WO2016140069A1 - 基地局、無線端末、及びモビリティ管理装置 - Google Patents

基地局、無線端末、及びモビリティ管理装置 Download PDF

Info

Publication number
WO2016140069A1
WO2016140069A1 PCT/JP2016/054704 JP2016054704W WO2016140069A1 WO 2016140069 A1 WO2016140069 A1 WO 2016140069A1 JP 2016054704 W JP2016054704 W JP 2016054704W WO 2016140069 A1 WO2016140069 A1 WO 2016140069A1
Authority
WO
WIPO (PCT)
Prior art keywords
profile
wireless terminal
base station
control unit
profiles
Prior art date
Application number
PCT/JP2016/054704
Other languages
English (en)
French (fr)
Inventor
真人 藤代
ヘンリー チャン
空悟 守田
柏瀬 薦
童 方偉
智春 山▲崎▼
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2017503409A priority Critical patent/JP6654184B2/ja
Publication of WO2016140069A1 publication Critical patent/WO2016140069A1/ja
Priority to US15/691,430 priority patent/US10631243B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00692Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using simultaneous multiple data streams, e.g. cooperative multipoint [CoMP], carrier aggregation [CA] or multiple input multiple output [MIMO]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/20Transfer of user or subscriber data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a base station, a wireless terminal, and a mobility management device used in a mobile communication system in which a plurality of functions related to wireless communication are defined.
  • a wireless terminal is specified to notify the network of all functions supported by itself.
  • the network selects at least one function from all functions supported by the wireless terminal, and sets the selected function in the wireless terminal.
  • the wireless terminal When the wireless terminal supports a large number of functions that require high-level arithmetic processing, it is assumed that all the functions are set from the network (that is, a peak load state), and has high processing performance. It is common for wireless terminals to be designed.
  • Non-Patent Document 1 a combination of functions that can be executed simultaneously is defined as a “profile” in the specification, and the functions to be executed by the wireless terminal can be flexibly switched in units of profiles. Techniques that enable this have been studied (see, for example, Non-Patent Document 1).
  • the base station is used in a mobile communication system in which a plurality of functions related to wireless communication are defined.
  • the base station causes the radio terminal to execute, based on the arithmetic processing unit information, a receiving unit that receives arithmetic processing unit information related to a load status or an attribute of an arithmetic processing unit provided in the radio terminal from the radio terminal A control unit that selects at least one function to be selected, and a transmission unit that transmits information indicating the selected function to the wireless terminal.
  • the wireless terminal according to the second feature is used in a mobile communication system in which a plurality of functions related to wireless communication are defined.
  • the wireless terminal includes an arithmetic processing unit for executing a function selected by a base station, a transmission unit for transmitting arithmetic processing unit information related to a load status or an attribute of the arithmetic processing unit to the base station, and the base station A receiving unit that receives information indicating the function selected by the base station from the base station.
  • the wireless terminal according to the third feature is used in a mobile communication system in which a profile including a plurality of functions related to wireless communication is defined.
  • the wireless terminal transmits, to a base station, a control unit that selects a specific profile corresponding to a power saving mode from among a plurality of profiles supported by the wireless terminal, and recommended profile information indicating the specific profile.
  • the base station according to the fourth feature is used in a mobile communication system in which a profile including a plurality of functions related to wireless communication is defined.
  • the base station sets, in the wireless terminal, from among a plurality of profiles supported by the wireless terminal based on the battery information and a receiving unit that receives battery information related to a remaining battery level of the wireless terminal And a control unit for selecting a profile to be performed.
  • the wireless terminal according to the fifth feature is used in a mobile communication system in which a profile including a plurality of functions related to wireless communication is defined.
  • the plurality of functions include a terminal category indicating wireless communication performance.
  • the wireless terminal includes a control unit that selects a terminal category common to a plurality of profiles supported by the wireless terminal, and a transmission unit that transmits recommended category information indicating the common terminal category to a base station.
  • the base station is used in a mobile communication system in which a profile including a plurality of functions related to wireless communication is defined.
  • the plurality of functions include a terminal category indicating wireless communication performance.
  • the base station includes a receiving unit that receives recommended category information indicating a terminal category common to a plurality of profiles supported by a wireless terminal from the wireless terminal, and includes the common terminal category based on the recommended category information.
  • a control unit that selects a profile to be set for the wireless terminal from a plurality of profiles.
  • the base station according to the seventh feature is used in a mobile communication system in which a profile including a plurality of functions related to wireless communication is defined.
  • the base station notifies the other base station of a part of one or a plurality of profiles set in the wireless terminal when the wireless terminal performs a double connection communication in which the wireless terminal is connected to the base station and another base station.
  • a control unit is provided.
  • the wireless terminal according to the eighth feature is used in a mobile communication system in which a profile including a plurality of functions related to wireless communication is defined.
  • the wireless terminal includes a control unit for notifying the first base station of a plurality of profile groups when the wireless terminal performs double connection communication in which the wireless terminal is connected to the first base station and the second base station.
  • Each of the plurality of profile groups includes a plurality of profiles supported by the own wireless terminal.
  • the wireless terminal according to the ninth feature is used in a mobile communication system in which a profile including a plurality of functions related to wireless communication is defined.
  • the wireless terminal includes a transmission unit that transmits function information indicating all functions supported by the own wireless terminal and profile information indicating a profile supported by the own wireless terminal to the base station.
  • the profile information includes only functions not included in the profile among all functions supported by the own wireless terminal.
  • the wireless terminal according to the tenth feature is used in a mobile communication system in which a profile including a plurality of functions related to wireless communication is defined.
  • the wireless terminal includes a transmission unit that transmits a plurality of profile information indicating a plurality of profiles supported by the own wireless terminal and function information indicating a function common to the plurality of profiles to a base station.
  • Each of the plurality of profile information includes a function different from the common function.
  • the wireless terminal according to the eleventh feature defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the wireless terminal is prohibited from transmitting the profile change request until a predetermined condition is satisfied, and a transmission unit that transmits a profile change request for requesting a change to the profile selected by the wireless terminal to the base station.
  • a control unit that maintains the prohibited state and releases the prohibited state when the predetermined condition is satisfied.
  • the base station defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the base station a transmitting unit that transmits a threshold value that defines a predetermined condition to the wireless terminal, a receiving unit that receives a profile change request for requesting a change to the profile selected by the wireless terminal, Is provided.
  • the predetermined condition is a condition for canceling a prohibition state in which transmission of the profile change request is prohibited in the wireless terminal.
  • the wireless terminal defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the wireless terminal transmits a change request to the second profile to the base station or receives a change request to the second profile from the base station And a control unit that changes to the second profile at a second timing after a lapse of a specified time from the first timing at which the change request is transmitted or received.
  • the base station defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the base station transmits a change request to the second profile to a wireless terminal in which the first profile is set, or receives a change request to the second profile from the wireless terminal And a control unit that changes to the second profile at a second timing after a lapse of a specified time from the first timing at which the change request is transmitted or received.
  • the wireless terminal defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the wireless terminal transmits a response to the change request to the second profile to the base station, or sends a response to the change request to the second profile to the base station And a control unit that changes to the second profile at a second timing after a lapse of a specified time from the first timing at which the response is transmitted or received.
  • the base station defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the base station transmits a response to the change request to the second profile to the wireless terminal in which the first profile is set, or sends a response to the change request to the second profile from the wireless terminal.
  • the wireless terminal defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the wireless terminal selects a second profile different from the first profile, and a profile for requesting a change to the second profile
  • a transmission unit that transmits the change request to the base station.
  • the control unit selects the second profile based on the first profile so that at least a part of the communication state is maintained.
  • the base station according to the eighteenth feature defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the base station performs a handover of a radio terminal from its own base station to another base station, the profile supported by the radio terminal without passing through the mobility management apparatus or via the mobility management apparatus Is provided to the other base station.
  • the mobility management apparatus defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the mobility management apparatus notifies the second base station of a profile supported by the radio terminal when the radio terminal is handed over from the first base station to the second base station. Is provided.
  • the base station defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the base station when performing handover of a radio terminal from another base station to its own base station, a control unit that acquires a profile supported by the radio terminal from the other base station or a mobility management device Prepare.
  • the wireless terminal according to the 21st feature defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the wireless terminal performs handover of the wireless terminal from the first base station to the second base station, the wireless terminal sets a profile to be used for communication with the wireless terminal by the second base station.
  • the control part acquired from 1 base station is provided.
  • the base station according to the twenty-second feature defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the base station includes a transmission unit that broadcasts information indicating whether or not the base station is profile-compatible to a wireless terminal.
  • the wireless terminal according to the 23rd feature defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the wireless terminal When the wireless terminal is connected to a base station that does not support a profile, the wireless terminal includes a control unit that notifies only a part of the functions supported by the wireless terminal to the base station that does not support the profile.
  • the wireless terminal according to the twenty-fourth feature defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the wireless terminal includes a control unit that detaches from a network and attaches to the network before connecting to a non-profile-compatible base station.
  • the wireless terminal according to the 25th feature defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the wireless terminal includes a control unit that notifies the mobility management apparatus of any one of profiles supported by the wireless terminal as a specified profile.
  • 1 is a configuration diagram of an LTE system. It is a protocol stack figure of a radio
  • the base stations according to the first to fifth embodiments are used in a mobile communication system in which a plurality of functions related to wireless communication are defined.
  • the base station causes the radio terminal to execute, based on the arithmetic processing unit information, a receiving unit that receives arithmetic processing unit information related to a load status or an attribute of an arithmetic processing unit provided in the radio terminal from the radio terminal A control unit that selects at least one function to be selected, and a transmission unit that transmits information indicating the selected function to the wireless terminal.
  • the arithmetic processing unit information includes information indicating a processing capacity that is actually available in the arithmetic processing unit.
  • the arithmetic processing unit information includes information indicating the processing performance of the arithmetic processing unit.
  • a load estimated value that is an estimated value of a processing load required for execution is defined for each of the plurality of functions.
  • the control unit selects the at least one function based further on the estimated load value.
  • the plurality of functions include a plurality of main functions classified into any of a plurality of profiles, and a plurality of sub-functions not classified into any of the plurality of profiles.
  • the control unit selects one profile and at least one sub-function as at least one function to be executed by the wireless terminal.
  • the receiving unit when the wireless terminal includes a plurality of arithmetic processing units, the receiving unit receives the arithmetic processing unit information from the wireless terminal for each of the plurality of arithmetic processing units.
  • the arithmetic processing unit information includes information indicating a chip model number of the arithmetic processing unit.
  • the transmission unit transmits a program for executing the selected function to the wireless terminal.
  • the wireless terminal is used in a mobile communication system in which a plurality of functions related to wireless communication are defined.
  • the wireless terminal includes an arithmetic processing unit for executing a function selected by a base station, a transmission unit for transmitting arithmetic processing unit information related to a load status or an attribute of the arithmetic processing unit to the base station, and the base station A receiving unit that receives information indicating the function selected by the base station from the base station.
  • the arithmetic processing unit information includes information indicating a processing capacity that is actually available in the arithmetic processing unit.
  • the arithmetic processing unit information includes information indicating the processing performance of the arithmetic processing unit.
  • the plurality of functions include a plurality of main functions classified into any of a plurality of profiles, and a plurality of sub-functions not classified into any of the plurality of profiles.
  • the receiving unit receives information indicating one profile and information indicating at least one subfunction from the base station.
  • the transmission unit transmits the arithmetic processing unit information to the base station for each of the plurality of arithmetic processing units.
  • the arithmetic processing unit information includes information indicating a chip model number of the arithmetic processing unit.
  • the receiving unit receives a program for executing a function selected by the base station from the base station.
  • the transmission unit transmits the arithmetic processing unit information to the server via the base station.
  • the receiving unit receives a plurality of profiles from the server via the base station.
  • FIG. 1 is a diagram illustrating a configuration of an LTE system.
  • the LTE system includes a UE (User Equipment) 100, an E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • UE User Equipment
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • the UE 100 corresponds to a wireless terminal.
  • the UE 100 is a mobile communication device, and performs radio communication with a cell (serving cell).
  • the configuration of the UE 100 will be described later.
  • the E-UTRAN 10 corresponds to a radio access network.
  • the E-UTRAN 10 includes an eNB 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 is connected to each other via the X2 interface. The configuration of the eNB 200 will be described later.
  • the eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell.
  • the eNB 200 has a radio resource management (RRM) function, a routing function of user data (hereinafter simply referred to as “data”), a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the EPC 20 corresponds to a core network.
  • the EPC 20 includes an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • MME performs various mobility control etc. with respect to UE100.
  • the S-GW performs data transfer control.
  • the MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
  • the E-UTRAN 10 and the EPC 20 constitute a network.
  • FIG. 2 is a protocol stack diagram of a radio interface in the LTE system.
  • the radio interface protocol is divided into the first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer.
  • the second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping.
  • Data and control signals are transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), random access procedure, and the like. Data and control signals are transmitted between the MAC layer of the UE 100 and the MAC layer of the eNB 200 via a transport channel.
  • the MAC layer of the eNB 200 includes a scheduler that determines an uplink / downlink transport format (transport block size, modulation / coding scheme (MCS)) and an allocation resource block to the UE 100.
  • MCS modulation / coding scheme
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data and control signals are transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane that handles control signals. Messages for various settings (RRC messages) are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in the RRC connected mode (connected mode), and otherwise, the UE 100 is in the RRC idle mode (idle mode).
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • UE100 supports the function regarding radio
  • the function related to the wireless communication is a function defined by the specification, for example, “Dual Connectivity”, D2D (Device to Device), NAICS (Network-Assisted Interference and Suppression), and the like.
  • the function related to wireless communication may include “UE Category”.
  • a function related to wireless communication is appropriately referred to as “Feature”.
  • the UE 100 notifies the network of a “UE capability” message including all the functions that the UE 100 supports.
  • the eNB 200 inquires of the UE 100 about “UE capability”, and notifies the MME 300 of the “UE capability” acquired by the eNB 200 from the UE 100. Thereby, eNB200 and MME300 grasp
  • “UE capability” is held by the MME 300 while the UE 100 is attached to the network. Further, “UE capability” is transferred from the source eNB to the target eNB when the UE 100 is handed over. Note that in order to change “UE capability”, the UE 100 needs to be detached from the network and reattached to the network.
  • the eNB 200 selects at least one function from the functions supported by the UE 100 based on “UE capability”. Then, the eNB 200 configures the selected function in the UE 100 using an individual RRC message or the like. Specifically, eNB200 transmits the setting information regarding the selected function to UE100, in order to perform the setting regarding the selected function with respect to UE100.
  • FIG. 3 is a block diagram of the UE 100. As illustrated in FIG. 3, the UE 100 includes a reception unit 110, a transmission unit 120, and a control unit 130.
  • the receiving unit 110 performs various types of reception under the control of the control unit 130.
  • the receiving unit 110 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 130.
  • the transmission unit 120 performs various transmissions under the control of the control unit 130.
  • the transmission unit 120 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output from the control unit 130 into a radio signal and transmits it from the antenna.
  • the control unit 130 performs various controls in the UE 100.
  • the control unit 130 includes an arithmetic processing unit 131.
  • Control unit 130 further includes a memory (not shown).
  • the arithmetic processing unit 131 includes a digital signal processor (DSP) 131a that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory and performs various processes. 131b.
  • the arithmetic processing unit 131 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the arithmetic processing unit 131 executes various processes and various communication protocols.
  • the calculation processing unit 131 performs calculation processing for executing the function selected by the eNB 200.
  • the transmission part 120 transmits the arithmetic processing part information regarding the load condition or attribute of the arithmetic processing part 131 to the eNB 200.
  • the transmission unit 120 may transmit the arithmetic processing unit information to the eNB 200 when the load status of the arithmetic processing unit 131 changes.
  • the arithmetic processing unit information includes information (Available processing capacity) indicating a processing capacity that is actually available in the arithmetic processing unit 131.
  • “Available processing capacity” is information regarding the load status of the arithmetic processing unit 131.
  • “Available processing capacity” may be expressed as a percentage. For example, “Available processing capacity” is a percentage of a computing resource being used (ie, processing load) or a percentage of an unused computing resource (ie, a processing margin). Alternatively, “Available processing capacity” may be an amount of unused processing resources.
  • the arithmetic processing unit information may include information (Processing capability) indicating the processing performance of the arithmetic processing unit 131.
  • “Available processing capacity” is information related to the attribute of the arithmetic processing unit 131. Unlike “Available processing capability”, “Processing capability” is constant regardless of the load status of the arithmetic processing unit 131.
  • the eNB 200 selects a function to be executed by the UE 100 from “UE capability” based on “Available processing capability” and / or “Processing capability”.
  • the receiving unit 110 receives information indicating the function selected by the eNB 200 from the eNB 200. For example, the receiving unit 110 receives an “RRC Connection Reconfiguration” message including setting information (configuration) of the function selected by the eNB 200. The arithmetic processing unit 131 executes the function selected by the eNB 200 based on the setting information (configuration).
  • FIG. 4 is a block diagram of the eNB 200. As illustrated in FIG. 4, the eNB 200 includes a transmission unit 210, a reception unit 220, a control unit 230, and a backhaul communication unit 240.
  • the transmission unit 210 performs various transmissions under the control of the control unit 230.
  • the transmission unit 210 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output from the control unit 230 into a radio signal and transmits it from the antenna.
  • the receiving unit 220 performs various types of reception under the control of the control unit 230.
  • the receiving unit 220 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 230.
  • the control unit 230 performs various controls in the eNB 200.
  • the control unit 230 includes an arithmetic processing unit and a memory (not shown).
  • the memory stores a program executed by the arithmetic processing unit and information used for processing by the arithmetic processing unit.
  • the arithmetic processing unit includes a DSP that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes various processes by executing a program stored in a memory.
  • the arithmetic processing unit executes various processes and various communication protocols.
  • the backhaul communication unit 240 is connected to the neighboring eNB 200 via the X2 interface, and is connected to the MME / S-GW 300 via the S1 interface.
  • the backhaul communication unit 240 is used for communication performed on the X2 interface, communication performed on the S1 interface, and the like.
  • the receiving unit 220 receives, from the UE 100, processing unit information related to the load status or attributes of the processing unit 131 provided in the UE 100.
  • the arithmetic processing unit information includes “Available processing capacity”.
  • the arithmetic processing unit information may include “Processing capability”.
  • the control unit 230 selects at least one function to be executed by the UE 100 based on the arithmetic processing unit information.
  • a load estimated value that is an estimated value of the processing load required for execution is defined for each of the plurality of functions. Specifically, the processing load for executing the function is modeled and defined by the specification.
  • the control unit 230 selects at least one function to be executed by the UE 100 based further on the load estimation value (modeled value).
  • FIG. 5 is a diagram illustrating a specific example of the load estimation value according to the first embodiment.
  • “50” is defined as the NAICS load estimation value
  • “30” is defined as the “Category 10” load estimation value
  • “Dual Connectivity” is the load estimation value “ 50 "is specified.
  • the table as illustrated in FIG. 5 may be preset in the eNB 200 or may be appropriately set in the eNB 200 from the core network (EPC 20).
  • the control unit 230 selects at least one function to be executed by the UE 100 so as not to exceed “Available processing capacity” on the basis of “Available processing capacity” and the load estimation value. Specifically, the control unit 230 extracts at least one function candidate to be executed by the UE 100 from the functions in “UE capability”, and acquires a load estimation value corresponding to the extracted candidate. And the control part 230 selects a function so that the sum total of the acquired load estimated value may be settled in "Available processing capacity.” At this time, the control unit 230 may calculate the processing margin of the UE 100 or the amount of unused processing resources in consideration of “Processing capability”.
  • the transmission unit 210 transmits information indicating the function selected by the control unit 230 to the UE 100.
  • the transmission unit 210 transmits a “RRC Connection Reconfiguration” message including the setting information (configuration) of the function selected by the control unit 230 to the UE 100.
  • FIG. 6 is a diagram showing an operation sequence when RRC connection is established. In the initial state of this sequence, the UE 100 is in the idle mode.
  • step S ⁇ b> 101 the UE 100 transmits an “RRC Connection Request” message to the eNB 200.
  • step S102 the eNB 200 transmits a “RRC Connection Setup” message to the UE 100 in response to reception of the “RRC Connection Request” message.
  • step S103 the UE 100 transmits a “RRC Connection Setup Complete” message to the eNB 200 in response to receiving the “RRC Connection Setup” message.
  • the UE 100 includes “Available processing capacity” in the “RRC Connection Setup Complete” message. Further, the UE 100 may include “Processing capability” in the “RRC Connection Setup Complete” message.
  • the eNB 200 stores “Available processing capacity” and “Processing capability” included in the received “RRC Connection Setup Complete” message.
  • “Processing capability” may be managed in association with subscriber information by the EPC 20 (HSS or the like). For this reason, the UE 100 may not include “Processing capability” in the “RRC Connection Setup Complete” message.
  • step S103 the UE 100 transitions from the idle mode to the connected mode.
  • step S104 the eNB 200 transmits “INITIAL UE MESSAGE” to the MME 300 in response to the reception of the “RRC Connection Setup Complete” message.
  • the eNB 200 may include “Processing capability” in “INITIAL UE MESSAGE”.
  • step S ⁇ b> 105 the MME 300 transmits an “INITIAL CONTEXT SETUP” message to the eNB 200 in response to reception of “INITIAL UE MESSAGE”.
  • the “INITIAL CONTEXT SETUP” message includes “UE capability”. Also, the MME 300 includes “Processing capability” in “INITIAL UE MESSAGE”.
  • step S106 the eNB 200 selects at least one function (Feature) to be executed by the UE 100 based on “Available processing capability” and / or “Processing capability”.
  • step S107 the eNB 200 transmits an “RRC Connection Reconfiguration” message including a list (feature list) including at least one selected function to the UE 100.
  • the eNB 200 may include “feature list” in the “RRC Connection Reconfiguration” message together with the profile including the main function.
  • step S108 the UE 100 transmits an “RRC Connection Reconfiguration Complete” message to the eNB 200 in response to receiving the “RRC Connection Reconfiguration” message.
  • FIG. 7 is a diagram illustrating an operation sequence during RRC connection.
  • the UE 100 In the initial state of FIG. 7, the UE 100 is in the connected mode.
  • FIG. 7A shows a pattern for switching functions led by the UE 100
  • FIG. 7B shows a pattern for switching functions led by the eNB 200.
  • step S151A the UE 100 transmits “UE Assistance information” including “Available processing capacity” to the eNB 200.
  • the UE 100 may transmit “UE Assistance information” including the current “Available processing capacity” to the eNB 200 in response to a change in “Available processing capacity”.
  • step S152A the eNB 200 selects at least one function (Feature) to be executed by the UE 100 based on “Available processing capability” and / or “Processing capability”.
  • step S153A the eNB 200 transmits, to the UE 100, an “RRC Connection Reconfiguration” message including a list (feature list) including at least one selected function.
  • step S151B the UE 100 transmits information such as feedback of the radio status to the eNB 200. Based on the information received from the UE 100, the eNB 200 determines a function change to be executed by the UE 100.
  • step S152B the eNB 200 selects at least one function (Feature) to be executed by the UE 100 based on “Available processing capability” and / or “Processing capability” received from the UE 100 in advance.
  • step S153B the eNB 200 transmits, to the UE 100, an “RRC Connection Reconfiguration” message including a list (feature list) including at least one selected function.
  • the eNB 200 transmits to the UE 100 a list including all of the functions (Selected features) selected based on “Available processing capacity” and / or “Processing capability”.
  • the eNB 200 may transmit the difference between the function currently set in the UE 100 and the “Selected feature” to the UE 100. For example, the eNB 200 may transmit, to the UE 100, a list (Add list) including functions that are not currently set in the UE 100 among the functions selected by “Selected feature”. The eNB 200 may transmit, to the UE 100, a list (Delete list) including functions that are not included in the “Selected feature” among the functions currently set in the UE 100.
  • a list including functions that are not currently set in the UE 100 among the functions selected by “Selected feature”.
  • the eNB 200 selects a function (Feature) so as not to exceed “Available processing capacity”.
  • the eNB 200 may select a function whose processing load exceeds “Available processing capacity”. In this case, the UE 100 may determine whether to use setting information of a function whose processing load exceeds “Available processing capacity” according to a predetermined priority.
  • the eNB 200 guarantees the function selected so as not to exceed “Available processing capacity” or “Processing capability” (Guaranteed feature) and “Availability exceeding the available processing function”. It may be set separately as (Non-guaranteed feature).
  • FIG. 8 exemplifies a case where a list (Selected feature list) consisting of “Selected feature” corresponding to the guarantee function and a list (Non-guaranteed feature list) consisting of the guarantee function are transmitted from the eNB 200 to the UE 100. Yes.
  • the plurality of functions related to wireless communication includes a plurality of main functions classified into any of a plurality of profiles, and a plurality of sub-functions not classified into any of the plurality of profiles.
  • FIG. 9 is a diagram for explaining the main function and the sub function.
  • each profile is composed of a combination of main functions.
  • Profile 1 is composed of a combination of “Dual Connectivity” and D2D
  • Profile 2 is composed of a combination of “NAICS” and D2D
  • Profile 3 is composed of a combination of “Dual Connectivity” and D2D. is doing.
  • a load estimated value that is an estimated value of the processing load required for execution is defined. Specifically, the processing load when executing the profile is modeled and defined by the specification.
  • the sub-functions are functions that are not classified into profiles.
  • “IDC indication”, “MBMS service continuity”, and “System Information Block Type 16” are illustrated as sub-functions.
  • a load estimated value that is an estimated value of the processing load required for execution is defined. Specifically, the processing load for executing the sub-function is modeled and defined by the specification.
  • the eNB 200 selects one profile and at least one sub-function as at least one function to be executed by the UE 100.
  • UE100 receives the information which shows one profile, and the information which shows at least 1 subfunction from eNB200.
  • FIG. 10 is a diagram showing an operation sequence according to the second embodiment. In the initial state of this sequence, the UE 100 is in the idle mode.
  • step S201 the UE 100 transmits an “RRC Connection Request” message to the eNB 200.
  • step S202 the eNB 200 transmits the “RRC Connection Setup” message to the UE 100 in response to the reception of the “RRC Connection Request” message.
  • step S203 the UE 100 transmits a “RRC Connection Setup Complete” message to the eNB 200 in response to reception of the “RRC Connection Setup” message.
  • the UE 100 includes “Available processing capacity” and “Suggested profile” in the “RRC Connection Setup Complete” message.
  • “Suggested profile” is a profile that the UE 100 desires (suggests) out of a plurality of profiles defined by the specification. Further, the UE 100 may include “Processing capability” in the “RRC Connection Setup Complete” message.
  • the UE 100 transitions from the idle mode to the connected mode.
  • the eNB 200 stores “Available processing capacity” and “Suggested profile”.
  • step S ⁇ b> 204 the eNB 200 transmits “INITIAL UE MESSAGE” to the MME 300 in response to reception of the “RRC Connection Setup Complete” message.
  • the eNB 200 may include “Processing capability” in “INITIAL UE MESSAGE”.
  • step S205 the MME 300 transmits an “INITIAL CONTENT SETUP” message to the eNB 200 in response to the reception of “INITIAL UE MESSAGE”.
  • the “INITIAL CONTEXT SETUP” message includes “UE capability”, “Processing capability”, and “multiple profile”.
  • the “multiple profile” is a plurality of profiles defined by the specification.
  • step S206 the eNB 200 selects a profile desired by the UE 100 from a plurality of profiles defined by the specification based on “Suggested profile” and “multiple profile”.
  • the estimated load value of the profile to be selected does not exceed “Available processing capacity”.
  • step S207 the eNB 200 selects at least one sub-function to be executed by the UE 100 based on “Available processing capability” and / or “Processing capability”.
  • step S208 the eNB 200 transmits an “RRC Connection Reconfiguration” message including the selected profile and a list of selected sub-functions (sub-feature list) to the UE 100.
  • step S209 the UE 100 transmits an “RRC Connection Reconfiguration Complete” message to the eNB 200 in response to receiving the “RRC Connection Reconfiguration” message.
  • this modified example is applicable not only to the operation sequence at the time of establishing the RRC connection but also to the sequence during the RRC connection shown in FIG.
  • the processing load of each function is modeled for the entire arithmetic processing unit 131 of the UE 100.
  • the arithmetic devices are different, there is a possibility that modeling cannot be performed generally.
  • the processing load can be determined for individual arithmetic processing units (that is, the DSP 131a and the CPU 131b) of the UE 100.
  • the DSP 131a executes physical layer processing
  • the CPU 131b executes RRC layer processing.
  • FIG. 11 is a diagram for explaining an operation according to the third embodiment.
  • the UE 100 transmits “Available processing capacity” to the eNB 200 for each of the DSP 131a and the CPU 131b. Specifically, “DSP available processing capacity” corresponding to the DSP 131a and “CPU available processing capacity” corresponding to the CPU 131b are transmitted to the eNB 200. The UE 100 may also transmit “Overall available capacity”, which is the “Available processing capacity” of the arithmetic processing unit 131, to the eNB 200.
  • the eNB 200 selects at least one function to be executed by the UE 100 based on “DSP available processing capacity” and “CPU available processing capacity”.
  • a load estimated value that is an estimated value of the processing load required for execution is specified for each DSP / CPU.
  • the processing load for executing the function is modeled and defined by the specification.
  • the eNB 200 selects at least one function to be executed by the UE 100 so as not to exceed “DSP available processing capacity” and “CPU available processing capacity” based on the table as illustrated in FIG. Other operations are the same as those in the first embodiment.
  • the UE 100 transmits information indicating the chip model number of the arithmetic processing unit 131 (chip model number information).
  • the chip model number information is calculation processing unit information related to the attribute of the calculation processing unit 131.
  • the eNB 200 selects at least one function to be executed by the UE 100 based on the chip model number information.
  • FIG. 12 is a diagram showing an operation sequence according to the fourth embodiment.
  • step S401 the UE 100 transmits chip model number information (Chip model number) to the eNB 200.
  • chip model number information Chip model number
  • step S402 the eNB 200 selects at least one function to be executed by the UE 100 based on “Chip model number”. Specifically, the correspondence relationship between “Chip model number” and a function is defined, and the function corresponding to “Chip model number” is selected.
  • step S403 the eNB 200 transmits a program for executing the selected at least one function to the UE 100.
  • This program implements only necessary functions.
  • UE100 receives a program.
  • the UE 100 executes the program by the arithmetic processing unit 131 and executes the function selected by the eNB 200.
  • the eNB 200 may transmit only information (identifier) indicating at least one selected function to the UE 100.
  • FIG. 13 is a diagram showing an operation sequence according to the fifth embodiment.
  • step S501 the UE 100 transmits chip model number information (Chip model number) to the server 400 (via the eNB 200).
  • the eNB 200 that has acquired the “Chip model number” may transmit the “Chip model number” to the server 400.
  • the server 400 may be a server managed by a chip vendor or the like instead of a node managed by an operator (a node in an operator network).
  • the server 400 selects a profile (Multiple profile) to be executed by the UE 100 based on “Chip model number”. Specifically, the correspondence relationship between the “Chip model number” and the profile is defined, and “Multiple profile” corresponding to “Chip model number” is selected. The correspondence relationship between the “Chip model number” and the profile may be updated.
  • step S502 the server 400 transmits the selected “Multiple profile” to the UE 100 (via the eNB 200).
  • the UE 100 stores “Multiple profile” corresponding to its own chip (arithmetic processing unit 131).
  • the eNB 200 may acquire “Multiple profile”.
  • step S503 the UE 100 transmits “Multiple profile” to the eNB 200.
  • step S503 may be omitted.
  • step S504 the eNB 200 selects at least one profile from “Multiple profile”, and transmits information indicating the selected profile to the UE 100.
  • the sixth to eleventh embodiments are intended to provide a wireless terminal and a base station that can appropriately select or notify a profile.
  • the wireless terminal according to the sixth embodiment is used in a mobile communication system in which a profile including a plurality of functions related to wireless communication is defined.
  • the wireless terminal transmits, to a base station, a control unit that selects a specific profile corresponding to a power saving mode from among a plurality of profiles supported by the wireless terminal, and recommended profile information indicating the specific profile.
  • control unit selects the specific profile in response to a user input indicating an instruction to apply the power saving mode.
  • the said control part selects the said specific profile according to the state of the said vehicle, when an own radio
  • control unit selects a profile with the lowest power consumption among the plurality of profiles as the specific profile.
  • the transmission unit transmits identification information indicating the power saving mode to the base station together with the recommended profile information.
  • the base station according to the seventh embodiment is used in a mobile communication system in which a profile including a plurality of functions related to wireless communication is defined.
  • the base station sets, in the wireless terminal, from among a plurality of profiles supported by the wireless terminal based on the battery information and a receiving unit that receives battery information related to a remaining battery level of the wireless terminal And a control unit for selecting a profile to be performed.
  • control unit selects a specific profile corresponding to a power saving mode as a profile to be set in the wireless terminal based on the battery information.
  • the wireless terminal according to the eighth embodiment is used in a mobile communication system in which a profile including a plurality of functions related to wireless communication is defined.
  • the plurality of functions include a terminal category indicating wireless communication performance.
  • the wireless terminal includes a control unit that selects a terminal category common to a plurality of profiles supported by the wireless terminal, and a transmission unit that transmits recommended category information indicating the common terminal category to a base station.
  • the transmission unit when there are a plurality of common terminal categories, transmits a list including the common terminal categories as the recommended category information.
  • the base station according to the eighth embodiment is used in a mobile communication system in which a profile including a plurality of functions related to wireless communication is defined.
  • the plurality of functions include a terminal category indicating wireless communication performance.
