WO2016141699A1 - 发光部件及其制备方法和显示设备 - Google Patents

发光部件及其制备方法和显示设备 Download PDF

Info

Publication number
WO2016141699A1
WO2016141699A1 PCT/CN2015/089425 CN2015089425W WO2016141699A1 WO 2016141699 A1 WO2016141699 A1 WO 2016141699A1 CN 2015089425 W CN2015089425 W CN 2015089425W WO 2016141699 A1 WO2016141699 A1 WO 2016141699A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode layer
light
electrode
emitting
Prior art date
Application number
PCT/CN2015/089425
Other languages
English (en)
French (fr)
Inventor
王彤
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/907,645 priority Critical patent/US9748524B2/en
Publication of WO2016141699A1 publication Critical patent/WO2016141699A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • Embodiments of the present invention relate to a light emitting part, a method of fabricating the same, and a display apparatus.
  • OLED Organic Light-Emitting Diode
  • the display device based on the OLED light-emitting component has the advantages of being thin and light, low power consumption, wide viewing angle and fast response speed, and is favored by people.
  • the OLED has a multi-layer structure
  • the layers of the multi-layer structure may be an anode layer, a light-emitting layer, and a cathode layer, respectively, in order from bottom to top (ie, from the substrate to the substrate).
  • some other layers may be disposed between the anode layer and the luminescent layer, and between the cathode layer and the luminescent layer.
  • an isolation layer may generally be provided for isolating the anode layer of the adjacent OLED.
  • Embodiments of the present invention provide a light emitting part including a first electrode layer, a second electrode layer having an opposite polarity to the first electrode layer, a light emitting layer, and an isolation layer, wherein the light emitting layer is located in the An upper layer of the first electrode layer, the second electrode layer is located at a side of the light emitting layer; the isolating layer is located at a side of the first electrode layer, and the first electrode layer and the second electrode Layer isolation.
  • the cross-sectional shape of the light-emitting layer is a trapezoidal body, and a surface of the light-emitting layer adjacent to the first electrode layer is a smaller bottom surface of the trapezoidal body.
  • the mutually adjacent sides of the second electrode layer and the luminescent layer have the same inclination angle.
  • the material of the second electrode layer comprises a reflective material.
  • the lower edge of the side of the light emitting layer adjacent to the second electrode layer is in contact with the edge of the top surface of the isolation layer.
  • the first electrode layer is an anode layer
  • the second electrode layer is a cathode layer
  • a hole transport layer is disposed between the first electrode layer and the light emitting layer.
  • a hole injection layer is disposed between the first electrode layer and the light emitting layer.
  • an electron transport layer is disposed between the second electrode layer and the light emitting layer.
  • a hole blocking layer is disposed between the second electrode layer and the light emitting layer.
  • an electron blocking layer is disposed between the first electrode layer and the light emitting layer.
  • an electron injection layer is disposed between the second electrode layer and the light emitting layer.
  • the material of the first electrode layer comprises a reflective material.
  • Embodiments of the present invention also provide a display device including the light emitting component as described above.
  • Embodiments of the present invention also provide a method of fabricating a light emitting part, wherein the light emitting part includes a first electrode layer, a second electrode layer having an opposite polarity to the first electrode layer, a light emitting layer, and an isolation layer,
  • the method includes: forming the first electrode layer on a substrate; forming a separation layer on a side of the first electrode layer on the substrate; forming the second electrode layer on an upper layer of the isolation layer, The second electrode layer is separated from the first electrode layer by the isolation layer; and the light emitting layer is formed on a side of the second electrode layer and an upper layer of the first electrode layer.
  • the first electrode layer is an anode layer
  • the second electrode layer is a cathode layer
  • the method further includes: forming a hole injection layer in an upper layer of the first electrode layer, and forming a hole in an upper layer of the hole injection layer Transport layer.
  • the method further includes: forming an electron transport layer on a side of the second electrode layer, wherein the electron transport layer is away from the On one side of the second electrode layer, a hole blocking layer is formed.
  • the light-emitting layer is formed on a side of the hole blocking layer away from the electron transport layer and an upper layer of the hole transport layer.
  • FIG. 1 is a schematic structural view of a light emitting part according to an embodiment of the present invention.
  • FIGS. 2a and 2b are schematic structural views of a light-emitting component according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a light emitting part according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a light emitting part according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a light emitting part according to another embodiment of the present invention.
  • FIG. 6 is a flow chart of a method of fabricating a light-emitting component according to an embodiment of the present invention.
  • the luminescent layer emits light in various directions.
  • the light emitted upward passes through the cathode layer and the layers between the cathode layer and the light-emitting layer to be emitted, and the light emitted downward passes through the layers between the anode layer and the light-emitting layer, and then passes through the anode layer for reflection. All layers except the anode layer can be ejected. It can be seen that the light emitted upwards and downwards has to undergo many times of refraction to be emitted, and each time the light is refracted, there is energy loss. Therefore, the above structure has a great influence on the luminous efficiency.
  • the light emitting part includes a first electrode layer 1 , a second electrode layer 2 having an opposite polarity to the first electrode layer 1 , and a light emitting layer 3 and an isolation layer. 4.
  • the luminescent layer 3 is located on the upper layer of the first electrode layer 1, the second electrode layer 2 is located at the side of the luminescent layer 3; the isolation layer 4 is located at the side of the first electrode layer 1, and the first electrode layer 1 and the second electrode layer 2 are isolation.
  • the light emitting part comprises a first electrode layer 1, a second electrode layer 2 having an opposite polarity to the first electrode layer 1, a light emitting layer 3 and an isolating layer 4.
  • the luminescent layer 3 is located on the upper layer of the first electrode layer 1
  • the second electrode layer 2 is located at the side of the luminescent layer 3
  • the isolation layer 4 is located at the side of the first electrode layer 1, and the first electrode layer 1 and the second electrode layer 2 are isolation.
  • the luminescent layer 3 is upward and downward
  • the emitted light does not need to be refracted by the second electrode layer 2 in the process of emitting the light-emitting member, thereby reducing the number of times of light refraction, thereby improving the luminous efficiency of the light-emitting member.
  • the light emitting part includes a first electrode layer 1 , a second electrode layer 2 having an opposite polarity to the first electrode layer 1 , and a light emitting layer 3 and an isolation layer. 4.
  • the luminescent layer 3 is located on the upper layer of the first electrode layer 1, the second electrode layer 2 is located at the side of the luminescent layer 3; the isolation layer 4 is located at the side of the first electrode layer 1, and the first electrode layer 1 and the second electrode layer 2 are isolation.
  • the light emitting component may be an OLED display panel, and may be any one of the OLED display panels. If the first electrode layer 1 is an anode layer, the second electrode layer 2 may be a cathode layer; if the first electrode layer 1 is a cathode layer, the second electrode layer 2 may be an anode layer.
  • the first electrode layer 1 and the isolation layer 4 may be disposed on the upper layer of the substrate.
