WO2016137083A1 - Stabilizing device for shaking of camera - Google Patents

Stabilizing device for shaking of camera Download PDF

Info

Publication number
WO2016137083A1
WO2016137083A1 PCT/KR2015/011069 KR2015011069W WO2016137083A1 WO 2016137083 A1 WO2016137083 A1 WO 2016137083A1 KR 2015011069 W KR2015011069 W KR 2015011069W WO 2016137083 A1 WO2016137083 A1 WO 2016137083A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball
magnet
driving
movable part
ball seat
Prior art date
Application number
PCT/KR2015/011069
Other languages
French (fr)
Korean (ko)
Inventor
이병철
김영석
박병찬
김인현
고재용
Original Assignee
자화전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 자화전자 주식회사 filed Critical 자화전자 주식회사
Publication of WO2016137083A1 publication Critical patent/WO2016137083A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils

Definitions

  • the present invention relates to a camera shake correction apparatus, and more particularly, to a camera shake correction apparatus for compensating for hand shake caused when a still image is taken by a small camera of a portable mobile device so that an image without image shake can be taken. .
  • 'mobile' portable terminals such as smartphones (hereinafter referred to as 'mobile') are being multi-converged and equipped with music, movies, TVs and games as well as simple telephone functions with the development of the technology.
  • One of the factors driving the development of the furnace is the camera lens module.
  • the camera lens module mounted on the mobile is equipped with various additional functions such as auto focus function (AUTO FOCUS: AF), optical zoom function (OPTICAL ZOOM), etc. in order to meet the recent changes to high pixel and high function centered on user's request. Is changing. Recently, various attempts have been made to implement OPTICAL IMAGE STABILIZER in mobile size.
  • AUTO FOCUS AF
  • OPTICAL ZOOM optical zoom function
  • the image stabilization technology automatically maintains the resolution of the captured image by automatically controlling the focus of the correction lens constituting the camera module to move in a direction corresponding to the hand shake.
  • the camera module applied to the mobile device to implement the image stabilization technology is equipped with an image stabilization actuator.
  • VCM Voice Coil Motor
  • a magnetic circuit is usually composed of a coil and a magnetic body disposed to face each other, and the moving part of the lens mounted plane is moved in a plane with respect to the fixed part by using the electromagnetic force generated by the magnetic circuit to cope with the tremor. Allow calibration to be implemented.
  • the conventional image stabilization device using a suspension wire is a camera shake correction device of Japanese Patent Application Laid-Open No. 2011-065140, an image pickup device with a camera shake correction function of Korea Patent Publication No. 2012-0045333 and Korea Patent Publication
  • a number of techniques have been proposed in various forms, including the image pickup apparatus with image stabilization function of 2012-0047384.
  • both ends of the suspension wire are fixed to the fixed part and the driving part in a state in which the fixed part and the driving part are fixed to a separate dedicated jig apart from each other. Since each soldering (Soldering) had to be connected, there is a disadvantage that the assembly is remarkably inferior and takes a lot of time to assemble.
  • hand shake compensation is provided through a ball to support the biaxial movement of the driving part relative to the fixed part between the driving part and the fixed part.
  • the conventional ball-type image stabilization device includes a middle guide for guiding the planar movement of the driving part between the fixed part and the driving part, and generating a restoring force for the biaxial movement of the driving part.
  • This requires a number of springs to implement centering (a technique for restoring the alignment of the optical axis).
  • the size of the camera module must be as large as the space occupied by the middle guide and the spring, making it difficult to miniaturize the product and cost a lot.
  • various difficulties have been pointed out in securing the competitiveness of the product, such as lack of mass production because it is not easy to assemble.
  • the technical problem to be solved by the present invention is a method of the ball guides the two-dimensional plane motion of the movable part with respect to the drive part, a simple configuration that does not require a middle guide, yet stable and accurate image stabilization drive control is possible Is to provide.
  • Another technical problem to be solved by the present invention is to implement the centering by using the attraction between the permanent magnet (or permanent magnet and magnetic material) of the drive part and the movable part, the use of a separate component (restore spring) for the centering It is to provide a hand shake correction device that can eliminate the.
  • the ball for guiding the two-dimensional planar motion of the driving part to one side under the influence of the magnetic field of the upper and lower or upper or lower permanent magnet (or permanent magnet and yoke) It is possible to restore to a designated position at all times without bias, and therefore, to provide a hand shake correction device capable of minimizing driving interference by a ball.
  • a lower ball seat provided in a fixing part in which an image sensor is mounted
  • An upper ball seat mounted on a lens barrel and provided on a movable part (MOVER) for performing a two-dimensional planar motion on the fixing part;
  • the lower ball seat and the upper ball seat upper surface is provided with a hand shake correction device, characterized in that attached to the lower magnet and the upper magnet, respectively.
  • the movable part may perform a two-dimensional planar motion on the fixed part by a vibration correction driver including a driving coil and a driving magnet.
  • the driving coil may be disposed in the fixed portion and the driving magnet may be disposed in the movable portion.
  • the driving coil and the driving magnet may be disposed in the movable part.
  • the yoke is installed on the movable portion to surround the side and the rear of the drive magnet; may further include a.
  • the ball, the lower magnet, and the upper magnet applied to an aspect of the present invention may be configured to be disposed on a coaxial line so that their centers coincide with each other.
  • At least one of the upper ball seat and the lower ball seat ball receiving portion surrounding the exposed portion of the ball may be further provided.
  • the upper and lower magnets opposed to each other with the ball interposed therebetween have polarities different from each other to form a attraction force.
  • the upper ball sheet and the lower ball sheet may be a nonmagnetic conductor or an injection molded product having a thin film thickness of the nonmagnetic conductor on the surface in contact with the ball.
  • an external power source is connected to the lower ball seat, and a current supplied by an external power source connected to the lower ball seat may be supplied as a current for driving the movable part through the ball and the upper ball seat.
  • a lower ball seat provided in a fixing part in which an image sensor is mounted
  • An upper ball seat mounted on a lens barrel and provided on a movable part (MOVER) for performing a two-dimensional planar motion on the fixing part;
  • a hand shake correction device characterized in that a magnet is attached to one of the lower surface of the lower ball seat and the upper surface of the upper ball sheet and a magnetic body is attached to the other surface to correspond to the magnet.
  • the movable part may perform a two-dimensional planar motion on the fixing part by a vibration correction driver including a driving coil and a driving magnet.
  • the driving coil may be disposed in the fixed portion and the driving magnet may be disposed in the movable portion.
  • the driving coil and the driving magnet may be disposed in the movable part.
  • the yoke is installed on the movable portion to surround the side and the rear of the drive magnet; may further include.
  • the ball, magnet, magnetic material may be configured to be arranged on the coaxial line so that the center thereof.
  • At least one of the upper ball seat and the lower ball seat may further include a ball receiving portion surrounding the exposed portion of the ball.
  • the magnetic material applied in the present embodiment may be a sphere of a size corresponding to the ball, or may be a circular or polygonal three-dimensional structure having a predetermined thickness.
  • the upper ball sheet and the lower ball sheet may be a nonmagnetic conductor or an injection molded product having a thin film thickness of the nonmagnetic conductor on the surface in contact with the ball.
  • an external power source is connected to the lower ball seat, and a current supplied by an external power source connected to the lower ball seat may be supplied as a current for driving the movable part through the ball and the upper ball seat.
  • a camera lens module comprising a hand shake correction device according to the above aspect.
  • the ball guides the planar motion of the movable part with respect to the driving part, and since the middle guide is not required, the configuration is simple, and it is advantageous to miniaturization and light weight of the product, and unlike the wire suspension method, the drop impact Edo, there is no risk of breakage of the part supporting the planar movement of the movable part with respect to the driving part, thereby increasing the durability and reliability of the product.
  • permanent magnets are mounted on each of the driving and movable parts around the ball, and centering is performed using a manpower acting therebetween to restore the driving part to the optical axis alignment position.
  • a separate part restoration spring
  • the ball guiding the two-dimensional planar motion of the driving part can be restored to a designated position at all times without being biased to one side under the influence of the magnetic field of the upper and lower parts or the upper and lower permanent magnets (or permanent magnets and yokes). Accordingly, driving interference due to the bias of the ball can be avoided, thereby improving the dynamic characteristics of the driving part, and stable and accurate image stabilization can be achieved.
  • FIG. 1 is a partially exploded perspective view according to a preferred embodiment of the hand shake correction device according to the present invention.
  • FIG. 2 is a partially exploded perspective view of the camera shake correction apparatus of FIG. 1 viewed from the bottom;
  • FIG. 3 is a side view of the coupling of the image stabilization device shown in FIG.
  • Figure 4 is a schematic view showing a first preferred embodiment of the part for guiding the planar movement of the movable portion with respect to the fixing in Figures 1-3.
  • FIG. 5 is a schematic view showing a second preferred embodiment of the part for guiding the planar motion of the movable part relative to the fixing part;
  • FIG. 6 is a schematic view showing a third preferred embodiment of the part for guiding the planar motion of the movable part relative to the fixing part;
  • FIG. 7 is a schematic view showing a fourth preferred embodiment of a part for guiding the planar motion of the movable part relative to the fixing part;
  • the Z-axis is defined as the optical axis direction
  • the X-axis (first direction) with respect to the Z-axis is the optical axis direction
  • the orthogonal image stabilization direction and the Y axis (second direction) will be described by defining another image stabilization direction orthogonal to the X axis on the coplanar plane.
  • the image stabilization apparatus of the present invention is applied to a compact camera lens module for a mobile device.
  • the camera's lens module compensates for the hand shake caused when shooting still images, so that a clear picture without image shake can be obtained.
  • a relative displacement is given to the lens or the image sensor in a direction perpendicular to the optical axis, respectively. To compensate for hand shake.
  • FIG. 1 is a partially exploded perspective view according to a preferred embodiment of the hand shake correction device according to the present invention
  • Figure 2 is a partial exploded perspective view of the hand shake correction device of FIG. 3 is a side view of the coupling of the image stabilization device shown in FIG.
  • the image stabilization apparatus is largely comprised of a fixing part (STATOR) 1 on which an image sensor is mounted and a moving part (MOVER) 2 on which a lens barrel is mounted.
  • STATOR fixing part
  • MOVER moving part
  • the movable part 2 on the fixing part 1 performs a two-dimensional planar motion in the direction corresponding to the hand shake with respect to the fixing part 1, thereby implementing correction corresponding to the hand shake.
  • the planar motion of the movable part 2 relative to the fixed part 1 may be implemented by the vibration correction driver 15 composed of the driving coil 10 and the driving magnet 20.
  • the driving coil 10 and the driving magnet 20 are installed to form a pair corresponding to each of the fixed part 1 and the movable part 2 as shown in the drawing, or although not shown, a separate housing is provided in the movable part 2.
  • the fixing part 1 is a flexible substrate (not shown) in which an image sensor (not shown) is mounted in response to the coil 10 and the lens barrel 22 mounted on the movable part 2, and a flexible substrate. It may include a base 14 is mounted (not shown).
  • the flexible substrate extends outside of the camera lens module to which the image stabilization apparatus of the present invention is applied and is electrically connected to the main substrate of the mobile device.
  • the driving coil 10 may have a first direction X perpendicular to the optical axis of the lens barrel 22 at the edge of the base upper surface.
  • X-axis drive coil 10a mounted in the axial direction
  • Y-axis drive coil 10b mounted in the second direction (Y-axis direction) orthogonal to the first direction
  • two drive coils 10a X-axis, Y-axis driving magnets (20a, 20b) may be mounted on the side of the movable portion (2) corresponding to (10b), respectively.
  • the first position detection detects a change in the position of the X-axis driving magnet 20a with respect to the X-axis driving coil 10a and a change in the position of the Y-axis driving magnet 20b with respect to the Y-axis driving coil 10b.
  • the sensor 11a and the second position detection sensor 11b may be mounted, respectively.
  • the first position detection sensor 11a and the second position detection sensor 11b recognize in real time the position of the movable portion 2 with respect to the fixed portion 1 as a change in the magnetic field of the magnet corresponding to each sensor. Feedback control to the shake correction driver 15 is performed based on the recognized position value for the shake correction to be accurately implemented.
  • Each driving magnet 20 (X-axis driving magnet and Y-axis driving magnet) mounted on the movable part 2 has a yoke (Yoke) in the rear portion such that the magnetic force generated in the magnet is concentrated on the corresponding driving coil 10. 26) can be mounted.
  • the yoke 26 is preferably provided in a form that surrounds both sides of the driving magnet 20 as well as the rear surface of the driving magnet 20 so that the magnetic force of each driving magnet 20 does not affect the magnet of the guide unit 3 to be described later. It also plays a role.
  • the lens barrel 22 in which the optical path is formed is mounted in the movable part MOVER 2.
  • the movable part 2 preferably includes a shake correction carrier 24 mounted with the drive magnet 20 on a circumferential surface corresponding to the drive coil 10.
  • the lens barrel 22 may be mounted, and the shake correction carrier 24 may further include an auto focus carrier (not shown) that is retractably received along the optical axis direction of the lens barrel 22.
  • the lens barrel 22 is equipped with a lens group (not shown) made of a plurality of lenses, and the shake correction carrier 24 is provided with a hole having a diameter sufficient to stably accommodate the lens barrel 22.
  • movement of the lens barrel in the shake correction carrier 24 may be implemented through an auto focus driver.
  • the Auto Focusing Actuator uses a lens barrel like the ultrasonic motor method using piezo or the shape memory alloy method. It is possible to include all known form means for driving in the optical axis direction so that autofocus can be performed.
  • the shield cover 4 (not shown) is coupled to the structure surrounding the movable part 2, thereby protecting the components mounted on the movable part 2 and the fixing part 1 from the outside and protecting external electromagnetic waves. By blocking it, it is possible to prevent the electromagnetic force generated between the driving coil 10 mounted on the fixed part 1 and the driving magnet 20 mounted on the movable part 2 during driving for hand shake correction.
  • the planar movement of the movable part 2 with respect to the fixed part 1 by the vibration correction drive part 15 composed of the drive coil 10 and the drive magnet 20 corresponds to each other in the fixed part 1 and the movable part 2.
  • the ball seats 30 and 32 provided on each of the fixed part 1 and the movable part 2 are preferably the vibrations that constitute the base 14 and the movable part 2 constituting the fixed part 1.
  • the base 14 and the vibration correction carrier 24 themselves may be configured as a sheet by insert injection.
  • Figure 4 is a schematic view showing a first preferred embodiment of the portion for guiding the planar movement of the movable portion with respect to the fixed portion in Figures 1-3.
  • the guide part 3-1 includes the lower ball seat 30 and the upper ball seat provided to correspond to each other in the fixing part STATOR 1 and the movable part MOVER 2.
  • the lower ball seat 30 and the upper ball seat 32 include a magnetic material ball 34 which performs rolling motion between the lower ball seat 30 and the lower ball seat 30.
  • a lower magnet 36 and an upper magnet 38 are respectively attached to the lower surface and the upper surface of the upper ball seat 32 in correspondence with the balls 34.
  • the ball 34, the lower magnet 36, and the upper magnet 38 may be disposed on a coaxial line (the same vertical line) so that their centers coincide with each other, and the upper ball seat 32 and the lower ball seat 30 At least one of the balls 34 to prevent the separation of the ball 34 interposed between the ball seats 30, 32 during the two-dimensional plane movement of the movable part 2 with respect to the fixing part 1
  • Ball receiving portion 39 surrounding the side of the ball 34 may be provided so that the top or bottom of the).
  • the polarities of the upper part of the lower magnet 36 and the lower part of the upper magnet 38 which are respectively installed on the upper surface of the lower ball sheet 30 and the lower surface of the upper ball sheet 32 with the ball 34 therebetween are different from each other.
  • the attraction is configured to work with each other. That is, if the upper portion of the lower magnet 36 is the N pole, the lower portion of the upper magnet 38 becomes the S pole, and conversely, if the upper portion of the lower magnet 36 is the S pole, the lower portion of the upper magnet 38 becomes the N pole.
  • the magnets 36 and 38 are mounted in a structure in which opposite magnetic poles face each other on the back surface of the ball seat of the fixed part 1 and the movable part 2, with the ball 34 interposed therebetween, thereby fixing the fixed part 1. Even if the distance between the two magnets moves away from within the tolerance of the magnetic flux due to the planar movement of the movable part 2 with respect to), the centering (the technique of restoring the movable part to the optical axis alignment position) is realized due to the attractive force between the two magnets. Can be.
  • the attraction force acting between the upper magnet 38 and the lower magnet 36 when the image stabilization is not performed causes the movable part 2 to be fixed at the correct optical axis alignment position on the fixing part 1.
  • the attraction force is a restoring force to return the movable part 2 to its original position. Acts as
  • the ball 34 for guiding the two-dimensional planar motion between the upper ball seat 32 and the lower ball seat 30 is also moved to one side under the influence of the magnetic fields of the magnets 36 and 38 disposed at the upper and lower parts thereof. It is always on the line coincident with the center of the magnet with the highest magnetic flux density. Therefore, performance degradation such as driving interference or incorrect correction due to one-way bias of the ball 34 can be avoided.
  • Fig. 5 is a schematic view showing a second preferred embodiment of the part for guiding the planar motion of the movable part with respect to the fixed part, wherein the auto-focus driving part (not shown) for lifting and lowering the lens barrel is separate from the shake correction driving part 15.
  • the embodiment applied to the case of the camera lens module of the type provided in the movable part 2 is shown.
  • the auto focus driver is provided in the movable part 2 separately from the shake correction driver 15
  • the flexible part and the movable part 2 side are fixed to the fixed part 1 side through the guide part 3.
  • the current input through the flexible substrate 12 may be configured to be supplied to the auto focus driver of the movable part 2 through the guide part 3.
  • the upper ball seat 32 and the lower ball seat 30 are made of non-magnetic conductors (magnetically conductive objects, such as copper (Cu), SUS 316, SUS 304, etc.) or only on the surface where the ball contacts.
  • the conductive material is formed in the form of an injection molded product having a thin film thickness, and as shown in FIG. 5, the power is connected to the lower ball seat 30 so that electric power is fixed from the fixed part 1 to the movable part 2 side without using additional electric parts.
  • the configuration to be supplied may be implemented.
  • FIGS. 6 and 7 are schematic diagrams showing preferred third and fourth embodiments, respectively, of a part for guiding the planar motion of the movable part relative to the fixing part.
  • the guide parts 3-3 and 3-4 constituting the third and fourth embodiments of FIGS. 6 and 7 may be disposed on either of the lower surface of the lower ball sheet 30 and the upper surface of the upper ball sheet 32.
  • the magnet 36 is attached to the ball 34, and the magnetic body 37 is attached to the other side of the magnet 36 to be identical to the first embodiment. That is, unlike the first embodiment in which the magnets 36 and 38 are arranged on both the upper and lower sides of the ball, the difference is that the magnetic body 37 is attached to one of the upper and lower parts of the ball 34 instead of the magnet. have.
  • the magnetic body 37 in place of the magnet attached to either one of the upper and lower portions of the ball 34 as shown in FIGS. 6 and 7 between the magnet 36 and the magnetic body 37 attached to the opposite side of the magnetic body 37.
  • the centering is implemented by the attraction force, which is the same as the first embodiment, but is advantageous in terms of unit cost as the magnetic material is used instead of the magnet, and the force that overcomes the attraction force during the vibration correction driving, that is, the driving load Compared to the embodiment 1 will be reduced.
  • the magnetic body may be a sphere 37-1 having a size corresponding to the ball 34 as shown in FIG. 6 or a circular or polygonal solid structure 37-2 having a predetermined thickness as shown in FIG.
  • the ball 34, the magnet 36, and the magnetic bodies 37- ⁇ 1 and 37-2 are preferably arranged on the coaxial line so that their centers coincide with each other.
  • the magnetic body 37 is attached to the upper surface of the upper ball seat 32 and the magnet 36 is attached to the lower surface of the lower ball seat 30 is illustrated as an example, but the magnet 36 and the magnetic body 37 are illustrated. Even if the position of the) can be exerted in the same way, as in the second embodiment, the upper and lower ball seats 30 and 32 are formed of a non-magnetic conductor so that the fixing part 1 and the movable part 2 are Of course, it can also be configured to be electrically connected.
  • the ball guides the planar motion of the movable part with respect to the drive part, there is no need for a middle guide, the configuration is simple and advantageous to the miniaturization and weight of the product, and the wire suspension method Unlike the drop impact, there is no fear that the part supporting the plane motion of the movable part relative to the driving part may be damaged, thereby increasing the durability and reliability of the product.
  • permanent magnets are mounted on each of the driving and movable parts around the ball, and centering is performed using a manpower acting therebetween to restore the driving part to the optical axis alignment position.
  • a separate part restoration spring
  • the ball guiding the two-dimensional planar motion of the driving part can be restored to a designated position at all times without being biased to one side under the influence of the magnetic field of the upper and lower parts or the upper and lower permanent magnets (or permanent magnets and yokes). Accordingly, driving interference due to the bias of the ball can be avoided, thereby improving the dynamic characteristics of the driving part, and stable and accurate image stabilization can be achieved.
  • Base 15 X axis shake correction drive unit

