WO2022092557A1 - Camera actuator and camera module including same - Google Patents

Camera actuator and camera module including same Download PDF

Info

Publication number
WO2022092557A1
WO2022092557A1 PCT/KR2021/012476 KR2021012476W WO2022092557A1 WO 2022092557 A1 WO2022092557 A1 WO 2022092557A1 KR 2021012476 W KR2021012476 W KR 2021012476W WO 2022092557 A1 WO2022092557 A1 WO 2022092557A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
movable part
upper cover
ball
camera actuator
Prior art date
Application number
PCT/KR2021/012476
Other languages
French (fr)
Korean (ko)
Inventor
신두식
이병철
이경용
Original Assignee
자화전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 자화전자(주) filed Critical 자화전자(주)
Publication of WO2022092557A1 publication Critical patent/WO2022092557A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils

Definitions

  • the present invention relates to a camera actuator mounted on a camera module, and in particular, a camera actuator for vibration compensation that prevents or corrects image shake due to movement of a device due to an unstable fixing device or a hand shake of a user holding a camera, and the camera actuator comprising the same It is about the camera module.
  • 'mobile' portable terminals such as smart phones
  • 'mobile' portable terminals
  • functions such as music, movies, TV, and games.
  • the camera lens module mounted on the mobile is changed to a structure with various additional functions such as auto focus function and optical zoom function in order to meet the recent trend toward high-pixel and high-functionality according to user needs.
  • various additional functions such as auto focus function and optical zoom function
  • optical zoom function in order to meet the recent trend toward high-pixel and high-functionality according to user needs.
  • attempts to implement Optical Image Stabilizer technology in a mobile size have been recently progressed from various angles.
  • VCM Voice Coil Motor
  • the VCM type consists of a magnetic circuit with a coil and a magnet placed facing each other, and the optical unit with the lens mounted thereon is moved in the two-axis direction on a plane perpendicular to the optical axis by electromagnetic force generated by the magnetic circuit to respond to vibration.
  • the basic principle of the shake compensation function is to move the optical unit mounted with the optical lens in the relative direction of the driving displacement generated by the vibration to match the optical axis and the incident path of the light received by the image sensor.
  • a configuration is required to guide the optical unit on which the lens is mounted so that it can make a planar motion in the two-axis direction on a plane perpendicular to the optical axis.
  • the middle guide is configured by inserting a ball between the optical unit and the housing accommodating the optical unit so that the optical unit can make a planar motion with respect to the housing (or base) in the biaxial direction.
  • FIG. 1 is an exploded perspective view of a conventional camera actuator to which a middle guide is applied
  • FIG. 2 is a view schematically illustrating a coupling cross-section of the camera actuator shown in FIG. 1 .
  • the middle guide 70 applied to the conventional camera actuator is a bottom part of the housing 60 so that it can linearly move with respect to the housing 60 in a first direction orthogonal to the optical axis. It is mounted on the middle guide 70 and the optical unit 80 constituting the optical system is configured to linearly move along the second direction orthogonal to the first direction.
  • a plurality of first direction ball rails 74 are provided to correspond to the housing 60 and the middle guide 70 to form a pair so that the middle guide 70 can linearly move in the first direction with respect to the housing 60. is formed, and the middle guide 70 and the optical unit 80 correspond to each other to form a pair in a plurality of second directions so that the optical unit 80 can linearly move in the second direction with respect to the middle guide 70 .
  • a ball rail 72 is formed.
  • a plurality of first direction ball rails 74 provided to be paired with each other on the lower surfaces of the housing 60 and the middle guide 70 are formed with ball grooves (signs omitted), and the middle guide 70 and the optical unit ( Ball grooves (symbols omitted) are also formed in the plurality of second direction ball rails 72 provided to form pairs in 80 . And one ball B is placed between the first direction ball rails 74 and the second direction ball rails 72 .
  • the ball B is the corresponding ball rail 72 or 74 during translation in the first direction of the middle guide 70 with respect to the housing 60 or translation of the optical unit 80 with respect to the middle guide 70 in the second direction. It induces stable linear motion while rolling along the ball groove of .
  • the conventional camera actuator for stabilization of such a configuration has at least one driving force among a first driving force generated by a first direction magnetic circuit (not shown) and a second direction driving force generated by a second direction magnetic circuit (not shown). Accordingly, the optical unit 80 is displaced in the first direction or the second direction in the housing 60, or is simultaneously displaced in the first direction and the second direction, thereby correcting the vibration.
  • the conventional method of realizing vibration compensation by moving the optical unit in a plane with the driving force of the magnetic circuit has a problem in that it requires a large driving force. This is because it responds to vibration by moving the optical unit, which is relatively heavy compared to other components. In order to secure sufficient driving force for stable vibration compensation, the size of the magnetic circuit must be increased accordingly, making it difficult to downsize the product.
  • Patent Document 1 Korea Patent Publication No. 10-2018-0116965 (published on October 26, 2018)
  • the technical problem to be solved by the present invention is a method for counteracting vibration by plane movement of an image sensor unit, which is relatively light compared to the optical unit, and a camera actuator that can compensate for vibration with a small force compared to the conventional method of moving the optical unit. and to provide a camera module including the same.
  • Another technical problem to be solved by the present invention is a camera actuator capable of lowering the overall height of the product by improving the structure of the middle guide, and thus implementing a slim and compact product (camera module), including the same This is to provide a camera module for
  • a fixing part comprising an upper cover and a lower base coupled to the upper cover to form a mounting space therein;
  • a movable part for performing a planar motion along a plane perpendicular to the optical axis within the mounting space
  • a middle guide disposed between the upper cover and the movable part so that the movable part can make a planar motion with respect to the fixed part, with the ball inserted for each of the upper cover and the movable part;
  • At least two driving magnets are mounted on one surface of the movable part, and a yoke is disposed on the upper cover to correspond to each of the driving magnets one by one,
  • the movable part is in close contact with the upper cover side with the intermediate movable member interposed therebetween by the attractive force between the corresponding driving magnet and the yoke and is spaced apart from the lower base,
  • It provides a camera actuator in which the movable substrate of the movable part spaced apart from the lower base and the fixed substrate coupled to the lower base are electrically connected through a plurality of thin and long flexible wires.
  • a coil substrate on which two or more driving coils are mounted so as to face the driving magnet one by one is coupled to the upper cover, and a pair of driving magnets and driving coils to face each other constitute a magnetic circuit that drives the movable part in a plane. there is.
  • the magnetic circuit comprising a driving magnet and a driving coil that are paired to face each other includes a first magnetic circuit for planarly driving the movable part in a first direction perpendicular to the optical axis, and a first magnetic circuit for driving the movable part in a plane perpendicular to the optical axis and forming the second magnetic circuit. It may be configured as a second magnetic circuit for plane driving in a second direction orthogonal to the first direction.
  • Hall sensors for sensing a change in magnetic force of a corresponding driving magnet may be mounted on the air core of each of the driving coils one by one.
  • the movable part may be configured to include the movable substrate and an image sensor unit mounted on the movable substrate.
  • a plurality of first direction ball rails and a plurality of second direction ball rails are formed on the upper and lower surfaces of the intermediate movable member, respectively, and the upper cover corresponds to one matching each of the plurality of first direction ball rails.
  • a first direction upper ball rail is formed, and a corresponding second direction lower ball rail is formed in the movable part to match each of the plurality of second direction ball rails, and a corresponding first direction ball rail and a first direction ball rail are formed to face each other.
  • One ball may be placed between the upper ball rails in the direction and between the ball rails in the second direction and the lower ball rail in the second direction.
  • the first direction ball rail and the second direction ball rail formed on the intermediate movable member are spaced apart from each other so as not to overlap or overlap each other when viewed from the optical axis direction, and at least partially overlap when viewed from the first direction, whereby the intermediate movement A reduction in the height of the member and the camera actuator through it can achieve miniaturization.
  • a magnet is mounted on one side of the upper surface of the movable part, and a magnetic material is disposed on one side of the intermediate movable member to correspond to the magnet, and the movable part is in close contact with the intermediate movable member with the ball interposed therebetween by the attractive force between the magnet and the magnetic material can be
  • It provides a camera module including; an optical unit coupled to the upper cover of the camera actuator or coupled to a separate optical axis direction movable element.
  • the image sensor unit which is relatively light compared to the optical unit, is moved in a plane to cope with the shaking, with a small force compared to the conventional method for responding to the shaking by moving the relatively heavy optical unit.
  • Vibration compensation can also be implemented, and the size of the magnetic circuit can be reduced as the required driving force is reduced, thereby reducing the size of the product.
  • the embodiment of the present invention has a unique structure (the first direction ball rail and the second direction ball rail are spaced apart from each other so as not to overlap or overlap each other when viewed in a plan view, and a part of the two ball rails overlap only when viewed from the first direction) Visible structure), it is possible to reduce the height of the camera module by applying an intermediate movable member. In other words, it has the advantage of being able to implement a slimmer and more compact product.
  • FIG. 1 is an exploded perspective view of a conventional camera actuator to which a middle guide is applied.
  • FIG. 2 is a diagram schematically illustrating a coupling cross-section of the camera actuator shown in FIG. 1 .
  • FIG. 3 is an exploded perspective view of a camera actuator according to an embodiment of the present invention.
  • Figure 4 is a perspective view of the camera actuator shown in Figure 3 viewed from the bottom.
  • FIG. 5 is a combined perspective view of the camera actuator shown in FIG. 3 ;
  • FIG. 6 is a cross-sectional view of the camera actuator shown in FIG. 5 as viewed from the A-A and B-B directions, respectively.
  • FIG. 7 is a view showing an intermediate movable member.
  • FIG. 7 (a) is a plan view of the intermediate movable member
  • FIG. 7 (b) is a front view of the intermediate movable member as viewed from the first direction.
  • FIGS. 3 and 4 are plan views and a front views of the movable part and the fixed substrate shown in FIGS. 3 and 4;
  • FIG. 9 is a view showing an operating state of a camera actuator according to an aspect of the present invention, and is a cross-sectional view of the camera actuator shown in FIG.
  • FIG. 10 is a schematic diagram of a camera module including a camera actuator according to an aspect of the present invention described above.
  • unit that processes at least one function or operation, which may be implemented as hardware or software or a combination of hardware and software.
  • the portable terminal refers to a portable user device.
  • the present embodiment includes a mobile phone, a palm sized personal computer (PC), a personal communication system (PCS), a personal digital assistant (PDA), and a portable PC.
  • PC palm sized personal computer
  • PCS personal communication system
  • PDA personal digital assistant
  • HPC Hand-held PC
  • smart phone wireless LAN (Local Area Network) terminal
  • laptop computer netbook
  • tablet personal computer non-mobile game console
  • VR device Virtual Reality
  • vehicles etc.
  • portable user equipment should not be used to limit the application of this embodiment to a specific type of device.
  • the Z-axis is a height direction of the camera actuator, and indicates a direction in which externally introduced light passes, that is, the optical axis direction
  • the X-axis first direction
  • the Y-axis second direction
  • FIG. 3 is an exploded perspective view of a camera actuator according to an embodiment of the present invention
  • FIG. 4 is a perspective view of the camera actuator shown in FIG. 3 as viewed from the bottom
  • FIG. 5 is a combined perspective view of the camera actuator shown in FIG. 3
  • FIG. 6 is a cross-sectional view of the camera actuator shown in FIG. 5 as viewed from the A-A and B-B directions, respectively.
  • the camera actuator 2 according to the embodiment of the present invention is largely, the fixed part 20 and the movable part 25, and the ball between the fixed part 20 and the movable part 25. It includes an intermediate movable member 24 interposed as a medium.
  • the fixed part 20 and the movable part 25 are relative concepts, and the fixed part 20 means a part fixed to the movable part 25 , and the movable part 25 is a fixed part 20 . It refers to a portion that is displaced along a plane perpendicular to the optical axis.
  • the fixing part 20 may be composed of an upper cover 21 and a lower base 22 in combination therewith to form a mounting space (symbol omitted) therein.
  • the upper cover 21 may have a configuration in which the opening 210 is formed with a predetermined area in the center, and the lower base 22 is a plate-shaped body having a predetermined thickness having a rectangular (rectangular or square) planar shape as illustrated in the drawings. can be composed of
  • the movable part 25 is provided to perform a planar motion along a plane perpendicular to the optical axis within the mounting space of the fixed part 20 .
  • the movable part 25 may include a movable substrate 26 and an image sensor unit 27 mounted on the movable substrate 26 .
  • the image sensor unit 27 may further include an image sensor 270 for collecting image information from the light passing through the opening 210 and a sensor board 272 for mounting the image sensor 270 .
  • the intermediate movable member 24 guides the planar motion (movement on a plane perpendicular to the optical axis) of the movable part 25 with respect to the fixed part 20 .
  • the intermediate movable member 24 is disposed by sandwiching a plurality of balls B1 and B2 between the upper cover 21 and the movable part 25 of the fixed part 20, and the fixed part ( 20) with respect to the movable part 25 in the first direction, or only the movable part 25 relative to the fixed part 20 in the second direction.
  • At least two driving magnets M1 and M2 are mounted on one surface of the movable part 25 .
  • And yokes Y1 and Y2 are disposed on the inner upper surface of the upper cover 21 so as to correspond to each of the driving magnets M1 and M2.
  • an attractive force acts between the corresponding driving magnets M1 and M2 and the yokes Y1 and Y2, and accordingly, the movable part 25 with the intermediate movable member 24 interposed therebetween is moved to the upper cover 21. ) side and spaced apart from the lower base 22 .
  • the magnetic force of the driving magnets M1 and M2 is concentrated toward the driving coils C1 and C2 to be described later by the yokes Y1 and Y2.
  • the attractive force between the yokes (Y1, Y2) and the driving magnets (M1, M2) acts as a restoring force for returning the movable part 25 to its original position when the current is cut off. Accordingly, when the current is cut off (when no current flows in the driving coils C1 and C2), centering (accurately aligning the movable part 25 on the optical axis line) can be implemented.
  • a coil substrate 23 on which the driving coils C1 and C2 are mounted is coupled to the upper cover 21 in a structure that matches and faces each of the driving magnets M1 and M2.
  • the driving magnets M1 and M2 and the driving coils C1 and C2 which are paired to face each other, drive the movable part 25 with respect to the fixed part 20 in the biaxial direction on the X-Y plane of the drawing perpendicular to the optical axis. to form a magnetic circuit.
  • the magnetic circuit composed of the driving magnets M1 and M2 and the driving coils C1 and C2 that are paired to face each other may move the movable part 25 in a first direction perpendicular to the optical axis (X-axis direction in the drawing).
  • Y-axis direction perpendicular to the optical axis and perpendicular to the first direction.
  • the first magnetic circuit MC1 includes one driving magnet M1 and one driving coil C1 facing each other to generate a driving force for moving the movable part 25 in a first direction perpendicular to the optical axis.
  • the second magnetic circuit MC2 also includes one driving magnet M2 and one driving coil C2 facing each other to generate a driving force for moving the movable part 25 in a second direction perpendicular to the optical axis.
  • Each of the driving coils C1 and C2 may be configured in the form of an air-core coil.
  • a Hall sensor (HS) that detects the position of the movable unit 25 from a change in magnetic force of the corresponding driving magnets M1 and M2 may be mounted one by one in the air core at the center of each of the driving coils C1 and C2.
  • the sensing information of the hall sensor HS is provided to a drive IC (not shown), and the drive IC feedback-controls the coils C1 and C2 based on the received sensing information.
  • the drive IC recognizes in real time a change in the relative position of the movable part 25 with respect to the fixed part 20 based on the sensing information (change in the position of the driving magnets M1 and M2) provided by the hall sensors HS, Based on the recognized position value compared to the initial position, feedback control of each driving coil C1 and C2 is performed. Accordingly, relative position control of the movable part 25 with respect to the fixed part 20 , that is, vibration compensation can be accurately and precisely implemented.
  • the present invention offsets the vibration by causing the movable part 25 to move in the two-axis direction perpendicular to the optical axis in the mounting space with the driving force generated by the magnetic circuits, and during the process, the upper cover 21 and the intermediate movable member ( 24) and a plurality of balls B1 and B2 rolling between the intermediate movable member 24 and the movable part 25, so that the movable part 25 for the fixed part 20 in a state spaced apart from the lower base 22 ) can be stably implemented without large friction.
  • a ball rail is formed on each of the upper and lower surfaces of the intermediate movable member 24 to partition the ball driving area so that the balls B1 and B2 can stably roll.
  • the ball rail includes a plurality of first direction ball rails 240 formed in a plurality, preferably four places, on the upper surface of the intermediate movable member 24, and a plurality, preferably four, on the lower surface of the opposite intermediate movable member 24. It may be formed of a second direction ball rail 242 .
  • a corresponding first direction upper ball rail 200 is formed on the upper cover 21 to match each of the first direction ball rails 240 one by one, and the second direction ball rail 242 is formed on the movable part 25, respectively.
  • a corresponding second direction lower ball rail 252 may be formed to match one by one.
  • a ball B1 is formed between the first direction ball rail 240 and the first direction upper ball rail 200 and between the second direction ball rail 242 and the second direction lower ball rail 252 corresponding to face each other. B2) is placed one by one.
  • reference numeral 255 denotes a magnet mounted on one upper surface of the movable part 25
  • reference numeral 245 denotes a magnetic material disposed on one side of the intermediate movable member 24 corresponding to the magnet 245, and a magnet ( 255), an attractive force acts between the magnetic body 245 and the magnetic body 245, and the movable part 25 is in close contact with the intermediate movable member 24 with the ball B2 therebetween.
  • Directional plane motion can be stably implemented.
  • a magnet 255 is mounted on one upper surface of the movable part 25, and a configuration in which a magnetic body 245 is disposed on one side of the intermediate movable member 24 at a position corresponding to the magnet 255 is shown as an example.
  • the magnet is disposed on one side of the intermediate movable member 24, and a magnetic material may be disposed on the upper surface of one side of the movable part 25 at a position corresponding to the magnet, such modifications may also be included in the scope of the present invention. make it clear
  • FIG. 7 is a view showing an intermediate movable member.
  • FIG. 7 (a) is a plan view of the intermediate movable member
  • FIG. 7 (b) is a front view of the intermediate movable member as viewed from the first direction.
  • the first direction ball rail 240 and the second direction ball rail 242 formed on the intermediate movable member 24 are viewed from the optical axis direction (see FIG. 7 (a)). They may be spaced apart from each other so as not to overlap or overlap each other. However, when viewed from the first direction, the first direction ball rail 240 and the second direction ball rail 242 adjacent to each other may have a configuration in which at least a portion overlaps.
  • the conventional middle guide (refer to FIGS. 1 and 2) of a configuration in which the optical axis direction positions of the first direction ball rail and the second direction ball rail overlap each other is arranged to perform rolling motion along the first direction ball rail and the second direction ball rail
  • the balls are also structured to be coaxially aligned when viewed from the optical axis, so there is a limit to reducing the overall height of the camera module.
  • first direction ball rail 240 and the second direction ball rail 242 are spaced apart so as not to overlap or overlap each other when viewed from a plane, the balls contacting each of the corresponding ball rails (B1, B2) also do not overlap each other when viewed from a plane, and only when viewed from the first direction (see (b) of FIG. do.
  • the balls B1 and B2 contacting each of the first and second direction ball rails 240 and 242 do not overlap or overlap each other when viewed from a plane, but when viewed from the first direction (X-axis direction), the two balls ( Part of B1, B2) seems to be overlapped, and if at least a portion of the two balls B1 and B2 is configured to overlap only when viewed from the first direction, the overall intermediate movement by the overlapping height of the two balls (B1, B2) Since the height of the member 24 is reduced, it is possible to achieve miniaturization of the product.
  • FIG. 8 is a plan view and a front view illustrating a movable part and a fixed substrate
  • the movable part 25 has the lower base 22 due to the attractive force generated between the driving magnets M1 and M2 and the yokes Y1 and Y2. ) is spaced a predetermined distance from it and is maintained in a buoyant state.
  • the movable substrate 26 constituting the movable part 25 is electrically connected to the fixed substrate 29 and the plurality of flexible wires 28 coupled to and fixed at a predetermined position of the lower base 22 .
  • Each flexible wire 28 has a structure in which an insulating layer is formed by covering the surface of a thin and long conductive conductor with an insulator such as a synthetic resin, and can be easily bent. Accordingly, when the movable part 25 is moved in the first direction or the second direction with respect to the fixed part 20 with the driving force generated by the above-described magnetic circuit, the electric connection with the fixed substrate 29 is maintained while the predetermined driving force is maintained. You can move freely within range.
  • FIG. 9 is a view showing an operating state of a camera actuator according to an aspect of the present invention
  • FIG. 9 (a) is a cross-sectional view showing the operating state of the present invention when correcting the first direction shake
  • FIG. 9 (b) is It is a cross-sectional view showing the operating state of the present invention when correcting the vibration in the second direction.
  • a current is applied to the first direction driving coil C1 through the coil substrate 23 under the control of a drive IC (not shown). More specifically, depending on whether the sensed first directional shaking is in the right or left direction based on FIG. 9A , the drive IC applies a +/- current to the first directional driving coil C1 or vice versa -/+ current is applied.
  • the driving coil C1 When +/- or -/+ current is applied to the driving coil C1 in the first direction under the control of the drive IC according to the vibration detection, the driving coil C1 is magnetized and an electric field is generated in a specific direction according to the direction of the applied current. is generated, and the interaction between the generated electric field and the magnetic field of the driving magnet M1 in the first direction generates a drive force (force to move the movable part to the right or left in the drawing with respect to the fixed part).
  • the movable part 25 linearly moves along the first direction together with the intermediate movable member 24 in the direction and the amount of displacement corresponding to the direction and strength of the current applied to the first direction driving coil C1, As a result, the image sensor unit 27 constituting the movable part 25 moves in the right or left direction in the drawing along the first direction to cancel the vibration in the first direction.
  • the Hall sensor HS disposed in the air core of the first direction driving coil C1 outputs a detection signal of a corresponding size according to a change in the position of the first direction driving magnet M1, and the drive IC Based on the output of the hall sensor, the first direction position of the movable part 25 is recognized in real time. In addition, by feedback-controlling the first direction driving coil C1 based on the recognized position value compared to the initial position, the first direction vibration correction may be accurately implemented.
  • a current is applied to the second direction driving coil C2 through the coil substrate 23 under the control of the drive IC (not shown). More specifically, the drive IC applies a +/- current to the first direction driving coil C1 or vice versa, depending on whether the sensed second direction vibration is in the right or left direction based on FIG. 9B . -/+ current is applied.
  • the movable part 25 linearly moves in the second direction with respect to the intermediate movable member 24 in the direction and displacement corresponding to the direction and strength of the current applied to the second direction driving coil C2 (
  • the intermediate movable member 24 becomes a fixed body
  • the image sensor unit 27 moves in the right or left direction in the drawing along the second direction to cancel the vibration in the second direction do.
  • the Hall sensor HS disposed in the air core of the second direction driving coil C2 outputs a detection signal of a corresponding size according to a change in the position of the second direction driving magnet M2, and the drive IC
  • the second direction position of the movable part 25 is recognized in real time based on the output of the hall sensor.
  • the second direction vibration correction may be accurately implemented.
  • the actual shaking occurs in a form including two direction components (a first direction component and a second direction component) at the same time.
  • the movable part 25 moves in a diagonal direction on the X-Y plane by a combination of the above-described driving force for correcting the vibration in the first direction and the driving force for correcting the vibration in the second direction, thereby canceling the vibration.
  • FIG. 10 is a schematic diagram of a camera module including a camera actuator according to an aspect of the present invention described above.
  • the camera module 1 is largely composed of a camera actuator 2 and an optical unit 4 .
  • the camera actuator is the same as the camera actuator 2 according to the above-described aspect
  • the optical unit 4 includes a lens barrel (a symbol omitted) and a plurality of lenses accommodated in the lens barrel at a predetermined interval along the optical axis direction. It includes a lens group (not shown) composed of
  • the lens barrel is arranged to receive the light reflected by the subject and to pass the received light in the direction of the optical axis.
  • the lens barrel accommodates a lens group composed of a plurality of lenses, and in this case, each of the lenses constituting the lens group may have the same or different optical properties such as focal length and refractive index.
  • the optical unit 4 may be coupled to the opening 210 of the upper cover 21 of the camera actuator 2 or coupled to a separate optical axis direction movable element not shown.
  • the separate optical axis direction movable element may be, for example, an AF carrier.
  • an IR filter may be installed on the optical path between the optical unit 4 and the image sensor unit 27 of the camera actuator 2 .
  • the IR filter filters a specific wavelength, preferably an infrared wavelength, included in the incident light (light that has passed through the optical unit 4), and functions so that the infrared wavelength filtered light can be projected onto the image sensor unit.
  • the image sensor unit which is relatively light compared to the optical unit, is moved in a plane to respond to the shaking
  • a smaller force compared to the conventional method of moving the optical unit as described above to respond to the shaking Vibration compensation can also be implemented with this, and the size of the magnetic circuit can be reduced as the required driving force is reduced, which is advantageous for product miniaturization.
  • the conventional configuration in which the optical axis direction positions of the first direction ball rail and the second direction ball rail overlap each other is arranged to perform rolling motion along the first direction ball rail and the second direction ball rail.
  • the ball is also a structure that can only be coaxially aligned when viewed from the optical axis direction, so there is a disadvantage in that there is a limit in reducing the overall height of the camera module.
  • the embodiment of the present invention has a unique structure (the first direction ball rail and the second direction ball rail are spaced apart so as not to overlap or overlap each other when viewed in a plan view, and when viewed from the first direction (FIG. 7 (b) ) only, the height of the camera module can be reduced by applying an intermediate movable member with a structure in which parts of the two ball rails overlap). In other words, it is possible to realize a slimmer and more compact product overall.
  • optical unit 20 fixed part
  • opening 240 first direction ball rail
  • MC1 first magnetic circuit
  • MC2 second magnetic circuit

