WO2016141645A1 - 线圈盘及其制造方法以及含有该线圈盘的电磁加热设备 - Google Patents

线圈盘及其制造方法以及含有该线圈盘的电磁加热设备 Download PDF

Info

Publication number
WO2016141645A1
WO2016141645A1 PCT/CN2015/082880 CN2015082880W WO2016141645A1 WO 2016141645 A1 WO2016141645 A1 WO 2016141645A1 CN 2015082880 W CN2015082880 W CN 2015082880W WO 2016141645 A1 WO2016141645 A1 WO 2016141645A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil disk
wire groove
disk according
coil
layer
Prior art date
Application number
PCT/CN2015/082880
Other languages
English (en)
French (fr)
Inventor
曹达华
杨玲
何柏锋
Original Assignee
佛山市顺德区美的电热电器制造有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市顺德区美的电热电器制造有限公司, 美的集团股份有限公司 filed Critical 佛山市顺德区美的电热电器制造有限公司
Publication of WO2016141645A1 publication Critical patent/WO2016141645A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements

Definitions

  • the present invention relates to the field of electromagnetic heating technology, and in particular to a coil disk and a method of manufacturing the same, and an electromagnetic heating device including the same.
  • the coil discs of IH heating equipment are all made by enameled wire winding.
  • the manufacturing process is complicated in this way, and the coil winding method is relatively simple. Therefore, there is a need for a method for preparing a coil disk that is low in manufacturing cost and easy to realize design, trial production, and mass production.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent. To this end, it is an object of the invention to provide a coil disk that is simple to machine and small in size.
  • the invention provides a coil disk.
  • the coil disk includes: a coil disk carrier formed of LDS plastic; a wire groove formed on a surface of the coil disk carrier and extending along a predetermined winding path; and a metal layer attached to the inner wall of the wire groove .
  • the inventors have found that the coil disk of the present invention is not only simple to process, but also light in weight, small in volume, and high in heating efficiency with respect to a conventional coil disk.
  • the wire grooves are formed directly on the surface of the coil disk carrier by laser etching.
  • the width of the wire channel ranges from 0.2 mm to 10 mm.
  • the spacing between adjacent wire grooves ranges from 0.2 mm to 10 mm.
  • the wire groove is formed by injection molding on a coil disk carrier, and the inner wall of the wire groove is subjected to laser etching treatment.
  • the cross section of the wire groove has an inverted trapezoidal shape, an inverted triangular shape, or a semi-arc shape.
  • the cross section of the wire trough is in the shape of an inverted isosceles ladder, and the normal angle between the side wall of the trough and the bottom wall ranges from 15° to 75°.
  • the width of the bottom wall of the wire groove ranges from 0.5 mm to 1.5 mm, and the depth of the wire groove ranges from 2 mm to 8 mm.
  • the cross section of the spacer is an isosceles trapezoid.
  • the width of the top of the barrier rib ranges from 0.2 mm to 1.0 mm.
  • the side walls of the wire channel are arcuately connected to the bottom wall of the wire channel.
  • the coil disk carrier is in the form of a disk, a hollow hemisphere or a cylinder.
  • the LDS plastic is made of one of PC-ABS alloy, polyurethane, polyester, polycarbonate, or a mixture of any of several.
  • the metal layer is attached to the inner wall of the wire channel by electroless plating, electroplating, sputtering or chemical deposition.
  • the metal layer further includes: a conductive layer including an inner wall attached to the wire groove.
  • the conductive layer is formed of copper, silver or aluminum.
  • the thickness of the conductive layer ranges from 8 ⁇ m to 50 ⁇ m.
  • the metal layer further comprises an oxidation preventing layer attached to the conductive layer.
  • the oxidation preventing layer is formed of one of nickel, silver, aluminum, gold, or a mixture of any of them.
  • the thickness of the oxidation preventing layer ranges from 1 ⁇ m to 5 ⁇ m.
  • the metal layer further comprises a protective layer attached to the oxidation protecting layer.
  • the protective layer is formed of one of gold, nickel, silver, aluminum, or a mixture of any of them.
  • the thickness of the protective layer ranges from 0.1 ⁇ m to 0.5 ⁇ m.
  • the invention provides an electromagnetic heating apparatus.
  • the electromagnetic heating apparatus comprises a coil disc for electromagnetic heating as described above.
  • the inventors have found that the electromagnetic heating device is not only simple in processing, small in volume, and light in weight, and the coil coil used has low equivalent resistance and high heating efficiency.
  • the aforementioned features and advantages of the coil disk for electromagnetic heating described above are applicable to the electromagnetic heating device, and will not be further described herein.
  • the electromagnetic heating device is an induction cooker, an electric kettle, a rice cooker or an electric pressure cooker.
  • the method comprises: forming a coil disk carrier with LDS plastic; forming a wire groove extending along a predetermined winding path on the coil disk carrier; and attaching a metal layer to the inner wall of the wire groove.
  • LDS laser direct forming technology
  • the manner in which the coil disk carrier is made of LDS plastic is injection molded.
  • the way of forming the wire groove on the coil disk carrier is: directly etching the coil by laser etching
  • the surface of the disk carrier is molded or formed on the surface of the coil disk carrier by injection molding, and then the inner wall of the wire groove is laser-etched.
  • attaching the metal layer to the inner wall of the wire trench comprises: attaching the conductive layer to the inner wall of the wire groove by electroplating, electroless plating or a combination of electroplating and electroless plating.
  • the material forming the conductive layer is one of copper, silver or aluminum or a combination of any of several, and the thickness of the conductive layer ranges from 8 ⁇ m to 50 ⁇ m.
  • attaching the metal layer to the inner wall of the wire trench further comprises: attaching an oxidation preventing layer on the conductive layer by electroplating.
  • the material of the oxidation preventing layer is one of nickel, silver, aluminum or gold or a combination of any of several, and the thickness of the oxidation preventing layer ranges from 1 ⁇ m to 5 ⁇ m.
  • attaching the metal layer to the inner wall of the wire trench further comprises: attaching a protective layer on the oxidation preventing layer by electroplating.
  • the material of the protective layer is one or a combination of any one of gold, nickel, silver or aluminum, and the thickness of the protective layer ranges from 0.1 ⁇ m to 0.5 ⁇ m.
  • FIG. 1 is a schematic structural view of a coil disk according to an embodiment of the present invention, wherein FIG. 1A is a front view of the coil disk, and FIG. 1B is a perspective view of the coil disk;
  • FIG. 2 is a schematic view showing the formation of a wire groove directly on the surface of a coil disk carrier by laser etching according to an embodiment of the present invention
  • FIG. 3 shows a schematic diagram of a laser etching principle according to an embodiment of the present invention
  • FIG. 4 shows a schematic view of forming a wire groove by injection molding according to an embodiment of the present invention
  • Figure 5 shows a cross-sectional view of a coil disk in accordance with an embodiment of the present invention
  • Figure 6 shows a cross-sectional view of a coil disk in accordance with an embodiment of the present invention
  • Figure 7 shows a cross-sectional view of a metal layer in accordance with an embodiment of the present invention.
  • FIG. 8 is a schematic structural view of a coil according to an embodiment of the present invention, wherein FIG. 8A shows a front view of a coil according to an embodiment of the present invention, FIG. 8B shows a top view of a coil according to an embodiment of the present invention, and FIG. 8C shows a top view of the coil.
  • FIG. 8A shows a front view of a coil according to an embodiment of the present invention
  • FIG. 8B shows a top view of a coil according to an embodiment of the present invention
  • FIG. 8C shows a top view of the coil.
  • FIG. 8D shows a perspective view of a coil in accordance with an embodiment of the present invention
  • FIG. 9 is a flow chart showing a method of manufacturing a coil disk in accordance with an embodiment of the present invention.
  • the invention provides a coil disk.
  • the coil disk includes: a coil disk carrier 100 formed of LDS plastic; a wire groove 200 formed on a surface of the coil disk carrier and extending along a predetermined winding path; and attached to a metal layer 300 on the inner wall of the wire channel.
  • the coil disk according to the embodiment of the present invention is disposed on the coil disk carrier 100 by a predetermined winding path, which is different from the conventional wire groove extending through the coil disk on the coil disk and wound in the wire groove.
  • the wire groove 200 and the metal layer 300 are attached to the wire groove 200. Since only the metal layer 300 needs to be attached to the coil disk carrier 100, the wire groove of the metal layer 300 is generally not required to penetrate the thickness of the coil disk carrier 100, and its depth is relative to the groove of the conventional copper wire. To be much smaller, the coil disk carrier 100 can be made thinner, thereby reducing the thickness of the coil disk while reducing the weight of the coil disk. Moreover, the weight of the metal layer 300 is much lower than the weight of the copper wire, so that the coil disk can be made lighter.
  • this method completely overcomes the jumper problem that occurs in the winding process of the conventional coil disk, and the metal layer 300 of any shape is wound on the coil disk carrier 100 by the combination of electroplating and/or electroless plating and laser etching.
  • the flexible processing of the coil disk is realized, that is, the processing of the coil disk is made simpler.
  • the present invention provides a coil.
  • the coil comprises: a coil carrier 100 having a continuous wire groove 200 formed on the coil carrier 100, and a continuous metal layer 300 formed on the inner wall of the wire groove 200, wherein the coil carrier 100 is LDS Formed from plastic masterbatch.
  • the LDS plastic is selected from at least one of PC-ABS alloy, polyurethane, polyester, polycarbonate, or a combination of any of them, for example T-4381LDS, E820Ilds, Pocan DP7102LDS, etc.
  • the coil carrier 100 can be formed by any method known in the art.
  • the coil disk carrier 100 according to an embodiment of the present invention is formed by injection molding. Injection molding is easy to process products with complicated shapes and precise dimensions, and the coil carrier can be made into different shapes and sizes according to the environment of the coil disk application, for example, when the coil disk is applied to an induction cooker or an electric kettle, the coil disk The carrier is generally in the shape of a disk as shown in FIG. 1.