Abstract

Disclosed is a stabilizing device for shaking of a camera. A stabilizing device for shaking of a camera, according to an embodiment of the present invention, comprises: a lower ball seat provided on a stator that has an image sensor mounted thereon; an upper ball seat provided on a mover that has a lens barrel installed thereon and performs a two-dimensional planar movement on the stator; and a ball formed from a magnetic material and rolling between the lower ball seat and upper ball seat, wherein a lower magnet and an upper magnet are attached, in correspondence with the ball, to the lower side of the lower ball seat and the upper side of the upper ball seat, respectively.

Description

손 떨림 보정 장치Image stabilization device
본 발명은 카메라의 손 떨림 보정 장치에 관한 것으로, 특히 휴대용 모바일 기기의 소형 카메라로 정지 화상을 촬영할 시 발생되는 손 떨림을 보정해 상 흔들림이 없는 화상을 촬영할 수 있도록 하는 손 떨림 보정 장치에 관한 것이다.The present invention relates to a camera shake correction apparatus, and more particularly, to a camera shake correction apparatus for compensating for hand shake caused when a still image is taken by a small camera of a portable mobile device so that an image without image shake can be taken. .
최근의 스마트 폰과 같은 휴대용 단말기(이하, '모바일' 이라 함)는, 그 기술의 발전과 더불어 단순한 전화 기능뿐만 아니라, 음악, 영화, TV, 게임 등이 탑재되며 멀티 컨버젼스화 되고 있으며, 멀티 컨버젼스로의 전개를 이끌어 가는 요소 중의 하나가 카메라 렌즈 모듈(camera lens module)이다.In recent years, portable terminals such as smartphones (hereinafter referred to as 'mobile') are being multi-converged and equipped with music, movies, TVs and games as well as simple telephone functions with the development of the technology. One of the factors driving the development of the furnace is the camera lens module.
모바일에 탑재되는 카메라 렌즈 모듈은, 사용자 요구에 의한 고화소 및 고기능 중심으로의 최근 변화에 부합하기 위해 자동 초점 기능(AUTO FOCUS: AF), 광학 줌 기능(OPTICAL ZOOM) 등과 같은 다양한 부가 기능을 갖춘 구조로 변화되고 있다. 특히 최근에는 손 떨림 보정(OPTICAL IMAGE STABILIZER)을 모바일 크기에 구현하려는 시도가 다각도로 진행되고 있다. The camera lens module mounted on the mobile is equipped with various additional functions such as auto focus function (AUTO FOCUS: AF), optical zoom function (OPTICAL ZOOM), etc. in order to meet the recent changes to high pixel and high function centered on user's request. Is changing. Recently, various attempts have been made to implement OPTICAL IMAGE STABILIZER in mobile size.
손 떨림 보정 기술은 카메라 모듈을 구성하는 보정렌즈의 초점을 손 떨림에 대응하는 방향으로 움직이도록 자동 제어함으로써 촬상 이미지의 해상도를 최적으로 유지시키는 기술이다. 이러한 손 떨림 보정기술의 구현을 위해 모바일 기기에 적용되는 카메라 모듈에는 손 떨림 보정용 엑츄에이터가 탑재된다.The image stabilization technology automatically maintains the resolution of the captured image by automatically controlling the focus of the correction lens constituting the camera module to move in a direction corresponding to the hand shake. The camera module applied to the mobile device to implement the image stabilization technology is equipped with an image stabilization actuator.
손 떨림 보정용 엑츄에이터 중 자기장과 전기장의 상호작용을 이용한 VCM(Voice Coil Motor) 타입이 잘 알려져 있다. VCM 타입은 보통, 대면 배치되는 코일과 자성체로 자기회로를 구성하고, 자기회로가 발생시키는 전자기력을 이용해 렌즈가 실장된 구동파트(mover)를 고정파트(stator)에 대해 평면 이동시켜 떨림에 대응하는 보정이 구현되도록 한다.Among the vibration stabilization actuators, a VCM (Voice Coil Motor) type using a magnetic field and an electric field is well known. In the VCM type, a magnetic circuit is usually composed of a coil and a magnetic body disposed to face each other, and the moving part of the lens mounted plane is moved in a plane with respect to the fixed part by using the electromagnetic force generated by the magnetic circuit to cope with the tremor. Allow calibration to be implemented.
일반적으로는 X, Y 2축 방향으로 구동파트를 움직여 보정이 행해질 수 있도록, 2축 방향으로 대면하는 두 쌍, 총 네 개의 자기회로를 적용하는 방식이 채택되고 있으며, 고정파트에 대한 구동파트의 평면운동을 지지하고 구동파트의 2축 방향 움직임에 대한 복원력을 발생시켜 원위치에 정렬될 수 있도록 서스펜션 와이어를 이용하는 기술이 잘 알려져 있다.In general, four magnetic circuits, two pairs facing each other in the two axis directions, are adopted to move the driving parts in the X and Y biaxial directions so that correction can be performed. It is well known to use a suspension wire to support planar motion and generate a restoring force for the biaxial movement of the drive part so that it can be aligned in situ.
종래 서스펜션 와이어를 이용하는 손 떨림 보정장치는 일본공개특허 제2011-065140호의 '카메라의 손 떨림 보정 장치', 한국공개특허 제2012-0045333호의 '손떨림 보정 기능이 구비된 영상촬상 장치' 및 한국공개특허 제2012-0047384호의 '손떨림 보정 기능이 구비된 영상촬상 장치'를 비롯하여 다수의 기술이 다양한 형태로 제안된 바 있다. The conventional image stabilization device using a suspension wire is a camera shake correction device of Japanese Patent Application Laid-Open No. 2011-065140, an image pickup device with a camera shake correction function of Korea Patent Publication No. 2012-0045333 and Korea Patent Publication A number of techniques have been proposed in various forms, including the image pickup apparatus with image stabilization function of 2012-0047384.
그러나 서스펜션 와이어 방식의 종래 손 떨림 보정 장치는, 외부 충격 등에 의해 상기 서스펜션 와이어가 쉽게 휘어지거나 단선되어 버리는 등 내구성의 문제가 지적되고 있으며, 구성이 상당히 복잡하고, 복수의 서스펜션 와이어가 차지하는 공간만큼 카메라 모듈의 크기가 커질 수 밖에 없어 소형화에 적합하지 못하다는 단점이 있다.However, in the conventional device for image stabilization of suspension wire type, durability problems such as the suspension wire is easily bent or broken due to external impact or the like have been pointed out. There is a disadvantage that it is not suitable for miniaturization because the size of the module must be large.
또한, 구동파트와 고정파트를 서스펜션 와이어로 연결하는 조립 작업에 있어서도, 별도의 전용지그(jig)에 고정파트와 구동파트를 이격되게 고정시킨 상태에서 서스펜션 와이어의 양단을 상기 고정파트와 구동파트에 각각 솔더링(Soldering)하여 연결해야 했기 때문에, 조립성이 현저히 떨어지고 조립에 많은 시간이 소요되는 단점이 있다.In addition, in the assembling work connecting the driving part and the fixed part with the suspension wire, both ends of the suspension wire are fixed to the fixed part and the driving part in a state in which the fixed part and the driving part are fixed to a separate dedicated jig apart from each other. Since each soldering (Soldering) had to be connected, there is a disadvantage that the assembly is remarkably inferior and takes a lot of time to assemble.
종래 고정파트에 대한 구동파트의 평면운동을 지지하는 다른 유형의 기술로서, 구동파트와 고정파트 사이에 고정파트에 대한 구동파트의 2축 방향 움직임을 지지하도록 볼(Ball)을 개재하여 손 떨림 보정을 구현하는 기술이 있다. 이는 상기 서스펜션 와이어 방식과는 다르게 외부 충격에 의한 단선의 우려가 전혀 없어 높은 내구성을 가진다는 특징이 있다.As another type of technology for supporting the planar motion of the driving part relative to the conventional fixed part, hand shake compensation is provided through a ball to support the biaxial movement of the driving part relative to the fixed part between the driving part and the fixed part. There is a technique to implement this. Unlike the suspension wire method, there is no fear of disconnection due to external impact, and thus has high durability.
그러나 종래 알려진 볼 타입의 손 떨림 보정 장치는, 고정파트와 구동파트 사이에서 구동파트의 평면운동을 가이드하는 미들 가이드(Middle guide)와, 구동파트의 2축 방향 움직임에 대해 복원력을 발생시켜 구동파트의 센터링(Centering, 광축 정렬 위치에 복원시키는 기술)을 구현하는 스프링이 요구되는 등 이를 구성하는 부품수가 많고 구성이 상당히 복잡하다.However, the conventional ball-type image stabilization device includes a middle guide for guiding the planar movement of the driving part between the fixed part and the driving part, and generating a restoring force for the biaxial movement of the driving part. This requires a number of springs to implement centering (a technique for restoring the alignment of the optical axis).
또한, 미들 가이드와 스프링(떨림 복원용 판상 또는 코일 스프링) 등이 적용됨에 따라, 미들 가이드와 스프링이 차지하는 공간만큼 카메라 모듈의 크기가 커질 수 밖에 없어 제품 소형화가 어렵고, 제작에 많은 비용이 소요되며, 조립이 용이하지 못해 양산성이 떨어지는 등 제품의 경쟁력 확보에 있어 여러 가지 어려움이 지적되고 있다.   In addition, as the middle guide and the springs (plates for restoring vibration or coil springs) are applied, the size of the camera module must be as large as the space occupied by the middle guide and the spring, making it difficult to miniaturize the product and cost a lot. In addition, various difficulties have been pointed out in securing the competitiveness of the product, such as lack of mass production because it is not easy to assemble.
본 발명이 해결하고자 하는 기술적 과제는, 구동파트에 대한 가동파트의 2차원 평면운동을 볼이 가이드하는 방식으로서, 미들 가이드가 필요 없는 단순한 구성이면서도 안정적이고 정확한 손떨림 보정 구동 제어가 가능한 손 떨림 보정 장치를 제공하고자 하는 것이다.The technical problem to be solved by the present invention is a method of the ball guides the two-dimensional plane motion of the movable part with respect to the drive part, a simple configuration that does not require a middle guide, yet stable and accurate image stabilization drive control is possible Is to provide.
본 발명이 해결하고자 하는 다른 기술적 과제는, 구동파트와 가동파트의 영구자석(또는 영구자석과 자성체)들 간 인력을 이용하여 센터링을 구현하는 방식으로서, 센터링을 위한 별도 부품(복원 스프링)의 사용을 배제할 수 있는 손 떨림 보정 장치를 제공하고자 하는 것이다.Another technical problem to be solved by the present invention is to implement the centering by using the attraction between the permanent magnet (or permanent magnet and magnetic material) of the drive part and the movable part, the use of a separate component (restore spring) for the centering It is to provide a hand shake correction device that can eliminate the.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 구동파트의 2차원 평면운동을 가이드하는 볼이 그 상부와 하부 또는 상부 또는 하부의 영구자석(또는 영구자석과 요크)의 자계의 영향을 받아 일측으로 치우침이 없이 항상 지정된 위치로 복원 가능하며, 따라서 볼에 의한 구동간섭을 최소화할 수 있는 손 떨림 보정 장치를 제공하고자 하는 것이다.Another technical problem to be solved by the present invention, the ball for guiding the two-dimensional planar motion of the driving part to one side under the influence of the magnetic field of the upper and lower or upper or lower permanent magnet (or permanent magnet and yoke) It is possible to restore to a designated position at all times without bias, and therefore, to provide a hand shake correction device capable of minimizing driving interference by a ball.