  • the base station includes a receiving unit that receives recommended category information indicating a terminal category common to a plurality of profiles supported by a wireless terminal from the wireless terminal, and includes the common terminal category based on the recommended category information.
  • a control unit that selects a profile to be set for the wireless terminal from a plurality of profiles.
  • the receiving unit when there are a plurality of common terminal categories, the receiving unit receives a list including the common terminal categories as the recommended category information.
  • the base station according to the ninth embodiment is used in a mobile communication system in which a profile including a plurality of functions related to wireless communication is defined.
  • the base station notifies the other base station of a part of one or a plurality of profiles set in the wireless terminal when the wireless terminal performs a double connection communication in which the wireless terminal is connected to the base station and another base station.
  • a control unit is provided.
  • the base station includes a receiving unit that receives a plurality of profile groups from the wireless terminal.
  • Each of the plurality of profile groups includes a plurality of profiles.
  • the control unit selects a profile group to be set for the wireless terminal from the plurality of profile groups, and selects some profiles included in the selected profile group as the other profiles. To the base station.
  • control unit selects a profile to be set for the wireless terminal from a plurality of profiles supported by the wireless terminal when performing the double connection communication, and the selected A part of functions included in the profile is notified to the other base station.
  • the wireless terminal according to the ninth embodiment is used in a mobile communication system in which a profile including a plurality of functions related to wireless communication is defined.
  • the wireless terminal includes a control unit for notifying the first base station of a plurality of profile groups when the wireless terminal performs double connection communication in which the wireless terminal is connected to the first base station and the second base station.
  • Each of the plurality of profile groups includes a plurality of profiles supported by the own wireless terminal.
  • the wireless terminal according to the tenth embodiment is used in a mobile communication system in which a profile including a plurality of functions related to wireless communication is defined.
  • the wireless terminal includes a transmission unit that transmits function information indicating all functions supported by the own wireless terminal and profile information indicating a profile supported by the own wireless terminal to the base station.
  • the profile information includes only functions not included in the profile among all functions supported by the own wireless terminal.
  • the wireless terminal according to the eleventh embodiment is used in a mobile communication system in which a profile including a plurality of functions related to wireless communication is defined.
  • the wireless terminal includes a transmission unit that transmits a plurality of profile information indicating a plurality of profiles supported by the own wireless terminal and function information indicating a function common to the plurality of profiles to a base station.
  • Each of the plurality of profile information includes a function different from the common function.
  • the UE 100 supports a plurality of functions related to wireless communication.
  • the function related to the wireless communication is a function defined by the specification, for example, “Dual Connectivity”, D2D (Device to Device), NAICS (Network-Assisted Interference and Suppression), and the like.
  • the function related to wireless communication may include “UE Category”. Further, the function related to wireless communication may include “Support Band Combination”.
  • Feature a function related to wireless communication is appropriately referred to as “Feature”.
  • profile # 1 is composed of a combination of “Category 6” and NAICS
  • profile # 2 is composed of a combination of “Category 7” and “Dual Connectivity”
  • profile # 3 is composed of a combination of “Category 10” and D2D. Composed.
  • FIG. 14 is a diagram showing an example of an initial profile acquisition sequence.
  • the UE 100 is in the connected mode.
  • step S ⁇ b> 11 the eNB 200 transmits a “UE Capability Enquiry” message to the UE 100.
  • step S12 in response to receiving the “UE Capability Enquiry” message, the UE 100 transmits a “UE Capability information” message including a plurality of profiles (Multiple profiles) supported by the UE 100 to the eNB 200.
  • a “UE Capability information” message including a plurality of profiles (Multiple profiles) supported by the UE 100 to the eNB 200.
  • step S ⁇ b> 13 the eNB 200 transmits a “UE Capability info Indication” message including a plurality of profiles (Multiple profiles) supported by the UE 100 to the MME 300 in response to the reception of the “UE Capability information” message.
  • the MME 300 holds information of a plurality of profiles (Multiple profiles) supported by the UE 100 until the UE 100 is detached from the network. Further, when the UE 100 is detached from the network, the MME 300 discards information on a plurality of profiles (Multiple profiles) supported by the UE 100.
  • FIG. 15 is a diagram showing an example of a profile initial setting sequence. In the initial state of this sequence, the UE 100 is in the idle mode.
  • step S21 the UE 100 performs random access to the eNB 200.
  • step S ⁇ b> 22 the UE 100 transmits an “RRC Connection Request” message to the eNB 200.
  • step S23 the eNB 200 transmits a “RRC Connection Setup” message to the UE 100 in response to reception of the “RRC Connection Request” message.
  • step S24 the UE 100 transmits a “RRC Connection Setup Complete” message to the eNB 200 in response to the reception of the “RRC Connection Setup” message.
  • the UE 100 selects one profile as a recommended profile from among a plurality of profiles (Multiple profiles) that it supports, and includes “Suggested profile” in the “RRC Connection Setup Complete” message.
  • the UE 100 transitions from the idle mode to the connected mode.
  • step S ⁇ b> 25 the eNB 200 transmits “INITIAL UE MESSAGE” to the MME 300 in response to reception of the “RRC Connection Setup Complete” message.
  • step S ⁇ b> 26 the MME 300 transmits an “INITIAL CONTEXT SETUP REQ.” Message to the eNB 200 in response to the reception of “INITIAL UE MESSAGE”.
  • the MME 300 includes information of a plurality of profiles (Multiple profiles) supported by the UE 100 in the “INITIAL CONTENT SETUP REQ.” Message.
  • the eNB 200 holds information of a plurality of profiles (Multiple profiles) supported by the UE 100.
  • step S27 the eNB 200 transmits a “Security Mode Command” message to the UE 100.
  • step S ⁇ b> 28 the eNB 200 transmits a “RRC Connection Reconfiguration” message to the UE 100.
  • the eNB 200 includes setting information (Configuration) of a profile (Selected profile) selected from a plurality of profiles (Multiple profiles) supported by the UE 100 in the “RRC Connection Reconfiguration” message.
  • the UE 100 holds the setting information (Configuration) of “Selected profile”, and then starts wireless communication according to “Selected profile”.
  • step S ⁇ b> 29 the UE 100 transmits a “Security Mode Complete” message to the eNB 200.
  • step S ⁇ b> 30 the UE 100 transmits a “RRC Conn. Reconf. Complete” message to the eNB 200.
  • FIG. 16 is a diagram illustrating an example of an operation sequence related to profile change during RRC connection.
  • FIG. 16A is a profile change sequence started by the eNB 200
  • FIG. 16B is a profile change sequence started by the UE 100.
  • step S41 the eNB 200 selects one profile from among a plurality of profiles (Multiple profiles) supported by the UE 100. And eNB200 transmits the setting information (Configuration) of the selected profile (Selected profile) to UE100 by a "RRC Connection Reconfiguration" message. The UE 100 changes the profile based on the configuration of “Selected profile”.
  • step S51 the UE 100 transmits an “UL Indication” message including the recommended profile (Suggested profile) to the eNB 200 including the profile selected by itself.
  • step S52 the eNB 200 transmits the setting information (Configuration) of the profile (Selected profile) selected based on the “Suggested profile” to the UE 100 by the “RRC Connection Reconfiguration” message.
  • the UE 100 changes the profile based on the configuration of “Selected profile”.
  • FIG. 17 is a block diagram of the UE 100. As illustrated in FIG. 17, the UE 100 includes a reception unit 110, a transmission unit 120, a control unit 130, a user interface 140, and a battery 150.
  • the receiving unit 110 performs various types of reception under the control of the control unit 130.
  • the receiving unit 110 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 130.
  • the transmission unit 120 performs various transmissions under the control of the control unit 130.
  • the transmission unit 120 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output from the control unit 130 into a radio signal and transmits it from the antenna.
  • the control unit 130 performs various controls in the UE 100.
  • the control unit 130 includes an arithmetic processing unit 131.
  • Control unit 130 further includes a memory (not shown).
  • the arithmetic processing unit 131 includes a digital signal processor (DSP) 131a that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory and performs various processes. 131b.
  • the arithmetic processing unit 131 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the control unit 130 executes various processes and various communication protocols.
  • the user interface 140 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 140 receives an operation from the user and outputs a signal indicating the content of the operation to the control unit 130.
  • the battery 150 stores power to be supplied to each block of the UE 100.
  • the amount or ratio of the electric power stored in the battery 150 is referred to as “battery remaining amount”.
  • the UE 100 configured in this way is used in an LTE system in which a profile including a plurality of functions related to wireless communication is defined.
  • the control unit 130 selects a specific profile corresponding to the power saving mode from a plurality of profiles supported by the own UE 100.
  • the transmission unit 120 transmits recommended profile information (Suggested profile) indicating the selected specific profile to the eNB 200.
  • the receiving part 110 receives the setting information (Configuration) of the profile (Selected profile) from eNB200.
  • the control unit 130 initializes or changes the profile based on the configuration of “Selected profile”.
  • the control unit 130 selects a specific profile in response to a user input indicating a power saving mode application instruction. For example, when the user interface 140 receives a user input indicating a power saving mode application instruction, a specific profile corresponding to the power saving mode is selected.
  • the control unit 130 may cause the user interface 140 to execute a display for prompting an instruction to apply the power saving mode based on the remaining battery level.
  • the control unit 130 selects a specific profile according to the state of the vehicle. For example, when the vehicle engine is stopped, a specific profile corresponding to the power saving mode is selected.
  • UE100 when UE100 is a vehicle-mounted terminal, UE100 does not need to be provided with the user interface 140 and the battery 150.
  • control unit 130 selects a profile having the lowest power consumption among a plurality of profiles as a specific profile.
  • control part 130 may select the profile preset as a profile for power saving modes as a specific profile.
  • Identification information indicating the power saving mode may be given to the profile for the power saving mode.
  • the transmission unit 120 may transmit the identification information indicating the power saving mode to the eNB 200 together with the recommended profile information (Suggested profile).
  • the transmission unit 120 includes identification information indicating the power saving mode in the “UL Indication” message including “Suggested profile”.
  • the transmission unit 120 may transmit information indicating the degree of urgency (priority).
  • the transmission unit 120 may transmit a message (application request message) that is more forceful than the “UL Indication” message.
  • the information or the message may indicate, for example, whether the request is from a higher layer (NAS, user).
  • the eNB 200 can determine a profile to be applied (Selected profile) in consideration of the communication status with the UE 100 and / or other UEs based on the information or the message.
  • FIG. 18 is a block diagram of the eNB 200. As illustrated in FIG. 18, the eNB 200 includes a transmission unit 210, a reception unit 220, a control unit 230, and a backhaul communication unit 240.
  • the transmission unit 210 performs various transmissions under the control of the control unit 230.
  • the transmission unit 210 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output from the control unit 230 into a radio signal and transmits it from the antenna.
  • the receiving unit 220 performs various types of reception under the control of the control unit 230.
  • the receiving unit 220 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 230.
  • the control unit 230 performs various controls in the eNB 200.
  • the control unit 230 includes an arithmetic processing unit and a memory (not shown).
  • the memory stores a program executed by the arithmetic processing unit and information used for processing by the arithmetic processing unit.
  • the arithmetic processing unit includes a DSP that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes various processes by executing a program stored in a memory.
  • the arithmetic processing unit executes various processes and various communication protocols.
  • the backhaul communication unit 240 is connected to the neighboring eNB 200 via the X2 interface, and is connected to the MME / S-GW 300 via the S1 interface.
  • the backhaul communication unit 240 is used for communication performed on the X2 interface, communication performed on the S1 interface, and the like.
  • the reception unit 220 receives the “UL Indication” message including the “Suggested profile” from the UE 100.
  • the control unit 230 selects a profile to be set in the UE 100 based on “Suggested profile”.
  • the control unit 130 selects “Suggested profile” as the profile to be set in the UE 100.
  • the transmission part 210 transmits the setting information (Configuration) of the selected profile (Selected profile) to UE100.
  • FIG. 19 is a diagram illustrating an example of an operation flow of the UE 100 according to the sixth embodiment. In this operation flow, an operation centering on the AS entity of the UE 100 is shown. The function of the AS entity is executed by the control unit 130.
  • step S101 the AS entity receives an application instruction for the power saving mode (ECO mode) from, for example, the NAS entity.
  • the application instruction of “ECO mode” is based on user input or vehicle status.
  • step S102 the AS entity selects a specific profile corresponding to “ECO mode”.
  • the specific profile corresponding to “ECO mode” is a profile provided with identification information (ECO mode flag) indicating the power saving mode.
  • the specific profile corresponding to “ECO mode” is a profile with the lowest power consumption among a plurality of profiles supported by the UE 100.
  • step S103 the AS entity notifies the eNB 200 of a specific profile corresponding to “ECO mode”.
  • step S104 When there is a response (RRC Connection Reconfiguration, etc.) indicating that a specific profile corresponding to “ECO mode” is applicable from the eNB 200 (step S104: Yes), in step S105, the AS entity selects “ECO mode”. To the NAS entity.
  • the power consumption of the UE 100 can be reduced using the profile.
  • the transmission part 120 of UE100 which concerns on 7th Embodiment transmits the battery information regarding a battery remaining charge to eNB200.
  • the battery information may be a value indicating the remaining battery level, or may be information indicating that the remaining battery level has fallen below a threshold value.
  • the receiving part 220 of eNB200 which concerns on 7th Embodiment receives the battery information regarding the battery remaining charge of UE100 from UE100. Based on the battery information, the control unit 230 selects a profile to be set for the UE 100 from among a plurality of profiles supported by the UE 100. Based on the battery information, the control unit 230 selects a specific profile corresponding to the power saving mode (ECO mode) as a profile to be set in the UE 100. As described above, the specific profile corresponding to “ECO mode” is the profile to which identification information (ECO mode flag) indicating the power saving mode is given, or the most power consumption among a plurality of profiles supported by the UE 100. Is a low profile.
  • FIG. 20 is a diagram illustrating an example of an operation sequence according to the seventh embodiment.
  • step S201 the UE 100 displays a message prompting the user to change the profile based on the battery information.
  • step S201 is not essential and may be omitted.
  • step S202 the UE 100 transmits battery information regarding the remaining battery level to the eNB 200.
  • step S203 eNB200 selects the profile set to UE100 from the some profile which UE100 supports based on battery information.
  • the profile is changed, but this sequence can also be applied when the profile is initially set.
  • battery information may be included in the “RRC Connection Setup Complete” message.
  • step S204 the eNB 200 transmits an “RRC Connection Reconfiguration” message including the setting information (Configuration) of the selected profile (Selected profile) to the UE 100.
  • the power consumption of the UE 100 can be reduced using the profile.
  • the control unit 230 selects “UE category” (terminal category) common to a plurality of profiles supported by the own UE 100.
  • “UE category” is information indicating the performance of wireless communication.
  • the transmission unit 120 transmits recommended category information (Suggested category) indicating a common “UE category” to the eNB 200.
  • the UE 100 supports at least profiles # 1 to # 3.
  • Profile # 1 includes “UE category 10” and “Dual Connectivity”
  • profile # 2 includes “UE category 10” and NAICS
  • profile # 3 includes “Dual Connectivity” and NAICS.
  • the control unit 230 selects “UE category 10” that is “UE category” common to profile # 1 and profile # 2.
  • the transmission unit 120 transmits “UE category 10” to the eNB 200 as “Suggested category”.
  • the control unit 130 may select a plurality of common “UE categories” when there are a plurality of common “UE categories”.
  • the transmission unit 120 transmits a list (Suggested category list) including a plurality of “UE categories” in common as recommended category information.
  • the transmission part 120 may further transmit to the eNB 200 information that can be referred to when the eNB 200 selects a profile.
  • Such information is, for example, the type of application being executed in the UE 100 (control unit 130) or QoS (Quality of Service), or the load status or processing performance of the UE 100 (control unit 130).
  • the control unit 130 may select one “UE category” among the plurality of common “UE categories”. For example, one “UE category” is selected based on the type of application being executed in the UE 100 (control unit 130) or QoS (Quality of Service). In this case, the transmission unit 120 transmits the selected “UE category” to the eNB 200 as “Suggested category”.
  • the reception unit 220 receives recommended category information (Suggested category) indicating “UE category” common to a plurality of profiles supported by the UE 100 from the UE 100. Based on the “Suggested category”, the control unit 230 selects a profile to be set in the UE 100 from a plurality of profiles including the common “UE category”. In the example described above, since “Suggested category” is “UE category 10”, control unit 230 selects a profile to be set for UE 100 from profiles # 1 and # 2 including “UE category 10”.
  • the receiving unit 220 may receive a list (Suggested category list) including a plurality of “UE categories” in common as recommended category information. Based on the “Suggested category list”, the control unit 230 selects a profile to be set in the UE 100 from among a plurality of profiles including any of a plurality of common “UE categories”.
  • FIG. 21 is a diagram illustrating an example of an operation sequence according to the eighth embodiment.
  • FIG. 21A shows pattern 1 of the operation sequence according to the eighth embodiment.
  • step S301A the UE 100 transmits “Suggested category” to the eNB 200.
  • step S302A the eNB 200 selects a profile to be set in the UE 100 based on “Suggested category”.
  • step S303A the eNB 200 transmits a “RRC Connection Reconfiguration” message including the setting information (Configuration) of the selected profile (Selected profile) to the UE 100.
  • the UE 100 initially sets or changes the profile based on the configuration of “Selected profile”.
  • FIG. 21B shows pattern 2 of the operation sequence according to the eighth embodiment.
  • step S301B the UE 100 transmits “Suggested category list” to the eNB 200.
  • step S302B the eNB 200 selects a profile to be set in the UE 100 based on the “Suggested category list”.
  • step S303B the eNB 200 transmits an “RRC Connection Reconfiguration” message including the setting information (Configuration) of the selected profile (Selected profile) to the UE 100.
  • the UE 100 initially sets or changes the profile based on the configuration of “Selected profile”.
  • the UE 100 transmits “UE category” common to a plurality of profiles supported by the own UE 100 to the eNB 200 as recommended category information. While it is difficult to select individual functions such as “Dual Connectivity” or NAICS in the UE 100, it is relatively easy to select a desired radio communication performance (UE category). Therefore, by transmitting “UE category” common to a plurality of profiles to the eNB 200 as recommended category information, profile selection in the UE 100 can be facilitated. Moreover, the freedom degree of selection in eNB200 side can be raised.
  • the ninth embodiment will be described mainly with respect to differences from the sixth embodiment to the eighth embodiment.
  • the ninth embodiment is an embodiment in the case of performing dual connection communication in which the UE 100 connects to two eNBs 200.
  • Dual Connectivity In “Dual Connectivity”, only the master eNB (MeNB) among the plurality of eNBs 200 that establish a connection with the UE 100 establishes an RRC connection with the UE 100.
  • a secondary eNB (SeNB) among the plurality of eNBs 200 provides the UE 100 with additional radio resources without establishing an RRC connection with the UE 100.
  • the MeNB establishes not only the user plane connection but also the control plane connection with the UE 100.
  • SeNB establishes a user plane connection with UE100, without establishing a control plane connection with UE100.
  • An X2 interface is used for communication between the MeNB and the SeNB.
  • the UE 100 can perform carrier aggregation using N cells managed by the MeNB and M cells managed by the SeNB at the same time.
  • the maximum number of serving cells of the UE 100 that is, the maximum number of (N + M) is, for example, 5.
  • a group consisting of N cells managed by the MeNB is referred to as a master cell group (MCG).
  • MCG master cell group
  • SCG secondary cell group
  • the eNB 200 when the UE 100 performs “Dual Connectivity” in which the UE 100 is connected to the own eNB 200 and the other eNB 200, a part of one or a plurality of profiles set in the UE 100 is set to the other eNB 200.
  • the own eNB 200 is a MeNB
  • the other eNB 200 is a SeNB.
  • the receiving unit 220 receives a plurality of profile groups from the UE 100.
  • Each of the plurality of profile groups includes a plurality of profiles.
  • the control unit 230 selects a profile group to be set in the UE 100 from among a plurality of profile groups, and some of the profiles included in the selected profile group are transferred to another eNB 200 (SeNB). Notice. In the selected profile group, some profiles notified to the other eNB 200 (SeNB) are used by the other eNB 200 (SeNB).
  • FIG. 22 is a diagram illustrating an example of an operation sequence according to the ninth embodiment.
  • step S401 the MeNB 200-1 transmits a profile inquiry (Profile inquiry) for “Dual Connectivity” to the UE 100.
  • Profile inquiry a profile inquiry for “Dual Connectivity”
  • step S402 the UE 100 transmits a list (Profile combination list) including a plurality of profile groups to the MeNB 200-1 in response to the reception of “Profile inquiry”.
  • “Profile combination list” includes a first profile group including “profile 1” and “profile 2”, and a second profile group including “profile 2” and “profile 3”. Including.
  • the MeNB 200-1 selects any one profile group (profile combination) from the “Profile combination list”. Also, the MeNB 200-1 decides to cause the SeNB 200-2 to execute a part of the profiles included in the selected “profile combination”, and sets other profiles included in the selected “profile combination” to its own eNB (MeNB 200- 1) decide to execute. In other words, it is determined that the selected “profile combination” is divided into two and shared by the MeNB 200-1 and the SeNB 200-2.
  • Step S404 the MeNB 200-1 transmits a “SeNB Addition Request” message including a part of the profiles included in the selected “profile combination” to the SeNB 200-2.
  • the “SeNB Addition Request” message is a message for requesting the SeNB 200-2 to allocate resources to the UE 100.
  • step S405 the SeNB 200-2 transmits a “SeNB Addition Request Ack” message to the MeNB 200-1 in response to the reception of the “SeNB Addition Request” message.
  • the SeNB 200-2 uses the profile included in the “SeNB Addition Request” message for communication with the UE 100.
  • the MeNB 200-1 transmits a “RRC Connection Reconfiguration” message including the setting information (configuration) of the “profile combination” selected in step S403 in response to the reception of the “SeNB Addition Request Ack” message to the UE 100.
  • the UE 100 performs communication with the MeNB 200-1 and the SeNB 200-2 using “profile combination” based on the configuration.
  • a “SeNB Modification Request” message may be used instead of the “SeNB Addition Request” message, and a “SeNB Addition Modification Ack” message may be used instead of the “SeNB Addition Request Ack”.
  • the “SeNB Modification Request” message is a message for requesting the SeNB 200-2 to change the resource setting for the UE 100.
  • the control unit 230 of the eNB 200 selects a profile to be set for the UE 100 from a plurality of profiles supported by the UE 100, and A part of functions (features) included in the selected profile is notified to the other eNB 200 (SeNB 200-2).
  • FIG. 23 is a diagram illustrating an example of an operation sequence according to the modified example of the ninth embodiment.
  • the MeNB 200-1 grasps a plurality of profiles (multiple profiles) supported by the UE 100.
  • MeNB200-1 selects the profile set to UE100 from the several profile which UE100 supports.
  • the MeNB 200-1 determines that another function included in the selected profile (Selected profile) is to be executed by another eNB (SeNB 200-2), and the other function included in the “Selected profile”. Is determined to be executed by the own eNB (MeNB 200-1). That is, it is determined that the “Selected profile” is split into two and shared by the MeNB 200-1 and the SeNB 200-2.
  • step S453 the MeNB 200-1 transmits a “SeNB Addition Request” message including a part of the functions included in the “Selected profile” to the SeNB 200-2.
  • step S454 the SeNB 200-2 transmits the “SeNB Addition Request Ack” message to the MeNB 200-1 in response to the reception of the “SeNB Addition Request” message.
  • the SeNB 200-2 uses the function included in the “SeNB Addition Request” message for communication with the UE 100.
  • step S455 the MeNB 200-1 transmits a “RRC Connection Reconfiguration” message including the setting information (Configuration) of “Selected profile” to the UE 100 in response to the reception of the “SeNB Addition Request Ack” message.
  • the UE 100 performs communication with the MeNB 200-1 and the SeNB 200-2 using “Selected profile” based on the configuration.
  • a “SeNB Modification Request” message may be used instead of the “SeNB Addition Request” message, and a “SeNB Addition Modification Ack” message may be used instead of the “SeNB Addition Request Ack”.
  • the “SeNB Modification Request” message is a message for requesting the SeNB 200-2 to change the resource setting for the UE 100.
  • “Dual Connectivity” that uses different features (features) in the MeNB 200-1 and the SeNB 200-2 can be realized.
  • the tenth embodiment is an embodiment relating to a profile expression format.
  • the transmission part 120 transmits the function information which shows all the functions which self-UE100 supports, and the profile information which shows the profile which self-UE100 supports to eNB200.
  • the profile information includes only functions not included in the profile among all functions supported by the own UE 100.
  • the function information (UE-EUTRA-Capability) indicating all functions supported by the own UE 100 includes each function (A, B, C, D, E, F, G).
  • profile # 1 includes functions (A, B, C, D)
  • profile # 2 includes functions (B, E, F, G).
  • the profile information indicating the profile # 1 includes (E, F, G) functions not included in the profile # 1 among all functions supported by the own UE 100.
  • the profile information indicating the profile # 2 includes (A, C, D) functions not included in the profile # 2 among all functions supported by the own UE 100.
  • the amount of profile information can be reduced.
  • there are few unnecessary functions in each profile and it is useful when a large number of profiles are notified to the eNB 200 (for example, the initial profile acquisition sequence shown in FIG. 14).
  • the receiving unit 220 receives, from the UE 100, function information (UE-EUTRA-Capability) indicating all functions supported by the UE 100 and profile information indicating a profile supported by the UE 100.
  • the profile information includes only functions that are not included in the profile among all functions supported by the UE 100.
  • the control unit 230 Based on “UE-EUTRA-Capability” and the profile information, the control unit 230 identifies the profiles supported by the UE 100 (each function included therein).
  • the profile information indicating profile # 1 includes each function of (E, F, G). Therefore, the control unit 230 does not include (E, F, G) among “UE-EUTRA-Capability”. It is determined that (A, B, C, D), which are functions of Further, since the profile information indicating the profile # 2 includes each function (A, C, D), the control unit 230 is a function other than (A, C, D) in “UE-EUTRA-Capability”. It is determined that (B, E, F, G) is included in profile # 2.
  • the eleventh embodiment is an embodiment related to a profile expression format.
  • the transmission unit 120 transmits, to the eNB 200, a plurality of profile information indicating a plurality of profiles supported by the own UE 100 and a function information indicating a function common to the plurality of profiles.
  • Each of the plurality of profile information includes a function different from the common function.
  • profile # 1 includes functions (A, B, C, D) and profile # 2 includes functions (A, B, F, G).
  • the functions (A, B) are common.
  • Such a function is referred to as “baseline capability”.
  • the function information indicating functions common to a plurality of profiles includes each function (A, B).
  • the profile information indicating the profile # 1 includes each function (C, D) not included in “baseline capability”.
  • the profile information indicating the profile # 2 includes each function (F, G) not included in the “baseline capability”.
  • the amount of profile information can be reduced.
  • the reception unit 220 receives, from the UE 100, a plurality of profile information indicating a plurality of profiles supported by the UE 100 and a function information indicating a function common to the plurality of profiles.
  • Each of the plurality of profile information includes a function different from the common function.
  • the function information indicating “baseline capability” includes each function (A, B).
  • the profile information indicating the profile # 1 includes each function (C, D) not included in “baseline capability”.
  • the profile information indicating the profile # 2 includes each function (F, G) not included in the “baseline capability”.
  • the control unit 230 determines that (A, B, C, D), which is a combination of the functions (A, B) and the functions (C, D), is included in the profile # 1. Further, it is determined that (A, B, F, G), which is a combination of the functions (A, B) and the functions (F, G), is included in the profile # 2.
  • the operation in “Dual Connectivity” has been described.
  • the operation may be applied to “Carrier Aggregation”.
  • a function (feature) that can be supported is different for each CC (component carrier, frequency)
  • the function can be made different for each CC.
  • NAICS is possible at 800 MHz, but NAICS is not applicable at 3.5 GHz (however, “Dual Connectivity” is applicable).
  • the wireless terminal defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the wireless terminal is prohibited from transmitting the profile change request until a predetermined condition is satisfied, and a transmission unit that transmits a profile change request for requesting a change to the profile selected by the wireless terminal to the base station.
  • a control unit that maintains the prohibited state and releases the prohibited state when the predetermined condition is satisfied.
  • the predetermined condition is a condition that an elapsed time from the previous transmission of the profile change request has exceeded a time threshold.
  • the time threshold is specified by the base station.
  • the predetermined condition is a condition that the load status of the own wireless terminal exceeds or falls below the load status threshold.
  • the load status threshold is specified by the base station.
  • the predetermined condition is a condition that the radio status of the own radio terminal has exceeded or falls below the radio status threshold.
  • the radio condition threshold is specified by the base station.
  • the base station defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the base station a transmitting unit that transmits a threshold value that defines a predetermined condition to the wireless terminal, a receiving unit that receives a profile change request for requesting a change to the profile selected by the wireless terminal, Is provided.
  • the predetermined condition is a condition for canceling a prohibition state in which transmission of the profile change request is prohibited in the wireless terminal.
  • the threshold value is a time threshold value
  • the predetermined condition is a condition that an elapsed time from the previous transmission of the profile change request has exceeded the time threshold value
  • the threshold is a load situation threshold
  • the predetermined condition is a condition that the load situation in the wireless terminal exceeds or falls below the load situation threshold
  • the threshold value is a radio condition threshold value
  • the predetermined condition is a condition that the radio condition in the radio terminal exceeds or falls below the radio condition threshold value.
  • the wireless terminal defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the wireless terminal transmits a change request to the second profile to the base station or receives a change request to the second profile from the base station And a control unit that changes to the second profile at a second timing after a lapse of a specified time from the first timing at which the change request is transmitted or received.
  • control unit performs processing necessary for changing to the second profile within the specified time from the first timing.
  • the necessary process is a parameter change to be changed to the setting parameter of the second profile.
  • the control unit changes the setting parameter of the second profile even when the parameter change is not notified from the base station.
  • control unit stops data transmission / reception with the base station until the specified time elapses from the first timing.
  • the base station defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the base station transmits a change request to the second profile to a wireless terminal in which the first profile is set, or receives a change request to the second profile from the wireless terminal And a control unit that changes to the second profile at a second timing after a lapse of a specified time from the first timing at which the change request is transmitted or received.
  • control unit performs processing necessary for changing to the second profile within the specified time from the first timing.
  • the necessary process is a parameter change to be changed to the setting parameter of the second profile.
  • the control unit changes the setting parameter of the second profile without notifying the wireless terminal of the parameter change.
  • control unit stops data transmission / reception with the wireless terminal until the specified time elapses from the first timing.
  • the wireless terminal defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the wireless terminal transmits a response to the change request to the second profile to the base station, or sends a response to the change request to the second profile to the base station And a control unit that changes to the second profile at a second timing after a lapse of a specified time from the first timing at which the response is transmitted or received.
  • control unit performs processing necessary for changing to the second profile within the specified time from the first timing.
  • control unit stops data transmission / reception with the base station until the specified time has elapsed from the first timing.
  • the base station defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the base station transmits a response to the change request to the second profile to the wireless terminal in which the first profile is set, or sends a response to the change request to the second profile from the wireless terminal.
  • control unit performs processing necessary for changing to the second profile within the specified time from the first timing.
  • control unit stops data transmission / reception with the wireless terminal until the specified time has elapsed from the first timing.
  • the wireless terminal defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the wireless terminal selects a second profile different from the first profile, and a profile for requesting a change to the second profile
  • a transmission unit that transmits the change request to the base station.
  • the control unit selects the second profile based on the first profile so that at least a part of the communication state is maintained.
  • the first profile includes a support frequency band to which a primary cell of the wireless terminal belongs.
  • the control unit selects a profile including a support frequency band to which a primary cell of the wireless terminal belongs as the second profile.
  • the first profile includes a first terminal category having a predetermined buffer size.
  • the control unit selects a profile including a terminal category having a buffer size equal to or larger than the predetermined buffer size as the second profile.
  • the UE 100 supports a plurality of functions related to wireless communication.
  • the function related to the wireless communication is a function defined by the specification, for example, “Dual Connectivity”, D2D (Device to Device), NAICS (Network-Assisted Interference and Suppression), and the like.
  • the function related to wireless communication may include “UE Category”. Further, the function related to wireless communication may include “Support Band Combination”.
  • Feature a function related to wireless communication is appropriately referred to as “Feature”.
  • profile # 1 is composed of a combination of “Category 6” and NAICS
  • profile # 2 is composed of a combination of “Category 7” and “Dual Connectivity”
  • profile # 3 is composed of a combination of “Category 10” and D2D. Composed.
  • the UE 100 When the eNB 200 has a right to select a profile to be set in the UE 100, the UE 100 notifies the network (eNB 200 or MME 300) of a plurality of profiles (Multiple profiles UE capability) that the UE 100 supports, and the network “Multiple profiles UE capability” Manage.
  • the eNB 200 selects one profile from “Multiple profiles UE capability”.
  • eNB200 transmits the setting information (configuration) of the selected profile to UE100 by a separate RRC message etc.
  • the UE 100 selects one profile from “Multiple profiles UE capability”. And UE100 transmits the profile change request
  • the UE 100 has a profile selection right.
  • FIG. 24 is a diagram showing an example of an operation sequence related to profile change during RRC connection.
  • the UE 100 In the initial state of FIG. 24, the UE 100 is in the connected mode.
  • step S10 the UE 100 transmits a profile change request for requesting a change to the “Suggested profile” to the eNB 200 with the selected profile as a recommended profile (Suggested profile).
  • “UL Indication message” including “Suggested profile” corresponds to a profile change request.
  • step S20 the eNB 200 transmits the setting information (configuration) of the profile (Selected profile) selected based on the “Suggested profile” to the UE 100 by the “RRC Connection Reconfiguration” message.
  • the UE 100 changes the profile based on the configuration of “Selected profile”.
  • FIG. 25 is a block diagram of the UE 100. As illustrated in FIG. 25, the UE 100 includes a reception unit 110, a transmission unit 120, and a control unit 130.
  • the receiving unit 110 performs various types of reception under the control of the control unit 130.
  • the receiving unit 110 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 130.
  • the transmission unit 120 performs various transmissions under the control of the control unit 130.
  • the transmission unit 120 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output from the control unit 130 into a radio signal and transmits it from the antenna.
  • the control unit 130 performs various controls in the UE 100.
  • the control unit 130 includes an arithmetic processing unit 131.
  • Control unit 130 further includes a memory (not shown).
  • the arithmetic processing unit 131 includes a digital signal processor (DSP) 131a that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory and performs various processes. 131b.
  • the arithmetic processing unit 131 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the control unit 130 executes various processes and various communication protocols.
  • the transmission part 120 transmits the profile change request
  • “Suggested profile” is selected by the control unit 130 from among a plurality of profiles (Multiple profiles UE capability) supported by the own UE 100.
  • the control unit 130 maintains the prohibited state in which the transmission of the profile change request is prohibited until a predetermined condition is satisfied, and releases the prohibited state when the predetermined condition is satisfied.
  • the predetermined condition is a condition that an elapsed time since the previous profile change request was transmitted exceeded a time threshold.
  • the control unit 130 maintains the prohibited state in which the transmission of the profile change request is prohibited until the elapsed time from the previous transmission of the profile change request exceeds the time threshold. And the control part 130 will cancel
  • the time threshold is specified by the eNB 200.
  • the time threshold may be preset in the UE 100.
  • the receiving unit 110 receives information indicating the time threshold value from the eNB 200.
  • the information indicating the time threshold may be cell-specific information transmitted from the eNB 200 through a broadcast RRC message (for example, “System Information Block”), or may be UE-specific information transmitted from the eNB 200 through an individual RRC message.
  • the control unit 130 sets a time threshold based on information received from the eNB 200. In the following, it is assumed that the time threshold is a specified timer value set in the UE 100.
  • the control unit 130 counts the elapsed time from the transmission of the profile change request using a timer, and determines whether or not the elapsed time has reached a specified timer value.
  • the control unit 130 may not reset the timer even when a handover is performed. In other words, the control unit 130 may continue counting elapsed time before and after the handover.