  • the coil disk carrier When the coil disk is applied to a rice cooker or an electric pressure cooker, the coil disk carrier usually has a hollow hemispherical shape as shown in FIG. 8, or a bowl shape, and the size of the coil disk. It can also be adjusted according to the size of the actual application product.
  • the wire slot 200 there are two ways of forming the wire slot 200, the first of which is formed directly on the surface of the coil disk carrier 100 by laser etching as mentioned in the priority application of the present invention.
  • the wire groove 200 is formed on the coil disk carrier 100 by injection molding, and then the inner wall of the wire groove 200 is subjected to laser etching treatment. but Regardless of which of the two methods is employed, the inner wall of the wire groove 200 is subjected to laser etching treatment.
  • the LDS laser direct molding
  • the coil carrier 100 can release active metal (for example, Cu) seeds, facilitating the metal layer 300 to be plated, Chemical deposition or electroless plating is adhered to the inner wall of the wire tank 200.
  • the first molding method forms a wire groove 200 having a depth of about several micrometers, a width ranging from 0.2 mm to 10 mm, and a spacing between adjacent wire grooves 200 ranging from 0.2 mm to 10 mm. That is, the wire groove 200 formed by the first molding method has a rectangular shape, and the width of the rectangle is generally at least two orders of magnitude smaller than its length.
  • the range of the width of the slot 200 formed by the first molding method and the range of the spacing between the adjacent slots 200 are only examples, and do not constitute any limitation on the present invention. Those skilled in the art can make corresponding applications according to actual applications. Adjustment.
  • the sidewall of the wire slot 200 formed by the second molding method extends outward and upward, and the cross section thereof may have an inverted triangle shape, an inverted ladder shape or an arc shape, and the like.
  • the 200 facilitates simultaneous laser etching of the sidewalls and the bottom wall of the wire slot 200. If the wire groove 200 formed by the second molding method is inwardly received, for example, if its cross section is rectangular, it is difficult to simultaneously perform laser etching treatment on the side walls and the bottom wall of the wire groove.
  • the cross section of the slot 200 is in the shape of an inverted isosceles ladder.
  • the width of the bottom wall of the slot 200 ranges from 0.5 mm to 1.5 mm, and the depth of the slot 200 ranges from 2 mm to 8 mm.
  • the width of the top of the spacer rib 400 ranges from 0.2 mm to 1.0 mm, and the angle between the sidewall of the slot 200 and the bottom wall is 15°. ⁇ 75°.
  • a circular arc transitions between the side wall of the trunking 200 and the bottom wall.
  • the above-mentioned size range of the side wall of the wire groove 200 and the bottom wall groove 200 can effectively utilize the overall space of the coil disk carrier 100, increase the line width of the coil disk, and thereby effectively reduce the equivalent resistance of the coil disk and improve the heating efficiency, but
  • the above range of dimensions of the slot 200 does not constitute any limitation to the invention.
  • the metal layer 300 can only be attached to the bottom wall of the wire groove 200, and the side wall thereof can be neglected.
  • the metal layer 300 can adhere not only to the bottom wall of the wire groove 200 but also to the sidewall of the wire groove 200, thereby increasing the width of the metal layer 300 attached to the wire groove 200.
  • R the resistance of the resistance
  • S the product of the cross-sectional area of the metal layer 300, that is, the width and thickness of the metal layer 300.
  • the forming manner of the second type of wire groove 200 increases the width of the metal layer 300, the electric resistance of the metal layer 300 is lowered in the case where the length L (the number of turns of the coil) and the thickness of the metal layer 300 are constant, and the coil is improved.
  • the number of turns N of the wire groove 200 formed by the second molding method is smaller than that of the wire groove 200 formed by the first molding method, and thus the metal on the wire groove 200 formed by the second molding method.
  • the inductance of layer 300 is also smaller.
  • the winding path of the trunking 200 needs to be determined according to the specific conditions of the product.
  • the coil disk 100 is In the shape of a disk
  • the winding path of the wire groove 200 on the coil disk carrier is a spiral type, and may also be called an Archimedes spiral type.
  • the coil disk carrier (which may also be referred to as a heating chassis) is hemispherical, and the winding path of the corresponding wire groove 200 is a concave spiral shape.
  • the winding path of the wire groove will correspondingly have a cylindrical spiral shape.
  • the method of forming the metal layer is not particularly limited as long as the metal layer can be effectively formed on the inner wall of the wire groove, and those skilled in the art can flexibly select according to actual conditions.
  • the metal layer 300 according to an embodiment of the present invention is attached to the inner wall of the wire groove 200 by electroless plating, electroplating, chemical deposition, or sputtering. Electroless plating, electroplating, and chemical deposition require the wire trench 200 to be laser etched to facilitate adhesion of the metal layer 300.
  • the sputtering method does not require the wire trench 200 to be laser-etched, but the positioning accuracy of sputtering is relatively poor.
  • the metal layer 300 may include only the conductive layer 310.
  • the specific material type of the conductive layer 310 is not particularly limited, and can be flexibly selected by those skilled in the art.
  • the material selected by the conductive layer 310 according to the embodiment of the present invention is one of copper, silver or aluminum or a combination of any combination thereof.
  • copper and copper have better electrical conductivity, which can further reduce the equivalent resistance of the coil disk and improve Its heating efficiency and relatively low cost.
  • the thickness of the conductive layer 310 is not particularly limited, and the thickness of the conductive layer 310 of the present embodiment ranges from 8 ⁇ m to 50 ⁇ m. The conductive layer having a thickness in the range can reduce the cost while ensuring the conductive effect.
  • the conductive layer 310 may be adhered to the inner wall of the wire groove 200 only by electroless plating, or may be attached to the inner wall of the wire groove 200 only by electroplating, or may be attached to the inner wall of the wire groove 200 by a combination of electroless plating and electroplating.
  • a copper layer having a thickness of 10 ⁇ m may be directly formed by single plating or electroless plating, or may be previously electrolessly plated through the trench 200.
  • the inner wall was formed with an electroless copper plating layer having a thickness of 3 ⁇ m, and then an electroplated copper layer having a thickness of 7 ⁇ m was formed by electroplating to obtain a copper layer having a thickness of 10 ⁇ m.
  • the metal layer 300 may further include an oxidation preventing layer 320 attached to the conductive layer 310.
  • the specific material of the oxidation preventing layer 320 is not particularly limited, and may be flexibly selected by those skilled in the art, for example, may be formed of nickel, silver, aluminum or gold. .
  • the oxidation preventing layer 320 according to an embodiment of the present invention is formed of nickel.
  • the oxidation preventing layer 320 can effectively prevent oxidation of the underlayer 310 while ensuring the conductive effect of the conductive layer 310.
  • the thickness of the oxidation preventing layer 320 is not particularly limited, and the thickness of the oxidation preventing layer 320 according to an embodiment of the present invention ranges from 1 ⁇ m to 5 ⁇ m.
  • the manner in which the oxidation preventing layer 320 is attached to the conductive layer 310 is not limited. For example, it may be electroless plating, chemical deposition or electroplating.
  • the oxidation preventing layer 320 according to the embodiment of the present invention is formed on the conductive layer 310 by electroplating, which is convenient to operate. Easy to control and low cost.
  • the metal layer 300 may further include a protective layer 330 attached to the oxidation preventing layer 320.
  • the protective layer 330 not only functions to protect the oxidation preventing layer and the conductive layer, but also has good brazing property for the electrode.
  • the sheet is soldered on the metal layer 300 to introduce an external current, so the protective layer 330 needs to use a material with good soldering properties, such as gold, Nickel, silver or aluminum.
  • the material selected by the protective layer 330 according to the embodiment of the present invention is gold. Gold not only has good soldering properties, but also is capable of further preventing oxidation of the conductive layer 310 due to being an inert metal, and also makes the coil disk more beautiful.
  • the thickness of the protective layer 330 is not particularly limited, and the thickness of the protective layer 330 according to an embodiment of the present invention is 0.1 ⁇ m to 0.5 ⁇ m to save material while ensuring soldering performance.
  • the manner in which the protective layer 330 is attached to the oxidation preventing layer 320 is not limited. For example, it may be electroless plating, chemical deposition or electroplating. In the embodiment, the protective layer 330 is formed on the anti-oxidation layer 320 by electroplating, which is convenient to operate. Easy to control and low cost.
  • the invention provides an electromagnetic heating apparatus.
  • the electromagnetic heating apparatus includes the coil disk previously described in the present invention, that is, the coil disk includes: a coil disk carrier 100 formed of LDS plastic; formed on a surface of the coil disk carrier 100, and along a predetermined a wire groove 200 extending from the winding path; and a metal layer 300 attached to the inner wall of the wire groove.
  • the material and molding method of the coil disk carrier 100, the manner of forming the wire groove, the composition of the metal layer and the manner of attaching to the inner wall of the wire groove can be referred to the description of the front coil disk, and will not be described herein.
  • the electromagnetic heating device includes an induction cooker, an electric kettle, a rice cooker, and an electric pressure cooker.
  • the induction cooker the coil plate and the power board, the main board, the light board (manipulation display board), the temperature control, the heat sensitive bracket, the fan, the power line, the furnace panel (ceramic plate, black crystal plate) provided by the foregoing embodiments are provided.
  • the plastic upper and lower covers can be assembled to form a complete induction cooker.