과제의 해결 수단으로서 본 발명의 일 측면에 따르면, According to one aspect of the present invention as a means for solving the problem,
이미지 센서를 실장한 고정부(STATOR)에 구비되는 하부 볼시트;A lower ball seat provided in a fixing part in which an image sensor is mounted;
렌즈배럴이 탑재되고 상기 고정부 위에서 2차원 평면운동을 하는 가동부(MOVER)에 구비되는 상부 볼시트; An upper ball seat mounted on a lens barrel and provided on a movable part (MOVER) for performing a two-dimensional planar motion on the fixing part;
상기 하부 볼시트와 상부 볼시트 사이에서 구름운동을 하는 자성체 재질의 볼;을 포함하며,Includes; ball of the magnetic material to perform a rolling motion between the lower ball sheet and the upper ball sheet,
상기 하부 볼시트 하면과 상부 볼시트 상면에 상기 볼에 대응하여 하부 자석과 상부 자석이 각각 부착된 것을 특징으로 하는 손 떨림 보정 장치를 제공한다.The lower ball seat and the upper ball seat upper surface is provided with a hand shake correction device, characterized in that attached to the lower magnet and the upper magnet, respectively.
본 발명의 일 측면에 따른 실시 예에서, 구동코일과 구동자석으로 구성된 떨림 보정 구동부에 의해 상기 가동부가 고정부 위에서 2차원 평면운동을 할 수 있다.In an embodiment according to an aspect of the present invention, the movable part may perform a two-dimensional planar motion on the fixed part by a vibration correction driver including a driving coil and a driving magnet.
이때, 상기 구동코일은 고정부에 배치되고 상기 구동자석은 가동부에 배치될 수 있다.In this case, the driving coil may be disposed in the fixed portion and the driving magnet may be disposed in the movable portion.
다르게, 상기 구동코일과 구동자석이 상기 가동부에 배치될 수 있다.Alternatively, the driving coil and the driving magnet may be disposed in the movable part.
또한, 상기 구동자석의 측면과 후면을 둘러싸도록 가동부에 설치되는 요크;를 더 포함할 수 있다.In addition, the yoke is installed on the movable portion to surround the side and the rear of the drive magnet; may further include a.
본 발명의 일 측면에 적용된 상기 볼, 하부 자석, 상부 자석은 그 중심이 서로 일치하도록 동축선 상에 배치되는 구성일 수 있다.The ball, the lower magnet, and the upper magnet applied to an aspect of the present invention may be configured to be disposed on a coaxial line so that their centers coincide with each other.
또한, 상기 상부 볼시트와 하부 볼시트 중 적어도 하나에 상기 볼의 일부가 노출되도록 둘러싸는 볼 수용부;가 더 구비될 수 있다.In addition, at least one of the upper ball seat and the lower ball seat ball receiving portion surrounding the exposed portion of the ball; may be further provided.
바람직하게는, 상기 볼을 사이에 두고 대향되는 상기 하부 자석 상부와 상부 자석 하부의 극성이 서로 달라 인력(引力)을 형성하는 구성일 수 있다. Preferably, the upper and lower magnets opposed to each other with the ball interposed therebetween have polarities different from each other to form a attraction force.
또한, 상기 상부 볼시트와 하부 볼시트는 비자성 도체 또는 볼과 접촉하는 면에 비자성 도체가 얇은 막두께로 증착된 사출물일 수 있다. In addition, the upper ball sheet and the lower ball sheet may be a nonmagnetic conductor or an injection molded product having a thin film thickness of the nonmagnetic conductor on the surface in contact with the ball.
이 경우, 상기 하부 볼시트에 외부전원이 연결되며, 상기 하부 볼시트에 연결된 외부전원이 공급하는 전류가 상기 볼과 상부 볼시트를 거쳐 가동부 구동을 위한 전류로 공급될 수 있다.In this case, an external power source is connected to the lower ball seat, and a current supplied by an external power source connected to the lower ball seat may be supplied as a current for driving the movable part through the ball and the upper ball seat.
과제의 해결 수단으로서 본 발명의 일 측면에 따른 다른 실시 예에 의하면,According to another embodiment of the present invention as a means of solving the problem,
이미지 센서를 실장한 고정부(STATOR)에 구비되는 하부 볼시트;A lower ball seat provided in a fixing part in which an image sensor is mounted;
렌즈배럴이 탑재되고 상기 고정부 위에서 2차원 평면운동을 하는 가동부(MOVER)에 구비되는 상부 볼시트; An upper ball seat mounted on a lens barrel and provided on a movable part (MOVER) for performing a two-dimensional planar motion on the fixing part;
상기 하부 볼시트와 상부 볼시트 사이에서 구름운동을 하는 자성체 재질의 볼;을 포함하며,Includes; ball of the magnetic material to perform a rolling motion between the lower ball sheet and the upper ball sheet,
상기 하부 볼시트 하면과 상부 볼시트 상면 중 어느 한 면에 상기 볼에 대응하여 자석이 부착되고, 다른 한 면에 상기 자석에 대응하여 자성체가 부착된 것을 특징으로 하는 손 떨림 보정 장치를 제공한다.Provided is a hand shake correction device, characterized in that a magnet is attached to one of the lower surface of the lower ball seat and the upper surface of the upper ball sheet and a magnetic body is attached to the other surface to correspond to the magnet.
본 발명의 일 측면에 따른 다른 실시 예에서, 구동코일과 구동자석으로 구성된 떨림 보정 구동부에 의해 상기 가동부가 고정부 위에서 2차원 평면운동을 할 수 있다.In another embodiment according to an aspect of the present invention, the movable part may perform a two-dimensional planar motion on the fixing part by a vibration correction driver including a driving coil and a driving magnet.
이때, 상기 구동코일은 고정부에 배치되고 상기 구동자석은 가동부에 배치될 수 있다.In this case, the driving coil may be disposed in the fixed portion and the driving magnet may be disposed in the movable portion.
이와는 다르게, 상기 구동코일과 구동자석이 상기 가동부에 배치될 수 있다.Alternatively, the driving coil and the driving magnet may be disposed in the movable part.
다른 실시 예에서 상기 구동자석의 측면과 후면을 둘러싸도록 가동부에 설치되는 요크;를 더 포함할 수 있다.In another embodiment, the yoke is installed on the movable portion to surround the side and the rear of the drive magnet; may further include.
또한, 상기 볼, 자석, 자성체는 그 중심이 일치하도록 동축선 상에 배치되는 구성일 수 있다. In addition, the ball, magnet, magnetic material may be configured to be arranged on the coaxial line so that the center thereof.
바람직하게는, 상기 상부 볼시트와 하부 볼시트 중 적어도 하나에는 상기 볼의 일부가 노출되도록 둘러싸는 볼 수용부;가 더 구비될 수 있다. Preferably, at least one of the upper ball seat and the lower ball seat may further include a ball receiving portion surrounding the exposed portion of the ball.
본 실시 예에 적용된 상기 자성체는 상기 볼과 대응되는 크기의 구체이거나, 소정의 두께를 갖는 원형 또는 다각형 입체 구조물일 수 있다.The magnetic material applied in the present embodiment may be a sphere of a size corresponding to the ball, or may be a circular or polygonal three-dimensional structure having a predetermined thickness.
또한, 상기 상부 볼시트와 하부 볼시트는 비자성 도체 또는 볼과 접촉하는 면에 비자성 도체가 얇은 막두께로 증착된 사출물일 수 있다.In addition, the upper ball sheet and the lower ball sheet may be a nonmagnetic conductor or an injection molded product having a thin film thickness of the nonmagnetic conductor on the surface in contact with the ball.
이 경우, 상기 하부 볼시트에 외부전원이 연결되며, 상기 하부 볼시트에 연결된 외부전원이 공급하는 전류가 상기 볼과 상부 볼시트를 거쳐 상기 가동부 구동을 위한 전류로 공급될 수 있다.In this case, an external power source is connected to the lower ball seat, and a current supplied by an external power source connected to the lower ball seat may be supplied as a current for driving the movable part through the ball and the upper ball seat.
과제의 해결을 위한 수단으로서 본 발명의 다른 측면에 따르면, 전술한 일 측면에 따른 손 떨림 보정 장치를 포함하는 카메라 렌즈 모듈을 제공한다.According to another aspect of the present invention as a means for solving the problem, it provides a camera lens module comprising a hand shake correction device according to the above aspect.
[유리한 효과][Favorable effect]
본 발명의 실시 예에 의하면, 구동파트에 대한 가동파트의 평면운동을 볼이 가이드하는 방식으로서, 미들 가이드가 필요 없어 구성이 단순하고 제품 소형화와 경량화에 유리하며, 와이어 서스펜션 방식과는 다르게 낙하 충격에도 구동파트에 대한 가동파트의 평면운동을 지지하는 부분이 파손될 우려가 없어 제품의 내구성과 신뢰성을 증대시킬 수 있다.According to an embodiment of the present invention, the ball guides the planar motion of the movable part with respect to the driving part, and since the middle guide is not required, the configuration is simple, and it is advantageous to miniaturization and light weight of the product, and unlike the wire suspension method, the drop impact Edo, there is no risk of breakage of the part supporting the planar movement of the movable part with respect to the driving part, thereby increasing the durability and reliability of the product.
또한, 볼을 중심으로 구동파트와 가동파트 각각에 영구자석(또는 영구자석과 자성체)들을 실장하여 이들 사이에 작용하는 인력을 이용하여 센터링(구동파트를 광축 정렬 위치에 복원시키는 기술)을 구현하는 방식으로서, 종래의 볼 타입과는 다르게 센터링을 위한 별도의 부품(복원 스프링)의 사용을 배제할 수 있어 조립성을 개선할 수 있고 가격 경쟁력을 확보할 수 있다.In addition, permanent magnets (or permanent magnets and magnetic bodies) are mounted on each of the driving and movable parts around the ball, and centering is performed using a manpower acting therebetween to restore the driving part to the optical axis alignment position. As a method, unlike the conventional ball type, it is possible to exclude the use of a separate part (restoration spring) for centering, thereby improving the assemblability and securing the price competitiveness.
또, 구동파트의 2차원 평면운동을 가이드하는 볼이 그 상부와 하부 또는 상부 또는 하부의 영구자석(또는 영구자석과 요크)의 자계의 영향을 받아 일측으로 치우치지 않고 항상 지정된 위치로 복원 가능함에 따라, 볼의 치우침에 의한 구동간섭을 회피할 수 있고, 이에 따라 구동파트의 동특성을 개선할 수 있으며 안정적이고 정확한 손 떨림 보정이 이루어질 수 있다.Also, the ball guiding the two-dimensional planar motion of the driving part can be restored to a designated position at all times without being biased to one side under the influence of the magnetic field of the upper and lower parts or the upper and lower permanent magnets (or permanent magnets and yokes). Accordingly, driving interference due to the bias of the ball can be avoided, thereby improving the dynamic characteristics of the driving part, and stable and accurate image stabilization can be achieved.
도 1은 본 발명에 따른 손 떨림 보정 장치의 바람직한 실시 예에 따른 부분 분해 사시도.1 is a partially exploded perspective view according to a preferred embodiment of the hand shake correction device according to the present invention.
도 2는 도 1의 손 떨림 보정 장치를 저부에서 바라본 부분 분해 사시도.FIG. 2 is a partially exploded perspective view of the camera shake correction apparatus of FIG. 1 viewed from the bottom; FIG.
도 3은 도 1에 도시된 손 떨림 보정 장치의 결합 측면도.3 is a side view of the coupling of the image stabilization device shown in FIG.
도 4는 도 1 내지 도 3에서 고정부에 대한 가동부의 평면운동을 가이드하는 부분의 바람직한 제1 실시 예를 나타낸 개략도.Figure 4 is a schematic view showing a first preferred embodiment of the part for guiding the planar movement of the movable portion with respect to the fixing in Figures 1-3.