Abstract

Disclosed are a camera actuator and a camera module including same. A camera actuator according to the present invention comprises: a fixing unit which includes an upper cover and a lower base coupled to the upper cover to form a mounting space therein; an actuating unit which performs a plane motion along a plane perpendicular to an optical axis in the mounting space; and a middle actuating member (middle guide) interposed between the upper cover and the actuating unit via a ball so that the actuating unit can perform a plane motion with respect to the fixing unit, wherein at least two actuating magnets are mounted to one surface of the actuating unit, a yoke is disposed at the upper cover to correspond to each of the actuating magnets, the actuating unit is in close contact with the upper cover side with the middle actuating member therebetween by attractive force between the actuating magnet and the yoke corresponding to each other and is spaced apart from the lower base, and an actuating substrate of the actuating unit spaced apart from the lower base and a fixing substrate coupled to the lower base are electrically connected to each other via a plurality of long and slim flexible wires.

Description

카메라 액추에이터 및 이를 포함하는 카메라 모듈Camera actuator and camera module including same
본 발명은 카메라 모듈에 탑재되는 카메라 액추에이터에 관한 것으로, 특히 불안정한 고정장치 혹은 카메라를 들고 있는 사용자의 손 떨림에 기인한 기기의 움직임으로 영상이 흔들리는 것을 방지 혹은 보정하는 떨림 보정용 카메라 액추에이터 및 이를 포함하는 카메라 모듈에 관한 것이다.The present invention relates to a camera actuator mounted on a camera module, and in particular, a camera actuator for vibration compensation that prevents or corrects image shake due to movement of a device due to an unstable fixing device or a hand shake of a user holding a camera, and the camera actuator comprising the same It is about the camera module.
최근의 스마트 폰과 같은 휴대용 단말기(이하, '모바일' 이라 함)는 그 기술의 고도화에 발맞춰 기존의 단순 전화 기능에서 벗어나, 음악, 영화, TV, 게임 등 다양한 기능을 실행할 수 있는 멀티 컨버젼스로 진화하고 있으며, 멀티 컨버젼스로의 전개를 이끌어 가는 요소 중의 하나가 바로 카메라 렌즈 모듈(Camera Lens Module)이다.Recently, portable terminals such as smart phones (hereinafter referred to as 'mobile') are moving away from the existing simple phone function to keep pace with the advancement of technology, and are a multi-convergence system that can perform various functions such as music, movies, TV, and games. It is evolving, and one of the factors leading to the development of multi-convergence is the Camera Lens Module.
모바일에 탑재되는 카메라 렌즈 모듈은, 사용자 요구에 의한 고화소 및 고기능 중심으로의 최근 트랜드에 부합하기 위해 자동 초점(Auto Focus) 기능과 광학 줌(Optical zoom) 기능 등과 같이 다양한 부가 기능을 갖춘 구조로 변화되고 있다. 특히 떨림 보정(Optical Image Stabilizer) 기술을 모바일 크기에 구현하려는 시도가 최근 다각도로 진행되고 있다. The camera lens module mounted on the mobile is changed to a structure with various additional functions such as auto focus function and optical zoom function in order to meet the recent trend toward high-pixel and high-functionality according to user needs. is becoming In particular, attempts to implement Optical Image Stabilizer technology in a mobile size have been recently progressed from various angles.
떨림 보정 기술은 불안정한 고정장치 혹은 카메라를 들고 있는 사용자의 손 떨림에 기인한 기기의 움직임으로 영상이 흔들리는 것을 방지 혹은 보정하는 기술로서, 광학 렌즈의 초점을 떨림을 상쇄시키는 방향으로 움직여 촬상 이미지의 해상도를 최적으로 유지시키는 기술이다. 떨림 보정 기술의 구현을 위해 모바일, 캠코더 등에 적용되는 카메라 모듈에는 떨림 보정용 액추에이터가 탑재된다.Shake compensation technology is a technology that prevents or corrects image shake due to movement of the device due to unstable fixing device or the movement of the user's hand holding the camera. technology to keep it optimal. To implement the vibration compensation technology, the camera module applied to mobile devices and camcorders is equipped with an actuator for vibration compensation.
떨림 보정 액추에이터로서 자기장과 전기장의 상호작용을 이용하는 VCM(Voice Coil Motor) 타입이 잘 알려져 있다. VCM 타입은 일반적으로, 대면하여 배치되는 코일과 마그네트로 자기회로를 구성하고, 자기회로가 발생시키는 전자기력으로 렌즈를 실장한 광학 유니트를 광축과 수직인 평면 상에서 2축 방향으로 이동시켜 떨림에 대응하도록 구성된다.As a vibration compensation actuator, a VCM (Voice Coil Motor) type using the interaction of a magnetic field and an electric field is well known. In general, the VCM type consists of a magnetic circuit with a coil and a magnet placed facing each other, and the optical unit with the lens mounted thereon is moved in the two-axis direction on a plane perpendicular to the optical axis by electromagnetic force generated by the magnetic circuit to respond to vibration. is composed
떨림 보정 기능의 기본적인 원리는, 광학 렌즈를 실장한 광학 유니트를 떨림에 의해 발생된 구동 변위의 상대적인 방향으로 이동시켜 광축과 이미지센서에 수신되는 광의 입사 경로를 일치시키는 것이다. 이를 위해서는 렌즈를 실장한 광학 유니트가 광축과 수직한 평면 상에서 2축 방향으로 평면운동을 할 수 있도록 가이드하는 구성이 필요하다.The basic principle of the shake compensation function is to move the optical unit mounted with the optical lens in the relative direction of the driving displacement generated by the vibration to match the optical axis and the incident path of the light received by the image sensor. To this end, a configuration is required to guide the optical unit on which the lens is mounted so that it can make a planar motion in the two-axis direction on a plane perpendicular to the optical axis.
종래의 카메라 모듈에서 광학 유니트를 광축과 수직한 평면 상에서 평면운동을 할 수 있도록 가이드하는 구성 중 하나가 미들 가이드(Middle guide)이다. 미들 가이드는 일반적으로 광학 유니트가 하우징(또는 베이스)에 대해 2축 방향으로 평면운동을 할 수 있도록 상기 광학 유니트와 이를 수용하는 하우징 사이에 볼이 삽입되어 구성된다. In the conventional camera module, one of the configurations for guiding the optical unit to make a plane motion on a plane perpendicular to the optical axis is a middle guide. In general, the middle guide is configured by inserting a ball between the optical unit and the housing accommodating the optical unit so that the optical unit can make a planar motion with respect to the housing (or base) in the biaxial direction.
도 1은 미들 가이드가 적용된 종래 카메라 액추에이터의 분리 사시도이며, 도 2는 도 1에 도시된 카메라 액추에이터의 결합 단면을 개략 도시한 도면이다.1 is an exploded perspective view of a conventional camera actuator to which a middle guide is applied, and FIG. 2 is a view schematically illustrating a coupling cross-section of the camera actuator shown in FIG. 1 .
도 1 및 도 2를 참조하면, 종래 카메라 액추에이터에 적용되는 미들 가이드(70)는, 하우징(60)에 대해 광축과 직교하는 제1 방향을 따라 직선운동을 할 수 있도록 하우징(60)의 바닥부 위에 탑재되며, 미들 가이드(70) 위에는 광학계를 구성하는 광학 유니트(80)가 상기 제1 방향과 직교하는 제2 방향을 따라 직선운동을 할 수 있도록 구성된다.1 and 2 , the middle guide 70 applied to the conventional camera actuator is a bottom part of the housing 60 so that it can linearly move with respect to the housing 60 in a first direction orthogonal to the optical axis. It is mounted on the middle guide 70 and the optical unit 80 constituting the optical system is configured to linearly move along the second direction orthogonal to the first direction.
하우징(60)에 대하여 미들 가이드(70)가 제1 방향을 따라 직선운동을 할 수 있도록 하우징(60)과 미들 가이드(70)에는 대응되어 쌍을 이루도록 복수의 제1 방향 볼레일(74)이 형성되며, 미들 가이드(70)에 대하여 광학 유니트(80)가 제2 방향을 따라 직선운동을 할 수 있도록 미들 가이드(70)와 광학 유니트(80)에는 서로 대응되어 쌍을 이루도록 복수의 제2 방향 볼레일(72)이 형성된다.A plurality of first direction ball rails 74 are provided to correspond to the housing 60 and the middle guide 70 to form a pair so that the middle guide 70 can linearly move in the first direction with respect to the housing 60. is formed, and the middle guide 70 and the optical unit 80 correspond to each other to form a pair in a plurality of second directions so that the optical unit 80 can linearly move in the second direction with respect to the middle guide 70 . A ball rail 72 is formed.
하우징(60) 및 미들 가이드(70)의 하부면에 서로 쌍을 이루도록 구비되는 복수의 제1 방향 볼레일(74)에는 볼 홈(부호 생략)이 형성되며, 미들 가이드(70)와 광학 유니트(80)에 서로 쌍을 이루도록 구비되는 복수의 제2 방향 볼레일(72)에도 볼 홈(부호 생략)이 형성된다. 그리고 제1 방향 볼레일들(74)과 제2 방향 볼레일들(72) 사이에 볼(B)이 하나씩 놓인다.A plurality of first direction ball rails 74 provided to be paired with each other on the lower surfaces of the housing 60 and the middle guide 70 are formed with ball grooves (signs omitted), and the middle guide 70 and the optical unit ( Ball grooves (symbols omitted) are also formed in the plurality of second direction ball rails 72 provided to form pairs in 80 . And one ball B is placed between the first direction ball rails 74 and the second direction ball rails 72 .
볼(B)은 하우징(60)에 대한 미들 가이드(70)의 제1 방향 병진운동 또는 미들 가이드(70)에 대한 광학 유니트(80)의 제2 방향 병진운동 시 해당 볼레일(72 또는 74)의 볼 홈을 따라 구름운동을 하면서 안정적인 선형적 거동이 일어나도록 유도하며, 해당 볼레일(72 또는 74) 사이에서 하우징(60)에 대한 광학 유니트(80)의 수평방향 회전을 억제하는 역할도 한다.The ball B is the corresponding ball rail 72 or 74 during translation in the first direction of the middle guide 70 with respect to the housing 60 or translation of the optical unit 80 with respect to the middle guide 70 in the second direction. It induces stable linear motion while rolling along the ball groove of .
이와 같은 구성의 종래 떨림 보정용 카메라 액추에이터는, 제1 방향 자기회로(미도시)가 발생시키는 제1 방향 구동력과 제2 방향 자기회로(부호 생략)가 발생시키는 제2 방향 구동력 중 적어도 하나의 구동력에 의하여, 광학 유니트(80)가 하우징(60) 내에서 제1 방향 또는 제2 방향으로 변위되거나, 제1 방향과 제2 방향으로 동시 변위됨으로써 떨림을 보정한다.The conventional camera actuator for stabilization of such a configuration has at least one driving force among a first driving force generated by a first direction magnetic circuit (not shown) and a second direction driving force generated by a second direction magnetic circuit (not shown). Accordingly, the optical unit 80 is displaced in the first direction or the second direction in the housing 60, or is simultaneously displaced in the first direction and the second direction, thereby correcting the vibration.
그러나 미들 가이드(70)에 형성된 제1 방향 볼레일(74)과 제2 방향 볼레일(72)의 광축 방향 위치가 서로 겹치는 도 1 및 도 2와 같은 종래의 구성은, 해당 제1 방향 볼레일(74)과 제2 방향 볼레일(72) 사이에 개재되는 볼(B)이 광축 방향으로 동축 정렬될 수 밖에 없는 구조이기 때문에, 전체적으로 카메라 모듈의 높이를 축소시키는데 한계가 있다.However, in the conventional configuration shown in FIGS. 1 and 2 in which the optical axis direction positions of the first direction ball rail 74 and the second direction ball rail 72 formed in the middle guide 70 overlap each other, the first direction ball rail Since the ball B interposed between the 74 and the second direction ball rail 72 has no choice but to be coaxially aligned in the optical axis direction, there is a limit to reducing the overall height of the camera module.
특히 자기회로의 구동력으로 광학 유니트를 평면 이동시켜 떨림 보정을 구현하는 종래의 방식은, 큰 구동력을 필요로 한다는 문제가 있다. 다른 부품에 비해 상대적으로 무거운 광학 유니트를 이동시켜 떨림에 대응을 하기 때문인데, 안정적인 떨림 보정을 위해 충분한 구동력을 확보하려면, 그만큼 자기회로의 크기를 키워야 하므로 제품의 소형화가 어렵게 된다.In particular, the conventional method of realizing vibration compensation by moving the optical unit in a plane with the driving force of the magnetic circuit has a problem in that it requires a large driving force. This is because it responds to vibration by moving the optical unit, which is relatively heavy compared to other components. In order to secure sufficient driving force for stable vibration compensation, the size of the magnetic circuit must be increased accordingly, making it difficult to downsize the product.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 1) 한국공개특허 제10-2018-0116965호(공개일 2018.10.26)(Patent Document 1) Korea Patent Publication No. 10-2018-0116965 (published on October 26, 2018)
본 발명이 해결하고자 하는 기술적 과제는, 광학 유니트에 비해 상대적으로 가벼운 이미지 센서 유니트를 평면 이동시켜 떨림에 대응하는 방식으로서, 종래 광학 유니트를 이동시키는 방식에 비해 작은 힘으로도 떨림 보정이 가능한 카메라 액추에이터 및 이를 포함하는 카메라 모듈을 제공하고자 하는 것이다.The technical problem to be solved by the present invention is a method for counteracting vibration by plane movement of an image sensor unit, which is relatively light compared to the optical unit, and a camera actuator that can compensate for vibration with a small force compared to the conventional method of moving the optical unit. and to provide a camera module including the same.
본 발명이 해결하고자 하는 다른 기술적 과제는, 중간 가동부재(Middle guide)의 구조 개선을 통해 제품의 전체적인 높이를 낮출 수 있고, 따라서 슬림하고 콤팩트한 제품(카메라 모듈) 구현이 가능한 카메라 액추에이터 및 이를 포함하는 카메라 모듈을 제공하고자 하는 것이다.Another technical problem to be solved by the present invention is a camera actuator capable of lowering the overall height of the product by improving the structure of the middle guide, and thus implementing a slim and compact product (camera module), including the same This is to provide a camera module for