  • the isolation layer 4 may be disposed on a side of the first electrode layer 1. If the first electrode layer 1 is an anode layer, the isolation layer 4 may surround it on each side of the first electrode layer 1 to isolate the anode layers of each OLED unit in the display panel from each other.
  • the second electrode layer 2 may be disposed on the upper layer of the isolation layer 4.
  • the isolation layer 4 isolates the first electrode layer 1 and the second electrode layer 2 from direct current between the first electrode layer 1 and the second electrode layer 2.
  • the light emitting layer 3 may be disposed on the upper layer of the first electrode layer 1.
  • the second electrode layer 2 may be disposed on the upper layer of the isolation layer 4 and located at the side of the light-emitting layer 3, and the second electrode layer 2 may be disposed only on one side of the light-emitting layer 3, or may be disposed on both sides of the light-emitting layer 3.
  • the second electrode layer 2 (the corresponding top view may be as shown in FIG. 2a), and the second electrode layer 2 may also be disposed on each side (generally four sides) of the light-emitting layer 3 (the corresponding top view may be as shown in FIG. 2b).
  • the thickness of the second electrode layer 2 can be appropriately set according to the power consumption and the like, and can be the same as the thickness of the light-emitting layer 3.
  • a protective layer may also be provided on the uppermost layer to prevent corrosion of the entire light-emitting component.
  • some special functional layers such as a hole transport layer may be provided, which will be described in detail later.
  • the isolation layer 4 may be formed of an insulating material.
  • the material of the light-emitting layer 3 may be any one of primary colors (such as red, green, and blue), and may be a fluorescent material or a phosphorescent material.
  • the phosphorescence of the red luminescent layer may be a DCJTB-like ((1,1,7,7-tetramethyljuronidine-9-alkenyl)-4H-pyran) derivative, a star-shaped DCM (4-(dicarbonitrile) Methylene chloride) 2-methyl-6-(4-dimethylamino-styrene)-4H-pyran) derivative, polycyclic aromatic hydrocarbon, and the like.
  • the green fluorescent material may be a quinophthalone derivative, a coumarin derivative, a polycyclic aromatic hydrocarbon or the like.
  • the blue fluorescent material can be a diaryl group Biological, stilbene aromatic derivative, anthracene derivative, cyclodane fluorenyl derivative, and the like.
  • the host material of the phosphorescent material may be a main illuminant material containing a carbazole group, a main illuminant material having electron transporting property, etc., and the red phosphorescent doping material may be an Ir ( ⁇ ) complex or the like, and the green phosphorescence is doped.
  • the impurity material may be a Pt (platinum) complex or the like, and the blue phosphorescent dopant material may be FIrpic (bis(4,6-difluorophenylpyridine-N, C2) pyridine formyl ruthenium) or the like.
  • the first electrode layer 1 is an anode layer
  • the second electrode layer 2 is a cathode layer.
  • the isolation layer 4 may be surrounded on each side of the anode layer such that the anode layers in each OLED are isolated from each other.
  • the cathode layer of any one of the OLED units and the cathode layer of the adjacent OLED unit may be formed integrally by one coating process.
  • the cathode layer of all OLEDs in the display panel may be a unit formed by one coating process. This simplifies the production process of OLEDs.
  • the material of the first electrode layer 1 further includes a reflective material.
  • the anode layer may be, for example, a three-layer structure of ITO (Indium Tin Oxide)-Ag-ITO, wherein ITO is a transparent material and can be IZO (Indium Zinc Oxide). ), GITO (gallium indium tin oxide), GIZO (gallium indium zinc oxide) and other substances, Ag (silver) can play a role in reflection.
  • ITO Indium Tin Oxide
  • GITO gallium indium tin oxide
  • GIZO gallium indium zinc oxide
  • Ag silver
  • the shape of the light-emitting layer 3 may be designed.
  • the corresponding structure may be as follows: the shape of the light-emitting layer 3 is an inverted trapezoidal body, and the surface of the light-emitting layer 3 adjacent to the first electrode layer 1 is a bottom surface having a smaller trapezoidal shape.
  • the smaller bottom surface of the inverted trapezoid may be a congruent rectangle with the upper surface of the first electrode layer 1; or the pattern of the smaller bottom surface of the trapezoid may include a pattern of the upper surface of the first electrode layer 1, That is, the projection of the first electrode layer 1 perpendicular to the smaller bottom surface of the trapezoidal body may be included in the range of the bottom surface.
  • the area of the bottom surface of the trapezoidal body is the area where the OLED actually emits light, so that the aperture ratio can be effectively improved with respect to the structure in which the light-emitting layer 3 has a cubic shape.
  • the shape of the second electrode layer 2 may be correspondingly configured based on the structure in which the luminescent layer 3 is a trapezoidal body.
  • the corresponding structure may be as follows: the adjacent sides of the second electrode layer 2 and the luminescent layer 3 have the same slope.
  • the second electrode layer 2 may be an upright trapezoidal body such that the side faces of the second electrode layer 2 and the side faces of the light-emitting layer 3 may be parallel to each other. Between these two sides Some other layers such as an electron transport layer, a hole blocking layer, an electron injection layer, and the like are provided.
  • the material of the second electrode layer 2 further includes a reflective material.
  • the second electrode layer 2 is a cathode layer
  • its material may be a mixture of Ag, Mg (magnesium).
  • the light emitted from the lateral direction of the luminescent layer 3 is reflected by the side surface of the second electrode layer 2, and the angle between the reflected light and the display panel is closer to 0 degree than the other light emitted by the luminescent layer. Therefore, the viewing angle of the display device can be effectively improved, and most of the light emitted laterally is emitted by reflection, so that the luminous efficiency can be effectively improved.
  • the first electrode layer 1 and the second electrode layer 2 of each OLED on the display panel can be reflective.
  • the display panel has a very good mirror effect.
  • the structure of the light-emitting component may be disposed as follows: the light-emitting layer 3 is adjacent to the second electrode layer 2 The lower edge of the side of the side is in contact with the edge of the side of the barrier layer 4.
  • the bottom surface of the light-emitting layer 3 and the top surface of the isolation layer 4 may be in the same plane, and their adjacent edges may be attached.
  • the electrons do not bypass the light-emitting layer 3 and directly flow to the anode layer
  • the holes do not bypass the light-emitting layer 3 and directly flow to the cathode layer, so that electrons and holes can be sufficiently combined in the light-emitting layer 3, thereby effectively improving.
  • various different functional layers may be disposed in the above structure to improve the performance of the OLED.
  • first electrode layer 1 is an anode layer and the second electrode layer 2 is a cathode layer
  • second electrode layer 2 is a cathode layer
  • a hole transport layer 5 is disposed between the first electrode layer 1 and the light-emitting layer 3.
  • the hole injection layer 6 is provided between the first electrode layer 1 and the light-emitting layer 3.
  • the electron transport layer 7 is disposed between the second electrode layer 2 and the light-emitting layer 3.
  • a hole blocking layer 8 is disposed between the second electrode layer 2 and the light-emitting layer 3.
  • an electron injecting layer 9 is disposed between the second electrode layer 2 and the light emitting layer 3.
  • an electron blocking layer 10 is disposed between the first electrode layer 1 and the light emitting layer 3.
  • the hole transporting speed can be increased by the hole transport layer 5 or the hole injection layer 6, and the light-emitting luminance of the OLED can be improved.
  • the electron transporting speed can be increased by the electron transport layer 7 or the electron injecting layer 9, and the luminance of the OLED can be improved.
  • the hole blocking layer 8 can prevent holes from flowing from the light-emitting layer 3 to the cathode layer 2, and the luminance of the OLED can be improved.