도 5는 고정부에 대한 가동부의 평면운동을 가이드하는 부분의 바람직한 제2 실시 예를 나타낸 개략도. 5 is a schematic view showing a second preferred embodiment of the part for guiding the planar motion of the movable part relative to the fixing part;
도 6은 고정부에 대한 가동부의 평면운동을 가이드하는 부분의 바람직한 제3 실시 예를 나타낸 개략도.6 is a schematic view showing a third preferred embodiment of the part for guiding the planar motion of the movable part relative to the fixing part;
도 7은 고정부에 대한 가동부의 평면운동을 가이드하는 부분의 바람직한 제4 실시 예를 나타낸 개략도.7 is a schematic view showing a fourth preferred embodiment of a part for guiding the planar motion of the movable part relative to the fixing part;
이하, 본 발명의 바람직한 실시 예를 상세히 설명하기로 한다. 본 발명을 설명함에 있어 공지된 구성에 대해서는 그 상세한 설명은 생략하며, 또한 발명의 요지를 불필요하게 흐릴 소지가 있는 구성에 대해서도 그 상세한 설명은 생략하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail. In the description of the present invention, a detailed description of known configurations will be omitted, and a detailed description thereof will be omitted for configurations that may unnecessarily obscure the subject matter of the present invention.
설명의 편의를 위해 3축 방향 좌표계를 사용하여 설명하기로 하되, 도면에 도시된 3축 방향 좌표계에서 Z축은 광축 방향으로 정의하며, X 축(제1 방향)은 광축 방향인 상기 Z축에 대해 직교하는 손 떨림 보정 방향, 그리고 Y축(제2 방향)은 동평면 상에서 상기 X축에 대해 직교하는 다른 손 떨림 보정 방향으로 정의하여 설명하기로 한다.For convenience of description, a description will be given using a three-axis coordinate system, in which the Z-axis is defined as the optical axis direction, and the X-axis (first direction) with respect to the Z-axis is the optical axis direction. The orthogonal image stabilization direction and the Y axis (second direction) will be described by defining another image stabilization direction orthogonal to the X axis on the coplanar plane.
본 발명의 손 떨림 보정 장치는 모바일용 초소형 카메라 렌즈 모듈에 적용된다. 구체적으로는, 카메라 렌즈 모듈로 정지 화상을 촬영할 때 생긴 손 떨림을 보정하여 상 흔들림이 없는 선명한 화질의 사진을 얻을 수 있도록 한 것으로, 렌즈 또는 이미지센서에 각각 광축과 수직한 방향으로 상대 변위를 부여하여 손 떨림에 대한 보정을 구현한다. The image stabilization apparatus of the present invention is applied to a compact camera lens module for a mobile device. Specifically, the camera's lens module compensates for the hand shake caused when shooting still images, so that a clear picture without image shake can be obtained. A relative displacement is given to the lens or the image sensor in a direction perpendicular to the optical axis, respectively. To compensate for hand shake.
먼저 첨부도면 도 1 내지 도 3을 참조하여 본 발명에 따른 손 떨림 보정 장치의 바람직한 실시 예에 대해 살펴보기로 한다.First, a preferred embodiment of a hand shake correction apparatus according to the present invention will be described with reference to FIGS. 1 to 3.
도 1은 본 발명에 따른 손 떨림 보정 장치의 바람직한 실시 예에 따른 부분 분해 사시도이며, 도 2는 도 1의 손 떨림 보정 장치를 저부에서 바라본 부분 분해 사시도이다. 그리고 도 3은 도 1에 도시된 손 떨림 보정 장치의 결합 측면도이다.1 is a partially exploded perspective view according to a preferred embodiment of the hand shake correction device according to the present invention, Figure 2 is a partial exploded perspective view of the hand shake correction device of FIG. 3 is a side view of the coupling of the image stabilization device shown in FIG.
도 1 내지 도 3을 참조하면, 본 발명의 실시 예에 따른 손 떨림 보정 장치는 크게, 이미지 센서가 실장된 고정부(STATOR, 1)와 렌즈배럴을 탑재한 가동부(MOVER, 2)로 구성된다. 손 떨림 발생 시 고정부(1) 상에서 상기 가동부(2)가 고정부(1)에 대해 손 떨림에 대응하는 방향으로 2차원 평면운동을 하며, 이를 통해 손 떨림에 대응하는 보정이 구현된다.1 to 3, the image stabilization apparatus according to an exemplary embodiment of the present invention is largely comprised of a fixing part (STATOR) 1 on which an image sensor is mounted and a moving part (MOVER) 2 on which a lens barrel is mounted. . When the hand shake occurs, the movable part 2 on the fixing part 1 performs a two-dimensional planar motion in the direction corresponding to the hand shake with respect to the fixing part 1, thereby implementing correction corresponding to the hand shake.
고정부(1)에 대한 가동부(2)의 평면운동은 구동코일(10)과 구동자석(20)으로 구성된 떨림 보정 구동부(15)에 의해 구현될 수 있다. 이때 구동코일(10)과 구동자석(20)은, 도면과 같이 고정부(1)와 가동부(2) 각각에 서로 대응되는 쌍을 이루도록 설치되거나, 도시하지는 않았으나 가동부(2)에 별도의 하우징을 구성하고 하우징과 가동부(2)에 구동코일(10)과 구동자석(20)을 각각 실장하는 구성 등 다양한 변형이 있을 수 있다.The planar motion of the movable part 2 relative to the fixed part 1 may be implemented by the vibration correction driver 15 composed of the driving coil 10 and the driving magnet 20. In this case, the driving coil 10 and the driving magnet 20 are installed to form a pair corresponding to each of the fixed part 1 and the movable part 2 as shown in the drawing, or although not shown, a separate housing is provided in the movable part 2. There may be a variety of modifications, such as the configuration of mounting the drive coil 10 and the drive magnet 20 in the housing and the movable portion (2).
구동코일(10)에 전류가 인가된 때 상기 구동코일(10)이 발생시킨 전기장과 상기 구동자석(20)의 자기장 사이의 상호작용에 의해 고정부(1)에 대한 가동부(2)의 2차원 평면운동이 구현되며, 고정부(1)에 대한 가동부(2)의 평면운동을 가이드하는 가이드부(3)에 실장된 자석들(또는 자석과 자성체, 후술 함)에 의해 센터링(가동부를 광축 정렬 위치에 복원시키는 기술)이 구현된다.2D of the movable part 2 with respect to the fixed part 1 by the interaction between the electric field generated by the drive coil 10 and the magnetic field of the drive magnet 20 when a current is applied to the drive coil 10. Planar motion is realized, and centering is performed by magnets (or magnets and magnetic bodies, which will be described later) mounted on the guide part 3 for guiding the planar motion of the movable part 2 with respect to the fixed part 1 (aligning the movable part with the optical axis). Restoring in place) is implemented.
고정부(STATOR, 1)는 코일(10) 및 상기 가동부(2)에 탑재되는 렌즈배럴(22)에 대응하여 이미지 센서(미도시)를 실장한 가요성 기판(미도시)과, 가요성 기판(미도시)이 탑재되는 베이스(14)를 포함할 수 있다. 가요성 기판은 본 발명의 손 떨림 보정 장치가 적용된 카메라 렌즈 모듈의 외부로 연장되고 모바일 기기의 메인 기판과 전기적으로 연결된다.The fixing part 1 is a flexible substrate (not shown) in which an image sensor (not shown) is mounted in response to the coil 10 and the lens barrel 22 mounted on the movable part 2, and a flexible substrate. It may include a base 14 is mounted (not shown). The flexible substrate extends outside of the camera lens module to which the image stabilization apparatus of the present invention is applied and is electrically connected to the main substrate of the mobile device.
도 1 내지 도 3과 같이 고정부(1)에 구동코일을 실장한 구성인 경우에 상기 구동코일(10)은, 베이스 상면 가장자리에 상기 렌즈배럴(22)의 광축과 직교하는 제1 방향(X축 방향)에 실장되는 X축 구동코일(10a)과, 제1 방향과 직교하는 제2 방향(Y축 방향)에 실장되는 Y축 구동코일(10b)로 구성될 수 있으며, 두 구동코일(10a)(10b)에 대응하여 가동부(2)의 측면에는 X축, Y축 구동자석(20a)(20b)이 각각 실장될 수 있다. 1 to 3, in the case where the driving coil is mounted on the fixing part 1, the driving coil 10 may have a first direction X perpendicular to the optical axis of the lens barrel 22 at the edge of the base upper surface. X-axis drive coil 10a mounted in the axial direction) and Y-axis drive coil 10b mounted in the second direction (Y-axis direction) orthogonal to the first direction, and two drive coils 10a X-axis, Y-axis driving magnets (20a, 20b) may be mounted on the side of the movable portion (2) corresponding to (10b), respectively.
X축 구동코일(10a)의 대향부 측과 Y축 구동코일(10b)의 대향부 측 고정부(1)의 베이스 상에는 상기 제1 방향과 제2 방향 각각에 대한 가동부(2)의 위치 변화, 구체적으로는 상기 X축 구동코일(10a)에 대한 X축 구동자석(20a)의 위치변화와 Y축 구동코일(10b)에 대한 Y축 구동자석(20b)의 위치 변화를 검출하는 제1 위치 검출 센서(11a)와 제2 위치 검출 센서(11b)가 각각 실장될 수 있다. On the base of the opposite side of the X-axis drive coil 10a and the opposite side-side fixing part 1 of the Y-axis drive coil 10b, the positional change of the movable part 2 in each of the first and second directions, Specifically, the first position detection detects a change in the position of the X-axis driving magnet 20a with respect to the X-axis driving coil 10a and a change in the position of the Y-axis driving magnet 20b with respect to the Y-axis driving coil 10b. The sensor 11a and the second position detection sensor 11b may be mounted, respectively.
제1 위치 검출 센서(11a) 및 제2 위치 검출 센서(11b)는 각 센서에 대응되는 자석의 자기장 변화로서 고정부(1)에 대한 가동부(2)의 위치를 실시간으로 인식하며, 초기 위치에 대한 상기 인식된 위치 값에 기초하여 상기 떨림 보정 구동부(15)에 대한 피드백 제어가 수행되도록 함으로써 떨림에 대한 보정이 정확하게 구현되도록 한다.The first position detection sensor 11a and the second position detection sensor 11b recognize in real time the position of the movable portion 2 with respect to the fixed portion 1 as a change in the magnetic field of the magnet corresponding to each sensor. Feedback control to the shake correction driver 15 is performed based on the recognized position value for the shake correction to be accurately implemented.
가동부(2)에 실장되는 각각의 구동자석(20)(X축 구동자석 및 Y축 구동자석)은 해당 자석에서 발생되는 자기력이 이에 대응되는 구동코일(10)에 집중되도록 후면부에 요크(Yoke, 26)를 실장할 수 있다. 요크(26)는 바람직하게, 구동자석(20)의 후면뿐 아니라 양 측면을 둘러싸는 형태로 제공됨으로써 각 구동자석(20)의 자력이 후술하는 가이드부(3)의 자석에 영향을 미치지 않도록 차폐하는 역할도 한다.Each driving magnet 20 (X-axis driving magnet and Y-axis driving magnet) mounted on the movable part 2 has a yoke (Yoke) in the rear portion such that the magnetic force generated in the magnet is concentrated on the corresponding driving coil 10. 26) can be mounted. The yoke 26 is preferably provided in a form that surrounds both sides of the driving magnet 20 as well as the rear surface of the driving magnet 20 so that the magnetic force of each driving magnet 20 does not affect the magnet of the guide unit 3 to be described later. It also plays a role.