과제의 해결 수단으로서 본 발명의 일 측면에 따르면, According to one aspect of the present invention as a means of solving the problem,
상부 커버 및 상부 커버와 결합하여 내부에 실장공간을 형성시키는 하부 베이스로 구성된 고정부;a fixing part comprising an upper cover and a lower base coupled to the upper cover to form a mounting space therein;
상기 실장공간 내에서 광축에 대해 수직한 평면을 따라 평면운동을 하는 가동부; 및a movable part for performing a planar motion along a plane perpendicular to the optical axis within the mounting space; and
상기 가동부가 고정부에 대해 평면운동을 할 수 있도록 상기 상부 커버와 가동부 사이에 상부 커버와 가동부 각각에 대해 볼을 끼워 넣은 상태로 배치되는 중간 가동부재(Middle guide);를 포함하며,Includes; a middle guide disposed between the upper cover and the movable part so that the movable part can make a planar motion with respect to the fixed part, with the ball inserted for each of the upper cover and the movable part;
상기 가동부의 일면에 적어도 둘 이상의 구동 마그네트가 실장되고, 상기 구동 마그네트 각각에 하나씩 대응되도록 상기 상부 커버에는 요크가 배치되며,At least two driving magnets are mounted on one surface of the movable part, and a yoke is disposed on the upper cover to correspond to each of the driving magnets one by one,
서로 대응되는 구동 마그네트와 요크 사이의 인력(引力)에 의해 상기 중간 가동부재를 사이에 두고 상기 가동부가 상부 커버 측에 밀착되고 하부 베이스로부터 이격되며,The movable part is in close contact with the upper cover side with the intermediate movable member interposed therebetween by the attractive force between the corresponding driving magnet and the yoke and is spaced apart from the lower base,
하부 베이스로부터 이격된 상기 가동부의 가동기판과 상기 하부 베이스에 결합되는 고정기판이 가느다랗고 긴 복수의 플렉시블 와이어를 통해 전기적으로 연결되는 카메라 액추에이터를 제공한다. It provides a camera actuator in which the movable substrate of the movable part spaced apart from the lower base and the fixed substrate coupled to the lower base are electrically connected through a plurality of thin and long flexible wires.
여기서, 상기 상부 커버에는 상기 구동 마그네트와 하나씩 대면하도록 둘 이상의 구동 코일을 실장한 코일 기판이 결합되며, 서로 대면하도록 쌍을 이루는 구동 마그네트와 구동 코일이 상기 가동부를 평면 구동시키는 자기회로를 구성할 수 있다.Here, a coil substrate on which two or more driving coils are mounted so as to face the driving magnet one by one is coupled to the upper cover, and a pair of driving magnets and driving coils to face each other constitute a magnetic circuit that drives the movable part in a plane. there is.
이때, 서로 대면하도록 쌍을 이루는 구동 마그네트와 구동 코일로 구성되는 상기 자기회로는, 상기 가동부를 광축과 수직한 제1 방향으로 평면 구동시키는 제1 자기회로와, 상기 가동부를 광축과 수직하며 상기 제1 방향과 직교하는 제2 방향으로 평면 구동시키는 제2 자기회로로 구성될 수 있다.In this case, the magnetic circuit comprising a driving magnet and a driving coil that are paired to face each other includes a first magnetic circuit for planarly driving the movable part in a first direction perpendicular to the optical axis, and a first magnetic circuit for driving the movable part in a plane perpendicular to the optical axis and forming the second magnetic circuit. It may be configured as a second magnetic circuit for plane driving in a second direction orthogonal to the first direction.
또한, 상기 구동 코일 각각의 공심부에는 대응되는 구동 마그네트의 자력 변화를 감지하는 홀 센서가 하나씩 실장될 수 있다.In addition, Hall sensors for sensing a change in magnetic force of a corresponding driving magnet may be mounted on the air core of each of the driving coils one by one.
그리고 상기 가동부는, 상기 가동기판과, 상기 가동기판 상에 실장되는 이미지 센서 유니트를 포함하는 구성일 수 있다.The movable part may be configured to include the movable substrate and an image sensor unit mounted on the movable substrate.
또한, 상기 중간 가동부재의 상면과 하면 각각에 복수의 제1 방향 볼레일 및 복수의 제2 방향 볼레일이 형성되고, 상기 상부 커버에는 상기 복수의 제1 방향 볼레일 각각에 하나씩 매칭되도록 대응되는 제1 방향 상부 볼레일이 형성되며, 상기 가동부에는 상기 복수의 제2 방향 볼레일 각각에 하나씩 매칭되도록 대응되는 제2 방향 하부 볼레일이 형성되고, 서로 마주하도록 대응되는 제1 방향 볼레일과 제1 방향 상부 볼레일 사이 및 제2 방향 볼레일과 제2 방향 하부 볼레일 사이에 볼이 하나씩 놓일 수 있다.In addition, a plurality of first direction ball rails and a plurality of second direction ball rails are formed on the upper and lower surfaces of the intermediate movable member, respectively, and the upper cover corresponds to one matching each of the plurality of first direction ball rails. A first direction upper ball rail is formed, and a corresponding second direction lower ball rail is formed in the movable part to match each of the plurality of second direction ball rails, and a corresponding first direction ball rail and a first direction ball rail are formed to face each other. One ball may be placed between the upper ball rails in the direction and between the ball rails in the second direction and the lower ball rail in the second direction.
바람직하게는, 상기 중간 가동부재에 형성되는 제1 방향 볼레일과 제2 방향 볼레일은 광축 방향에서 바라보았을 때 서로 겹치거나 포개지지 않도록 이격되며, 제1 방향에서 바라보았을 때 적어도 일부가 중첩됨으로써 중간 가동부재의 높이 축소 및 이를 통한 카메라 액추에이터가 소형화를 달성할 수 있다.Preferably, the first direction ball rail and the second direction ball rail formed on the intermediate movable member are spaced apart from each other so as not to overlap or overlap each other when viewed from the optical axis direction, and at least partially overlap when viewed from the first direction, whereby the intermediate movement A reduction in the height of the member and the camera actuator through it can achieve miniaturization.
또한, 상기 가동부의 일측 상면에 마그네트가 실장되고, 상기 마그네트와 대응되도록 상기 중간 가동부재의 일측에는 자성체가 배치되며, 상기 마그네트와 자성체 간 인력으로 가동부가 볼을 사이에 두고 상기 중간 가동부재에 밀착될 수 있다.In addition, a magnet is mounted on one side of the upper surface of the movable part, and a magnetic material is disposed on one side of the intermediate movable member to correspond to the magnet, and the movable part is in close contact with the intermediate movable member with the ball interposed therebetween by the attractive force between the magnet and the magnetic material can be
과제의 해결수단으로서 본 발명의 다른 측면에 따르면, According to another aspect of the present invention as a means of solving the problem,
전술한 일 측면에 따른 카메라 액추에이터; 및A camera actuator according to the aspect described above; and
상기 카메라 액추에이터의 상부 커버에 결합되거나 별도의 광축 방향 가동요소에 결합되는 광학 유니트;를 포함하는 카메라 모듈을 제공한다.It provides a camera module including; an optical unit coupled to the upper cover of the camera actuator or coupled to a separate optical axis direction movable element.
본 발명의 실시 예에 따르면, 광학 유니트에 비해 상대적으로 가벼운 이미지 센서 유니트를 평면 이동시켜 떨림에 대응하는 방식이므로, 종래의 상대적으로 중량체인 광학 유니트를 이동시켜 떨림에 대응하는 방식에 비해 작은 힘으로도 떨림 보정을 구현할 수 있으며, 필요 구동력이 작아진 만큼 자기회로의 크기를 작게 할 수 있어서 제품의 소형화를 기할 수 있다.According to an embodiment of the present invention, since the image sensor unit, which is relatively light compared to the optical unit, is moved in a plane to cope with the shaking, with a small force compared to the conventional method for responding to the shaking by moving the relatively heavy optical unit. Vibration compensation can also be implemented, and the size of the magnetic circuit can be reduced as the required driving force is reduced, thereby reducing the size of the product.
또한 본 발명의 실시 예는, 특유의 구조(제1 방향 볼레일과 제2 방향 볼레일이 평면에서 바라보았을 때 서로 겹치거나 포개지지 않도록 이격되고, 제1 방향에서 봤을 때만 두 볼레일의 일부가 겹쳐 보이는 구조)를 갖는 중간 가동부재의 적용으로, 카메라 모듈의 높이 축소가 가능하다. 즉 제품을 보다 슬림하고 콤팩트하게 구현할 수 있다는 장점이 있다.In addition, the embodiment of the present invention has a unique structure (the first direction ball rail and the second direction ball rail are spaced apart from each other so as not to overlap or overlap each other when viewed in a plan view, and a part of the two ball rails overlap only when viewed from the first direction) Visible structure), it is possible to reduce the height of the camera module by applying an intermediate movable member. In other words, it has the advantage of being able to implement a slimmer and more compact product.
도 1은 미들 가이드가 적용된 종래 카메라 액추에이터의 분리 사시도.1 is an exploded perspective view of a conventional camera actuator to which a middle guide is applied.
도 2는 도 1에 도시된 카메라 액추에이터의 결합 단면을 개략 도시한 도면.FIG. 2 is a diagram schematically illustrating a coupling cross-section of the camera actuator shown in FIG. 1 .
도 3은 본 발명의 일 실시 예에 따른 카메라 액추에이터의 분해 사시도.3 is an exploded perspective view of a camera actuator according to an embodiment of the present invention;
도 4는 도 3에 도시된 카메라 액추에이터를 저면에서 바라본 사시도.Figure 4 is a perspective view of the camera actuator shown in Figure 3 viewed from the bottom.
도 5는 도 3에 도시된 카메라 액추에이터의 결합 사시도.FIG. 5 is a combined perspective view of the camera actuator shown in FIG. 3 ;
도 6은 도 5에 도시된 카메라 액추에이터를 A-A선 및 B-B선 방향에서 각각 바라본 절단면도.6 is a cross-sectional view of the camera actuator shown in FIG. 5 as viewed from the A-A and B-B directions, respectively.
도 7은 중간 가동부재를 도시한 도면으로서, 도 7의 (a)는 중간 가동부재의 평면도이며, 도 7의 (b)는 제1 방향에서 바라본 중간 가동부재의 정면도.7 is a view showing an intermediate movable member. FIG. 7 (a) is a plan view of the intermediate movable member, and FIG. 7 (b) is a front view of the intermediate movable member as viewed from the first direction.
도 8은 도 3 및 도 4에 도시된 가동부와 고정기판의 평면도 및 정면도.8 is a plan view and a front view of the movable part and the fixed substrate shown in FIGS. 3 and 4;
도 9는 본 발명의 일 측면에 따른 카메라 액추에이터의 작동 상태를 나타낸 도면으로서, 도 5에 도시된 카메라 액추에이터를 C-C선 및 D-D선 방향에서 각각 바라본 절단면도.9 is a view showing an operating state of a camera actuator according to an aspect of the present invention, and is a cross-sectional view of the camera actuator shown in FIG.
도 10은 전술한 본 발명의 일 측면에 따른 카메라 액추에이터를 포함하는 카메라 모듈의 개략도.10 is a schematic diagram of a camera module including a camera actuator according to an aspect of the present invention described above.
이하, 본 발명의 바람직한 실시 예를 상세히 설명하기로 한다. Hereinafter, preferred embodiments of the present invention will be described in detail.
명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. Terms used in the specification are used only to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise.
본 명세서에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In the present specification, terms such as “comprise” or “have” are intended to designate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, and includes one or more other features or It should be understood that the existence or addition of numbers, steps, operations, components, parts, or combinations thereof does not preclude the possibility of addition.
또한, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Also, terms such as first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another.
더하여, 명세서에 기재된 "부", "유닛", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.In addition, terms such as "unit", "unit", "module" and the like described in the specification mean a unit that processes at least one function or operation, which may be implemented as hardware or software or a combination of hardware and software.
이후 설명될 실시 예는 휴대 가능한 사용자 기기의 카메라에 적용되는 것으로, 휴대 단말기는 휴대 가능한 사용자 기기를 지칭한다. 그러나 이는 단지 일반적인 용어이며, 본 실시 예는 이동 전화기, 손바닥 크기(palm sized) 개인용 컴퓨터(PC), 개인용 통신 시스템(PCS: Personal Communication System), 개인용 디지털 어시스턴트(PDA: Personal Digital Assistant), 휴대용 PC(HPC: Hand-held PC), 스마트 폰(smart phone), 무선 LAN(Local Area Network) 단말기, 랩탑 컴퓨터, 넷북(netbook), 태블릿 피씨(tablet personal computer), 모바일 외 게임기, VR 기기(Virtual Reality), 차량 등 중 다양한 기기 또는 분야에 적용 가능함을 밝혀 둔다.An embodiment to be described below is applied to a camera of a portable user device, and the portable terminal refers to a portable user device. However, these are only general terms, and the present embodiment includes a mobile phone, a palm sized personal computer (PC), a personal communication system (PCS), a personal digital assistant (PDA), and a portable PC. (HPC: Hand-held PC), smart phone, wireless LAN (Local Area Network) terminal, laptop computer, netbook, tablet personal computer, non-mobile game console, VR device (Virtual Reality) ), vehicles, etc., can be applied to various devices or fields.
따라서 휴대 가능한 사용자 기기라는 용어를 이용하는 것은 본 실시 예의 적용을 특정 유형의 장치로 한정하는데 이용되어서는 안 된다.Therefore, the use of the term portable user equipment should not be used to limit the application of this embodiment to a specific type of device.
