WO2015093569A1 - 通信制御方法 - Google Patents

通信制御方法 Download PDF

Info

Publication number
WO2015093569A1
WO2015093569A1 PCT/JP2014/083573 JP2014083573W WO2015093569A1 WO 2015093569 A1 WO2015093569 A1 WO 2015093569A1 JP 2014083573 W JP2014083573 W JP 2014083573W WO 2015093569 A1 WO2015093569 A1 WO 2015093569A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless lan
user terminal
user
wlan
control method
Prior art date
Application number
PCT/JP2014/083573
Other languages
English (en)
French (fr)
Inventor
真人 藤代
優志 長坂
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP14871714.3A priority Critical patent/EP3086603A1/en
Priority to JP2015553604A priority patent/JPWO2015093569A1/ja
Priority to US15/104,823 priority patent/US20160323903A1/en
Publication of WO2015093569A1 publication Critical patent/WO2015093569A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to a communication control method used in a cellular communication system capable of cooperating with a wireless LAN system.
  • 3GPP 3rd Generation Partnership Project
  • cellular RAN Radio Access Network
  • wireless LAN wireless LAN
  • the traffic load of the cellular RAN can be reduced (offloading) by switching the traffic of the user terminal accommodated by the cellular RAN (cellular access network) to be accommodated by the wireless LAN (wireless LAN access network). ).
  • an object of the present invention is to provide a communication control method capable of selecting an appropriate connection destination when an access network accommodating user terminal traffic is selected.
  • the communication control method is used in a communication system capable of selecting an access network that accommodates traffic of user terminals.
  • Step A in which the user terminal receives identification information indicating a predetermined wireless LAN from the cellular RAN, and connection after the user terminal selects the access network for the predetermined wireless LAN indicated by the identification information Step B to be prioritized as a destination.
  • the predetermined wireless LAN is not the wireless LAN preferred by the user of the user terminal, the user terminal The wireless LAN preferred by the user is given priority over the predetermined wireless LAN.
  • FIG. 1 is a system configuration diagram according to the first embodiment.
  • FIG. 2 is a block diagram of the UE 100.
  • FIG. 3 is a block diagram of the eNB 200.
  • FIG. 4 is a block diagram of the AP 300.
  • FIG. 5 is a protocol stack diagram of a radio interface in the cellular communication system.
  • FIG. 6 is a diagram for explaining the operating environment according to the embodiment.
  • FIG. 7 is an operation sequence diagram according to the first embodiment.
  • FIG. 8 is a flowchart for explaining prioritization of the WLAN 30 according to the first embodiment.
  • FIG. 9 is a sequence diagram for explaining an operation sequence 1 according to the second embodiment.
  • FIG. 10 is a sequence diagram for explaining an operation sequence 2 according to the second embodiment.
  • FIG. 11 is a sequence diagram for explaining an operation sequence 3 according to the second embodiment.
  • FIG. 12 is a sequence diagram for explaining an operation sequence 4 according to the second embodiment.
  • FIG. 13 is a flowchart for the UE 100 to select an AP 300 to be included in the WLAN measurement report.
  • the communication control method according to the first embodiment is used in a communication system capable of selecting an access network that accommodates traffic of user terminals.
  • Step A in which the user terminal receives identification information indicating a predetermined wireless LAN from the cellular RAN, and connection after the user terminal selects the access network for the predetermined wireless LAN indicated by the identification information Step B to be prioritized as a destination.
  • the user terminal when the predetermined wireless LAN is not the wireless LAN preferred by the user of the user terminal, the user terminal gives priority to the wireless LAN preferred by the user over the predetermined wireless LAN.
  • the user terminal receives a selection parameter for giving priority to a wireless LAN estimated to be preferred by the user over a wireless LAN estimated not to be preferred by the user. Further comprising the step of receiving from. In step B, the user terminal gives priority to a wireless LAN preferred by the user based on the selection parameter.
  • the access control method determines that the user terminal preferably selects a wireless LAN other than the wireless LAN preferred by the user as the connection destination based on the selection parameter, the access control The method further includes the step of initiating an operation for selecting a network.
  • the step B is omitted.
  • the selection parameter is a value that makes it impossible to select a wireless LAN that the user does not like as the connection destination.
  • the wireless LAN preferred by the user is a wireless LAN not managed by an operator
  • the wireless LAN not preferred by the user is a wireless LAN managed by the operator.
  • the communication control method is used in a communication system capable of selecting an access network accommodating user terminal traffic.
  • the communication control method includes a step in which the user terminal selects the access network based on an accommodation network selection rule and switches a connection destination to accommodate the traffic of the user terminal in the selected access network. .
  • the user terminal when the user terminal is connected to a wireless LAN preferred by the user, the user terminal gives priority to the connection with the wireless LAN preferred by the user over the switching of the connection destination.
  • the communication control method is used in a communication system capable of selecting an access network accommodating user terminal traffic.
  • the user terminal receives identification information indicating a predetermined wireless LAN from a cellular LAN, and the user terminal transmits the predetermined wireless LAN indicated by the identification information to the access network. And B as a connection destination candidate after selecting.
  • the user terminal removes the predetermined wireless LAN from the connection destination candidates after selecting the access network based on user preferences.
  • the communication control method further includes a step of registering information indicating the user's preference in the user terminal.
  • the predetermined wireless LAN is a wireless LAN that the user does not like based on information indicating the registered user preference
  • the predetermined wireless LAN is Remove from the connection destination candidates.
  • the user terminal in step B, includes another wireless LAN different from the predetermined wireless LAN in the connection destination candidates based on the user's preference.
  • the user preference gives priority to the wireless LAN not managed by the operator over the wireless LAN managed by the operator.
  • the communication control method is used in a communication system capable of selecting an access network accommodating user terminal traffic.
  • the communication control method includes a step in which the user terminal acquires a predetermined parameter from a wireless LAN, and a reporting step in which the user terminal transmits a report regarding the acquired predetermined parameter to the cellular RAN.
  • the user terminal includes the priority of the wireless LAN determined based on the user's preference in the report.
  • the communication control method is used in a communication system capable of selecting an access network accommodating user terminal traffic.
  • the user terminal receives identification information indicating a predetermined wireless LAN from the cellular RAN, and the user terminal reports a report on the predetermined parameter acquired from the predetermined wireless LAN.
  • a reporting step for transmitting to the RAN In the reporting step, the user terminal includes information on a predetermined parameter acquired from another wireless LAN different from the predetermined wireless LAN in the report.
  • the communication control method is used in a communication system capable of selecting an access network accommodating user terminal traffic.
  • the user terminal measures wireless signals from a plurality of wireless LANs, and the user terminal measures the wireless signals from at least one wireless LAN among the plurality of wireless LANs.
  • the user terminal includes not only the measurement result of the radio signal that satisfies the predetermined condition but also the measurement result of the radio signal that does not satisfy the predetermined condition in the report. Send.
  • the user terminal in the reporting step, includes all measurement results of the plurality of wireless LANs in the report.
  • the communication control method is used in a communication system capable of selecting an access network accommodating user terminal traffic.
  • the user terminal receives identification information indicating a wireless LAN from a cellular RAN or an ANDSF (Access Network Discovery and Selection Function) server, and the user terminal receives a wireless signal from a predetermined wireless LAN.
  • a reporting step in which the user terminal transmits a report on the measurement result of the radio signal from the predetermined wireless LAN to the cellular RAN.
  • the user terminal does not transmit the report when the predetermined wireless LAN does not match the wireless LAN indicated by the identification information.
  • FIG. 1 is a system configuration diagram according to the first embodiment.
  • the cellular communication system includes a plurality of UEs (User Equipment) 100, an E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • UEs User Equipment
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • E-UTRAN 10 corresponds to cellular RAN.
  • the EPC 20 corresponds to a core network.
  • the E-UTRAN 10 and the EPC 20 constitute a network of a cellular communication system.
  • the UE 100 is a mobile radio communication device, and performs radio communication with a cell that has established a connection.
  • UE100 is corresponded to a user terminal.
  • the UE 100 is a terminal (dual terminal) that supports both cellular communication and WLAN communication methods.
  • the E-UTRAN 10 includes a plurality of eNBs 200 (evolved Node-B).
  • the eNB 200 corresponds to a cellular base station.
  • the eNB 200 manages one or a plurality of cells, and performs radio communication with the UE 100 that has established a connection with the own cell.
  • “cell” is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the eNB 200 has, for example, a radio resource management (RRM) function, a user data routing function, and a measurement control function for mobility control and scheduling.
  • RRM radio resource management
  • the eNB 200 is connected to each other via the X2 interface. Also, the eNB 200 is connected to an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 500 included in the EPC 20 via the S1 interface.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • the EPC 20 includes a plurality of MME / S-GWs 500.
  • the MME is a network node that performs various types of mobility control for the UE 100, and corresponds to a control station.
  • the S-GW is a network node that performs transfer control of user data, and corresponds to an exchange.
  • the WLAN 30 includes a WLAN access point (hereinafter simply referred to as “AP”) 300.
  • the AP 300 is an AP (Operator controlled AP) managed by an operator of the cellular communication system, for example.
  • the WLAN 30 is configured based on, for example, IEEE 802.11 standards.
  • the AP 300 communicates with the UE 100 in a frequency band (WLAN frequency band) different from the cellular frequency band.
  • the AP 300 is connected to the EPC 20 via a router or the like.
  • the eNB 200 and the AP 300 are not limited to being individually arranged, and the eNB 200 and the AP 300 may be arranged at the same location (Collocated). As one form of Collated, the eNB 200 and the AP 300 may be directly connected by an arbitrary interface of the operator.
  • the EPC 20 further includes an ANDSF (Access Network Discovery and Selection Function) server 600.
  • the ANDSF server 600 manages ANDSF information related to the WLAN 30.
  • the ANDSF server 600 provides the UE 100 with ANDSF information related to the WLAN 30 by using a NAS (Non Access Stratum) message.
  • NAS Non Access Stratum
  • the ANDSF server 600 that the UE 100 uses in the H-PLMN Home Public Land Mobile Network
  • H-ANDSF server The ANDSF server 600 that the UE 100 uses during roaming in a V-PLMN (Visible Public Land Mobile Network) is referred to as a V-ANDSF server.
  • FIG. 2 is a block diagram of the UE 100.
  • the UE 100 includes antennas 101 and 102, a cellular communication unit 111, a WLAN communication unit 112, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, and a memory. 150 and a processor 160.
  • the memory 150 and the processor 160 constitute a control unit.
  • the UE 100 may not have the GNSS receiver 130.
  • the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 '.
  • the antenna 101 and the cellular communication unit 111 are used for transmitting and receiving cellular radio signals.
  • the cellular communication unit 111 converts the baseband signal output from the processor 160 into a cellular radio signal and transmits it from the antenna 101.
  • the cellular communication unit 111 converts a cellular radio signal received by the antenna 101 into a baseband signal and outputs it to the processor 160.
  • the antenna 102 and the WLAN communication unit 112 are used for transmitting and receiving WLAN radio signals.
  • the WLAN communication unit 112 converts the baseband signal output from the processor 160 into a WLAN radio signal and transmits it from the antenna 102.
  • the WLAN communication unit 112 converts the WLAN radio signal received by the antenna 102 into a baseband signal and outputs the baseband signal to the processor 160.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an input from the user and outputs a signal indicating the content of the input to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain position information indicating the geographical position of the UE 100.
  • the battery 140 stores power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the processor 160 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes programs stored in the memory 150 and performs various processes.
  • the processor 160 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the processor 160 executes various processes and various communication protocols described later.
  • FIG. 3 is a block diagram of the eNB 200.
  • the eNB 200 includes an antenna 201, a cellular communication unit 210, a network interface 220, a memory 230, and a processor 240.
  • the memory 230 and the processor 240 constitute a control unit.
  • the antenna 201 and the cellular communication unit 210 are used for transmitting and receiving cellular radio signals.
  • the cellular communication unit 210 converts the baseband signal output from the processor 240 into a cellular radio signal and transmits it from the antenna 201.
  • the cellular communication unit 210 converts a cellular radio signal received by the antenna 201 into a baseband signal and outputs it to the processor 240.
  • the network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 500 via the S1 interface.