  • the electron blocking layer 8 can prevent electrons from flowing from the light-emitting layer 3 to the anode layer 1, and the luminance of the OLED can be improved.
  • a hole transport layer 5 is disposed between the first electrode layer 1 and the light-emitting layer 3, and a hole is disposed between the first electrode layer 1 and the hole transport layer 5.
  • An electron transport layer 7 is disposed between the injection layer 6, the second electrode layer 2 and the light-emitting layer 3, and a hole blocking layer 8 is disposed between the electron transport layer 7 and the light-emitting layer 3.
  • the upper surface of the hole transport layer 5 and the upper surface of the spacer layer 4 may be in the same plane.
  • the thickness of the isolation layer 4 may be equal to the sum of the thicknesses of the first electrode layer 1, the hole injection layer 6, and the hole transport layer 5.
  • the thickness of the light-emitting layer 3 and the second electrode layer 2 may be equal.
  • the material of the hole transport layer 5 may be NPB (n-bromopropane) or a biphenylenediamine derivative.
  • the material of the hole injection layer 6 may be copper phthalocyanine or the like, and the material of the electron transport layer 7 may be a quinoline derivative.
  • the material of the electron injecting layer may be an alkali metal oxide Li 2 O (lithium oxide) ), LiBO 2 (lithium metaborate), K 2 SiO 3 (potassium silicate), Cs 2 CO 3 (cesodium carbonate), or the like, or an alkali metal acetate or an alkali metal fluoride.
  • the light-emitting component includes a first electrode layer 1, a second electrode layer 2 having an opposite polarity to the first electrode layer 1, a light-emitting layer 3, and an isolation layer 4, wherein the light-emitting layer 3 is located on the first electrode layer 1.
  • the upper layer, the second electrode layer 2 is located at the side of the light-emitting layer 3, and the isolation layer 4 is located at the side of the first electrode layer 1, separating the first electrode layer 1 and the second electrode layer 2.
  • the light emitted from the light-emitting layer 3 upward and downward does not need to be refracted by the second electrode layer 2 during the emission of the light-emitting member, thereby reducing the number of times of light refraction, thereby improving the light-emitting efficiency of the light-emitting member.
  • Embodiments of the present invention also provide a display device, which may include a light emitting component as described in the above embodiments.
  • the display device can be a display panel, a display, a television, a mobile phone, a tablet, or the like.
  • the light-emitting component includes a first electrode layer 1, a second electrode layer 2 having an opposite polarity to the first electrode layer 1, a light-emitting layer 3, and an isolation layer 4, wherein the light-emitting layer 3 is located on the first electrode layer 1.
  • the upper layer, the second electrode layer 2 is located at the side of the light-emitting layer 3, and the isolation layer 4 is located at the side of the first electrode layer 1, separating the first electrode layer 1 and the second electrode layer 2.
  • the light emitted from the light-emitting layer 3 upward and downward does not need to be refracted by the second electrode layer 2 during the emission of the light-emitting member, thereby reducing the number of times of light refraction, thereby improving the light-emitting efficiency of the light-emitting member.
  • the embodiment of the invention further provides a method for preparing a light-emitting component, which is used for preparing the light-emitting component in the above embodiment, the light-emitting component comprising a first electrode layer 1 and a second electrode having opposite polarity to the first electrode layer 1 Layer 2, luminescent layer 3 and isolation layer 4.
  • the processing flow of the method may include the following steps:
  • Step 501 forming a first electrode layer 1 on the substrate.
  • a pixel circuit may be formed on the substrate, which may include low temperature polysilicon, microcrystalline silicon, or OTFT (Organic Thin Film Transistors).
  • the first electrode layer 1 can be formed in the circuit, and a plating process such as evaporation, sputtering, or the like can be employed in the production process.
  • processing may be performed as follows: in the upper layer of the first electrode layer 1 In the hole injection layer 6, a hole transport layer 5 is formed on the upper layer of the hole injection layer 6.
  • a hole injection layer 6 may be formed on the upper layer of the first electrode layer 1 and a hole transport layer 5 may be formed on the upper layer of the hole injection layer 6 by a plating method. It is also possible to form an electron blocking layer 10 on the upper layer of the hole transport layer 5 for blocking electrons from flowing from the light-emitting layer 3 to the hole transport layer 5. Further, in the hole transport layer 5 and the hole injection layer 6, only one of the upper layers of the first electrode layer 1 may be selected. For the materials used in the above layers, refer to the second embodiment.
  • Step 502 forming an isolation layer 4 on the side of the first electrode layer 1 on the substrate.
  • a plating process may be employed, and an isolation layer 4 of an insulating material may be formed on a side portion of the first electrode layer 1.
  • the isolation layer 4 of all the OLED units in the display panel may be formed integrally by one-time plating.
  • the spacer layer 4 may be formed on the side portions of the first electrode layer 1, the hole transport layer 5, and the hole injection layer 6.
  • Step 503 forming a second electrode layer 2 on the upper layer of the isolation layer 4, and the second electrode layer 2 is isolated. Layer 4 is isolated from first electrode layer 1.
  • a trapezoidal second electrode layer 2 may be formed on the upper layer of the isolation layer 4 by a plating process.
  • the second electrode layer 2 is formed of a mixture of Ag and Mg in the upper layer of the separator 4 by means of sputtering.
  • the second electrode layer 2 is a cathode layer
  • the second electrode layer 2 of all the OLED units in the display panel may be an integral formed by one-time plating processing.
  • processing may also be performed as follows: in the second electrode layer The side portion of 2 forms an electron transport layer 7, and on the side of the electron transport layer 7 remote from the second electrode layer 2, a hole blocking layer 8 is formed.
  • the electron transport layer 7 and the hole blocking layer 8 may be sequentially formed on the sidewall of the second electrode layer 2 by the coating processing method, and the sides of the electron transport layer 7 and the hole blocking layer 8 and the second electrode layer 2 may be formed.
  • the walls are parallel.
  • the materials used in the above layers can be referred to the above examples.
  • step 504 the light-emitting layer 3 is formed on the side of the second electrode layer 2 and the upper layer of the first electrode layer 1.
  • the light-emitting layer 3 of the inverted trapezoid can be formed by a coating process.
  • the light-emitting layer 3 is formed by an evaporation processing process.
  • a protective layer may be formed on the light-emitting layer 3 and the second electrode layer 2 by a plating process.
  • the processing of the step 504 may be: one of the hole blocking layer 8 away from the electron transport layer 7.
  • the light-emitting layer 3 is formed on the side and the upper layer of the hole transport layer 5.
  • the light emitting part comprises a first electrode layer 1, a second electrode layer 2 having an opposite polarity to the first electrode layer, a light emitting layer 3 and an isolating layer 4, wherein the light emitting layer 3 is located in the first electrode layer 1.
  • the second electrode layer 2 is located at the side of the light-emitting layer 3
  • the isolation layer 4 is located at the side of the first electrode layer 1, separating the first electrode layer 1 and the second electrode layer 2.
  • the light emitted from the light-emitting layer 3 upward and downward does not need to be refracted by the second electrode layer 2 during the emission of the light-emitting member, thereby reducing the number of times of light refraction, thereby improving the light-emitting efficiency of the light-emitting member.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种发光部件及其制备方法和显示设备。该发光部件包括第一电极层(1)、与第一电极层(1)具有相反极性的第二电极层(2)、发光层(3)和隔离层(4),其中:该发光层(3)位于该第一电极层(1)的上层,该第二电极层(2)位于该发光层(3)的侧部;该隔离层(4)位于该第一电极层(1)的侧部,将该第一电极层(1)和该第二电极层(2)隔离。该发光部件可以提高发光效率。