  • the shape of the coil carrier will vary depending on the product of the particular application.
  • the shape of the coil disk carrier is generally disk-shaped.
  • the shape of the coil disk carrier is hollow hemispherical shape, which can also be said to be bowl-shaped.
  • the coil disk carrier may also be cylindrical, that is, a hollow cylindrical shape. That is, the disk in the coil disk does not constitute any limitation on the shape of the coil disk.
  • the invention provides a method of making a coil disk. Specifically, referring to FIG. 2, FIG. 4 and FIG. 9, the method comprises the following steps:
  • S1 is made of LDS plastic coil carrier 100
  • the coil disk carrier 100 is formed by injection molding using LDS plastic.
  • the coil disk can also be formed by other means known in the art.
  • the wire grooves can be formed by other known means in the art.
  • the first way is to form directly on the coil disk carrier by laser etching.
  • the first way to form a wire groove is typically a few microns.
  • the second way is to form a wire groove while injection molding the coil disk carrier, that is, the wire groove is also After molding by injection molding, the inner wall of the wire groove is laser-etched.
  • the depth of the wire grooves formed in this way is typically a few millimeters.
  • the metal layer 300 may be attached to the inner wall of the wire trench 200 by electroless plating, electroplating or chemical deposition.
  • the metal layer 300 may also be attached to the wire trench 200 by other means known in the art.
  • the metal layer 300 may be composed only of the conductive layer 310, or may be composed of the conductive layer 310 and the oxidation preventing layer 320, and may also be composed of the conductive layer 310 and the oxidation preventing layer 320, and the protective layer 330.
  • the material selected for the conductive layer 310 is one of copper, silver or aluminum or a combination of any of the plurality, and the thickness of the conductive layer ranges from 8 ⁇ m to 50 ⁇ m.
  • the material selected for the oxidation preventing layer 320 is one of nickel, silver, aluminum or gold or a combination of any of them, and the thickness of the oxidation preventing layer ranges from 1 ⁇ m to 5 ⁇ m.
  • the material selected for the protective layer 330 is one of gold, nickel, silver or aluminum or a combination of any of several, and the thickness of the protective layer ranges from 0.1 ⁇ m to 0.5 ⁇ m. It is to be noted that the materials and thickness ranges of the conductive layer 310 and the oxidation protecting layer 320, and the protective layer 330 are not limited by the materials and thickness ranges recited in the present embodiment.
  • the laser direct structuring technology is applied to the preparation of the coil, which is not only low in manufacturing cost, but also easy to realize flexibility in design, trial production, mass production, and weight reduction of the coil disk.
  • Process 1 First, use LDS plastic masterbatch ( T-4381LDS) injection molding to form a coil disk carrier, and then laser etching the wire groove on the obtained coil disk carrier with a laser (LPKF 3D IR 160Industrial) at a power of 0.6 kw, and the width of the wire groove is 2 mm. , the spacing between adjacent wire troughs is 10mm, a total of 9 lasers, and then the metal layer is formed on the inner wall of the wire groove according to the process shown in Table 1. Specifically, the wire trough is first cleaned with high-pressure water, and then passed through chemistry.
  • LDS plastic masterbatch T-4381LDS
  • a thin copper layer is formed on the inner wall of the plating tank, and then copper plating is continued by electroplating to form a copper layer having a thickness of 8 ⁇ m on the inner wall of the wire groove, and then a nickel layer having a thickness of 3 ⁇ m is formed on the copper layer by electroless plating.
  • the layer is further formed by forming a gold (Au) layer having a thickness of 0.1 ⁇ m on the nickel layer by flash plating, and then drying to obtain a coil disk.
  • Au gold
  • the coil coil safety current produced by the process can reach 9A, and the current safe current of the electromagnetic heating coil coil is generally about 6-12A.
  • Process 2 First, use LDS plastic masterbatch ( E820Ilds) injection molding to form a coil carrier, and then laser etching the wire groove on the obtained coil carrier with a laser (LPKF 3D IR 160Industrial) at a power of 0.9 kw, and the obtained groove has a width of 1.5 mm, adjacent The spacing between the troughs is 10mm, a total of 12 lasers are formed, and then a metal layer is formed on the inner wall of the trough according to the process shown in Table 2. Specifically, the trough is cleaned by high-pressure water first, and then electrolyzed through the trough.
  • a thin copper layer is formed on the inner wall, and then copper plating is continued by electroplating to form a copper layer having a thickness of 12 ⁇ m on the inner wall of the wire groove, and then a nickel layer having a thickness of 3 ⁇ m is formed on the copper layer by electroless plating, and then A gold layer having a thickness of 0.2 ⁇ m is formed on the nickel layer by flash plating, and then dried to obtain a coil disk.
  • the structure of the coil disk is shown in FIG.
  • the coil coil safety current produced by the process can reach 12A, and the current safety current of the electromagnetic heating coil disk is generally about 6-12A.
  • Process 3 injection molding using LDS plastic masterbatch (Pocan DP7102LDS) to form a coil carrier, and then laser etching the wire groove on the obtained coil carrier with a laser (LPKF 3D IR 160 Industrial) at a power of 0.9 kw.
  • the width of the trunking is 1.5mm, the spacing between adjacent trunkings is 8mm, and the laser is 15 turns in total.
  • a metal layer is formed on the inner wall of the wire trough. Specifically, the high-pressure water pair is used first.
  • the wire trough is cleaned, and then a thin copper layer is formed on the inner wall of the electroless plating tank, and then copper plating is continued by electroplating to form a copper layer having a thickness of 16 ⁇ m on the inner wall of the wire groove, followed by electroless plating on the copper layer.
  • a nickel layer having a thickness of 5 ⁇ m was formed thereon, and a gold layer having a thickness of 0.2 ⁇ m was formed on the nickel layer by flash plating, followed by drying to obtain a coil disk.
  • the coil coil safety current produced by the process can reach 15A, and the current IH heating coil generally has a safe current of about 6-12A.
  • Process 4 First, use LDS plastic masterbatch ( T-4381LDS) injection molding to form a coil disk carrier with a wire groove, wherein the wire groove has an isosceles trapezoidal cross section, and a circular arc transition connection between the side wall of the wire groove and the bottom wall, and the side wall and bottom wall method
  • the angle of the direction is 15-75 degrees (including but not limited to 15 degrees, 25 degrees, 35 degrees, 45 degrees, 55 degrees, 65 degrees, 75 degrees)
  • the width of the top of the slot is 0.5 mm
  • adjacent lines The width of the top of the isolation rib between the grooves is 0.5mm, the depth of the groove is 5mm, a total of 9 turns, and then laser etching is performed on the inner wall of the wire groove with a power of 0.6kw by a laser (LPKF 3D IR 160Industrial), and then according to the table
  • LDS plastic masterbatch T-4381LDS
  • the wire groove is first cleaned by high-pressure water, and then a thin copper layer is formed on the inner wall of the wire groove by electroless plating, and then copper plating is continued by electroplating.
  • a copper layer having a thickness of 8 ⁇ m is formed on the inner wall of the wire groove, and then a nickel layer having a thickness of 3 ⁇ m is formed on the copper layer by electroless plating, and gold (Au) having a thickness of 0.1 ⁇ m is formed on the nickel layer by flash plating.
  • the coil coil safety current produced by this example can reach 9A, and the current IH heating coil generally has a safe current of about 6-12A.
  • LDS plastic masterbatch ( E820Ilds) is injection molded to form a coil disk carrier having a wire groove, wherein the wire groove has an isosceles triangle cross section, and a circular arc transition between the side wall of the wire groove and the bottom wall, and the normal direction of the side wall and the bottom wall
  • the angle of the angle is 15-75 degrees (including but not limited to 15 degrees, 25 degrees, 35 degrees, 45 degrees, 55 degrees, 65 degrees, 75 degrees)
  • the top width of the trunking is 1.5mm, adjacent to the slot
  • the spacing between the two is 0.2mm
  • the depth of the groove is 2mm
  • a total of 12 turns and then laser etching is performed on the inner wall of the wire groove with a power of 0.9kw using a laser (LPKF 3D IR 160Industrial), and then according to the above Table 2.
  • a metal layer is formed on the inner wall of the process wire groove. Specifically, the wire groove is first cleaned by high-pressure water, and then a thin copper layer is formed on the inner wall of the wire groove by electroless plating, and then copper plating is continued by electroplating to the wire groove. A copper layer having a thickness of 12 ⁇ m is formed on the inner wall, and then a nickel layer having a thickness of 3 ⁇ m is formed on the copper layer by electroless plating, and a gold layer having a thickness of 0.2 ⁇ m is formed on the nickel layer by flash plating, and then dried, that is, Get the coil plate.
  • the coil coil safety current produced by the process can reach 12A, and the current IH heating coil generally has a safe current of about 6-12A.
  • Process 6 First, injection molding is performed using LDS plastic masterbatch (Pocan DP7102LDS) to form a coil disk carrier having a wire groove, wherein the cross section of the wire groove is a semi-circular arc shape, and an arc between the side wall of the wire groove and the bottom wall Transition connection, the top of the slot has a width of 1.0mm, the spacing between adjacent slots is 1.0mm, the slot depth is 8mm, a total of 12 turns, and then, using a laser (LPKF 3D IR 160Industrial), 0.9kw Laser etching is performed on the inner wall of the power line groove, and then a metal layer is formed on the inner wall of the wire groove according to the process shown in Table 3 above.
  • LDS plastic masterbatch Pocan DP7102LDS
  • the wire groove is cleaned by high-pressure water first, and then formed on the inner wall of the wire groove by electroless plating.
  • a thinner copper layer followed by copper plating by electroplating, forming a copper layer having a thickness of 16 ⁇ m on the inner wall of the trench, followed by electroless plating to form a nickel layer having a thickness of 5 ⁇ m on the copper layer, and then flash plating
  • a gold layer having a thickness of 0.2 ⁇ m was formed on the nickel layer and then dried to obtain a coil disk.
  • the coil coil safety current produced by the process can reach 15A, and the current IH heating coil generally has a safe current of about 6-12A.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Resistance Heating (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