첨부 도면을 참조하여 설명함에 있어, 동일한 구성 요소에 대해서는 동일도면 참조부호를 부여하기로 하며 이에 대한 중복되는 설명은 생략하기로 한다. 그리고 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In the description with reference to the accompanying drawings, the same reference numerals will be assigned to the same components for the same components, and overlapping descriptions thereof will be omitted. And, in the description of the present invention, if it is determined that a detailed description of a related known technology may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.
이하 본 발명을 설명함에 있어서는 설명의 편의를 위해 3축 방향 좌표계를 사용하여 설명하기로 한다. 도면에서 Z축은 카메라 액추에이터의 높이 방향으로서 외부에서 유입된 광이 통과하는 방향, 즉 광축 방향을 가리키며, X축(제1 방향)은 광축 방향인 상기 Z축과 수직인 방향을 가리킨다. 그리고 Y축(제2 방향)은 Z축에 수직한 평면 상에서 상기 X축과 직교하는 방향을 가리킨다.Hereinafter, the present invention will be described using a three-axis coordinate system for convenience of description. In the drawing, the Z-axis is a height direction of the camera actuator, and indicates a direction in which externally introduced light passes, that is, the optical axis direction, and the X-axis (first direction) indicates a direction perpendicular to the optical axis direction, the Z-axis. And the Y-axis (second direction) indicates a direction perpendicular to the X-axis on a plane perpendicular to the Z-axis.
도 3은 본 발명의 일 실시 예에 따른 카메라 액추에이터의 분해 사시도이며, 도 4는 도 3에 도시된 카메라 액추에이터를 저면에서 바라본 사시도이다. 그리고 도 5는 도 3에 도시된 카메라 액추에이터의 결합 사시도이며, 도 6은 도 5에 도시된 카메라 액추에이터를 A-A선 및 B-B선 방향에서 각각 바라본 절단면도이다.3 is an exploded perspective view of a camera actuator according to an embodiment of the present invention, and FIG. 4 is a perspective view of the camera actuator shown in FIG. 3 as viewed from the bottom. And FIG. 5 is a combined perspective view of the camera actuator shown in FIG. 3 , and FIG. 6 is a cross-sectional view of the camera actuator shown in FIG. 5 as viewed from the A-A and B-B directions, respectively.
도 3 내지 도 6을 참조하면, 본 발명의 실시 예에 따른 카메라 액추에이터(2)는 크게, 고정부(20)와 가동부(25), 그리고 고정부(20)와 가동부(25) 사이에 볼을 매개로 개재되는 중간 가동부재(24)를 포함한다. 3 to 6, the camera actuator 2 according to the embodiment of the present invention is largely, the fixed part 20 and the movable part 25, and the ball between the fixed part 20 and the movable part 25. It includes an intermediate movable member 24 interposed as a medium.
참고로, 고정부(20)와 가동부(25)는 서로 상대적인 개념으로서, 고정부(20)는 가동부(25)에 대해 고정되는 부분을 의미하고, 가동부(25)는 고정부(20)에 대해서 광축과 수직한 평면을 따라 변위되는 부분을 의미한다.For reference, the fixed part 20 and the movable part 25 are relative concepts, and the fixed part 20 means a part fixed to the movable part 25 , and the movable part 25 is a fixed part 20 . It refers to a portion that is displaced along a plane perpendicular to the optical axis.
본 발명의 실시 예에 따른 카메라 액추에이터(2)에서 고정부(20)는 상부 커버(21) 및 이와 결합하여 내부에 실장공간(부호 생략)을 형성시키는 하부 베이스(22)로 구성될 수 있다. 상부 커버(21)는 중앙에 일정 면적으로 개구(210)가 형성된 구성일 수 있으며, 하부 베이스(22)는 도면의 예시와 같이 평면 모양이 사각형(직사각 또는 정사각형)인 소정 두께를 갖는 판상체 형태로 구성될 수 있다.In the camera actuator 2 according to the embodiment of the present invention, the fixing part 20 may be composed of an upper cover 21 and a lower base 22 in combination therewith to form a mounting space (symbol omitted) therein. The upper cover 21 may have a configuration in which the opening 210 is formed with a predetermined area in the center, and the lower base 22 is a plate-shaped body having a predetermined thickness having a rectangular (rectangular or square) planar shape as illustrated in the drawings. can be composed of
가동부(25)는 고정부(20)의 상기 실장공간 내에서 광축과 수직한 평면을 따라 평면운동을 하도록 구비된다. 가동부(25)는 가동기판(26) 및 가동기판(26) 상에 실장되는 이미지 센서 유니트(27)로 구성될 수 있다. 이때 이미지 센서 유니트(27)는 다시, 상기 개구(210)를 통과한 광으로부터 이미지 정보를 수집하는 이미지 센서(270) 및 이를 실장하는 센서 기판(272)을 포함할 수 있다.The movable part 25 is provided to perform a planar motion along a plane perpendicular to the optical axis within the mounting space of the fixed part 20 . The movable part 25 may include a movable substrate 26 and an image sensor unit 27 mounted on the movable substrate 26 . In this case, the image sensor unit 27 may further include an image sensor 270 for collecting image information from the light passing through the opening 210 and a sensor board 272 for mounting the image sensor 270 .
중간 가동부재(24)는 고정부(20)에 대한 상기 가동부(25)의 평면운동(광축과 수직한 평면 상에서의 이동)을 가이드한다. 중간 가동부재(24)는 고정부(20)의 상기 상부 커버(21)와 가동부(25) 사이에 복수의 볼(B1, B2)을 끼워 넣어 배치되어, 후술 될 자기회로의 구동력으로 고정부(20)에 대하여 상기 가동부(25)와 함께 제1 방향으로 상대운동을 하거나, 고정부(20)에 대해 가동부(25)만 제2 방향으로 상대운동을 할 수 있도록 기능한다.The intermediate movable member 24 guides the planar motion (movement on a plane perpendicular to the optical axis) of the movable part 25 with respect to the fixed part 20 . The intermediate movable member 24 is disposed by sandwiching a plurality of balls B1 and B2 between the upper cover 21 and the movable part 25 of the fixed part 20, and the fixed part ( 20) with respect to the movable part 25 in the first direction, or only the movable part 25 relative to the fixed part 20 in the second direction.
가동부(25)의 일면에는 적어도 둘 이상의 구동 마그네트(M1, M2)가 실장된다. 그리고 상기 구동 마그네트(M1, M2) 각각에 하나씩 대응되도록 상기 상부 커버(21)의 내측 상면에는 요크(Y1, Y2)가 배치된다. 이때 서로 대응되는 구동 마그네트(M1, M2)와 요크(Y1, Y2) 사이에 인력(引力)이 작용하며, 이에 따라 상기 중간 가동부재(24)를 사이에 두고 가동부(25)가 상부 커버(21) 측에 밀착되고 하부 베이스(22)로부터 이격된다.At least two driving magnets M1 and M2 are mounted on one surface of the movable part 25 . And yokes Y1 and Y2 are disposed on the inner upper surface of the upper cover 21 so as to correspond to each of the driving magnets M1 and M2. At this time, an attractive force acts between the corresponding driving magnets M1 and M2 and the yokes Y1 and Y2, and accordingly, the movable part 25 with the intermediate movable member 24 interposed therebetween is moved to the upper cover 21. ) side and spaced apart from the lower base 22 .
구동 마그네트(M1, M2)의 자력은 상기 요크(Y1, Y2)에 의해 후술하게 될 구동 코일(C1, C2) 측으로 집중된다. 또한 요크(Y1, Y2)와 구동 마그네트(M1, M2) 사이의 인력은 전류 차단 시 가동부(25)를 원위치로 복귀시키는 복원력으로 작용한다. 이에 따라 전류 차단 시(구동 코일(C1, C2)에 전류가 흐르지 않는 경우) 센터링(Centering, 가동부(25)를 광축 선상에 정확히 정렬시키는 것)이 구현될 수 있다. The magnetic force of the driving magnets M1 and M2 is concentrated toward the driving coils C1 and C2 to be described later by the yokes Y1 and Y2. In addition, the attractive force between the yokes (Y1, Y2) and the driving magnets (M1, M2) acts as a restoring force for returning the movable part 25 to its original position when the current is cut off. Accordingly, when the current is cut off (when no current flows in the driving coils C1 and C2), centering (accurately aligning the movable part 25 on the optical axis line) can be implemented.
상부 커버(21)에는 구동 마그네트(M1, M2) 각각에 하나씩 매칭되어 대면하는 구조로 구동 코일(C1, C2)을 실장한 코일 기판(23)이 결합된다. 이때 서로 대면하도록 쌍을 이루는 구동 마그네트(M1, M2)와 구동 코일(C1, C2)은 고정부(20)에 대하여 상기 가동부(25)를 광축과 수직인 도면의 X-Y 평면 상에서 2축 방향으로 구동시키는 자기회로를 구성하게 된다.A coil substrate 23 on which the driving coils C1 and C2 are mounted is coupled to the upper cover 21 in a structure that matches and faces each of the driving magnets M1 and M2. At this time, the driving magnets M1 and M2 and the driving coils C1 and C2, which are paired to face each other, drive the movable part 25 with respect to the fixed part 20 in the biaxial direction on the X-Y plane of the drawing perpendicular to the optical axis. to form a magnetic circuit.
서로 대면하도록 쌍을 이루는 구동 마그네트(M1, M2)와 구동 코일(C1, C2)로 구성되는 상기 자기회로는 바람직하게, 상기 가동부(25)를 광축과 수직한 제1 방향(도면의 X축 방향)으로 평면 구동시키는 제1 자기회로(MC1)와, 상기 가동부(25)를 광축과 수직하며 상기 제1 방향과 직교하는 제2 방향(Y축 방향)으로 평면 구동시키는 제2 자기회로(MC2)로 구성될 수 있다.Preferably, the magnetic circuit composed of the driving magnets M1 and M2 and the driving coils C1 and C2 that are paired to face each other may move the movable part 25 in a first direction perpendicular to the optical axis (X-axis direction in the drawing). ), and a second magnetic circuit MC2 for planarly driving the movable part 25 in a second direction (Y-axis direction) perpendicular to the optical axis and perpendicular to the first direction. can be composed of
다시 말해, 제1 자기회로(MC1)는 서로 대면하는 하나의 구동 마그네트(M1)와 하나의 구동 코일(C1)로 이루어져 가동부(25)를 광축과 수직한 제1 방향으로 이동시키기 위한 구동력을 발생시키고, 제2 자기회로(MC2) 역시 서로 대면하는 하나의 구동 마그네트(M2)와 하나의 구동 코일(C2)로 이루어져 가동부(25)를 광축과 수직한 제2 방향으로 이동시키기 위한 구동력을 발생시킨다. In other words, the first magnetic circuit MC1 includes one driving magnet M1 and one driving coil C1 facing each other to generate a driving force for moving the movable part 25 in a first direction perpendicular to the optical axis. and the second magnetic circuit MC2 also includes one driving magnet M2 and one driving coil C2 facing each other to generate a driving force for moving the movable part 25 in a second direction perpendicular to the optical axis. .
구동 코일(C1, C2) 각각은 공심 코일 형태로 구성될 수 있다. 이때 각 구동 코일(C1, C2) 중앙의 공심부에는 대응되는 구동 마그네트(M1, M2)의 자력 변화로부터 가동부(25)의 위치를 감지하는 홀 센서(Hall sensor, HS)가 하나씩 실장될 수 있다. 홀 센서(HS)의 감지정보는 도시되지 않은 드라이브 IC에 제공되며, 제공받은 센싱 정보를 바탕으로 드라이브 IC는 코일(C1, C2)을 피드백 제어한다. Each of the driving coils C1 and C2 may be configured in the form of an air-core coil. At this time, a Hall sensor (HS) that detects the position of the movable unit 25 from a change in magnetic force of the corresponding driving magnets M1 and M2 may be mounted one by one in the air core at the center of each of the driving coils C1 and C2. . The sensing information of the hall sensor HS is provided to a drive IC (not shown), and the drive IC feedback-controls the coils C1 and C2 based on the received sensing information.
즉 드라이브 IC는 홀 센서(HS)들이 제공하는 센싱 정보(구동 마그네트(M1, M2)의 위치 변화)를 바탕으로 고정부(20)에 대한 가동부(25)의 상대적인 위치 변화를 실시간으로 인식하고, 초기 위치 대비 인식된 위치 값에 기초해 각 구동 코일(C1, C2)을 피드백 제어한다. 이에 따라 고정부(20)에 대한 가동부(25)의 상대적인 위치 제어, 다시 말해 떨림 보정이 정확하고 정밀하게 구현될 수 있다. That is, the drive IC recognizes in real time a change in the relative position of the movable part 25 with respect to the fixed part 20 based on the sensing information (change in the position of the driving magnets M1 and M2) provided by the hall sensors HS, Based on the recognized position value compared to the initial position, feedback control of each driving coil C1 and C2 is performed. Accordingly, relative position control of the movable part 25 with respect to the fixed part 20 , that is, vibration compensation can be accurately and precisely implemented.
이처럼 본 발명은 자기회로들이 발생시킨 구동력으로 가동부(25)가 실장공간 내에서 광축과 수직인 2축 방향으로 평면운동을 함으로써 떨림을 상쇄시키며, 그 과정 중 상부 커버(21)와 중간 가동부재(24) 및 중간 가동부재(24)와 가동부(25) 사이에서 복수 의 볼(B1, B2)이 구름운동을 함으로써, 하부 베이스(22)로부터 이격된 상태로 고정부(20)에 대한 가동부(25)의 2차원 선형적 거동이 큰 마찰 없이 안정적으로 구현될 수 있다. As described above, the present invention offsets the vibration by causing the movable part 25 to move in the two-axis direction perpendicular to the optical axis in the mounting space with the driving force generated by the magnetic circuits, and during the process, the upper cover 21 and the intermediate movable member ( 24) and a plurality of balls B1 and B2 rolling between the intermediate movable member 24 and the movable part 25, so that the movable part 25 for the fixed part 20 in a state spaced apart from the lower base 22 ) can be stably implemented without large friction.
중간 가동부재(24)의 상면과 하면 각각에는 상기 볼(B1, B2)이 안정적으로 구름운동을 할 수 있도록 볼 구동영역을 구획하는 볼 레일이 형성된다. 볼 레일은 중간 가동부재(24)의 상면에 복수, 바람직하게는 4개소에 형성되는 제1 방향 볼레일(240)과, 반대편 중간 가동부재(24)의 하면에 복수, 바람직하게는 4개소에 형성되는 제2 방향 볼레일(242)로 구성될 수 있다.A ball rail is formed on each of the upper and lower surfaces of the intermediate movable member 24 to partition the ball driving area so that the balls B1 and B2 can stably roll. The ball rail includes a plurality of first direction ball rails 240 formed in a plurality, preferably four places, on the upper surface of the intermediate movable member 24, and a plurality, preferably four, on the lower surface of the opposite intermediate movable member 24. It may be formed of a second direction ball rail 242 .