가동부(MOVER, 2)에는 광경로를 형성한 렌즈배럴(22)이 탑재된다. 가동부(2)는 바람직하게, 상기 구동코일(10)에 대응하여 둘레면에 상기 구동자석(20)을 실장한 떨림 보정 캐리어(24)를 포함한다. 경우에 따라서는 렌즈배럴(22)이 실장되며 상기 떨림 보정 캐리어(24)에 렌즈배럴(22)의 광축방향을 따라 진퇴 가능하게 수용되는 자동 초점 캐리어(도시 생략)를 더 포함할 수도 있다.The lens barrel 22 in which the optical path is formed is mounted in the movable part MOVER 2. The movable part 2 preferably includes a shake correction carrier 24 mounted with the drive magnet 20 on a circumferential surface corresponding to the drive coil 10. In some cases, the lens barrel 22 may be mounted, and the shake correction carrier 24 may further include an auto focus carrier (not shown) that is retractably received along the optical axis direction of the lens barrel 22.
렌즈배럴(22)에는 다수의 렌즈로 이루어진 렌즈군(도시 생략)이 장착되어 있으며, 상기 떨림 보정 캐리어(24)에는 렌즈배럴(22)을 안정적으로 수용할 수 있을 정도 직경을 갖는 홀이 제공될 수 있으며, 떨림 보정 캐리어(24) 내에서의 상기 렌즈배럴의 광축 방향(Z축 방향) 이동은 도시하지 않았으나 자동 초점 구동부를 통해 구현될 수 있다.The lens barrel 22 is equipped with a lens group (not shown) made of a plurality of lenses, and the shake correction carrier 24 is provided with a hole having a diameter sufficient to stably accommodate the lens barrel 22. Although not shown, movement of the lens barrel in the shake correction carrier 24 may be implemented through an auto focus driver.
자동 초점 구동부(Auto Focusing Actuator)는 코일과 자석을 이용해 자기회로를 구성한 VCM(Voice Coil Motor) 방식 외에, 피에죠(Piezo)를 이용한 초음파 모터 방식이나 형상기억합금을 이용한 방식과 같이 랜즈배럴을을 광축 방향으로 구동시켜 자동 초점이 수행될 수 있도록 하는 공지된 모든 형태 수단을 포함할 수 있다.In addition to the VCM (Voice Coil Motor) method, which is composed of magnetic circuits using coils and magnets, the Auto Focusing Actuator uses a lens barrel like the ultrasonic motor method using piezo or the shape memory alloy method. It is possible to include all known form means for driving in the optical axis direction so that autofocus can be performed.
카레라 렌즈 모듈 구현 시 상기 가동부(2)를 둘러싸는 구조로 실드 커버(4)(도시 생략)가 결합됨으로써, 가동부(2) 및 고정부(1)에 실장된 부품들을 외부로부터 보호하고 외부 전자파를 차단하여 손 떨림 보정을 위한 구동 시 고정부(1)에 실장된 구동코일(10)과 가동부(2)에 실장된 구동자석(20) 사이에 발생되는 전자기력에 영향이 미치지 않도록 한다. When the Carrera lens module is implemented, the shield cover 4 (not shown) is coupled to the structure surrounding the movable part 2, thereby protecting the components mounted on the movable part 2 and the fixing part 1 from the outside and protecting external electromagnetic waves. By blocking it, it is possible to prevent the electromagnetic force generated between the driving coil 10 mounted on the fixed part 1 and the driving magnet 20 mounted on the movable part 2 during driving for hand shake correction.
구동코일(10)과 구동자석(20)으로 구성된 떨림 보정 구동부(15)에 의한 고정부(1)에 대한 가동부(2)의 평면운동은 고정부(1)와 가동부(2)에 서로 대응되도록 구비되는 적어도 두 쌍 이상의 볼시트(30)(32)와, 대응되는 볼시트(30)(32) 사이에 각각 개재되어 구름운동을 하는 볼(ball, 34)을 포함하는 가이드부(3)를 통해 안정적으로 구현될 수 있다. The planar movement of the movable part 2 with respect to the fixed part 1 by the vibration correction drive part 15 composed of the drive coil 10 and the drive magnet 20 corresponds to each other in the fixed part 1 and the movable part 2. A guide part 3 including at least two pairs of ball seats 30 and 32 provided therebetween, and a ball 34 which is interposed between the corresponding ball seats 30 and 32 and performs a rolling motion. Can be implemented stably.
고정부(1)와 가동부(2) 각각에 구비되는 상기 볼시트(30)(32)는 바람직하게, 고정부(1)를 구성하는 상기 베이스(14)와 가동부(2)를 구성하는 상기 떨림 보정 캐리어(24) 성형 시 인서트 사출에 의해 일체로 형성되거나, 상기 베이스(14)와 떨림 보정 캐리어(24) 자체가 시트로서 구성될 수 있다. The ball seats 30 and 32 provided on each of the fixed part 1 and the movable part 2 are preferably the vibrations that constitute the base 14 and the movable part 2 constituting the fixed part 1. In forming the correction carrier 24, the base 14 and the vibration correction carrier 24 themselves may be configured as a sheet by insert injection.
상기 가이드부(3)의 구성에 대해서는 해당 도면을 참조하여 실시 예 별로 살펴보기로 한다.The configuration of the guide unit 3 will be described by embodiments with reference to the accompanying drawings.
제1 실시 예First embodiment
도 4는 도 1 내지 도 3에서 고정부에 대한 가동부의 평면운동을 가이드하는 부분의 바람직한 제1 실시 예를 나타낸 개략도이다.Figure 4 is a schematic view showing a first preferred embodiment of the portion for guiding the planar movement of the movable portion with respect to the fixed portion in Figures 1-3.
도 4를 참조하면, 제1 실시 예에 따른 가이드부(3-1)는 상기 고정부(STATOR, 1) 가동부(MOVER, 2)에 서로 대응되도록 구비되는 하부 볼시트(30)와 상부 볼시트(도 1과 도 2에서 도면부호 32), 하부 볼시트(30)와 상부 볼시트(32) 사이에서 구름운동을 하는 자성체 재질의 볼(34)을 포함하며, 상기 하부 볼시트(30)의 하면과 상부 볼시트(32)의 상면에 상기 볼(34)에 대응하여 각각 부착되는 하부 자석(36)과 상부 자석(38)을 구비한다. Referring to FIG. 4, the guide part 3-1 according to the first embodiment includes the lower ball seat 30 and the upper ball seat provided to correspond to each other in the fixing part STATOR 1 and the movable part MOVER 2. 1 and 2, the lower ball seat 30 and the upper ball seat 32 include a magnetic material ball 34 which performs rolling motion between the lower ball seat 30 and the lower ball seat 30. A lower magnet 36 and an upper magnet 38 are respectively attached to the lower surface and the upper surface of the upper ball seat 32 in correspondence with the balls 34.
볼(34), 하부 자석(36), 상부 자석(38)은 그 중심이 서로 일치하도록 동축선(동일 수직선) 상에 배치될 수 있으며, 상기 상부 볼시트(32)와 하부 볼시트(30) 중 적어도 하나에는 고정부(1)에 대한 가동부(2)의 2차원 평면운동 시 상기 볼 시트(30)(32)들 사이에 개재된 볼(34)의 이탈이 저지될 수 있도록 상기 볼(34)의 상부 또는 하부가 노출되도록 볼(34)의 측부를 둘러싸는 볼 수용부(39)가 구비될 수 있다.The ball 34, the lower magnet 36, and the upper magnet 38 may be disposed on a coaxial line (the same vertical line) so that their centers coincide with each other, and the upper ball seat 32 and the lower ball seat 30 At least one of the balls 34 to prevent the separation of the ball 34 interposed between the ball seats 30, 32 during the two-dimensional plane movement of the movable part 2 with respect to the fixing part 1 Ball receiving portion 39 surrounding the side of the ball 34 may be provided so that the top or bottom of the).
볼(34)을 사이에 두고 하부 볼시트(30) 상면과 상부 볼시트(32) 하면에 각각 대향 설치되는 상기 하부 자석(36) 상부와 상부 자석(38) 하부의 극성(極性)이 서로 달라 상호간에 인력(引力)이 작용하도록 구성된다. 즉 하부 자석(36) 상부가 N극이면 상부 자석(38) 하부는 S극이 되며, 반대로 하부 자석(36) 상부가 S극이면 상부 자석(38) 하부는 N극이 된다. The polarities of the upper part of the lower magnet 36 and the lower part of the upper magnet 38 which are respectively installed on the upper surface of the lower ball sheet 30 and the lower surface of the upper ball sheet 32 with the ball 34 therebetween are different from each other. The attraction is configured to work with each other. That is, if the upper portion of the lower magnet 36 is the N pole, the lower portion of the upper magnet 38 becomes the S pole, and conversely, if the upper portion of the lower magnet 36 is the S pole, the lower portion of the upper magnet 38 becomes the N pole.
고정부(1)와 가동부(2)의 볼시트 이면에 서로 상반되는 자극(磁極)이 볼(34)을 사이에 두고 마주하는 구조로 자석(36)(38)들이 실장됨으로써, 고정부(1)에 대한 가동부(2)의 평면운동으로 두 자석 사이의 거리가 자속의 허용한도 내에서 멀어지더라도 두 자석 간 인력(引力)으로 인해 센터링(가동부를 광축 정렬 위치에 복원시키는 기술)이 구현될 수 있다.The magnets 36 and 38 are mounted in a structure in which opposite magnetic poles face each other on the back surface of the ball seat of the fixed part 1 and the movable part 2, with the ball 34 interposed therebetween, thereby fixing the fixed part 1. Even if the distance between the two magnets moves away from within the tolerance of the magnetic flux due to the planar movement of the movable part 2 with respect to), the centering (the technique of restoring the movable part to the optical axis alignment position) is realized due to the attractive force between the two magnets. Can be.
다시 말해, 손 떨림 보정이 행해지지 않는 경우 상기 상부 자석(38)과 하부 자석(36) 사이에 작용하는 인력(引力)은 가동부(2)를 고정부(1) 상의 정확한 광축 정렬 위치에 고정시키는 힘으로 작용하며, 구동코일(10)에 전류가 인가되어 고정부(1)에 대해 가동부(2)의 상대 변위가 발생한 경우 상기 인력(引力)은 가동부(2)를 원래의 위치로 되돌리려는 복원력으로 작용한다.In other words, the attraction force acting between the upper magnet 38 and the lower magnet 36 when the image stabilization is not performed causes the movable part 2 to be fixed at the correct optical axis alignment position on the fixing part 1. When a current is applied to the drive coil 10 and a relative displacement of the movable part 2 with respect to the fixed part 1 occurs, the attraction force is a restoring force to return the movable part 2 to its original position. Acts as
즉 볼(34)을 중심으로 고정부(1)와 가동두 각각에 실장된 자석 사이의 인력(引力)을 이용하여 센터링(가동부를 광축 정렬 위치에 복원시키는 기술)을 구현하는 구조로서, 종래의 일반적으로 알려진 볼 타입 손 떨림 보정 장치와는 다르게 센터링 구현을 위한 별도의 부품(판형 또는 코일형 스프링이나 서스펜션 와이어)의 사용이 배제될 수 있다.That is, as a structure for implementing the centering (technique for restoring the movable part to the optical axis alignment position) by using the attraction force between the fixed part 1 and the magnets mounted on each of the movable heads with respect to the ball 34, Unlike generally known ball-type image stabilization devices, the use of separate parts (plate or coiled springs or suspension wires) for centering implementation can be eliminated.
상부 볼시트(32)와 하부 볼시트(30) 사이에서 2차원 평면운동을 가이드하는 볼(34) 역시 그 상부와 하부에 배치되는 자석(36)(38)의 자계의 영향을 받아 일측으로 치우치지 않고 자속 밀도가 가장 높은 자석의 중심과 일치하는 선 상에 항상 위치하게 된다. 따라서 볼(34)의 일방향 치우침에 따른 구동간섭이나 부정확한 보정 등의 성능저하를 회피할 수 있다.The ball 34 for guiding the two-dimensional planar motion between the upper ball seat 32 and the lower ball seat 30 is also moved to one side under the influence of the magnetic fields of the magnets 36 and 38 disposed at the upper and lower parts thereof. It is always on the line coincident with the center of the magnet with the highest magnetic flux density. Therefore, performance degradation such as driving interference or incorrect correction due to one-way bias of the ball 34 can be avoided.
제2 실시 예Second embodiment