Description

发光部件及其制备方法和显示设备 技术领域
本发明的实施例涉及一种发光部件及其制备方法和显示设备。
背景技术
随着显示技术的飞速发展,显示设备中采用的发光部件的种类越来越多。OLED(Organic Light-Emitting Diode,有机电致发光二极管)是一种在显示设备中非常常用的发光部件。基于OLED发光部件的显示设备具有轻薄、低功耗、视角宽及响应速度快等优点,受到人们的青睐。
在显示设备的显示面板中,OLED具有多层结构,此多层结构的各层按由下至上(即由靠近基板到远离基板)的顺序可以分别为阳极层、发光层、阴极层。另外,为了优化发光性能,在阳极层与发光层之间、阴极层与发光层之间,还可以设置一些其它层。在上述各层的侧部,一般还可以设置有隔离层,用于隔离相邻OLED的阳极层。
发明内容
本发明的实施例提供一种发光部件,所述发光部件包括第一电极层、与第一电极层具有相反极性的第二电极层、发光层和隔离层,其中所述发光层位于所述第一电极层的上层,所述第二电极层位于所述发光层的侧部;所述隔离层位于所述第一电极层的侧部,将所述第一电极层和所述第二电极层隔离。
可选的,所述发光层的截面形状为梯形体,所述发光层临近所述第一电极层的表面为所述梯形体较小的底面。
可选的,所述第二电极层和所述发光层的相互临近的侧面具有相同的倾斜角度。
可选的,所述第二电极层的材料包括反光材料。
可选的,所述发光层邻近所述第二电极层的侧面的下边缘与所述隔离层的顶面的边缘相接触。
可选的,所述第一电极层为阳极层,所述第二电极层为阴极层。
可选的,所述第一电极层和所述发光层之间设置有空穴传输层。
可选的,所述第一电极层和所述发光层之间设置有空穴注入层。
可选的,所述第二电极层和所述发光层之间设置有电子传输层。
可选的,所述第二电极层和所述发光层之间设置有空穴阻挡层。
可选的,所述第一电极层和所述发光层之间设置有电子阻挡层。
可选的,所述第二电极层和所述发光层之间设置有电子注入层。
可选的,所述第一电极层的材料包括反光材料。
本发明的实施例还提供一种显示设备,所述显示设备包括如上所述的发光部件。
本发明的实施例还提供一种发光部件的制备方法,其中,所述发光部件包括第一电极层、与第一电极层具有相反极性的第二电极层、发光层和隔离层,所述方法包括:在基板上形成所述第一电极层;在所述基板上所述第一电极层的侧部,形成所述隔离层;在所述隔离层的上层形成所述第二电极层,所述第二电极层通过所述隔离层与所述第一电极层隔离;在所述第二电极层的侧部、所述第一电极层的上层,形成所述发光层。
可选的,在该方法中,所述第一电极层为阳极层,所述第二电极层为阴极层。
例如,所述在基板上形成所述第一电极层之后,该方法还包括:在所述第一电极层的上层,形成空穴注入层,在所述空穴注入层的上层,形成空穴传输层。
例如,所述在所述隔离层的上层形成所述第二电极层之后,该方法还包括:在所述第二电极层的侧部,形成电子传输层,在所述电子传输层远离所述第二电极层的一侧,形成空穴阻挡层。
例如,在该方法中,在所述空穴阻挡层远离所述电子传输层的一侧、所述空穴传输层的上层,形成所述发光层。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1是本发明实施例提供的发光部件的结构示意图;
图2a、图2b是本发明实施例提供的发光部件的结构示意图;
图3是本发明实施例提供的发光部件的结构示意图;
图4是本发明实施例提供的发光部件的结构示意图;
图5是本发明另一实施例提供的发光部件的结构示意图;
图6是本发明实施例提供的发光部件的制备方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
在研究过程中,发明人至少发现以下技术问题:在已有的OLED工作过程中,发光层会向各个方向发射光。向上方发射的光要经过阴极层以及阴极层与发光层之间的各层才能射出,向下方发射的光要经过阳极层与发光层之间的各层,然后经过阳极层反射后,再经过除阳极层外的所有层才能射出。可见,向上方和下方发射的光都要经过很多次折射才能射出,光在传播的过程中每次折射都会有能量损失。所以,上述结构会对发光效率造成很大的影响。
实施例一
本发明实施例提供了一种发光部件,如图1所示,该发光部件包括第一电极层1、与第一电极层1具有相反极性的第二电极层2、发光层3和隔离层4。
发光层3位于第一电极层1的上层,第二电极层2位于发光层3的侧部;隔离层4位于第一电极层1的侧部,将第一电极层1和第二电极层2隔离。
本发明实施例中,发光部件包括第一电极层1、与第一电极层1具有相反极性的第二电极层2、发光层3和隔离层4。发光层3位于第一电极层1的上层,第二电极层2位于发光层3的侧部,隔离层4位于第一电极层1的侧部,将第一电极层1和第二电极层2隔离。这样,发光层3向上方、下方 发射的光在射出发光部件的过程中,都无需经过第二电极层2的折射,减少了光的折射次数,从而可以提高发光部件的发光效率。
实施例二
本发明实施例提供了一种发光部件,如图1所示,该发光部件包括第一电极层1、与第一电极层1具有相反极性的第二电极层2、发光层3和隔离层4。发光层3位于第一电极层1的上层,第二电极层2位于发光层3的侧部;隔离层4位于第一电极层1的侧部,将第一电极层1和第二电极层2隔离。
发光部件可以为OLED显示面板,可以为OLED显示面板中的任意一个OLED单元。如果第一电极层1为阳极层,那么第二电极层2则可以为阴极层;如果第一电极层1为阴极层,那么第二电极层2则可以为阳极层。