  • the network interface 220 is used for communication with the AP 300 via the EPC 20.
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes a program stored in the memory 230 and performs various processes.
  • the processor 240 executes various processes and various communication protocols described later.
  • FIG. 4 is a block diagram of the AP 300. As illustrated in FIG. 4, the AP 300 includes an antenna 301, a WLAN communication unit 311, a network interface 320, a memory 330, and a processor 340.
  • the antenna 301 and the WLAN communication unit 311 are used for transmitting and receiving WLAN radio signals.
  • the WLAN communication unit 311 converts the baseband signal output from the processor 340 into a WLAN radio signal and transmits it from the antenna 301.
  • the WLAN communication unit 311 converts the WLAN radio signal received by the antenna 301 into a baseband signal and outputs the baseband signal to the processor 340.
  • the network interface 320 is connected to the EPC 20 via a router or the like.
  • the network interface 320 is used for communication with the eNB 200 via the EPC 20.
  • the memory 330 stores a program executed by the processor 340 and information used for processing by the processor 340.
  • the processor 340 includes a baseband processor that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU that executes programs stored in the memory 330 and performs various processes.
  • FIG. 5 is a protocol stack diagram of a radio interface in the cellular communication system. As shown in FIG. 5, the radio interface protocol is divided into layers 1 to 3 of the OSI reference model, and layer 1 is a physical (PHY) layer. Layer 2 includes a MAC (Media Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer. Layer 3 includes an RRC (Radio Resource Control) layer.
  • PHY Physical
  • Layer 2 includes a MAC (Media Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • Layer 3 includes an RRC (Radio Resource Control) layer.
  • RRC Radio Resource Control
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Data is transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Data is transmitted via the transport channel between the MAC layer of the UE 100 and the MAC layer of the eNB 200.
  • the MAC layer of the eNB 200 includes a uplink / downlink transport format (transport block size, modulation / coding scheme, and the like) and a scheduler that selects allocated resource blocks.
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data is transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane. Control messages (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection connection state
  • RRC idle state idle state of cellular communication
  • the NAS layer located above the RRC layer performs session management and mobility management.
  • the MME 300 and the ANDSF server 600 transmit / receive a NAS message to / from the UE 100.
  • FIG. 6 is a diagram for explaining the operating environment according to the embodiment.
  • a plurality of APs 300 are provided in the cell coverage of the eNB 200.
  • a plurality of UEs 100 are located within the cell coverage of the eNB 200.
  • the UE 100 has established a connection with the eNB 200 and performs cellular communication with the eNB 200. Specifically, the UE 100 transmits and receives a cellular radio signal including traffic (user data) to and from the eNB 200.
  • the traffic load of the eNB 200 can be reduced by traffic steering that switches the traffic of the UE 100 accommodated by the eNB 200 (E-UTRAN 10) to be accommodated by the AP 300 (WLAN 30) (offloading).
  • Traffic steering includes a case where the connection destination of the UE 100 is switched between the eNB 200 and the AP 300, and a case where the UE 100 is connected to both the eNB 200 and the AP 300 and the data path is switched between the eNB 200 and the AP 300.
  • a network selection method for selecting an access network (hereinafter referred to as “accommodating network”) that accommodates the traffic of the UE 100 from the E-UTRAN 10 and the WLAN 30.
  • Multiple network selection methods differ in the subject that determines the accommodation network.
  • the plurality of network selection methods include a method in which the UE 100 has the right to determine the accommodation network and a method in which the E-UTRAN 10 has the right to determine the accommodation network.
  • the plurality of network selection methods differ in the method for providing the accommodation network selection rule.
  • a plurality of network selection methods include a method that provides a selection rule for an accommodation network only from the ANDSF server 600 and a method that can provide a selection rule for an accommodation network based on a rule established in the specifications of 3GPP RAN. Including.
  • RAN Solution a network selection method involving the E-UTRAN 10 (hereinafter referred to as “RAN Solution”) among the network selection methods is mainly targeted.
  • RAN Solution 1 is a method of providing a selection rule of an accommodation network only from the ANDSF server 600, and is a method in which the UE 100 has the decision right of the accommodation network.
  • the E-UTRAN 10 provides auxiliary information (such as selection parameters) to the UE 100.
  • RAN Solution 2 is a method that can provide a selection rule for an accommodation network based on a rule established in the specifications of 3GPP RAN, and the UE 100 has the right to determine the accommodation network.
  • the accommodation network selection rules can also be provided from the ANDSF server 600.
  • RAN Solution 3 is a method in which E-UTRAN 10 has the right to determine the accommodation network, unlike RAN Solutions 1 and 2.
  • the E-UTRAN 10 determines the accommodated network in the same procedure as the handover procedure of the LTE system.
  • the UE 100 maintains a preference list related to the WLAN 30 of the user preference (user preference).
  • the preference list information indicating the WLAN 30 preferred by the user (for example, an identifier of the WLAN 30 preferred by the user) is registered.
  • the preference list information indicating the WLAN 30 that the user does not like may be registered.
  • the UE 100 may register information indicating the WLAN 30 preferred by the user, which is input by the user's operation, in the preference list, or is preferred by the user acquired from the predetermined server when the user inputs the address of the predetermined server.
  • Information indicating the WLAN 30 may be registered in the preference list.
  • the WLAN 30 preferred by the user is, for example, an AP 300 that is not managed by the operator, specifically, a home AP that is managed by the user.
  • the WLAN 30 that the user does not like is, for example, the AP 300 managed by the operator.
  • FIG. 7 is an operation sequence diagram according to the first embodiment.
  • step S101 the eNB 200 transmits the WLAN control information related to the WLAN 30 to the UE 100 using system information (System Information) or an RRC message (RRC message).
  • System Information System Information
  • RRC message RRC message
  • the WLAN control information includes at least one of an identifier indicating the WLAN 30 and a selection parameter for preferentially selecting the WLAN 30 estimated to be preferred by the user over the WLAN 30 estimated not to be preferred by the user.
  • the identifier indicating the WLAN 30 is an identifier indicating the WLAN 30 designated from the cellular RAN.
  • step S102 the UE 100 prioritizes the WLAN 30.
  • the UE 100 performs measurement for receiving a signal (for example, a beacon signal) from surrounding AP 300.
  • UE100 acquires a WLAN parameter based on the signal from AP300.
  • the WLAN parameters include the reception level of the signal from the AP 300 (for example, RSSI), the information of the AP 300 included in the signal from the AP 300 (for example, the load status of the AP 300 (Load status), the channel utilization rate of the AP 300 (ChannelUtilization), downlink) WLAN backhaul transmission rate (BackhaulRateDl) that can be used in the network, and WLAN backhaul transmission rate (BackhaulRateUl) that can be used in the uplink.
  • the above-described load status, channel utilization rate, and WLAN backhaul transmission rate may be included in the beacon signal.
  • the UE100 gives priority to WLAN30 contained in WLAN control information, when the identifier of WLAN30 contained in WLAN control information is the identifier of WLAN30 which a user likes. On the other hand, when the identifier of the WLAN 30 included in the WLAN control information is not the identifier of the WLAN 30 preferred by the user, the other WLAN 30 preferred by the user is prioritized.
  • the WLAN 30 can be prioritized by any of the following methods.
  • the UE 100 prioritizes the WLAN 30 without using the selection parameter. Specifically, the UE 100 assigns, for example, the following priority to the WLAN 30 that satisfies the following conditions from the APs 300 that have received the signal. As the priority number is larger, the priority is higher, the first priority is the highest, and the fourth priority is the lowest.
  • the UE100 determines WLAN30 with a high priority as an accommodation network, for example.
  • the WLAN 30 included in the WLAN control information hereinafter referred to as designated WLAN 30 as appropriate
  • the UE 100 prioritizes the WLAN 30 preferred by the user over the WLAN 30 included in the WLAN control information. That is, the UE 100 lowers the priority of the designated WLAN 30 based on the user preference.
  • the accommodation network is selected, the user preference is taken into consideration, so that an appropriate WLAN 30 can be selected.
  • the UE 100 may start an operation for determining an accommodation network for the WLAN 30 having a predetermined priority or higher.
  • the operation for determining the accommodated network is an operation for determining the accommodated network or an operation for acquiring a WLAN parameter to determine the accommodated network. For example, when only a part of WLAN parameters (for example, RSSI) has been acquired, the UE 100 acquires other WLAN parameters (for example, load status).
  • the UE 100 when the UE 100 performs an operation for determining an accommodation network for the WLAN 30 having the “first priority” and the “second priority”, the preference of the user having the “third priority” The designated WLAN 30 that is not is excluded from the target. Therefore, the UE 100 ignores the WLAN 30 designated from the cellular RAN. On the other hand, the UE 100 includes not the designated WLAN 30 having the “second priority” but the user's favorite WLAN 30 in the target. As described above, when the accommodation network is selected, the user preference is taken into consideration, so that an appropriate WLAN 30 can be selected.
  • the UE 100 prioritizes the WLAN 30 based on the selection parameter. Specifically, the UE 100 is based on the offset value ( ⁇ ) and / or the threshold value ( ⁇ ) that are selection parameters, and at least one of the following formulas (1) to (10) that is a selection rule of the accommodation network: The WLAN 30 is selected using two or more.
  • the WLAN 30 (operator WLAN) managed by the operator is not the WLAN 30 preferred by the user and is the designated WLAN 30, the WLAN 30 preferred by the user is given priority by the numerical value indicated by the selection parameter.
  • the UE 100 determines that it is preferable to select the designated WLAN 30 rather than the WLAN 30 preferred by the user. In this case, the UE 100 may determine the designated WLAN 30 as an accommodation network. Or UE100 may start the operation
  • the selection parameter may be a value that makes it impossible to select the WLAN 30 that the user does not like as the accommodation network. Thereby, since the WLAN 30 preferred by the user is always selected, the user preference is taken into consideration.
  • the impossible value is, for example, infinity ( ⁇ ), a value equal to or higher than the transmission power of the WLAN 30, and a value equal to or higher than a percentage ( ⁇ 100%) indicating the load status of the WLAN 30.
  • the UE 100 sets a predetermined priority (rank) and prioritizes the WLAN 30.
  • rank a predetermined priority
  • FIG. 8 is a flowchart for explaining prioritization of the WLAN 30 according to the first embodiment. In the following ranks, the higher the numerical value, the higher the priority.
  • step S ⁇ b> 201 the UE 100 reads the measurement result of the signal from the AP 300 from the memory 150.
  • the measurement result includes an identifier (SSID) of the AP 300.
  • UE100 performs the process of step S202 about the result of each AP300.
  • step S202 the UE 100 determines whether or not the identifier of the AP 300 obtained from the measurement is an identifier of an AP (Operator AP) managed by the operator. If the UE 100 determines that the identifier of the AP 300 is the identifier of the AP managed by the operator, the UE 100 sets the rank of the AP 300 to “3”, and performs the process of step S202 on the unprocessed AP 300 identifier obtained from the measurement. Execute. On the other hand, when the UE 100 determines that the identifier of the AP 300 is not the identifier of the AP managed by the operator, the UE 100 executes the process of step S203.
  • step S203 the UE 100 determines whether or not the identifier of the AP 300 obtained from the measurement is registered in the preference list.
  • the UE 100 sets the rank of the AP 300 to “5”, and executes the process of step S202 on the identifier of the unprocessed AP 300 obtained from the measurement.
  • the UE 100 sets the rank of the AP 300 to “1”, and executes the process of step S202 on the identifier of the unprocessed AP 300 obtained from the measurement.
  • UE100 complete finishes a process, when it determines about the identifier of all AP300 obtained from the measurement.
  • the UE 100 can prioritize the AP 300 by setting the rank to the AP 300 obtained from the measurement based on the user preference.
  • user preferences are taken into account when an accommodation network is selected, so an appropriate WLAN 30 can be selected.
  • the prioritization of the WLAN 30 may be omitted, and the operation for determining the accommodation network is omitted. May be. Thereby, UE100 can maintain the connection with WLAN30 of a user's liking.
  • FIG. 9 is a sequence diagram for explaining an operation sequence 1 according to the second embodiment.
  • step S301 the eNB 200 detects that communication line congestion has occurred (Congestion detection). For example, the occurrence of congestion is detected when the buffer capacity usage rate of the eNB 200 exceeds a threshold value.
  • the eNB 200 transmits a WLAN measurement instruction (Measurement Control) for controlling WLAN measurement to the UE 100 to be offloaded.
  • the WLAN measurement instruction includes WLAN control information.
  • the WLAN measurement instruction includes trigger information indicating a trigger for transmitting a WLAN measurement report for reporting a WLAN measurement result to the eNB 200.
  • (Expression 1), (Expression 3), (Expression 5), (Expression 7), and (Expression 9) in the first embodiment compare the WLAN parameters acquired from each of the plurality of WLANs 30. It is a type and is called type 1.
  • (Equation 2), (Equation 4), (Equation 6), (Equation 8), and (Equation 10) in the first embodiment described above compare the main WLAN parameter from one WLAN 30 with the threshold value, and the other This is a type that is not compared with the WLAN parameter, and is referred to as type 2.
