示意图;
图1B是图1A的侧视示意图;
图2A是图1B的隔振垫与压缩机支脚的放大的主视示意图;
图2B是图2A的隔振垫的剖面示意图;
图3A是根据本发明第一实施方式的隔振垫的立体示意图;
图3B是图3A的隔振垫的剖面示意图;
图4A是根据本发明实施方式的隔振垫在气隙闭合时的立体示意图;
图4B是图4A的隔振垫的剖面示意图;
图5是根据本发明第二实施方式的隔振垫的剖面示意图;
图6是根据本发明第三实施方式的隔振垫的剖面示意图;
图7A是根据本发明第四实施方式的隔振垫的立体示意图;
图7B是图7A的隔振垫的剖面示意图;
图8A是根据本发明第五实施方式的隔振垫的立体示意图;
图8B是图8A的隔振垫的剖面示意图;
图9A是根据本发明第六实施方式的隔振垫的立体示意图;
图9B是图9A的隔振垫的剖面示意图;
图10是根据本发明第七实施方式的隔振垫的立体示意图;
图11A是根据本发明第八实施方式的隔振垫的立体示意图;
图11B是图11A的隔振垫的剖面示意图;
图12是根据本发明第九实施方式的隔振垫的剖面示意图;以及
图13是根据本发明的隔振垫的轴向位移和刚度随着工况而变化的示意图。
具体实施方式
下面对本发明各种实施方式的描述仅仅是示范性的,而绝不是对本发明及其应用或用法的限制。在各个附图中采用相似的附图标记来表示相似的部件,因此相似部件的构造将不再重复描述。
在本文中提及的方位词,例如“上、下、左、右”,指的是附图上所 观察的方位,除非本文中另有明确的说明。
通常,为了减小机器或设备(例如,压缩机)的振动,将该机器或设备经由隔振垫安装至基座(也称为“支撑结构”)。隔振垫可以减小由机器或设备自身产生的振动,由此减小机器或设备的振动对支撑结构造成的影响。另一方面,隔振垫也可以减小来自支撑结构的冲击等对机器或设备造成的影响。
隔振垫的隔振效果(或减振效果)主要取决于其刚度和阻尼。刚度是指材料或结构在受力时抵抗弹性变形的能力,与面积以及长度或高度相关。即,面积越大,刚度越大;而长度或高度越大,则刚度越小。在本文中,发明人基于该原理通过改变隔振垫的刚度和/或阻尼而使同一隔振垫能够适应于不同工况。
隔振垫通常由橡胶材料制成。大致圆柱形的橡胶隔振垫的刚度估算公式如下:
压缩刚度的估算公式:
Figure PCTCN2016075987-appb-000001
剪切刚度的估算公式:
Figure PCTCN2016075987-appb-000002
其中,Kc为压缩刚度;G为弹性模量(与材料自身属性相关);A为圆柱截面(有效承载截面,即,隔振垫的垂直于加载方向的截面)的面积;h为橡胶隔振垫的高度(即,沿隔振垫轴向测得的尺寸);S为加载表面/卸载表面的形状因子;Ks为剪切刚度;以及d为直径。
隔振垫的高度主要取决于应用情况和安装空间。因此,在隔振垫制成之后,隔振垫的外形尺寸已经确定,因此,可以认为隔振垫的高度是基本恒定的。
因此,从上面公式可知,橡胶隔振垫的压缩刚度和剪切刚度均与圆柱截面面积A成正比,即,圆柱截面面积A越大,则橡胶隔振垫的刚度越大;而圆柱截面面积A越小,则橡胶隔振垫的刚度越小。
根据该振动理论,本申请的发明人做出了使用期间刚度可变的隔 振垫。例如,在压缩机平稳运行时,根据本发明的隔振垫具有较小刚度,可以有效地降低压缩机自身产生的较小振动。在压缩机受到冲击时,可以增大根据本发明的隔振垫的有效截面面积,从而增加刚度,由此可以有效地降低冲击对压缩机造成的影响。
下面将参见附图以压缩机为例对根据本发明的隔振垫进行详细描述。然而,本领域技术人员应理解的是,根据本发明的隔振垫可以应用于任何产生振动的设备或机器上,而不局限于压缩机。另外,为便于描述,本文中以列车为例来描述安装压缩机的系统,在这种情况下,本文中所述的支撑结构可以是列车车身或其他结构件。然而,应理解的是,压缩机可以经由根据本发明的隔振垫安装至任何其他合适的系统中。
参见图1A、图1B、图2A和图2B,示出了经由隔振垫安装的压缩机系统。图示的压缩机系统包括压缩机20、隔振垫10以及用于支撑压缩机的支撑结构50(参见图2A和2B)。压缩机20的支脚22经由隔振垫10安装至支撑结构50。