线圈盘及其制造方法以及含有该线圈盘的电磁加热设备,该线圈盘包括:由LDS塑料形成的线圈盘载体(100),形成于所述线圈盘载体(100)的表面,沿着预定的绕线路径延伸的线槽(200),以及附着于线槽(200)内壁上的金属层(300)。

Description

线圈盘及其制造方法以及含有该线圈盘的电磁加热设备 技术领域
本发明涉及电磁加热技术领域,具体地,涉及线圈盘及其制造方法以及含有该线圈盘的电磁加热设备。
背景技术
目前,IH加热设备(电磁加热设备)的线圈盘都是采用漆包线绕线的方式制作。这种方式制作工艺复杂,而且线圈盘绕线的方式较为单一。由此,亟需一种制作成本低,易实现设计、试制及量产的柔性化的制备线圈盘的方法。
因此,目前线圈盘的相关技术仍有待改进。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种加工简单且体积小的线圈盘。
在本发明的一个方面,本发明提供了一种线圈盘。根据本发明的实施例,该线圈盘包括:由LDS塑料形成的线圈盘载体;形成于线圈盘载体表面、且沿着预定的绕线路径延伸的线槽;以及附着于线槽内壁的金属层。发明人发现,相对于传统线圈盘,本发明的该线圈盘不仅加工简单,且重量轻、体积小、加热效率较高。
根据本发明的实施例,线槽通过激光蚀刻直接在线圈盘载体的表面上形成。
根据本发明的实施例,线槽的宽度范围为0.2mm~10mm。
根据本发明的实施例,相邻线槽之间的间距范围为0.2mm~10mm。
根据本发明的实施例,线槽通过注塑在线圈盘载体上形成,线槽的内壁经过激光蚀刻处理。
根据本发明的实施例,线槽的横截面呈倒梯形状、倒三角形状或者半圆弧状。
根据本发明的实施例,线槽的横截面呈倒等腰梯形状,线槽的侧壁和底壁法向的夹角范围为15°~75°。
根据本发明的实施例,线槽的底壁宽度范围为0.5mm~1.5mm,线槽的深度范围为2mm~8mm。
根据本发明的实施例,相邻两个线槽之间具有隔离筋,隔离筋的横截面呈等腰梯形, 隔离筋顶部的宽度范围是0.2mm~1.0mm。
根据本发明的实施例,线槽的侧壁和线槽的底壁圆弧连接。
根据本发明的实施例,线圈盘载体呈圆盘状、空心半球状或者圆筒状。
根据本发明的实施例,LDS塑料由PC-ABS合金、聚氨酯类、聚酯类、聚碳酸酯类中的一种或者任意几种的混合制成。
根据本发明的实施例,金属层是通过化学镀、电镀、溅射或者化学沉积的方式附着于线槽的内壁上。
根据本发明的实施例,金属层进一步包括:包括附着于所述线槽的内壁上的导电层。
根据本发明的实施例,导电层由铜、银或者铝形成。
根据本发明的实施例,导电层的厚度范围为8μm-50μm。
根据本发明的实施例,金属层进一步包括附着于导电层上的防氧化层。
根据本发明的实施例,防氧化层由镍、银、铝、金中的一种或者任意几种的混合而形成。
根据本发明的实施例,防氧化层的厚度范围为1μm~5μm。
根据本发明的实施例,金属层进一步包括附着于所述防氧化层上的保护层。
根据本发明的实施例,保护层由金、镍、银、铝中的一种或者任意几种的混合而形成。
根据本发明的实施例,保护层的厚度范围为0.1μm~0.5μm。
在本发明的另一方面,本发明提供了一种电磁加热设备。根据本发明的实施例,该电磁加热设备包括前面所述的用于电磁加热的线圈盘。发明人发现,该电磁加热设备不仅加工简单、体积小、重量较轻,且采用的线圈盘等效电阻低,加热效率较高。且前面所述的用于电磁加热的线圈盘的所述特征和优点均适用于该电磁加热设备,在此不再一一赘述。
根据本发明的实施例,电磁加热设备为电磁炉、电热水壶、电饭煲或者电压力锅。
根据本发明的又一方面,本发明提供了一种电磁加热线圈盘的制造方法。根据本发明的实施例,该方法包括:用LDS塑料制成线圈盘载体;在线圈盘载体上形成沿着预定的绕线路径延伸的线槽;在线槽的内壁附着金属层。利用本发明的该方法能够快速有效地制备获得适用于电磁加热设备的线圈盘,发明人创造性的将激光直接成型技术(LDS)应用于制备线圈盘,不仅制作成本低,且易实现设计、试制及量产的柔性化、以及线圈盘的轻型化,且制备获得的线圈盘在线圈匝数不变的情况下,线宽较大,能够有效降低线圈盘的等效电阻,提高加热效率。
根据本发明的实施例,用LDS塑料制成线圈盘载体的方式为注塑成型。
根据本发明的实施例,在线圈盘载体上形成线槽的方式为:通过激光蚀刻直接在线圈 盘载体表面上成型,或者通过注塑方式在线圈盘载体表面上成型,然后再对线槽的内壁进行激光蚀刻处理。
根据本发明的实施例,在线槽的内壁附着金属层包括:通过电镀、化学镀或者电镀和化学镀的组合在线槽的内壁附着导电层。
根据本发明的实施例,形成导电层的材料是铜、银或者铝中的一种或者任意几种的组合,导电层的厚度范围为8μm-50μm。
根据本发明的实施例,在线槽的内壁附着金属层进一步包括:通过电镀方式在导电层上附着防氧化层。
根据本发明的实施例,防氧化层的材料为镍、银、铝或金中的一种或者任意几种的组合,防氧化层的厚度范围为1μm~5μm。
根据本发明的实施例,在线槽的内壁附着金属层更进一步包括:通过电镀方式在防氧化层上附着保护层。
根据本发明的实施例,保护层的材料为金、镍、银或铝中的一种或者任意几种的组合,保护层的厚度范围为0.1μm~0.5μm。
附图说明
图1显示了根据本发明实施例的线圈盘的结构示意图,其中,图1A为线圈盘的主视图,图1B为线圈盘的立体图;
图2显示了根据本发明实施例的通过激光蚀刻直接在线圈盘载体表面形成线槽的示意图;
图3显示了根据本发明实施例的激光蚀刻原理示意图;
图4显示了根据本发明实施例的通过注塑形成线槽的示意图;
图5显示了根据本发明实施例的线圈盘的截面图;
图6显示了根据本发明实施例的线圈盘的截面图;
图7显示了根据本发明实施例的金属层的截面图;
图8显示了根据本发明实施例的线圈的结构示意图,其中,图8A显示了根据本发明实施例的线圈的主视图,图8B显示了根据本发明实施例的线圈的俯视图,图8C显示了根据本发明实施例的线圈的左视图,图8D显示了根据本发明实施例的线圈的立体图;
图9显示了根据本发明实施例的制造线圈盘的方法的流程示意图。
具体实施方式
下面详细描述本发明的实施例。下面描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
线圈盘
在本发明的一个方面,本发明提供了一种线圈盘。根据本发明的实施例,参照图1,该线圈盘包括:由LDS塑料形成的线圈盘载体100;形成于线圈盘载体表面、且沿着预定的绕线路径延伸的线槽200;以及附着于线槽内壁的金属层300。
与传统的在线圈盘上开设贯穿线圈盘的线槽,并在线槽内绕制铜线不一样,根据本发明实施例的线圈盘,通过在线圈盘载体100上设置按照预定绕线路径延伸的线槽200,并在线槽200内附着金属层300。由于只需要在线圈盘载体100上附着金属层300,故附着金属层300的线槽一般来说是不需要贯穿线圈盘载体100厚度的,其深度相对于传统绕制铜线的线槽来说要小得多,线圈盘载体100可以做得很薄,从而降低了线圈盘的厚度,同时降低了线圈盘的重量。而且金属层300的重量远低于铜线的重量,因而可以使得线圈盘更加轻量化。此外这种方式还彻底克服了传统线圈盘在绕线过程中出现的跳线问题,通过电镀和/或化学镀与激光蚀刻的结合能在线圈盘载体100上绕制任意形状的金属层300,实现线圈盘的柔性化加工,即使得线圈盘的加工变得更加简单。
换句话说,本发明提供了一种线圈。根据本发明的实施例,该线圈包括:线圈载体100,在线圈载体100上形成有连续的线槽200,在线槽200的内壁上形成有连续的金属层300,其中,线圈载体100是由LDS塑料母粒形成的。
根据本发明的实施例,LDS塑料选自PC-ABS合金、聚氨酯类、聚酯类、聚碳酸酯类中的至少一种或者任意几种的组合,例如
Figure PCTCN2015082880-appb-000001
T-4381LDS,
Figure PCTCN2015082880-appb-000002