상부 커버(21)에는 상기 제1 방향 볼레일(240) 각각에 하나씩 매칭되도록 대응되는 제1 방향 상부 볼레일(200)이 형성되며, 가동부(25)에는 상기 제2 방향 볼레일(242) 각각에 하나씩 매칭되도록 대응되는 제2 방향 하부 볼레일(252)이 형성될 수 있다. 이때 서로 마주하도록 대응되는 제1 방향 볼레일(240)과 제1 방향 상부 볼레일(200) 사이 및 제2 방향 볼레일(242)과 제2 방향 하부 볼레일(252) 사이에 볼(B1, B2)이 하나씩 놓인다.A corresponding first direction upper ball rail 200 is formed on the upper cover 21 to match each of the first direction ball rails 240 one by one, and the second direction ball rail 242 is formed on the movable part 25, respectively. A corresponding second direction lower ball rail 252 may be formed to match one by one. At this time, a ball B1 is formed between the first direction ball rail 240 and the first direction upper ball rail 200 and between the second direction ball rail 242 and the second direction lower ball rail 252 corresponding to face each other. B2) is placed one by one.
도 3 및 도 4에서 도면부호 255는 가동부(25)의 일측 상면에 실장되는 마그네트이며, 도면부호 245은 상기 마그네트(245)에 대응하여 중간 가동부재(24) 일측에 배치되는 자성체로서, 마그네트(255)의 자기적인 성질에 의해 상기 자성체(245)와의 사이에 인력이 작용하며, 그 인력으로 가동부(25)가 그 사이의 볼(B2)을 두고 중간 가동부재(24) 측에 밀착됨에 따라 2방향 평면운동이 안정적으로 구현될 수 있다.3 and 4, reference numeral 255 denotes a magnet mounted on one upper surface of the movable part 25, and reference numeral 245 denotes a magnetic material disposed on one side of the intermediate movable member 24 corresponding to the magnet 245, and a magnet ( 255), an attractive force acts between the magnetic body 245 and the magnetic body 245, and the movable part 25 is in close contact with the intermediate movable member 24 with the ball B2 therebetween. Directional plane motion can be stably implemented.
도면에는 가동부(25)의 일측 상면에 마그네트(255)가 실장되고, 마그네트(255)와 대응되는 위치의 중간 가동부재(24)의 일측에 자성체(245)를 배치시킨 구성을 예를 들어 도시하였으나, 반대로 마그네트가 중간 가동부재(24)의 일측에 배치되고, 이러한 마그네트와 대응되는 위치의 가동부(25) 일측 상면에 자성체가 배치되어도 무방하므로, 그러한 변형 예 역시 본 발명의 범주에 포함될 수 있음을 밝혀둔다.In the drawing, a magnet 255 is mounted on one upper surface of the movable part 25, and a configuration in which a magnetic body 245 is disposed on one side of the intermediate movable member 24 at a position corresponding to the magnet 255 is shown as an example. , Conversely, since the magnet is disposed on one side of the intermediate movable member 24, and a magnetic material may be disposed on the upper surface of one side of the movable part 25 at a position corresponding to the magnet, such modifications may also be included in the scope of the present invention. make it clear
도 7은 중간 가동부재를 도시한 도면으로서, 도 7의 (a)는 중간 가동부재의 평면도이며, 도 7의 (b)는 제1 방향에서 바라본 중간 가동부재의 정면도이다.7 is a view showing an intermediate movable member. FIG. 7 (a) is a plan view of the intermediate movable member, and FIG. 7 (b) is a front view of the intermediate movable member as viewed from the first direction.
도 7에 도시된 바와 같이, 중간 가동부재(24)에 형성되는 제1 방향 볼레일(240)과 제2 방향 볼레일(242)은 광축 방향에서 바라보았을 때(도 7의 (a) 참조) 서로 겹치거나 포개지지 않도록 이격 형성될 수 있다. 그러면서도 제1 방향에서 바라보았을 때는 서로 인접한 제1 방향 볼레일(240)과 제2 방향 볼레일(242)은 적어도 일부가 중첩되는 구성일 수 있다. As shown in FIG. 7 , the first direction ball rail 240 and the second direction ball rail 242 formed on the intermediate movable member 24 are viewed from the optical axis direction (see FIG. 7 (a)). They may be spaced apart from each other so as not to overlap or overlap each other. However, when viewed from the first direction, the first direction ball rail 240 and the second direction ball rail 242 adjacent to each other may have a configuration in which at least a portion overlaps.
제1 방향 볼레일과 제2 방향 볼레일의 광축 방향 위치가 서로 겹치는 구성의 종래 미들 가이드(도 1 및 도 2 참조)는, 제1 방향 볼레일과 제2 방향 볼레일을 따라 구름운동을 하도록 배치되는 볼 역시 광축 방향에서 바라보았을 때 동축 정렬될 수 밖에 없는 구조이어서, 전체적인 카메라 모듈의 높이를 축소시키는데 한계가 있다.The conventional middle guide (refer to FIGS. 1 and 2) of a configuration in which the optical axis direction positions of the first direction ball rail and the second direction ball rail overlap each other is arranged to perform rolling motion along the first direction ball rail and the second direction ball rail The balls are also structured to be coaxially aligned when viewed from the optical axis, so there is a limit to reducing the overall height of the camera module.
반면 본 발명의 실시 예는, 제1 방향 볼레일(240)과 제2 방향 볼레일(242)이 평면에서 바라보았을 때 서로 겹치거나 포개지지 않도록 이격되어 있기 때문에, 해당 볼레일 각각에 접촉되는 볼(B1, B2) 역시 평면에서 바라보았을 때 그 위치가 서로 겹치지 않으며, 제1 방향에서 봤을 때(도 7의 (b) 참조)만 두 볼레일(240, 242) 각각에 접하는 볼의 일부가 중첩된다.On the other hand, in the embodiment of the present invention, since the first direction ball rail 240 and the second direction ball rail 242 are spaced apart so as not to overlap or overlap each other when viewed from a plane, the balls contacting each of the corresponding ball rails (B1, B2) also do not overlap each other when viewed from a plane, and only when viewed from the first direction (see (b) of FIG. do.
즉 평면에서 바라보았을 때 제1, 제2 방향 볼레일(240, 242) 각각에 접촉하는 볼(B1, B2)은 서로 겹치거나 포개지지 않지만, 제1 방향(X축 방향)에서 보면 두 볼(B1, B2)의 일부가 중첩된 것처럼 보이며, 이처럼 제1 방향에서 봤을 때만 두 볼(B1, B2)의 적어도 일부가 중첩되도록 구성하면, 두 (B1, B2) 중첩되는 높이만큼 전체적인 중간 가동부재(24)의 높이가 줄게 되므로 제품의 소형화를 달성할 수 있다.That is, the balls B1 and B2 contacting each of the first and second direction ball rails 240 and 242 do not overlap or overlap each other when viewed from a plane, but when viewed from the first direction (X-axis direction), the two balls ( Part of B1, B2) seems to be overlapped, and if at least a portion of the two balls B1 and B2 is configured to overlap only when viewed from the first direction, the overall intermediate movement by the overlapping height of the two balls (B1, B2) Since the height of the member 24 is reduced, it is possible to achieve miniaturization of the product.
도 8은 가동부와 고정기판을 도시한 평면도 및 정면도이다8 is a plan view and a front view illustrating a movable part and a fixed substrate;
도 8과 앞서 첨부된 도 3 및 도 6을 함께 참조하면, 앞서 언급한 바와 같이 가동부(25)는 구동 마그네트(M1, M2)와 요크(Y1, Y2) 사이에 발생되는 인력 때문에 하부 베이스(22)로부터 소정거리 이격되어 부양된 상태로 유지된다. 이때 가동부(25)를 구성하는 가동기판(26)은 하부 베이스(22)의 정해진 위치에 결합되어 고정되는 고정기판(29)과 복수의 플렉시블 와이어(28)를 통해 전기적으로 연결된다.Referring to FIG. 8 and previously attached FIGS. 3 and 6 together, as mentioned above, the movable part 25 has the lower base 22 due to the attractive force generated between the driving magnets M1 and M2 and the yokes Y1 and Y2. ) is spaced a predetermined distance from it and is maintained in a buoyant state. At this time, the movable substrate 26 constituting the movable part 25 is electrically connected to the fixed substrate 29 and the plurality of flexible wires 28 coupled to and fixed at a predetermined position of the lower base 22 .
각각의 플렉시블 와이어(28)는 가느다랗고 긴 도전성 도체의 표면을 합성수지와 같은 절연체로 피복시켜 절연층을 형성시킨 구성으로서 쉽게 구부러질 수 있다. 이에 따라 전술한 자기회로가 발생시킨 구동력으로 가동부(25)가 고정부(20)에 대하여 제1 방향 또는 제2 방향으로 움직일 때, 고정기판(29)과의 전기적인 연결은 유지한 채 정해진 구동 범위 안에서 자유롭게 움직일 수 있다.Each flexible wire 28 has a structure in which an insulating layer is formed by covering the surface of a thin and long conductive conductor with an insulator such as a synthetic resin, and can be easily bent. Accordingly, when the movable part 25 is moved in the first direction or the second direction with respect to the fixed part 20 with the driving force generated by the above-described magnetic circuit, the electric connection with the fixed substrate 29 is maintained while the predetermined driving force is maintained. You can move freely within range.
이와 같이 구성된 본 발명의 일 측면에 따른 카메라 액추에이터의 작동에 대해 간단히 살펴보기로 한다.The operation of the camera actuator according to an aspect of the present invention configured as described above will be briefly described.
도 9는 본 발명의 일 측면에 따른 카메라 액추에이터의 작동 상태를 나타낸 도면으로서, 도 9의 (a)는 제1 방향 떨림 보정 시 본 발의 작동 상태를 도시한 단면도이며, 도 9의 (b)는 제2 방향 떨림 보정 시 본 발명의 작동 상태를 도시한 단면도이다.9 is a view showing an operating state of a camera actuator according to an aspect of the present invention, and FIG. 9 (a) is a cross-sectional view showing the operating state of the present invention when correcting the first direction shake, FIG. 9 (b) is It is a cross-sectional view showing the operating state of the present invention when correcting the vibration in the second direction.
먼저 제1 방향에 대한 떨림 보정부터 살펴본다. First, let's look at the shake correction for the first direction.
도 9의 (a)를 참조하면, 제1 방향 떨림이 감지되면 드라이브 IC(미도시)의 통제에 따라 코일 기판(23)을 통해 제1 방향 구동 코일(C1)에 전류가 인가된다. 좀 더 구체적으로는, 도 9의 (a)를 기준으로 감지된 제1 방향 떨림이 오른쪽인지 왼쪽 방향인지에 따라서, 드라이브 IC는 제1 방향 구동 코일(C1)에 +/- 전류를 인가하거나 반대로 -/+ 전류를 인가한다.Referring to FIG. 9A , when vibration in the first direction is sensed, a current is applied to the first direction driving coil C1 through the coil substrate 23 under the control of a drive IC (not shown). More specifically, depending on whether the sensed first directional shaking is in the right or left direction based on FIG. 9A , the drive IC applies a +/- current to the first directional driving coil C1 or vice versa -/+ current is applied.
떨림 감지에 따른 드라이브 IC의 통제로 제1 방향 구동 코일(C1)에 +/- 또는 -/+전류가 인가되면, 해당 구동 코일(C1)이 자화되고 인가된 전류의 방향에 따라 특정 방향으로 전기장이 발생되며, 발생된 전기장과 제1 방향 구동 마그네트(M1)의 자기장 사이의 상호작용으로 힘(Drive force, 고정부에 대하여 가동부를 도면상 오른쪽 또는 왼쪽 방향 이동시키려는 힘)이 발생된다.When +/- or -/+ current is applied to the driving coil C1 in the first direction under the control of the drive IC according to the vibration detection, the driving coil C1 is magnetized and an electric field is generated in a specific direction according to the direction of the applied current. is generated, and the interaction between the generated electric field and the magnetic field of the driving magnet M1 in the first direction generates a drive force (force to move the movable part to the right or left in the drawing with respect to the fixed part).
이러한 힘에 의해 제1 방향 구동 코일(C1)에 인가된 전류의 방향과 세기에 상응하는 방향과 변위량으로 가동부(25)가 중간 가동부재(24)와 함께 제1 방향을 따라 직선운동을 하며, 그 결과 가동부(25)를 구성하는 이미지 센서 유니트(27)가 제1 방향을 따라 도면상 오른쪽 또는 왼쪽 방향으로 움직임으로써 상기 제1 방향 떨림을 상쇄시키게 된다.By this force, the movable part 25 linearly moves along the first direction together with the intermediate movable member 24 in the direction and the amount of displacement corresponding to the direction and strength of the current applied to the first direction driving coil C1, As a result, the image sensor unit 27 constituting the movable part 25 moves in the right or left direction in the drawing along the first direction to cancel the vibration in the first direction.
이 과정에서 제1 방향 구동 코일(C1)의 공심부에 배치된 홀 센서(HS)가 제1 방향 구동 마그네트(M1)의 위치 변화에 따라 상응하는 크기의 감지신호를 출력하며, 드라이브 IC가 해당 홀 센서의 출력을 바탕으로 가동부(25)의 제1 방향 위치를 실시간으로 인식한다. 그리고 초기 위치 대비 인식된 위치 값에 기초해 제1 방향 구동 코일(C1)을 피드백 제어함으로써 제1 방향 떨림 보정이 정확하게 구현될 수 있다. In this process, the Hall sensor HS disposed in the air core of the first direction driving coil C1 outputs a detection signal of a corresponding size according to a change in the position of the first direction driving magnet M1, and the drive IC Based on the output of the hall sensor, the first direction position of the movable part 25 is recognized in real time. In addition, by feedback-controlling the first direction driving coil C1 based on the recognized position value compared to the initial position, the first direction vibration correction may be accurately implemented.
제1 떨림 보정 후 가동부(25)를 제1 방향으로 움직이려는 힘이 제거(제1 방향 구동 코일(C1)에 대한 전류 차단)되면, 제1 방향 구동 마그네트(M1) 및 이에 대응되는 제1 방향 요크(Y1) 사이의 서로 당기는 힘, 즉 상기 제1 방향 구동 마그네트(M1)와 제1 방향 요크(Y1) 사이에 작용하는 인력에 의하여 가동부(25)는 원래 중립 위치로 자연스럽게 복귀하게 된다.After the first vibration compensation, when the force to move the movable part 25 in the first direction is removed (blocking the current to the first direction driving coil C1), the first direction driving magnet M1 and the first direction corresponding thereto The movable part 25 naturally returns to its original neutral position by the mutually pulling force between the yokes Y1, that is, the attractive force acting between the first direction driving magnet M1 and the first direction yoke Y1.