在图示的具体实施方式中,压缩机20呈大致圆筒形,并且为卧式压缩机。压缩机20由两个支脚22支撑并经由隔振垫10安装至支撑结构50上。参见图2A和2B,可以在支脚22的上侧和下侧各设置一个隔振垫10。隔振垫10的大致中央处设置有通孔,将螺栓30插入通孔中并连接至支撑结构50,由此将压缩机20连接至支撑结构50。
在上述系统中,隔振垫10布置在压缩机20与支撑结构50之间,通过隔振垫10的刚度和阻尼可以减小从压缩机20传递至支撑结构50的振动,同时也可以减小从支撑结构50传递至压缩机的诸如冲击的外部载荷。
在稳定工况时,期望隔振垫具有较小的刚度以有效吸收压缩机所产生的振动,而在冲击工况时,则期望隔振垫具有较大刚度以有效抵抗冲击载荷。然而,常规的隔振垫在制成之后由于其横截面和高度等尺寸已基本确定而具有基本恒定的刚度,难以满足稳定工况和冲击工况两者的实际需要。
基于此做出了本发明。根据本发明的隔振垫包括实体部和具有至少一个气隙的气隙部。在稳定工况下,气隙部的气隙不闭合。此时,隔振垫的刚度主要取决于实体部的横截面面积。因而,隔振垫具有较小的 刚度,能够有效地吸收由压缩机产生的振动,从而减小传递至列车的振动。
另一方面,在冲击工况下,气隙部的气隙闭合。此时,隔振垫的刚度主要取决于实体部和气隙部两者的横截面面积,即,隔振垫的刚度变大。因此,气隙部能够与实体部一起抵抗冲击载荷,由此有效地防止压缩机发生较大位移。
下面将参照附图对根据本发明的隔振垫的实施方式进行描述。应理解的是,本文图示和描述的实施方式以示例的方式来说明本发明,并不是本发明的全部实施方式,也不是对本发明的限制。
<隔振垫的第一实施方式>
参见图3A和图3B,示出了根据本发明的隔振垫的第一实施方式。根据本发明第一实施方式的隔振垫10A大致呈圆柱状,并且具有顶面12、底面14以及柱状外侧面16。在隔振垫10A的大致中央处沿轴向设置有供螺栓30穿过以便将隔振垫10A安装至支撑结构上的安装孔13。此处所述的轴向与在压缩机与支撑结构之间传递载荷的方向一致。
参见图3B,隔振垫10A包括在安装孔13的径向外侧的实体部110和位于实体部110的径向外侧的气隙部150。为方便描述,用虚线P示意性地表示实体部110与气隙部150之间的界面。实体部110与气隙部150可以一体地形成。本文中所述的实体部指的是轴向方向上实心的部分,而气隙部则指的是设置有气隙的部分。在图示的实施方式中,隔振垫的气隙部150包括从外侧面16向实体部110并且沿圆周方向延伸的三个气隙15。也就是说,气隙15没有沿径向方向(或,横向方向)延伸贯穿整个隔振垫10A。气隙15具有环状上表面152、环状下表面154以及内壁面156,其中,内壁面156朝向实体部110径向远离外侧面16。气隙15通过外侧面16上的开口与周围大气相通,因而有利于气隙15在冲击载荷之后快速地恢复至打开状态。
可选地,气隙15沿隔振垫的轴向等间距地布置。在该第一实施方式中,气隙15具有相同的轴向高度(即,沿轴向从上表面152至下表面154的高度)和相同的径向深度(即,沿径向从外侧面16至内壁面156的深度)。
气隙15的轴向方向上的高度可以在0.5mm至3mm的范围内。在经由根据本发明的隔振垫安装压缩机时,对隔振垫施加一定的预压力(预加载荷),使得气隙15的轴向高度可以在0.1mm至2mm的范围内。为了更好地设定该预压力,可以在诸如螺栓30的紧固件与隔振垫之间设置套筒40(参见图2B)。例如,可以通过设置套筒40的高度来调节紧固件对隔振垫施加的预压力。
在稳定工况下,压缩机因振动引起的位移通常小于0.1mm。因此,在稳定工况下,气隙15不闭合。即,气隙15的上表面152和下表面154保持分离一段距离。此时,隔振垫的刚度主要取决于实体部110的环形横截面面积A1,因此隔振垫的刚度较小,可以有效地吸收压缩机自身产生的振动。
另外,发明人还发现:在冲击工况下,有时可能导致压缩机在轴向方向上位移数毫米。根据本发明的隔振垫设置成使得气隙在冲击工况时闭合。即,气隙15的上表面152和下表面154可以至少部分地叠合在一起。如图4A和图4B所示,气隙15的上表面152和下表面154几乎完全叠合在一起。此时,隔振垫的刚度取决于实体部110的环形横截面面积A1和气隙部150的环形横截面面积A2两者,由此增加了隔振垫的刚度。也就是说,隔振垫的实体部110和气隙部150均有效地抵抗冲击载荷,防止压缩机在受到冲击后发生较大位移。