도 5는 고정부에 대한 가동부의 평면운동을 가이드하는 부분의 바람직한 제2 실시 예를 나타낸 개략도로서, 렌즈배럴의 승강 구동용 자동 초점 구동부(도시 생략)가 상기 떨림 보정 구동부(15)와는 별도로 상기 가동부(2)에 구비되는 형태의 카메라 렌즈 모듈인 경우에 적용되는 실시 예를 도시하고 있다.Fig. 5 is a schematic view showing a second preferred embodiment of the part for guiding the planar motion of the movable part with respect to the fixed part, wherein the auto-focus driving part (not shown) for lifting and lowering the lens barrel is separate from the shake correction driving part 15. The embodiment applied to the case of the camera lens module of the type provided in the movable part 2 is shown.
렌즈배럴의 승강 구동용 자동 초점 구동부가 상기 떨림 보정 구동부(15)와는 별도로 상기 가동부(2)에 구비되는 형태의 구조인 경우에는, 상기 하부 볼시트(30)와 상부 볼시트(32) 및 이들 사이에 개재된 볼(34)로 구성되는 상기 가이드부(3-2)가 상기 고정부(1)에 장착되는 가요성 기판(도시 생략)과 가동부(2)에 구비되는 상기 자동 초점 구동부를 전기적으로 연결시키는 커넥터 역할을 겸하도록 구성할 수 있다. The lower ball seat 30 and the upper ball seat 32, and the lower ball seat 30 and the upper ball seat 32 when the auto-focus driving unit for driving the lens barrel is provided in the movable unit 2 separately from the shake correction driving unit 15. The autofocus driver provided in the flexible substrate (not shown) and the movable part 2, in which the guide part 3-2 composed of the balls 34 interposed therebetween, is mounted on the fixed part 1. It can also be configured to serve as a connector that connects to
즉 자동 초점 구동부가 떨림 보정 구동부(15)와는 별도로 상기 가동부(2)에 구비되는 형태의 구조에서는, 상기 가이드부(3)를 통해 고정부(1) 측 상기 가요성 기판과 가동부(2) 측 상기 자동 초점 구동부가 서로 통전 가능하게 연결되도록 구성함으로써, 가요성 기판(12)을 통해 입력된 전류가 가이드부(3)를 통해 상기 가동부(2)의 자동 초점 구동부에 공급되도록 구성할 수 있다.In other words, in the structure in which the auto focus driver is provided in the movable part 2 separately from the shake correction driver 15, the flexible part and the movable part 2 side are fixed to the fixed part 1 side through the guide part 3. By configuring the auto focus driver to be electrically connected to each other, the current input through the flexible substrate 12 may be configured to be supplied to the auto focus driver of the movable part 2 through the guide part 3.
이를 위해 상부 볼시트(32)와 하부 볼시트(30)를 비자성 도체(자성을 띠지 않고 전기를 통하는 물체, 예컨대 구리(Cu), SUS 316, SUS 304 등) 또는 볼이 접촉하는 면에만 비자성 도체가 얇은 막두께로 증착된 사출물 형태로 구성하고, 도 5와 같이 하부 볼시트(30)에 상기 전원을 연결함으로써, 추가적인 전기부품의 사용 없이 고정부(1)에서 가동부(2) 측으로 전기가 공급되는 구성이 구현될 수 있다.For this purpose, the upper ball seat 32 and the lower ball seat 30 are made of non-magnetic conductors (magnetically conductive objects, such as copper (Cu), SUS 316, SUS 304, etc.) or only on the surface where the ball contacts. The conductive material is formed in the form of an injection molded product having a thin film thickness, and as shown in FIG. 5, the power is connected to the lower ball seat 30 so that electric power is fixed from the fixed part 1 to the movable part 2 side without using additional electric parts. The configuration to be supplied may be implemented.
제3, 제4 실시 예Third and fourth embodiments
도 6과 도 7은 고정부에 대한 가동부의 평면운동을 가이드하는 부분의 바람직한 제3 실시 예 및 제4 실시 예를 각각 도시한 개략도이다.6 and 7 are schematic diagrams showing preferred third and fourth embodiments, respectively, of a part for guiding the planar motion of the movable part relative to the fixing part.
도 6과 도 7의 제3 및 제4 실시 예를 구성하는 가이드부(3-3)(3-4)는, 하부 볼시트(30) 하면과 상부 볼시트(32) 상면 중 어느 한 면에 볼(34)에 대응하여 자석(36)이 부착되고, 다른 한 면에 상기 자석(36)에 대응하여 자성체(37)가 부착된 점을 제외하고는 앞선 제1 실시 예와 동일하다. 즉 볼의 상하 양측 모두에 자석(36)(38)을 배치한 제1 실시 예와는 달리, 볼(34)의 상부 또는 하부 중 어느 한쪽에 자석 대신 자성체(37)를 부착시킨 점에 차이가 있다.The guide parts 3-3 and 3-4 constituting the third and fourth embodiments of FIGS. 6 and 7 may be disposed on either of the lower surface of the lower ball sheet 30 and the upper surface of the upper ball sheet 32. The magnet 36 is attached to the ball 34, and the magnetic body 37 is attached to the other side of the magnet 36 to be identical to the first embodiment. That is, unlike the first embodiment in which the magnets 36 and 38 are arranged on both the upper and lower sides of the ball, the difference is that the magnetic body 37 is attached to one of the upper and lower parts of the ball 34 instead of the magnet. have.
물론, 도 6 및 도 7과 같이 볼(34)의 상부와 하부 중 어느 한쪽에 자석 대신 자성체(37)를 부착하더라도 자성체(37) 반대편에 부착되는 자석(36)과 상기 자성체(37) 사이의 인력(引力)에 의해 센터링이 구현되는 것은 제1 실시 예와 동일하나, 자석대신 자성체가 사용됨에 따라 단가 측면에서 유리하고, 떨림 보정 구동 시 상기 인력(引力)을 극복하는 힘 즉, 구동부하는 제1 실시 예에 비해 줄어들게 된다.Of course, even if the magnetic body 37 in place of the magnet attached to either one of the upper and lower portions of the ball 34 as shown in FIGS. 6 and 7 between the magnet 36 and the magnetic body 37 attached to the opposite side of the magnetic body 37. The centering is implemented by the attraction force, which is the same as the first embodiment, but is advantageous in terms of unit cost as the magnetic material is used instead of the magnet, and the force that overcomes the attraction force during the vibration correction driving, that is, the driving load Compared to the embodiment 1 will be reduced.
자성체는 바람직하게, 도 6과 같이 상기 볼(34)과 대응되는 크기의 구체(37-1)이거나 도 7과 같이 소정의 두께를 갖는 원형 또는 다각형 입체 구조물(37-2)일 수 있으며, 이때 볼(34), 자석(36), 상기 자성체(37-`1)(37-2)는 제1 실시 예와 마찬가지로 그 중심이 서로 일치하도록 동축선 상에 배치하는 것이 바람직하다. The magnetic body may be a sphere 37-1 having a size corresponding to the ball 34 as shown in FIG. 6 or a circular or polygonal solid structure 37-2 having a predetermined thickness as shown in FIG. As in the first embodiment, the ball 34, the magnet 36, and the magnetic bodies 37-`1 and 37-2 are preferably arranged on the coaxial line so that their centers coincide with each other.
도면에서는 상부 볼시트(32) 상면에 자성체(37)가 부착되고, 하부 볼시트(30) 하면에 자석(36)을 부착시킨 실시 예를 예로 들어 도시하고 있지만 상기 자석(36)과 자성체(37)의 위치를 바꾸어도 기능은 동일하게 발휘될 수 있으며, 앞선 제2 실시 예와 같이 상부와 하부 볼시트(30)(32)를 비자성 도체로 구성하여 고정부(1)와 가동부(2)가 전기적으로 연결되도록 구성할 수도 있음은 물론이다.In the drawings, an example in which the magnetic body 37 is attached to the upper surface of the upper ball seat 32 and the magnet 36 is attached to the lower surface of the lower ball seat 30 is illustrated as an example, but the magnet 36 and the magnetic body 37 are illustrated. Even if the position of the) can be exerted in the same way, as in the second embodiment, the upper and lower ball seats 30 and 32 are formed of a non-magnetic conductor so that the fixing part 1 and the movable part 2 are Of course, it can also be configured to be electrically connected.
이상에서 살펴본 본 발명의 실시 예에 의하면, 구동파트에 대한 가동파트의 평면운동을 볼이 가이드하는 방식으로서, 미들 가이드가 필요 없어 구성이 단순하고 제품 소형화와 경량화에 유리하며, 와이어 서스펜션 방식과는 다르게 낙하 충격에도 구동파트에 대한 가동파트의 평면운동을 지지하는 부분이 파손될 우려가 없어 제품의 내구성과 신뢰성을 증대시킬 수 있다.According to the embodiment of the present invention as described above, the ball guides the planar motion of the movable part with respect to the drive part, there is no need for a middle guide, the configuration is simple and advantageous to the miniaturization and weight of the product, and the wire suspension method Unlike the drop impact, there is no fear that the part supporting the plane motion of the movable part relative to the driving part may be damaged, thereby increasing the durability and reliability of the product.
또한, 볼을 중심으로 구동파트와 가동파트 각각에 영구자석(또는 영구자석과 자성체)들을 실장하여 이들 사이에 작용하는 인력을 이용하여 센터링(구동파트를 광축 정렬 위치에 복원시키는 기술)을 구현하는 방식으로서, 종래의 볼 타입과는 다르게 센터링을 위한 별도의 부품(복원 스프링)의 사용을 배제할 수 있어 조립성을 개선할 수 있고 가격 경쟁력을 확보할 수 있다.In addition, permanent magnets (or permanent magnets and magnetic bodies) are mounted on each of the driving and movable parts around the ball, and centering is performed using a manpower acting therebetween to restore the driving part to the optical axis alignment position. As a method, unlike the conventional ball type, it is possible to exclude the use of a separate part (restoration spring) for centering, thereby improving the assemblability and securing the price competitiveness.
또, 구동파트의 2차원 평면운동을 가이드하는 볼이 그 상부와 하부 또는 상부 또는 하부의 영구자석(또는 영구자석과 요크)의 자계의 영향을 받아 일측으로 치우치지 않고 항상 지정된 위치로 복원 가능함에 따라, 볼의 치우침에 의한 구동간섭을 회피할 수 있고, 이에 따라 구동파트의 동특성을 개선할 수 있으며 안정적이고 정확한 손 떨림 보정이 이루어질 수 있다.Also, the ball guiding the two-dimensional planar motion of the driving part can be restored to a designated position at all times without being biased to one side under the influence of the magnetic field of the upper and lower parts or the upper and lower permanent magnets (or permanent magnets and yokes). Accordingly, driving interference due to the bias of the ball can be avoided, thereby improving the dynamic characteristics of the driving part, and stable and accurate image stabilization can be achieved.
이상의 본 발명의 상세한 설명에서는 그에 따른 특별한 실시 예에 대해서만 기술하였다. 하지만 본 발명은 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.In the detailed description of the present invention, only specific embodiments thereof have been described. It is to be understood, however, that the present invention is not limited to the specific forms referred to in the description, but rather includes all modifications, equivalents, and substitutions within the spirit and scope of the invention as defined by the appended claims. Should be.
[부호의 설명][Description of the code]
1 : 고정부(STATOR) 2 : 가동부(MOVER)1: STATOR 2: MOVER
3 : 가이드부 10 : 구동코일3: guide part 10: driving coil
11a, 11b : 제1, 제2 위치 검출 센서11a, 11b: first and second position detection sensors
14 : 베이스 15 : X축 떨림 보정 구동부14: Base 15: X axis shake correction drive unit
20 : 구동자석 22 : 렌즈배럴20: driving magnet 22: lens barrel
24 : 떨림 보정 캐리어 26 : 요크(YOKE)24: Shake Correction Carrier 26: Yoke
30 : 하부 볼시트 32 : 상부 볼시트30: lower ball seat 32: upper ball seat
34 : 볼 36 : 하부 자석34: ball 36: lower magnet
37 : 자성체(제3, 제4 실시 예) 38 : 하부 자석37: magnetic material (third, fourth embodiment) 38: lower magnet