다음 제2 방향에 대한 떨림 보정에 대해 살펴본다. Next, we will look at vibration compensation in the second direction.
도 9의 (b)를 참조하면, 제2 방향 떨림이 감지되면 드라이브 IC(미도시)의 통제에 따라 코일 기판(23)을 통해 제2 방향 구동 코일(C2)에 전류가 인가된다. 좀 더 구체적으로는, 도 9의 (b)를 기준으로 감지된 제2 방향 떨림이 오른쪽인지 왼쪽 방향인지에 따라서, 드라이브 IC는 제1 방향 구동 코일(C1)에 +/- 전류를 인가하거나 반대로 -/+ 전류를 인가한다.Referring to FIG. 9B , when the vibration in the second direction is sensed, a current is applied to the second direction driving coil C2 through the coil substrate 23 under the control of the drive IC (not shown). More specifically, the drive IC applies a +/- current to the first direction driving coil C1 or vice versa, depending on whether the sensed second direction vibration is in the right or left direction based on FIG. 9B . -/+ current is applied.
떨림 감지에 따른 드라이브 IC의 통제로 제2 방향 구동 코일(C2)에 +/- 또는 -/+전류가 인가되면, 해당 구동 코일(C2)이 자화되고 인가된 전류의 방향에 따라 특정 방향으로 전기장이 발생되며, 발생된 전기장과 제2 방향 구동 마그네트(M2)의 자기장 사이의 상호작용으로 힘(Drive force, 고정부(20)에 대하여 가동부(25)를 도면상 오른쪽 또는 왼쪽 방향 이동시키려는 힘)이 발생된다.When +/- or -/+ current is applied to the second direction driving coil C2 under the control of the drive IC according to the vibration detection, the corresponding driving coil C2 is magnetized and an electric field is generated in a specific direction according to the direction of the applied current. is generated, and the interaction between the generated electric field and the magnetic field of the driving magnet M2 in the second direction causes a force (Drive force, a force to move the movable part 25 to the right or left in the drawing with respect to the fixed part 20) This happens.
이러한 힘에 의해 제2 방향 구동 코일(C2)에 인가된 전류의 방향과 세기에 상응하는 방향과 변위량으로 가동부(25)가 중간 가동부재(24)에 대하여 제2 방향을 따라 직선운동을 하며(제2 방향 떨림 보정 시 중간 가동부재(24)는 고정체가 됨), 그 결과 이미지 센서 유니트(27)가 제2 방향을 따라 도면상 오른쪽 또는 왼쪽 방향으로 움직임으로써 상기 제2 방향 떨림을 상쇄시키게 된다.By this force, the movable part 25 linearly moves in the second direction with respect to the intermediate movable member 24 in the direction and displacement corresponding to the direction and strength of the current applied to the second direction driving coil C2 ( When correcting the vibration in the second direction, the intermediate movable member 24 becomes a fixed body), as a result, the image sensor unit 27 moves in the right or left direction in the drawing along the second direction to cancel the vibration in the second direction do.
이 과정에서 제2 방향 구동 코일(C2)의 공심부에 배치된 홀 센서(HS)는 제2 방향 구동 마그네트(M2)의 위치 변화에 따라 상응하는 크기의 감지신호를 출력하며, 드라이브 IC가 해당 홀 센서의 출력을 바탕으로 가동부(25)의 제2 방향 위치를 실시간으로 인식한다. 그리고 초기 위치 대비 인식된 위치 값에 기초해 제2 방향 구동 코일(C2)을 피드백 제어함으로써 제2 방향 떨림 보정이 정확하게 구현될 수 있다. In this process, the Hall sensor HS disposed in the air core of the second direction driving coil C2 outputs a detection signal of a corresponding size according to a change in the position of the second direction driving magnet M2, and the drive IC The second direction position of the movable part 25 is recognized in real time based on the output of the hall sensor. In addition, by feedback-controlling the second direction driving coil C2 based on the recognized position value compared to the initial position, the second direction vibration correction may be accurately implemented.
제2 떨림 보정 후 가동부(25)를 제2 방향으로 움직이려는 힘이 제거(제2 방향 구동 코일(C2)에 대한 전류 차단)되면, 제2 방향 구동 마그네트(M2)와 제2 방향 요크(Y2), 그리고 전술한 마그네트(255)와 자성체(245) 사이에 작용하는 서로 당기는 힘, 즉 인력에 의하여 가동부(25)가 고정되어 있는 중간 가동부재(24)에 대해 상대운동을 함으로써 원래의 제2 방향 중립 위치로 자연스럽게 복귀하게 된다.After the second vibration compensation, when the force to move the movable part 25 in the second direction is removed (blocking the current to the second direction driving coil C2), the second direction driving magnet M2 and the second direction yoke Y2 ), and by making a relative motion with respect to the intermediate movable member 24 to which the movable part 25 is fixed by the mutually pulling force, that is, the attractive force acting between the aforementioned magnet 255 and the magnetic body 245, the original second It will naturally return to the directional neutral position.
물론, 위에서는 제1 방향 떨림 보정과 제2 방향 떨림 보정 각각에 대해서만 설명하였으나, 실제 떨림은 두 개의 방향 성분(제1 방향 성분과 제2 방향 성분)을 동시에 포함하는 형태로 발생한다. 이 경우 전술한 제1 방향 떨림 보정을 위한 구동력과 제2 방향 떨림 보정을 위한 구동력의 조합으로 가동부(25)가 X-Y 평면 상에서 대각선 방향으로 움직임으로써 해당 떨림을 상쇄시키게 된다. Of course, only the first direction shake correction and the second direction shake correction have been described above, but the actual shaking occurs in a form including two direction components (a first direction component and a second direction component) at the same time. In this case, the movable part 25 moves in a diagonal direction on the X-Y plane by a combination of the above-described driving force for correcting the vibration in the first direction and the driving force for correcting the vibration in the second direction, thereby canceling the vibration.
도 10은 전술한 본 발명의 일 측면에 따른 카메라 액추에이터를 포함하는 카메라 모듈의 개략도이다.10 is a schematic diagram of a camera module including a camera actuator according to an aspect of the present invention described above.
도 10을 참조하면, 본 발명의 다른 측면에 따른 카메라 모듈(1)은 크게, 카메라 액추에이터(2) 및 광학 유니트(4)로 구성된다. 여기서 카메라 액추에이터는 전술한 일 측면에 따른 카메라 액추에이터(2)와 동일하며, 광학 유니트(4)는 렌즈배럴(부호 생략) 및 상기 렌즈배럴에 광축 방향을 따라 소정의 간격을 두고 수용되는 복수의 렌즈들로 구성된 렌즈군(도시 생략)을 포함한다. Referring to FIG. 10 , the camera module 1 according to another aspect of the present invention is largely composed of a camera actuator 2 and an optical unit 4 . Here, the camera actuator is the same as the camera actuator 2 according to the above-described aspect, and the optical unit 4 includes a lens barrel (a symbol omitted) and a plurality of lenses accommodated in the lens barrel at a predetermined interval along the optical axis direction. It includes a lens group (not shown) composed of
렌즈배럴은 피사체에 반사되어 입사되는 광을 수광하고 수광된 광을 광축 방향으로 통과시킬 수 있도록 정렬된다. 렌즈배럴에는 앞서 언급한 바와 같이 복수의 렌즈들로 구성된 렌즈군이 수용되며, 이때 렌즈군을 구성하는 렌즈 각각은 동일하거나 상이한 초점 거리, 굴절률 등의 광학적 특성을 가질 수 있다.The lens barrel is arranged to receive the light reflected by the subject and to pass the received light in the direction of the optical axis. As mentioned above, the lens barrel accommodates a lens group composed of a plurality of lenses, and in this case, each of the lenses constituting the lens group may have the same or different optical properties such as focal length and refractive index.
광학 유니트(4)는 상기 카메라 액추에이터(2)의 상부 커버(21)의 개구(210)에 결합되거나 도시하지 않은 별도의 광축 방향 가동요소에 결합될 수 있다. 여기서 별도의 광축 방향 가동요소는 예컨대 AF 캐리어일 수 있다. 도시하지는 않았으나, 광학 유니트(4)와 상가 카메라 액추에이터(2)의 이미지센서 유니트(27) 중간의 광 경로 상에는 IR 필터가 설치될 수도 있다. The optical unit 4 may be coupled to the opening 210 of the upper cover 21 of the camera actuator 2 or coupled to a separate optical axis direction movable element not shown. Here, the separate optical axis direction movable element may be, for example, an AF carrier. Although not shown, an IR filter may be installed on the optical path between the optical unit 4 and the image sensor unit 27 of the camera actuator 2 .
이 경우 IR 필터는 입사광(광학 유니트(4)를 통과한 광)에 포함된 특정 파장, 바람직하게는 적외선 파장을 필터링하고, 적외선 파장이 필터링 된 광이 이미지센서 유니트에 투영될 수 있도록 기능한다.In this case, the IR filter filters a specific wavelength, preferably an infrared wavelength, included in the incident light (light that has passed through the optical unit 4), and functions so that the infrared wavelength filtered light can be projected onto the image sensor unit.
종래 떨림 보정용 카메라 액추에이터 대부분은, 자기회로가 발생시킨 구동력으로 다른 부품에 비해 상대적으로 무거운 광학 유니트를 이동시켜 떨림에 대응을 하기 때문에 큰 구동력을 필요로 하다. 이때 안정적인 떨림 보정을 위해 충분한 구동력을 확보하기 위해서는, 그만큼 자기회로의 크기를 키워야 하므로 제품의 소형화 달성이 어려운 단점이 있다.Most of the conventional camera actuators for vibration compensation require a large driving force because they respond to the vibration by moving a relatively heavy optical unit compared to other components with the driving force generated by the magnetic circuit. In this case, in order to secure sufficient driving force for stable vibration compensation, the size of the magnetic circuit must be increased accordingly, so it is difficult to achieve miniaturization of the product.
반면, 본 발명의 실시 예에 따르면, 광학 유니트에 비해 상대적으로 가벼운 이미지 센서 유니트를 평면 이동시켜 떨림에 대응하는 방식이므로, 상기와 같은 종래의 광학 유니트를 이동시켜 떨림에 대응하는 방식에 비해 작은 힘으로도 떨림 보정을 구현할 수 있으며, 필요 구동력이 작아진 만큼 자기회로의 크기를 작게 할 수 있어서 제품의 소형화에 유리하다.On the other hand, according to the embodiment of the present invention, since the image sensor unit, which is relatively light compared to the optical unit, is moved in a plane to respond to the shaking, a smaller force compared to the conventional method of moving the optical unit as described above to respond to the shaking Vibration compensation can also be implemented with this, and the size of the magnetic circuit can be reduced as the required driving force is reduced, which is advantageous for product miniaturization.
또한, 제1 방향 볼레일과 제2 방향 볼레일의 광축 방향 위치가 서로 겹치는 종래의 구성(도 1 및 도 2 참조)은, 제1 방향 볼레일과 제2 방향 볼레일을 따라 구름운동을 하도록 배치되는 볼 역시 광축 방향에서 바라보았을 때 동축 정렬될 수 밖에 없는 구조이어서, 전체적으로 카메라 모듈의 높이를 축소시키는데 한계가 있다는 단점이 있다.In addition, the conventional configuration (refer to FIGS. 1 and 2) in which the optical axis direction positions of the first direction ball rail and the second direction ball rail overlap each other is arranged to perform rolling motion along the first direction ball rail and the second direction ball rail. The ball is also a structure that can only be coaxially aligned when viewed from the optical axis direction, so there is a disadvantage in that there is a limit in reducing the overall height of the camera module.
이에 반해 본 발명의 실시 예는, 특유의 구조(제1 방향 볼레일과 제2 방향 볼레일이 평면에서 바라보았을 때 서로 겹치거나 포개지지 않도록 이격되고, 제1 방향에서 봤을 때(도 7의 (b) 참조)만 두 볼레일의 일부가 겹쳐 보이는 구조)를 갖는 중간 가동부재의 적용으로, 카메라 모듈의 높이 축소가 가능하다. 즉 전체적으로 보다 슬림하고 콤팩트한 형태의 제품 구현이 가능하다.In contrast, the embodiment of the present invention has a unique structure (the first direction ball rail and the second direction ball rail are spaced apart so as not to overlap or overlap each other when viewed in a plan view, and when viewed from the first direction (FIG. 7 (b) ) only, the height of the camera module can be reduced by applying an intermediate movable member with a structure in which parts of the two ball rails overlap). In other words, it is possible to realize a slimmer and more compact product overall.
이상의 본 발명의 상세한 설명에서는 그에 따른 특별한 실시 예에 대해서만 기술하였다. 하지만 본 발명은 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.In the above detailed description of the present invention, only specific embodiments thereof have been described. However, it is to be understood that the present invention is not limited to the particular form recited in the detailed description, but rather, it is to be understood to cover all modifications and equivalents and substitutions falling within the spirit and scope of the present invention as defined by the appended claims. should be
[부호의 설명][Explanation of code]
1 : 카메라 모듈 2 : 카메라 액추에이터1: camera module 2: camera actuator
4 : 광학 유니트 20 : 고정부4: optical unit 20: fixed part
21 : 상부 커버 22 : 하부 베이스21: upper cover 22: lower base
23 : 코일 기판 24 : 중간 가동부재23: coil substrate 24: intermediate movable member
25 가동부 26 : 가동기판25 movable part 26: movable board
27 : 이미지 센서 유니트 28 : 플렉시블 와이어27: image sensor unit 28: flexible wire
29 : 고정기판 200 : 제1 방향 상부 볼레일29: fixed substrate 200: first direction upper ball rail
210 : 개구 240 : 제1 방향 볼레일210: opening 240: first direction ball rail
242 : 제2 방향 볼레일 245 : 자성체242: second direction ball rail 245: magnetic material
252 : 제2 방향 하부 볼레일 255 : 마그네트252: second direction lower ball rail 255: magnet
B1, B2 : 볼 C1, C2 : 구동 코일B1, B2: Ball C1, C2: Driving coil
HS : 홀 센서 M1, M2 : 구동 마그네트HS : Hall sensor M1, M2 : Driving magnet
MC1 : 제1 자기회로 MC2 : 제2 자기회로MC1: first magnetic circuit MC2: second magnetic circuit