  • the WLAN control information includes information indicating the threshold value ⁇ and information that triggers type 1.
  • step S303 the UE 100 searches (measures) the signal of the AP 300, and receives a beacon signal from the operator AP 300 that is the AP 300 that is managed by the operator and the non-operator AP 300 that is the AP 300 that is not managed by the operator.
  • step S304 it is assumed that the UE 100 has selected Equation (1) based on information indicating the threshold value ⁇ [dB] and information that triggers Type 1.
  • the UE 100 prioritizes the WLAN 30 (AP 300) using the selected formula (1), and determines whether or not the WLAN measurement report is necessary. Specifically, the UE 100 determines whether or not the received signal strength of the operator AP 300 is larger than a value obtained by adding a threshold to the received signal strength of the non-operator AP 300. UE100 performs the process of step S305, when it determines with satisfy
  • step S305 the UE 100 determines an event that triggers transmission of the WLAN measurement report based on the trigger information included in the WLAN measurement instruction (that is, a predetermined condition that triggers transmission of the WLAN measurement report is satisfied). Detect.
  • the UE 100 transmits a WLAN measurement report for reporting the result of the WLAN measurement to the eNB 200.
  • the WLAN measurement report includes, for example, an identifier indicating the WLAN 30 and a WLAN measurement result (WLAN parameters acquired from the AP 300 such as the reception power of the beacon signal and the load status of the AP 300).
  • FIG. 10 is a sequence diagram for explaining an operation sequence 2 according to the second embodiment.
  • the operation sequence 2 is different from the operation sequence 1 and prioritizes the WLAN 30 (AP300) using the type 2 equation (2).
  • steps S401 and S402 correspond to steps S301 and S302.
  • the WLAN control information includes information indicating the threshold value ⁇ and information that triggers type 2.
  • step S403 the UE 100 receives a beacon signal from the operator AP 300.
  • step S404 it is assumed that the UE 100 has selected the expression (2) based on the information indicating the threshold value ⁇ [dBm] and the information that triggers the type 2.
  • the UE 100 prioritizes the WLAN 30 (AP 300) using the selected equation (2). Specifically, the UE 100 determines whether or not the received signal strength of the operator AP 300 is larger than a value obtained by adding a threshold value. UE100 performs the process of step S405, when it determines with satisfy
  • Steps S405 and S406 correspond to steps S305 and S306.
  • FIG. 11 is a sequence diagram for explaining an operation sequence 3 according to the second embodiment.
  • Operation sequence 3 is different from operation sequence 1 and performs WLAN measurement report. Moreover, UE100 includes the priority of WLAN30 (AP300) in a WLAN measurement report. In operation sequence 3, the process corresponding to step S304 is not performed.
  • steps S501 to S504 correspond to steps S301 to S303 and S305.
  • the eNB 200 may request to report all the WLAN measurement results of the beacon signal received by the UE 100.
  • the UE 100 executes the process of step S505.
  • the UE 100 identifies the identifier of the WLAN 30 (AP300) included in the WLAN measurement instruction, the identifier of the WLAN 30 (or the identifier in the WLAN identifier list) included in the WLAN control information, and the identifier of the WLAN 30 input by the user of the UE 100 ( For example, if a WLAN measurement result related to a radio signal received from one or more APs 300 corresponding to at least one of the identifiers of the AP 300 in the preference list satisfies a predetermined condition that triggers transmission of the WLAN measurement report, It may be determined that is detected.
  • the UE 100 can determine that an event has been detected when the WLAN measurement result satisfies at least one of the following formulas (predetermined conditions).
  • ThreshChUtilWLAN , Low ”, “ ThreshBackRateDLWLAN, High ”, “ ThreshBackRateULWLAN, High ” and “Thresh BeaconRSSIWLAN, High ” may be included in the threshold and the information may be included in the LAN. , It may be included in the WLAN measurement instruction.
  • step S505 the UE 100 generates a WLAN measurement report.
  • the UE 100 sets the priority (rank) of the AP 300 for each AP 300 that has received the beacon signal. Further, “High” / “Low” may be set as the priority of the AP instead of the numerical value as in the first embodiment. Thus, the priority can be expressed by 1-bit information.
  • the rank may represent the priority by 2-bit information of “0”, “1”, “2”, “3”.
  • the UE 100 may set a higher priority for the AP 300 (home AP) stored in the UE 100 as a profile by user input.
  • the UE 100 may set the priority of the AP manually selected by the user high during the measurement of the beacon signal, the generation of the WLAN measurement report, or any time within a predetermined period. The priority of the AP manually selected with reference to the history may be set high.
  • the UE 100 may set the priority of the AP 300 whose acquired WLAN parameter (for example, RSSI) is below a threshold value to a low level. Also, the UE 100 may set a higher priority of the AP 300 when the AP 300 that is the transmission source of the radio signal is designated from the cellular RAN (eNB 200) as the target (candidate) of the cellular / WLAN aggregation.
  • the cellular / WLAN aggregation is a communication method in which traffic (user data) belonging to the same or different data bearers is transmitted and received using both cellular communication and WLAN communication.
  • the UE 100 includes, for example, the WLAN 30 identifier (SSID), the received signal strength (RSSI) of the WLAN 30 and the priority (Rank) of the WLAN 30 in the WLAN measurement report.
  • the UE 100 may include other information (the load status of the AP 300) in the WLAN measurement report.
  • UE100 performs the WLAN measurement report regarding each AP300 which received the beacon signal not only AP300 designated from cellular RAN. That is, the UE 100 can include the WLAN measurement result of each AP 300 that does not satisfy the predetermined condition that triggers the transmission of the WLAN measurement report in the WLAN measurement report.
  • the UE 100 may include the WLAN measurement result (that is, the acquired WLAN parameter) of the AP 300 in which the acquired WLAN parameter (for example, RSSI) exceeds the threshold value in the WLAN measurement report. Only the degree may be included in the WLAN measurement report.
  • UE100 may include the WLAN measurement result of all AP300 which received the beacon signal in a WLAN measurement report.
  • the eNB 200 can know the radio environment of the UE 100 in the WLAN communication by including the WLAN measurement result of each AP 300 that does not satisfy the predetermined condition in the WLAN measurement report. As a result, the eNB 200 can select an appropriate WLAN 30.
  • the eNB 200 that has received the WLAN measurement report can transmit to the UE 100 a Steering command (offload instruction) that instructs execution of offload based on the WLAN measurement report (particularly priority) and the load of the RAN. Since the eNB 200 instructs execution of offload based on the priority included in the WLAN measurement report, the user preference is considered when the accommodation network is selected. As a result, an appropriate WLAN 30 is selected.
  • FIG. 12 is a sequence diagram for explaining an operation sequence 4 according to the second embodiment.
  • FIG. 13 is a flowchart for the UE 100 to select an AP 300 to be included in the WLAN measurement report.
  • the operation sequence 4 is different from the operation sequence 3 and, as a premise, the UE 100 performs a WLAN measurement report on the AP 300 designated by the cellular RAN. Therefore, in principle, the UE 100 does not perform the WLAN measurement report regarding the AP 100 other than the AP 300 designated by the cellular RAN. However, in the operation sequence 4, the UE 100 can exceptionally perform a WLAN measurement report on the AP 100 other than the AP 300 designated by the cellular RAN as follows.
  • the designated AP 300 may be the AP 300 designated (set) from the eNB 200 or the AP 300 designated from the ANDSF server 600.
  • steps S601 to S604 correspond to steps S501 to S504.
  • step S605 the UE 100 generates a WLAN measurement report.
  • UE100 includes the information regarding AP300 which the user who is not designated from cellular RAN likes in a WLAN measurement report. Specifically, the UE 100 performs the process shown in FIG.
  • step S701 corresponds to step S201.
  • UE100 performs the process of step S702 about the measurement result of each AP300.
  • step S702 the UE 100 determines whether the identifier of the AP 300 obtained from the measurement is the identifier of the operator AP.
  • the UE 100 determines that the identifier of the AP 300 is the identifier of the operator AP, the UE 100 includes the AP (identifier) in the WLAN measurement report, and performs the process of step S702 on the unprocessed AP 300 identifier obtained from the measurement. Execute.
  • the UE 100 determines that the identifier of the AP 300 is not the identifier of the operator AP, the UE 100 executes the process of step S703.
  • UE100 may determine whether the identifier of AP300 obtained from the measurement matches the identifier of AP300 included in the WLAN measurement instruction. .
  • the UE 100 executes the process of step S703.
  • the identifier of the AP 300 included in the WLAN measurement instruction may not be the identifier of the operator AP.
  • the WLAN measurement instruction may be associated with an identifier of the AP 300 and a flag indicating whether the identifier is an operator AP identifier. When the WLAN measurement instruction does not include the flag, the UE 100 may determine that the identifier of the AP 300 included in the WLAN measurement instruction is the identifier of the operator AP.
  • step S703 the UE 100 determines whether or not the identifier of the AP 300 is the user's preference. Specifically, the UE 100 determines whether or not the identifier of the AP 300 matches the identifier of the WLAN 30 registered in the preference list.
  • the UE 100 determines that the AP 300 is the user's preference, the UE 100 includes the AP (identifier) as the “user's favorite AP” in the WLAN measurement report, and the identifier of the unprocessed AP 300 obtained from the measurement is as follows.
  • the process of step S702 is executed.
  • the UE 100 determines that the AP 300 is not the user's preference, the UE 100 executes the process of step S704.
  • step S704 the UE 100 determines whether the identifier of the AP 300 is registered in the UE 100. Specifically, the UE 100 determines whether or not the identifier of the AP 300 matches the identifier of the WLAN 30 registered in the memory 150 of the UE 100 except for the preference list.
  • the identifier of the WLAN 30 registered in the memory 150 of the UE 100 excluding the preference list is, for example, the identifier of the WLAN 30 registered in the memory 150 when the UE 100 is connected in the past, and the preference list includes It is an identifier of the WLAN 30 that is not registered.
  • the UE 100 determines that the AP 300 is the registered WLAN 30, the UE 100 includes the AP (identifier) as “registered AP” in the WLAN measurement report, and the identifier of the unprocessed AP 300 obtained from the measurement is as follows. The process of step S702 is executed. On the other hand, if the UE 100 determines that the AP 300 is not the registered WLAN 30, the UE 100 does not include the AP (identifier) in the WLAN measurement report.
  • UE100 complete finishes a process, when it determines about the identifier of all AP300 obtained from the measurement.
  • the UE 100 may include information (for example, home AP) indicating the reason why the AP 300 not designated from the cellular RAN is included in the WLAN measurement report in the WLAN measurement report.
  • information for example, home AP
  • the eNB 200 that has received the WLAN measurement report transmits a Steering command (offload instruction) that instructs execution of offload to the UE 100 based on the WLAN measurement report (particularly, information on the AP 300 that is not specified) and the load of the RAN. To do. Since the eNB 200 instructs execution of offloading based on information regarding the AP 300 that is not designated, user preferences are considered when an accommodation network is selected. As a result, an appropriate WLAN 30 is selected.
  • the selection parameters ( ⁇ , ⁇ ) are included in the WLAN control information, but are not limited thereto.
  • a selection parameter may be included as part of the selection rule for the accommodation network.
  • the selection parameter may be a parameter that is always used when the UE 100 prioritizes the WLAN 30, or may be a parameter that is not used under specific conditions such as when the priority is the same. Good.
  • the UE 100 may transmit a WLAN measurement instruction request to the eNB 200.
  • the UE 100 may request the WLAN measurement instruction.
  • the WLAN measurement instruction request may include the identifier of the WLAN 30 registered in the preference list.
  • the UE 100 may include the fact that the WLAN 30 registered in the preference list is included in the WLAN measurement report in the response to the WLAN measurement instruction.
  • prioritization of the WLAN 30 is performed, but no WLAN measurement report is performed.
  • the WLAN measurement report may be performed. In this case, the same operation as the WLAN measurement report in the second embodiment described above may be performed.
  • the WLAN measurement report is performed, but the WLAN measurement report is not necessarily performed.
  • the eNB 200 transmits an offload instruction (steering command) for instructing execution of offload to the UE 100.
  • the off-road instruction includes an identifier of the WLAN 30 (AP 300) that is the steering destination and a selection parameter.
  • the UE 100 that has received the offload instruction may prioritize the WLAN 30 based on the identifier and selection parameters ( ⁇ , ⁇ ) of the WLAN 30 that is the steering destination and the result of the WLAN measurement.
  • the UE 100 may determine the final steering destination WLAN 30 based on the result of prioritization of the WLAN 30.
  • the LTE system has been described as an example of a cellular communication system.
  • the present invention is not limited to the LTE system, and the present invention may be applied to systems other than the LTE system.
  • the operation performed by the eNB 200 may be performed by another RAN node (for example, RNC) instead of the base station.
  • the communication control method according to the present embodiment is useful in the mobile communication field because an appropriate connection destination can be selected when an access network accommodating user terminal traffic is selected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本実施形態に係る通信制御方法は、ユーザ端末のトラフィックを収容するアクセスネットワークを選択可能な通信システムにおいて用いられる。前記ユーザ端末が、所定の無線LANを示す識別情報をセルラRANから受信するステップAと、前記ユーザ端末が、前記識別情報によって示される前記所定の無線LANを、前記アクセスネットワークを選択した後の接続先として優先させるステップBと、を備える。前記ステップBにおいて、前記所定の無線LANが前記ユーザ端末のユーザが好む無線LANでない場合には、前記ユーザ端末が、前記所定の無線LANよりも前記ユーザが好む無線LANを優先させる。