Claims (14)

  1. 이미지 센서를 실장한 고정부(STATOR)에 구비되는 하부 볼시트;A lower ball seat provided in a fixing part in which an image sensor is mounted;
    렌즈배럴이 탑재되고 상기 고정부 위에서 2차원 평면운동을 하는 가동부(MOVER)에 구비되는 상부 볼시트; An upper ball seat mounted on a lens barrel and provided on a movable part (MOVER) for performing a two-dimensional planar motion on the fixing part;
    상기 하부 볼시트와 상부 볼시트 사이에서 구름운동을 하는 자성체 재질의 볼; 및A ball made of a magnetic material that performs rolling motion between the lower ball sheet and the upper ball sheet; And
    상기 볼에 대응하여 상기 하부 볼시트 하면과 상부 볼시트 상면에 각각 부착된 하부 자석과 상부 자석;을 포함하는 손 떨림 보정 장치.And a lower magnet and an upper magnet attached to the lower ball seat lower surface and the upper ball seat upper surface corresponding to the ball, respectively.
  2. 이미지 센서를 실장한 고정부(STATOR)에 구비되는 하부 볼시트;A lower ball seat provided in a fixing part in which an image sensor is mounted;
    렌즈배럴이 탑재되고 상기 고정부 위에서 2차원 평면운동을 하는 가동부(MOVER)에 구비되는 상부 볼시트; An upper ball seat mounted on a lens barrel and provided on a movable part (MOVER) for performing a two-dimensional planar motion on the fixing part;
    상기 하부 볼시트와 상부 볼시트 사이에서 구름운동을 하는 자성체 재질의 볼;을 포함하며,Includes; ball of the magnetic material to perform a rolling motion between the lower ball sheet and the upper ball sheet,
    상기 하부 볼시트 하면과 상부 볼시트 상면 중 어느 한 면에 상기 볼에 대응하여 자석이 부착되고, 다른 한 면에 상기 자석에 대응하여 자성체가 부착된 것을 특징으로 하는 손 떨림 보정 장치.And a magnet is attached to one of the lower surface of the lower ball sheet and the upper surface of the upper ball sheet, and a magnetic material is attached to the other surface to correspond to the magnet.
  3. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2,
    구동코일과 구동자석으로 구성된 떨림 보정 구동부에 의해 상기 가동부가 고정부 위에서 2차원 평면운동을 하는 것을 특징으로 하는 손 떨림 보정 장치.The device for compensating for hand shake, characterized in that the movable part performs a two-dimensional planar motion on the fixing part by a shake compensating drive part composed of a driving coil and a driving magnet.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 구동코일은 고정부에 배치되고 상기 구동자석은 가동부에 배치되는 것을 특징으로 하는 손 떨림 보정 장치. The drive coil is disposed in the fixed part and the drive magnet is characterized in that the movement is disposed in the movable part.
  5. 제 3 항에 있어서,The method of claim 3, wherein
    상기 구동코일과 구동자석이 상기 가동부에 배치되는 것을 특징으로 하는 손 떨림 보정 장치.And the driving coil and the driving magnet are arranged in the movable part.
  6. 제 3 항에 있어서,The method of claim 3, wherein
    상기 구동자석의 측면과 후면을 둘러싸도록 가동부에 설치되는 요크;를 더 포함하는 손 떨림 보정 장치.And a yoke installed on the movable part to surround the side and rear surfaces of the driving magnet.
  7. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2,
    상기 상부 볼시트와 하부 볼시트 중 적어도 하나에 상기 볼의 일부가 노출되도록 둘러싸는 볼 수용부;가 더 구비됨을 특징으로 하는 손 떨림 보정 장치.And a ball receiving unit surrounding a portion of the ball to be exposed to at least one of the upper ball sheet and the lower ball sheet.
  8. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2,
    상기 상부 볼시트와 하부 볼시트는 비자성 도체 또는 볼과 접촉하는 면에 비자성 도체가 얇은 막두께로 증착된 사출물인 것을 특징으로 하는 손 떨림 보정 장치.The upper ball seat and the lower ball sheet is a hand shake correction device, characterized in that the non-magnetic conductor or the injection molded material is deposited in a thin film on the surface in contact with the ball.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 하부 볼시트에 외부전원이 연결되며, 상기 하부 볼시트에 연결된 외부전원이 공급하는 전류가 상기 볼과 상부 볼시트를 거쳐 가동부 구동을 위한 전류로 공급되는 것을 특징으로 하는 손 떨림 보정 장치.An external power supply is connected to the lower ball seat, and a hand shake correction device, characterized in that a current supplied by an external power source connected to the lower ball seat is supplied as a current for driving the movable part through the ball and the upper ball sheet.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 볼, 하부 자석, 상부 자석은 각각의 중심이 일치하도록 정렬되는 것을 특징으로 하는 손 떨림 보정 장치.And said ball, lower magnet, and upper magnet are aligned so that their centers coincide with each other.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 볼을 사이에 두고 대향되는 상기 하부 자석 상부와 상부 자석 하부의 극성이 서로 다른 것을 특징으로 하는 손 떨림 보정 장치.Hand shake correction apparatus, characterized in that the polarity of the upper and lower magnets opposing the lower side of the ball between the different.
  12. 제 2 항에 있어서,The method of claim 2,
    상기 볼, 자석, 자성체는 각각의 중심이 일치하도록 정렬되는 것을 특징으로 하는 손 떨림 보정 장치.And said ball, magnet and magnetic body are aligned so that their respective centers coincide with each other.
  13. 제 2 항에 있어서,The method of claim 2,
    상기 자성체는 상기 볼과 대응되는 크기의 구체인 것을 특징으로 하는 손 떨림 보정 장치.The magnetic body is a hand shake correction device, characterized in that the sphere of the size corresponding to the ball.
  14. 제 2 항에 있어서,The method of claim 2,
    상기 자성체는 소정의 두께를 갖는 원형 또는 다각형 입체 구조물인 것을 특징으로 하는 손 떨림 보정 장치.The magnetic body is a hand shake correction device, characterized in that the circular or polygonal solid structure having a predetermined thickness.
PCT/KR2015/011069 2015-02-23 2015-10-20 Stabilizing device for shaking of camera WO2016137083A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150025342A KR101730010B1 (en) 2015-02-23 2015-02-23 Optical Image Stabilizer device and Camera module containing the same
KR10-2015-0025342 2015-02-23