通过气隙15的打开或闭合,可以改变根据本发明的隔振垫10的有效截面面积,相应地可以改变其刚度,由此使隔振垫10既能够适应于稳定工况又能够适应冲击工况。此外,在冲击工况下,由于气隙15的闭合而增加了隔振垫10A的刚度并限制了压缩机20的位移,在一定程度上保护了压缩机20及其连接管路等,并且可以延长隔振垫15的使用寿命。
气隙15在开合的过程中具有空气抽吸(或呼吸)作用,因此在某种程度上也可以改善隔振垫10的阻尼,进一步有利于对压缩机20进行减振。
另外,在图示的实施方式中,在顶面12与外侧面16之间可以设置圆角部18,以方便隔振垫10A的安装和定位等。本领域技术人员可以意识到的是,根据具体应用情况,也可以在外侧面16与底面14之间 设置圆角部18。另外,可以根据与隔振垫配合安装的结构件的结构而相应地改变隔振垫的外形结构。
<隔振垫的第二实施方式>
参见图5,示出了根据本发明的第二实施方式的隔振垫10B。隔振垫的第二实施方式与第一实施方式的不同之处在于气隙的径向深度不同。如图5所示,气隙部包括从外侧面16向实体部并且沿圆周方向延伸的三个气隙15A、15B和15C。气隙15A、15B和15C沿隔振垫的轴向顺序地布置并且分别具有径向深度d1、d2和d3,其中,径向深度d1、d2和d3依次缩短。气隙15A的径向深度d1最长,即,气隙15A的内壁面156A最靠近安装孔13和实体部。气隙15C的径向深度d3最短,即,气隙15C的内壁面156C最远离安装孔13和实体部。气隙15B的径向深度d2在d1与d3之间的范围内,即,气隙15B的内壁面156B在径向方向上位于内壁面156A与156C之间。
对于根据本发明第二实施方式的隔振垫10B,气隙15A、15B和15C可以不同时闭合。例如,气隙15A、15B和15C可以根据冲击载荷的增加而依次闭合。或者,可以根据隔振垫上载荷的分布情况而设置气隙15A、15B和15C的各个径向深度。
隔振垫的第二实施方式与第一实施方式相同的部分不再详细描述。
<隔振垫的第三实施方式>
参见图6,示出了根据本发明的第三实施方式的隔振垫10C。隔振垫的第三实施方式与第一实施方式的不同之处在于气隙的轴向高度不同。如图6所示,气隙部包括从外侧面16向实体部并且沿圆周方向延伸的三个气隙15A’、15B’和15C’。气隙15A’、15B’和15C’沿隔振垫的轴向顺序地布置并且分别具有轴向高度h1、h2和h3,其中,轴向高度h1、h2和h3依次增大。气隙15A’的轴向高度h1最小。气隙15C’的轴向高度h3最大。气隙15B’的轴向高度h2在h1与h3之间的范围内。
对于根据本发明第三实施方式的隔振垫10C,气隙15A’、15B’和15C’可以不同时闭合。例如,气隙15A’、15B’和15C’可以根据冲击载 荷的增加而依次闭合。或者,可以根据隔振垫上载荷的分布情况而设置气隙15A、15B和15C的各个轴向高度。
隔振垫的第三实施方式与第一实施方式相同的部分不再详细描述。
<隔振垫的第四实施方式>
参见图7A和图7B,示出了根据本发明的第四实施方式的隔振垫10D。第四实施方式的隔振垫10D与第一实施方式的隔振垫10A的不同之处在于,实体部110在气隙部150的径向外侧并且气隙部150包括四个气隙15。根据第四实施方式的隔振垫10D沿径向向内依次设置有实体部110、气隙部150以及安装孔13。气隙部150的气隙15与安装孔13连通,因此,气隙15可以经由安装孔13与周围大气相通。
应理解的是,气隙15的数量可以根据具体应用情况而改变,并不局限于本文中描述的具体示例。
隔振垫的第四实施方式与第一实施方式相同的部分不再详细描述。
<隔振垫的第五实施方式>
参见图8A和图8B,示出了根据本发明的第五实施方式的隔振垫10E。第五实施方式的隔振垫10E与第一实施方式的隔振垫10A的区别在于,每个气隙15沿圆周方向间断地设置。如图8B所示,沿圆周方向相邻的两个气隙15之间设置有间隔部112。在图示的实施方式中,在相邻的两个间隔部112之间沿轴向方向平行地设置有三个气隙15。另外,在隔振垫的圆周方向上,设置有由四个间隔部112间隔开的四个气隙15。应理解的是,间隔部112的数量以及气隙15的数量可以根据具体应用情况而变化。