  • control unit 130 may reset the timer when a handover is performed. For example, when changing the profile at the time of handover (initial setting), the control unit 130 may end the elapsed time measurement.
  • FIG. 26 is a block diagram of the eNB 200. As illustrated in FIG. 26, the eNB 200 includes a transmission unit 210, a reception unit 220, a control unit 230, and a backhaul communication unit 240.
  • the transmission unit 210 performs various transmissions under the control of the control unit 230.
  • the transmission unit 210 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output from the control unit 230 into a radio signal and transmits it from the antenna.
  • the receiving unit 220 performs various types of reception under the control of the control unit 230.
  • the receiving unit 220 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 230.
  • the control unit 230 performs various controls in the eNB 200.
  • the control unit 230 includes an arithmetic processing unit and a memory (not shown).
  • the memory stores a program executed by the arithmetic processing unit and information used for processing by the arithmetic processing unit.
  • the arithmetic processing unit includes a DSP that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes various processes by executing a program stored in a memory.
  • the arithmetic processing unit executes various processes and various communication protocols.
  • the backhaul communication unit 240 is connected to the neighboring eNB 200 via the X2 interface, and is connected to the MME / S-GW 300 via the S1 interface.
  • the backhaul communication unit 240 is used for communication performed on the X2 interface, communication performed on the S1 interface, and the like.
  • the transmission unit 210 transmits a threshold value (time threshold value) that defines a predetermined condition to the UE 100.
  • the predetermined condition is a condition for canceling the prohibition state in which the UE 100 is prohibited from transmitting the profile change request.
  • the predetermined condition is a condition that an elapsed time from the previous transmission of the profile change request has exceeded a time threshold.
  • the receiving unit 220 receives from the UE 100 a profile change request for requesting a change to “Suggested profile”.
  • the controller 230 determines a profile to be set in the UE 100 based on “Suggested profile”.
  • the transmission unit 210 transmits setting information (configuration) related to the determined profile to the UE 100 by an individual RRC message or the like.
  • the control unit 230 may notify the target eNB of the “Suggested profile” of the UE 100 through the backhaul communication unit 240 when the UE 100 is handed over. Moreover, the control part 230 may notify the target eNB through the backhaul communication part 240 about the time threshold value (regulated timer value) set to UE100 at the time of the handover of UE100. Thereby, target eNB can perform an appropriate setting with respect to UE100 from an own eNB.
  • the time threshold value regulated timer value
  • FIG. 27 is a diagram illustrating an operation flow of the UE 100 (wireless terminal) according to the twelfth embodiment.
  • step S101 the UE 100 selects “Suggested profile” and transmits “Suggested profile” to the eNB 200.
  • step S102 the UE 100 starts (activates) “Prohibit timer” when transmitting “Suggested profile”.
  • “Prohibit timer” the specified timer value described above is set.
  • the “Prohibit timer” is a timer that measures the elapsed time since the transmission of the “Suggested profile”.
  • step S103 the UE 100 reselects “Suggested profile”.
  • step S104 the UE 100 confirms whether or not “Prohibit timer” has expired.
  • step S104 When “Prohibit timer” expires (step S104: Yes), in step S105, the UE 100 transmits the reselected “Suggested profile” to the eNB 200.
  • the UE 100 maintains a prohibited state in which transmission of a profile change request is prohibited until a predetermined condition is satisfied, and cancels the prohibited state when the predetermined condition is satisfied.
  • the predetermined condition is a condition that the elapsed time since the last transmission of the profile change request has exceeded the time threshold.
  • the predetermined condition is a condition that the load status of the own UE 100 exceeds or falls below the load status threshold. That is, the UE 100 maintains a prohibited state in which transmission of a profile change request is prohibited until the load status of the own UE 100 exceeds or falls below the load status threshold, and is prohibited when the load status of the own UE 100 exceeds or falls below the load status threshold. Release the state.
  • the load situation threshold is specified by the eNB 200.
  • the threshold handling method is the same as in the twelfth embodiment.
  • Such a modification example assumes a case in which, when the load status of the UE 100 increases, the profile is changed to a low load (low performance) profile.
  • the load status of the UE 100 is, for example, the load status of the arithmetic processing unit 131.
  • the load status may be expressed as a percentage.
  • the load status is a percentage of processing resources being used (that is, processing load) or a percentage of processing resources being used.
  • the predetermined condition is a condition that the radio status of the own UE 100 exceeds or falls below the radio status threshold. That is, the UE 100 maintains a prohibited state in which transmission of a profile change request is prohibited until the radio status of the own UE 100 exceeds or falls below the radio status threshold, and is prohibited when the radio status of the own UE 100 exceeds or falls below the radio status threshold. Release the state.
  • the radio situation threshold is specified by the eNB 200.
  • the threshold handling method is the same as in the twelfth embodiment. Such a modification example assumes a case where the UE 100 changes to a low load (low power consumption) profile when the radio status of the UE 100 becomes good.
  • the radio conditions of the UE 100 are, for example, reference signal received power (RSRP), reference signal reception quality (RSRQ), data error rate, and the like.
  • the radio situation threshold that is compared with the radio situation when the radio situation of the UE 100 is improved may be different from the radio situation threshold that is compared when the radio situation of the UE 100 is degraded.
  • a ping-pong phenomenon can be avoided by providing a margin (hysteresis) between both thresholds.
  • the wireless condition threshold value may have hysteresis.
  • FIG. 28 is a diagram showing an operation sequence according to the present modification example.
  • the eNB 200 transmits “Threshold configuration” that is setting information of threshold values (load status threshold value, load status threshold value) to the UE 100.
  • the UE 100 sets threshold values (load situation threshold value, load situation threshold value) according to “Threshold configuration”.
  • step S152 the UE 100 detects that the status (load status, radio status) of the UE 100 satisfies a threshold (load status threshold, load status threshold) condition.
  • step S153 the UE 100 selects “Suggested profile” corresponding to the situation of the own UE 100.
  • step S154 the UE 100 transmits the selected “Suggested profile” to the eNB 200.
  • the thirteenth embodiment is an embodiment relating to restriction on profile change timing.
  • the UE 100 (radio terminal) according to the thirteenth embodiment will be described.
  • the block configuration of the UE 100 is the same as that in the twelfth embodiment.
  • the transmission unit 120 transmits a change request to the second profile to the eNB 200.
  • the reception unit 110 receives a change request from the eNB 200 to the second profile.
  • the reception unit 110 and the transmission unit 120 constitute a communication unit.
  • the control unit 130 changes to the second profile at the second timing after the lapse of the specified time from the first timing at which the change request is transmitted or received.
  • the specified time is, for example, a time specified in the specification.
  • the specified time may be specified from the eNB 200 to the UE 100, or may be specified from the UE 100 to the eNB 200. By introducing such a specified time, the timing at which the UE 100 and the eNB 200 change the profile can be matched.
  • the control unit 130 performs processing necessary for changing to the second profile within a specified time from the first timing.
  • the necessary processing is, for example, parameter change for changing to the setting parameter of the second profile. Even if the control unit 130 is not notified of the parameter change from the eNB 200, the control unit 130 changes the setting parameter of the second profile. Specifically, it is assumed that necessary processing (processing related to setting parameter change) is performed in the eNB 200, and the setting parameter is changed to the second profile setting parameter.
  • the set number of secondary cells is more than the number of secondary cells allowed in the profile after the change. If there are many, it is considered that the number of secondary cells allowed in the profile after the change has been changed. Alternatively, it is assumed that all secondary cells have been released.
  • the packet being retransmitted is discarded, the secondary cell monitoring is stopped, and the PDCCH monitoring is stopped for cross-carrier scheduling for the secondary cell.
  • “Dual Connectivity” remains set at the timing of profile change that disables “Dual Connectivity”.
  • the function relating to this setting may be deactivated while the setting parameters are retained.
  • the UE 100 stops the D2D function according to the profile, but retains (does not discard) the setting. Thereafter, when a profile that has been further changed is received and the D2D function has been designated, the D2D function can be resumed using the stored settings.
  • Such control makes it possible to reduce unnecessary signaling overhead.
  • control unit 130 may notify the eNB 200 of the mismatch between the setting parameter of the first profile and the setting parameter of the second profile as described above. For example, a “RRC Connection Reestablishment Request” message is transmitted to the eNB 200, and information indicating “configuration mismatch with profile” is included in the Cause field therein.
  • control unit 130 may stop data transmission / reception with the eNB 200 (at least the secondary cell) until the specified time elapses from the first timing. In this case, only signaling for changing the setting parameter may be transmitted / received.
  • the eNB 200 base station
  • the eNB 200 base station
  • the block configuration of the eNB 200 is the same as that in the twelfth embodiment.
  • description is abbreviate
  • the transmission unit 210 transmits a change request to the second profile to the UE 100 in which the first profile is set.
  • the receiving unit 220 receives a change request to the second profile from the UE 100 in which the first profile is set.
  • the control unit 230 changes to the second profile at the second timing after the lapse of the specified time from the first timing at which the change request is transmitted or received.
  • the control unit 230 performs processing necessary for changing to the second profile within a specified time from the first timing.
  • the necessary processing is, for example, parameter change for changing to the setting parameter of the second profile.
  • the control unit 230 changes the setting parameter of the second profile without notifying the UE 100 of the parameter change.
  • control unit 230 may stop data transmission / reception with the UE 100 at least in the secondary cell until the specified time elapses from the first timing. In this case, only signaling for changing the setting parameter may be transmitted / received.
  • FIG. 29 is a diagram illustrating an example of an operation sequence according to the thirteenth embodiment.
  • the UE 100 and the eNB 200 are performing communication using the first profile.
  • step S300 a change request to the second profile is transmitted from the eNB 200 to the UE 100.
  • the change request to the 2nd profile is transmitted from UE100 to eNB200.
  • the UE 100 and the eNB 200 start measuring the specified time.
  • step S301 the UE 100 and the eNB 200 stop data transmission / reception.
  • step S302 the UE 100 and the eNB 200 perform processing necessary for profile change. For example, the UE 100 and the eNB 200 change to the setting parameter of the second profile.
  • step S303 the UE 100 and the eNB 200 start communication (data transmission / reception) using the second profile at the timing when the specified time has elapsed (expired).
  • the profile change request timing is the start timing (first timing) of the “specified time”.
  • the timing of the response may be the start timing of the specified time.
  • the profile change request from the UE 100 to the eNB 200 is “Suggested profile” (UL Indication message), and the response from the eNB 200 to the UE 100 is “Selected profile” (RRC Connection Reconfiguration).
  • the profile change request from the eNB 200 to the UE 100 is “Selected profile” (RRC Connection Reconfiguration), and the response from the UE 100 to the eNB 200 is “RRC Connection Reconfiguration Complete”.
  • the modification example of the thirteenth embodiment is basically the same as that of the thirteenth embodiment except that the response timing to the profile change request is the start timing of the specified time.
  • the fourteenth embodiment is an embodiment relating to content limitation of profile change.
  • the UE 100 wireless terminal
  • the block configuration of the UE 100 is the same as that in the twelfth embodiment.
  • the control unit 130 selects a second profile different from the first profile when the first profile is set.
  • the transmission unit 120 transmits a profile change request (Requested profile) for requesting a change to the second profile to the eNB 200.
  • the control unit 130 selects the second profile based on the first profile so that at least a part of the communication state is maintained. For example, when the first profile including the support frequency band (Support Band Combination) to which the primary cell of the own UE 100 belongs is set, the control unit 130 includes the support frequency band (Support Band Combination) to which the primary cell belongs. Select a profile as the second profile. In other words, the control unit 130 is allowed to change only to the profile including the support frequency band (Support Band Combination) to which the primary cell of the own UE 100 belongs.
  • the primary cell is not limited to a normal primary cell (PCell), but may be a primary / secondary cell (PSCell) that is a primary cell of SeNB in “Dual Connectivity”.
  • the primary cell is an important cell having the PUCCH of the UE 100.
  • the primary cell can be maintained before and after the profile change, so that communication interruption can be prevented.
  • the first profile includes a first terminal category (UE category) having a predetermined buffer size (soft buffer size).
  • the control unit 130 of the UE 100 selects a profile including “UE category” having “soft buffer size” equal to or higher than the predetermined “soft buffer size” as the second profile.
  • the HARQ context is discarded (all data being retransmitted is discarded). If the “soft buffer” is not used up, the HARQ context may be retained even if the “soft buffer size” is decreased. This is the “soft buffer” state. Since it is essential that there is no flaw in the recognition between the eNB 200 and the UE 100, it is necessary to separately exchange a status confirmation message between the B 200 and the UE 100.
  • DL communication from the eNB 200 to the UE 100 may be prohibited until the profile change is actually applied after the eNB 200 notifies the UE 100 of the profile change request, and the “Soft buffer” usage amount increases.
  • Such DL resource allocation (for example, retransmission allocation of a used HARQ process or new allocation of an unused HARQ process) may be prohibited.
  • a radio terminal performs handover when moving from one cell to another cell.
  • mobility of the wireless terminal is not taken into consideration, and thus mobility control may not be performed appropriately.
  • the base station has a plurality of profiles defined, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • control unit notifies the other base station of a profile supported by the wireless terminal and used for communication between the base station and the wireless terminal.
  • control unit notifies the other base stations of all profiles supported by the wireless terminal.
  • control unit transmits a profile to be used by the other base station for communication with the wireless terminal without using the mobility management device or through the mobility management device. Acquired from the station, and notifies the wireless terminal of the acquired profile.
  • the control unit when the other base station is a non-profile base station, notifies each of the functions included in the profile supported by the wireless terminal to the other base station. To do.
  • control unit supports each function included in a profile supported by the wireless terminal and used for communication between the base station and the wireless terminal.
  • the mobility management apparatus defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the mobility management apparatus notifies the second base station of a profile supported by the radio terminal when the radio terminal is handed over from the first base station to the second base station. Is provided.
  • control unit notifies the second base station of a profile supported by the wireless terminal and notified from the first base station.
  • control unit sends a profile supported by the wireless terminal and used for communication between the first base station and the wireless terminal to the second base station. Notice.
  • control unit notifies the second base station of all profiles supported by the wireless terminal.
  • control unit acquires a profile to be used by the second base station for communication with the wireless terminal from the second base station, and acquires the acquired profile from the first base station. Notify the base station.
  • the control unit when the second base station is a profile non-compliant base station, the control unit performs each function included in a profile supported by the wireless terminal on the second base station.
  • the control unit notifies the second base station of each function included in a specific profile among the profiles supported by the wireless terminal.
  • the specific profile is a specified profile selected by the wireless terminal or a profile selected by the own mobility management device.
  • the base station has a plurality of profiles defined, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the base station when performing handover of a radio terminal from another base station to its own base station, a control unit that acquires a profile supported by the radio terminal from the other base station or a mobility management device Prepare.
  • control unit uses a profile supported by the wireless terminal and used for communication between the other base station and the wireless terminal as the other base station or the mobility. Obtain from the management device.
  • control unit acquires all profiles supported by the wireless terminal from the other base station or the mobility management device.
  • control unit determines a profile to be used by the base station for communication with the wireless terminal from among profiles supported by the wireless terminal, and determines the determined profile as the other profile. To the base station or the mobility management device.
  • the control unit when the base station is a non-profile-compatible base station, the control unit performs each function included in the profile supported by the wireless terminal in the other base station or the mobility management. Obtain from the device.
  • the wireless terminal according to the fifteenth embodiment defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the wireless terminal performs handover of the wireless terminal from the first base station to the second base station, the wireless terminal sets a profile to be used for communication with the wireless terminal by the second base station.
  • the control part acquired from 1 base station is provided.
  • the base station defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the base station includes a transmission unit that broadcasts information indicating whether or not the base station is profile-compatible to a wireless terminal.
  • the wireless terminal according to the sixteenth embodiment defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the wireless terminal When the wireless terminal is connected to a base station that does not support a profile, the wireless terminal includes a control unit that notifies only a part of the functions supported by the wireless terminal to the base station that does not support the profile.
  • the wireless terminal according to the sixteenth embodiment defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the wireless terminal includes a control unit that detaches from a network and attaches to the network before connecting to a non-profile-compatible base station.
  • the wireless terminal according to the sixteenth embodiment defines a plurality of profiles, and each profile is used in a mobile communication system including a plurality of functions related to wireless communication.
  • the wireless terminal includes a control unit that notifies the mobility management apparatus of any one of profiles supported by the wireless terminal as a specified profile.
  • the UE 100 supports a plurality of functions related to wireless communication.
  • the function related to the wireless communication is a function defined by the specification, for example, “Dual Connectivity”, D2D (Device to Device), NAICS (Network-Assisted Interference and Suppression), and the like.
  • the function related to wireless communication may include “UE Category”. Further, the function related to wireless communication may include “Support Band Combination”.
  • Feature a function related to wireless communication is appropriately referred to as “Feature”.
  • profile # 1 is composed of a combination of “Category 6” and NAICS
  • profile # 2 is composed of a combination of “Category 7” and “Dual Connectivity”
  • profile # 3 is composed of a combination of “Category 10” and D2D. Composed.
  • FIG. 30 is a diagram illustrating an example of an operation sequence related to initial acquisition of a profile.
  • the UE 100 is in the connected mode.
  • step S11 the eNB 200 transmits a “UE Capability Enquiry” message to the UE 100.
  • step S12 in response to receiving the “UE Capability Enquiry” message, the UE 100 transmits a “UE Capability information” message including a plurality of profiles (Multiple profiles) supported by the UE 100 to the eNB 200.
  • a “UE Capability information” message including a plurality of profiles (Multiple profiles) supported by the UE 100 to the eNB 200.
  • step S ⁇ b> 13 the eNB 200 transmits a “UE Capability info Indication” message including a plurality of profiles (Multiple profiles) supported by the UE 100 to the MME 300 in response to the reception of the “UE Capability information” message.
  • the MME 300 holds information of a plurality of profiles (Multiple profiles) supported by the UE 100 until the UE 100 is detached from the network. Further, when the UE 100 is detached from the network, the MME 300 discards information on a plurality of profiles (Multiple profiles) supported by the UE 100.
  • FIG. 31 is a diagram showing an example of a profile initial setting sequence. In the initial state of this sequence, the UE 100 is in the idle mode.
  • step S21 the UE 100 performs random access to the eNB 200.
  • step S ⁇ b> 22 the UE 100 transmits an “RRC Connection Request” message to the eNB 200.
  • step S23 the eNB 200 transmits a “RRC Connection Setup” message to the UE 100 in response to reception of the “RRC Connection Request” message.
  • step S24 the UE 100 transmits a “RRC Connection Setup Complete” message to the eNB 200 in response to the reception of the “RRC Connection Setup” message.
  • the UE 100 selects one profile as a recommended profile from a plurality of profiles (Multiple profiles) that the UE 100 supports, “Suggested profile” is included in the “RRC Connection Setup Complete” message.
  • the UE 100 transitions from the idle mode to the connected mode.
  • step S ⁇ b> 25 the eNB 200 transmits “INITIAL UE MESSAGE” to the MME 300 in response to reception of the “RRC Connection Setup Complete” message.
  • step S ⁇ b> 26 the MME 300 transmits an “INITIAL CONTEXT SETUP REQ.” Message to the eNB 200 in response to the reception of “INITIAL UE MESSAGE”.
  • the MME 300 includes information of a plurality of profiles (Multiple profiles) supported by the UE 100 in the “INITIAL CONTENT SETUP REQ.” Message.
  • the eNB 200 holds information of a plurality of profiles (Multiple profiles) supported by the UE 100.
  • step S27 the eNB 200 transmits a “Security Mode Command” message to the UE 100.
  • step S ⁇ b> 28 the eNB 200 transmits a “RRC Connection Reconfiguration” message to the UE 100.
  • the eNB 200 includes setting information (Configuration) of a profile (Selected profile) selected from a plurality of profiles (Multiple profiles) supported by the UE 100 in the “RRC Connection Reconfiguration” message.
  • the UE 100 holds the setting information (Configuration) of “Selected profile”, and then starts wireless communication according to “Selected profile”.
  • step S ⁇ b> 29 the UE 100 transmits a “Security Mode Complete” message to the eNB 200.
  • step S ⁇ b> 30 the UE 100 transmits a “RRC Conn. Reconf. Complete” message to the eNB 200.
  • FIG. 32 is a diagram illustrating an example of an operation sequence related to profile change during RRC connection.
  • 32A is a profile change sequence started by the eNB 200
  • FIG. 32B is a profile change sequence started by the UE 100.
  • step S41 the eNB 200 selects one profile from a plurality of profiles (Multiple profiles) supported by the UE 100. And eNB200 transmits the setting information (Configuration) of the selected profile (Selected profile) to UE100 by a "RRC Connection Reconfiguration" message. The UE 100 changes the profile based on the configuration of “Selected profile”.
  • step S51 the UE 100 transmits to the eNB 200 an “UL Indication” message including the recommended profile (Suggested profile) for the profile selected by itself.
  • step S52 the eNB 200 transmits the setting information (Configuration) of the profile (Selected profile) selected based on the “Suggested profile” to the UE 100 by the “RRC Connection Reconfiguration” message.
  • the UE 100 changes the profile based on the configuration of “Selected profile”.
  • the UE 100 in the connected mode performs handover when moving from one cell to another cell.
  • inter-base station (Inter-eNB) handover will be mainly described.
  • Inter-eNB handover the UE 100 is handed over from the source eNB to the target eNB.
  • Inter-eNB handover includes X2 handover and S1 handover.
  • X2 handover is a handover sequence in which the MME 300 does not intervene in signaling between the source eNB and the target eNB.
  • S1 handover is a handover sequence in which the MME 300 intervenes in signaling between the source eNB and the target eNB.
  • FIG. 33 is a block diagram of the eNB 200. As illustrated in FIG. 33, the eNB 200 includes a transmission unit 210, a reception unit 220, a control unit 230, and a backhaul communication unit 240.
  • the transmission unit 210 performs various transmissions under the control of the control unit 230.
  • the transmission unit 210 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output from the control unit 230 into a radio signal and transmits it from the antenna.
  • the receiving unit 220 performs various types of reception under the control of the control unit 230.
  • the receiving unit 220 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 230.
  • the control unit 230 performs various controls in the eNB 200.
  • the control unit 230 includes an arithmetic processing unit and a memory (not shown).
  • the memory stores a program executed by the arithmetic processing unit and information used for processing by the arithmetic processing unit.
  • the arithmetic processing unit includes a DSP that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes various processes by executing a program stored in a memory.
  • the arithmetic processing unit executes various processes and various communication protocols.
  • the backhaul communication unit 240 is connected to the neighboring eNB 200 via the X2 interface, and is connected to the MME / S-GW 300 via the S1 interface.
  • the backhaul communication unit 240 is used for communication performed on the X2 interface, communication performed on the S1 interface, and the like.
  • the eNB 200 configured in this way is used in an LTE system in which a plurality of profiles are defined. As described above, each profile includes a plurality of functions related to wireless communication.
  • the source eNB is denoted as eNB200S
  • the target eNB is denoted as eNB200T.
  • the control unit 230 performs the handover of the UE 100 from the own eNB to the target eNB 200T without passing through the MME 300 (in the case of X2 handover) or via the MME 300 (in the case of S1 handover). Is notified to the target eNB 200T.
  • the control unit 230 notifies the target eNB 200T of a profile (Selected profile) supported by the UE 100 and used for communication between the own eNB and the UE 100.
  • the control unit 230 notifies the target eNB 200T of all profiles (Multiple profiles) supported by the UE 100.
  • control unit 230 acquires the profile that the target eNB 200T should use for communication with the UE 100 from the target eNB 200T without using the MME 300 (in the case of X2 handover) or through the MME 300 (in the case of S1 handover), The UE 100 is notified of the acquired profile.
  • the control unit 230 when the control unit 230 performs handover of the UE 100 from the source eNB 200S to the own eNB, the control unit 230 selects a profile supported by the UE 100 from the source eNB 200S (in the case of X2 handover) or the MME 300 (in the case of S1 handover). get.
  • control unit 230 acquires a profile (Selected profile) supported by the UE 100 and used for communication between the source eNB 200S and the UE 100 from the source eNB 200S or the MME 300. Or control part 230 acquires all the profiles (Multiple profiles) which UE100 supports from source eNB200S or MME300.
  • the control unit 230 determines a profile to be used by the eNB for communication with the UE 100 from the profiles supported by the UE 100, and uses the determined profile as the source eNB 200S (in the case of X2 handover) or the MME 300 (S1 handover). In the case of).
  • FIG. 34 is a block diagram of the MME 300. As shown in FIG. 34, the MME 300 includes a communication unit 310 and a control unit 320.
  • the communication unit 310 is connected to the eNB 200 via the S1 interface.
  • the communication unit 310 is used for communication performed on the S1 interface.
  • the control unit 320 performs various controls in the MME 300.
  • the control unit 320 includes an arithmetic processing unit and a memory that are not shown.
  • the memory stores a program executed by the arithmetic processing unit and information used for processing by the arithmetic processing unit.
  • the control unit 320 executes various processes and various communication protocols.
  • the MME 300 configured as described above is used in an LTE system in which a plurality of profiles are defined.
  • the control unit 320 when performing handover of the UE 100 from the source eNB 200S (first eNB) to the target eNB 200T (second eNB), sets the profile supported by the UE 100 to the target eNB 200T. Notice. Specifically, the control unit 320 notifies the target eNB 200T of the profile notified from the source eNB 200S.
  • the control unit 320 notifies the target eNB 200T of a profile (Selected profile) used for communication between the source eNB 200S and the UE 100. Alternatively, the control unit 320 notifies the target eNB 200T of all profiles (Multiple profiles) supported by the UE 100.
  • FIG. 35 is a block diagram of the UE 100. As illustrated in FIG. 35, the UE 100 includes a reception unit 110, a transmission unit 120, and a control unit 130.
  • the receiving unit 110 performs various types of reception under the control of the control unit 130.
  • the receiving unit 110 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 130.
  • the transmission unit 120 performs various transmissions under the control of the control unit 130.
  • the transmission unit 120 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output from the control unit 130 into a radio signal and transmits it from the antenna.
  • the control unit 130 performs various controls in the UE 100.
  • the control unit 130 includes an arithmetic processing unit 131.
  • Control unit 130 further includes a memory (not shown).
  • the arithmetic processing unit 131 includes a digital signal processor (DSP) 131a that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory and performs various processes. 131b.
  • the arithmetic processing unit 131 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the control unit 130 executes various processes and various communication protocols.
  • the MME 300 configured as described above is used in an LTE system in which a plurality of profiles are defined.
  • the control part 130 is a profile which the target eNB200T should use for communication with the own UE100 when the handover of the own UE100 is performed from the source eNB200S (first eNB) to the target eNB200T (second eNB). Is obtained from the source eNB 200S.
  • FIG. 36 is a diagram showing an X2 handover sequence according to the fifteenth embodiment. In the initial state of this sequence, the UE 100 is in the connected mode.
  • step S101 the source eNB 200S sends the setting information (Configuration) selected based on “Multiple profiles” or “Suggested profile” to the “RRC Connection Reconfiguration 100” using the configuration information (Configuration). Send.
  • the UE 100 communicates with the source eNB 200S using “Selected profile”.
  • step S102 the UE 100 transmits a “Measurement Report” message to the source eNB 200S.
  • the source eNB 200S determines the handover to the target eNB 200T based on the “Measurement Report” message.
  • step S103 the source eNB 200S transmits a “Handover Request” message to the target eNB 200T.
  • the source eNB 200S includes “Selected profile” or “Multiple profiles” in the “Handover Request” message.
  • the target eNB 200T determines whether to approve the “Handover Request” message.
  • the description will be made assuming that the “Handover Request” message is approved.
  • the target eNB 200T transmits a “Handover Request ACK” message to the source eNB 200S.
  • the target eNB 200T includes, in the “Handover Request ACK” message, a profile selected based on “Multiple profiles” or “Selected profile” included in the “Handover Request” message.
  • any of the following first to third methods can be used.
  • the target eNB 200T confirms its own processing load, and if it is determined that processing is possible even using the “Selected profile”, the target eNB 200T includes the “Selected profile” in the “Handover Request ACK” message. . On the other hand, if processing using the “Selected profile” is not possible, select a profile in the range that can be processed from “Multiple profiles” and include the selected profile in the “Handover Request ACK” message. .
  • the communication state with the other UE in the target eNB 200T is confirmed.
  • a profile including MU-MIMO in “Multiple profiles” is set to “Handover”. Include in Request ACK message.
  • “Selected profile” includes MU-MIMO “Selected profile” may be included in the “Handover Request ACK” message.
  • a profile including NAICS or “Dual Connectivity” among “Multiple profiles” is included in the “Handover Request ACK” message.
  • “Selected profile” includes NAICS or “Dual Connectivity”
  • “Selected profile” may be included in the “Handover Request ACK” message.
  • the capability of the target eNB 200T is referred to, and a profile composed only of the functions supported by the target eNB 200T among the “Multiple profiles” is included in the “Handover Request ACK” message.
  • “Selected profile” is configured only with functions supported by the target eNB 200T, “Selected profile” may be included in the “Handover Request ACK” message.
  • step S105 the source eNB 200S transmits a “Handover Command” message to the UE 100 in response to receiving the “Handover Request ACK”.
  • the source eNB 200S includes the profile selected by the target eNB 200T in the “Handover Command” message.
  • the UE 100 performs handover to the target eNB 200T in response to reception of the “Handover Command” message.
  • the UE 100 uses the profile included in the “Handover Command” message for communication with the target eNB 200T after the handover.
  • FIG. 37 is a diagram showing an S1 handover sequence according to the fifteenth embodiment. In the initial state of this sequence, the UE 100 is in the connected mode.
  • step S151 the source eNB 200S transmits the configuration information (Selected profile) selected based on “Multiple profiles” or “Suggested profile” to the “RRC Connection Reconfiguration UE” using the configuration information (Configuration). Send.
  • the UE 100 communicates with the source eNB 200S using “Selected profile”.
  • step S152 the UE 100 transmits a “Measurement Report” message to the source eNB 200S.
  • the source eNB 200S determines the handover to the target eNB 200T based on the “Measurement Report” message.
  • step S153 the source eNB 200S transmits a “Handover Required” message to the MME 300.
  • the source eNB 200S includes “Selected profile” or “Multiple profiles” in the “Handover Required” message.
  • the MME 300 transmits a “Handover Request” message to the target eNB 200T.
  • the MME 300 includes the “Selected profile” or “Multiple profiles” included in the “Handover Required” message in the “Handover Request” message.
  • the MME 300 may include the profile selected by itself from “Multiple profiles” in the “Handover Request” message based on the subscriber information of the UE 100, for example.
  • the MME 300 may include a specified profile (Default profile) described later in the “Handover Request” message.
  • the target eNB 200T determines whether to approve the “Handover Request” message. Here, the description will be made assuming that the “Handover Request” message is approved.
  • the target eNB 200T transmits a “Handover Request ACK” message to the MME 300.
  • the target eNB 200T includes, in the “Handover Request ACK” message, a profile selected based on “Multiple profiles” or “Selected profile” included in the “Handover Request” message.
  • step S156 the MME 300 transmits a “Handover Command” message to the source eNB 200S.
  • the MME 300 includes the profile selected by the target eNB 200T in the “Handover Command” message.
  • step S157 the source eNB 200S transmits a “Handover Command” message to the UE 100 in response to receiving the “Handover Command” message from the MME 300.
  • the source eNB 200S includes the profile selected by the target eNB 200T in the “Handover Command” message.
  • the UE 100 performs handover to the target eNB 200T in response to reception of the “Handover Command” message.
  • the UE 100 uses the profile included in the “Handover Command” message for communication with the target eNB 200T after the handover.
  • the target eNB 200T is a profile-compatible eNB and can handle a profile.
  • the target eNB 200T is a non-profile compatible eNB and cannot handle the profile.
  • the UE 100 may connect to a profile non-compliant eNB and communicate with the non-profile eNB.
  • the sixteenth embodiment is an embodiment related to the operation when there is a profile incompatible eNB.
  • Operation pattern 1 In the operation pattern 1 of the sixteenth embodiment, it is assumed that the target eNB 200T in the X2 handover is a profile non-compliant eNB (see FIG. 36).
  • the source eNB 200S notifies each function included in the profile supported by the UE 100 to the target eNB 200T.
  • the source eNB 200S notifies the target eNB 200T of each function included in the profile (Selected profile) used for communication between the own eNB and the UE 100.
  • each function included in the profile is included in the “Handover Request” message as UE context information, for example. Thereby, the contents of the profile can be notified as information that can be interpreted by the target eNB 200T. In this case, a sequence similar to the normal X2 handover sequence can be used.
  • the operation pattern 1 is based on the premise that the source eNB 200S holds information on whether or not the target eNB 200T is a profile-compatible eNB. Such information may be preset or may be set autonomously using the SON function. Alternatively, the target eNB 200T may notify the source eNB 200S in advance whether the profile can be supported. Moreover, such information may be included in the neighboring cell list (neighbor list) held by the source eNB 200S.
  • the MME 300 notifies each function included in the profile supported by the UE 100 to the target eNB 200T.
  • the MME 300 notifies the target eNB 200T of each function included in a profile (Selected profile) used for communication between the source eNB 200S and the UE 100.
  • the MME 300 may include, for example, each function included in the profile as UE context information in the “Handover Request” message. Thereby, the contents of the profile can be notified as information that can be interpreted by the target eNB 200T. In this case, a sequence similar to the normal S1 handover sequence can be used.
  • the operation pattern 2 is based on the premise that the MME 300 holds information on whether or not the target eNB 200T is a profile-compatible eNB. Such information may be set in advance, or the target eNB 200T may notify the MME 300 of the availability of profile support in advance.
  • the MME 300 may notify each function included in the specified profile (Default profile) to the target eNB 200T instead of notifying each function included in the “Selected profile” to the target eNB 200T.
  • “Default profile” is notified from the UE 100 to the MME 300 in the initial profile setting sequence (see FIG. 30).
  • the UE 100 transmits a “UE Capability information” message including a plurality of profiles (Multiple profiles) supported by the UE 100 (Step S12).
  • the UE 100 selects any one of “Multiple profiles” as “Default profile” and sets “Multiple profiles” so that “Default profile” can be identified. For example, when the top profile of “Multiple profiles” is defined as “Default profile”, the UE 100 places the profile selected by the UE 100 at the top of “Multiple profiles”. Or when the identifier which shows "Default profile” is prescribed
  • Operation pattern 3 In the operation pattern 3 of the sixteenth embodiment, it is assumed that the target eNB 200T in the X2 handover or the S1 handover is a non-profile compatible eNB. Alternatively, the UE 100 may be connected to a profile non-compliant eNB and communicate with a profile non-compliant eNB.
  • the eNB 200 broadcasts information indicating whether or not the own eNB is profile-compatible to the UE 100. Specifically, eNB200 includes the flag which shows that the said own cell is profile correspondence in the system information block (SIB) transmitted in an own cell. Or you may include the information which shows each profile which the said own cell supports or does not support in the system information block (SIB) transmitted in the own cell.
  • SIB system information block
  • UE100 can grasp
  • the UE 100 when connecting to an eNB (cell) that does not support a profile, the UE 100 may detach from the network and attach to the network. As described above, information on multiple profiles supported by the UE 100 is held in the MME 300 until the UE 100 is detached. Therefore, when the UE 100 is connected to an eNB (cell) that does not support a profile in such a state, an unexpected error may occur. Therefore, when the UE 100 detaches from the network, “Multiple profiles” held in the MME 300 can be discarded, and an unexpected error can be avoided.
  • the UE 100 may notify the eNB (cell) of only some of the functions supported by the UE 100.
  • the UE 100 includes all functions supported by the UE 100 in the “UE Capability information” message for eNBs (cells) that do not support profiles.
  • the UE 100 premised on the use of a profile may have an insufficient processing capacity when a large number of functions are set at the same time, and an unexpected error may occur. Therefore, when the UE 100 is connected to an eNB (cell) that does not support a profile, the UE 100 includes only a function within a range not exceeding the calculation processing capability of the own UE in the “UE Capability information” message.
  • the LTE system is exemplified as the mobile communication system.
  • the present invention is not limited to LTE systems.
  • the present invention may be applied to a system other than the LTE system.
  • the present invention is useful in the communication field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