Description

通信制御方法
 本発明は、無線LANシステムと連携可能なセルラ通信システムにおいて用いられる通信制御方法に関する。
 近年、セルラ通信及び無線LAN(Local Area Network)通信を有するユーザ端末(いわゆる、デュアル端末)の普及が進んでいる。また、セルラ通信システムのオペレータにより管理される無線LANアクセスポイントが増加している。
 そこで、セルラ通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、セルラRAN(Radio Access Network)及び無線LANの連携を強化できる技術が検討されている(非特許文献1参照)。
 例えば、セルラRAN(セルラアクセスネットワーク)が収容しているユーザ端末のトラフィックを、無線LAN(無線LANアクセスネットワーク)が収容するよう切り替えることにより、セルラRANのトラフィック負荷を削減することができる(オフロード)。
3GPP技術報告書 「TR 37.834 V1.0.0」  2013年8月
 しかしながら、ユーザ端末のトラフィックを収容するアクセスネットワークが選択される際に、ユーザ端末(ユーザ)にとって適切な接続先が選択されるとは限らない。
 そこで、本発明は、ユーザ端末のトラフィックを収容するアクセスネットワークが選択される際に適切な接続先を選択可能な通信制御方法を提供することを目的とする。
 一の実施形態に係る通信制御方法は、ユーザ端末のトラフィックを収容するアクセスネットワークを選択可能な通信システムにおいて用いられる。前記ユーザ端末が、所定の無線LANを示す識別情報をセルラRANから受信するステップAと、前記ユーザ端末が、前記識別情報によって示される前記所定の無線LANを、前記アクセスネットワークを選択した後の接続先として優先させるステップBと、を備える。前記ステップBにおいて、前記所定の無線LANが前記ユーザ端末のユーザが好む無線LANでない場合には、前記ユーザ端末が、
前記所定の無線LANよりも前記ユーザが好む無線LANを優先させる。
図1は、第1実施形態に係るシステム構成図である。 図2は、UE100のブロック図である。 図3は、eNB200のブロック図である。 図4は、AP300のブロック図である。 図5は、セルラ通信システムにおける無線インターフェイスのプロトコルスタック図である。 図6は、実施形態に係る動作環境を説明するための図である。 図7は、第1実施形態に係る動作シーケンス図である。 図8は、第1実施形態に係るWLAN30を優先付けを説明するためのフローチャートである。 図9は、第2実施形態に係る動作シーケンス1を説明するためのシーケンス図である。 図10は、第2実施形態に係る動作シーケンス2を説明するためのシーケンス図である。 図11は、第2実施形態に係る動作シーケンス3を説明するためのシーケンス図である。 図12は、第2実施形態に係る動作シーケンス4を説明するためのシーケンス図である。 図13は、UE100がWLAN測定報告に含めるAP300を選択するためのフローチャートである。
 [実施形態の概要]
 第1実施形態に係る通信制御方法は、ユーザ端末のトラフィックを収容するアクセスネットワークを選択可能な通信システムにおいて用いられる。前記ユーザ端末が、所定の無線LANを示す識別情報をセルラRANから受信するステップAと、前記ユーザ端末が、前記識別情報によって示される前記所定の無線LANを、前記アクセスネットワークを選択した後の接続先として優先させるステップBと、を備える。前記ステップBにおいて、前記所定の無線LANが前記ユーザ端末のユーザが好む無線LANでない場合には、前記ユーザ端末が、前記所定の無線LANよりも前記ユーザが好む無線LANを優先させる。
 第1実施形態に係る通信制御方法は、前記ユーザが好むと推定される無線LANが前記ユーザが好まないと推定される無線LANよりも優先されるための選択パラメータを前記ユーザ端末が前記セルラRANから受信するステップをさらに備える。前記ステップBにおいて、前記ユーザ端末は、前記選択パラメータに基づいて、前記ユーザが好む無線LANを優先させる。
 第1実施形態に係る通信制御方法は、前記ユーザ端末が、前記選択パラメータに基づいて、前記ユーザが好む無線LAN以外の無線LANを前記接続先として選択することが好ましいと判定した場合、前記アクセスネットワークを選択するための動作を開始するステップをさらに備える。
 第1実施形態において、前記ユーザ端末が、前記ユーザが好む無線LANと接続している場合、前記ステップBを省略する。
 第1実施形態において、前記選択パラメータは、前記接続先として前記ユーザが好まない無線LANを選択することが不可能な値である。
 第1において、前記ユーザが好む無線LANは、オペレータが管理しない無線LANであり、前記ユーザが好まない無線LANは、オペレータが管理する無線LANである。
 第1実施形態に係る通信制御方法は、ユーザ端末のトラフィックを収容するアクセスネットワークを選択可能な通信システムにおいて用いられる。前記通信制御方法は、前記ユーザ端末が、収容ネットワークの選択規則に基づいて前記アクセスネットワークを選択して、当該選択したアクセスネットワークに前記ユーザ端末のトラフィックを収容するために接続先を切り替えるステップを備える。前記ステップにおいて、前記ユーザ端末は、ユーザが好む無線LANと接続している場合には、前記接続先の切り替えよりも、前記ユーザが好む無線LANとの接続を優先させる。
 第1実施形態に係る通信制御方法は、ユーザ端末のトラフィックを収容するアクセスネットワークを選択可能な通信システムにおいて用いられる。前記通信制御方法は、前記ユーザ端末が、所定の無線LANを示す識別情報をセルラLANから受信するステップAと、前記ユーザ端末が、前記識別情報によって示される前記所定の無線LANを、前記アクセスネットワークを選択した後の接続先の候補とするステップBと、を備える。前記ステップBにおいて、前記ユーザ端末は、ユーザの好みに基づいて、前記アクセスネットワークを選択した後の接続先の候補から前記所定の無線LANを外す。
 第1実施形態に係る通信制御方法は、前記ユーザ端末に、前記ユーザの好みを示す情報が登録されるステップをさらに備える。前記ステップBにおいて、前記ユーザ端末が、前記登録されたユーザの好みを示す情報に基づいて、前記所定の無線LANが前記ユーザが好まない無線LANであると判定した場合、前記所定の無線LANを前記接続先の候補から外す。
 第1実施形態において、前記ステップBにおいて、前記ユーザ端末が、前記ユーザの好みに基づいて、前記所定の無線LANと異なる他の無線LANを、前記接続先の候補に含める。
 第1実施形態において、前記ユーザの好みは、オペレータが管理する無線LANよりもオペレータが管理しない無線LANを優先する。
 第2実施形態に係る通信制御方法は、ユーザ端末のトラフィックを収容するアクセスネットワークを選択可能な通信システムにおいて用いられる。当該通信制御方法は、前記ユーザ端末が、無線LANから所定のパラメータを取得するステップと、前記ユーザ端末が、前記取得した所定のパラメータに関する報告を前記セルラRANに送信する報告ステップと、を備える。前記報告ステップにおいて、前記ユーザ端末は、ユーザの好みに基づいて決定された前記無線LANの優先度を、前記報告に含める。
 第2実施形態に係る通信制御方法は、ユーザ端末のトラフィックを収容するアクセスネットワークを選択可能な通信システムにおいて用いられる。当該通信制御方法は、前記ユーザ端末が、所定の無線LANを示す識別情報を前記セルラRANから受信するステップと、前記ユーザ端末が、前記所定の無線LANから取得した所定のパラメータに関する報告を前記セルラRANに送信する報告ステップと、を備える。前記報告ステップにおいて、前記ユーザ端末は、前記所定の無線LANとは異なる他の無線LANから取得した所定のパラメータに関する情報を、前記報告に含める。
 第2実施形態に係る通信制御方法は、ユーザ端末のトラフィックを収容するアクセスネットワークを選択可能な通信システムにおいて用いられる。前記通信制御方法は、前記ユーザ端末が、複数の無線LANからの無線信号を測定するステップと、前記ユーザ端末が、前記複数の無線LANのうち少なくとも1以上の無線LANからの前記無線信号の測定結果が所定の条件を満たした場合に、前記測定結果に関する報告を前記セルラRANに送信する報告ステップと、を備える。前記報告ステップにおいて、前記ユーザ端末は、前記所定の条件を満たした前記無線信号の測定結果だけでなく、前記所定の条件を満たしていない前記無線信号の測定結果も前記報告に含めて、前記報告を送信する。
 第2実施形態において、前記報告ステップにおいて、前記ユーザ端末は、前記複数の無線LANの全ての測定結果を前記報告に含める。
 第2実施形態に係る通信制御方法は、ユーザ端末のトラフィックを収容するアクセスネットワークを選択可能な通信システムにおいて用いられる。前記通信制御方法は、前記ユーザ端末が、無線LANを示す識別情報をセルラRAN又はANDSF(Access Network Discovery and Selection Function)サーバから受信するステップと、前記ユーザ端末が、所定の無線LANからの無線信号を測定するステップと、前記ユーザ端末が、前記所定の無線LANからの前記無線信号の測定結果に関する報告を前記セルラRANに送信する報告ステップと、を備える。前記報告ステップにおいて、前記ユーザ端末は、前記所定の無線LANが前記識別情報によって示される前記無線LANと一致しない場合、前記報告を送信しない。
 [第1実施形態]
 以下、図面を参照して、3GPP規格に準拠して構成されるセルラ通信システム(LTEシステム)を無線LAN(WLAN)システムと連携させる場合の実施形態を説明する。
 (システム構成)
 図1は、第1実施形態に係るシステム構成図である。図1に示すように、セルラ通信システムは、複数のUE(User Equipment)100と、E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)10と、EPC(Evolved Packet Core)20と、を含む。
 E-UTRAN10は、セルラRANに相当する。EPC20は、コアネットワークに相当する。E-UTRAN10及びEPC20は、セルラ通信システムのネットワークを構成する。
 UE100は、移動型の無線通信装置であり、接続を確立したセルとの無線通信を行う。UE100はユーザ端末に相当する。UE100は、セルラ通信及びWLAN通信の両通信方式をサポートする端末(デュアル端末)である。
 E-UTRAN10は、複数のeNB200(evolved Node-B)を含む。eNB200はセルラ基地局に相当する。eNB200は、1又は複数のセルを管理しており、自セルとの接続を確立したUE100との無線通信を行う。なお、「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。また、eNB200は、例えば、無線リソース管理(RRM)機能と、ユーザデータのルーティング機能と、モビリティ制御及びスケジューリングのための測定制御機能と、を有する。
 eNB200は、X2インターフェイスを介して相互に接続される。また、eNB200は、S1インターフェイスを介して、EPC20に含まれるMME(Mobility Management Entity)/S-GW(Serving-Gateway)500と接続される。
 EPC20は、複数のMME/S-GW500を含む。MMEは、UE100に対する各種モビリティ制御等を行うネットワークノードであり、制御局に相当する。S-GWは、ユーザデータの転送制御を行うネットワークノードであり、交換局に相当する。
 WLAN30は、WLANアクセスポイント(以下、単に「AP」という)300を含む。AP300は、例えばセルラ通信システムのオペレータにより管理されるAP(Operator controlled AP)である。
 WLAN30は、例えばIEEE 802.11諸規格に準拠して構成される。AP300は、セルラ周波数帯とは異なる周波数帯(WLAN周波数帯)でUE100との通信を行う。AP300は、ルータなどを介してEPC20に接続される。
 また、eNB200及びAP300が個別に配置される場合に限らず、eNB200及びAP300が同じ場所に配置(Collocated)されていてもよい。Collocatedの一形態として、eNB200及びAP300がオペレータの任意のインターフェイスで直接的に接続されていてもよい。
 EPC20は、ANDSF(Access Network Discovery and Selection Function)サーバ600をさらに含む。ANDSFサーバ600は、WLAN30に関するANDSF情報を管理する。ANDSFサーバ600は、NAS(Non Access Stratum)メッセージにより、WLAN30に関するANDSF情報をUE100に提供する。
 なお、UE100がH-PLMN(Home Public Land Mobile Network)において利用するANDSFサーバ600は、H-ANDSFサーバと称される。UE100がV-PLMN(Visited Public Land Mobile Network)においてローミング中に利用するANDSFサーバ600は、V-ANDSFサーバと称される。