E820Ilds,Pocan DP7102LDS等。线圈载体100可以通过本领域公知的任何方法形成。根据本发明实施例的线圈盘载体100是通过注塑成型形成的。注塑成型容易加工外形复杂和尺寸精确的制品,而且可以根据线圈盘应用的环境不同,将线圈盘载体制成不同的形状和尺寸,例如,当该线圈盘应用于电磁炉或者电热水壶时,线圈盘载体通常呈图1所示的圆盘形,当该线圈盘应用于电饭煲或者电压力锅时,线圈盘载体通常呈如图8所示的空心半球形,或者说为碗型,且线圈盘的尺寸也可以根据实际应用产品的大小而进行调整的。
根据本发明的实施例,线槽200的成型方式有两种,第一种方式为本发明的优先权申请文件中提到的通过激光蚀刻直接在线圈盘载体100的表面上形成。第二种方式是线槽200通过注塑方式在线圈盘载体100上形成,之后再对线槽200的内壁进行激光蚀刻处理。但 无论采用这两种方式中的哪一种,都要对线槽200内壁进行激光蚀刻处理。这是因为形成线圈盘载体100的LDS(激光直接成型)塑料中含有非导电活性有机金属,经过激光蚀刻后,线圈载体100可以释放出活性金属(例如Cu)种子,方便金属层300通过电镀、化学沉积或化学镀附着在线槽200内壁上。
参照图2和图3,第一种成型方式形成的线槽200深度大约为几个微米,宽度范围为0.2mm至10mm,相邻线槽200之间的间距范围为0.2mm至10mm。即第一种成型方式形成的线槽200呈矩形状,该矩形的宽度相对于其长度来说一般小了至少两个数量级。上述第一种成型方式形成的线槽200的宽度范围和相邻线槽200之间的间距范围仅为示例,不构成对本发明的任何限定,本领域的技术人员可以根据实际应用情况做相应的调整。
参照图4-图6,第二种成型方式形成的线槽200的侧壁向外并向上延伸,其横截面可以呈倒三角形状、倒梯形状或者圆弧状等,这种形状的线槽200便于同时对线槽200的侧壁和底壁进行激光蚀刻处理。如果第二种成型方式形成的线槽200向内收的话,比如其横截面呈矩形的话,则很难同时对线槽的侧壁和底壁进行激光蚀刻处理。
以线槽200的横截面呈倒等腰梯形状为例,线槽200底壁的宽度范围为0.5mm~1.5mm,线槽200的深度范围为2mm~8mm,相邻两个线槽200之间具有隔离筋400,隔离筋400的横截面也呈等腰梯形,隔离筋400顶部的宽度范围是0.2mm~1.0mm,线槽200的侧壁和底壁法向的夹角范围为15°~75°。为了防止电流跳变,线槽200的侧壁和底壁之间圆弧过渡。线槽200的侧壁和底壁线槽200的上述尺寸范围能够有效利用线圈盘载体100的整体空间,增加线圈盘的线宽,进而能够有效降低线圈盘的等效电阻,提高加热效率,但线槽200的上述尺寸范围并不构成对本发明的任何限定。
由上可知,第一种成型方式形成的线槽200,金属层300仅仅能附着在线槽200的底壁上,其侧壁可以忽略不计。第二种成型方式形成的线槽200,金属层300不仅能附着在线槽200的底壁上还能附着在线槽200的侧壁上,这样就增加了线槽200上附着的金属层300的宽度。由电阻R=ρ.L/S公式可知,S为金属层300的横截面积,即金属层300的宽度和厚度之积。由于第二种线槽200的成型方式增加了金属层300的宽度,从而在金属层300的长度L(线圈的匝数)和厚度不变的情况下降低了金属层300的电阻,提高了线圈盘的加热效率。由线圈的电感公式L(mH)=(0.08D.D.N.N)/(3D+9W+10H)可以看出,线圈的电感L(mH)和线圈的匝数N成正比,所以降低匝数会显著降低线圈的电感。在金属层300电阻相同的情况下,第二种成型方式形成的线槽200匝数N要小于第一种成型方式形成的线槽200,因而第二种成型方式形成的线槽200上的金属层300的电感也要更小一些。
线槽200的绕线路径需要根据产品的具体情况而定。对于电磁炉来说,线圈盘100呈 圆盘状,线圈盘载体上线槽200的绕线路径呈涡旋型,也可以称之为阿基米德螺旋型。对于电饭煲来说,其线圈盘载体(也可以称之为加热底盘)呈半球形,相应的线槽200的绕线路径呈凹陷的涡旋型。此外,如果将线槽200开设在电饭煲的外锅侧壁上,则线槽的绕线路径相应的会呈圆柱状的螺旋形。
根据本发明的实施例,形成所述金属层的方法不受特别限制,只要能够有效在线槽内壁形成金属层,本领域技术人员可以根据实际情况灵活选择。根据本发明实施例的金属层300通过化学镀、电镀、化学沉积或者溅射的方式附着于线槽200的内壁。化学镀、电镀、化学沉积要求线槽200经过激光蚀刻处理,以便于金属层300的附着。溅射方式不要求线槽200做激光蚀刻处理,但溅射的定位精度比较差。
参照图7,金属层300可以仅包括导电层310,导电层310的具体材料种类不受特别限制,本领域技术人员可以灵活选择。根据本发明实施例的导电层310选择的材料是铜、银或者铝中的一种或者任意几种的组合,优选铜,铜的导电效果较好,能够进一步降低线圈盘的等效电阻,提高其加热效率,且成本相对较低。导电层310的厚度不受特别限制,本实施方案的导电层310的厚度范围为8微米~50微米。厚度范围在该区间内的导电层能够在保证导电效果的同时,降低成本。如果导电层310的厚度过小,则其导电效果不佳,如果导电层310的厚度过大,则成本较高。导电层310可以仅通过化学镀方式附着在线槽200的内壁,也可以仅通过电镀方式附着在线槽200的内壁,还可以通过化学镀和电镀的组合的方式附着在线槽200的内壁。例如,要在线槽200内壁形成厚度为10微米厚的铜层(即导电层310),可以直接通过单一的电镀或者化学镀形成厚度为10微米的铜层,也可以预先通过化学镀在线槽200内壁形成厚度为3微米的化学镀铜层,然后再通过电镀形成厚度为7微米的电镀铜层,以便获得厚度为10微米的铜层。
金属层300还可以进一步包括附着在导电层310上的防氧化层320,防氧化层320的具体材料不受特别限制,本领域技术人员可以灵活选择,比如可以由镍、银、铝或金形成。根据本发明实施例的防氧化层320由镍形成。防氧化层320能在保证导电层310导电效果的同时,有效防止底层310氧化。防氧化层320的厚度不受特别限制,根据本发明实施例的防氧化层320的厚度范围为1微米~5微米。防氧化层320附着在导电层310上的方式不受限制,比如说可以为化学镀、化学沉积或者电镀,根据本发明实施例的防氧化层320通过电镀在导电层310上形成,不仅操作方便,易于控制,且成本低廉。
金属层300还可以更进一步包括附着在防氧化层320上的保护层330,保护层330除了起到保护防氧化层和导电层的作用外,同时具有较好的钎焊性,用于将电极片焊接在金属层300上,以引入外部的电流,因此保护层330需要选用焊接性能较好的材料,比如金、 镍、银或铝。根据本发明实施例的保护层330选择的材料是金,金不仅焊接性能好,而且由于是惰性金属,能够进一步的防止导电层310的氧化,还能使得线圈盘更加美观。保护层330的厚度不受特别限制,根据本发明实施例的保护层330的厚度为0.1微米~0.5微米,以在保证焊接性能的同时,节约材料。保护层330附着在防氧化层320上的方式不受限制,比如说可以为化学镀、化学沉积或者电镀,本实施方案中,保护层330通过电镀在防氧化层320上形成,不仅操作方便,易于控制,且成本低廉。
电磁加热设备
在本发明的另一方面,本发明提供了一种电磁加热设备。根据本发明的实施例,该电磁加热设备包括本发明前面所述的线圈盘,即该线圈盘包括:由LDS塑料形成的线圈盘载体100;形成于线圈盘载体100的表面、且沿着预定的绕线路径延伸的线槽200;以及附着于线槽的内壁的金属层300。线圈盘载体100的材料和成型方式,线槽的成型方式,金属层的组成和附着于线槽内壁的方式均可以参照前面线圈盘的描述,此处不再赘述。
具体的,该电磁加热设备包括电磁炉、电热水壶、电饭煲和电压力锅。对于电磁炉来说,将前述实施例提供的线圈盘与功率板、主机板、灯板(操控显示板)、温控、热敏支架、风机、电源线、炉面板(瓷板、黑晶板)、塑胶上下盖等组装起来就可以构成一个完整的电磁炉。
值得说明的是,根据具体应用的产品不同,线圈盘载体的形状会有不同的变化。比如对于电磁炉和电热水来说,线圈盘载体的形状一般为圆盘状。对于电饭煲和电压力锅而言,线圈盘载体的形状则为空心的半球状,也可以说呈碗状。而且如果要使得线圈盘载体直接对电饭煲和电压力锅的内锅侧壁加热的话,线圈盘载体还可以为圆筒状,即空心的圆柱状。即线圈盘中的盘并不对线圈盘的形状构成任何限定。
制造线圈盘的方法
在本发明的又一方面,本发明提供一种制造线圈盘的方法。具体而言,参照图2、图4和图9,该方法包括如下步骤:
S1用LDS塑料制成线圈盘载体100
根据本发明的实施例,线圈盘载体100都是利用LDS塑料通过注塑成型的,当然线圈盘还可以采用本领域其它公知方式成型。
S2在线圈盘载体上形成沿着预定的绕线路径延伸的线槽
根据本发明的实施例,线槽成型方式有两种,当然线槽还可以通过本领域其它公知方式成型。第一种方式是在线圈盘载体上通过激光蚀刻直接成型,第一种方式形成的线槽深度一般为几个微米。第二种方式是在注塑形成线圈盘载体的同时形成线槽,即线槽也是通 过注塑方式成型的,之后再对线槽的内壁进行激光蚀刻处理。这种方式形成的线槽的深度一般有几个毫米。
S3在线槽的内壁附着金属层
根据本发明的实施例,金属层300可以通过化学镀、电镀或者化学沉积的方式附着于线槽200的内壁,当然金属层300还可以通过本领域其它公知方式附着在线槽200上。此外金属层300可以仅由导电层310组成,也可以由导电层310和防氧化层320组成,还可以由导电层310和防氧化层320、和保护层330组成。根据本发明的实施例,导电层310选用的材料是铜、银或者铝中的一种或者任意几种的组合,导电层的厚度范围为8μm~50μm。防氧化层320选用的材料为镍、银、铝或金中的一种或者任意几种的组合,防氧化层的厚度范围为1μm~5μm。保护层330选用的材料为金、镍、银或铝中的一种或者任意几种的组合,保护层的厚度范围为0.1μm~0.5μm。值得说明的是,导电层310和防氧化层320、和保护层330的材料和厚度范围并不受本实施所列举材料和厚度范围的限制。
根据本发明实施例的线圈盘制造方法,将激光直接成型技术(LDS)应用于制备线圈,不仅制作成本低,且易实现设计、试制及量产的柔性化、以及线圈盘的轻型化。
根据以上制造线圈盘的方法,下面提供6种制造线圈盘的具体工艺加以说明:
工艺1:首先,利用LDS塑料母粒(
Figure PCTCN2015082880-appb-000003
T-4381LDS)注塑成型,形成线圈盘载体,接着,利用镭射机(LPKF 3D IR 160Industrial),以0.6kw的功率在制得的线圈盘载体上激光蚀刻线槽,得到的线槽的宽度为2mm,相邻线槽之间的间距为10mm,共镭射9圈,然后按照表1所示的工艺在线槽的内壁上形成金属层,具体地,先利用高压水对线槽进行清洗,然后通过化学镀在线槽内壁上形成一层较薄的铜层,接着通过电镀继续镀铜,至在线槽内壁上形成厚度为8微米的铜层,接着通过化学镀在铜层上形成厚度为3微米的镍层,再通过闪镀在镍层上形成厚度为0.1微米的金(Au)层,然后进行干燥,即得线圈盘,线圈盘的结构示意图见图8。
表1
Figure PCTCN2015082880-appb-000004
Figure PCTCN2015082880-appb-000005
通过检测,本工艺制作的线圈盘安全电流可以达到9A,目前电磁加热的线圈盘安全电流一般在6-12A左右。
工艺2:首先,利用LDS塑料母粒(
Figure PCTCN2015082880-appb-000006
E820Ilds)注塑成型,形成线圈载体,接着,利用镭射机(LPKF 3D IR 160Industrial),以0.9kw的功率在制得的线圈载体上激光蚀刻线槽,得到的线槽的宽度为1.5mm,相邻线槽之间的间距为10mm,共镭射12圈,然后按照表2所示的工艺在线槽的内壁上形成金属层,具体地,先利用高压水对线槽进行清洗,然后通过化学镀在线槽内壁上形成一层较薄的铜层,接着通过电镀继续镀铜,至在线槽内壁上形成厚度为12微米的铜层,接着通过化学镀在铜层上形成厚度为3微米的镍层,再通过闪镀在镍层上形成厚度为0.2微米的金层,然后进行干燥,即得线圈盘,线圈盘的结构示意图见图8。
表2
Figure PCTCN2015082880-appb-000007
通过检测,本工艺制作的线圈盘安全电流可以达到12A,目前电磁加热线圈盘的安全电流一般在6-12A左右。
工艺3:利用LDS塑料母粒(Pocan DP7102LDS)注塑成型,形成线圈载体,接着,利用镭射机(LPKF 3D IR 160Industrial),以0.9kw的功率在制得的线圈载体上激光蚀刻线槽,得到的线槽的宽度为1.5mm,相邻线槽之间的间距为8mm,共镭射15圈,然后按照下表3所示的工艺在线槽的内壁上形成金属层,具体地,先利用高压水对线槽进行清洗,然后通过化学镀在线槽内壁上形成一层较薄的铜层,接着通过电镀继续镀铜,至在线槽内壁上形成厚度为16微米的铜层,接着通过化学镀在铜层上形成厚度为5微米的镍层,再通过闪镀在镍层上形成厚度为0.2微米的金层,然后进行干燥,即得线圈盘。
表3
Figure PCTCN2015082880-appb-000008
通过检测,本工艺制作的线圈盘安全电流可以达到15A,目前IH加热的线圈一般安全电流在6-12A左右。
工艺4:首先,利用LDS塑料母粒(
Figure PCTCN2015082880-appb-000009
T-4381LDS)注塑成型,形成具有线槽的线圈盘载体,其中,线槽的横截面为等腰梯形,且线槽侧壁与底壁之间圆弧过渡连接,且侧壁与底壁法向方向的夹角为15-75度(例如包括但不限于15度、25度、35度、45度、55度、65度、75度),线槽顶部的宽度为0.5mm,相邻线槽之间隔离筋顶部的宽度为0.5mm,线槽深度为5mm,共9圈,接着,利用镭射机(LPKF 3D IR 160Industrial),以0.6kw的功率在线槽内壁上进行激光蚀刻,然后按照表1所示的工艺在线槽的内壁上形成金属层,具体地,先利用高压水对线槽进行清洗,然后通过化学镀在线槽内壁上形成一层较薄的铜层,接着通过电镀继续镀铜,至在线槽内壁上形成厚度为8微米的铜层,接着通过化学镀在铜层上形成厚度为3微米的镍层,再通过闪镀在镍层上形成厚度为0.1微米的金(Au)层,然后进行干燥,即得线圈盘,线圈盘的结构示意图见图1。
通过检测,本实例制作的线圈盘安全电流可以达到9A,目前IH加热的线圈一般安全电流在6-12A左右。
工艺5:首先,利用LDS塑料母粒(
Figure PCTCN2015082880-appb-000010
E820Ilds)注塑成型,形成具有线槽的线圈盘载体,其中,线槽的横截面为等腰三角形,且线槽侧壁与底壁之间圆弧过渡连接,且侧壁与底壁法向方向的夹角为15-75度(例如包括但不限于15度、25度、35度、45度、55度、65度、75度),线槽的顶部宽度为1.5mm,相邻线槽之间的间距为0.2mm,线槽深度为2mm,共12圈,接着,利用镭射机(LPKF 3D IR 160Industrial),以0.9kw的功率在线槽内壁上进行激光蚀刻,然后按照上表2所示的工艺在线槽的内壁上形成金属层,具体地,先利用高压水对线槽进行清洗,然后通过化学镀在线槽内壁上形成一层较薄的铜层,接着通过电镀继续镀铜,至在线槽内壁上形成厚度为12微米的铜层, 接着通过化学镀在铜层上形成厚度为3微米的镍层,再通过闪镀在镍层上形成厚度为0.2微米的金层,然后进行干燥,即得线圈盘。
通过检测,本工艺制作的线圈盘安全电流可以达到12A,目前IH加热的线圈一般安全电流在6-12A左右。
工艺6:首先,利用LDS塑料母粒(Pocan DP7102LDS)注塑成型,形成具有线槽的线圈盘载体,其中,线槽的横截面为半圆弧形,且线槽侧壁与底壁之间圆弧过渡连接,线槽的顶部宽度为1.0mm,相邻线槽之间的间距为1.0mm,线槽深度为8mm,共12圈,接着,利用镭射机(LPKF 3D IR 160Industrial),以0.9kw的功率在线槽内壁上进行激光蚀刻,然后按照上表3所示的工艺在线槽的内壁上形成金属层,具体地,先利用高压水对线槽进行清洗,然后通过化学镀在线槽内壁上形成一层较薄的铜层,接着通过电镀继续镀铜,至在线槽内壁上形成厚度为16微米的铜层,接着通过化学镀在铜层上形成厚度为5微米的镍层,再通过闪镀在镍层上形成厚度为0.2微米的金层,然后进行干燥,即得线圈盘。
通过检测,本工艺制作的线圈盘安全电流可以达到15A,目前IH加热的线圈一般安全电流在6-12A左右。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (36)