 第1の特徴に係る基地局は、無線通信に関する複数の機能が規定された移動通信システムにおいて用いられる。前記基地局は、無線端末に備えられた演算処理部の負荷状況又は属性に関する演算処理部情報を前記無線端末から受信する受信部と、前記演算処理部情報に基づいて、前記無線端末に実行させるべき少なくとも1つの機能を選択する制御部と、前記選択した機能を示す情報を前記無線端末に送信する送信部と、を備える。

Description

基地局、無線端末、及びモビリティ管理装置
 本発明は、無線通信に関する複数の機能が規定された移動通信システムにおいて用いられる基地局、無線端末、及びモビリティ管理装置に関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)規格において、無線端末は、自身がサポートする全ての機能をネットワークに通知するように規定されている。ネットワークは、無線端末がサポートする全ての機能の中から少なくとも1つの機能を選択し、選択した機能を無線端末に設定する。
 高度な演算処理を要する機能を無線端末が多数サポートしている場合、当該多数の機能の全てをネットワークから設定された状態(すなわち、ピーク負荷状態)を想定して、高い処理性能を有するように無線端末が設計されることが一般的である。
 しかし、実環境において、無線端末が同時に実行し得る機能の組み合わせは限られているため、処理負荷のピーク状態を想定して無線端末を設計すると、無線端末の処理性能が過剰になり得る。
 よって、無線端末の処理性能を最大限に活用するために、現実的に同時実行し得る機能の組み合わせを仕様上「プロファイル」として規定し、無線端末に実行させるべき機能をプロファイル単位で柔軟に切り替え可能とする技術が検討されている(例えば、非特許文献1参照)。
3GPP寄書 「RP-141404」 2014年9月
 第1の特徴に係る基地局は、無線通信に関する複数の機能が規定された移動通信システムにおいて用いられる。前記基地局は、無線端末に備えられた演算処理部の負荷状況又は属性に関する演算処理部情報を前記無線端末から受信する受信部と、前記演算処理部情報に基づいて、前記無線端末に実行させるべき少なくとも1つの機能を選択する制御部と、前記選択した機能を示す情報を前記無線端末に送信する送信部と、を備える。
 第2の特徴に係る無線端末は、無線通信に関する複数の機能が規定された移動通信システムにおいて用いられる。前記無線端末は、基地局により選択された機能を実行するための演算処理部と、前記演算処理部の負荷状況又は属性に関する演算処理部情報を前記基地局に送信する送信部と、前記基地局により選択された機能を示す情報を前記基地局から受信する受信部と、を備える。
 第3の特徴に係る無線端末は、無線通信に関する複数の機能を含むプロファイルが規定された移動通信システムにおいて用いられる。前記無線端末は、自無線端末がサポートする複数のプロファイルの中から、省電力モードに対応する特定のプロファイルを選択する制御部と、前記特定のプロファイルを示す推奨プロファイル情報を基地局に送信する送信部と、を備える。
 第4の特徴に係る基地局は、無線通信に関する複数の機能を含むプロファイルが規定された移動通信システムにおいて用いられる。前記基地局は、無線端末のバッテリ残量に関するバッテリ情報を前記無線端末から受信する受信部と、前記バッテリ情報に基づいて、前記無線端末がサポートする複数のプロファイルの中から、前記無線端末に設定するプロファイルを選択する制御部と、を備える。
 第5の特徴に係る無線端末は、無線通信に関する複数の機能を含むプロファイルが規定された移動通信システムにおいて用いられる。前記複数の機能は、無線通信の性能を示す端末カテゴリを含む。前記無線端末は、自無線端末がサポートする複数のプロファイルに共通する端末カテゴリを選択する制御部と、前記共通する端末カテゴリを示す推奨カテゴリ情報を基地局に送信する送信部と、を備える。
 第6の特徴に係る基地局は、無線通信に関する複数の機能を含むプロファイルが規定された移動通信システムにおいて用いられる。前記複数の機能は、無線通信の性能を示す端末カテゴリを含む。前記基地局は、無線端末がサポートする複数のプロファイルに共通する端末カテゴリを示す推奨カテゴリ情報を前記無線端末から受信する受信部と、前記推奨カテゴリ情報に基づいて、前記共通する端末カテゴリを含む前記複数のプロファイルの中から、前記無線端末に設定するプロファイルを選択する制御部と、を備える。
 第7の特徴に係る基地局は、無線通信に関する複数の機能を含むプロファイルが規定された移動通信システムにおいて用いられる。前記基地局は、無線端末が自基地局及び他の基地局と接続する二重接続通信を行う場合において、前記無線端末に設定する1又は複数のプロファイルの一部を前記他の基地局に通知する制御部を備える。
 第8の特徴に係る無線端末は、無線通信に関する複数の機能を含むプロファイルが規定された移動通信システムにおいて用いられる。前記無線端末は、自無線端末が第1の基地局及び第2の基地局と接続する二重接続通信を行う場合において、複数のプロファイル群を前記第1の基地局に通知する制御部を備える。前記複数のプロファイル群のそれぞれは、自無線端末がサポートする複数のプロファイルを含む。
 第9の特徴に係る無線端末は、無線通信に関する複数の機能を含むプロファイルが規定された移動通信システムにおいて用いられる。前記無線端末は、自無線端末がサポートする全ての機能を示す機能情報、及び、自無線端末がサポートするプロファイルを示すプロファイル情報を基地局に送信する送信部を備える。前記プロファイル情報は、自無線端末がサポートする全ての機能のうち前記プロファイルに含まれない機能のみを含む。
 第10の特徴に係る無線端末は、無線通信に関する複数の機能を含むプロファイルが規定された移動通信システムにおいて用いられる。前記無線端末は、自無線端末がサポートする複数のプロファイルを示す複数のプロファイル情報と、前記複数のプロファイルに共通する機能を示す機能情報と、を基地局に送信する送信部を備える。前記複数のプロファイル情報のそれぞれは、前記共通する機能とは異なる機能を含む。
 第11の特徴に係る無線端末は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記無線端末は、自無線端末が選択したプロファイルへの変更を要求するためのプロファイル変更要求を基地局に送信する送信部と、所定の条件が満たされるまで、前記プロファイル変更要求の送信が禁止された禁止状態を維持し、前記所定の条件が満たされると前記禁止状態を解除する制御部と、を備える。
 第12の特徴に係る基地局は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記基地局は、所定の条件を定める閾値を無線端末に送信する送信部と、前記無線端末が選択したプロファイルへの変更を要求するためのプロファイル変更要求を前記無線端末から受信する受信部と、を備える。前記所定の条件は、前記無線端末において前記プロファイル変更要求の送信が禁止される禁止状態を解除する条件である。
 第13の特徴に係る無線端末は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記無線端末は、第1のプロファイルが設定されている場合において、第2のプロファイルへの変更要求を基地局に送信する、又は前記基地局から前記第2のプロファイルへの変更要求を受信する通信部と、前記変更要求を送信又は受信した第1のタイミングから規定時間経過後の第2のタイミングにおいて、前記第2のプロファイルに変更する制御部と、を備える。
 第14の特徴に係る基地局は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記基地局は、第1のプロファイルが設定されている無線端末に対して第2のプロファイルへの変更要求を送信する、又は前記無線端末から前記第2のプロファイルへの変更要求を受信する通信部と、前記変更要求を送信又は受信した第1のタイミングから規定時間経過後の第2のタイミングにおいて、前記第2のプロファイルに変更する制御部と、を備える。
 第15の特徴に係る無線端末は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記無線端末は、第1のプロファイルが設定されている場合において、第2のプロファイルへの変更要求に対する応答を基地局に送信する、又は前記第2のプロファイルへの変更要求に対する応答を前記基地局から受信する通信部と、前記応答を送信又は受信した第1のタイミングから規定時間経過後の第2のタイミングにおいて、前記第2のプロファイルに変更する制御部と、を備える。
 第16の特徴に係る基地局は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記基地局は、第1のプロファイルが設定されている無線端末に対して第2のプロファイルへの変更要求に対する応答を送信する、又は前記第2のプロファイルへの変更要求に対する応答を前記無線端末から受信する通信部と、前記応答を送信又は受信した第1のタイミングから規定時間経過後の第2のタイミングにおいて、前記第2のプロファイルに変更する制御部と、を備える。
 第17の特徴に係る無線端末は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記無線端末は、第1のプロファイルが設定されている場合において、前記第1のプロファイルとは異なる第2のプロファイルを選択する制御部と、前記第2のプロファイルへの変更を要求するためのプロファイル変更要求を基地局に送信する送信部と、を備える。前記制御部は、前記第1のプロファイルに基づいて、少なくとも一部の通信状態が維持されるように前記第2のプロファイルを選択する。
 第18の特徴に係る基地局は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記基地局は、自基地局から他の基地局に対して無線端末のハンドオーバを行う場合において、モビリティ管理装置を介さずに又は前記モビリティ管理装置を介して、前記無線端末がサポートしているプロファイルを前記他の基地局に通知する制御部を備える。
 第19の特徴に係るモビリティ管理装置は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記モビリティ管理装置は、第1の基地局から第2の基地局に対して無線端末のハンドオーバを行う場合において、前記無線端末がサポートしているプロファイルを前記第2の基地局に通知する制御部を備える。
 第20の特徴に係る基地局は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記基地局は、他の基地局から自基地局に対して無線端末のハンドオーバを行う場合において、前記無線端末がサポートしているプロファイルを前記他の基地局又はモビリティ管理装置から取得する制御部を備える。
 第21の特徴に係る無線端末は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記無線端末は、第1の基地局から第2の基地局に対して自無線端末のハンドオーバを行う場合において、前記第2の基地局が自無線端末との通信に使用するべきプロファイルを前記第1の基地局から取得する制御部を備える。
 第22の特徴に係る基地局は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記基地局は、自基地局がプロファイル対応であるか否かを示す情報をブロードキャストで無線端末に送信する送信部を備える。
 第23の特徴に係る無線端末は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記無線端末は、プロファイル非対応の基地局と接続した場合において、自無線端末がサポートする機能のうち一部の機能のみを前記プロファイル非対応の基地局に通知する制御部を備える。
 第24の特徴に係る無線端末は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記無線端末は、プロファイル非対応の基地局と接続する前において、ネットワークからデタッチし、該ネットワークにアタッチする制御部を備える。
 第25の特徴に係る無線端末は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記無線端末は、自無線端末がサポートしているプロファイルのうち何れか1つを規定プロファイルとしてモビリティ管理装置に通知する制御部を備える。
LTEシステムの構成図である。 無線インターフェイスのプロトコルスタック図である。 UEのブロック図である。 eNBのブロック図である。 第1実施形態に係る負荷推定値の具体例を示す図である。 第1実施形態に係るRRC接続確立時の動作シーケンスを示す図である。 第1実施形態に係るRRC接続中の動作シーケンスを示す図である。 第1実施形態の変更例2を説明するための図である。 第2実施形態に係るメイン機能及びサブ機能を説明するための図である。 第2実施形態に係る動作シーケンスを示す図である。 第3実施形態に係る動作を説明するための図である。 第4実施形態に係る動作シーケンスを示す図である。 第5実施形態に係る動作シーケンスを示す図である。 プロファイルの初期取得シーケンスの一例を示す図である。 プロファイルの初期設定シーケンスの一例を示す図である。 RRC接続中のプロファイル変更に係る動作シーケンスの一例を示す図である。 UEのブロック図である。 eNBのブロック図である。 第6実施形態に係るUEの動作フローの一例を示す図である。 第7実施形態に係る動作シーケンスの一例を示す図である。 第8実施形態に係る動作シーケンスの一例を示す図である。 第9実施形態に係る動作シーケンスの一例を示す図である。 第9実施形態の変更例に係る動作シーケンスの一例を示す図である。 RRC接続中のプロファイル変更に係る動作シーケンスの一例を示す図である。 UEのブロック図である。 eNBのブロック図である。 第12実施形態に係るUE(無線端末)の動作フローを示す図である。 第12実施形態の変更例に係る動作シーケンスを示す図である。 第13実施形態に係る動作シーケンスの一例を示す図である。 プロファイルの初期取得に係る動作シーケンスの一例を示す図である。 プロファイルの初期設定シーケンスの一例を示す図である。 RRC接続中のプロファイル変更に係る動作シーケンスの一例を示す図である。 eNB(基地局)のブロック図である。 MME(モビリティ管理装置)のブロック図である。 UE(無線端末)のブロック図である。 第15実施形態に係るX2ハンドオーバシーケンスを示す図である。 第15実施形態に係るS1ハンドオーバシーケンスを示す図である。
 [第1実施形態乃至第5実施形態の概要]
 近年、3GPP規格において、高度な演算処理を要する機能が次々と仕様化されおり、リリースごとに機能が増大及び細分化している。
 上述した「プロファイル」を使用する技術は、新たな機能が仕様化される度に新たなプロファイルを規定する必要がある。よって、新たなプロファイルを規定するための標準化作業が増大する虞がある。
 そこで、第1実施形態乃至第5実施形態は、標準化作業の増大を回避しつつ、無線端末が実行する機能を柔軟に切り換え可能とする基地局及び無線端末を提供することを目的とする。
 第1実施形態乃至第5実施形態に係る基地局は、無線通信に関する複数の機能が規定された移動通信システムにおいて用いられる。前記基地局は、無線端末に備えられた演算処理部の負荷状況又は属性に関する演算処理部情報を前記無線端末から受信する受信部と、前記演算処理部情報に基づいて、前記無線端末に実行させるべき少なくとも1つの機能を選択する制御部と、前記選択した機能を示す情報を前記無線端末に送信する送信部と、を備える。
 第1実施形態乃至第5実施形態において、前記演算処理部情報は、前記演算処理部において現に利用可能な処理容量を示す情報を含む。
 第1実施形態乃至第5実施形態において、前記演算処理部情報は、前記演算処理部の処理性能を示す情報を含む。
 第1実施形態乃至第3実施形態において、前記複数の機能のそれぞれについて、実行に要する処理負荷の推定値である負荷推定値が規定されている。前記制御部は、前記負荷推定値にさらに基づいて、前記少なくとも1つの機能を選択する。
 第2実施形態において、前記複数の機能は、複数のプロファイルの何れかに分類される複数のメイン機能と、前記複数のプロファイルの何れにも分類されない複数のサブ機能と、を含む。前記制御部は、前記無線端末に実行させるべき少なくとも1つの機能として、1つのプロファイル及び少なくとも1つのサブ機能を選択する。
 第3実施形態において、前記無線端末に複数の演算処理部が備えられる場合、前記受信部は、前記複数の演算処理部のそれぞれについて前記無線端末から前記演算処理部情報を受信する。
 第4実施形態及び第5実施形態において、前記演算処理部情報は、前記演算処理部のチップ型番を示す情報を含む。
 第4実施形態において、前記送信部は、前記選択した機能を実行するためのプログラムを前記無線端末に送信する。
 第1実施形態乃至第5実施形態に係る無線端末は、無線通信に関する複数の機能が規定された移動通信システムにおいて用いられる。前記無線端末は、基地局により選択された機能を実行するための演算処理部と、前記演算処理部の負荷状況又は属性に関する演算処理部情報を前記基地局に送信する送信部と、前記基地局により選択された機能を示す情報を前記基地局から受信する受信部と、を備える。
 第1実施形態乃至第5実施形態において、前記演算処理部情報は、前記演算処理部において現に利用可能な処理容量を示す情報を含む。
 第1実施形態乃至第5実施形態において、前記演算処理部情報は、前記演算処理部の処理性能を示す情報を含む。
 第2実施形態において、前記複数の機能は、複数のプロファイルの何れかに分類される複数のメイン機能と、前記複数のプロファイルの何れにも分類されない複数のサブ機能と、を含む。前記受信部は、1つのプロファイルを示す情報及び少なくとも1つのサブ機能を示す情報を前記基地局から受信する。
 第3実施形態において、複数の演算処理部が備えられる場合、前記送信部は、前記複数の演算処理部のそれぞれについて前記基地局に前記演算処理部情報を送信する。
 第4実施形態及び第5実施形態において、前記演算処理部情報は、前記演算処理部のチップ型番を示す情報を含む。
 第4実施形態において、前記受信部は、前記基地局により選択された機能を実行するためのプログラムを前記基地局から受信する。
 第5実施形態において、前記送信部は、前記基地局を介して前記演算処理部情報をサーバに送信する。前記受信部は、前記基地局を介して前記サーバから複数のプロファイルを受信する。
 [第1実施形態]
 (移動通信システム)
 以下において、第1実施形態に係る移動通信システムであるLTEシステムについて説明する。図1は、LTEシステムの構成を示す図である。
 図1に示すように、LTEシステムは、UE(User Equipment)100、E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)10、及びEPC(Evolved Packet Core)20を備える。
 UE100は、無線端末に相当する。UE100は、移動型の通信装置であり、セル(サービングセル)との無線通信を行う。UE100の構成については後述する。
 E-UTRAN10は、無線アクセスネットワークに相当する。E-UTRAN10は、eNB200(evolved Node-B)を含む。eNB200は、基地局に相当する。eNB200は、X2インターフェイスを介して相互に接続される。eNB200の構成については後述する。
 eNB200は、1又は複数のセルを管理しており、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。
 EPC20は、コアネットワークに相当する。EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300を含む。MMEは、UE100に対する各種モビリティ制御等を行う。S-GWは、データの転送制御を行う。MME/S-GW300は、S1インターフェイスを介してeNB200と接続される。E-UTRAN10及びEPC20は、ネットワークを構成する。
 図2は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。図2に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1層乃至第3層に区分されており、第1層は物理(PHY)層である。第2層は、MAC(Medium Access Control)層、RLC(Radio Link Control)層、及びPDCP(Packet Data Convergence Protocol)層を含む。第3層は、RRC(Radio Resource Control)層を含む。
 物理層は、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理層とeNB200の物理層との間では、物理チャネルを介してデータ及び制御信号が伝送される。
 MAC層は、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセス手順等を行う。UE100のMAC層とeNB200のMAC層との間では、トランスポートチャネルを介してデータ及び制御信号が伝送される。eNB200のMAC層は、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースブロックを決定するスケジューラを含む。
 RLC層は、MAC層及び物理層の機能を利用してデータを受信側のRLC層に伝送する。UE100のRLC層とeNB200のRLC層との間では、論理チャネルを介してデータ及び制御信号が伝送される。
 PDCP層は、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRC層は、制御信号を取り扱う制御プレーンでのみ定義される。UE100のRRC層とeNB200のRRC層との間では、各種設定のためのメッセージ(RRCメッセージ)が伝送される。RRC層は、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッドモード(コネクティッドモード)であり、そうでない場合、UE100はRRCアイドルモード(アイドルモード)である。
 RRC層の上位に位置するNAS(Non-Access Stratum)層は、セッション管理及びモビリティ管理等を行う。
 (無線通信に関する機能)
 UE100は、無線通信に関する機能をサポートする。無線通信に関する機能とは、仕様により規定された機能であって、例えば、「Dual Connectivity」、D2D(Device to Device)、NAICS(Network-Assisted Interference Cancellation and Suppression)等である。無線通信に関する機能は、「UE Category」を含んでもよい。以下において、無線通信に関する機能を適宜「Feature」と称する。
 UE100は、自身がサポートする全ての機能を含む「UE capability」メッセージをネットワークに通知する。例えば、eNB200がUE100に「UE capability」を問い合わせ、UE100からeNB200が取得した「UE capability」をMME300に通知する。これにより、eNB200及びMME300は、UE100がサポートする全ての機能(UE capability)を把握する。「UE capability」は、UE100がネットワークにアタッチしている間はMME300により保持される。また、「UE capability」は、UE100のハンドオーバ時に、ソースeNBからターゲットeNBに転送される。なお、「UE capability」を変更するためには、UE100がネットワークからデタッチし、ネットワークに再アタッチすることが必要である。
 eNB200は、「UE capability」に基づいて、UE100がサポートする機能の中から少なくとも1つの機能を選択する。そして、eNB200は、選択した機能を個別RRCメッセージ等によりUE100に設定(configure)する。具体的には、eNB200は、選択した機能に関わる設定(configuration)をUE100に対して行うために、選択した機能に関わる設定情報をUE100に送信する。
 (無線端末)
 以下において、第1実施形態に係るUE100(無線端末)について説明する。図3は、UE100のブロック図である。図3に示すように、UE100は、受信部110、送信部120、及び制御部130を備える。
 受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部130に出力する。
 送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 制御部130は、UE100における各種の制御を行う。制御部130は、演算処理部131を含む。制御部130は、メモリ(不図示)をさらに含む。
 演算処理部131は、ベースバンド信号の変調・復調及び符号化・復号等を行うデジタル信号プロセッサ(DSP)131aと、メモリに記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)131bと、を含む。演算処理部131は、音声・映像信号の符号化・復号を行うコーデックをさらに含んでもよい。演算処理部131は、各種の処理及び各種の通信プロトコルを実行する。
 演算処理部131は、eNB200により選択された機能を実行するための演算処理を行う。送信部120は、演算処理部131の負荷状況又は属性に関する演算処理部情報をeNB200に送信する。送信部120は、演算処理部131の負荷状況が変化した際に、演算処理部情報をeNB200に送信してもよい。
 第1実施形態において、演算処理部情報は、演算処理部131において現に利用可能な処理容量を示す情報(Available processing capacity)を含む。「Available processing capacity」は、演算処理部131の負荷状況に関する情報である。「Available processing capacity」は、パーセンテージ(割合)で表現されてもよい。例えば、「Available processing capacity」は、使用中の演算処理リソース(すなわち、処理負荷)のパーセンテージ又は未使用の演算処理リソース(すなわち、処理余裕度)のパーセンテージである。或いは、「Available processing capacity」は、未使用の演算処理リソースの量であってもよい。
 また、演算処理部情報は、演算処理部131の処理性能を示す情報(Processing capability)を含んでもよい。「Available processing capacity」は、演算処理部131の属性に関する情報である。「Available processing capacity」とは異なり、「Processing capability」は、演算処理部131の負荷状況に拘らず一定である。
 後述するように、eNB200は、「Available processing capacity」及び/又は「Processing capability」に基づいて、「UE capability」の中からUE100に実行させるべき機能を選択する。
 受信部110は、eNB200により選択された機能を示す情報をeNB200から受信する。例えば、受信部110は、eNB200により選択された機能の設定情報(configuration)を含む「RRC Connection Reconfiguration」メッセージを受信する。演算処理部131は、設定情報(configuration)に基づいて、eNB200により選択された機能を実行する。
 (基地局)
 以下において、第1実施形態に係るeNB200(基地局)の構成について説明する。図4は、eNB200のブロック図である。図4に示すように、eNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。
 送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。
 制御部230は、eNB200における各種の制御を行う。制御部230は、図示を省略する演算処理部及びメモリを含む。メモリは、演算処理部により実行されるプログラム、及び演算処理部による処理に使用される情報を記憶する。演算処理部は、ベースバンド信号の変調・復調及び符号化・復号等を行うDSPと、メモリに記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。演算処理部は、各種の処理及び各種の通信プロトコルを実行する。
 バックホール通信部240は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。バックホール通信部240は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信等に使用される。
 また、受信部220は、UE100に備えられた演算処理部131の負荷状況又は属性に関する演算処理部情報をUE100から受信する。第1実施形態において、演算処理部情報は、「Available processing capacity」を含む。演算処理部情報は、「Processing capability」を含んでもよい。
 制御部230は、演算処理部情報に基づいて、UE100に実行させるべき少なくとも1つの機能を選択する。第1実施形態において、複数の機能のそれぞれについて、実行に要する処理負荷の推定値である負荷推定値が規定されている。具体的には、機能を実行する際の処理負荷がモデリングされ、仕様により規定されている。制御部230は、負荷推定値(モデリングされた値)にさらに基づいて、UE100に実行させるべき少なくとも1つの機能を選択する。
 図5は、第1実施形態に係る負荷推定値の具体例を示す図である。図5に示すように、NAICSの負荷推定値として「50」が規定されており、「Category 10」の負荷推定値として「30」が規定されており、「Dual Connectivity」の負荷推定値として「50」が規定されている。図5に示すようなテーブルは、eNB200に事前設定されていてもよいし、コアネットワーク(EPC20)からeNB200に適宜設定してもよい。
 例えば、制御部230は、「Available processing capacity」及び負荷推定値に基づいて、「Available processing capacity」を超えないように、UE100に実行させるべき少なくとも1つの機能を選択する。具体的には、制御部230は、「UE capability」中の機能の中からUE100に実行させるべき機能の候補を少なくとも1つ抽出し、抽出した候補に対応する負荷推定値を取得する。そして、制御部230は、取得した負荷推定値の合計が「Available processing capacity」に収まるように機能を選択する。その際、制御部230は、「Processing capability」も考慮して、UE100の処理余裕度又は未使用の演算処理リソースの量を算出してもよい。
 送信部210は、制御部230により選択した機能を示す情報をUE100に送信する。例えば、送信部210は、制御部230により選択した機能の設定情報(configuration)を含む「RRC Connection Reconfiguration」メッセージをUE100に送信する。
 (動作シーケンス)
 以下において、第1実施形態に係る動作シーケンスについて説明する。
 (1)RRC接続確立時の動作シーケンス
 図6は、RRC接続確立時の動作シーケンスを示す図である。本シーケンスの初期状態においてUE100はアイドルモードである。
 図6に示すように、ステップS101において、UE100は、「RRC Connection Request」メッセージをeNB200に送信する。
 ステップS102において、eNB200は、「RRC Connection Request」メッセージの受信に応じて、「RRC Connection Setup」メッセージをUE100に送信する。
 ステップS103において、UE100は、「RRC Connection Setup」メッセージの受信に応じて、「RRC Connection Setup Complete」メッセージをeNB200に送信する。UE100は、「Available processing capacity」を「RRC Connection Setup Complete」メッセージに含める。さらに、UE100は、「Processing capability」を「RRC Connection Setup Complete」メッセージに含めてもよい。eNB200は、受信した「RRC Connection Setup Complete」メッセージに含まれる「Available processing capacity」及び「Processing capability」を記憶する。
 なお、「Processing capability」は、EPC20(HSS等)で加入者情報と紐づけて管理されていてもよい。このため、UE100は、「Processing capability」を「RRC Connection Setup Complete」メッセージに含めなくてもよい。
 ステップS103の結果、UE100は、アイドルモードからコネクティッドモードに遷移する。
 ステップS104において、eNB200は、「RRC Connection Setup Complete」メッセージの受信に応じて、「INITIAL UE MESSAGE」をMME300に送信する。eNB200は、「Processing capability」を「INITIAL UE MESSAGE」に含めてもよい。
 ステップS105において、MME300は、「INITIAL UE MESSAGE」の受信に応じて、「INITIAL CONTEXT SETUP」メッセージをeNB200に送信する。「INITIAL CONTEXT SETUP」メッセージは、「UE capability」を含む。また、MME300は、「Processing capability」を「INITIAL UE MESSAGE」に含める。
 ステップS106において、eNB200は、「Available processing capacity」及び/又は「Processing capability」に基づいて、UE100に実行させるべき少なくとも1つの機能(Feature)を選択する。
 ステップS107において、eNB200は、選択した少なくとも1つの機能からなるリスト(feature list)を含む「RRC Connection Reconfiguration」メッセージをUE100に送信する。後述するように、eNB200は、メイン機能からなるプロファイルと共に、「feature list」を「RRC Connection Reconfiguration」メッセージに含めてもよい。
 ステップS108において、UE100は、「RRC Connection Reconfiguration」メッセージの受信に応じて、「RRC Connection Reconfiguration Complete」メッセージをeNB200に送信する。
 (2)RRC接続中の動作シーケンス
 図7は、RRC接続中の動作シーケンスを示す図である。図7の初期状態においてUE100はコネクティッドモードである。図7(A)はUE100主導で機能を切り替えるパターンを示し、図7(B)はeNB200主導で機能を切り替えるパターンを示す。
 図7(A)に示すように、ステップS151Aにおいて、UE100は、「Available processing capacity」を含む「UE Assistance information」をeNB200に送信する。UE100は、「Available processing capacity」が変化したことに応じて、現時点の「Available processing capacity」を含む「UE Assistance information」をeNB200に送信してもよい。
 ステップS152Aにおいて、eNB200は、「Available processing capacity」及び/又は「Processing capability」に基づいて、UE100に実行させるべき少なくとも1つの機能(Feature)を選択する。
 ステップS153Aにおいて、eNB200は、選択した少なくとも1つの機能からなるリスト(feature list)を含む「RRC Connection Reconfiguration」メッセージをUE100に送信する。
 図7(B)に示すように、ステップS151Bにおいて、UE100は、無線状況のフィードバック等の情報をeNB200に送信する。eNB200は、UE100から受信した情報に基づいて、UE100に実行させる機能の変更を決定する。
 ステップS152Bにおいて、eNB200は、予めUE100から受信している「Available processing capacity」及び/又は「Processing capability」に基づいて、UE100に実行させるべき少なくとも1つの機能(Feature)を選択する。
 ステップS153Bにおいて、eNB200は、選択した少なくとも1つの機能からなるリスト(feature list)を含む「RRC Connection Reconfiguration」メッセージをUE100に送信する。
 (第1実施形態のまとめ)
 第1実施形態によれば、プロファイルに依存することなく、UE100に備えられた演算処理部131の負荷状況又は属性に応じて、適切な機能をUE100に実行させることができる。よって、標準化作業の増大を回避しつつ、UE100が実行する機能を柔軟に切り換え可能とすることができる。
 [第1実施形態の変更例1]
 上述した第1実施形態において、eNB200は、「Available processing capacity」及び/又は「Processing capability」に基づいて選択した機能(Selected feature)の全てを含むリストをUE100に送信していた。
 しかしながら、eNB200は、UE100に現在設定されている機能と「Selected feature」との差分をUE100に送信してもよい。例えば、eNB200は、「Selected feature」により選択した機能のうち、UE100に現在設定されていない機能からなるリスト(Addリスト)をUE100に送信してもよい。eNB200は、UE100に現在設定されている機能のうち、「Selected feature」に含まれない機能からなるリスト(Deleteリスト)をUE100に送信してもよい。
 [第1実施形態の変更例2]
 上述した第1実施形態において、eNB200は、「Available processing capacity」を超えないように機能(Feature)を選択していた。
 しかしながら、eNB200は、処理負荷が「Available processing capacity」を超えた機能を選択してもよい。この場合、UE100は、処理負荷が「Available processing capacity」を超えた機能の設定情報を使用するか否かを所定の優先度に応じて決定してもよい。
 或いは、図8に示すように、eNB200は、「Available processing capacity」又は「Processing capability」を超えないように選択した機能を保証機能(Guaranteed feature)、「Available processing capacity」を超える機能を非保証機能(Non-guaranteed feature)として区別して設定してもよい。図8においては、保証機能に相当する「Selected feature」からなるリスト(Selected feature list)と、保証機能からなるリスト(Non-guaranteed feature list)と、をeNB200からUE100に送信する場合を例示している。
 [第2実施形態]
 第2実施形態について、第1実施形態との相違点を主として説明する。
 第2実施形態において、無線通信に関する複数の機能は、複数のプロファイルの何れかに分類される複数のメイン機能と、複数のプロファイルの何れにも分類されない複数のサブ機能と、を含む。図9は、メイン機能及びサブ機能を説明するための図である。
 図9(A)に示すように、各プロファイルは、メイン機能の組み合わせにより構成される。ここでは、プロファイル1が「Dual Connectivity」及びD2Dの組み合わせにより構成され、プロファイル2が「NAICS」及びD2Dの組み合わせにより構成され、プロファイル3が「Dual Connectivity」及びD2Dの組み合わせにより構成される場合を例示している。また、複数のプロファイルのそれぞれについて、実行に要する処理負荷の推定値である負荷推定値が規定されている。具体的には、プロファイルを実行する際の処理負荷がモデリングされ、仕様により規定されている。
 図9(B)に示すように、サブ機能は、プロファイルに分類されていない機能である。ここでは、サブ機能として「IDC indication」、「MBMS service continuity」、「System Information Block Type 16」を例示している。また、複数のサブ機能のそれぞれについて、実行に要する処理負荷の推定値である負荷推定値が規定されている。具体的には、サブ機能を実行する際の処理負荷がモデリングされ、仕様により規定されている。
 本変更例において、eNB200は、UE100に実行させるべき少なくとも1つの機能として、1つのプロファイル及び少なくとも1つのサブ機能を選択する。UE100は、1つのプロファイルを示す情報及び少なくとも1つのサブ機能を示す情報をeNB200から受信する。
 図10は、第2実施形態に係る動作シーケンスを示す図である。本シーケンスの初期状態においてUE100はアイドルモードである。
 図10に示すように、ステップS201において、UE100は、「RRC Connection Request」メッセージをeNB200に送信する。
 ステップS202において、eNB200は、「RRC Connection Request」メッセージの受信に応じて、「RRC Connection Setup」メッセージをUE100に送信する。