Claims (10)

  1. 상부 커버 및 상부 커버와 결합하여 내부에 실장공간을 형성시키는 하부 베이스로 구성된 고정부;a fixing part comprising an upper cover and a lower base coupled to the upper cover to form a mounting space therein;
    상기 실장공간 내에서 광축과 수직한 평면을 따라 평면운동을 하는 가동부; 및a movable part for planar motion along a plane perpendicular to the optical axis within the mounting space; and
    상기 가동부가 고정부에 대해 평면운동을 할 수 있도록 상기 상부 커버와 가동부 사이에 볼을 매개로 개재되는 중간 가동부재(Middle guide);를 포함하며,and a middle movable member (Middle guide) interposed between the upper cover and the movable part through a ball so that the movable part can make a planar motion with respect to the fixed part;
    상기 가동부의 일면에 적어도 둘 이상의 구동 마그네트가 실장되고, 상기 구동 마그네트 각각에 하나씩 대응되도록 상기 상부 커버에는 요크가 배치되며,At least two driving magnets are mounted on one surface of the movable part, and a yoke is disposed on the upper cover to correspond to each of the driving magnets one by one,
    서로 대응되는 구동 마그네트와 요크 사이의 인력(引力)에 의해 상기 중간 가동부재를 사이에 두고 상기 가동부가 상부 커버 측에 밀착되고 하부 베이스로부터 이격되며,The movable part is in close contact with the upper cover side with the intermediate movable member interposed therebetween by the attractive force between the corresponding driving magnet and the yoke and is spaced apart from the lower base,
    하부 베이스로부터 이격된 상기 가동부의 가동기판과 상기 하부 베이스에 결합되는 고정기판이 가느다랗고 긴 복수의 플렉시블 와이어를 통해 전기적으로 연결되는 카메라 액추에이터.A camera actuator in which the movable substrate of the movable part spaced apart from the lower base and the fixed substrate coupled to the lower base are electrically connected through a plurality of thin and long flexible wires.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 상부 커버에는 상기 구동 마그네트와 하나씩 대면하도록 둘 이상의 구동 코일을 실장한 코일 기판이 결합되며,A coil substrate on which two or more driving coils are mounted so as to face the driving magnet one by one is coupled to the upper cover,
    서로 대면하도록 쌍을 이루는 구동 마그네트와 구동 코일이 상기 가동부를 평면 구동시키는 자기회로를 구성하는 카메라 액추에이터.A camera actuator in which a pair of driving magnets and driving coils to face each other constitute a magnetic circuit for driving the movable part in a plane.
  3. 제 2 항에 있어서,3. The method of claim 2,
    서로 대면하도록 쌍을 이루는 구동 마그네트와 구동 코일로 구성되는 상기 자기회로는,The magnetic circuit comprising a driving magnet and a driving coil that are paired to face each other,
    상기 가동부를 광축과 수직한 제1 방향으로 평면 구동시키는 제1 자기회로와,a first magnetic circuit for planarly driving the movable part in a first direction perpendicular to the optical axis;
    상기 가동부를 광축과 수직하며 상기 제1 방향과 직교하는 제2 방향으로 평면 구동시키는 제2 자기회로로 구성되는 카메라 액추에이터.and a second magnetic circuit for plane driving the movable part in a second direction perpendicular to the optical axis and perpendicular to the first direction.
  4. 제 2 항에 있어서,3. The method of claim 2,
    상기 구동 코일 각각의 공심부에는 대응되는 구동 마그네트의 자력 변화를 감지하는 홀 센서가 하나씩 실장된 카메라 액추에이터. A camera actuator in which a Hall sensor for sensing a change in magnetic force of a corresponding driving magnet is mounted on an air core of each of the driving coils.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 가동부는, The movable part,
    상기 가동기판과,the movable substrate;
    상기 가동기판 상에 실장되는 이미지 센서 유니트를 포함하는 카메라 액추에이터.A camera actuator including an image sensor unit mounted on the movable substrate.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 중간 가동부재의 상면과 하면 각각에 복수의 제1 방향 볼레일 및 복수의 제2 방향 볼레일이 형성되고,A plurality of first direction ball rails and a plurality of second direction ball rails are formed on the upper and lower surfaces of the intermediate movable member, respectively,
    상기 상부 커버에는 상기 복수의 제1 방향 볼레일 각각에 하나씩 매칭되도록 대응되는 제1 방향 상부 볼레일이 형성되며,A corresponding first direction upper ball rail is formed on the upper cover to match each of the plurality of first direction ball rails,
    상기 가동부에는 상기 복수의 제2 방향 볼레일 각각에 하나씩 매칭되도록 대응되는 제2 방향 하부 볼레일이 형성되고,A second direction lower ball rail corresponding to each of the plurality of second direction ball rails is formed on the movable part to be matched one by one,
    서로 마주하도록 대응되는 제1 방향 볼레일과 제1 방향 상부 볼레일 사이 및 제2 방향 볼레일과 제2 방향 하부 볼레일 사이에 볼이 하나씩 개재되는 카메라 액추에이터.A camera actuator in which balls are interposed one by one between a first direction ball rail and a first direction upper ball rail, and between a second direction ball rail and a second direction lower ball rail, which correspond to each other so as to face each other.
  7. 제 6 항에 있어서,7. The method of claim 6,
    상기 중간 가동부재에 형성되는 제1 방향 볼레일과 제2 방향 볼레일은 광축 방향에서 바라보았을 때 서로 겹치거나 포개지지 않도록 이격되며, 제1 방향에서 바라보았을 때 적어도 일부가 중첩되는 카메라 액추에이터.The first direction ball rail and the second direction ball rail formed on the intermediate movable member are spaced apart from each other so as not to overlap or overlap each other when viewed from the optical axis direction, and at least partially overlap when viewed from the first direction.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 가동부의 일측 상면에 마그네트가 실장되고, A magnet is mounted on the upper surface of one side of the movable part,
    상기 마그네트와 대응되도록 상기 중간 가동부재의 일측에는 자성체가 배치되며,A magnetic body is disposed on one side of the intermediate movable member so as to correspond to the magnet,
    상기 마그네트와 자성체 간 인력으로 가동부가 볼을 사이에 두고 상기 중간 가동부재에 밀착되는 카메라 액추에이터.A camera actuator in which the movable part is in close contact with the intermediate movable member with the ball interposed therebetween by the attractive force between the magnet and the magnetic body.
  9. 제 1 항에 있어서,The method of claim 1,
    복수의 플렉시블 와이어 각각은, 가느다랗고 긴 도전성 도체의 표면을 절연체로 피복시켜 절연층을 형성시킨 구성으로서 쉽게 구부러지는 것을 특징으로 하는 카메라 액추에이터.Each of the plurality of flexible wires has a configuration in which an insulating layer is formed by covering the surface of a thin and long conductive conductor with an insulator, and is easily bent.
  10. 제 1 항 내지 제 9 항 중 어느 하나의 항에 기재된 카메라 액추에이터; 및The camera actuator according to any one of claims 1 to 9; and
    상기 카메라 액추에이터의 상부 커버에 결합되거나 별도의 광축 방향 가동요소에 결합되는 광학 유니트;를 포함하는 카메라 모듈.A camera module comprising a; an optical unit coupled to the upper cover of the camera actuator or coupled to a separate optical axis direction movable element.
PCT/KR2021/012476 2020-10-28 2021-09-14 Camera actuator and camera module including same WO2022092557A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0141561 2020-10-28
KR1020200141561A KR20220056722A (en) 2020-10-28 2020-10-28 Camera actuator and Camera module containing the same