  1. 一种用于电磁加热的线圈盘,其特征在于,包括:
    线圈盘载体,所述线圈盘载体由LDS塑料形成;
    线槽,形成于所述线圈盘载体的表面,沿着预定的绕线路径延伸;
    金属层,附着于所述线槽的内壁。
  2. 根据权利要求1所述的线圈盘,其特征在于,所述线槽通过激光蚀刻直接在所述线圈盘载体的表面上形成。
  3. 根据权利要求2所述的线圈盘,其特征在于,所述线槽的宽度范围为0.2mm~10mm。
  4. 根据权利要求3所述的线圈盘,其特征在于,相邻所述线槽之间的间距范围为0.2mm~10mm。
  5. 根据权利要求1所述的线圈盘,其特征在于,所述线槽通过注塑方式在所述线圈盘载体上形成,所述线槽的内壁经过激光蚀刻处理。
  6. 根据权利要求5所述的线圈盘,其特征在于,所述线槽的横截面呈倒梯形状、倒三角形状或者半圆弧状。
  7. 根据权利要求6所述的线圈盘,其特征在于,所述线槽的横截面呈倒等腰梯形状,所述线槽的侧壁和底壁法向的夹角范围为15°~75°。
  8. 根据权利要求7所述的线圈盘,其特征在于,所述线槽底壁的宽度范围为0.5mm~1.5mm,所述线槽的深度范围为2mm~8mm。
  9. 根据权利要求8所述的线圈盘,其特征在于,相邻两个所述线槽之间具有隔离筋,所述隔离筋的横截面呈等腰梯形,所述隔离筋顶部的宽度范围是0.2mm~1.0mm。
  10. 根据权利要求7所述的线圈盘,其特征在于,所述线槽的侧壁和所述线槽的底壁圆弧连接。
  11. 根据权利要求1所述的线圈盘,其特征在于,所述线圈盘载体呈圆盘状、空心半球状或者圆筒状。
  12. 根据权利要求1所述的线圈盘,其特征在于,所述LDS塑料由PC-ABS合金、聚氨酯类、聚酯类、聚碳酸酯类中的一种或者任意几种的混合制成。
  13. 根据权利要求1所述的线圈盘,其特征在于,所述金属层是通过化学镀、电镀、溅射或者化学沉积的方式附着于所述线槽的内壁。
  14. 根据权利要求1至12任意一项所述的线圈盘,其特征在于,所述金属层进一步包括附着于所述线槽的内壁上的导电层。
  15. 根据权利要求14所述的线圈盘,其特征在于,所述导电层由铜、银或者铝中的一 种或者任意几种混合形成。
  16. 根据权利要求14所述的线圈盘,其特征在于,所述导电层的厚度范围为8μm~50μm。
  17. 根据权利要求14所述的线圈盘,其特征在于,所述金属层进一步包括附着于所述导电层上的防氧化层。
  18. 根据权利要求17所述的线圈盘,其特征在于,所述防氧化层由镍、银、铝、金中的一种或者任意几种混合而形成。
  19. 根据权利要求17所述的线圈盘,其特征在于,所述防氧化层的厚度范围为1μm~5μm。
  20. 根据权利要求17所述的线圈盘,其特征在于,所述金属层进一步包括附着于所述防氧化层上的保护层。
  21. 根据权利要求20所述的线圈盘,其特征在于,所述保护层由金、镍、银、铝中的一种或者任意几种的混合而形成。
  22. 根据权利要求20所述的线圈盘,其特征在于,所述保护层的厚度范围为0.1μm~0.5μm。
  23. 一种电磁加热设备,其特征在于,包括权利要求1至22任意一项所述的用于电磁加热的线圈盘。
  24. 根据权利要求23所述的电磁加热设备,其特征在于,所述电磁加热设备为电磁炉、电热水壶、电饭煲或者电压力锅。
  25. 一种电磁加热线圈盘的制造方法,其特征在于,
    用LDS塑料制成线圈盘载体;
    在线圈盘载体上形成线槽,线槽沿着预定的绕线路径延伸;
    在线槽的内壁附着金属层。
  26. 根据权利要求25所述的线圈盘的制造方法,其特征在于,所述用LDS塑料制成线圈盘载体的方式为注塑成型。
  27. 根据权利要求25所述的线圈盘的制造方法,其特征在于,所述在线圈盘载体上形成线槽的方式为:
    通过激光蚀刻直接在线圈盘载体表面上成型,或者通过注塑方式在线圈盘载体表面上成型,然后再对线槽的内壁进行激光蚀刻处理。
  28. 根据权利要求25所述的线圈盘的制造方法,其特征在于,所述在线槽的内壁附着金属层包括:
    通过电镀、化学镀或者电镀和化学镀的结合在所述线槽的内壁附着导电层。
  29. 根据权利要求28所述的线圈盘的制造方法,其特征在于,所述导电层的材料是铜、银或者铝中的一种或者任意几种的组合。
  30. 根据权利要求29所述的线圈盘的制造方法,其特征在于,所述导电层的厚度范围为8μm~50μm。
  31. 根据权利要求28所述的线圈盘的制造方法,其特征在于,所述在线槽的内壁附着金属层进一步包括:
    通过电镀方式在所述导电层上附着防氧化层。
  32. 根据权利要求31所述的线圈盘的制造方法,其特征在于,所述防氧化层的材料为镍、银、铝或金中的一种或者任意几种的组合。
  33. 根据权利要求32所述的线圈盘的制造方法,其特征在于,所述防氧化层的厚度范围为1μm~5μm。
  34. 根据权利要求31所述的线圈盘的制造方法,其特征在于,所述在线槽的内壁附着金属层更进一步包括:
    通过电镀方式在所述防氧化层上附着保护层。
  35. 根据权利要求34所述的线圈盘的制造方法,其特征在于,所述保护层的材料为金、镍、银或铝中的一种或者任意几种的组合。
  36. 根据权利要求35所述的线圈盘的制造方法,其特征在于,所述保护层的厚度范围为0.1μm~0.5μm。
PCT/CN2015/082880 2015-03-09 2015-06-30 线圈盘及其制造方法以及含有该线圈盘的电磁加热设备 WO2016141645A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510102271.2 2015-03-09
CN201510102271.2A CN106034367B (zh) 2015-03-09 2015-03-09 线圈及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2016141645A1 true WO2016141645A1 (zh) 2016-09-15