 ステップS203において、UE100は、「RRC Connection Setup」メッセージの受信に応じて、「RRC Connection Setup Complete」メッセージをeNB200に送信する。UE100は、「Available processing capacity」及び「Suggested profile」を「RRC Connection Setup Complete」メッセージに含める。「Suggested profile」とは、仕様により規定された複数のプロファイルのうちUE100が希望(提案)するプロファイルである。さらに、UE100は、「Processing capability」を「RRC Connection Setup Complete」メッセージに含めてもよい。ステップS203の結果、UE100は、アイドルモードからコネクティッドモードに遷移する。eNB200は、「Available processing capacity」及び「Suggested profile」を記憶する。
 ステップS204において、eNB200は、「RRC Connection Setup Complete」メッセージの受信に応じて、「INITIAL UE MESSAGE」をMME300に送信する。eNB200は、「Processing capability」を「INITIAL UE MESSAGE」に含めてもよい。
 ステップS205において、MME300は、「INITIAL UE MESSAGE」の受信に応じて、「INITIAL CONTEXT SETUP」メッセージをeNB200に送信する。「INITIAL CONTEXT SETUP」メッセージは、「UE capability」、「Processing capability」、「multiple profile」を含む。「multiple profile」とは、仕様により規定された複数のプロファイルである。
 ステップS206において、eNB200は、「Suggested profile」及び「multiple profile」に基づいて、仕様により規定された複数のプロファイルの中からUE100が希望するプロファイルを選択する。ここで、選択するプロファイルの負荷推定値が「Available processing capacity」を超えないことが好ましい。
 ステップS207において、eNB200は、「Available processing capacity」及び/又は「Processing capability」に基づいて、UE100に実行させるべき少なくとも1つのサブ機能を選択する。
 ステップS208において、eNB200は、選択したプロファイル及び選択したサブ機能のリスト(sub-feature list)を含む「RRC Connection Reconfiguration」メッセージをUE100に送信する。
 ステップS209において、UE100は、「RRC Connection Reconfiguration」メッセージの受信に応じて、「RRC Connection Reconfiguration Complete」メッセージをeNB200に送信する。
 なお、本変更例は、RRC接続確立時の動作シーケンスに限らず、図7に示したRRC接続中のシーケンスにも適用可能である。
 [第3実施形態]
 第3実施形態について、第1実施形態及び第2実施形態との相違点を主として説明する。
 上述した第1実施形態において、UE100の演算処理部131の全体を対象として各機能の処理負荷をモデリングしていた。しかしながら、演算装置が異なる場合には、一概にモデリングできない可能性がある。
 そこで、第3実施形態においては、UE100の個別の演算処理部(すなわち、DSP131a、CPU131b)を対象として処理負荷を判断可能とする。例えば、DSP131aが物理層の処理を実行し、CPU131bがRRC層の処理を実行するような場合を想定する。図11は、第3実施形態に係る動作を説明するための図である。
 図11(A)に示すように、UE100は、DSP131a及びCPU131bのそれぞれについて「Available processing capacity」をeNB200に送信する。具体的には、DSP131aに対応する「DSP available processing capacity」と、CPU131bに対応する「CPU available processing capacity」と、をeNB200に送信する。UE100は、演算処理部131の全体の「Available processing capacity」である「Overall available capacity」もeNB200に送信してもよい。
 eNB200は、「DSP available processing capacity」及び「CPU available processing capacity」に基づいて、UE100に実行させるべき少なくとも1つの機能を選択する。第3実施形態において、複数の機能のそれぞれについて、実行に要する処理負荷の推定値である負荷推定値がDSP・CPU個別に規定されている。具体的には、DSP・CPUのそれぞれについて、機能を実行する際の処理負荷がモデリングされ、仕様により規定されている。
 図11(B)に示すように、例えば、NAICSについて、DSPの負荷推定値として「80」が規定され、かつ、CPUの処理負荷として「20」が規定される。「Category 10」について、DSPの負荷推定値として「20」が規定され、かつ、CPUの処理負荷として「40」が規定される。「Dual Connectivity」について、DSPの負荷推定値として「15」が規定され、かつ、CPUの処理負荷として「40」が規定される。
 eNB200は、図11(B)に示すようなテーブルに基づいて、「DSP available processing capacity」及び「CPU available processing capacity」を超えないように、UE100に実行させるべき少なくとも1つの機能を選択する。その他の動作については第1実施形態と同様である。
 なお、第3実施形態は、上述した第1実施形態の変更例1,2、又は、上述した第2実施形態と組み合わせてもよい。
 [第4実施形態]
 第4実施形態について、第1実施形態乃至第3実施形態との相違点を主として説明する。
 第4実施形態において、UE100は、演算処理部131のチップ型番を示す情報(チップ型番情報)を送信する。チップ型番情報は、演算処理部131の属性に関する演算処理部情報である。eNB200は、チップ型番情報に基づいて、UE100に実行させるべき少なくとも1つの機能を選択する。
 図12は、第4実施形態に係る動作シーケンスを示す図である。
 図12に示すように、ステップS401において、UE100は、チップ型番情報(Chip model number)をeNB200に送信する。
 ステップS402において、eNB200は、「Chip model number」に基づいて、UE100に実行させるべき少なくとも1つの機能を選択する。具体的には、「Chip model number」と機能との対応関係が規定されており、「Chip model number」に対応する機能を選択する。
 ステップS403において、eNB200は、選択した少なくとも1つの機能を実行するためのプログラムをUE100に送信する。当該プログラムは、必要となる機能だけを実装したものである。UE100は、プログラムを受信する。UE100は、演算処理部131によりプログラムを実行し、eNB200により選択された機能を実行する。
 或いは、UE100にプログラムが事前設定されている場合、eNB200は、選択した少なくとも1つの機能を示す情報(識別子)のみをUE100に送信すればよい。
 [第5実施形態]
 第5実施形態について、第1実施形態乃至第4実施形態との相違点を主として説明する。
 図13は、第5実施形態に係る動作シーケンスを示す図である。
 図13に示すように、ステップS501において、UE100は、(eNB200を介して)チップ型番情報(Chip model number)をサーバ400に送信する。或いは、「Chip model number」を取得したeNB200が「Chip model number」をサーバ400に送信してもよい。サーバ400は、オペレータが管理するノード(オペレータネットワーク内のノード)ではなく、チップのベンダ等により管理されるサーバであってもよい。
 サーバ400は、「Chip model number」に基づいて、UE100に実行させるべきプロファイル(Multiple profile)を選択する。具体的には、「Chip model number」とプロファイルとの対応関係が規定されており、「Chip model number」に対応する「Multiple profile」を選択する。「Chip model number」とプロファイルとの対応関係は、更新されてもよい。
 ステップS502において、サーバ400は、選択した「Multiple profile」を(eNB200を介して)UE100に送信する。UE100は、自身のチップ(演算処理部131)に対応する「Multiple profile」を記憶する。eNB200は、「Multiple profile」を取得してもよい。
 ステップS503において、UE100は、「Multiple profile」をeNB200に送信する。但し、ステップS503は省略してもよい。
 ステップS504において、eNB200は、「Multiple profile」の中から少なくとも1つのプロファイルを選択し、選択したプロファイルを示す情報をUE100に送信する。
 [第6実施形態乃至第11実施形態の概要]
 上述した「プロファイル」を使用する技術においては、どのようにプロファイルを選択又は通知するのかについて明確でない。
 そこで、第6実施形態乃至第11実施形態は、プロファイルを適切に選択又は通知可能な無線端末及び基地局を提供することを目的とする。
 第6実施形態に係る無線端末は、無線通信に関する複数の機能を含むプロファイルが規定された移動通信システムにおいて用いられる。前記無線端末は、自無線端末がサポートする複数のプロファイルの中から、省電力モードに対応する特定のプロファイルを選択する制御部と、前記特定のプロファイルを示す推奨プロファイル情報を基地局に送信する送信部と、を備える。
 第6実施形態において、前記制御部は、前記省電力モードの適用指示を示すユーザ入力に応じて、前記特定のプロファイルを選択する。
 第6実施形態において、前記制御部は、自無線端末が車両に搭載される車載端末である場合において、前記車両の状態に応じて、前記特定のプロファイルを選択する。
 第6実施形態において、前記制御部は、前記複数のプロファイルのうち最も消費電力が低いプロファイルを前記特定のプロファイルとして選択する。
 第6実施形態において、前記送信部は、前記推奨プロファイル情報と共に、前記省電力モードを示す識別情報を前記基地局に送信する。
 第7実施形態に係る基地局は、無線通信に関する複数の機能を含むプロファイルが規定された移動通信システムにおいて用いられる。前記基地局は、無線端末のバッテリ残量に関するバッテリ情報を前記無線端末から受信する受信部と、前記バッテリ情報に基づいて、前記無線端末がサポートする複数のプロファイルの中から、前記無線端末に設定するプロファイルを選択する制御部と、を備える。
 第7実施形態において、前記制御部は、前記バッテリ情報に基づいて、前記無線端末に設定するプロファイルとして、省電力モードに対応する特定のプロファイルを選択する。
 第8実施形態に係る無線端末は、無線通信に関する複数の機能を含むプロファイルが規定された移動通信システムにおいて用いられる。前記複数の機能は、無線通信の性能を示す端末カテゴリを含む。前記無線端末は、自無線端末がサポートする複数のプロファイルに共通する端末カテゴリを選択する制御部と、前記共通する端末カテゴリを示す推奨カテゴリ情報を基地局に送信する送信部と、を備える。
 第8実施形態において、前記共通する端末カテゴリが複数存在する場合において、前記送信部は、前記共通する端末カテゴリからなるリストを前記推奨カテゴリ情報として送信する。
 第8実施形態に係る基地局は、無線通信に関する複数の機能を含むプロファイルが規定された移動通信システムにおいて用いられる。前記複数の機能は、無線通信の性能を示す端末カテゴリを含む。前記基地局は、無線端末がサポートする複数のプロファイルに共通する端末カテゴリを示す推奨カテゴリ情報を前記無線端末から受信する受信部と、前記推奨カテゴリ情報に基づいて、前記共通する端末カテゴリを含む前記複数のプロファイルの中から、前記無線端末に設定するプロファイルを選択する制御部と、を備える。
 第8実施形態において、前記共通する端末カテゴリが複数存在する場合において、前記受信部は、前記共通する端末カテゴリからなるリストを前記推奨カテゴリ情報として受信する。
 第9実施形態に係る基地局は、無線通信に関する複数の機能を含むプロファイルが規定された移動通信システムにおいて用いられる。前記基地局は、無線端末が自基地局及び他の基地局と接続する二重接続通信を行う場合において、前記無線端末に設定する1又は複数のプロファイルの一部を前記他の基地局に通知する制御部を備える。
 第9実施形態において、前記基地局は、複数のプロファイル群を前記無線端末から受信する受信部を備える。前記複数のプロファイル群のそれぞれは、複数のプロファイルを含む。前記制御部は、前記二重接続通信を行う場合において、前記複数のプロファイル群の中から前記無線端末に設定するプロファイル群を選択し、該選択したプロファイル群に含まれる一部のプロファイルを前記他の基地局に通知する。
 第9実施形態の変更例において、前記制御部は、前記二重接続通信を行う場合において、前記無線端末がサポートする複数のプロファイルの中から前記無線端末に設定するプロファイルを選択し、該選択したプロファイルに含まれる一部の機能を前記他の基地局に通知する。
 第9実施形態に係る無線端末は、無線通信に関する複数の機能を含むプロファイルが規定された移動通信システムにおいて用いられる。前記無線端末は、自無線端末が第1の基地局及び第2の基地局と接続する二重接続通信を行う場合において、複数のプロファイル群を前記第1の基地局に通知する制御部を備える。前記複数のプロファイル群のそれぞれは、自無線端末がサポートする複数のプロファイルを含む。
 第10実施形態に係る無線端末は、無線通信に関する複数の機能を含むプロファイルが規定された移動通信システムにおいて用いられる。前記無線端末は、自無線端末がサポートする全ての機能を示す機能情報、及び、自無線端末がサポートするプロファイルを示すプロファイル情報を基地局に送信する送信部を備える。前記プロファイル情報は、自無線端末がサポートする全ての機能のうち前記プロファイルに含まれない機能のみを含む。
 第11実施形態に係る無線端末は、無線通信に関する複数の機能を含むプロファイルが規定された移動通信システムにおいて用いられる。前記無線端末は、自無線端末がサポートする複数のプロファイルを示す複数のプロファイル情報と、前記複数のプロファイルに共通する機能を示す機能情報と、を基地局に送信する送信部を備える。前記複数のプロファイル情報のそれぞれは、前記共通する機能とは異なる機能を含む。
 [第6実施形態]
 (Multiple profiles UE capability)
 UE100は、無線通信に関する複数の機能をサポートする。無線通信に関する機能とは、仕様により規定された機能であって、例えば、「Dual Connectivity」、D2D(Device to Device)、NAICS(Network-Assisted Interference Cancellation and Suppression)等である。無線通信に関する機能は、「UE Category」を含んでもよい。また、無線通信に関する機能は、「Support Band Combination」を含んでもよい。以下において、無線通信に関する機能を適宜「Feature」と称する。
 第6実施形態において、UE100の処理性能を最大限に活用するために、現実的に同時実行し得る機能の組み合わせを仕様上「プロファイル」として規定し、UE100に実行させるべき機能をプロファイル単位で柔軟に変更可能とする。例えば、プロファイル#1が「Category 6」及びNAICSの組み合わせにより構成され、プロファイル#2が「Category 7」及び「Dual Connectivity」の組み合わせにより構成され、プロファイル#3が「Category 10」及びD2Dの組み合わせにより構成される。
 図14は、プロファイルの初期取得シーケンスの一例を示す図である。本シーケンスの初期情報において、UE100はコネクティッドモードである。
 図14に示すように、ステップS11において、eNB200は、「UE Capability Enquiry」メッセージをUE100に送信する。
 ステップS12において、UE100は、「UE Capability Enquiry」メッセージの受信に応じて、自身がサポートする複数のプロファイル(Multiple profiles)を含む「UE Capability information」メッセージをeNB200に送信する。
 ステップS13において、eNB200は、「UE Capability information」メッセージの受信に応じて、UE100がサポートする複数のプロファイル(Multiple profiles)を含む「UE Capability info Indication」メッセージをMME300に送信する。MME300は、UE100がネットワークからデタッチするまで、UE100がサポートする複数のプロファイル(Multiple profiles)の情報を保持する。また、MME300は、UE100がネットワークからデタッチすると、UE100がサポートする複数のプロファイル(Multiple profiles)の情報を破棄する。
 図15は、プロファイルの初期設定シーケンスの一例を示す図である。本シーケンスの初期状態においてUE100はアイドルモードである。
 図15に示すように、ステップS21において、UE100は、eNB200へのランダムアクセスを行う。
 ステップS22において、UE100は、「RRC Connection Request」メッセージをeNB200に送信する。
 ステップS23において、eNB200は、「RRC Connection Request」メッセージの受信に応じて、「RRC Connection Setup」メッセージをUE100に送信する。
 ステップS24において、UE100は、「RRC Connection Setup」メッセージの受信に応じて、「RRC Connection Setup Complete」メッセージをeNB200に送信する。ここで、UE100は、自身がサポートする複数のプロファイル(Multiple profiles)の中から1つのプロファイルを推奨プロファイル(Suggested profile)として選択し、「Suggested profile」を「RRC Connection Setup Complete」メッセージに含める。ステップS24の結果、UE100は、アイドルモードからコネクティッドモードに遷移する。
 ステップS25において、eNB200は、「RRC Connection Setup Complete」メッセージの受信に応じて、「INITIAL UE MESSAGE」をMME300に送信する。
 ステップS26において、MME300は、「INITIAL UE MESSAGE」の受信に応じて、「INITIAL CONTEXT SETUP REQ.」メッセージをeNB200に送信する。ここで、MME300は、UE100がサポートする複数のプロファイル(Multiple profiles)の情報を「INITIAL CONTEXT SETUP REQ.」メッセージに含める。eNB200は、UE100がサポートする複数のプロファイル(Multiple profiles)の情報を保持する。
 ステップS27において、eNB200は、「Security Mode Command」メッセージをUE100に送信する。
 ステップS28において、eNB200は、「RRC Connection Reconfiguration」メッセージをUE100に送信する。ここで、eNB200は、UE100がサポートする複数のプロファイル(Multiple profiles)の中から選択したプロファイル(Selected profile)の設定情報(Configuration)を「RRC Connection Reconfiguration」メッセージに含める。UE100は、「Selected profile」の設定情報(Configuration)を保持し、その後、「Selected profile」に応じた無線通信を開始する。
 ステップS29において、UE100は、「Security Mode Complete」メッセージをeNB200に送信する。
 ステップS30において、UE100は、「RRC Conn. Reconf. Complete」メッセージをeNB200に送信する。
 図16は、RRC接続中のプロファイル変更に係る動作シーケンスの一例を示す図である。図16(A)はeNB200が開始するプロファイル変更シーケンスであり、図16(B)はUE100が開始するプロファイル変更シーケンスである。
 図16(A)に示すように、ステップS41において、eNB200は、UE100がサポートする複数のプロファイル(Multiple profiles)の中から1つのプロファイルを選択する。そして、eNB200は、選択したプロファイル(Selected profile)の設定情報(Configuration)を「RRC Connection Reconfiguration」メッセージによりをUE100に送信する。UE100は、「Selected profile」のConfigurationに基づいてプロファイルを変更する。
 図16(B)に示すように、ステップS51において、UE100は、自身が選択したプロファイルを推奨プロファイル(Suggested profile)を含む「UL Indication」メッセージをeNB200に送信する。
 ステップS52において、eNB200は、「Suggested profile」に基づいて選択したプロファイル(Selected profile)の設定情報(Configuration)を「RRC Connection Reconfiguration」メッセージによりUE100に送信する。UE100は、「Selected profile」のConfigurationに基づいてプロファイルを変更する。
 (無線端末)
 以下において、第6実施形態に係るUE100(無線端末)について説明する。図17は、UE100のブロック図である。図17に示すように、UE100は、受信部110、送信部120、制御部130、ユーザインターフェイス140、及びバッテリ150を備える。
 受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部130に出力する。
 送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 制御部130は、UE100における各種の制御を行う。制御部130は、演算処理部131を含む。制御部130は、メモリ(不図示)をさらに含む。演算処理部131は、ベースバンド信号の変調・復調及び符号化・復号等を行うデジタル信号プロセッサ(DSP)131aと、メモリに記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)131bと、を含む。演算処理部131は、音声・映像信号の符号化・復号を行うコーデックをさらに含んでもよい。制御部130は、各種の処理及び各種の通信プロトコルを実行する。
 ユーザインターフェイス140は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス140は、ユーザからの操作を受け付けて、該操作の内容を示す信号を制御部130に出力する。
 バッテリ150は、UE100の各ブロックに供給すべき電力を蓄える。バッテリ150に蓄えられた電力の量又は割合を「バッテリ残量」と称する。
 このように構成されたUE100は、無線通信に関する複数の機能を含むプロファイルが規定されたLTEシステムにおいて用いられる。
 第6実施形態に係るUE100において、制御部130は、自UE100がサポートする複数のプロファイルの中から、省電力モードに対応する特定のプロファイルを選択する。送信部120は、選択された特定のプロファイルを示す推奨プロファイル情報(Suggested profile)をeNB200に送信する。そして、受信部110は、eNB200からプロファイル(Selected profile)の設定情報(Configuration)を受信する。制御部130は、「Selected profile」のConfigurationに基づいてプロファイルを初期設定又は変更する。
 第6実施形態において、制御部130は、省電力モードの適用指示を示すユーザ入力に応じて、特定のプロファイルを選択する。例えば、省電力モードの適用指示を示すユーザ入力をユーザインターフェイス140が受け付けた場合、省電力モードに対応する特定のプロファイルを選択する。制御部130は、バッテリ残量に基づいて、省電力モードの適用指示を促すための表示をユーザインターフェイス140に実行させてもよい。
 或いは、制御部130は、UE100が車両に搭載される車載端末である場合において、車両の状態に応じて、特定のプロファイルを選択する。例えば、車両のエンジンが停止している場合、省電力モードに対応する特定のプロファイルを選択する。なお、UE100が車載端末である場合、UE100は、ユーザインターフェイス140及びバッテリ150を備えていなくてもよい。
 第6実施形態において、制御部130は、複数のプロファイルのうち最も消費電力が低いプロファイルを特定のプロファイルとして選択する。或いは、制御部130は、省電力モード用のプロファイルであるとして事前設定されたプロファイルを特定のプロファイルとして選択してもよい。省電力モード用のプロファイルには、省電力モードを示す識別情報が付与されてもよい。
 第6実施形態において、送信部120は、推奨プロファイル情報(Suggested profile)と共に、省電力モードを示す識別情報をeNB200に送信してもよい。例えば、送信部120は、「Suggested profile」を含む「UL Indication」メッセージに、省電力モードを示す識別情報を含める。さらに、送信部120は、緊急度(優先度)を示す情報を送信してもよい。或いは、送信部120は、「UL Indication」メッセージよりも強制力のあるメッセージ(適用要求メッセージ)により送信してもよい。当該情報又は当該メッセージは、例えば上位レイヤ(NAS、ユーザ)からの要求であるか否かを示してもよい。eNB200は、当該情報又は当該メッセージにより、当該UE100及び/又は他UEとの通信状況を勘案し、適用するプロファイル(Selected profile)を決定することができる。
 (基地局)
 以下において、第6実施形態に係るeNB200(基地局)について説明する。図18は、eNB200のブロック図である。図18に示すように、eNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。
 送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。
 制御部230は、eNB200における各種の制御を行う。制御部230は、図示を省略する演算処理部及びメモリを含む。メモリは、演算処理部により実行されるプログラム、及び演算処理部による処理に使用される情報を記憶する。演算処理部は、ベースバンド信号の変調・復調及び符号化・復号等を行うDSPと、メモリに記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。演算処理部は、各種の処理及び各種の通信プロトコルを実行する。
 バックホール通信部240は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。バックホール通信部240は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信等に使用される。
 このように構成されたeNB200において、受信部220は、「Suggested profile」を含む「UL Indication」メッセージをUE100から受信する。制御部230は、「Suggested profile」に基づいて、UE100に設定するプロファイルを選択する。省電力モードを示す識別情報が「Suggested profile」に付与されている場合、制御部130は、UE100に設定するプロファイルとして「Suggested profile」を選択することが好ましい。送信部210は、選択したプロファイル(Selected profile)の設定情報(Configuration)をUE100に送信する。
 (無線端末の動作フローの一例)
 図19は、第6実施形態に係るUE100の動作フローの一例を示す図である。本動作フローにおいては、UE100のASエンティティを中心とした動作を示す。ASエンティティの機能は制御部130により実行される。
 図19に示すように、ステップS101において、ASエンティティは、省電力モード(ECO mode)の適用指示を例えばNASエンティティから受け付ける。「ECO mode」の適用指示は、ユーザ入力又は車両の状態等に基づく。
 ステップS102において、ASエンティティは、「ECO mode」に対応する特定のプロファイルを選択する。「ECO mode」に対応する特定のプロファイルとは、省電力モードを示す識別情報(ECO mode flag)が付与されたプロファイルである。或いは、「ECO mode」に対応する特定のプロファイルとは、UE100がサポートする複数のプロファイルのうち最も消費電力が低いプロファイルである。
 ステップS103において、ASエンティティは、「ECO mode」に対応する特定のプロファイルをeNB200に通知する。
 eNB200から、「ECO mode」に対応する特定のプロファイルの適用可能であることを示す応答(RRC Connection Reconfiguration等)があった場合(ステップS104:Yes)、ステップS105において、ASエンティティは、「ECO mode」を適用する旨をNASエンティティに通知する。
 上述したように、第6実施形態によれば、プロファイルを利用して、UE100の消費電力を削減することができる。
 [第7実施形態]
 第7実施形態について、第6実施形態との相違点を主として説明する。
 (無線端末)
 第7実施形態に係るUE100の送信部120は、バッテリ残量に関するバッテリ情報をeNB200に送信する。バッテリ情報は、バッテリ残量を示す値であってもよいし、バッテリ残量が閾値を下回ったことを示す情報であってもよい。
 (基地局)
 第7実施形態に係るeNB200の受信部220は、UE100のバッテリ残量に関するバッテリ情報をUE100から受信する。制御部230は、バッテリ情報に基づいて、UE100がサポートする複数のプロファイルの中から、UE100に設定するプロファイルを選択する。制御部230は、バッテリ情報に基づいて、UE100に設定するプロファイルとして、省電力モード(ECO mode)に対応する特定のプロファイルを選択する。上述したように、「ECO mode」に対応する特定のプロファイルとは、省電力モードを示す識別情報(ECO mode flag)が付与されたプロファイル、又は、UE100がサポートする複数のプロファイルのうち最も消費電力が低いプロファイルである。
 (動作シーケンスの一例)
 図20は、第7実施形態に係る動作シーケンスの一例を示す図である。
 図20に示すように、ステップS201において、UE100は、バッテリ情報に基づいて、ユーザにプロファイル変更を促す表示を行う。但し、ステップS201は必須ではなく、省略してもよい。
 ステップS202において、UE100は、バッテリ残量に関するバッテリ情報をeNB200に送信する。
 ステップS203において、eNB200は、バッテリ情報に基づいて、UE100がサポートする複数のプロファイルの中から、UE100に設定するプロファイルを選択する。ここでは、プロファイルを変更する場合を想定しているが、プロファイルを初期設定する場合にも本シーケンスを適用可能である。プロファイルを初期設定する場合においては、「RRC Connection Setup Complete」メッセージにバッテリ情報を含めてもよい。
 ステップS204において、eNB200は、選択したプロファイル(Selected profile)の設定情報(Configuration)を含む「RRC Connection Reconfiguration」メッセージをUE100に送信する。
 上述したように、第7実施形態によれば、プロファイルを利用して、UE100の消費電力を削減することができる。
 [第8実施形態]
 第8実施形態について、第6実施形態及び第7実施形態との相違点を主として説明する。
 (無線端末)
 第8実施形態に係るUE100において、制御部230は、自UE100がサポートする複数のプロファイルに共通する「UE category」(端末カテゴリ)を選択する。「UE category」は、無線通信の性能を示す情報である。送信部120は、共通する「UE category」を示す推奨カテゴリ情報(Suggested category)をeNB200に送信する。
 例えば、UE100が少なくともプロファイル#1乃至#3をサポートする場合を想定する。プロファイル#1が「UE category 10」及び「Dual Connectivity」を含み、プロファイル#2が「UE category 10」及びNAICSを含み、プロファイル#3が「Dual Connectivity」及びNAICSを含む。この場合、制御部230は、プロファイル#1及びプロファイル#2において共通する「UE category」である「UE category 10」を選択する。そして、送信部120は、「UE category 10」を「Suggested category」としてeNB200に送信する。
 制御部130は、共通する「UE category」が複数存在する場合において、共通する複数の「UE category」を選択してもよい。この場合、送信部120は、共通する複数の「UE category」からなるリスト(Suggested category list)を推奨カテゴリ情報として送信する。また、送信部120は、eNB200がプロファイルを選択する際に参照可能な情報をeNB200にさらに送信してもよい。このような情報は、例えば、UE100(制御部130)において実行されているアプリケーションの種類又はQoS(Quality of Service)等、又は、UE100(制御部130)の負荷状況若しくは処理性能等である。
 或いは、制御部130は、共通する「UE category」が複数存在する場合において、共通する複数の「UE category」のうち1つの「UE category」を選択してもよい。例えば、UE100(制御部130)において実行されているアプリケーションの種類又はQoS(Quality of Service)等に基づいて、1つの「UE category」を選択する。この場合、送信部120は、選択された1つの「UE category」を「Suggested category」としてeNB200に送信する。
 (基地局)
 第8実施形態に係るeNB200において、受信部220は、UE100がサポートする複数のプロファイルに共通する「UE category」を示す推奨カテゴリ情報(Suggested category)をUE100から受信する。制御部230は、「Suggested category」に基づいて、共通する「UE category」を含む複数のプロファイルの中から、UE100に設定するプロファイルを選択する。上述した例においては、「Suggested category」が「UE category 10」であるため、制御部230は「UE category 10」を含むプロファイル#1及び#2の中から、UE100に設定するプロファイルを選択する。
 或いは、受信部220は、共通する複数の「UE category」からなるリスト(Suggested category list)を推奨カテゴリ情報として受信してもよい。制御部230は、「Suggested category list」に基づいて、共通する複数の「UE category」の何れかを含む複数のプロファイルの中から、UE100に設定するプロファイルを選択する。
 (動作シーケンスの一例)
 図21は、第8実施形態に係る動作シーケンスの一例を示す図である。図21(A)は、第8実施形態に係る動作シーケンスのパターン1を示す。
 図21(A)に示すように、ステップS301Aにおいて、UE100は、「Suggested category」をeNB200に送信する。
 ステップS302Aにおいて、eNB200は、「Suggested category」に基づいて、UE100に設定するプロファイルを選択する。
 ステップS303Aにおいて、eNB200は、選択したプロファイル(Selected profile)の設定情報(Configuration)を含む「RRC Connection Reconfiguration」メッセージをUE100に送信する。UE100は、「Selected profile」のConfigurationに基づいてプロファイルを初期設定又は変更する。
 図21(B)は、第8実施形態に係る動作シーケンスのパターン2を示す。
 ステップS301Bにおいて、UE100は、「Suggested category list」をeNB200に送信する。
 ステップS302Bにおいて、eNB200は、「Suggested category list」に基づいて、UE100に設定するプロファイルを選択する。
 ステップS303Bにおいて、eNB200は、選択したプロファイル(Selected profile)の設定情報(Configuration)を含む「RRC Connection Reconfiguration」メッセージをUE100に送信する。UE100は、「Selected profile」のConfigurationに基づいてプロファイルを初期設定又は変更する。
 上述したように、UE100は、自UE100がサポートする複数のプロファイルに共通する「UE category」を推奨カテゴリ情報としてeNB200に送信する。UE100において「Dual Connectivity」又はNAICSといった個別の機能を選択することは困難であるのに対し、希望する無線通信の性能(UE category)を選択することは比較的容易である。よって、複数のプロファイルに共通する「UE category」を推奨カテゴリ情報としてeNB200に送信することにより、UE100におけるプロファイル選択を円滑化することができる。また、eNB200側における選択の自由度を高めることができる。
 [第9実施形態]
 第9実施形態について、第6実施形態乃至第8実施形態との相違点を主として説明する。第9実施形態は、UE100が2つのeNB200と接続する二重接続通信(Dual Connectivity)を行う場合の実施形態である。
 (Dual Connectivity)
 「Dual Connectivity」において、UE100との接続を確立する複数のeNB200のうち、マスタeNB(MeNB)のみが当該UE100とのRRC接続を確立する。これに対し、当該複数のeNB200のうちセカンダリeNB(SeNB)は、RRC接続をUE100と確立せずに、追加的な無線リソースをUE100に提供する。言い換えると、MeNBは、ユーザプレーン接続だけでなく制御プレーン接続をUE100と確立する。これに対し、SeNBは、制御プレーン接続をUE100と確立せずに、ユーザプレーン接続をUE100と確立する。MeNBとSeNBとの間の通信にはX2インターフェイスが使用される。
 UE100は、MeNBが管理するN個のセル及びSeNBが管理するM個のセルを同時に利用したキャリアアグリゲーションが可能である。UE100のサービングセルの最大数、すなわち、(N+M)の最大数は、例えば5である。MeNBが管理するN個のセルからなるグループは、マスタセルグループ(MCG)と称される。また、SeNBが管理するM個のセルからなるグループは、セカンダリセルグループ(SCG)と称される。
 (基地局)
 第9実施形態に係るeNB200において、制御部230は、UE100が自eNB200及び他のeNB200と接続する「Dual Connectivity」を行う場合において、UE100に設定する1又は複数のプロファイルの一部を他のeNB200に通知する。第9実施形態において、自eNB200はMeNBであり、他のeNB200はSeNBである。
 具体的には、受信部220は、複数のプロファイル群をUE100から受信する。複数のプロファイル群のそれぞれは、複数のプロファイルを含む。制御部230は、「Dual Connectivity」を行う場合において、複数のプロファイル群の中からUE100に設定するプロファイル群を選択し、選択したプロファイル群に含まれる一部のプロファイルを他のeNB200(SeNB)に通知する。選択したプロファイル群において、他のeNB200(SeNB)に通知される一部のプロファイルは、他のeNB200(SeNB)により使用される。
 (無線端末)
 第9実施形態に係るUE100において、制御部130は、自UE100が第1のeNB200(MeNB)及び第2のeNB200(SeNB)と接続する「Dual Connectivity」を行う場合において、複数のプロファイル群を第1のeNB200(MeNB)に通知する。
 (動作シーケンスの一例)
 図22は、第9実施形態に係る動作シーケンスの一例を示す図である。
 図22に示すように、ステップS401において、MeNB200-1は、「Dual Connectivity」のためのプロファイル問い合わせ(Profile inquiry)をUE100に送信する。
 ステップS402において、UE100は、「Profile inquiry」の受信に応じて、複数のプロファイル群からなるリスト(Profile combination list)をMeNB200-1に送信する。図22の例において、「Profile combination list」は、「profile 1」及び「profile 2」を含む第1のプロファイル群と、「profile 2」及び「profile 3」を含む第2のプロファイル群と、を含む。
 ステップS403において、MeNB200-1は、「Profile combination list」のうち何れか1つのプロファイル群(profile combination)を選択する。また、MeNB200-1は、選択した「profile combination」に含まれる一部のプロファイルをSeNB200-2に実行させることを決定し、選択した「profile combination」に含まれる他のプロファイルを自eNB(MeNB200-1)が実行することを決定する。すなわち、選択した「profile combination」を2つに分割し、MeNB200-1及びSeNB200-2で分担することを決定する。