在本实施中,第一电极层1和隔离层4可以设置于基板的上层。隔离层4可以设置于第一电极层1的侧部。如果第一电极层1为阳极层,则隔离层4可以在第一电极层1的各个侧面将其包围,从而使显示面板中每个OLED单元的阳极层相互隔离。第二电极层2可以设置于隔离层4的上层。隔离层4将第一电极层1和第二电极层2隔离,防止第一电极层1和第二电极层2之间形成直接的电流。发光层3可以设置于第一电极层1的上层。第二电极层2可以设置于隔离层4的上层,并位于发光层3的侧部,可以只在发光层3的一侧设置第二电极层2,也可以在发光层3的两侧均设置第二电极层2(相应的俯视图可以如图2a所示),还可以在发光层3的各个侧面(一般为四个侧面)都设置第二电极层2(相应的俯视图可以如图2b所示)。第二电极层2的厚度可以根据功耗等需求适当设置,可以与发光层3的厚度相同。在最上层还可以设置保护层,用于防止整个发光部件受到腐蚀。在发光层3和第一电极层1之间、发光层3和第二电极层2之间,还可以设置一些特殊功能层,如空穴传输层等,在后面内容中会有详细介绍。
隔离层4可以采用绝缘材料形成。发光层3的材料可以是任意一种基色(如红、绿、蓝)的发光材料,可以为荧光材料或磷光材料。红色发光层的磷光可以为类DCJTB((1,1,7,7-四甲基久洛尼啶-9-烯基)-4H-吡喃)衍生物、星状DCM(4-(二腈亚甲叉)-2-甲基-6-(4-二甲胺基-苯乙烯)-4H-吡喃)衍生物、多环芳香族碳氢化合物等。绿色荧光材料可以为喹吖叮酮衍生物、香豆素衍生物、多环芳香族碳氢化合物等。蓝色荧光材料可以为二芳香基蒽衍 生物、二苯乙烯芳香族衍生物、芘衍生物、旋环双芴基衍生物等。磷光材料的主体材料可以为含咔唑基团的主发光体材料,具有电子传输性质的主发光体材料等,而红色的磷光掺杂材料可以为Ir(铱)配合物等,绿色的磷光掺杂材料可以为Pt(铂)配合物等,蓝色的磷光掺杂材料可以为FIrpic(双(4,6-二氟苯基吡啶-N,C2)吡啶甲酰合铱)等。
可选的,第一电极层1为阳极层,第二电极层2为阴极层。
在本实施中,隔离层4可以在阳极层的各个侧面将其包围,这样可以使每个OLED中的阳极层相互隔离。例如,任意一个OLED单元的阴极层与相邻OLED单元的阴极层可以是通过一次镀膜加工形成的一个整体。或者,显示面板中所有OLED的阴极层可以是通过一次镀膜加工形成的一个整体。这样可以简化OLED的生产工艺。
可选的,第一电极层1的材料还包括反光材料。
在本实施中,如果第一电极层1为阳极层,那么此阳极层例如可以采用ITO(氧化铟锡)-Ag-ITO的三层结构,其中ITO为透明材料,可被IZO(氧化铟锌)、GITO(氧化镓铟锡)、GIZO(氧化镓铟锌)等物质替代,Ag(银)可以起到反射的作用。
可选的,在上述结构的基础上,为了提高显示面板的开口率,可以对发光层3的形状进行一定的设计。如图3所示,相应的结构可以如下:发光层3的形状为倒置的梯形体,发光层3临近第一电极层1的表面为梯形体较小的底面。
例如,此倒置的梯形体较小的底面可以与第一电极层1的上表面为全等的矩形;或者,梯形体较小的底面的图形可以包含第一电极层1的上表面的图形,也即,第一电极层1垂直于梯形体较小的底面的投影可以包含在该底面的范围内。在上述结构中,梯形体较大的底面的面积即为OLED实际发光的面积,这样,相对于发光层3为立方体的结构,可以有效的提高开口率。
可选的,基于上述发光层3为梯形体的结构,可以对应地设置第二电极层2的形状,相应的结构可以如下:第二电极层2和发光层3的相互临近的侧面具有相同的倾斜角度。
例如,参见图3,第二电极层2可以为一个正立的梯形体,这样,第二电极层2的侧面与发光层3的侧面可以相互平行。在这两个侧面之间还可以 设置一些其它层,如电子传输层、空穴阻挡层、电子注入层等。
可选的,基于上述发光层3和第二电极层2为梯形体的结构,为了更有效的提高发光效率和可视角度,可以采用如下结构:第二电极层2的材料还包括反光材料。
例如,如果第二电极层2为阴极层,它的材料可以为Ag、Mg(镁)混合物。如图3所示,发光层3侧向发出的光射到第二电极层2的侧面后被反射,与发光层发出的其他光线相比较,此反射光与显示面板的夹角更加接近0度,从而可以有效的提高显示设备的可视角度,而且,侧向发出的光大部分通过反射射出,从而可以有效的提高发光效率。在这种结构下,可以通过合理地设置第二电极层2侧面的倾斜角度α,以尽量避免通过第二电极层2反射的光在经过各层折射的过程中出现全反射。
而且,基于第一电极层1和第二电极层2采用反光材料的设计,在显示面板不发光的时候,显示面板上每个OLED的第一电极层1和第二电极层2都可以反光,显示面板具有很好的镜面效果。
可选的,为了保证OLED在工作的过程中载流子(电子和空穴)能够充分的注入发光层3,可以对发光部件的结构进行如下设置:发光层3邻近所述第二电极层2的侧面的下边缘与隔离层4的侧面的边缘相接触。
例如,如图3所示,发光层3的底面与隔离层4的顶面可以在同一平面内,而且他们相互临近的边可以相贴合。这样,电子就不会绕过发光层3直接流向阳极层,空穴也不会绕过发光层3直接流向阴极层,可以使电子和空穴能够在发光层3充分的结合,有效地提高了OLED的工作效率。
可选的,如图4所示,可以在上述结构中设置各种不同的功能层,来改善OLED的性能。对于第一电极层1为阳极层、第二电极层2为阴极层的情况,以下给出了几种具体的示范性方式:
方式一,第一电极层1和发光层3之间设置有空穴传输层5。
方式二,第一电极层1和发光层3之间设置有空穴注入层6。
方式三,第二电极层2和发光层3之间设置有电子传输层7。
方式四,第二电极层2和发光层3之间设置有空穴阻挡层8。
方式五,第二电极层2和发光层3之间设置有电子注入层9。
方式六,第一电极层1和发光层3之间设置有电子阻挡层10。
在实施中,通过空穴传输层5或空穴注入层6可以提高空穴的传输速度,进而可以提高OLED的发光亮度。通过电子传输层7或电子注入层9可以提高电子的传输速度,进而可以提高OLED的发光亮度。通过空穴阻挡层8可以防止空穴从发光层3流向阴极层2,进而可以提高OLED的发光亮度。通过电子阻挡层8可以防止电子从发光层3流向阳极层1,进而可以提高OLED的发光亮度。