 次に、UE100、eNB200、及びAP300の構成を説明する。
 図2は、UE100のブロック図である。図2に示すように、UE100は、アンテナ101及び102と、セルラ通信部111と、WLAN通信部112と、ユーザインターフェイス120と、GNSS(Global Navigation Satellite System)受信機130と、バッテリ140と、メモリ150と、プロセッサ160と、を有する。メモリ150及びプロセッサ160は、制御部を構成する。UE100は、GNSS受信機130を有していなくてもよい。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)をプロセッサ160’としてもよい。
 アンテナ101及びセルラ通信部111は、セルラ無線信号の送受信に用いられる。セルラ通信部111は、プロセッサ160が出力するベースバンド信号をセルラ無線信号に変換してアンテナ101から送信する。また、セルラ通信部111は、アンテナ101が受信するセルラ無線信号をベースバンド信号に変換してプロセッサ160に出力する。
 アンテナ102及びWLAN通信部112は、WLAN無線信号の送受信に用いられる。WLAN通信部112は、プロセッサ160が出力するベースバンド信号をWLAN無線信号に変換してアンテナ102から送信する。また、WLAN通信部112は、アンテナ102が受信するWLAN無線信号をベースバンド信号に変換してプロセッサ160に出力する。
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス120は、ユーザからの入力を受け付けて、該入力の内容を示す信号をプロセッサ160に出力する。GNSS受信機130は、UE100の地理的位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。バッテリ140は、UE100の各ブロックに供給すべき電力を蓄える。
 メモリ150は、プロセッサ160によって実行されるプログラムと、プロセッサ160による処理に使用される情報と、を記憶する。プロセッサ160は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ150に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ160は、さらに、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサ160は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図3は、eNB200のブロック図である。図3に示すように、eNB200は、アンテナ201と、セルラ通信部210と、ネットワークインターフェイス220と、メモリ230と、プロセッサ240と、を有する。メモリ230及びプロセッサ240は、制御部を構成する。
 アンテナ201及びセルラ通信部210は、セルラ無線信号の送受信に用いられる。セルラ通信部210は、プロセッサ240が出力するベースバンド信号をセルラ無線信号に変換してアンテナ201から送信する。また、セルラ通信部210は、アンテナ201が受信するセルラ無線信号をベースバンド信号に変換してプロセッサ240に出力する。
 ネットワークインターフェイス220は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW500と接続される。また、ネットワークインターフェイス220は、EPC20を介したAP300との通信に使用される。
 メモリ230は、プロセッサ240によって実行されるプログラムと、プロセッサ240による処理に使用される情報と、を記憶する。プロセッサ240は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ230に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ240は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図4は、AP300のブロック図である。図4に示すように、AP300は、アンテナ301と、WLAN通信部311と、ネットワークインターフェイス320と、メモリ330と、プロセッサ340と、を有する。
 アンテナ301及びWLAN通信部311は、WLAN無線信号の送受信に用いられる。WLAN通信部311は、プロセッサ340が出力するベースバンド信号をWLAN無線信号に変換してアンテナ301から送信する。また、WLAN通信部311は、アンテナ301が受信するWLAN無線信号をベースバンド信号に変換してプロセッサ340に出力する。
 ネットワークインターフェイス320は、ルータなどを介してEPC20と接続される。また、ネットワークインターフェイス320は、EPC20を介したeNB200との通信に使用される。
 メモリ330は、プロセッサ340によって実行されるプログラムと、プロセッサ340による処理に使用される情報と、を記憶する。プロセッサ340は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ330に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。
 図5は、セルラ通信システムにおける無線インターフェイスのプロトコルスタック図である。図5に示すように、無線インターフェイスプロトコルは、OSI参照モデルのレイヤ1乃至レイヤ3に区分されており、レイヤ1は物理(PHY)レイヤである。レイヤ2は、MAC(Media Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、を含む。レイヤ3は、RRC(Radio Resource Control)レイヤを含む。
 物理レイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理レイヤとeNB200の物理レイヤとの間では、物理チャネルを介してデータが伝送される。
 MACレイヤは、データの優先制御、及びハイブリッドARQ(HARQ)による再送処理などを行う。UE100のMACレイヤとeNB200のMACレイヤとの間では、トランスポートチャネルを介してデータが伝送される。eNB200のMACレイヤは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式など)、及び割当リソースブロックを選択するスケジューラを含む。
 RLCレイヤは、MACレイヤ及び物理レイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとeNB200のRLCレイヤとの間では、論理チャネルを介してデータが伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRCレイヤは、制御プレーンでのみ定義される。UE100のRRCレイヤとeNB200のRRCレイヤとの間では、各種設定のための制御メッセージ(RRCメッセージ)が伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100はセルラ通信の接続状態(RRC接続状態)であり、そうでない場合、UE100はセルラ通信のアイドル状態(RRCアイドル状態)である。
 RRCレイヤの上位に位置するNASレイヤは、セッション管理及びモビリティ管理などを行う。MME300及びANDSFサーバ600は、NASメッセージをUE100と送受信する。
 (動作概要)
 図6は、実施形態に係る動作環境を説明するための図である。図6に示すように、eNB200のセルのカバレッジ内に複数のAP300が設けられている。また、eNB200のセルのカバレッジ内に複数のUE100が在圏している。UE100は、eNB200との接続を確立しており、eNB200とのセルラ通信を行っている。具体的には、UE100は、トラフィック(ユーザデータ)を含んだセルラ無線信号をeNB200と送受信している。
 このような動作環境において、eNB200(E-UTRAN10)が収容しているUE100のトラフィックを、AP300(WLAN30)が収容するよう切り替えるトラフィック・ステアリングにより、eNB200のトラフィック負荷を削減することができる(オフロード)。トラフィック・ステアリングには、UE100の接続先をeNB200とAP300との間で切り替える場合と、UE100がeNB200及びAP300の両方に接続しつつデータパスをeNB200とAP300との間で切り替える場合と、がある。
 また、E-UTRAN10及びWLAN30の中からUE100のトラフィックを収容するアクセスネットワーク(以下、「収容ネットワーク」という)を選択するためのネットワーク選択方式として、複数のネットワーク選択方式が存在する。
 複数のネットワーク選択方式は、収容ネットワークを決定する主体が異なる。例えば、複数のネットワーク選択方式は、収容ネットワークの決定権をUE100が持つ方式と、収容ネットワークの決定権をE-UTRAN10が持つ方式と、を含む。
 或いは、複数のネットワーク選択方式は、収容ネットワークの選択規則を提供する方式が異なる。例えば、複数のネットワーク選択方式は、収容ネットワークの選択規則をANDSFサーバ600からのみ提供する方式と、収容ネットワークの選択規則を3GPP RANにおける仕様で策定されたルールに基づいて提供可能な方式と、を含む。
 実施形態では、ネットワーク選択方式のうちE-UTRAN10が関与するネットワーク選択方式(以下、「RAN Solution」という)を主な対象とする。
 RAN Solution1は、収容ネットワークの選択規則をANDSFサーバ600からのみ提供する方式であって、かつ収容ネットワークの決定権をUE100が持つ方式である。E-UTRAN10は、UE100に対して補助情報(選択パラメータなど)を提供する。
 RAN Solution2は、収容ネットワークの選択規則を3GPP RANにおける仕様で策定されたルールに基づいて提供可能な方式であって、かつ収容ネットワークの決定権をUE100が持つ方式である。なお、収容ネットワークの選択規則をANDSFサーバ600からも提供可能である。
 RAN Solution3は、RAN Solution1及び2とは異なり、収容ネットワークの決定権をE-UTRAN10が持つ方式である。RAN Solution3では、LTEシステムのハンドオーバ手順と同様な手順でE-UTRAN10が収容ネットワークを決定する。
 実施形態において、UE100は、ユーザの好み(user preference)のWLAN30に関する選好リスト(preference list)を保持している。選好リストは、ユーザが好むWLAN30を示す情報(例えば、ユーザが好むWLAN30の識別子)が登録されている。選好リストは、ユーザが好まないWLAN30を示す情報が登録されてもよい。
 UE100は、ユーザの操作によって入力されたユーザが好むWLAN30を示す情報を選好リストに登録してもよいし、所定のサーバのアドレスをユーザが入力することによって、所定のサーバから取得したユーザが好むWLAN30を示す情報を選好リストに登録してもよい。
 ユーザが好むWLAN30は、例えば、オペレータが管理しないAP300、具体的には、ユーザが管理する自宅APである。一方、ユーザが好まないWLAN30は、例えば、オペレータが管理するAP300である。
 本実施形態では、RAN Solution1及びRAN Solution2に関して説明する。
 (動作具体例)
 図7は、第1実施形態に係る動作シーケンス図である。
 図7に示すように、ステップS101において、eNB200は、システムインフォメーション(System Information)又はRRCメッセージ(RRC message)を用いて、WLAN30に関するWLAN制御情報をUE100に送信する。
 WLAN制御情報は、WLAN30を示す識別子、及び、ユーザが好むと推定されるWLAN30がユーザが好まないと推定されるWLAN30よりも優先的に選択されるための選択パラメータの少なくとも1つを含む。WLAN30を示す識別子は、セルラRANから指定されたWLAN30を示す識別子である。
 ステップS102において、UE100は、WLAN30の優先付けを行う。
 UE100は、周囲のAP300から信号(例えば、ビーコン信号)を受信するための測定を行う。次に、UE100は、AP300からの信号に基づいて、WLANパラメータを取得する。WLANパラメータは、AP300からの信号の受信レベル(例えば、RSSI)、AP300からの信号に含まれるAP300の情報(例えば、AP300の負荷状況(Load status)、AP300のチャネル利用率(ChannelUtilization)、下りリンクにおいて利用可能なWLANバックホールの伝送レート(BackhaulRateDl)、上りリンクにおいて利用可能なWLANバックホールの伝送レート(BackhaulRateUl))などである。なお、上述の負荷状況、チャネル利用率、WLANバックホールの伝送レートは、ビーコン信号に含まれていてもよい。