在图示的实施方式中,实体部110(即,图8B中的阴影部分)包括邻近安装孔13的环状实心部分和间隔部112。气隙部150为隔振垫的设置有气隙15的部分。沿圆周方向位于间隔部112两侧的气隙15可以对齐地设置,或者可以交错地设置。可以理解的是,相邻的两个间隔部112之间的气隙15的数量可以不同。
隔振垫的第五实施方式与第一实施方式相同的部分不再详细描述。
<隔振垫的第六实施方式>
参见图9A和图9B,示出了根据本发明的第六实施方式的隔振垫10F。第六实施方式的隔振垫10F与第五实施方式的隔振垫10E的区别在于,气隙15从隔振垫10F的外侧面16延伸至安装孔13的内壁132。这样,实体部110由间隔部112组成。间隔部112与气隙15沿圆周方向交替设置。换句话说,实体部110可以与气隙部150沿圆周方向交替设置。
该第六实施方式与第五实施方式相似的部分不再重复描述。
<隔振垫的第七实施方式>
参见图10,示出了根据本发明的第七实施方式的隔振垫10G。第七实施方式的隔振垫10G与第一实施方式的隔振垫10A的区别在于,气隙15呈台阶形式,并且在轴向方向上平行地设置有两个沿圆周方向延伸的气隙15。具体地,对于每个气隙15而言,其沿圆周方向延伸一定距离之后沿轴向延伸一定距离,由此形成台阶的形式。每个气隙15在整个圆周上形成的台阶的数量可以根据具体应用情况而变化。
该第七实施方式与第一实施方式相似的部分不再重复描述。
<隔振垫的第八实施方式>
参见图11A和图11B,示出了根据本发明的第八实施方式的隔振垫10H。第八实施方式的隔振垫10H与第四实施方式的隔振垫10D的区别在于,在实体部110的径向外侧还设置有第二气隙部160。为便于描述,在该实施方式中,将气隙部150定义为第一气隙部150。
如图所示,实体部110位于第一气隙部150与第二气隙部160之间。在图11B中,用虚线P1示意性地表示第一气隙部150与实体部110之间的界面,并且用虚线P2示意性地表示实体部110与第二气隙部160之间的界面。第一气隙部150在隔振垫10H的大致中央处,并且第一气隙部150的气隙15经由安装孔13与周围大气相通。第二气隙部160在隔振垫10H的径向外侧,并且第二气隙部160的气隙15从隔振垫10H 的外侧面16朝向实体部110延伸,即,气隙15的开口设置在外侧面16上,由此使得气隙15与周围大气相通。
第一气隙部150的气隙15与第二气隙部160的气隙15在径向方向上可以对准,或者可以交错布置。可以理解的是,第一气隙部150的气隙15与第二气隙部160的气隙15在数量、尺寸和/或结构方面可以不同。
该第八实施方式与第四实施方式相似的部分不再重复描述。
<隔振垫的第九实施方式>
参见图12,示出了根据本发明的第九实施方式的隔振垫10I。第九实施方式的隔振垫10I与第四实施方式的隔振垫10D的区别在于,隔振垫10I在大致中央处没有设置用于螺栓穿过的安装孔13,而是通过其他方式连接至支撑结构。
在隔振垫10I中,设置有通气孔19以使得气隙15与周围大气相通。在图示实施方式中,通气孔19设置在隔振垫10I的大致中央处并且沿轴向从气隙15延伸贯穿隔振垫10I。然而,应理解的是,通气孔19的结构并不局限于图示的示例,而是可以呈任何结构,只要能够使气隙15与周围大气相通即可。
对于隔振垫10I而言,例如,可以通过将隔振垫10I的底面固定连接至支撑结构上而将隔振垫10I连接至支撑结构,或者,可以通过用于固定隔振垫10I的外侧面的构件来将隔振垫10I连接至支撑结构。也就是说,隔振垫可以通过除安装孔13和螺栓30之外的其他方式连接至支撑结构。
该第九实施方式与第四实施方式相似的部分不再重复描述。
<其他变型>
尽管上面对根据本发明的隔振垫的若干实施方式进行了详细描述,然而,应理解的是,所描述的实施方式仅仅是本发明实施方式的一部分,其目的仅仅是为了说明本发明,而不是对本发明的穷举。上述实施方式还可以有很多变型并且上述隔振垫的特征在不矛盾的情况下可以相互组合以形成另外的实施方式。
例如,气隙15可以沿轴向方向以螺旋的形式延伸。尽管本文图示和说明的隔振垫10为大致圆柱状,然而,应理解的是,根据具体应用情况,隔振垫10可以呈任何其他合适的形状。