Family

ID=56879950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082880 WO2016141645A1 (zh) 2015-03-09 2015-06-30 线圈盘及其制造方法以及含有该线圈盘的电磁加热设备

Country Status (2)

Country Link
CN (1) CN106034367B (zh)
WO (1) WO2016141645A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020000049A1 (en) * 2018-06-29 2020-01-02 Breville Pty Limited An induction jug heater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309976B (zh) * 2017-07-28 2021-12-21 佛山市顺德区美的电热电器制造有限公司 Lds线圈盘及具有该lds线圈盘的电磁烹饪器具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029926A (en) * 1974-10-29 1977-06-14 Roper Corporation Work coil for use in an induction cooking appliance
US4430543A (en) * 1979-03-08 1984-02-07 Tetra Pak Developpement Sa Inductor for induction welding and a method for the manufacture of the same
CN201015233Y (zh) * 2006-10-19 2008-01-30 胡兆火 加热线圈盘
JP2008159759A (ja) * 2006-12-22 2008-07-10 Mitsui Eng & Shipbuild Co Ltd 誘導加熱を用いた熱処理方法および熱処理装置
CN102404890A (zh) * 2010-09-17 2012-04-04 江苏省晶石磁性材料与器件工程技术研究有限公司 一种电磁炉线盘的制作工艺
CN204014143U (zh) * 2014-07-29 2014-12-10 佛山市顺德区美的电热电器制造有限公司 线圈盘和电磁炉

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841760B (zh) * 2009-12-07 2017-03-15 瑞声声学科技(常州)有限公司 微型发声器的制造方法
CN103854825A (zh) * 2012-12-07 2014-06-11 台达电子(郴州)有限公司 一种磁性被动元件及其制造方法
CN105531309A (zh) * 2013-06-04 2016-04-27 沙特基础全球技术有限公司 具有激光直接成型功能的导热聚合物组合物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029926A (en) * 1974-10-29 1977-06-14 Roper Corporation Work coil for use in an induction cooking appliance
US4430543A (en) * 1979-03-08 1984-02-07 Tetra Pak Developpement Sa Inductor for induction welding and a method for the manufacture of the same
CN201015233Y (zh) * 2006-10-19 2008-01-30 胡兆火 加热线圈盘
JP2008159759A (ja) * 2006-12-22 2008-07-10 Mitsui Eng & Shipbuild Co Ltd 誘導加熱を用いた熱処理方法および熱処理装置
CN102404890A (zh) * 2010-09-17 2012-04-04 江苏省晶石磁性材料与器件工程技术研究有限公司 一种电磁炉线盘的制作工艺
CN204014143U (zh) * 2014-07-29 2014-12-10 佛山市顺德区美的电热电器制造有限公司 线圈盘和电磁炉

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020000049A1 (en) * 2018-06-29 2020-01-02 Breville Pty Limited An induction jug heater
CN112385312A (zh) * 2018-06-29 2021-02-19 布瑞威利私人有限公司 感应壶加热器

Also Published As

Publication number Publication date
CN106034367A (zh) 2016-10-19
CN106034367B (zh) 2019-10-29

Similar Documents

Publication Publication Date Title
ES2687697T3 (es) Un dispositivo de cocina inalámbrico operado sobre un fogón de calentamiento por inducción
TWI658529B (zh) 提高溫度均勻性之基座加熱器局部溫度控制
WO2001031978A1 (fr) Plaque chauffante en ceramique
JP2015018704A (ja) セラミックヒータ
WO2016141645A1 (zh) 线圈盘及其制造方法以及含有该线圈盘的电磁加热设备
CN106793228B (zh) 一种线圈盘及其制造方法、电磁加热设备
CN110226222A (zh) 具有射频隔离式加热器的静电吸盘
WO2001078456A1 (fr) Element ceramique chauffant
CN106923685B (zh) 适于电磁加热的内锅及具有其的烹饪器具
JP6429170B2 (ja) 堆積チャンバ向けの冷却式の反射性のアダプタプレート
CN105762102A (zh) 支承装置和包含它的衬底处理设备
CN106900098B (zh) 一种线圈盘及其制作方法、电磁加热设备
JP2002184558A (ja) ヒータ
CN106376119A (zh) 线圈盘及电磁加热设备
CN106804069B (zh) 一种线圈盘及其制作方法、电磁加热设备
WO2018064308A1 (en) Heating apparatus with controlled thermal contact
WO2013132955A1 (ja) 熱処理装置
TWI480408B (zh) Magnetron sputtering gun device
CN209098796U (zh) 高效微型加热器
CN109309977B (zh) 用于电磁烹饪器具的线圈盘及其制造方法、电磁烹饪器具
CN206963123U (zh) 电磁烹饪器具和用于电磁烹饪器具的线圈盘
CN204786629U (zh) 一种球面电陶炉发热盘
CN219645557U (zh) 发热管组件和烹饪设备
CN205179407U (zh) 一种线圈盘和电磁加热设备
JP2004303736A (ja) セラミックヒータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884327

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15884327

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/06/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15884327

Country of ref document: EP

Kind code of ref document: A1