可以根据实际需求在上述六种层中选择任意一种或多种设置在OLED中。如图5所示,提供了一种可能的结构,第一电极层1和发光层3之间设置有空穴传输层5,第一电极层1和空穴传输层5之间设置有空穴注入层6,第二电极层2和发光层3之间设置有电子传输层7,电子传输层7和发光层3之间设置有空穴阻挡层8。在该结构中,空穴传输层5的上表面和隔离层4的上表面可以在同一平面内。隔离层4的厚度可以等于第一电极层1、空穴注入层6和空穴传输层5的厚度之和。发光层3和第二电极层2的厚度可以相等。
空穴传输层5的材料可以为NPB(正溴丙烷)或联苯二胺衍生物等,空穴注入层6的材料可以为铜酞菁等,电子传输层7的材料可以为喹啉衍生物、二氮蒽衍生物、含硅的杂环化合物、喔啉衍生物、二氮菲衍生物、全氟化寡聚物等,电子注入层的材料可以为碱金属氧化物Li2O(氧化锂)、LiBO2(偏硼酸锂)、K2SiO3(硅酸钾)、Cs2CO3(碳酸铯)等、或碱金属醋酸盐、碱金属氟化物等。
本实施例中,发光部件包括第一电极层1、与第一电极层1具有相反极性的第二电极层2、发光层3和隔离层4,其中,发光层3位于第一电极层1的上层,第二电极层2位于发光层3的侧部,隔离层4位于第一电极层1的侧部,将第一电极层1和第二电极层2隔离。这样,发光层3向上方、下方发射的光在射出发光部件的过程中,都无需经过第二电极层2的折射,减少光的折射次数,从而,可以提高发光部件的发光效率。
实施例三
本发明的实施例还提供了一种显示设备,该显示设备可以包括如上述实施例所述的发光部件。该显示设备可以为显示面板、显示器、电视、手机、平板电脑等。
本实施例中,发光部件包括第一电极层1、与第一电极层1具有相反极性的第二电极层2、发光层3和隔离层4,其中,发光层3位于第一电极层1的上层,第二电极层2位于发光层3的侧部,隔离层4位于第一电极层1的侧部,将第一电极层1和第二电极层2隔离。这样,发光层3向上方、下方发射的光在射出发光部件的过程中,都无需经过第二电极层2的折射,减少光的折射次数,从而,可以提高发光部件的发光效率。
实施例四
本发明实施例还提供了一种发光部件的制备方法,用于制备上述实施例中的发光部件,该发光部件包括第一电极层1、与第一电极层1具有相反极性的第二电极层2、发光层3和隔离层4。如图6所示,该方法的处理流程可以包括如下的步骤:
步骤501,在基板上形成第一电极层1。
例如,可以先在基板上形成像素电路,其中可以包括低温多晶硅、微晶硅或OTFT(Organic Thin Film Transistors,有机薄膜晶体管)。而且可以在电路中形成第一电极层1,在生产过程中可以采用镀膜加工方式,如蒸镀、喷溅(sputter)等。
可选的,对于第一电极层1为阳极层、第二电极层2为阴极层的情况,在形成第一电极层1后,还可以进行如下加工:在第一电极层1的上层,形成空穴注入层6,在空穴注入层6的上层,形成空穴传输层5。
例如,可以采用镀膜加工方式,在第一电极层1的上层,形成空穴注入层6,在空穴注入层6的上层,形成空穴传输层5。还可以在空穴传输层5的上层形成电子阻挡层10,用于阻挡电子从发光层3流向空穴传输层5。另外,在空穴传输层5、空穴注入层6中,可以只选择一种设置在第一电极层1的上层。上述各层采用的材料可以参见实施例二。
步骤502,在基板上第一电极层1的侧部,形成隔离层4。
例如,可以采用镀膜加工方式,在第一电极层1的侧部,形成绝缘物质的隔离层4,显示面板中所有OLED单元的隔离层4可以是通过一次镀膜加工形成的一个整体。对于上述设置空穴传输层5、空穴注入层6的情况,隔离层4可以形成在第一电极层1、空穴传输层5、空穴注入层6的侧部。
步骤503,在隔离层4的上层形成第二电极层2,第二电极层2通过隔离 层4与第一电极层1隔离。
例如,可以采用镀膜加工方式,在隔离层4的上层,形成梯形的第二电极层2。例如,通过喷溅(sputter)的方式,在隔离层4的上层,由Ag和Mg的混合物形成第二电极层2。对于第二电极层2为阴极层的情况,显示面板中所有OLED单元的第二电极层2可以是通过一次镀膜加工形成的一个整体。
可选的,对于第一电极层1为阳极层、第二电极层2为阴极层的情况,在隔离层4的上层形成第二电极层2之后,还可以进行如下加工:在第二电极层2的侧部,形成电子传输层7,在电子传输层7远离第二电极层2的一侧,形成空穴阻挡层8。
例如,可以采用镀膜加工方式,在第二电极层2的侧壁上,依次形成电子传输层7和空穴阻挡层8,电子传输层7和空穴阻挡层8与第二电极层2的侧壁平行。还可以在形成电子传输层7之前,在第二电极层2的侧壁上,形成电子注入层9。另外,在电子传输层7、空穴阻挡层8中,可以只选择一种设置在第二电极层2的侧部。上述各层采用的材料可以参见上述实施例。
步骤504,在第二电极层2的侧部、第一电极层1的上层,形成发光层3。
例如,可以采用镀膜加工方式,形成倒梯形体的发光层3。例如,采用蒸镀加工工艺形成发光层3。形成发光层3之后,还可以采用镀膜加工方式在发光层3和第二电极层2上层形成保护层。
对于上述形成有空穴传输层5、空穴注入层6、电子传输层7和空穴阻挡层8的情况,步骤504的加工处理可以是:在空穴阻挡层8远离电子传输层7的一侧、空穴传输层5的上层,形成发光层3。
本实施例中,发光部件包括第一电极层1、与第一电极层具有相反极性的第二电极层2、发光层3和隔离层4,其中,发光层3位于第一电极层1的上层,第二电极层2位于发光层3的侧部,隔离层4位于第一电极层1的侧部,将第一电极层1和第二电极层2隔离。这样,发光层3向上方、下方发射的光在射出发光部件的过程中,都无需经过第二电极层2的折射,减少光的折射次数,从而,可以提高发光部件的发光效率。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2015年3月10日递交的中国专利申请第201510104568.2号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (19)