 UE100は、WLAN制御情報に含まれるWLAN30の識別子が、ユーザが好むWLAN30の識別子である場合、WLAN制御情報に含まれるWLAN30を優先させる。一方、WLAN制御情報に含まれるWLAN30の識別子が、ユーザが好むWLAN30の識別子でない場合、ユーザが好む他のWLAN30を優先させる。
 具体的には、以下の方法のいずれかにより、WLAN30を優先付けを行うことができる。
 第1に、UE100は、選択パラメータを用いずに、WLAN30を優先付ける。具体的には、UE100は、信号を受信できたAP300の中から、以下の条件を満たすWLAN30に対して、例えば、以下の優先度を付ける。なお、優先度の数字が大きいほど、優先度が高く、第1の優先度が最も高く、第4の優先度が最も低い。
 「第1の優先度」:ユーザの好みのWLAN30であり、且つ、WLAN制御情報に含まれるWLAN30
 「第2の優先度」:ユーザの好みのWLAN30であり、且つ、WLAN制御情報に含まれないWLAN30
 「第3の優先度」:ユーザの好みのWLAN30でなく、且つ、WLAN制御情報に含まれるWLAN30
 「第4の優先度」:ユーザの好みのWLAN30でなく、且つ、WLAN制御情報に含まれないWLAN30
 UE100は、例えば、優先度が高いWLAN30を収容ネットワークに決定する。このように、UE100は、WLAN制御情報に含まれるWLAN30(以下、指定WLAN30と適宜称する)が、ユーザの好むWLAN30でない場合、WLAN制御情報に含まれるWLAN30よりもユーザの好むWLAN30を優先させる。すなわち、UE100は、ユーザプリファレンスに基づいて、指定WLAN30の優先度を下げる。これにより、収容ネットワークが選択される際に、ユーザプリファレンスが考慮されるため、適切なWLAN30を選択できる。
 なお、複数のWLAN30の優先度が同じである場合、取得したWLANパラメータに基づいて、優先付けてもよい。
 また、UE100は、例えば、所定の優先度以上であるWLAN30を対象として、収容ネットワークを決定するための動作を開始してもよい。収容ネットワークを決定するための動作とは、収容ネットワークを決定する動作、又は、収容ネットワークを決定するためにWLANパラメータの取得する動作である。例えば、UE100は、一部のWLANパラメータ(例えば、RSSI)しか取得していない場合、他のWLANパラメータ(例えば、負荷状況)を取得する。
 UE100は、例えば、「第1の優先度」と「第2の優先度」のWLAN30を対象として、収容ネットワークを決定するための動作を行う場合、「第3の優先度」を持つユーザの好みでない指定WLAN30は、当該対象から外される。従って、UE100は、セルラRANから指定されたWLAN30は、を無視する。一方で、UE100は、「第2の優先度」を持つ指定WLAN30でなくユーザの好みのWLAN30を、当該対象に含める。このように、収容ネットワークが選択される際に、ユーザプリファレンスが考慮されるため、適切なWLAN30を選択できる。
 第2に、UE100は、選択パラメータに基づいて、WLAN30を優先付ける。具体的には、UE100は、選択パラメータであるオフセット値(α)及び/又は閾値(β)に基づいて、収容ネットワークの選択規則である以下の式(1)から(10)の少なくともいずれか1つ以上を用いて、WLAN30を選択する。
  ・(RSSI of operator WLAN) > (RSSI of preferred WLAN) + α[dB]  ・・・ (式1)
  ・(RSSI of operator WLAN) > β[dBm]  ・・・ (式2)
  ・(Load status of operator WLAN) > (Load status of preferred WLAN) + α[%]  ・・・ (式3)
  ・(Load status of operator WLAN) > β[%]  ・・・ (式4)
  ・(ChannelUtilization of operator WLAN) < (ChannelUtilization of preferred WLAN) +α[BSS load]  ・・・ (式5)
  ・(ChannelUtilization of operator WLAN) < β[BSS load]・・・ (式6)
  ・(BackhaulRateDl of operator WLAN) > (BackhaulRateDl of preferred WLAN) +α  ・・・ (式7)
  ・(BackhaulRateDl of operator WLAN) > β・・・ (式8)
  ・(BackhaulRateUl of operator WLAN) > (BackhaulRateUl of preferred WLAN) +α  ・・・ (式9)
  ・(BackhaulRateUl of operator WLAN) > β・・・ (式10)
 オペレータが管理するWLAN30(operator WLAN)が、ユーザの好むWLAN30でなく、且つ、指定WLAN30である場合、選択パラメータが示す数値の大きさだけユーザの好むWLAN30が優先される。UE100は、上記式が満たされた場合、ユーザの好むWLAN30よりも指定WLAN30を選択することが好ましいと判定する。この場合、UE100は、指定WLAN30を収容ネットワークに決定してもよい。或いは、UE100は、上記式が満たされたことをトリガとして、収容ネットワークを決定するための動作を開始してもよい。
 選択パラメータは、収容ネットワークとしてユーザが好まないWLAN30を選択することが不可能な値であってもよい。これにより、ユーザの好むWLAN30が必ず選択されるため、ユーザプリファレンスが考慮される。
 不可能な値とは、例えば、無限大(∞)、WLAN30の送信電力以上の値、WLAN30の負荷状況を示すパーセント以上の値(≧100%)である。
 第3に、UE100は、所定の値の優先度(ランク)を設定し、WLAN30を優先付ける。以下、図8を用いて、説明する。図8は、第1実施形態に係るWLAN30の優先付けを説明するためのフローチャートである。なお、以下のランクは、数値が大きい程、優先度が高いことを示す。
 図8に示すように、ステップS201において、UE100は、AP300からの信号の測定した結果をメモリ150から読み出す。測定結果は、AP300の識別子(SSID)を含む。UE100は、各AP300の結果について、ステップS202の処理を実行する。
 ステップS202において、UE100は、測定から得られたAP300の識別子がオペレータが管理するAP(Operator AP)の識別子か否かを判定する。UE100は、当該AP300の識別子がオペレータが管理するAPの識別子であると判定した場合、AP300のランクを「3」に設定し、測定から得られた未処理のAP300の識別子について、ステップS202の処理を実行する。一方、UE100は、AP300の識別子がオペレータが管理するAPの識別子でないと判定した場合、ステップS203の処理を実行する。
 ステップS203において、UE100は、測定から得られたAP300の識別子が選好リストに登録されているか否かを判定する。UE100は、当該AP300の識別子が選好リストに登録されている場合、AP300のランクを「5」に設定し、測定から得られた未処理のAP300の識別子について、ステップS202の処理を実行する。一方、UE100は、当該AP300の識別子が選好リストに登録されていない場合、AP300のランクを「1」に設定し、測定から得られた未処理のAP300の識別子について、ステップS202の処理を実行する。UE100は、測定から得られた全てのAP300の識別子について、判定した場合、処理を終了する。
 このように、UE100は、ユーザプリファレンスに基づいて、測定から得られたAP300にランクを設定することにより、AP300を優先付けることができる。その結果、収容ネットワークが選択される際に、ユーザプリファレンスが考慮されるため、適切なWLAN30を選択できる。
 また、上述の第1から第3の方法において、UE100は、ユーザの好みのWLAN30と接続している場合、WLAN30の優先付けを省略してもよいし、収容ネットワークを決定するための動作を省略してもよい。これにより、UE100は、ユーザの好みのWLAN30との接続を維持することができる。
 [第2実施形態]
 次に、第2実施形態に係る動作シーケンスについて、説明する。上述した第1実施形態と異なる部分を中心に説明し、同様の部分は、説明を適宜省略する。上述した第1実施形態では、RAN Solution1及びRAN Solution2に関する説明であったが、第2実施形態では、RAN Solution3に関する説明である。
 (1)動作シーケンス1
 動作シーケンス1について、図9を用いて説明する。図9は、第2実施形態に係る動作シーケンス1を説明するためのシーケンス図である。
 図9に示すように、ステップS301において、eNB200は、通信回線の輻輳が発生していることを検出する(Congestion detection)。例えば、eNB200のバッファ容量の使用率が閾値を上回った場合に輻輳の発生を検出する。
 ステップS302において、eNB200は、オフロード対象のUE100に対して、WLAN測定を制御するためのWLAN測定指示(Measurement Control)を送信する。WLAN測定指示は、WLAN制御情報を含む。また、WLAN測定指示は、WLAN測定の結果を報告するためのWLAN測定報告をeNB200に送信するトリガを示すトリガ情報を含む。
 ここで、上述第1実施形態における(式1)、(式3)、(式5)、(式7)、(式9)は、複数のWLAN30のそれぞれから取得したWLANパラメータを比較しているタイプであり、タイプ1と称する。一方、上述第1実施形態における(式2)、(式4)、(式6)、(式8)、(式10)は、一つのWLAN30から主としたWLANパラメータを閾値と比較し、他のWLANパラメータと比較していないタイプであり、タイプ2と称する。
 ここでは、WLAN制御情報は、閾値αを示す情報と、タイプ1をトリガする情報を含むと仮定して説明を進める。
 ステップS303において、UE100は、AP300の信号を探索(測定)し、オペレータが管理するAP300であるオペレータAP300と、オペレータが管理しないAP300である非オペレータAP300とから、ビーコン信号を受信する。
 ステップS304において、UE100は、閾値α[dB]を示す情報及びタイプ1をトリガする情報に基づいて、式(1)を選択したと仮定する。
 UE100は、選択した式(1)を用いて、WLAN30(AP300)の優先付けを行い、WLAN測定報告の要否の判定を行う。具体的には、UE100は、オペレータAP300の受信信号強度が、非オペレータAP300の受信信号強度に閾値を加えた値よりも大きいか否かを判定する。UE100は、式(1)を満たすと判定した場合、ステップS305の処理を実行する。一方、UE100は、式(1)を満たさないと判定した場合、処理を終了する。
 ステップS305において、UE100は、WLAN測定指示に含まれるトリガ情報に基づいて、WLAN測定報告の送信をトリガするイベント(すなわち、WLAN測定報告の送信のトリガとなる所定の条件が満たされたこと)を検知する。
 ステップS306において、UE100は、WLAN測定の結果を報告するためのWLAN測定報告をeNB200に送信する。WLAN測定報告は、例えば、WLAN30を示す識別子及びWLAN測定結果(ビーコン信号の受信電力、AP300の負荷状況等のAP300から取得したWLANパラメータ)を含む。
 (2)動作シーケンス2
 動作シーケンス2について、図10を用いて説明する。図10は、第2実施形態に係る動作シーケンス2を説明するためのシーケンス図である。
 動作シーケンス2は、動作シーケンス1と異なり、タイプ2の式(2)を用いて、WLAN30(AP300)の優先付けを行う。
 図10において、ステップS401及びS402は、ステップS301及びS302に対応する。
 ステップS402において、WLAN制御情報は、閾値βを示す情報と、タイプ2をトリガする情報を含む。
 ステップS403において、UE100は、オペレータAP300からビーコン信号を受信する。
 ステップS404において、UE100は、閾値β[dBm]を示す情報及びタイプ2をトリガする情報に基づいて、式(2)を選択したと仮定する。
 UE100は、選択した式(2)を用いて、WLAN30(AP300)の優先付けを行う。具体的には、UE100は、オペレータAP300の受信信号強度が、閾値を加えた値よりも大きいか否かを判定する。UE100は、式(2)を満たすと判定した場合、ステップS405の処理を実行する。一方、UE100は、式(2)を満たさないと判定した場合、処理を終了する。
 ステップS405及びS406は、ステップS305及びS306に対応する。
 (3)動作シーケンス3
 動作シーケンス3について、図11を用いて説明する。図11は、第2実施形態に係る動作シーケンス3を説明するためのシーケンス図である。
 動作シーケンス3は、動作シーケンス1と異なり、WLAN測定報告を行う。また、UE100は、WLAN30(AP300)の優先度をWLAN測定報告に含める。なお、動作シーケンス3では、ステップS304に対応する処理は行われない。