此外,尽管本文图示和说明的实施方式均为一体成型的隔振垫10,然而隔振垫10也可以以其他任何合适的方式形成。例如,隔振垫10可以由直径不同的薄片或者在垂直于施力方向的方向上具有不同截面尺寸的薄片叠加而成。例如,一个具有较小截面尺寸的薄片可以夹设在两个相邻的具有较大截面尺寸的薄片之间,由此可以形成气隙15。
应理解的是,根据本发明的隔振垫适用于各种类型的压缩机或者其他产生振动的设备;隔振垫的数量、尺寸、结构等可以根据具体应用情况而变化;并且压缩机可以通过除支脚之外的结构与隔振垫直接或间接地连接。
图13为根据本发明的隔振垫的轴向位移和刚度随着工况而变化的示意图。如图13所示,在稳态工况下(图中示出为左侧),即,主要存在压缩机自身产生的振动的情况下,隔振垫10的轴向位移较小,气隙15未闭合,此时,隔振垫10的有效截面面积A较小,因此隔振垫10的刚度较小,可以有效地减低由压缩机20运行时自身产生的振动。在外部冲击工况下(图中示出为右侧),隔振垫10的轴向位移较大,使得气隙15闭合,此时,隔振垫10的有效截面面积A’比前述有效截面面积A大,因此隔振垫10的刚度变大,可以有效地限制压缩机20的位移。
尽管在此已详细描述本发明的各种实施方式,但是应该理解本发明并不局限于这里详细描述和示出的具体实施方式,在不偏离本发明的实质和范围的情况下可由本领域的技术人员实现其它的变型和变体。所有这些变型和变体都落入本发明的范围内。而且,所有在此描述的构件都可以由其他技术性上等同的构件来代替。

Claims (19)

  1. 一种隔振垫(10),所述隔振垫(10)沿轴向方向具有第一表面(14)和与所述第一表面(14)相对的第二表面(12),所述隔振垫(10)包括:
    沿所述轴向方向从所述第一表面(14)延伸至所述第二表面(12)的实体部(110),以及
    邻近所述实体部(110)并且沿所述轴向方向从所述第一表面(14)延伸至所述第二表面(12)的气隙部(150),在所述气隙部(150)中设置有至少一个气隙(15),
    其中,所述至少一个气隙(15)构造成:在第一工况下不闭合使得所述隔振垫(10)具有第一刚度,以及在第二工况下至少部分地闭合使得所述隔振垫(10)具有比所述第一刚度大的第二刚度。
  2. 如权利要求1所述的隔振垫(10),其中,所述气隙部(150)沿垂直于所述轴向方向的横向方向设置在所述实体部(110)的外侧,并且所述气隙(15)从所述气隙部(150)的外侧面(16)朝向所述实体部(110)延伸。
  3. 如权利要求1所述的隔振垫(10),其中,所述气隙部(150)沿垂直于所述轴向方向的横向方向设置在所述实体部(110)的内侧。
  4. 如权利要求3所述的隔振垫(10),其中,所述隔振垫(10)还包括沿所述横向方向设置在所述实体部(110)外侧的第二气隙部(160),所述第二气隙部(160)包括至少一个气隙(15)。
  5. 如权利要求1所述的隔振垫(10),所述隔振垫(10)包括多个气隙部(150)和多个实体部(110),所述多个气隙部(150)和所述多个实体部(110)围绕所述隔振垫(10)的中心轴线交替地布置。
  6. 如权利要求3或4所述的隔振垫(10),其中,所述隔振垫(10) 还包括用于连通所述气隙(15)与周围大气的通气孔(19)。
  7. 如权利要求1至5中任一项所述的隔振垫(10),其中,所述隔振垫(10)还包括设置在所述隔振垫(10)的中央处的用于穿过紧固件以安装所述隔振垫(10)的安装孔(13)。
  8. 如权利要求7所述的隔振垫(10),其中,所述气隙(15)沿周向方向连续地或间断地延伸,或者在所述轴向方向上以螺旋形式连续地或间断地延伸,或者在所述周向方向上以台阶的形式延伸。
  9. 如权利要求7所述的隔振垫(10),其中,所述隔振垫(10)包括多个气隙(15),所述多个气隙(15)具有相同的尺寸和结构。
  10. 如权利要求7所述的隔振垫(10),其中,所述隔振垫(10)包括多个气隙(15),所述多个气隙(15)构造成使得:
    a)所述多个气隙(15)中的至少两个气隙在垂直于所述轴向方向的横向方向上具有不同的深度;和/或
    b)所述多个气隙(15)中的至少两个气隙在所述轴向方向上具有不同的高度。