  1. 一种发光部件,包括第一电极层、与第一电极层具有相反极性的第二电极层、发光层和隔离层,其中:
    所述发光层位于所述第一电极层的上层,所述第二电极层位于所述发光层的侧部;所述隔离层位于所述第一电极层的侧部,将所述第一电极层和所述第二电极层隔离。
  2. 根据权利要求1所述的发光部件,其中,所述发光层的截面形状为梯形体,所述发光层临近所述第一电极层的表面为所述梯形体较小的底面。
  3. 根据权利要求1或2所述的发光部件,其中,所述第二电极层和所述发光层的相互临近的侧面具有相同的倾斜角度。
  4. 根据权利要求1-3的任一项所述的发光部件,其中,所述第二电极层的材料包括反光材料。
  5. 根据权利要求1-4的任一项所述的发光部件,其中,所述发光层邻近所述第二电极层的侧面的下边缘与所述隔离层的顶面的边缘相接触。
  6. 根据权利要求1-5的任一项所述的发光部件,其中,所述第一电极层为阳极层,所述第二电极层为阴极层。
  7. 根据权利要求1-6的任一项所述的发光部件,其中,所述第一电极层和所述发光层之间设置有空穴传输层。
  8. 根据权利要求1-7的任一项所述的发光部件,其中,所述第一电极层和所述发光层之间设置有空穴注入层。
  9. 根据权利要求1-8的任一项所述的发光部件,其中,所述第二电极层和所述发光层之间设置有电子传输层。
  10. 根据权利要求1-9的任一项所述的发光部件,其中,所述第二电极层和所述发光层之间设置有空穴阻挡层。
  11. 根据权利要求1-10的任一项所述的发光部件,其中,所述第一电极层和所述发光层之间设置有电子阻挡层。
  12. 根据权利要求1-11的任一项所述的发光部件,其中,所述第二电极层和所述发光层之间设置有电子注入层。
  13. 根据权利要求1-12的任一项所述的发光部件,其中,所述第一电极 层的材料包括反光材料。
  14. 一种显示设备,所述显示设备包括如权利要求1-13的任一项所述的发光部件。
  15. 一种发光部件的制备方法,其中,所述发光部件包括第一电极层、与第一电极层具有相反极性的第二电极层、发光层和隔离层,所述方法包括:
    在基板上形成所述第一电极层;
    在所述基板上所述第一电极层的侧部,形成所述隔离层;
    在所述隔离层的上层形成所述第二电极层,所述第二电极层通过所述隔离层与所述第一电极层隔离;
    在所述第二电极层的侧部、所述第一电极层的上层,形成所述发光层。
  16. 根据权利要求15所述的方法,其中,所述第一电极层为阳极层,所述第二电极层为阴极层。
  17. 根据权利要求16所述的方法,所述在基板上形成所述第一电极层之后,还包括:在所述第一电极层的上层,形成空穴注入层,在所述空穴注入层的上层,形成空穴传输层。
  18. 根据权利要求16或17所述的方法,所述在所述隔离层的上层形成所述第二电极层之后,还包括:在所述第二电极层的侧部,形成电子传输层,在所述电子传输层远离所述第二电极层的一侧,形成空穴阻挡层。
  19. 根据权利要求16-18任一所述的方法,其中,在所述空穴阻挡层远离所述电子传输层的一侧、所述空穴传输层的上层,形成所述发光层。
PCT/CN2015/089425 2015-03-10 2015-09-11 发光部件及其制备方法和显示设备 WO2016141699A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/907,645 US9748524B2 (en) 2015-03-10 2015-09-11 Light-emitting member and method for preparing the same as well as display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510104568.2A CN104810482B (zh) 2015-03-10 2015-03-10 一种发光部件及其制备方法和显示设备
CN201510104568.2 2015-03-10