 図11において、ステップS501からS504は、ステップS301からS303、S305に対応する。なお、ステップS502において、eNB200は、UE100が受信したビーコン信号の全てのWLAN測定結果を報告するように要求してもよい。また、ステップS504において、UE100は、WLAN測定報告の送信のトリガとなるイベントを検知した場合に、ステップS505の処理を実行する。ここで、UE100は、WLAN測定指示に含まれるWLAN30(AP300)の識別子、WLAN制御情報に含まれるWLAN30の識別子(又はWLAN識別子リスト内の識別子)、及び、UE100のユーザが入力したWLAN30の識別子(例えば、選好リスト内のAP300の識別子)の少なくともいずれかに対応する1以上のAP300から受信した無線信号に関するWLAN測定結果が、WLAN測定報告の送信のトリガとなる所定の条件を満たした場合、イベントを検知したと判定してもよい。
 例えば、UE100は、WLAN測定結果が以下の式(所定の条件)の少なくともいずれかを満たした場合に、イベントを検知したと判定できる。
  ・ChannelUtilizationWLAN < ThreshChUtilWLAN, Low
  ・BackhaulRateDlWLAN > ThreshBackhRateDLWLAN, High
  ・BackhaulRateUlWLAN > ThreshBackhRateULWLAN, High
  ・BeaconRSSI > ThreshBeaconRSSIWLAN, High
 なお、「ThreshChUtilWLAN, Low」、「ThreshBackhRateDLWLAN, High」、「ThreshBackhRateULWLAN, High」及び「ThreshBeaconRSSIWLAN, High」は、閾値であり、WLAN制御情報(補助情報)に含まれていてもよいし、WLAN測定指示に含まれていてもよい。
 ステップS505において、UE100は、WLAN測定報告を生成する。
 まず、UE100は、上述した第1実施形態と同様に、ビーコン信号を受信した各AP300に対して、AP300の優先度(ランク)を設定する。また、第1実施形態のように数値ではなく、「High」/「Low」をAPの優先度に設定してもよい。これにより、1bitの情報により、優先度を表すことができる。ランクは、「0」、「1」、「2」、「3」の2bitの情報により、優先度を表してもよい。
 また、UE100は、ユーザの入力によってUE100にプロファイル保存されたAP300(自宅AP)の優先度を高く設定してもよい。また、UE100は、ビーコン信号の測定中、WLAN測定報告の生成中、或いは、所定期間内のいずれかの時に、ユーザがマニュアル選択したAPの優先度を高く設定してもよいし、過去の操作履歴を参照してマニュアル選択したAPの優先度を高く設定してもよい。
 また、UE100は、取得したWLANパラメータ(例えば、RSSI)が閾値を下回っているAP300の優先度を低く設定してもよい。また、UE100は、無線信号の送信元のAP300がセルラ・WLANアグリゲーションの対象(候補)としてセルラRAN(eNB200)から指定されている場合に、当該AP300の優先度を高く設定してもよい。なお、セルラ・WLANアグリゲーションは、同一の又は異なるデータベアラに属するトラフィック(ユーザデータ)をセルラ通信及びWLAN通信を併用して送受信する通信方式である。
 図11に示すように、UE100は、例えば、WLAN30の識別子(SSID)、WLAN30の受信信号強度(RSSI)及びWLAN30の優先度(Rank)をWLAN測定報告に含める。UE100は、WLAN測定報告に他の情報(AP300の負荷状況)を含めてもよい。なお、UE100は、セルラRANから指定されたAP300だけでなく、ビーコン信号を受信した各AP300に関するWLAN測定報告を行う。すなわち、UE100は、WLAN測定報告の送信のトリガとなる所定の条件を満たしていない各AP300のWLAN測定結果をWLAN測定報告に含めることができる。従って、UE100は、例えば、取得したWLANパラメータ(例えば、RSSI)が閾値を上回っているAP300のWLAN測定結果(すなわち、取得したWLANパラメータ)をWLAN測定報告に含めてもよいし、当該AP300の優先度のみをWLAN測定報告に含めてもよい。或いは、UE100は、ビーコン信号を受信した全てのAP300のWLAN測定結果をWLAN測定報告に含めてもよい。このように、UE100が、所定の条件を満たしていない各AP300のWLAN測定結果をWLAN測定報告に含めることによって、eNB200は、WLAN通信におけるUE100の無線環境を知ることができる。その結果、eNB200は、適切なWLAN30を選択できる。
 また、WLAN測定報告を受信したeNB200は、WLAN測定報告(特に、優先度)及びRANの負荷等に基づいて、オフロードの実行を指示するSteering command(オフロード指示)をUE100に送信できる。eNB200は、WLAN測定報告に含まれる優先度に基づいて、オフロードの実行を指示するため、収容ネットワークが選択される際に、ユーザプリファレンスが考慮される。その結果、適切なWLAN30が選択される。
 (4)動作シーケンス4
 動作シーケンス4について、図12及び図13を用いて説明する。図12は、第2実施形態に係る動作シーケンス4を説明するためのシーケンス図である。図13は、UE100がWLAN測定報告に含めるAP300を選択するためのフローチャートである。
 動作シーケンス4は、動作シーケンス3と異なり、前提として、UE100は、セルラRANから指定されたAP300に関するWLAN測定報告を行う。従って、UE100は、原則的に、セルラRANから指定されたAP300以外のAP100に関するWLAN測定報告を行わない。しかしながら、動作シーケンス4では、以下のように、UE100は、例外的に、セルラRANから指定されたAP300以外のAP100に関するWLAN測定報告を行うことができる。なお、指定されたAP300は、eNB200から指定(設定)されたAP300であってもよいし、ANDSFサーバ600から指定されたAP300であってもよい。
 図12において、ステップS601からS604は、ステップS501からS504に対応する。
 ステップS605において、UE100は、WLAN測定報告を生成する。UE100は、セルラRANから指定されていないユーザが好むAP300に関する情報を、WLAN測定報告に含める。具体的には、UE100は、図13に示す処理を行う。
 図13において、ステップS701は、ステップS201に対応する。UE100は、各AP300の測定結果について、ステップS702の処理を実行する。
 ステップS702において、UE100は、測定から得られたAP300の識別子がオペレータAPの識別子か否かを判定する。UE100は、当該AP300の識別子がオペレータAPの識別子であると判定した場合、WLAN測定報告に当該AP(の識別子)を含め、測定から得られた未処理のAP300の識別子について、ステップS702の処理を実行する。一方、UE100は、当該AP300の識別子がオペレータAPの識別子でないと判定した場合、ステップS703の処理を実行する。
 なお、UE100は、ステップS602におけるWLAN測定指示にAP300の識別子が含まれる場合、測定から得られたAP300の識別子がWLAN測定指示に含まれるAP300の識別子と一致するか否かを判定してもよい。この場合、UE100は、測定から得られたAP300の識別子がオペレータAPの識別子でない場合に、ステップS703の処理を実行する。なお、WLAN測定指示に含まれるAP300の識別子は、オペレータAPの識別子でなくてもよい。この場合、WLAN測定指示において、AP300の識別子とオペレータAPの識別子か否かを示すフラグとが関連付けられていてもよい。UE100は、WLAN測定指示が当該フラグを含まない場合、WLAN測定指示に含まれるAP300の識別子は、オペレータAPの識別子であると判定してもよい。
 ステップS703において、UE100は、当該AP300の識別子がユーザの好みであるか否かを判定する。具体的には、UE100は、当該AP300の識別子が選好リストに登録されたWLAN30の識別子と一致するか否かを判定する。UE100は、当該AP300がユーザの好みであると判定した場合、WLAN測定報告に「ユーザの好みのAP」として当該AP(の識別子)を含め、測定から得られた未処理のAP300の識別子について、ステップS702の処理を実行する。一方、UE100は、当該AP300がユーザの好みでないと判定した場合、ステップS704の処理を実行する。
 ステップS704において、UE100は、当該AP300の識別子がUE100の中に登録されているか否かを判定する。具体的には、UE100は、当該AP300の識別子が選好リストを除いてUE100のメモリ150に登録されたWLAN30の識別子と一致するか否かを判定する。
 ここで、選好リストを除いてUE100のメモリ150に登録されたWLAN30の識別子とは、例えば、UE100が過去に接続することによってメモリ150に登録されたWLAN30の識別子であり、且つ、選好リストには登録されていないWLAN30の識別子である。
 UE100は、当該AP300が登録されたWLAN30であると判定した場合、WLAN測定報告に「登録されたAP」として当該AP(の識別子)を含め、測定から得られた未処理のAP300の識別子について、ステップS702の処理を実行する。一方、UE100は、当該AP300が登録されたWLAN30でないと判定した場合、WLAN測定報告に当該AP(の識別子)を含めない。
 UE100は、測定から得られた全てのAP300の識別子について、判定した場合、処理を終了する。
 図12の説明に戻って、UE100は、セルラRANから指定されていないAP300をWLAN測定報告に含めた理由を示す情報(例えば、自宅APである)をWLAN測定報告に含めてもよい。
 WLAN測定報告を受信したeNB200は、WLAN測定報告(特に、指定されていないAP300に関する情報)及びRANの負荷等に基づいて、オフロードの実行を指示するSteering command(オフロード指示)をUE100に送信する。eNB200は、指定されていないAP300に関する情報に基づいて、オフロードの実行を指示するため、収容ネットワークが選択される際に、ユーザプリファレンスが考慮される。その結果、適切なWLAN30が選択される。
 [その他の実施形態]
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
 上述した実施形態では、選択パラメータ(α、β)は、WLAN制御情報に含まれていたが、これに限られない。収容ネットワークの選択規則の一部として選択パラメータが含まれていてもよい。
 また、選択パラメータは、UE100がWLAN30の優先付けを行う場合、常に用いられるパラメータであってもよいし、例えば、優先度が同じ場合などの特定の条件下では、用いられないものであってもよい。
 上述した第2実施形態に係る動作シーケンス3,4において、UE100は、WLAN測定指示の要求をeNB200に送信してもよい。例えば、UE100は、WLAN測定指示に、選好リストに登録されたWLAN30の識別子が含まれていない場合、WLAN測定指示の要求を行ってもよい。WLAN測定指示の要求は、選好リストに登録されたWLAN30の識別子が含まれていてもよい。また、UE100は、WLAN測定指示に対する応答に、選好リストに登録されたWLAN30をWLAN測定報告に含める旨を含めてもよい。
 上述した第1実施形態では、WLAN30の優先付けが行われるが、WLAN測定報告が行われなかった。しかしながら、上述した第1実施形態において、WLAN測定報告が行われてもよい。この場合、上述の第2実施形態におけるWLAN測定報告と同様の動作を行ってもよい。
 また、上述した第2実施形態では、WLAN測定報告が行われていたが、必ずしもWLAN測定報告が行われなくてもよい。例えば、eNB200は、オフロードの実行を指示するオフロード指示(Steering command)をUE100に送信する。オフロード指示は、ステアリング先であるWLAN30(AP300)の識別子及び選択パラメータを含む。オフロード指示を受信したUE100は、ステアリング先であるWLAN30の識別子及び選択パラメータ(α、β)と、WLAN測定の結果とに基づいて、WLAN30の優先付けを行ってもよい。UE100は、WLAN30の優先付けの結果に基づいて、最終的なステアリング先のWLAN30を決定してもよい。
 上述した各実施形態では、セルラ通信システムの一例としてLTEシステムを説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。上述した各実施形態において、eNB200(基地局)が行っている動作は、基地局に代えて、他のRANノード(例えばRNC)が行ってもよい。
 なお、日本国特許出願第2013-264612号(2013年12月20日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本実施形態に係る通信制御方法は、ユーザ端末のトラフィックを収容するアクセスネットワークが選択される際に適切な接続先を選択できるため、移動通信分野において有用である。