  11. 如权利要求7所述的隔振垫(10),其中,所述气隙(15)的所述轴向方向上的高度在0.5mm至3mm的范围内。
  12. 如权利要求7所述的隔振垫(10),其中,所述隔振垫(10)包括多个气隙(15),所述多个气隙(15)在所述轴向方向、周向方向和垂直于所述轴向方向的横向方向中的至少一个方向上对齐地设置、平行地设置或者交错地设置。
  13. 如权利要求7所述的隔振垫(10),其中,所述隔振垫(10)呈圆柱状,以及/或者所述隔振垫(10)由橡胶材料制成。
  14. 如权利要求7所述的隔振垫(10),其中,所述隔振垫(10)一体地形成,或者通过叠加不同尺寸的薄片而形成。
  15. 一种压缩机系统,所述压缩机系统包括压缩机(20)和如权利要求1至14中任一项所述的隔振垫(10),其中,所述压缩机(20)的支腿(22)经由所述隔振垫(10)而被安装在支撑结构上。
  16. 如权利要求15所述的压缩机系统,其中,在所述支腿(22)的上侧和下侧分别设置至少一个隔振垫(10)。
  17. 如权利要求16所述的压缩机系统,其中,位于所述支腿(22)的所述上侧和所述下侧的所述隔振垫(10)具有不同构造和/或不同尺寸。
  18. 如权利要求15所述的压缩机系统,其中,经由插入所述隔振垫(10)的安装孔中的紧固件(30)和套筒(40)将所述支腿(22)安装至所述支撑结构,其中,所述套筒(40)设置在所述紧固件(30)与所述隔振垫(10)之间并且构造成在将所述支腿(22)安装至所述支撑结构时能够控制所述隔振垫(10)的预加载荷。
  19. 如权利要求15至18中的任一项所述的压缩机系统,其中,所述压缩机系统为用于交通工具的空调系统,并且/或者所述压缩机(20)为卧式压缩机。
PCT/CN2016/075987 2015-03-10 2016-03-09 隔振垫以及包括该隔振垫的压缩机系统 WO2016141878A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510104486.8 2015-03-10
CN201520135415.X 2015-03-10
CN201510104486.8A CN106032829B (zh) 2015-03-10 2015-03-10 隔振垫以及包括该隔振垫的压缩机系统
CN201520135415.XU CN204512264U (zh) 2015-03-10 2015-03-10 隔振垫以及包括该隔振垫的压缩机系统

Publications (1)

Publication Number Publication Date
WO2016141878A1 true WO2016141878A1 (zh) 2016-09-15

Family

ID=56878485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075987 WO2016141878A1 (zh) 2015-03-10 2016-03-09 隔振垫以及包括该隔振垫的压缩机系统

Country Status (1)

Country Link
WO (1) WO2016141878A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4202252A1 (fr) * 2021-12-23 2023-06-28 Thales Support amorti pour montage d'un équipement sur un châssis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4131771A1 (de) * 1991-09-24 1993-04-01 Metzeler Gimetall Ag Elastisches motorlager
CN201427508Y (zh) * 2009-02-04 2010-03-24 株洲时代新材料科技股份有限公司 一种汽车平衡悬架用板簧支座
CN102720787A (zh) * 2012-06-12 2012-10-10 中国科学院工程热物理研究所 一种多层叠片式阻尼减振器