Publications (1)

Publication Number Publication Date
WO2016141699A1 true WO2016141699A1 (zh) 2016-09-15

Family

ID=53695146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089425 WO2016141699A1 (zh) 2015-03-10 2015-09-11 发光部件及其制备方法和显示设备

Country Status (3)

Country Link
US (1) US9748524B2 (zh)
CN (1) CN104810482B (zh)
WO (1) WO2016141699A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6546400B2 (ja) * 2015-02-05 2019-07-17 株式会社ジャパンディスプレイ 表示装置
CN104810482B (zh) 2015-03-10 2017-03-08 京东方科技集团股份有限公司 一种发光部件及其制备方法和显示设备
CN107749443A (zh) * 2017-09-27 2018-03-02 武汉华星光电半导体显示技术有限公司 有机发光器件及有机发光显示装置
CN111026289B (zh) * 2019-11-29 2023-07-14 北京空间技术研制试验中心 用于载人航天器的人机交互终端
CN113471385B (zh) * 2021-06-30 2022-05-17 武汉天马微电子有限公司 一种显示面板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030094897A1 (en) * 2001-10-24 2003-05-22 Seiko Epson Corporation Light-emitting device and electronic instrument
US20080157105A1 (en) * 2006-12-29 2008-07-03 Hon Hang Fong Laterally configured electrooptical devices
CN103413896A (zh) * 2013-07-18 2013-11-27 陕西科技大学 一种双面出光的oled器件及其制备方法
CN104810482A (zh) * 2015-03-10 2015-07-29 京东方科技集团股份有限公司 一种发光部件及其制备方法和显示设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834893A (en) * 1996-12-23 1998-11-10 The Trustees Of Princeton University High efficiency organic light emitting devices with light directing structures
US6833667B2 (en) * 2002-02-27 2004-12-21 Matsushita Electric Industrial Co., Ltd. Organic electroluminescence element and image forming apparatus or portable terminal unit using thereof
WO2005027582A1 (ja) * 2003-09-10 2005-03-24 Fujitsu Limited 表示装置及びその製造方法
CN102646769B (zh) * 2012-03-30 2015-08-05 达亮电子(苏州)有限公司 发光二极管组件、发光二极管封装结构及其制造方法
JP2014197525A (ja) * 2013-03-06 2014-10-16 株式会社リコー 有機発光素子
JP2015012155A (ja) * 2013-06-28 2015-01-19 東芝ライテック株式会社 発光パネル及び照明器具
CN104157768B (zh) * 2014-07-22 2017-09-29 李媛 一种具有导电衬底的led芯片电极结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030094897A1 (en) * 2001-10-24 2003-05-22 Seiko Epson Corporation Light-emitting device and electronic instrument
US20080157105A1 (en) * 2006-12-29 2008-07-03 Hon Hang Fong Laterally configured electrooptical devices
CN103413896A (zh) * 2013-07-18 2013-11-27 陕西科技大学 一种双面出光的oled器件及其制备方法
CN104810482A (zh) * 2015-03-10 2015-07-29 京东方科技集团股份有限公司 一种发光部件及其制备方法和显示设备

Also Published As

Publication number Publication date
US20160268549A1 (en) 2016-09-15
CN104810482B (zh) 2017-03-08
CN104810482A (zh) 2015-07-29
US9748524B2 (en) 2017-08-29

Similar Documents

Publication Publication Date Title
JP6882583B2 (ja) 表示装置
TWI582981B (zh) 有機發光顯示裝置
JP6289877B2 (ja) 有機発光表示装置及びその製造方法
WO2016033884A1 (zh) 有机发光二极管显示装置及其制作方法
US10446798B2 (en) Top-emitting WOLED display device
WO2018113018A1 (zh) Oled显示面板及其制作方法
TWI448194B (zh) 有機發光元件,含彼之顯示元件,及含彼之照明裝置
US8476622B2 (en) Active matrix organic light emitting diode
WO2016141699A1 (zh) 发光部件及其制备方法和显示设备
US9076978B2 (en) Organic light emitting diode device
WO2016123916A1 (zh) 一种显示基板及其制备方法和一种显示设备
KR101084243B1 (ko) 유기 발광 표시 장치
WO2015000242A1 (zh) Oled器件及其制造方法、显示装置
WO2015090010A1 (zh) 有机电致发光显示面板及其制造方法、显示装置
CN102456704A (zh) 有机发光显示装置
KR20150031099A (ko) 유기 발광 표시장치의 제조방법
WO2016127700A1 (en) Top-emitting oled substrate and fabrication method thereof, and display apparatus
CN109427845A (zh) 显示面板及其制作方法、电致发光器件、显示装置
JP2009266803A (ja) 有機elディスプレイパネル及びその製造方法
CN101425529A (zh) 有机电激发光显示装置
JP2008084910A (ja) 有機el表示装置
KR20170123979A (ko) 유기발광 표시장치
KR101901350B1 (ko) 유기전계발광표시장치
US10038167B2 (en) Thick-ETL OLEDs with sub-ITO grids with improved outcoupling
JP7108478B2 (ja) 表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14907645

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884378

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.03.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15884378

Country of ref document: EP

Kind code of ref document: A1