Publications (1)

Publication Number Publication Date
WO2016137083A1 true WO2016137083A1 (en) 2016-09-01

Family

ID=56788900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011069 WO2016137083A1 (en) 2015-02-23 2015-10-20 Stabilizing device for shaking of camera

Country Status (2)

Country Link
KR (1) KR101730010B1 (en)
WO (1) WO2016137083A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022015746A1 (en) * 2020-07-13 2022-01-20 Apple Inc. Camera actuator with moving coils and dynamic flex circuit
EP4105717A4 (en) * 2020-03-12 2023-08-23 Huawei Technologies Co., Ltd. Drive apparatus, camera module, and electronic device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10928702B2 (en) * 2018-03-20 2021-02-23 Samsung Electro-Mechanics Co., Ltd. Portable electronic apparatus and camera module
KR102508530B1 (en) 2018-05-09 2023-03-09 삼성전자주식회사 Camera module having stabilizer and electronic device including thereof
KR101910838B1 (en) * 2018-05-30 2018-10-23 마이크로엑츄에이터(주) Lens assembly
KR102422882B1 (en) * 2020-07-10 2022-07-20 주식회사 엠씨넥스 camera apparatus with simple 2-axis optical image stabilization structure
CN211554446U (en) * 2020-08-19 2020-09-22 瑞声通讯科技(常州)有限公司 Lens module
JP7352105B2 (en) * 2020-09-25 2023-09-28 ミツミ電機株式会社 Optical actuators, camera modules, and camera-mounted devices
KR20220051650A (en) * 2020-10-19 2022-04-26 엘지이노텍 주식회사 Camera device
KR20230014459A (en) * 2021-07-21 2023-01-30 삼성전자주식회사 Camera module and electronic device including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060039808A (en) * 2004-11-03 2006-05-09 삼성전자주식회사 Optical image stabilizer for camera lens assembly
KR20100130259A (en) * 2009-06-03 2010-12-13 삼성전자주식회사 Optical image stabilizer for camera module assembly
KR20110080590A (en) * 2010-01-06 2011-07-13 삼성테크윈 주식회사 Correction module for shaking and camera module comprising the same
KR101255207B1 (en) * 2006-06-19 2013-04-23 삼성전자주식회사 Shake correction module for camera
KR20130044438A (en) * 2011-10-24 2013-05-03 연세대학교 산학협력단 Hand trembling compensation actuator and camera module containing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5846346B2 (en) 2009-08-21 2016-01-20 ミツミ電機株式会社 Camera shake correction device
JP5639161B2 (en) * 2010-05-14 2014-12-10 株式会社ケンコー・トキナー Image stabilization unit
KR101204587B1 (en) 2010-10-29 2012-11-23 삼성전기주식회사 Image photographing device having function for compensation hand vibration
KR101148581B1 (en) 2010-11-03 2012-05-29 삼성전기주식회사 Image photographing device having function for compensation hand vibration
KR20130042794A (en) 2011-10-19 2013-04-29 삼성전기주식회사 Lens assembly and camera module having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060039808A (en) * 2004-11-03 2006-05-09 삼성전자주식회사 Optical image stabilizer for camera lens assembly
KR101255207B1 (en) * 2006-06-19 2013-04-23 삼성전자주식회사 Shake correction module for camera
KR20100130259A (en) * 2009-06-03 2010-12-13 삼성전자주식회사 Optical image stabilizer for camera module assembly
KR20110080590A (en) * 2010-01-06 2011-07-13 삼성테크윈 주식회사 Correction module for shaking and camera module comprising the same
KR20130044438A (en) * 2011-10-24 2013-05-03 연세대학교 산학협력단 Hand trembling compensation actuator and camera module containing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4105717A4 (en) * 2020-03-12 2023-08-23 Huawei Technologies Co., Ltd. Drive apparatus, camera module, and electronic device
WO2022015746A1 (en) * 2020-07-13 2022-01-20 Apple Inc. Camera actuator with moving coils and dynamic flex circuit

Also Published As

Publication number Publication date
KR101730010B1 (en) 2017-04-25
KR20160102803A (en) 2016-08-31

Similar Documents

Publication Publication Date Title
WO2016137083A1 (en) Stabilizing device for shaking of camera
US11256107B2 (en) Lens driving apparatus
WO2015133725A1 (en) Camera lens module
WO2016137081A1 (en) Stabilizing device for shaking of camera and camera lens module comprising same
WO2014092271A1 (en) Optical adjusting apparatus
WO2015026064A1 (en) Camera module, and position detector and position detection method used in the camera module
WO2020197150A1 (en) Camera device
WO2017105010A1 (en) Optical actuator
WO2015026078A1 (en) Camera module
WO2014157998A1 (en) Camera lens module
WO2019004643A1 (en) Camera module
WO2010038947A2 (en) Small stereoscopic image photographing apparatus
TWI687731B (en) Lens driving device, camera module and camera mounting device
WO2014003492A1 (en) Camera module
WO2019031817A1 (en) Lens driving apparatus, camera module, and optical device
US20230156310A1 (en) Camera module with sensor shifting module
WO2017164432A1 (en) Lens driving device
CN113960743A (en) Periscopic remote zooming hand vibration prevention device
WO2017164435A1 (en) Lens driving device
WO2022092557A1 (en) Camera actuator and camera module including same
WO2015190717A1 (en) Camera module and mobile terminal including same
WO2022085920A1 (en) Camera device
JP7376782B2 (en) Lens drive device, camera module and camera mounting device
WO2019194541A1 (en) Lens driving device and camera device comprising same
US20230213837A1 (en) Camera actuator and camera module including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883471

Country of ref document: EP

Kind code of ref document: A1