CN203939907U (zh) * 2014-05-22 2014-11-12 安徽宁国利德尔汽车零部件有限公司 一种用于汽车减震器的缓冲胶
CN204512264U (zh) * 2015-03-10 2015-07-29 艾默生环境优化技术(苏州)有限公司 隔振垫以及包括该隔振垫的压缩机系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4131771A1 (de) * 1991-09-24 1993-04-01 Metzeler Gimetall Ag Elastisches motorlager
CN201427508Y (zh) * 2009-02-04 2010-03-24 株洲时代新材料科技股份有限公司 一种汽车平衡悬架用板簧支座
CN102720787A (zh) * 2012-06-12 2012-10-10 中国科学院工程热物理研究所 一种多层叠片式阻尼减振器
CN203939907U (zh) * 2014-05-22 2014-11-12 安徽宁国利德尔汽车零部件有限公司 一种用于汽车减震器的缓冲胶
CN204512264U (zh) * 2015-03-10 2015-07-29 艾默生环境优化技术(苏州)有限公司 隔振垫以及包括该隔振垫的压缩机系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4202252A1 (fr) * 2021-12-23 2023-06-28 Thales Support amorti pour montage d'un équipement sur un châssis

Similar Documents

Publication Publication Date Title
JP4622979B2 (ja) 筒型防振装置用ストッパ並びに筒型防振組付体
JP5208288B1 (ja) コンプレッサ用防振ゴムおよびそれを用いたコンプレッサ
JP6157000B2 (ja) 防振装置
US10519955B2 (en) Connection structure of exhaust bearing seat for compressor and screw compressor
US6637735B2 (en) Double triad elastomer mount
WO2013192370A2 (en) Tunable vibration dampers
CN106032829B (zh) 隔振垫以及包括该隔振垫的压缩机系统
WO2016141878A1 (zh) 隔振垫以及包括该隔振垫的压缩机系统
KR20100071583A (ko) 방진용 오일댐퍼 마운트
KR101551951B1 (ko) 에어 댐핑 마운트
CN204512264U (zh) 隔振垫以及包括该隔振垫的压缩机系统
CN210686806U (zh) 减振器、减振结构及减振总成
JP6276774B2 (ja) 空気式支持体
JP6406880B2 (ja) 免震装置
JP5062752B2 (ja) 摩擦ダンパー
JP5720718B2 (ja) 制振建物
TWI641769B (zh) Multidirectional damping device
JP5480545B2 (ja) 防振継手
CN205876656U (zh) 卧式压缩机及空调器
JP2005016633A (ja) 3次元免震装置
JP5695468B2 (ja) ストラットマウント
JP2011038599A (ja) 冷蔵庫
JP5662795B2 (ja) 筒形防振装置
JP2012180873A (ja) ストラットマウント及びストラットマウントの製造方法
JP2004324654A (ja) 防振装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761105

Country of ref document: EP

Kind code of ref document: A1