Publications (1)

Publication Number Publication Date
WO2022092557A1 true WO2022092557A1 (en) 2022-05-05

Family

ID=81384137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/012476 WO2022092557A1 (en) 2020-10-28 2021-09-14 Camera actuator and camera module including same

Country Status (2)

Country Link
KR (1) KR20220056722A (en)
WO (1) WO2022092557A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230165720A (en) * 2022-05-27 2023-12-05 삼성전자주식회사 Camera including image sensor and electronic apparatus comprising camera thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090135260A1 (en) * 2005-11-30 2009-05-28 Jarkko Rouvinen Method and System for Image Stabilization
KR20100130259A (en) * 2009-06-03 2010-12-13 삼성전자주식회사 Optical image stabilizer for camera module assembly
KR20140087613A (en) * 2012-12-31 2014-07-09 삼성전기주식회사 Camera with optical image stabilization function and method thereof
US20180171991A1 (en) * 2016-12-16 2018-06-21 Hutchinson Technology Incorporated Sensor Shift Structures In Optical Image Stabilization Suspensions
US20190020822A1 (en) * 2017-07-17 2019-01-17 Apple Inc. Camera with image sensor shifting

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180116965A (en) 2017-04-18 2018-10-26 자화전자(주) Camera module actuator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090135260A1 (en) * 2005-11-30 2009-05-28 Jarkko Rouvinen Method and System for Image Stabilization
KR20100130259A (en) * 2009-06-03 2010-12-13 삼성전자주식회사 Optical image stabilizer for camera module assembly
KR20140087613A (en) * 2012-12-31 2014-07-09 삼성전기주식회사 Camera with optical image stabilization function and method thereof
US20180171991A1 (en) * 2016-12-16 2018-06-21 Hutchinson Technology Incorporated Sensor Shift Structures In Optical Image Stabilization Suspensions
US20190020822A1 (en) * 2017-07-17 2019-01-17 Apple Inc. Camera with image sensor shifting

Also Published As

Publication number Publication date
KR20220056722A (en) 2022-05-06

Similar Documents

Publication Publication Date Title
WO2014157998A1 (en) Camera lens module
WO2020197150A1 (en) Camera device
WO2015130051A1 (en) Lens driving motor
WO2014092271A1 (en) Optical adjusting apparatus
WO2015133725A1 (en) Camera lens module
WO2014142622A1 (en) Lens actuator
WO2014003492A1 (en) Camera module
WO2015046761A1 (en) Camera actuator for portable terminal having autofocusing and image stabilization functions
WO2016137083A1 (en) Stabilizing device for shaking of camera
WO2014010865A1 (en) Camera module
WO2016137081A1 (en) Stabilizing device for shaking of camera and camera lens module comprising same
WO2020197149A1 (en) Camera device
WO2019031817A1 (en) Lens driving apparatus, camera module, and optical device
EP2646874A1 (en) Camera module
WO2019143116A1 (en) Lens assembly and camera module comprising same
WO2019151772A1 (en) Camera module
WO2017164432A1 (en) Lens driving device
WO2022092557A1 (en) Camera actuator and camera module including same
WO2017164435A1 (en) Lens driving device
WO2021246708A1 (en) Actuator for dioptric camera module and camera module including same
WO2021040232A1 (en) Camera actuator and compact camera comprising same
WO2020251203A1 (en) Lens assembly driving apparatus and camera module comprising same
WO2022050619A1 (en) Camera actuator and camera module including same
WO2022102934A1 (en) Zoom drive actuator
WO2021230719A1 (en) Camera module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886552

Country of ref document: EP

Kind code of ref document: A1