 ステップS404において、MeNB200-1は、選択した「profile combination」に含まれる一部のプロファイルを含む「SeNB Addition Request」メッセージをSeNB200-2に送信する。「SeNB Addition Request」メッセージは、UE100にリソースを割り当てるようSeNB200-2に要求するためのメッセージである。
 ステップS405において、SeNB200-2は、「SeNB Addition Request」メッセージの受信に応じて、「SeNB Addition Request Ack」メッセージをMeNB200-1に送信する。また、SeNB200-2は、「SeNB Addition Request」メッセージに含まれるプロファイルをUE100との通信に使用する。
 ステップS406において、MeNB200-1は、「SeNB Addition Request Ack」メッセージの受信に応じて、ステップS403において選択した「profile combination」の設定情報(Configuration)を含む「RRC Connection Reconfiguration」メッセージをUE100に送信する。UE100は、当該Configurationに基づいて、「profile combination」を使用してMeNB200-1及びSeNB200-2との通信を行う。
 本シーケンスにおいて、「SeNB Addition Request」メッセージに代えて「SeNB Modification Request」メッセージを使用し、「SeNB Addition Request Ack」に代えて「SeNB Addition Modification Ack」メッセージを使用してもよい。「SeNB Modification Request」メッセージは、UE100に対するリソース設定を変更するようSeNB200-2に要求するためのメッセージである。
 上述したように、第9実施形態によれば、MeNB200-1及びSeNB200-2において異なるプロファイルを使用する「Dual Connectivity」を実現することができる。
 [第9実施形態の変更例]
 第9実施形態の変更例において、eNB200(MeNB200-1)の制御部230は、「Dual Connectivity」を行う場合において、UE100がサポートする複数のプロファイルの中からUE100に設定するプロファイルを選択し、該選択したプロファイルに含まれる一部の機能(feature)を他のeNB200(SeNB200-2)に通知する。
 図23は、第9実施形態の変更例に係る動作シーケンスの一例を示す図である。
 図23に示すように、ステップS451において、MeNB200-1は、UE100がサポートする複数のプロファイル(multiple profiles)を把握する。MeNB200-1は、UE100がサポートする複数のプロファイルの中からUE100に設定するプロファイルを選択する。
 ステップS452において、MeNB200-1は、選択したプロファイル(Selected profile)に含まれる一部の機能を他のeNB(SeNB200-2)に実行させることを決定し、「Selected profile」に含まれる他の機能を自eNB(MeNB200-1)が実行することを決定する。すなわち、「Selected profile」を2つに分割(split)し、MeNB200-1及びSeNB200-2で分担することを決定する。
 ステップS453において、MeNB200-1は、「Selected profile」に含まれる一部の機能を含む「SeNB Addition Request」メッセージをSeNB200-2に送信する。
 ステップS454において、SeNB200-2は、「SeNB Addition Request」メッセージの受信に応じて、「SeNB Addition Request Ack」メッセージをMeNB200-1に送信する。また、SeNB200-2は、「SeNB Addition Request」メッセージに含まれる機能をUE100との通信に使用する。
 ステップS455において、MeNB200-1は、「SeNB Addition Request Ack」メッセージの受信に応じて、「Selected profile」の設定情報(Configuration)を含む「RRC Connection Reconfiguration」メッセージをUE100に送信する。UE100は、当該Configurationに基づいて、「Selected profile」を使用してMeNB200-1及びSeNB200-2との通信を行う。
 本シーケンスにおいて、「SeNB Addition Request」メッセージに代えて「SeNB Modification Request」メッセージを使用し、「SeNB Addition Request Ack」に代えて「SeNB Addition Modification Ack」メッセージを使用してもよい。「SeNB Modification Request」メッセージは、UE100に対するリソース設定を変更するようSeNB200-2に要求するためのメッセージである。
 上述したように、第9実施形態によれば、MeNB200-1及びSeNB200-2において異なる機能(feature)を使用する「Dual Connectivity」を実現することができる。
 [第10実施形態]
 第10実施形態について、第6実施形態乃至第9実施形態との相違点を主として説明する。第10実施形態は、プロファイルの表現形式に関する実施形態である。
 (無線端末)
 第10実施形態に係るUE100において、送信部120は、自UE100がサポートする全ての機能を示す機能情報、及び、自UE100がサポートするプロファイルを示すプロファイル情報をeNB200に送信する。プロファイル情報は、自UE100がサポートする全ての機能のうちプロファイルに含まれない機能のみを含む。
 例えば、自UE100がサポートする全ての機能を示す機能情報(UE-EUTRA-Capability)が、(A,B,C,D,E,F,G)の各機能を含むと仮定する。また、プロファイル#1が(A,B,C,D)の各機能を含み、プロファイル#2が(B,E,F,G)の各機能を含むと仮定する。この場合、プロファイル#1を示すプロファイル情報は、自UE100がサポートする全ての機能のうちプロファイル#1に含まれない(E,F,G)の各機能を含む。また、プロファイル#2を示すプロファイル情報は、自UE100がサポートする全ての機能のうちプロファイル#2に含まれない(A,C,D)の各機能を含む。
 このような形式でプロファイルをUE100からeNB200に通知することにより、プロファイル情報の情報量の削減を図ることができる。特に、各プロファイルにおける不要な機能が少なく、かつ、多数のプロファイルをeNB200に通知する場合(例えば、図14に示したプロファイルの初期取得シーケンス)において有用である。
 (基地局)
 第10実施形態に係るeNB200において、受信部220は、UE100がサポートする全ての機能を示す機能情報(UE-EUTRA-Capability)、及び、UE100がサポートするプロファイルを示すプロファイル情報をUE100から受信する。プロファイル情報は、UE100がサポートする全ての機能のうちプロファイルに含まれない機能のみを含む。制御部230は、「UE-EUTRA-Capability」及びプロファイル情報に基づいて、UE100がサポートするプロファイル(に含まれる各機能)を特定する。
 上述した例においては、プロファイル#1を示すプロファイル情報は(E,F,G)の各機能を含むため、制御部230は、「UE-EUTRA-Capability」のうち(E,F,G)以外の機能である(A,B,C,D)がプロファイル#1に含まれると判断する。また、プロファイル#2を示すプロファイル情報は(A,C,D)の各機能を含むため、制御部230は、「UE-EUTRA-Capability」のうち(A,C,D)以外の機能である(B,E,F,G)がプロファイル#2に含まれると判断する。
 [第11実施形態]
 第11実施形態について、第6実施形態乃至第10実施形態との相違点を主として説明する。第11実施形態は、プロファイルの表現形式に関する実施形態である。
 (無線端末)
 第11実施形態に係るUE100において、送信部120は、自UE100がサポートする複数のプロファイルを示す複数のプロファイル情報と、当該複数のプロファイルに共通する機能を示す機能情報と、をeNB200に送信する。当該複数のプロファイル情報のそれぞれは、共通する機能とは異なる機能を含む。
 例えば、プロファイル#1が(A,B,C,D)の各機能を含み、プロファイル#2が(A,B,F,G)の各機能を含むと仮定する。プロファイル#1及びプロファイル#2において、(A,B)の機能が共通する。このような機能を「baseline capability」と称する。
 この場合、複数のプロファイルに共通する機能を示す機能情報は、(A,B)の各機能を含む。プロファイル#1を示すプロファイル情報は、「baseline capability」に含まれない(C,D)の各機能を含む。また、プロファイル#2を示すプロファイル情報は、「baseline capability」に含まれない(F,G)の各機能を含む。
 このような形式でプロファイルをUE100からeNB200に通知することにより、プロファイル情報の情報量の削減を図ることができる。
 (基地局)
 第11実施形態に係るeNB200において、受信部220は、UE100がサポートする複数のプロファイルを示す複数のプロファイル情報と、当該複数のプロファイルに共通する機能を示す機能情報と、をUE100から受信する。当該複数のプロファイル情報のそれぞれは、共通する機能とは異なる機能を含む。
 上述した例においては、「baseline capability」を示す機能情報は、(A,B)の各機能を含む。プロファイル#1を示すプロファイル情報は、「baseline capability」に含まれない(C,D)の各機能を含む。また、プロファイル#2を示すプロファイル情報は、「baseline capability」に含まれない(F,G)の各機能を含む。この場合、制御部230は、(A,B)の各機能と(C,D)の各機能とを合せた(A,B,C,D)がプロファイル#1に含まれると判断する。また、(A,B)の各機能と(F,G)の各機能とを合せた(A,B,F,G)がプロファイル#2に含まれると判断する。
 [その他の変更例]
 上述した第9実施形態において、「Dual Connectivity」における動作を説明したが、当該動作を「Carrier Aggregation」に応用してもよい。例えば、CC(コンポーネントキャリア、周波数)毎に、サポートできる機能(feature)が異なる場合において、CCごとに機能を異ならせることができる。例えば、800MHzではNAICSが可能であるが、3.5GHzではNAICSが適用不可(但し、「Dual Connectivity」は適用可能)といった場合に有用である。
 [第12実施形態乃至第14実施形態の概要]
 プロファイルを何らの制限もなく変更可能とすると、通信に悪影響をもたらす懸念がある。
 そこで、第12実施形態乃至第14実施形態は、プロファイル変更による悪影響を低減可能とする無線端末及び基地局を提供することを目的とする。
 第12実施形態に係る無線端末は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記無線端末は、自無線端末が選択したプロファイルへの変更を要求するためのプロファイル変更要求を基地局に送信する送信部と、所定の条件が満たされるまで、前記プロファイル変更要求の送信が禁止された禁止状態を維持し、前記所定の条件が満たされると前記禁止状態を解除する制御部と、を備える。
 第12実施形態において、前記所定の条件は、前記プロファイル変更要求を前回送信してからの経過時間が時間閾値を超えたという条件である。
 第12実施形態において、前記時間閾値は、前記基地局により指定される。
 第12実施形態の変更例において、前記所定の条件は、自無線端末の負荷状況が負荷状況閾値を超えた又は下回ったという条件である。
 第12実施形態の変更例において、前記負荷状況閾値は、前記基地局により指定される。
 第12実施形態の変更例において、前記所定の条件は、自無線端末の無線状況が無線状況閾値を超えた又は下回ったという条件である。
 第12実施形態の変更例において、前記無線状況閾値は、前記基地局により指定される。
 第12実施形態に係る基地局は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記基地局は、所定の条件を定める閾値を無線端末に送信する送信部と、前記無線端末が選択したプロファイルへの変更を要求するためのプロファイル変更要求を前記無線端末から受信する受信部と、を備える。前記所定の条件は、前記無線端末において前記プロファイル変更要求の送信が禁止される禁止状態を解除する条件である。
 第12実施形態において、前記閾値は、時間閾値であり、前記所定の条件は、前記プロファイル変更要求を前回送信してからの経過時間が前記時間閾値を超えたという条件である。
 第12実施形態の変更例1において、前記閾値は、負荷状況閾値であり、前記所定の条件は、前記無線端末における負荷状況が負荷状況閾値を超えた又は下回ったという条件である。
 第12実施形態の変更例2において、前記閾値は、無線状況閾値であり、前記所定の条件は、前記無線端末における無線状況が前記無線状況閾値を超えた又は下回ったという条件である。
 第13実施形態に係る無線端末は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記無線端末は、第1のプロファイルが設定されている場合において、第2のプロファイルへの変更要求を基地局に送信する、又は前記基地局から前記第2のプロファイルへの変更要求を受信する通信部と、前記変更要求を送信又は受信した第1のタイミングから規定時間経過後の第2のタイミングにおいて、前記第2のプロファイルに変更する制御部と、を備える。
 第13実施形態において、前記制御部は、前記第1のタイミングから前記規定時間内に、前記第2のプロファイルに変更するために必要な処理を行う。
 第13実施形態において、前記必要な処理は、前記第2のプロファイルの設定パラメータに変更するパラメータ変更である。前記制御部は、前記パラメータ変更について前記基地局から通知されなくても、前記第2のプロファイルの設定パラメータに変更する。
 第13実施形態において、前記制御部は、前記第1のタイミングから前記規定時間が経過するまで、前記基地局とのデータ送受信を中止する。
 第13実施形態に係る基地局は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記基地局は、第1のプロファイルが設定されている無線端末に対して第2のプロファイルへの変更要求を送信する、又は前記無線端末から前記第2のプロファイルへの変更要求を受信する通信部と、前記変更要求を送信又は受信した第1のタイミングから規定時間経過後の第2のタイミングにおいて、前記第2のプロファイルに変更する制御部と、を備える。
 第13実施形態において、前記制御部は、前記第1のタイミングから前記規定時間内に、前記第2のプロファイルに変更するために必要な処理を行う。
 第13実施形態において、前記必要な処理は、前記第2のプロファイルの設定パラメータに変更するパラメータ変更である。前記制御部は、前記パラメータ変更について前記無線端末に通知することなく、前記第2のプロファイルの設定パラメータに変更する。
 第13実施形態において、前記制御部は、前記第1のタイミングから前記規定時間が経過するまで、前記無線端末とのデータ送受信を中止する。
 第13実施形態の変更例に係る無線端末は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記無線端末は、第1のプロファイルが設定されている場合において、第2のプロファイルへの変更要求に対する応答を基地局に送信する、又は前記第2のプロファイルへの変更要求に対する応答を前記基地局から受信する通信部と、前記応答を送信又は受信した第1のタイミングから規定時間経過後の第2のタイミングにおいて、前記第2のプロファイルに変更する制御部と、を備える。
 第13実施形態の変更例において、前記制御部は、前記第1のタイミングから前記規定時間内に、前記第2のプロファイルに変更するために必要な処理を行う。
 第13実施形態の変更例において、前記制御部は、前記第1のタイミングから前記規定時間が経過するまで、前記基地局とのデータ送受信を中止する。
 第13実施形態の変更例に係る基地局は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記基地局は、第1のプロファイルが設定されている無線端末に対して第2のプロファイルへの変更要求に対する応答を送信する、又は前記第2のプロファイルへの変更要求に対する応答を前記無線端末から受信する通信部と、前記応答を送信又は受信した第1のタイミングから規定時間経過後の第2のタイミングにおいて、前記第2のプロファイルに変更する制御部と、を備える。
 第13実施形態の変更例において、前記制御部は、前記第1のタイミングから前記規定時間内に、前記第2のプロファイルに変更するために必要な処理を行う。
 第13実施形態の変更例において、前記制御部は、前記第1のタイミングから前記規定時間が経過するまで、前記無線端末とのデータ送受信を中止する。
 第14実施形態に係る無線端末は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記無線端末は、第1のプロファイルが設定されている場合において、前記第1のプロファイルとは異なる第2のプロファイルを選択する制御部と、前記第2のプロファイルへの変更を要求するためのプロファイル変更要求を基地局に送信する送信部と、を備える。前記制御部は、前記第1のプロファイルに基づいて、少なくとも一部の通信状態が維持されるように前記第2のプロファイルを選択する。
 第14実施形態において、前記第1のプロファイルは、前記無線端末のプライマリセルが属するサポート周波数帯を含む。前記制御部は、前記無線端末のプライマリセルが属するサポート周波数帯を含むプロファイルを前記第2のプロファイルとして選択する。
 第14実施形態の変更例において、前記第1のプロファイルは、所定のバッファサイズを有する第1の端末カテゴリを含む。前記制御部は、前記所定のバッファサイズ以上のバッファサイズを有する端末カテゴリを含むプロファイルを前記第2のプロファイルとして選択する。
 [第12実施形態]
 (Multiple profiles UE capability)
 UE100は、無線通信に関する複数の機能をサポートする。無線通信に関する機能とは、仕様により規定された機能であって、例えば、「Dual Connectivity」、D2D(Device to Device)、NAICS(Network-Assisted Interference Cancellation and Suppression)等である。無線通信に関する機能は、「UE Category」を含んでもよい。また、無線通信に関する機能は、「Support Band Combination」を含んでもよい。以下において、無線通信に関する機能を適宜「Feature」と称する。
 第12実施形態において、UE100の処理性能を最大限に活用するために、現実的に同時実行し得る機能の組み合わせを仕様上「プロファイル」として規定し、UE100に実行させるべき機能をプロファイル単位で柔軟に変更可能とする。例えば、プロファイル#1が「Category 6」及びNAICSの組み合わせにより構成され、プロファイル#2が「Category 7」及び「Dual Connectivity」の組み合わせにより構成され、プロファイル#3が「Category 10」及びD2Dの組み合わせにより構成される。
 UE100に設定するプロファイルの選択権をeNB200が持つ場合において、UE100は、自身がサポートする複数のプロファイル(Multiple profiles UE capability)をネットワーク(eNB200又はMME300)に通知し、ネットワークが「Multiple profiles UE capability」を管理する。eNB200は、「Multiple profiles UE capability」の中から1つのプロファイルを選択する。そして、eNB200は、選択したプロファイルの設定情報(configuration)を個別RRCメッセージ等によりUE100に送信する。
 或いは、UE100に設定するプロファイルの選択権をUE100が持つ場合において、UE100は、「Multiple profiles UE capability」の中から1つのプロファイルを選択する。そして、UE100は、選択したプロファイルを推奨プロファイル(Suggested profile)として、「Suggested profile」への変更を要求するプロファイル変更要求をeNB200に送信する。そして、eNB200は、「Suggested profile」に基づいて選択したプロファイルの設定情報(configuration)を個別RRCメッセージ等によりUE100に送信する。第12実施形態において、プロファイルの選択権をUE100が持つ場合を主として想定する。
 図24は、RRC接続中のプロファイル変更に係る動作シーケンスの一例を示す図である。図24の初期状態において、UE100はコネクティッドモードである。
 図24に示すように、ステップS10において、UE100は、選択したプロファイルを推奨プロファイル(Suggested profile)として、「Suggested profile」への変更を要求するプロファイル変更要求をeNB200に送信する。図24において、「Suggested profile」を含む「UL Indication message」は、プロファイル変更要求に相当する。
 ステップS20において、eNB200は、「Suggested profile」に基づいて選択したプロファイル(Selected profile)の設定情報(configuration)を「RRC Connection Reconfiguration」メッセージによりUE100に送信する。UE100は、「Selected profile」のconfigurationに基づいてプロファイルを変更する。
 (無線端末)
 以下において、第12実施形態に係るUE100(無線端末)について説明する。図25は、UE100のブロック図である。図25に示すように、UE100は、受信部110、送信部120、及び制御部130を備える。
 受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部130に出力する。
 送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 制御部130は、UE100における各種の制御を行う。制御部130は、演算処理部131を含む。制御部130は、メモリ(不図示)をさらに含む。演算処理部131は、ベースバンド信号の変調・復調及び符号化・復号等を行うデジタル信号プロセッサ(DSP)131aと、メモリに記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)131bと、を含む。演算処理部131は、音声・映像信号の符号化・復号を行うコーデックをさらに含んでもよい。制御部130は、各種の処理及び各種の通信プロトコルを実行する。
 第12実施形態において、送信部120は、自UE100が選択したプロファイル(Suggested profile)への変更を要求するためのプロファイル変更要求をeNB200に送信する。「Suggested profile」は、自UE100がサポートする複数のプロファイル(Multiple profiles UE capability)の中から制御部130が選択する。
 制御部130は、所定の条件が満たされるまで、プロファイル変更要求の送信が禁止された禁止状態を維持し、当該所定の条件が満たされると禁止状態を解除する。第12実施形態において、当該所定の条件は、プロファイル変更要求を前回送信してからの経過時間が時間閾値を超えたという条件である。
 UE100がプロファイル変更要求を頻繁に送信可能とすると、ネットワークの処理負荷が増大するとともに、無線リソースの消費量が多くなる。よって、制御部130は、プロファイル変更要求を前回送信してからの経過時間が時間閾値を超えるまで、プロファイル変更要求の送信が禁止された禁止状態を維持する。そして、制御部130は、プロファイル変更要求を前回送信してからの経過時間が時間閾値を超えると禁止状態を解除する。従って、プロファイル変更要求の送信を時間的に制限し、プロファイル変更要求の頻繁な送信を禁止することができる。
 第12実施形態において、時間閾値は、eNB200により指定される。但し、時間閾値は、UE100に事前設定されていてもよい。受信部110は、時間閾値を示す情報をeNB200から受信する。時間閾値を示す情報は、eNB200からブロードキャストRRCメッセージ(例えば、「System Information Block」)により送信されるセル固有の情報でもよいし、eNB200から個別RRCメッセージにより送信されるUE固有の情報でもよい。制御部130は、eNB200から受信した情報に基づいて時間閾値を設定する。以下において、時間閾値が、UE100に設定される規定タイマ値である場合を想定する。
 制御部130は、プロファイル変更要求を送信してからの経過時間をタイマにより計時し、経過時間が規定タイマ値に達したか否かを判断する。
 制御部130は、ハンドオーバを行った場合でも、タイマをリセットしなくてもよい。換言すると、制御部130は、ハンドオーバの前後において、経過時間の計時を継続してもよい。
 或いは、制御部130は、ハンドオーバを行った場合に、タイマをリセットしてもよい。例えば、制御部130は、ハンドオーバ時にプロファイルを変更(初期設定)するような場合、経過時間の計時を終了してもよい。
 (基地局)
 以下において、第12実施形態に係るeNB200(基地局)の構成について説明する。図26は、eNB200のブロック図である。図26に示すように、eNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。
 送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。
 制御部230は、eNB200における各種の制御を行う。制御部230は、図示を省略する演算処理部及びメモリを含む。メモリは、演算処理部により実行されるプログラム、及び演算処理部による処理に使用される情報を記憶する。演算処理部は、ベースバンド信号の変調・復調及び符号化・復号等を行うDSPと、メモリに記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。演算処理部は、各種の処理及び各種の通信プロトコルを実行する。
 バックホール通信部240は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。バックホール通信部240は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信等に使用される。
 第12実施形態において、送信部210は、所定の条件を定める閾値(時間閾値)をUE100に送信する。上述したように、所定の条件は、UE100においてプロファイル変更要求の送信が禁止される禁止状態を解除する条件である。具体的には、所定の条件は、プロファイル変更要求を前回送信してからの経過時間が時間閾値を超えたという条件である。
 受信部220は、「Suggested profile」への変更を要求するためのプロファイル変更要求をUE100から受信する。制御部230は、「Suggested profile」に基づいて、UE100に設定するプロファイルを決定する。送信部210は、決定されたプロファイルに関わる設定情報(configuration)を個別RRCメッセージ等によりUE100に送信する。
 制御部230は、UE100のハンドオーバ時に、UE100の「Suggested profile」を、バックホール通信部240を通じてターゲットeNBに通知してもよい。また、制御部230は、UE100のハンドオーバ時に、UE100に設定された時間閾値(規定タイマ値)を、バックホール通信部240を通じてターゲットeNBに通知してもよい。これにより、ターゲットeNBは、自eNBからUE100に対して適切な設定を行うことができる。
 (無線端末の動作フロー)
 以下において、第12実施形態に係るUE100(無線端末)の動作フローについて説明する。図27は、第12実施形態に係るUE100(無線端末)の動作フローを示す図である。
 図27に示すように、ステップS101において、UE100は、「Suggested profile」を選択し、「Suggested profile」をeNB200に送信する。
 ステップS102において、UE100は、「Suggested profile」を送信した際に、「Prohibit timer」を開始(起動)する。「Prohibit timer」には、上述した規定タイマ値が設定される。「Prohibit timer」は、「Suggested profile」を送信してからの経過時間を計時するタイマである。
 ステップS103において、UE100は、「Suggested profile」を再選択する。
 ステップS104において、UE100は、「Prohibit timer」が満了したか否かを確認する。
 「Prohibit timer」が満了した場合(ステップS104:Yes)、ステップS105において、UE100は、再選択した「Suggested profile」をeNB200に送信する。
 [第12実施形態の変更例]
 上述した第12実施形態において、UE100は、所定の条件が満たされるまで、プロファイル変更要求の送信が禁止された禁止状態を維持し、当該所定の条件が満たされると禁止状態を解除していた。ここで、当該所定の条件は、プロファイル変更要求を前回送信してからの経過時間が時間閾値を超えたという条件である。
 本変更例において、所定の条件は、自UE100の負荷状況が負荷状況閾値を超えた又は下回ったという条件である。すなわち、UE100は、自UE100の負荷状況が負荷状況閾値を超える又は下回るまで、プロファイル変更要求の送信が禁止された禁止状態を維持し、自UE100の負荷状況が負荷状況閾値を超える又は下回ると禁止状態を解除する。負荷状況閾値は、eNB200により指定される。閾値の取り扱い方法は、第12実施形態と同様である。このような変更例は、UE100の負荷状況が高くなると、低負荷(低性能)のプロファイルに変更するような場合を想定している。或いは、UE100の負荷状況が低くなると、高負荷(高性能)のプロファイルに変更するような場合を想定している。なお、UE100の負荷状況とは、例えば、演算処理部131の負荷状況である。当該負荷状況は、パーセンテージ(割合)で表現されてもよい。例えば、負荷状況は、使用中の演算処理リソース(すなわち、処理負荷)のパーセンテージ又は使用中の演算処理リソースのパーセンテージである。
 或いは、本変更例において、所定の条件は、自UE100の無線状況が無線状況閾値を超えた又は下回ったという条件である。すなわち、UE100は、自UE100の無線状況が無線状況閾値を超える又は下回るまで、プロファイル変更要求の送信が禁止された禁止状態を維持し、自UE100の無線状況が無線状況閾値を超える又は下回ると禁止状態を解除する。無線状況閾値は、eNB200により指定される。閾値の取り扱い方法は、第12実施形態と同様である。このような変更例は、UE100の無線状況が良好になると、低負荷(低消費電力)のプロファイルに変更するような場合を想定している。或いは、UE100の無線状況が劣悪になると、高エラー耐性のプロファイルに変更するような場合を想定している。なお、UE100の無線状況とは、例えば、参照信号の受信電力(RSRP)、参照信号の受信品質(RSRQ)、データ誤り率等である。
 なお、UE100の無線状況が良化した際に無線状況と比較される無線状況閾値と、UE100の無線状況が劣化した際に比較される無線状況閾値と、を異ならせてもよい。両閾値の間にマージン(ヒステリシス)を持たせることにより、ピンポン現象を回避することができる。また、無線状況閾値にも同様に、ヒステリシスを持たせてもよい。
 図28は、本変更例に係る動作シーケンスを示す図である。
 図28に示すように、ステップS151において、eNB200は、閾値(負荷状況閾値、負荷状況閾値)の設定情報である「Threshold configuration」をUE100に送信する。UE100は、「Threshold configuration」に応じて、閾値(負荷状況閾値、負荷状況閾値)を設定する。
 ステップS152において、UE100は、自UE100の状況(負荷状況、無線状況)が閾値(負荷状況閾値、負荷状況閾値)条件を満たしたことを検知する。
 ステップS153において、UE100は、自UE100の状況に応じた「Suggested profile」を選択する。
 ステップS154において、UE100は、選択した「Suggested profile」をeNB200に送信する。
 本変更例によれば、プロファイル変更要求の送信を可能とする条件を制限し、プロファイル変更要求の頻繁な送信を禁止しつつ、UE100の状況に最適化されたプロファイルに変更することができる。
 [第13実施形態]
 第13実施形態について、第12実施形態との相違点を主として説明する。第13実施形態は、プロファイルの変更タイミングの制限に関する実施形態である。
 (無線端末)
 以下において、第13実施形態に係るUE100(無線端末)について説明する。UE100のブロック構成は、第12実施形態と同様である。
 第1のプロファイルが設定されている場合において、送信部120は、第2のプロファイルへの変更要求をeNB200に送信する。或いは、第1のプロファイルが設定されている場合において、受信部110は、eNB200から第2のプロファイルへの変更要求を受信する。第13実施形態において、受信部110及び送信部120は、通信部を構成する。
 制御部130は、変更要求を送信又は受信した第1のタイミングから規定時間経過後の第2のタイミングにおいて、第2のプロファイルに変更する。規定時間は、例えば仕様上規定された時間である。或いは、規定時間は、eNB200からUE100に対して指定してもよいし、UE100からeNB200に対して指定してもよい。このような規定時間を導入することにより、UE100及びeNB200がプロファイル変更を行うタイミングを合せることができる。
 制御部130は、第1のタイミングから規定時間内に、第2のプロファイルに変更するために必要な処理を行う。必要な処理は、例えば、第2のプロファイルの設定パラメータに変更するパラメータ変更である。制御部130は、パラメータ変更についてeNB200から通知されなくても、第2のプロファイルの設定パラメータに変更する。具体的には、eNB200で必要な処理(設定パラメータ変更に関わる処理)が行われているとみなして、第2のプロファイルの設定パラメータに変更する。
 例えば、キャリアアグリゲーションにおけるセカンダリセル数(設定パラメータ)を減らすようなプロファイル変更のタイミング(第2のタイミング)において、設定されているセカンダリセル数が、変更後のプロファイルで許容されたセカンダリセル数よりも多い場合、変更後のプロファイルで許容されたセカンダリセル数に変更されたとみなす。或いは、全てのセカンダリセルが解放されたとみなす。
 この場合、再送中パケットの破棄、セカンダリセル監視の停止、セカンダリセルについてのクロスキャリアスケジューリングのためのPDCCH監視の停止等を行う。「Dual Connectivity」を不可とするようなプロファイル変更のタイミングで、「Dual Connectivity」が設定されたままだった場合も同様である。
 或いは、全てのセカンダリセルが解放される場合、かつPDCCH中のCIF(Carrier Indicator Field)が存在すると設定されていた場合には、CIFが存在しない設定に変更を行う。具体的には、「CrossCarrierSchedulingConfig」中の「cif-Presence」がtrueだった場合に、false相当に変更することに該当する。或いは、より広い意味では「CrossCarrierSchedulingConfig」内の設定すべてを破棄することに相当する。これらの動作を、改めて「CrossCarrierSchedulingConfig」を通知されることなく行ってもよい。
 セカンダリセルの一部のみ解放された場合、「CrossCarrierSchedulingConfig」中の解放されたセカンダリセルの「other-r10」設定を解放し、残されたセカンダリセルの「other-r10」設定はそのまま引き継いでもよい。これにより、改めて「CrossCarrierSchedulingConfig」を通知されなくても動作することが可能である。なお、新たなセカンダリセルの追加を伴う動作の場合には、改めて「CrossCarrierSchedulingConfig」を通知される必要があることに留意すべきである。
 或いは、設定パラメータは保持した状態で、この設定に関する機能の停止(deactivate)を行ってもよい。例えば、D2Dの設定が行われている状態で、変更後のプロファイルがD2D機能を指定していない場合、UE100は、当該プロファイルに従ってD2D機能を停止するが、当該設定を保持する(破棄しない)。その後、更に変更されたプロファイルを受信し、D2D機能が指定されていた場合は、当該保持した設定を用いて、D2D機能を再開できる。このような制御により、不要なシグナリングオーバーヘッドを削減する事が可能となる。
 なお、制御部130は、上述したような第1のプロファイルの設定パラメータと第2のプロファイルの設定パラメータとの不整合についてeNB200に通知してもよい。例えば、「RRC Connection Reestablishment Request」メッセージをeNB200に送信し、その中のCauseフィールドに、「configuration mismatch with profile」を示す情報を含める。
 また、第13実施形態において、制御部130は、第1のタイミングから規定時間が経過するまで、eNB200(少なくともセカンダリセル)とのデータ送受信を中止してもよい。この場合、設定パラメータの変更のためのシグナリングのみ送受信可としてもよい。
 (基地局)
 以下において、第13実施形態に係るeNB200(基地局)について説明する。eNB200のブロック構成は、第12実施形態と同様である。なお、UE100について説明した内容と重複する動作については説明を省略する。
 送信部210は、第1のプロファイルが設定されているUE100に対して第2のプロファイルへの変更要求を送信する。或いは、受信部220は、第1のプロファイルが設定されているUE100から、第2のプロファイルへの変更要求を受信する。
 制御部230は、変更要求を送信又は受信した第1のタイミングから規定時間経過後の第2のタイミングにおいて、第2のプロファイルに変更する。
 制御部230は、第1のタイミングから規定時間内に、第2のプロファイルに変更するために必要な処理を行う。必要な処理は、例えば、第2のプロファイルの設定パラメータに変更するパラメータ変更である。制御部230は、パラメータ変更についてUE100に通知することなく、第2のプロファイルの設定パラメータに変更する。
 また、第13実施形態において、制御部230は、第1のタイミングから規定時間が経過するまで、少なくともセカンダリセルにおいてUE100とのデータ送受信を中止してもよい。この場合、設定パラメータの変更のためのシグナリングのみ送受信可としてもよい。
 (動作シーケンスの一例)
 以下において、第13実施形態に係る動作シーケンスの一例について説明する。図29は、第13実施形態に係る動作シーケンスの一例を示す図である。本シーケンスの初期状態において、UE100及びeNB200は、第1のプロファイルによる通信を行っている。
 図29に示すように、ステップS300において、第2のプロファイルへの変更要求をeNB200からUE100に送信する。或いは、第2のプロファイルへの変更要求をUE100からeNB200に送信する。UE100及びeNB200は、規定時間の計時を開始する。
 ステップS301(S301A、S301B)において、UE100及びeNB200は、データ送受信を中止する。
 ステップS302(S302A、S302B)において、UE100及びeNB200は、プロファイル変更のために必要な処理を行う。例えば、UE100及びeNB200は、第2のプロファイルの設定パラメータに変更する。
 ステップS303(S303A、S303B)において、UE100及びeNB200は、規定時間が経過(満了)したタイミングにおいて、第2のプロファイルによる通信(データ送受信)を開始する。
 [第13実施形態の変更例]
 上述した第13実施形態において、プロファイル変更要求のタイミングを「規定時間」の開始タイミング(第1のタイミング)としていた。しかしながら、プロファイル変更要求に対する応答が存在する場合、当該応答のタイミングを規定時間の開始タイミングとしてもよい。
 例えば、UE100からeNB200へのプロファイル変更要求が「Suggested profile」(UL Indication message)であり、eNB200からUE100への応答が「Selected profile」(RRC Connection Reconfiguration)である。
 或いは、eNB200からUE100へのプロファイル変更要求が「Selected profile」(RRC Connection Reconfiguration)であり、UE100からeNB200への応答が「RRC Connection Reconfiguration Complete」である。
 第13実施形態の変更例は、プロファイル変更要求に対する応答のタイミングを規定時間の開始タイミングとする以外は、基本的には第13実施形態と同様である。
 但し、第13実施形態の変更例においては、eNB200からUE100に対してパラメータ変更について通知されるので、相手側で必要な処理が行われているとみなすことは不要である。
 [第14実施形態]
 第14実施形態について、第12実施形態及び第13実施形態との相違点を主として説明する。第14実施形態は、プロファイル変更の内容的制限に関する実施形態である。