Claims (16)

  1.  ユーザ端末のトラフィックを収容するアクセスネットワークを選択可能な通信システムにおいて用いられる通信制御方法であって、
     前記ユーザ端末が、所定の無線LANを示す識別情報をセルラRANから受信するステップAと、
     前記ユーザ端末が、前記識別情報によって示される前記所定の無線LANを、前記アクセスネットワークを選択した後の接続先として優先させるステップBと、を備え、
     前記ステップBにおいて、前記所定の無線LANが前記ユーザ端末のユーザが好む無線LANでない場合には、前記ユーザ端末が、
    前記所定の無線LANよりも前記ユーザが好む無線LANを優先させることを特徴とする通信制御方法。
  2.  前記ユーザが好むと推定される無線LANが前記ユーザが好まないと推定される無線LANよりも優先されるための選択パラメータを前記ユーザ端末が前記セルラRANから受信するステップをさらに備え、
     前記ステップBにおいて、前記ユーザ端末は、前記選択パラメータに基づいて、前記ユーザが好む無線LANを優先させることを特徴とする請求項1に記載の通信制御方法。
  3.  前記ユーザ端末が、前記選択パラメータに基づいて、前記ユーザが好む無線LAN以外の無線LANを前記接続先として選択することが好ましいと判定した場合、前記アクセスネットワークを選択するための動作を開始するステップをさらに備えることを特徴とする請求項2に記載の通信制御方法。
  4.  前記ユーザ端末が、前記ユーザが好む無線LANと接続している場合、前記ステップBを省略することを特徴とする請求項1に記載の通信制御方法。
  5.  前記選択パラメータは、前記接続先として前記ユーザが好まない無線LANを選択することが不可能な値であることを特徴とする請求項2に記載の通信制御方法。
  6.  前記ユーザが好む無線LANは、オペレータが管理しない無線LANであり、
     前記ユーザが好まない無線LANは、オペレータが管理する無線LANであることを特徴とする請求項1に記載の通信制御方法。
  7.  ユーザ端末のトラフィックを収容するアクセスネットワークを選択可能な通信システムにおいて用いられる通信制御方法であって、
     前記ユーザ端末が、収容ネットワークの選択規則に基づいて前記アクセスネットワークを選択して、当該選択したアクセスネットワークに前記ユーザ端末のトラフィックを収容するために接続先を切り替えるステップを備え、
     前記ステップにおいて、前記ユーザ端末は、ユーザが好む無線LANと接続している場合には、前記接続先の切り替えよりも、前記ユーザが好む無線LANとの接続を優先させることを特徴とする通信制御方法。
  8.  ユーザ端末のトラフィックを収容するアクセスネットワークを選択可能な通信システムにおいて用いられる通信制御方法であって、
     前記ユーザ端末が、所定の無線LANを示す識別情報をセルラLANから受信するステップAと、
     前記ユーザ端末が、前記識別情報によって示される前記所定の無線LANを、前記アクセスネットワークを選択した後の接続先の候補とするステップBと、を備え、
     前記ステップBにおいて、前記ユーザ端末は、ユーザの好みに基づいて、前記アクセスネットワークを選択した後の接続先の候補から前記所定の無線LANを外すことを特徴とする通信制御方法。
  9.  前記ユーザ端末に、前記ユーザの好みを示す情報が登録されるステップをさらに備え、
     前記ステップBにおいて、前記ユーザ端末が、前記登録されたユーザの好みを示す情報に基づいて、前記所定の無線LANが前記ユーザが好まない無線LANであると判定した場合、前記所定の無線LANを前記接続先の候補から外すことを特徴とする請求項8に記載の通信制御方法。
  10.  前記ステップBにおいて、前記ユーザ端末が、前記ユーザの好みに基づいて、前記所定の無線LANと異なる他の無線LANを、前記接続先の候補に含めることを特徴とする請求項8に記載の通信制御方法。
  11.  前記ユーザの好みは、オペレータが管理する無線LANよりもオペレータが管理しない無線LANを優先することを示すことを特徴とする請求項8に記載の通信制御方法。
  12.  ユーザ端末のトラフィックを収容するアクセスネットワークを選択可能な通信システムにおいて用いられる通信制御方法であって、
     前記ユーザ端末が、無線LANから所定のパラメータを取得するステップと、
     前記ユーザ端末が、前記取得した所定のパラメータに関する報告を前記セルラRANに送信する報告ステップと、を備え、
     前記報告ステップにおいて、前記ユーザ端末は、ユーザの好みに基づいて決定された前記無線LANの優先度を、前記報告に含めることを特徴とする通信制御方法。
  13.  ユーザ端末のトラフィックを収容するアクセスネットワークを選択可能な通信システムにおいて用いられる通信制御方法であって、
     前記ユーザ端末が、所定の無線LANを示す識別情報を前記セルラRANから受信するステップと、
     前記ユーザ端末が、前記所定の無線LANから取得した所定のパラメータに関する報告を前記セルラRANに送信する報告ステップと、を備え、
     前記報告ステップにおいて、前記ユーザ端末は、前記所定の無線LANとは異なる他の無線LANから取得した所定のパラメータに関する情報を、前記報告に含めることを特徴とする通信制御方法。
  14.  ユーザ端末のトラフィックを収容するアクセスネットワークを選択可能な通信システムにおいて用いられる通信制御方法であって、
     前記ユーザ端末が、複数の無線LANからの無線信号を測定するステップと、
     前記ユーザ端末が、前記複数の無線LANのうち少なくとも1以上の無線LANからの前記無線信号の測定結果が所定の条件を満たした場合に、前記測定結果に関する報告を前記セルラRANに送信する報告ステップと、を備え、
     前記報告ステップにおいて、前記ユーザ端末は、前記所定の条件を満たした前記無線信号の測定結果だけでなく、前記所定の条件を満たしていない前記無線信号の測定結果も前記報告に含めて、前記報告を送信することを特徴とする通信制御方法。
  15.  前記報告ステップにおいて、前記ユーザ端末は、前記複数の無線LANの全ての測定結果を前記報告に含めることを特徴とする請求項14に記載の通信制御方法。
  16.  ユーザ端末のトラフィックを収容するアクセスネットワークを選択可能な通信システムにおいて用いられる通信制御方法であって、
     前記ユーザ端末が、無線LANを示す識別情報をセルラRAN又はANDSF(Access Network Discovery and Selection Function)サーバから受信するステップと、
    前記ユーザ端末が、所定の無線LANからの無線信号を測定するステップと、
     前記ユーザ端末が、前記所定の無線LANからの前記無線信号の測定結果に関する報告を前記セルラRANに送信する報告ステップと、を備え、
     前記報告ステップにおいて、前記ユーザ端末は、前記所定の無線LANが前記識別情報によって示される前記無線LANと一致しない場合、前記報告を送信しないことを特徴とする通信制御方法。
PCT/JP2014/083573 2013-12-20 2014-12-18 通信制御方法 WO2015093569A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14871714.3A EP3086603A1 (en) 2013-12-20 2014-12-18 Communication control method
JP2015553604A JPWO2015093569A1 (ja) 2013-12-20 2014-12-18 通信制御方法
US15/104,823 US20160323903A1 (en) 2013-12-20 2014-12-18 Communication control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-264612 2013-12-20
JP2013264612 2013-12-20

Publications (1)

Publication Number Publication Date
WO2015093569A1 true WO2015093569A1 (ja) 2015-06-25

Family

ID=53402911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083573 WO2015093569A1 (ja) 2013-12-20 2014-12-18 通信制御方法

Country Status (4)

Country Link
US (1) US20160323903A1 (ja)
EP (1) EP3086603A1 (ja)
JP (1) JPWO2015093569A1 (ja)
WO (1) WO2015093569A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018536A1 (ja) * 2015-07-30 2017-02-02 京セラ株式会社 無線端末及びプロセッサ
JPWO2017018537A1 (ja) * 2015-07-30 2018-07-05 京セラ株式会社 無線端末、プロセッサ、及び方法
JP2019533350A (ja) * 2016-09-26 2019-11-14 クアルコム,インコーポレイテッド 免許不要スペクトル通信のためのwlan測定の技法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107251467A (zh) * 2015-02-12 2017-10-13 诺基亚技术有限公司 蜂窝网络和wlan的聚合
EP3337225B1 (en) * 2015-08-12 2021-07-14 LG Electronics Inc. Method and device for terminal performing wlan measurement
WO2017078954A1 (en) * 2015-11-02 2017-05-11 Wal-Mart Stores, Inc. System and method for mapping wireless network coverage
EP3718339A1 (en) 2017-11-29 2020-10-07 Telefonaktiebolaget LM Ericsson (publ) Measurement reporting configuration for aiding the sorting of beam/cell level measurements
US20210076280A1 (en) * 2018-06-13 2021-03-11 Sony Corporation System and method for providing assistance data to a radio access network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009132095A2 (en) * 2008-04-24 2009-10-29 Research In Motion Limited Apparatus, and associated method, for facilitating access to a home, or other public network
WO2011149533A1 (en) * 2010-05-25 2011-12-01 Headwater Partners I Llc System and method for wireless network offloading
JP2012023506A (ja) * 2010-07-13 2012-02-02 Sony Corp 電子機器及び通信切り替え方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7146130B2 (en) * 2003-02-24 2006-12-05 Qualcomm Incorporated Wireless local access network system detection and selection
JP5366219B2 (ja) * 2010-09-22 2013-12-11 Necインフロンティア株式会社 無線通信システム及び通信端末、並びに、基地局接続方法及び基地局接続プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009132095A2 (en) * 2008-04-24 2009-10-29 Research In Motion Limited Apparatus, and associated method, for facilitating access to a home, or other public network
WO2011149533A1 (en) * 2010-05-25 2011-12-01 Headwater Partners I Llc System and method for wireless network offloading
JP2012023506A (ja) * 2010-07-13 2012-02-02 Sony Corp 電子機器及び通信切り替え方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3GPP technical report", TR 37.834 V1.0.0, August 2013 (2013-08-01)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018536A1 (ja) * 2015-07-30 2017-02-02 京セラ株式会社 無線端末及びプロセッサ
JPWO2017018536A1 (ja) * 2015-07-30 2018-05-31 京セラ株式会社 無線端末、プロセッサ及び通信方法
JPWO2017018537A1 (ja) * 2015-07-30 2018-07-05 京セラ株式会社 無線端末、プロセッサ、及び方法
US10477434B2 (en) 2015-07-30 2019-11-12 Kyocera Corporation Radio terminal, processor and communication method
JP2019533350A (ja) * 2016-09-26 2019-11-14 クアルコム,インコーポレイテッド 免許不要スペクトル通信のためのwlan測定の技法
JP7046060B2 (ja) 2016-09-26 2022-04-01 クアルコム,インコーポレイテッド 免許不要スペクトル通信のためのwlan測定の技法

Also Published As

Publication number Publication date
EP3086603A1 (en) 2016-10-26
JPWO2015093569A1 (ja) 2017-03-23
US20160323903A1 (en) 2016-11-03

Similar Documents

Publication Publication Date Title
US10028331B2 (en) User terminal, communication control method and chipset
US10631354B2 (en) User terminal and access point
US10237797B2 (en) Communication control method and user terminal
JP2019068465A (ja) 通信制御方法、ユーザ装置、及びプロセッサ
JP6618801B2 (ja) 通信制御方法及びユーザ端末
WO2015093569A1 (ja) 通信制御方法
JP6208491B2 (ja) ユーザ端末、方法、及びプロセッサ
US9832698B2 (en) Cellular communication system, user terminal, and cellular base station
US20160057794A1 (en) Communication control method and processor
US20170272992A1 (en) Base station and wireless lan termination apparatus
US11388643B2 (en) User terminal and mobile communication method
JP6538026B2 (ja) ネットワーク選択制御方法、基地局、及びユーザ端末
JP6732184B2 (ja) ユーザ端末及び移動通信方法
JP6276886B2 (ja) ユーザ端末、方法、及びプロセッサ
WO2018143245A1 (ja) 無線端末、プロセッサ及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871714

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553604

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15104823

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014871714

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014871714

Country of ref document: EP