 以下において、第14実施形態に係るUE100(無線端末)について説明する。UE100のブロック構成は、第12実施形態と同様である。
 第14実施形態に係るUE100において、制御部130は、第1のプロファイルが設定されている場合において、第1のプロファイルとは異なる第2のプロファイルを選択する。送信部120は、第2のプロファイルへの変更を要求するためのプロファイル変更要求(Suggested profile)をeNB200に送信する。
 制御部130は、第1のプロファイルに基づいて、少なくとも一部の通信状態が維持されるように第2のプロファイルを選択する。例えば、自UE100のプライマリセルが属するサポート周波数帯(Support Band Combination)を含む第1のプロファイルが設定されている場合、制御部130は、当該プライマリセルが属するサポート周波数帯(Support Band Combination)を含むプロファイルを第2のプロファイルとして選択する。換言すると、制御部130は、自UE100のプライマリセルが属するサポート周波数帯(Support Band Combination)を含むプロファイルにのみ変更が許容される。
 なお、プライマリセルとは、通常のプライマリセル(PCell)に限らず、「Dual Connectivity」におけるSeNBのプライマリセルであるプライマリ・ セカンダリセル(PSCell)であってもよい。プライマリセルは、UE100のPUCCHを有する重要なセルである。
 第14実施形態によれば、プロファイルを変更しても、プロファイル変更の前後でプライマリセルを維持することができるため、通信の途絶を防止することができる。
 [第14実施形態の変更例]
 第14実施形態の変更例において、第1のプロファイルは、所定のバッファサイズ(soft buffer size)を有する第1の端末カテゴリ(UE category)を含む。UE100の制御部130は、当該所定の「soft buffer size」以上の「soft buffer size」を有する「UE category」を含むプロファイルを第2のプロファイルとして選択する。
 プロファイルの変更により「UE category」が変更される場合、「soft buffer size」が減少しないような変更とすることにより、HARQのコンテキストをそのまま保持してプロファイルの変更を行うことが可能である。
 「soft buffer size」が減少するような変更の場合には、HARQのコンテキストが破棄(再送中のデータはすべて破棄)されてしまう。実際に「soft buffer」を使い切っていない状態であれば、「soft buffer size」が減少した場合であってもHARQコンテキストを保持することができる可能性もあるが、これは「soft buffer」の状態に関するeNB200・UE100間の認識に齟齬がないことが必須となるため、別途B200・UE100間で状態確認のメッセージのやり取りをする必要がある。
 HARQコンテキストを保持できるかどうかを確認するための方法としては、下記の2通りの方法がある。
 1)eNB200からUE100にプロファイル変更を要求する場合:
 eNB200からUE100にプロファイル変更要求が通知された際(全てのプロファイル変更要求、又は、「UE category」変更を伴う場合のみ)、UE100は、プロファイル変更応答又は別メッセージとして、コンテキストの保持が可能かどうかのインデックスをeNB200に通知してもよい。
 また、eNB200からUE100にプロファイル変更要求を通知してから実際にプロファイル変更が適用されるまでの間は、eNB200からUE100へのDL通信を禁止してもよいし、「Soft buffer」使用量を増加させるようなDLリソース割り当て(例えば、使用中HARQプロセスの再送割り当て、又は未使用HARQプロセスの新規割り当て)を禁止してもよい。
 2)UE100からeNB200にプロファイル変更要求をする場合:
 UE100からeNB200にプロファイル変更要求が通知された際(全てのプロファイル変更要求、又は、「UE category」変更を伴う場合のみ)、UE100は、eNB200からのプロファイル変更応答の受信後、又はプロファイル変更適用タイミング後に、HARQコンテキストの保持が可能かどうかのインデックスをeNB200に通知してもよい。
 [第15実施形態及び第16実施形態の概要]
 無線端末は、一のセルから他のセルに移動する際にハンドオーバを行う。しかしながら、上述したプロファイルを使用する技術においては、無線端末のモビリティが考慮されていないため、モビリティ制御を適切に行うことができない虞がある。
 そこで、第15実施形態及び第16実施形態は、プロファイルを取り扱う場合においてモビリティ制御を適切に行うことを可能とする基地局、モビリティ管理装置、及び無線端末を提供することを目的とする。
 第15実施形態及び第16実施形態に係る基地局は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記基地局は、自基地局から他の基地局に対して無線端末のハンドオーバを行う場合において、モビリティ管理装置を介さずに又は前記モビリティ管理装置を介して、前記無線端末がサポートしているプロファイルを前記他の基地局に通知する制御部を備える。
 第15実施形態において、前記制御部は、前記無線端末がサポートしており、かつ自基地局と前記無線端末との間の通信に使用しているプロファイルを前記他の基地局に通知する。
 第15実施形態において、前記制御部は、前記無線端末がサポートしている全てのプロファイルを前記他の基地局に通知する。
 第15実施形態において、前記制御部は、前記モビリティ管理装置を介さずに又は前記モビリティ管理装置を介して、前記他の基地局が前記無線端末との通信に使用するべきプロファイルを前記他の基地局から取得して、該取得したプロファイルを前記無線端末に通知する。
 第16実施形態において、前記制御部は、前記他の基地局がプロファイル非対応の基地局である場合において、前記無線端末がサポートしているプロファイルに含まれる各機能を前記他の基地局に通知する。
 第16実施形態において、前記制御部は、前記無線端末がサポートしており、かつ自基地局と前記無線端末との間の通信に使用しているプロファイルに含まれる各機能を前記他の基地局に通知する。
 第15実施形態及び第16実施形態に係るモビリティ管理装置は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記モビリティ管理装置は、第1の基地局から第2の基地局に対して無線端末のハンドオーバを行う場合において、前記無線端末がサポートしているプロファイルを前記第2の基地局に通知する制御部を備える。
 第15実施形態において、前記制御部は、前記無線端末がサポートしており、かつ前記第1の基地局から通知されたプロファイルを前記第2の基地局に通知する。
 第15実施形態において、前記制御部は、前記無線端末がサポートしており、かつ前記第1の基地局と前記無線端末との間の通信に使用されているプロファイルを前記第2の基地局に通知する。
 第15実施形態において、前記制御部は、前記無線端末がサポートしている全てのプロファイルを前記第2の基地局に通知する。
 第15実施形態において、前記制御部は、前記第2の基地局が前記無線端末との通信に使用するべきプロファイルを前記第2の基地局から取得して、該取得したプロファイルを前記第1の基地局に通知する。
 第16実施形態において、前記制御部は、前記第2の基地局がプロファイル非対応の基地局である場合において、前記無線端末がサポートしているプロファイルに含まれる各機能を前記第2の基地局に通知する。
 第16実施形態において、前記制御部は、前記無線端末がサポートしているプロファイルのうち特定のプロファイルに含まれる各機能を前記第2の基地局に通知する。前記特定のプロファイルは、前記無線端末が選択した規定プロファイル、又は自モビリティ管理装置が選択したプロファイルである。
 第15実施形態及び第16実施形態に係る基地局は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記基地局は、他の基地局から自基地局に対して無線端末のハンドオーバを行う場合において、前記無線端末がサポートしているプロファイルを前記他の基地局又はモビリティ管理装置から取得する制御部を備える。
 第15実施形態において、前記制御部は、前記無線端末がサポートしており、かつ前記他の基地局と前記無線端末との間の通信に使用されているプロファイルを前記他の基地局又は前記モビリティ管理装置から取得する。
 第15実施形態において、前記制御部は、前記無線端末がサポートしている全てのプロファイルを前記他の基地局又は前記モビリティ管理装置から取得する。
 第15実施形態において、前記制御部は、前記無線端末がサポートしているプロファイルの中から、自基地局が前記無線端末との通信に使用するべきプロファイルを決定し、該決定したプロファイルを前記他の基地局又は前記モビリティ管理装置に通知する。
 第16実施形態において、前記制御部は、自基地局がプロファイル非対応の基地局である場合において、前記無線端末がサポートしているプロファイルに含まれる各機能を前記他の基地局又は前記モビリティ管理装置から取得する。
 第15実施形態に係る無線端末は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記無線端末は、第1の基地局から第2の基地局に対して自無線端末のハンドオーバを行う場合において、前記第2の基地局が自無線端末との通信に使用するべきプロファイルを前記第1の基地局から取得する制御部を備える。
 第16実施形態に係る基地局は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記基地局は、自基地局がプロファイル対応であるか否かを示す情報をブロードキャストで無線端末に送信する送信部を備える。
 第16実施形態に係る無線端末は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記無線端末は、プロファイル非対応の基地局と接続した場合において、自無線端末がサポートする機能のうち一部の機能のみを前記プロファイル非対応の基地局に通知する制御部を備える。
 第16実施形態に係る無線端末は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記無線端末は、プロファイル非対応の基地局と接続する前において、ネットワークからデタッチし、該ネットワークにアタッチする制御部を備える。
 第16実施形態に係る無線端末は、複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる。前記無線端末は、自無線端末がサポートしているプロファイルのうち何れか1つを規定プロファイルとしてモビリティ管理装置に通知する制御部を備える。
 [第15実施形態]
 (Multiple profiles UE capability)
 UE100は、無線通信に関する複数の機能をサポートする。無線通信に関する機能とは、仕様により規定された機能であって、例えば、「Dual Connectivity」、D2D(Device to Device)、NAICS(Network-Assisted Interference Cancellation and Suppression)等である。無線通信に関する機能は、「UE Category」を含んでもよい。また、無線通信に関する機能は、「Support Band Combination」を含んでもよい。以下において、無線通信に関する機能を適宜「Feature」と称する。
 第15実施形態において、UE100の処理性能を最大限に活用するために、現実的に同時実行し得る機能の組み合わせを仕様上「プロファイル」として規定し、UE100に実行させるべき機能をプロファイル単位で柔軟に変更可能とする。例えば、プロファイル#1が「Category 6」及びNAICSの組み合わせにより構成され、プロファイル#2が「Category 7」及び「Dual Connectivity」の組み合わせにより構成され、プロファイル#3が「Category 10」及びD2Dの組み合わせにより構成される。
 図30は、プロファイルの初期取得に係る動作シーケンスの一例を示す図である。本シーケンスの初期情報において、UE100はコネクティッドモードである。
 図30に示すように、ステップS11において、eNB200は、「UE Capability Enquiry」メッセージをUE100に送信する。
 ステップS12において、UE100は、「UE Capability Enquiry」メッセージの受信に応じて、自身がサポートする複数のプロファイル(Multiple profiles)を含む「UE Capability information」メッセージをeNB200に送信する。
 ステップS13において、eNB200は、「UE Capability information」メッセージの受信に応じて、UE100がサポートする複数のプロファイル(Multiple profiles)を含む「UE Capability info Indication」メッセージをMME300に送信する。MME300は、UE100がネットワークからデタッチするまで、UE100がサポートする複数のプロファイル(Multiple profiles)の情報を保持する。また、MME300は、UE100がネットワークからデタッチすると、UE100がサポートする複数のプロファイル(Multiple profiles)の情報を破棄する。
 図31は、プロファイルの初期設定シーケンスの一例を示す図である。本シーケンスの初期状態においてUE100はアイドルモードである。
 図31に示すように、ステップS21において、UE100は、eNB200へのランダムアクセスを行う。
 ステップS22において、UE100は、「RRC Connection Request」メッセージをeNB200に送信する。
 ステップS23において、eNB200は、「RRC Connection Request」メッセージの受信に応じて、「RRC Connection Setup」メッセージをUE100に送信する。
 ステップS24において、UE100は、「RRC Connection Setup」メッセージの受信に応じて、「RRC Connection Setup Complete」メッセージをeNB200に送信する。ここで、UE100は、自身がサポートする複数のプロファイル(Multiple profiles)の中から1つのプロファイルを推奨プロファイル(Suggested profile)として選択し、
「Suggested profile」を「RRC Connection Setup Complete」メッセージに含める。ステップS24の結果、UE100は、アイドルモードからコネクティッドモードに遷移する。
 ステップS25において、eNB200は、「RRC Connection Setup Complete」メッセージの受信に応じて、「INITIAL UE MESSAGE」をMME300に送信する。
 ステップS26において、MME300は、「INITIAL UE MESSAGE」の受信に応じて、「INITIAL CONTEXT SETUP REQ.」メッセージをeNB200に送信する。ここで、MME300は、UE100がサポートする複数のプロファイル(Multiple profiles)の情報を「INITIAL CONTEXT SETUP REQ.」メッセージに含める。eNB200は、UE100がサポートする複数のプロファイル(Multiple profiles)の情報を保持する。
 ステップS27において、eNB200は、「Security Mode Command」メッセージをUE100に送信する。
 ステップS28において、eNB200は、「RRC Connection Reconfiguration」メッセージをUE100に送信する。ここで、eNB200は、UE100がサポートする複数のプロファイル(Multiple profiles)の中から選択したプロファイル(Selected profile)の設定情報(Configuration)を「RRC Connection Reconfiguration」メッセージに含める。UE100は、「Selected profile」の設定情報(Configuration)を保持し、その後、「Selected profile」に応じた無線通信を開始する。
 ステップS29において、UE100は、「Security Mode Complete」メッセージをeNB200に送信する。
 ステップS30において、UE100は、「RRC Conn. Reconf. Complete」メッセージをeNB200に送信する。
 図32は、RRC接続中のプロファイル変更に係る動作シーケンスの一例を示す図である。図32(A)はeNB200が開始するプロファイル変更シーケンスであり、図32(B)はUE100が開始するプロファイル変更シーケンスである。
 図32(A)に示すように、ステップS41において、eNB200は、UE100がサポートする複数のプロファイル(Multiple profiles)の中から1つのプロファイルを選択する。そして、eNB200は、選択したプロファイル(Selected profile)の設定情報(Configuration)を「RRC Connection Reconfiguration」メッセージによりをUE100に送信する。UE100は、「Selected profile」のConfigurationに基づいてプロファイルを変更する。
 図32(B)に示すように、ステップS51において、UE100は、自身が選択したプロファイルを推奨プロファイル(Suggested profile)を含む「UL Indication」メッセージをeNB200に送信する。
 ステップS52において、eNB200は、「Suggested profile」に基づいて選択したプロファイル(Selected profile)の設定情報(Configuration)を「RRC Connection Reconfiguration」メッセージによりUE100に送信する。UE100は、「Selected profile」のConfigurationに基づいてプロファイルを変更する。
 (ハンドオーバシーケンス)
 コネクティッドモードのUE100は、一のセルから他のセルに移動する際にハンドオーバを行う。第15実施形態において、基地局間(Inter-eNB)ハンドオーバを主として説明する。
 Inter-eNBハンドオーバにおいて、ソースeNBからターゲットeNBに対してUE100のハンドオーバを行う。Inter-eNBハンドオーバには、X2ハンドオーバ及びS1ハンドオーバがある。X2ハンドオーバは、ソースeNBとターゲットeNBとの間のシグナリングにMME300が介在しないハンドオーバシーケンスである。これに対し、S1ハンドオーバは、ソースeNBとターゲットeNBとの間のシグナリングにMME300が介在するハンドオーバシーケンスである。
 (基地局)
 以下において、第15実施形態に係るeNB200(基地局)について説明する。図33は、eNB200のブロック図である。図33に示すように、eNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。
 送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。
 制御部230は、eNB200における各種の制御を行う。制御部230は、図示を省略する演算処理部及びメモリを含む。メモリは、演算処理部により実行されるプログラム、及び演算処理部による処理に使用される情報を記憶する。演算処理部は、ベースバンド信号の変調・復調及び符号化・復号等を行うDSPと、メモリに記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。演算処理部は、各種の処理及び各種の通信プロトコルを実行する。
 バックホール通信部240は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。バックホール通信部240は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信等に使用される。
 このように構成されたeNB200は、複数のプロファイルが規定されるLTEシステムにおいて用いられる。上述したように、各プロファイルは、無線通信に関する複数の機能を含む。
 第1に、eNB200がソースeNBである場合の動作について説明する。以下において、ソースeNBをeNB200Sと表記し、ターゲットeNBをeNB200Tと表記する。
 ソースeNB200Sにおいて、制御部230は、自eNBからターゲットeNB200Tに対してUE100のハンドオーバを行う場合において、MME300を介さずに(X2ハンドオーバの場合)、又はMME300を介して(S1ハンドオーバの場合)、UE100がサポートしているプロファイルをターゲットeNB200Tに通知する。
 第15実施形態において、制御部230は、UE100がサポートしており、かつ自eNBとUE100との間の通信に使用しているプロファイル(Selected profile)をターゲットeNB200Tに通知する。或いは、制御部230は、UE100がサポートしている全てのプロファイル(Multiple profiles)をターゲットeNB200Tに通知する。
 また、制御部230は、MME300を介さずに(X2ハンドオーバの場合)又はMME300を介して(S1ハンドオーバの場合)、ターゲットeNB200TがUE100との通信に使用するべきプロファイルをターゲットeNB200Tから取得して、該取得したプロファイルをUE100に通知する。
 第2に、eNB200がターゲットeNB200Tである場合の動作について説明する。
 ターゲットeNB200Tにおいて、制御部230は、ソースeNB200Sから自eNBに対してUE100のハンドオーバを行う場合において、UE100がサポートしているプロファイルをソースeNB200S(X2ハンドオーバの場合)又はMME300(S1ハンドオーバの場合)から取得する。
 第15実施形態において、制御部230は、UE100がサポートしており、かつソースeNB200SとUE100との間の通信に使用されているプロファイル(Selected profile)をソースeNB200S又はMME300から取得する。或いは、制御部230は、UE100がサポートしている全てのプロファイル(Multiple profiles)をソースeNB200S又はMME300から取得する。
 制御部230は、UE100がサポートしているプロファイルの中から、自eNBがUE100との通信に使用するべきプロファイルを決定し、該決定したプロファイルをソースeNB200S(X2ハンドオーバの場合)又はMME300(S1ハンドオーバの場合)に通知する。
 (モビリティ管理装置)
 以下において、第15実施形態に係るMME300(モビリティ管理装置)について説明する。図34は、MME300のブロック図である。図34に示すように、MME300は、通信部310及び制御部320を備える。
 通信部310は、S1インターフェイスを介してeNB200と接続される。通信部310は、S1インターフェイス上で行う通信等に使用される。
 制御部320は、MME300における各種の制御を行う。制御部320は、図示を省略する演算処理部及びメモリを含む。メモリは、演算処理部により実行されるプログラム、及び演算処理部による処理に使用される情報を記憶する。制御部320は、各種の処理及び各種の通信プロトコルを実行する。
 このように構成されたMME300は、複数のプロファイルが規定されるLTEシステムにおいて用いられる。
 S1ハンドオーバの場合において、制御部320は、ソースeNB200S(第1のeNB)からターゲットeNB200T(第2のeNB)に対してUE100のハンドオーバを行う場合において、UE100がサポートしているプロファイルをターゲットeNB200Tに通知する。具体的には、制御部320は、ソースeNB200Sから通知されたプロファイルをターゲットeNB200Tに通知する。
 制御部320は、ソースeNB200SとUE100との間の通信に使用されているプロファイル(Selected profile)をターゲットeNB200Tに通知する。或いは、制御部320は、UE100がサポートしている全てのプロファイル(Multiple profiles)をターゲットeNB200Tに通知する。
 (無線端末)
 以下において、第15実施形態に係るUE100(無線端末)について説明する。図35は、UE100のブロック図である。図35に示すように、UE100は、受信部110、送信部120、及び制御部130を備える。
 受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部130に出力する。
 送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 制御部130は、UE100における各種の制御を行う。制御部130は、演算処理部131を含む。制御部130は、メモリ(不図示)をさらに含む。演算処理部131は、ベースバンド信号の変調・復調及び符号化・復号等を行うデジタル信号プロセッサ(DSP)131aと、メモリに記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)131bと、を含む。演算処理部131は、音声・映像信号の符号化・復号を行うコーデックをさらに含んでもよい。制御部130は、各種の処理及び各種の通信プロトコルを実行する。
 このように構成されたMME300は、複数のプロファイルが規定されるLTEシステムにおいて用いられる。
 UE100において、制御部130は、ソースeNB200S(第1のeNB)からターゲットeNB200T(第2のeNB)に対して自UE100のハンドオーバを行う場合において、ターゲットeNB200Tが自UE100との通信に使用するべきプロファイルをソースeNB200Sから取得する。
 (動作シーケンスの一例)
 以下において、第15実施形態に係る動作シーケンスの一例について説明する。
 (1)X2ハンドオーバ
 図36は、第15実施形態に係るX2ハンドオーバシーケンスを示す図である。本シーケンスの初期状態において、UE100はコネクティッドモードである。
 図36に示すように、ステップS101において、ソースeNB200Sは、「Multiple profiles」又は「Suggested profile」に基づいて選択したプロファイル(Selected profile)の設定情報(Configuration)を「RRC Connection Reconfiguration」メッセージによりUE100に送信する。UE100は、「Selected profile」を使用してソースeNB200Sとの通信を行う。
 ステップS102において、UE100は、「Measurement Report」メッセージをソースeNB200Sに送信する。ソースeNB200Sは、「Measurement Report」メッセージに基づいて、ターゲットeNB200Tへのハンドオーバを決定する。
 ステップS103において、ソースeNB200Sは、「Handover Request」メッセージをターゲットeNB200Tに送信する。ここで、ソースeNB200Sは、「Selected profile」又は「Multiple profiles」を「Handover Request」メッセージに含める。ターゲットeNB200Tは、「Handover Request」メッセージを承認するか否かを判断する。ここでは、「Handover Request」メッセージを承認すると仮定して説明を進める。
 ステップS104において、ターゲットeNB200Tは、「Handover Request ACK」メッセージをソースeNB200Sに送信する。ここで、ターゲットeNB200Tは、「Handover Request」メッセージに含まれる「Multiple profiles」又は「Selected profile」に基づいて選択したプロファイルを「Handover Request ACK」メッセージに含める。
 ターゲットeNB200Tにおけるプロファイル選択方法としては、下記の第1の方法乃至第3の方法の何れかを使用できる。
 第1の方法において、ターゲットeNB200Tは、自身の処理負荷を確認し、当該「Selected profile」を用いても、処理が可能と判断した場合は当該「Selected profile」を「Handover Request ACK」メッセージに含める。これに対し、当該「Selected profile」を用いて処理が不可能である場合は、処理が可能となる範囲のプロファイルを「Multiple profiles」から選択し、選択したプロファイルを「Handover Request ACK」メッセージに含める。
 第2の方法において、ターゲットeNB200Tにおける他UEとの通信状態を確認し、例えば当該UEをMU-MIMOで処理するのが望ましい場合は、「Multiple profiles」のうちMU-MIMOを含むプロファイルを「Handover Request ACK」メッセージに含める。或いは、「Selected profile」がMU-MIMOを含む場合には、「Selected profile」を「Handover Request ACK」メッセージに含めてもよい。一方、NAICS又は「Dual Connectivity」で処理するのが望ましい場合は、「Multiple profiles」のうち、NAICS又は「Dual Connectivity」を含むプロファイルを「Handover Request ACK」メッセージに含める。或いは、「Selected profile」がNAICS又は「Dual Connectivity」を含む場合には、「Selected profile」を「Handover Request ACK」メッセージに含めてもよい。
 第3の方法において、ターゲットeNB200Tにおける能力(capability)を参照し、「Multiple profiles」のうちターゲットeNB200Tがサポートしている機能のみで構成されるプロファイルを「Handover Request ACK」メッセージに含める。或いは、ターゲットeNB200Tがサポートしている機能のみで「Selected profile」が構成されている場合には、「Selected profile」を「Handover Request ACK」メッセージに含めてもよい。
 ステップS105において、ソースeNB200Sは、「Handover Request ACK」の受信に応じて、「Handover Command」メッセージをUE100に送信する。ここで、ソースeNB200Sは、ターゲットeNB200Tが選択したプロファイルを「Handover Command」メッセージに含める。
 UE100は、「Handover Command」メッセージの受信に応じて、ターゲットeNB200Tへのハンドオーバを行う。UE100は、ハンドオーバ後のターゲットeNB200Tとの通信に、「Handover Command」メッセージに含まれていたプロファイルを使用する。
 (2)S1ハンドオーバ
 図37は、第15実施形態に係るS1ハンドオーバシーケンスを示す図である。本シーケンスの初期状態において、UE100はコネクティッドモードである。
 図37に示すように、ステップS151において、ソースeNB200Sは、「Multiple profiles」又は「Suggested profile」に基づいて選択したプロファイル(Selected profile)の設定情報(Configuration)を「RRC Connection Reconfiguration」メッセージによりUE100に送信する。UE100は、「Selected profile」を使用してソースeNB200Sとの通信を行う。
 ステップS152において、UE100は、「Measurement Report」メッセージをソースeNB200Sに送信する。ソースeNB200Sは、「Measurement Report」メッセージに基づいて、ターゲットeNB200Tへのハンドオーバを決定する。
 ステップS153において、ソースeNB200Sは、「Handover Required」メッセージをMME300に送信する。ここで、ソースeNB200Sは、「Selected profile」又は「Multiple profiles」を「Handover Required」メッセージに含める。
 ステップS154において、MME300は、「Handover Request」メッセージをターゲットeNB200Tに送信する。ここで、MME300は、「Handover Required」メッセージに含まれていた「Selected profile」又は「Multiple profiles」を「Handover Request」メッセージに含める。なお、MME300は、例えばUE100の加入者情報等に基づいて、「Multiple profiles」の中から自身が選択したプロファイルを「Handover Request」メッセージに含めてもよい。或いは、MME300は、後述する規定プロファイル(Default profile)を「Handover Request」メッセージに含めてもよい。
 ターゲットeNB200Tは、「Handover Request」メッセージを承認するか否かを判断する。ここでは、「Handover Request」メッセージを承認すると仮定して説明を進める。
 ステップS155において、ターゲットeNB200Tは、「Handover Request ACK」メッセージをMME300に送信する。ここで、ターゲットeNB200Tは、「Handover Request」メッセージに含まれる「Multiple profiles」又は「Selected profile」に基づいて選択したプロファイルを「Handover Request ACK」メッセージに含める。
 ステップS156において、MME300は、「Handover Command」メッセージをソースeNB200Sに送信する。ここで、MME300は、ターゲットeNB200Tが選択したプロファイルを「Handover Command」メッセージに含める。
 ステップS157において、ソースeNB200Sは、MME300からの「Handover Command」メッセージの受信に応じて、「Handover Command」メッセージをUE100に送信する。ここで、ソースeNB200Sは、ターゲットeNB200Tが選択したプロファイルを「Handover Command」メッセージに含める。
 UE100は、「Handover Command」メッセージの受信に応じて、ターゲットeNB200Tへのハンドオーバを行う。UE100は、ハンドオーバ後のターゲットeNB200Tとの通信に、「Handover Command」メッセージに含まれていたプロファイルを使用する。
 [第16実施形態]
 第16実施形態について、第15実施形態との相違点を主として説明する。上述した実施形態において、ターゲットeNB200Tがプロファイル対応eNBであり、プロファイルを取り扱うことが可能であることを想定していた。
 しかしながら、ターゲットeNB200Tがプロファイル非対応eNBであり、プロファイルを取り扱うことが不能であることもあり得る。また、ハンドオーバに限らず、UE100がプロファイル非対応eNBと接続し、プロファイル非対応eNBと通信を行うこともあり得る。第16実施形態は、プロファイル非対応eNBが存在する場合の動作に関する実施形態である。
 (1)動作パターン1
 第16実施形態の動作パターン1において、X2ハンドオーバにおけるターゲットeNB200Tがプロファイル非対応eNBである場合を想定する(図36参照)。
 この場合、ソースeNB200Sは、UE100がサポートしているプロファイルに含まれる各機能をターゲットeNB200Tに通知する。例えば、ソースeNB200Sは、自eNBとUE100との間の通信に使用しているプロファイル(Selected profile)に含まれる各機能をターゲットeNB200Tに通知する。
 このように、プロファイルの形式ではターゲットeNB200Tが解釈できないため、プロファイルに含まれる各機能を例えばUEコンテキスト情報として「Handover Request」メッセージに含める。これにより、ターゲットeNB200Tが解釈可能な情報としてプロファイルの内容を通知することができる。この場合、通常のX2ハンドオーバシーケンスと同様のシーケンスを使用することができる。
 なお、動作パターン1は、ソースeNB200Sが、ターゲットeNB200Tがプロファイル対応eNBであるか否かの情報を保持していることを前提としている。このような情報は、事前設定されていてもよいし、SONの機能を利用して自律的に設定してもよい。或いは、ターゲットeNB200TがソースeNB200Sに対して事前にプロファイル対応可否を通知してもよい。また、このような情報は、ソースeNB200Sが保持する隣接セルリスト(ネイバーリスト)に含まれていてもよい。
 (2)動作パターン2
 第16実施形態の動作パターン2において、S1ハンドオーバにおけるターゲットeNB200Tがプロファイル非対応eNBである場合を想定する(図37参照)。
 この場合、MME300は、UE100がサポートしているプロファイルに含まれる各機能をターゲットeNB200Tに通知する。例えば、MME300は、ソースeNB200SとUE100との間の通信に使用されているプロファイル(Selected profile)に含まれる各機能をターゲットeNB200Tに通知する。
 MME300は、プロファイルに含まれる各機能を例えばUEコンテキスト情報として「Handover Request」メッセージに含めてもよい。これにより、ターゲットeNB200Tが解釈可能な情報としてプロファイルの内容を通知することができる。この場合、通常のS1ハンドオーバシーケンスと同様のシーケンスを使用することができる。
 なお、動作パターン2は、MME300が、ターゲットeNB200Tがプロファイル対応eNBであるか否かの情報を保持していることを前提としている。このような情報は、事前設定されていてもよいし、ターゲットeNB200TがMME300に対して事前にプロファイル対応可否を通知してもよい。
 或いは、MME300は、「Selected profile」に含まれる各機能をターゲットeNB200Tに通知するのではなく、規定プロファイル(Default profile)に含まれる各機能をターゲットeNB200Tに通知してもよい。
 「Default profile」は、プロファイルの初期設定シーケンス(図30参照)においてUE100からMME300に通知される。図30に示したように、UE100は、自身がサポートする複数のプロファイル(Multiple profiles)を含む「UE Capability information」メッセージを送信する(ステップS12)。
 ここで、UE100は、「Multiple profiles」の何れか1つを「Default profile」として選択し、「Default profile」を識別可能に「Multiple profiles」を設定する。例えば、「Multiple profiles」の先頭のプロファイルが「Default profile」であると規定されている場合、UE100は、自身が選択したプロファイルを「Multiple profiles」の先頭に配置する。或いは、「Default profile」を示す識別子が規定されている場合、自身が選択したプロファイルに当該識別子を付与して「Multiple profiles」に配置する。
 (3)動作パターン3
 第16実施形態の動作パターン3において、X2ハンドオーバ又はS1ハンドオーバにおけるターゲットeNB200Tがプロファイル非対応eNBである場合を想定する。或いは、UE100がプロファイル非対応eNBと接続し、プロファイル非対応eNBと通信を行う場合であってもよい。
 動作パターン3において、eNB200は、自eNBがプロファイル対応であるか否かを示す情報をブロードキャストでUE100に送信する。具体的には、eNB200は、自セルにおいて送信するシステム情報ブロック(SIB)に、当該自セルがプロファイル対応であることを示すフラグを含める。或いは、自セルにおいて送信するシステム情報ブロック(SIB)に、当該自セルがサポートしている又はサポートしていない各プロファイルを示す情報を含めてもよい。
 これにより、UE100は、移動先(又は接続先候補)のセルにおけるプロファイル対応状況を把握することができる。
 動作パターン3において、UE100は、プロファイル非対応のeNB(セル)と接続する場合において、ネットワークからデタッチし、該ネットワークにアタッチしてもよい。上述したように、UE100がサポートする複数のプロファイル(Multiple profiles)の情報は、UE100がデタッチするまでMME300に保持される。よって、そのような状態でUE100がプロファイル非対応のeNB(セル)と接続すると、予期せぬエラーが発生する虞がある。従って、UE100がネットワークからデタッチすることにより、MME300に保持されている「Multiple profiles」が破棄され、予期せぬエラーが発生することを回避可能である。
 動作パターン3において、UE100は、プロファイル非対応のeNB(セル)と接続した場合において、自UE100がサポートする機能のうち一部の機能のみを当該eNB(セル)に通知してもよい。本来であれば、UE100は、プロファイル非対応のeNB(セル)に対しては、UE100がサポートしている全ての機能を「UE Capability information」メッセージに含める。しかしながら、プロファイルの使用を前提とするUE100は、多数の機能が同時に設定されると演算処理能力が不足し、予期せぬエラーが発生する虞がある。そこで、UE100は、プロファイル非対応のeNB(セル)と接続した場合には、自UEの演算処理能力を超えない範囲内の機能のみを「UE Capability information」メッセージに含める。
 [その他の実施形態]
 上述した実施形態において、移動通信システムとしてLTEシステムを例示した。しかしながら、本発明はLTEシステムに限定されない。LTEシステム以外のシステムに本発明を適用してもよい。
 [相互参照]
 米国仮出願第62/126791号(2015年3月2日出願)、米国仮出願第62/127425号(2015年3月3日出願)、日本国特許出願第2015-041266号(2015年3月3日出願)、日本国特許出願第2015-041683号(2015年3月3日出願)の全内容が、参照により本願明細書に組み込まれている。
 本発明は、通信分野において有用である。

Claims (55)

  1.  無線通信に関する複数の機能が規定された移動通信システムにおいて用いられる基地局であって、
     無線端末に備えられた演算処理部の負荷状況又は属性に関する演算処理部情報を前記無線端末から受信する受信部と、
     前記演算処理部情報に基づいて、前記無線端末に実行させるべき少なくとも1つの機能を選択する制御部と、
     前記選択した機能を示す情報を前記無線端末に送信する送信部と、を備える基地局。
  2.  前記演算処理部情報は、前記演算処理部において現に利用可能な処理容量を示す情報を含む請求項1に記載の基地局。
  3.  前記演算処理部情報は、前記演算処理部の処理性能を示す情報を含む請求項1に記載の基地局。
  4.  前記複数の機能のそれぞれについて、実行に要する処理負荷の推定値である負荷推定値が規定されており、
     前記制御部は、前記負荷推定値にさらに基づいて、前記少なくとも1つの機能を選択する請求項1に記載の基地局。
  5.  前記複数の機能は、
     複数のプロファイルの何れかに分類される複数のメイン機能と、
     前記複数のプロファイルの何れにも分類されない複数のサブ機能と、を含み、
     前記制御部は、前記無線端末に実行させるべき少なくとも1つの機能として、1つのプロファイル及び少なくとも1つのサブ機能を選択する請求項1に記載の基地局。
  6.  前記無線端末に複数の演算処理部が備えられる場合、前記受信部は、前記複数の演算処理部のそれぞれについて前記無線端末から前記演算処理部情報を受信する請求項1に記載の基地局。
  7.  前記演算処理部情報は、前記演算処理部のチップ型番を示す情報を含む請求項1に記載の基地局。
  8.  前記送信部は、前記選択した機能を実行するためのプログラムを前記無線端末に送信する請求項7に記載の基地局。
  9.  無線通信に関する複数の機能を含むプロファイルが規定された移動通信システムにおいて用いられる無線端末であって、
     自無線端末がサポートする複数のプロファイルの中から、省電力モードに対応する特定のプロファイルを選択する制御部と、
     前記特定のプロファイルを示す推奨プロファイル情報を基地局に送信する送信部と、を備える無線端末。
  10.  前記制御部は、前記省電力モードの適用指示を示すユーザ入力に応じて、前記特定のプロファイルを選択する請求項9に記載の無線端末。
  11.  前記制御部は、自無線端末が車両に搭載される車載端末である場合において、前記車両の状態に応じて、前記特定のプロファイルを選択する請求項9に記載の無線端末。
  12.  前記制御部は、前記複数のプロファイルのうち最も消費電力が低いプロファイルを前記特定のプロファイルとして選択する請求項9に記載の無線端末。
  13.  前記送信部は、前記推奨プロファイル情報と共に、前記省電力モードを示す識別情報を前記基地局に送信する請求項9に記載の無線端末。
  14.  無線通信に関する複数の機能を含むプロファイルが規定された移動通信システムにおいて用いられる基地局であって、
     前記複数の機能は、無線通信の性能を示す端末カテゴリを含み、
     無線端末がサポートする複数のプロファイルに共通する端末カテゴリを示す推奨カテゴリ情報を前記無線端末から受信する受信部と、
     前記推奨カテゴリ情報に基づいて、前記共通する端末カテゴリを含む前記複数のプロファイルの中から、前記無線端末に設定するプロファイルを選択する制御部と、を備える基地局。
  15.  前記共通する端末カテゴリが複数存在する場合において、前記受信部は、前記共通する端末カテゴリからなるリストを前記推奨カテゴリ情報として受信する請求項14に記載の基地局。
  16.  無線通信に関する複数の機能を含むプロファイルが規定された移動通信システムにおいて用いられる基地局であって、
     無線端末が自基地局及び他の基地局と接続する二重接続通信を行う場合において、前記無線端末に設定する1又は複数のプロファイルの一部を前記他の基地局に通知する制御部を備える基地局。
  17.  複数のプロファイル群を前記無線端末から受信する受信部を備え、
     前記複数のプロファイル群のそれぞれは、複数のプロファイルを含み、
     前記制御部は、前記二重接続通信を行う場合において、前記複数のプロファイル群の中から前記無線端末に設定するプロファイル群を選択し、該選択したプロファイル群に含まれる一部のプロファイルを前記他の基地局に通知する請求項16に記載の基地局。
  18.  前記制御部は、前記二重接続通信を行う場合において、前記無線端末がサポートする複数のプロファイルの中から前記無線端末に設定するプロファイルを選択し、該選択したプロファイルに含まれる一部の機能を前記他の基地局に通知する請求項16に記載の基地局。
  19.  無線通信に関する複数の機能を含むプロファイルが規定された移動通信システムにおいて用いられる無線端末であって、
     自無線端末が第1の基地局及び第2の基地局と接続する二重接続通信を行う場合において、複数のプロファイル群を前記第1の基地局に通知する制御部を備え、
     前記複数のプロファイル群のそれぞれは、自無線端末がサポートする複数のプロファイルを含む無線端末。
  20.  無線通信に関する複数の機能を含むプロファイルが規定された移動通信システムにおいて用いられる無線端末であって、
     自無線端末がサポートする全ての機能を示す機能情報、及び、自無線端末がサポートするプロファイルを示すプロファイル情報を基地局に送信する送信部を備え、
     前記プロファイル情報は、自無線端末がサポートする全ての機能のうち前記プロファイルに含まれない機能のみを含む無線端末。
  21.  無線通信に関する複数の機能を含むプロファイルが規定された移動通信システムにおいて用いられる無線端末であって、
     自無線端末がサポートする複数のプロファイルを示す複数のプロファイル情報と、前記複数のプロファイルに共通する機能を示す機能情報と、を基地局に送信する送信部を備え、
     前記複数のプロファイル情報のそれぞれは、前記共通する機能とは異なる機能を含む無線端末。
  22.  複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる無線端末であって、
     自無線端末が選択したプロファイルへの変更を要求するためのプロファイル変更要求を基地局に送信する送信部と、
     所定の条件が満たされるまで、前記プロファイル変更要求の送信が禁止された禁止状態を維持し、前記所定の条件が満たされると前記禁止状態を解除する制御部と、を備える無線端末。
  23.  前記所定の条件は、前記プロファイル変更要求を前回送信してからの経過時間が時間閾値を超えたという条件である請求項22に記載の無線端末。
  24.  前記時間閾値は、前記基地局により指定される請求項23に記載の無線端末。
  25.  前記所定の条件は、自無線端末の負荷状況が負荷状況閾値を超えた又は下回ったという条件である請求項22に記載の無線端末。
  26.  前記負荷状況閾値は、前記基地局により指定される請求項25に記載の無線端末。
  27.  前記所定の条件は、自無線端末の無線状況が無線状況閾値を超えた又は下回ったという条件である請求項22に記載の無線端末。
  28.  前記無線状況閾値は、前記基地局により指定される請求項27に記載の無線端末。
  29.  複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる無線端末であって、
     第1のプロファイルが設定されている場合において、第2のプロファイルへの変更要求を基地局に送信する、又は前記基地局から前記第2のプロファイルへの変更要求を受信する通信部と、
     前記変更要求を送信又は受信した第1のタイミングから規定時間経過後の第2のタイミングにおいて、前記第2のプロファイルに変更する制御部と、を備える無線端末。
  30.  前記制御部は、前記第1のタイミングから前記規定時間内に、前記第2のプロファイルに変更するために必要な処理を行う請求項29に記載の無線端末。
  31.  前記必要な処理は、前記第2のプロファイルの設定パラメータに変更するパラメータ変更であり、
     前記制御部は、前記パラメータ変更について前記基地局から通知されなくても、前記第2のプロファイルの設定パラメータに変更する請求項30に記載の無線端末。
  32.  前記制御部は、前記第1のタイミングから前記規定時間が経過するまで、前記基地局とのデータ送受信を中止する請求項29に記載の無線端末。
  33.  複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる無線端末であって、
     第1のプロファイルが設定されている場合において、第2のプロファイルへの変更要求に対する応答を基地局に送信する、又は前記第2のプロファイルへの変更要求に対する応答を前記基地局から受信する通信部と、
     前記応答を送信又は受信した第1のタイミングから規定時間経過後の第2のタイミングにおいて、前記第2のプロファイルに変更する制御部と、を備える無線端末。
  34.  前記制御部は、前記第1のタイミングから前記規定時間内に、前記第2のプロファイルに変更するために必要な処理を行う請求項33に記載の無線端末。
  35.  前記制御部は、前記第1のタイミングから前記規定時間が経過するまで、前記基地局とのデータ送受信を中止する請求項33に記載の無線端末。
  36.  複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる無線端末であって、
     第1のプロファイルが設定されている場合において、前記第1のプロファイルとは異なる第2のプロファイルを選択する制御部と、
     前記第2のプロファイルへの変更を要求するためのプロファイル変更要求を基地局に送信する送信部と、を備え、
     前記制御部は、前記第1のプロファイルに基づいて、少なくとも一部の通信状態が維持されるように前記第2のプロファイルを選択する無線端末。
  37.  前記第1のプロファイルは、前記無線端末のプライマリセルが属するサポート周波数帯を含み、
     前記制御部は、前記無線端末のプライマリセルが属するサポート周波数帯を含むプロファイルを前記第2のプロファイルとして選択する請求項36に記載の無線端末。
  38.  前記第1のプロファイルは、所定のバッファサイズを有する第1の端末カテゴリを含み、
     前記制御部は、前記所定のバッファサイズ以上のバッファサイズを有する端末カテゴリを含むプロファイルを前記第2のプロファイルとして選択する請求項36に記載の無線端末。
  39.  複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる基地局であって、
     自基地局から他の基地局に対して無線端末のハンドオーバを行う場合において、モビリティ管理装置を介さずに又は前記モビリティ管理装置を介して、前記無線端末がサポートしているプロファイルを前記他の基地局に通知する制御部を備える基地局。
  40.  前記制御部は、前記無線端末がサポートしており、かつ自基地局と前記無線端末との間の通信に使用しているプロファイルを前記他の基地局に通知する請求項39に記載の基地局。
  41.  前記制御部は、前記無線端末がサポートしている全てのプロファイルを前記他の基地局に通知する請求項39に記載の基地局。
  42.  前記制御部は、前記モビリティ管理装置を介さずに又は前記モビリティ管理装置を介して、前記他の基地局が前記無線端末との通信に使用するべきプロファイルを前記他の基地局から取得して、該取得したプロファイルを前記無線端末に通知する請求項39に記載の基地局。
  43.  前記制御部は、前記他の基地局がプロファイル非対応の基地局である場合において、前記無線端末がサポートしているプロファイルに含まれる各機能を前記他の基地局に通知する請求項39に記載の基地局。
  44.  前記制御部は、前記無線端末がサポートしており、かつ自基地局と前記無線端末との間の通信に使用しているプロファイルに含まれる各機能を前記他の基地局に通知する請求項43に記載の基地局。
  45.  複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられるモビリティ管理装置であって、
     第1の基地局から第2の基地局に対して無線端末のハンドオーバを行う場合において、前記無線端末がサポートしているプロファイルを前記第2の基地局に通知する制御部を備えるモビリティ管理装置。
  46.  前記制御部は、前記無線端末がサポートしており、かつ前記第1の基地局から通知されたプロファイルを前記第2の基地局に通知する請求項45に記載のモビリティ管理装置。
  47.  前記制御部は、前記無線端末がサポートしており、かつ前記第1の基地局と前記無線端末との間の通信に使用されているプロファイルを前記第2の基地局に通知する請求項45に記載のモビリティ管理装置。
  48.  前記制御部は、前記無線端末がサポートしている全てのプロファイルを前記第2の基地局に通知する請求項45に記載のモビリティ管理装置。
  49.  前記制御部は、前記第2の基地局が前記無線端末との通信に使用するべきプロファイルを前記第2の基地局から取得して、該取得したプロファイルを前記第1の基地局に通知する請求項45に記載のモビリティ管理装置。
  50.  前記制御部は、前記第2の基地局がプロファイル非対応の基地局である場合において、前記無線端末がサポートしているプロファイルに含まれる各機能を前記第2の基地局に通知する請求項45に記載のモビリティ管理装置。
  51.  前記制御部は、前記無線端末がサポートしているプロファイルのうち特定のプロファイルに含まれる各機能を前記第2の基地局に通知し、
     前記特定のプロファイルは、前記無線端末が選択した規定プロファイル、又は自モビリティ管理装置が選択したプロファイルである請求項50に記載のモビリティ管理装置。
  52.  複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる基地局であって、
     自基地局がプロファイル対応であるか否かを示す情報をブロードキャストで無線端末に送信する送信部を備える基地局。
  53.  複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる無線端末であって、
     プロファイル非対応の基地局と接続した場合において、自無線端末がサポートする機能のうち一部の機能のみを前記プロファイル非対応の基地局に通知する制御部を備える無線端末。
  54.  複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる無線端末であって、
     プロファイル非対応の基地局と接続する前において、ネットワークからデタッチし、該ネットワークにアタッチする制御部を備える無線端末。
  55.  複数のプロファイルが規定されており、各プロファイルが無線通信に関する複数の機能を含む移動通信システムにおいて用いられる無線端末であって、
     自無線端末がサポートしているプロファイルのうち何れか1つを規定プロファイルとしてモビリティ管理装置に通知する制御部を備える無線端末。
PCT/JP2016/054704 2015-03-02 2016-02-18 基地局、無線端末、及びモビリティ管理装置 WO2016140069A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017503409A JP6654184B2 (ja) 2015-03-02 2016-02-18 基地局、無線端末、及びモビリティ管理装置
US15/691,430 US10631243B2 (en) 2015-03-02 2017-08-30 Base station, radio terminal, and mobility management apparatus

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201562126791P 2015-03-02 2015-03-02
US62/126,791 2015-03-02
US201562127425P 2015-03-03 2015-03-03
JP2015-041266 2015-03-03
JP2015-041683 2015-03-03
JP2015041683 2015-03-03
US62/127,425 2015-03-03
JP2015041266 2015-03-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/691,430 Continuation US10631243B2 (en) 2015-03-02 2017-08-30 Base station, radio terminal, and mobility management apparatus

Publications (1)

Publication Number Publication Date
WO2016140069A1 true WO2016140069A1 (ja) 2016-09-09

Family

ID=56848853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054704 WO2016140069A1 (ja) 2015-03-02 2016-02-18 基地局、無線端末、及びモビリティ管理装置

Country Status (3)

Country Link
US (1) US10631243B2 (ja)
JP (1) JP6654184B2 (ja)
WO (1) WO2016140069A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111133783A (zh) * 2017-09-28 2020-05-08 三星电子株式会社 无线通信系统中连接建立的方法和装置
WO2020145622A1 (ko) * 2019-01-08 2020-07-16 삼성전자 주식회사 무선 통신 시스템에서 단말의 전력 소모 감소 방법 및 장치
WO2024201961A1 (ja) * 2023-03-30 2024-10-03 株式会社Nttドコモ 端末、無線通信方法及び基地局

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3273708A4 (en) * 2015-03-20 2018-12-12 Nec Corporation Vehicle communication system, base station, server apparatus, message transmission method, vehicle-related service providing method, and readable medium
US10356608B2 (en) * 2016-02-18 2019-07-16 Huawei Technologies Co., Ltd. System and method of user equipment state configurations
CN111108796B (zh) * 2017-09-28 2024-04-05 三星电子株式会社 用于在多个带宽部分上执行数据发射和测量的方法和网络节点
EP3695682A4 (en) * 2017-10-10 2021-06-30 Telefonaktiebolaget LM Ericsson (publ) MOBILE TERMINATED EARLY DATA TRANSFER
WO2019215634A1 (en) * 2018-05-10 2019-11-14 Telefonaktiebolaget Lm Ericsson (Publ) Handling re-establishment rejection
KR20200087619A (ko) * 2019-01-11 2020-07-21 삼성전자주식회사 무선 통신 시스템에서 단말 지원 정보 송수신 방법 및 장치
CN111526536B (zh) * 2019-02-01 2022-08-09 大唐移动通信设备有限公司 信息上报方法、装置、终端及网络侧设备
EP3925184B1 (en) * 2019-02-14 2024-09-18 Sony Group Corporation Header compression adaptive to quality of radio channel
US11658792B2 (en) 2019-03-28 2023-05-23 Qualcomm Incorporated Methods and apparatus to facilitate PDCCH monitoring in carrier aggregation for lower power consumption
US11483768B2 (en) * 2019-03-28 2022-10-25 Qualcomm Incorporated Methods and apparatus to facilitate PDCCH monitoring in carrier aggregation for lower power consumption

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256162A (ja) * 2000-03-14 2001-09-21 Nec Corp 情報処理端末およびコンテンツ取得システム
JP2004341718A (ja) * 2003-05-14 2004-12-02 Ntt Docomo Inc プログラム同期システム、通信網装置、通信端末装置、プログラム同期方法及びプログラム
JP2011166636A (ja) * 2010-02-15 2011-08-25 Adcore-Tech Co Ltd 通信端末およびその制御方法並びにプログラム
WO2014188957A1 (ja) * 2013-05-21 2014-11-27 シャープ株式会社 通信端末、基地局装置およびサーバ装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120088454A1 (en) * 2010-10-06 2012-04-12 Peter Stanforth System and method for power control in portable electronic devices
US8768567B2 (en) * 2012-10-29 2014-07-01 Broadcom Corporation Intelligent power and control policy for automotive applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256162A (ja) * 2000-03-14 2001-09-21 Nec Corp 情報処理端末およびコンテンツ取得システム
JP2004341718A (ja) * 2003-05-14 2004-12-02 Ntt Docomo Inc プログラム同期システム、通信網装置、通信端末装置、プログラム同期方法及びプログラム
JP2011166636A (ja) * 2010-02-15 2011-08-25 Adcore-Tech Co Ltd 通信端末およびその制御方法並びにプログラム
WO2014188957A1 (ja) * 2013-05-21 2014-11-27 シャープ株式会社 通信端末、基地局装置およびサーバ装置

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CATT: "UE capability coordination", R2-140176, 3GPP, 29 January 2014 (2014-01-29) *
CATT: "UE Capability Transfer", R2-075533, 3GPP, 7 December 2007 (2007-12-07) *
CHINA UNICOM: "Enhanced RRM of HSPA networks with UE assistant information", R2-122440, 3GPP *
LG ELECTRONICS INC.: "Discussion on Assistance Information", R2-121313, 3GPP, 20 March 2012 (2012-03-20) *
PHILIPS: "Capabilities of multi-transceiver UEs", R2-103922, 3GPP, 23 June 2010 (2010-06-23) *
QUALCOMM INCORPORATED: "Control Plane consideration for dual connectivity", R2-140087, 3GPP, 31 January 2014 (2014-01-31) *
QUALCOMM INCORPORATED: "Limitations of current UE E-UTRA capability handling", R2-143285, 3GPP, 8 August 2014 (2014-08-08) *
SAMSUNG: "E-UTRA RRC TP on RRC information transfer between entwork nodes", R2-075530, 3GPP, 10 December 2007 (2007-12-10) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111133783A (zh) * 2017-09-28 2020-05-08 三星电子株式会社 无线通信系统中连接建立的方法和装置
US11323871B2 (en) 2017-09-28 2022-05-03 Samsung Electronics Co., Ltd. Method and apparatus of a connection setup in a wireless communication system
CN111133783B (zh) * 2017-09-28 2023-04-07 三星电子株式会社 无线通信系统中连接建立的方法和装置
WO2020145622A1 (ko) * 2019-01-08 2020-07-16 삼성전자 주식회사 무선 통신 시스템에서 단말의 전력 소모 감소 방법 및 장치
US11956723B2 (en) 2019-01-08 2024-04-09 Samsung Electronics Co., Ltd. Method and apparatus for reducing electric power consumption of terminal in wireless communication system
WO2024201961A1 (ja) * 2023-03-30 2024-10-03 株式会社Nttドコモ 端末、無線通信方法及び基地局

Also Published As

Publication number Publication date
JPWO2016140069A1 (ja) 2018-01-25
US20170367047A1 (en) 2017-12-21
US10631243B2 (en) 2020-04-21
JP6654184B2 (ja) 2020-02-26

Similar Documents

Publication Publication Date Title
JP6654184B2 (ja) 基地局、無線端末、及びモビリティ管理装置
EP3634036B1 (en) Dc-based handover method and device
US10028331B2 (en) User terminal, communication control method and chipset
US10736011B2 (en) Radio terminal and WWAN-supporting base station
JP6280669B1 (ja) 基地局、方法、及びシステム
JP6208491B2 (ja) ユーザ端末、方法、及びプロセッサ
WO2016190357A1 (ja) 通信制御方法、基地局、及びユーザ端末
JP6169167B2 (ja) 基地局、プロセッサ、及び移動通信システム
WO2015125716A1 (ja) 移動体通信システム、基地局、及びユーザ端末
WO2014112563A1 (ja) セルラ通信システム、ユーザ端末、及びセルラ基地局
WO2015093569A1 (ja) 通信制御方法
JP6479823B2 (ja) 基地局、プロセッサ及びネットワーク装置
US9991997B2 (en) Mobile communication system, specific base station, and user terminal
JPWO2017018536A1 (ja) 無線端末、プロセッサ及び通信方法
JP6538026B2 (ja) ネットワーク選択制御方法、基地局、及びユーザ端末
CN104303553B (zh) 数据处理方法、装置及系统
WO2015020033A1 (ja) 基地局
JP6276886B2 (ja) ユーザ端末、方法、及びプロセッサ
JP2014220777A (ja) 通信制御方法及びセルラ基地局
EP3373693A1 (en) Base station, wlan termination node, and wireless terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758763

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503409

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758763

Country of ref document: EP

Kind code of ref document: A1